WO2006028537A2 - Cervical plate with backout protection - Google Patents

Cervical plate with backout protection Download PDF

Info

Publication number
WO2006028537A2
WO2006028537A2 PCT/US2005/020909 US2005020909W WO2006028537A2 WO 2006028537 A2 WO2006028537 A2 WO 2006028537A2 US 2005020909 W US2005020909 W US 2005020909W WO 2006028537 A2 WO2006028537 A2 WO 2006028537A2
Authority
WO
WIPO (PCT)
Prior art keywords
bushing
channel
bone screw
protrusion
shape
Prior art date
Application number
PCT/US2005/020909
Other languages
French (fr)
Other versions
WO2006028537A3 (en
WO2006028537B1 (en
Inventor
Jeffery Thramann
Michael Fulton
Spanky Raymond
Original Assignee
Lanx, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanx, Llc filed Critical Lanx, Llc
Publication of WO2006028537A2 publication Critical patent/WO2006028537A2/en
Publication of WO2006028537A3 publication Critical patent/WO2006028537A3/en
Publication of WO2006028537B1 publication Critical patent/WO2006028537B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8033Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers
    • A61B17/8047Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers wherein the additional element surrounds the screw head in the plate hole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7059Cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/92Impactors or extractors, e.g. for removing intramedullary devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/809Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with bone-penetrating elements, e.g. blades or prongs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • A61B2017/0256Joint distractors for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4601Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for introducing bone substitute, for implanting bone graft implants or for compacting them in the bone cavity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material

Definitions

  • the present invention relates to implantable devices useful in bone fusion and, more particularly, to cervical plates having backout protection.
  • the vertebrae of the human spine are arranged in a column with one vertebra on top of the next. Between each vertebra exists an intervertebral disc that transmits force between adjacent vertebrae and provides a cushion between the adjacent vertebrae.
  • FIG. 1 shows two adjacent vertebrae 102 and 104. Located between vertebrae 102 and 104 is an intervertebral space 106 partially filled by an implant 108.
  • the implant 108 is first inserted into the intervertebral space 106, the adjacent vertebrae 102 and 104 are manually kept apart by the surgeon using, for example, a retracting device (not shown).
  • a retracting device not shown.
  • FIG. 2 once the implant 108 is placed, the surgeon releases the adjacent vertebrae 102 and 104 allowing them to squeeze the implant 108 and hold the implant 108 in place.
  • Cervical plate 202 may have a central viewing window 204 and one or more screw holes 206, in this example four screw holes 206a-206d are shown.
  • Four bone screws (which will be identified by reference numerals 208a-208d) would be screwed into the vertebrae using the screw holes 206 to anchor the cervical plate to the vertebrae and immobilize the vertebrae with respect to one another.
  • the bone screws 208a-208d absent a locking mechanism tend to reverse thread, which is also known as backing out. Locking mechanisms have been developed to inhibit the bone screws from backing out. Some of the devices included caps or plates that extend over the screw holes 206to inhibit upwards movement of bone screws 208a-208d. Other devices include a frictional engagement between a bushing and the bone screws 208a-208d.
  • a cervical plate having backout protection comprises a plurality at through holes.
  • Each through hole includes a channel in which a bushing resides.
  • the bushing has a bottom edge that can align with a protrusion on a screw head that inhibits the screw from backing out.
  • FIG. 1 shows adjacent vertebrae with a bone graft
  • FIG. 2 shows adjacent vertebrae with a bone graft and cervical plate
  • FIG. 3 shows a perspective and cross-sectional view of a cervical plate with backout protection consistent with the present invention
  • FIG. 4 shows a perspective view of a fixed angle bone screw
  • FIG. 5 shows a perspective view of a variable angle bone screw
  • FIG. 6 shows a perspective view of an embodiment of one possible bushing consistent with the present invention
  • FIG. 7 shows a cross-sectional view of the bone screw and bushing as it would exist if the bone screw was threaded in the vertebral body; and
  • FIG. 8 shows a cross-section view similar to FIG. 7 but prior to complete engagement.
  • FIG. 3 a perspective and cross-sectional view of a cervical plate 300 illustrative of an embodiment of the present invention is shown.
  • Cervical plate 300 is shown with a construct that could span two intervertebral spaces (a.k.a. a two level cervical plate); however, cervical plate 300 could be constructed to span more or less intervertebral spaces.
  • cervical plate 300 is shown with two viewing windows 302. More or less viewing windows 302 could be provided. For example, for a construct that spanned one intervertebral space, only one viewing window may be used. Moreover, for a construct that spanned three intervertebral spaces, three viewing windows may be provided.
  • each viewing window 302 could be split into several smaller viewing windows as a matter of design choice.
  • Cervical plate 300 comprises a bone facing side 304, a top side 306 opposite bone facing side 304, and a plurality of through holes 308.
  • Through holes 308 generally have a diameter dl, at least at bone facing side 304 and top side 306.
  • Each of the plurality of through holes 308 has a channel 310 traversing a perimeter of through hole 308.
  • Channel 310 resides between bone facing surface 304 and top side 306.
  • channel 310 has a concave shape with a maximum diameter of diameter d2 greater than dl. While described separately, channel 310 may simply be a bowing or gradual increase in diameter along the sidewalls associated with through holes 308.
  • a bushing 312 resides in channel 310, as will be explained further below.
  • Bone screws 314 extend through through holes 308 such that bone screws 314 are threaded to vertebral bodies.
  • a head 316 of bone screws 314 engage bushings 312, as will be explained further below, inhibiting bone screws 314 from reverse threading or
  • fixed angle bone screw 400 and variable angle bone screw 500 are shown.
  • bone screws 314 could be either fixed angle bone screws 400 or variable angle bone screws 500, and both are shown in FIG. 3.
  • Fixed angle bone screws 400 and variable angle bone screws 500 are generally known in the art and will not be further explained herein. Head 316 will be explained further below with reference to FIG. 7.
  • Bushing 312 comprises a top edge 602, which would be located proximate top side 304, and a bottom edge 604, which would be located proximate bone facing surface 306.
  • Sidewall 606 extends between top edge 602 and bottom edge 604.
  • Bushing 312 is shown generally cylindrical in shape but generally would have a shape consistent with channel 310 to allow cervical plate 300 and bone screws 314 to align properly during surgery.
  • channel 310 has a concave shape to cooperatively engage a convex shape of an outer surface 608 of sidewall 606.
  • Inner surface 610 has a shape consistent with heads 316.
  • Outer surface 608 has a diameter d2 at its maximum.
  • Bushing 312 is compressible such that bushing 312 can be compressed to fit within diameter dl.
  • bushing 312 may have a gap 610. Once the compressive force is removed, bushing 312 would expand such that outer surface 608 cooperatively engages channel 310.
  • At least a bottom portion 612 of bushing 312 comprises a flexible material that can expand outward when impinged by head 316, which will be explained further below.
  • bottom portion 612 may comprises one or more slots 614.
  • bottom edge 604 has a diameter d3. Head 316 will be explained in more detail with reference to FIGS. 7 and 8. Head 316 has an internal matting surface 702.
  • Internal matting surface 702 is designed to allow a surgical tool to drive bone screw 314 into a vertebral body.
  • Head 316 has an external surface 704 that cooperatively engages inner surface 610 of bushing 312.
  • inner surface 610 is concave and external surface 704 is convex.
  • External surface 704 may extend over a portion or all of head 316, but terminates at a transition edge 706 where a protrusion 708, which may be a ledge or shoulder, extends.
  • Transition edge 706 has a diameter d3 and protrusion 708 extends outward from transition edge 706 such that bottom edge 604 abuts protrusion 708.
  • bushing 312 inhibits reverse threading of bone screw 314 because bottom edge 604 abutting protrusion 708 inhibits upward movement of bone screw 314. While bottom edge 604 could directly abut protrusion 708, washers or other devices could be implanted as well.
  • FIG. 7 shows the implant after bone screw 314 has been threaded in the vertebral bodies
  • FIG. 8 shows the implant prior to completion of the threading operation.
  • head 316 advances through bushing 312.
  • a surface 802 on protrusion 708 tends to impinge on bottom portion 612 as head 316 advances.
  • the impingement causes bottom portion 612 to flex.
  • protrusion 708 advances past bottom edge 604, bottom portion returns to it pre-flex position such that bottom edge 604 is aligned over protrusion 708.

Abstract

The present invention provides a cervical plate with backout protection. In particular, a bushing residing in each of a plurality of through holes has a bottom edge that aligns with a protrusion on a screw head. The bottom edge aligning with the protrusion inhibits reverse threading or backing out of the bone screw.

Description

CERVICAL PLATE WITH BACKOUT PROTECTION
RELATED APPLICATIONS
This application is a continuation- in-part of United States Patent Application Serial Number 10/632,760, filed August 1, 2003, titled CERVICAL PLATE, which is a continuation in part of United States Patent Application Serial Number 10/178,371, filed June 24, 2002, titled CERVICAL PLATE, now U.S. Patent Number 6,602,257.
FIELD OF THE INVENTION
The present invention relates to implantable devices useful in bone fusion and, more particularly, to cervical plates having backout protection.
BACKGROUND OF THE INVENTION
The vertebrae of the human spine are arranged in a column with one vertebra on top of the next. Between each vertebra exists an intervertebral disc that transmits force between adjacent vertebrae and provides a cushion between the adjacent vertebrae.
Sometimes, back pain is caused by degeneration or other deformity of the intervertebral disk ("diseased disk"). Conventionally, surgeons treat diseased discs by surgically removing the diseased disc and inserting an implant in the space vacated by the diseased disk, which implant may be bone or other biocompatible implants. The adjacent vertebrae are then immobilized relative to one another. Eventually, the vertebrae grow into one solid piece of bone.
Currently, it is difficult to insert the bone graft into the vacated space and fuse the adjacent vertebrae. The current process of inserting a bone graft and fusing the adjacent vertebrae will be explained with referring to FIGS. 1 and 2. FIG. 1 shows two adjacent vertebrae 102 and 104. Located between vertebrae 102 and 104 is an intervertebral space 106 partially filled by an implant 108. When the implant 108 is first inserted into the intervertebral space 106, the adjacent vertebrae 102 and 104 are manually kept apart by the surgeon using, for example, a retracting device (not shown). As shown in FIG. 2, once the implant 108 is placed, the surgeon releases the adjacent vertebrae 102 and 104 allowing them to squeeze the implant 108 and hold the implant 108 in place.
To immobilize the vertebrae 102 and 104 with the implant 108 in place, the surgeon next applies a cervical plate 202 over the adjacent vertebrae 102 and 104. Cervical plate 202 may have a central viewing window 204 and one or more screw holes 206, in this example four screw holes 206a-206d are shown. Four bone screws (which will be identified by reference numerals 208a-208d) would be screwed into the vertebrae using the screw holes 206 to anchor the cervical plate to the vertebrae and immobilize the vertebrae with respect to one another.
The bone screws 208a-208d absent a locking mechanism tend to reverse thread, which is also known as backing out. Locking mechanisms have been developed to inhibit the bone screws from backing out. Some of the devices included caps or plates that extend over the screw holes 206to inhibit upwards movement of bone screws 208a-208d. Other devices include a frictional engagement between a bushing and the bone screws 208a-208d.
Although many devices exist that satisfactorily inhibit backout of the bone screws, it would be desirous to develop a device to inhibit the bone screws from backing out.
SUMMARY OF THE INVENTION
To attain the advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a cervical plate having backout protection is provided. The cervical plate comprises a plurality at through holes. Each through hole includes a channel in which a bushing resides. The bushing has a bottom edge that can align with a protrusion on a screw head that inhibits the screw from backing out. The foregoing and other features, utilities and advantages of the invention will be apparent from the following more particular description of a preferred embodiment of the invention as illustrated in the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWING
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present invention, and together with the description, serve to explain the principles thereof. Like items in the drawings are referred to using the same numerical reference. FIG. 1 shows adjacent vertebrae with a bone graft;
FIG. 2 shows adjacent vertebrae with a bone graft and cervical plate;
FIG. 3 shows a perspective and cross-sectional view of a cervical plate with backout protection consistent with the present invention;
FIG. 4 shows a perspective view of a fixed angle bone screw; FIG. 5 shows a perspective view of a variable angle bone screw;
FIG. 6 shows a perspective view of an embodiment of one possible bushing consistent with the present invention;
FIG. 7 shows a cross-sectional view of the bone screw and bushing as it would exist if the bone screw was threaded in the vertebral body; and FIG. 8 shows a cross-section view similar to FIG. 7 but prior to complete engagement.
DETAILED DESCRIPTION
The present invention will be described with reference to FIGS. 3-8. Referring first to FIG. 3, a perspective and cross-sectional view of a cervical plate 300 illustrative of an embodiment of the present invention is shown. Cervical plate 300 is shown with a construct that could span two intervertebral spaces (a.k.a. a two level cervical plate); however, cervical plate 300 could be constructed to span more or less intervertebral spaces. Because plate 300 spans two intervertebral spaces, cervical plate 300 is shown with two viewing windows 302. More or less viewing windows 302 could be provided. For example, for a construct that spanned one intervertebral space, only one viewing window may be used. Moreover, for a construct that spanned three intervertebral spaces, three viewing windows may be provided. Furthermore, for cervical plate 300, each viewing window 302 could be split into several smaller viewing windows as a matter of design choice.
Cervical plate 300 comprises a bone facing side 304, a top side 306 opposite bone facing side 304, and a plurality of through holes 308. Through holes 308 generally have a diameter dl, at least at bone facing side 304 and top side 306. Each of the plurality of through holes 308 has a channel 310 traversing a perimeter of through hole 308. Channel 310 resides between bone facing surface 304 and top side 306. Generally, channel 310 has a concave shape with a maximum diameter of diameter d2 greater than dl. While described separately, channel 310 may simply be a bowing or gradual increase in diameter along the sidewalls associated with through holes 308. A bushing 312 resides in channel 310, as will be explained further below. Bone screws 314 extend through through holes 308 such that bone screws 314 are threaded to vertebral bodies. A head 316 of bone screws 314 engage bushings 312, as will be explained further below, inhibiting bone screws 314 from reverse threading or backing out.
Referring to FIGS. 4 and 5, fixed angle bone screw 400 and variable angle bone screw 500 are shown. Note, bone screws 314 could be either fixed angle bone screws 400 or variable angle bone screws 500, and both are shown in FIG. 3. Fixed angle bone screws 400 and variable angle bone screws 500 are generally known in the art and will not be further explained herein. Head 316 will be explained further below with reference to FIG. 7.
Referring to FIG. 6, a perspective view of bushing 312 is shown in more detail. Bushing 312 comprises a top edge 602, which would be located proximate top side 304, and a bottom edge 604, which would be located proximate bone facing surface 306. Sidewall 606 extends between top edge 602 and bottom edge 604. Bushing 312 is shown generally cylindrical in shape but generally would have a shape consistent with channel 310 to allow cervical plate 300 and bone screws 314 to align properly during surgery. In this case, channel 310 has a concave shape to cooperatively engage a convex shape of an outer surface 608 of sidewall 606. Inner surface 610 has a shape consistent with heads 316. Outer surface 608 has a diameter d2 at its maximum. Bushing 312 is compressible such that bushing 312 can be compressed to fit within diameter dl. To assist with compression, bushing 312 may have a gap 610. Once the compressive force is removed, bushing 312 would expand such that outer surface 608 cooperatively engages channel 310. At least a bottom portion 612 of bushing 312 comprises a flexible material that can expand outward when impinged by head 316, which will be explained further below. To facilitate the flexible movement, bottom portion 612 may comprises one or more slots 614. When not impinged by head 316, bottom edge 604 has a diameter d3. Head 316 will be explained in more detail with reference to FIGS. 7 and 8. Head 316 has an internal matting surface 702. Internal matting surface 702 is designed to allow a surgical tool to drive bone screw 314 into a vertebral body. Head 316 has an external surface 704 that cooperatively engages inner surface 610 of bushing 312. In this case, inner surface 610 is concave and external surface 704 is convex. External surface 704 may extend over a portion or all of head 316, but terminates at a transition edge 706 where a protrusion 708, which may be a ledge or shoulder, extends. Transition edge 706 has a diameter d3 and protrusion 708 extends outward from transition edge 706 such that bottom edge 604 abuts protrusion 708. Thus, bushing 312 inhibits reverse threading of bone screw 314 because bottom edge 604 abutting protrusion 708 inhibits upward movement of bone screw 314. While bottom edge 604 could directly abut protrusion 708, washers or other devices could be implanted as well.
While FIG. 7 shows the implant after bone screw 314 has been threaded in the vertebral bodies, FIG. 8 shows the implant prior to completion of the threading operation. As bone screw 314 is threaded in the vertebral bodies, head 316 advances through bushing 312. A surface 802 on protrusion 708 tends to impinge on bottom portion 612 as head 316 advances. The impingement causes bottom portion 612 to flex. Once protrusion 708 advances past bottom edge 604, bottom portion returns to it pre-flex position such that bottom edge 604 is aligned over protrusion 708.
While the invention has been particularly shown and described with reference to an embodiment thereof, it will be understood by those skilled in the art that various other changes in the form and details may be made without departing from the spirit and scope of the invention.

Claims

We claim:
1. A device useful in bone fusion, comprising: a cervical plate; a plurality of through holes provided in the cervical plate; each of the plurality of through holes comprising a channel; a bushing residing in the channel; the bushing comprising a shape that cooperatively engages the channel and a flexible bottom portion terminating in a bottom edge, whereby a head of a bone screw forces the flexible bottom portion outward as the bone screw is threaded until a protrusion on the head substantially aligns with the bottom edge and the bottom edge cooperatively engages the protrusion to inhibit the bone screw from reverse threading.
2. The device of claim 1, wherein the channel is formed by an increase in diameter of the through hole.
3. The device of claim 2, wherein the increase in diameter forms a concave shape.
4. The device of claim 3, wherein the shape of the bushing is convex to cooperatively engage the channel
5. The device of claim 1, wherein the bushing further comprises a gap, the gap allowing the bushing to be compressed between a first size where the bushing cooperatively engages the channel and a second size where the bushing is sufficiently compressed to fit in the through hole.
6. The device of claim 1, wherein the flexible bottom portion comprises at least one slot to facilitate the outward movement when the head impinges the bushing.
7. The device of claim 1, wherein the bushing cooperatively engages the channel allowing orientation of the bone screw.
8. A device useful in bone fusion, comprising: a cervical plate; a plurality of through holes provided in the cervical plate; a plurality of bone screws provided to be inserted through the plurality of through holes; each of the plurality of through holes comprising a channel the channel comprising a channel shape; a bushing residing in the channel; the bushing comprising an outer shape that cooperatively engages the channel, an inner shape, and a flexible bottom portion terminating in a bottom edge; at least one bone screw; and the at least one bone screw having a head with a head shape that cooperatively engages the bushing and terminates at a protrusion; whereby during threading of the at least one bone screw, the protrusion impinges on the flexible bottom portion such that the protrusion passes the bottom edge wherein the flexible bottom portion returns to an un-flexed position and the bottom edge substantially aligns with the protrusion to inhibit the bone screw from reverse threading.
9. The device of claim 8, wherein the at least one bone screw is a fixed angle bone screw.
10. The device of claim 8, wherein the at least one bone screw is a variable angle bone screw.
11. The device of claim 8, wherein the channel is formed by an increase in diameter of the through hole.
12. The device of claim 11, wherein the channel shape is concave and the outer shape is convex.
13. The device of claim 8, wherein the inner shape is concave and the head shape is convex.
14. The device of claim 12, wherein the inner shape is concave and the head shape is convex.
15. The device of claim 8, wherein the flexible bottom portion comprises at least one slot to facilitate the outward flexing of the flexible bottom portion when the head impinges on the flexible bottom portion.
16. The device of claim 8, wherein the bushing has an uncompressed state and a compressed state, wherein when in the uncompressed state the bushing cooperatively engages the channel and in the compressed state the bushing fits in the through hole.
17. The device of claim 16, wherein the bushing comprises a gap to facilitate compression of the bushing.
18. The device of claim 8, wherein the bone screw further comprises a surface that facilitates the flexing of the flexible bottom portion.
19. A method for placing an implant useful in fusing bone, the method comprising the steps of: compressing a bushing; inserting the compressed bushing through a through hole; aligning the bushing with a channel; releasing the bushing such that the compressed bushing uncompresses and cooperatively engages the channel; inserting a bone screw through the through hole; threading the bone screw through the through hole; impinging a protrusion on the bushing causing the bushing to flex until the protrusion advances through the bushing; and aligning the protrusion below a bottom edge of the bushing such that the reverse threading of the bone screw is inhibited.
20. The method of claim 19, further comprising the step of orienting the bushing in the channel prior to inserting the bone screw to facilitate threading the bone screw.
PCT/US2005/020909 2004-09-01 2005-06-14 Cervical plate with backout protection WO2006028537A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/932,272 2004-09-01
US10/932,272 US7175623B2 (en) 2002-06-24 2004-09-01 Cervical plate with backout protection

Publications (3)

Publication Number Publication Date
WO2006028537A2 true WO2006028537A2 (en) 2006-03-16
WO2006028537A3 WO2006028537A3 (en) 2006-10-05
WO2006028537B1 WO2006028537B1 (en) 2006-11-16

Family

ID=36036777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/020909 WO2006028537A2 (en) 2004-09-01 2005-06-14 Cervical plate with backout protection

Country Status (2)

Country Link
US (1) US7175623B2 (en)
WO (1) WO2006028537A2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7951170B2 (en) 2007-05-31 2011-05-31 Jackson Roger P Dynamic stabilization connecting member with pre-tensioned solid core
US9050139B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US9198695B2 (en) 2010-08-30 2015-12-01 Zimmer Spine, Inc. Polyaxial pedicle screw
US9629669B2 (en) 2004-11-23 2017-04-25 Roger P. Jackson Spinal fixation tool set and method
USRE46431E1 (en) 2003-06-18 2017-06-13 Roger P Jackson Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US9743957B2 (en) 2004-11-10 2017-08-29 Roger P. Jackson Polyaxial bone screw with shank articulation pressure insert and method
US9907574B2 (en) 2008-08-01 2018-03-06 Roger P. Jackson Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features
US9918751B2 (en) 2004-02-27 2018-03-20 Roger P. Jackson Tool system for dynamic spinal implants
US9918745B2 (en) 2009-06-15 2018-03-20 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
US9980753B2 (en) 2009-06-15 2018-05-29 Roger P Jackson pivotal anchor with snap-in-place insert having rotation blocking extensions
US10039577B2 (en) 2004-11-23 2018-08-07 Roger P Jackson Bone anchor receiver with horizontal radiused tool attachment structures and parallel planar outer surfaces
US10039578B2 (en) 2003-12-16 2018-08-07 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US10076361B2 (en) 2005-02-22 2018-09-18 Roger P. Jackson Polyaxial bone screw with spherical capture, compression and alignment and retention structures
US10194951B2 (en) 2005-05-10 2019-02-05 Roger P. Jackson Polyaxial bone anchor with compound articulation and pop-on shank
US10258382B2 (en) 2007-01-18 2019-04-16 Roger P. Jackson Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord
US10299839B2 (en) 2003-12-16 2019-05-28 Medos International Sárl Percutaneous access devices and bone anchor assemblies
US10363070B2 (en) 2009-06-15 2019-07-30 Roger P. Jackson Pivotal bone anchor assemblies with pressure inserts and snap on articulating retainers
US10383660B2 (en) 2007-05-01 2019-08-20 Roger P. Jackson Soft stabilization assemblies with pretensioned cords
US10470801B2 (en) 2007-01-18 2019-11-12 Roger P. Jackson Dynamic spinal stabilization with rod-cord longitudinal connecting members
US10729469B2 (en) 2006-01-09 2020-08-04 Roger P. Jackson Flexible spinal stabilization assembly with spacer having off-axis core member
US10792074B2 (en) 2007-01-22 2020-10-06 Roger P. Jackson Pivotal bone anchor assemly with twist-in-place friction fit insert
US11234745B2 (en) 2005-07-14 2022-02-01 Roger P. Jackson Polyaxial bone screw assembly with partially spherical screw head and twist in place pressure insert
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies

Families Citing this family (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833250B2 (en) 2004-11-10 2010-11-16 Jackson Roger P Polyaxial bone screw with helically wound capture connection
US8377100B2 (en) * 2000-12-08 2013-02-19 Roger P. Jackson Closure for open-headed medical implant
US6726689B2 (en) * 2002-09-06 2004-04-27 Roger P. Jackson Helical interlocking mating guide and advancement structure
US8292926B2 (en) 2005-09-30 2012-10-23 Jackson Roger P Dynamic stabilization connecting member with elastic core and outer sleeve
US7862587B2 (en) 2004-02-27 2011-01-04 Jackson Roger P Dynamic stabilization assemblies, tool set and method
US8353932B2 (en) 2005-09-30 2013-01-15 Jackson Roger P Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
US8257402B2 (en) * 2002-09-06 2012-09-04 Jackson Roger P Closure for rod receiving orthopedic implant having left handed thread removal
US8876868B2 (en) 2002-09-06 2014-11-04 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
WO2006052796A2 (en) 2004-11-10 2006-05-18 Jackson Roger P Helical guide and advancement flange with break-off extensions
US8282673B2 (en) * 2002-09-06 2012-10-09 Jackson Roger P Anti-splay medical implant closure with multi-surface removal aperture
US20060009773A1 (en) * 2002-09-06 2006-01-12 Jackson Roger P Helical interlocking mating guide and advancement structure
US6716214B1 (en) * 2003-06-18 2004-04-06 Roger P. Jackson Polyaxial bone screw with spline capture connection
US8540753B2 (en) 2003-04-09 2013-09-24 Roger P. Jackson Polyaxial bone screw with uploaded threaded shank and method of assembly and use
US7377923B2 (en) 2003-05-22 2008-05-27 Alphatec Spine, Inc. Variable angle spinal screw assembly
US8398682B2 (en) 2003-06-18 2013-03-19 Roger P. Jackson Polyaxial bone screw assembly
US8936623B2 (en) 2003-06-18 2015-01-20 Roger P. Jackson Polyaxial bone screw assembly
US8137386B2 (en) 2003-08-28 2012-03-20 Jackson Roger P Polyaxial bone screw apparatus
US8257398B2 (en) 2003-06-18 2012-09-04 Jackson Roger P Polyaxial bone screw with cam capture
US7766915B2 (en) 2004-02-27 2010-08-03 Jackson Roger P Dynamic fixation assemblies with inner core and outer coil-like member
US8092500B2 (en) * 2007-05-01 2012-01-10 Jackson Roger P Dynamic stabilization connecting member with floating core, compression spacer and over-mold
US8377102B2 (en) 2003-06-18 2013-02-19 Roger P. Jackson Polyaxial bone anchor with spline capture connection and lower pressure insert
US7255714B2 (en) 2003-09-30 2007-08-14 Michel H. Malek Vertically adjustable intervertebral disc prosthesis
US7306605B2 (en) 2003-10-02 2007-12-11 Zimmer Spine, Inc. Anterior cervical plate
US7862586B2 (en) 2003-11-25 2011-01-04 Life Spine, Inc. Spinal stabilization systems
WO2005092218A1 (en) 2004-02-27 2005-10-06 Jackson Roger P Orthopedic implant rod reduction tool set and method
US9050148B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Spinal fixation tool attachment structure
US11241261B2 (en) 2005-09-30 2022-02-08 Roger P Jackson Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure
US7651502B2 (en) 2004-09-24 2010-01-26 Jackson Roger P Spinal fixation tool set and method for rod reduction and fastener insertion
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
US9216041B2 (en) 2009-06-15 2015-12-22 Roger P. Jackson Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts
US8308782B2 (en) 2004-11-23 2012-11-13 Jackson Roger P Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation
US9168069B2 (en) 2009-06-15 2015-10-27 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
US7875065B2 (en) * 2004-11-23 2011-01-25 Jackson Roger P Polyaxial bone screw with multi-part shank retainer and pressure insert
US8444681B2 (en) 2009-06-15 2013-05-21 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
ATE524121T1 (en) 2004-11-24 2011-09-15 Abdou Samy DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT
WO2006069089A2 (en) 2004-12-21 2006-06-29 Packaging Service Corporation Of Kentucky Cervical plate system
US7901437B2 (en) 2007-01-26 2011-03-08 Jackson Roger P Dynamic stabilization member with molded connection
US8496708B2 (en) 2005-03-17 2013-07-30 Spinal Elements, Inc. Flanged interbody fusion device with hinge
US7931681B2 (en) * 2005-04-14 2011-04-26 Warsaw Orthopedic, Inc. Anti-backout mechanism for an implant fastener
US8105368B2 (en) 2005-09-30 2012-01-31 Jackson Roger P Dynamic stabilization connecting member with slitted core and outer sleeve
US20070118128A1 (en) * 2005-11-22 2007-05-24 Depuy Spine, Inc. Implant fixation methods and apparatus
US7704271B2 (en) * 2005-12-19 2010-04-27 Abdou M Samy Devices and methods for inter-vertebral orthopedic device placement
SE531987C2 (en) * 2006-03-17 2009-09-22 Sven Olerud Device for attaching and fixing a first element to a second element
US20080027444A1 (en) * 2006-07-28 2008-01-31 Malek Michel H Bone anchor device
US8361130B2 (en) 2006-10-06 2013-01-29 Depuy Spine, Inc. Bone screw fixation
US20080147122A1 (en) * 2006-10-12 2008-06-19 Jackson Roger P Dynamic stabilization connecting member with molded inner segment and surrounding external elastomer
US8262710B2 (en) * 2006-10-24 2012-09-11 Aesculap Implant Systems, Llc Dynamic stabilization device for anterior lower lumbar vertebral fusion
US8366745B2 (en) 2007-05-01 2013-02-05 Jackson Roger P Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US8034081B2 (en) 2007-02-06 2011-10-11 CollabComl, LLC Interspinous dynamic stabilization implant and method of implanting
US8012177B2 (en) 2007-02-12 2011-09-06 Jackson Roger P Dynamic stabilization assembly with frusto-conical connection
US8702762B2 (en) 2007-03-27 2014-04-22 Depuy Spine, Inc. Passive screw locking mechanism
US7942910B2 (en) 2007-05-16 2011-05-17 Ortho Innovations, Llc Polyaxial bone screw
US7947065B2 (en) 2008-11-14 2011-05-24 Ortho Innovations, Llc Locking polyaxial ball and socket fastener
US7942911B2 (en) 2007-05-16 2011-05-17 Ortho Innovations, Llc Polyaxial bone screw
US8197518B2 (en) 2007-05-16 2012-06-12 Ortho Innovations, Llc Thread-thru polyaxial pedicle screw system
US7942909B2 (en) 2009-08-13 2011-05-17 Ortho Innovations, Llc Thread-thru polyaxial pedicle screw system
US7951173B2 (en) * 2007-05-16 2011-05-31 Ortho Innovations, Llc Pedicle screw implant system
US8043346B2 (en) 2007-05-18 2011-10-25 Custom Spine, Inc. Anterior cervical plate with independent spring-loaded locking slides for each screw
US20090177239A1 (en) * 2007-08-06 2009-07-09 Michael Castro Cervical plate instrument kit
US20090105764A1 (en) * 2007-10-23 2009-04-23 Jackson Roger P Dynamic stabilization member with fin support and solid core extension
US8911477B2 (en) * 2007-10-23 2014-12-16 Roger P. Jackson Dynamic stabilization member with end plate support and cable core extension
US8617214B2 (en) 2008-01-07 2013-12-31 Mmsn Limited Partnership Spinal tension band
US20090182383A1 (en) * 2008-01-14 2009-07-16 Amedica Corporation Bone fixation plate with anchor retaining member
US8282675B2 (en) * 2008-01-25 2012-10-09 Depuy Spine, Inc. Anti-backout mechanism
US7935133B2 (en) 2008-02-08 2011-05-03 Mmsn Limited Partnership Interlaminar hook
EP2339976B1 (en) 2008-07-09 2016-03-16 Icon Orthopaedic Concepts, LLC Ankle arthrodesis nail and outrigger assembly
US8414584B2 (en) 2008-07-09 2013-04-09 Icon Orthopaedic Concepts, Llc Ankle arthrodesis nail and outrigger assembly
WO2010047688A1 (en) * 2008-10-21 2010-04-29 Innovative Delta Technology Llc Screw with locking mechanism and rigid/dynamic bone plate
US8187304B2 (en) * 2008-11-10 2012-05-29 Malek Michel H Facet fusion system
US8075603B2 (en) 2008-11-14 2011-12-13 Ortho Innovations, Llc Locking polyaxial ball and socket fastener
US9492214B2 (en) * 2008-12-18 2016-11-15 Michel H. Malek Flexible spinal stabilization system
US20100217399A1 (en) * 2009-02-22 2010-08-26 Groh Gordon I Base plate system for shoulder arthroplasty and method of using the same
US9220547B2 (en) 2009-03-27 2015-12-29 Spinal Elements, Inc. Flanged interbody fusion device
US8211154B2 (en) * 2009-04-06 2012-07-03 Lanx, Inc. Bone plate assemblies with backout protection and visual indicator
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
US11229457B2 (en) 2009-06-15 2022-01-25 Roger P. Jackson Pivotal bone anchor assembly with insert tool deployment
CN103917181A (en) 2009-06-15 2014-07-09 罗杰.P.杰克逊 Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
CA2774471A1 (en) 2009-10-05 2011-04-14 James L. Surber Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US20110160772A1 (en) * 2009-12-28 2011-06-30 Arcenio Gregory B Systems and methods for performing spinal fusion
BR112013005465A2 (en) 2010-09-08 2019-09-24 P Jackson Roger connecting element in a medical implant assembly having at least two bone attachment structures cooperating with a dynamic longitudinal connecting element
US8753396B1 (en) 2010-09-13 2014-06-17 Theken Spine, Llc Intervertebral implant having back-out prevention feature
US9301787B2 (en) 2010-09-27 2016-04-05 Mmsn Limited Partnership Medical apparatus and method for spinal surgery
EP2460484A1 (en) * 2010-12-01 2012-06-06 FACET-LINK Inc. Variable angle bone screw fixation assembly
US8940030B1 (en) 2011-01-28 2015-01-27 Nuvasive, Inc. Spinal fixation system and related methods
US8771324B2 (en) 2011-05-27 2014-07-08 Globus Medical, Inc. Securing fasteners
US8668723B2 (en) 2011-07-19 2014-03-11 Neurostructures, Inc. Anterior cervical plate
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US11123117B1 (en) 2011-11-01 2021-09-21 Nuvasive, Inc. Surgical fixation system and related methods
WO2013106217A1 (en) 2012-01-10 2013-07-18 Jackson, Roger, P. Multi-start closures for open implants
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
WO2013173818A1 (en) * 2012-05-18 2013-11-21 Curax Scientific, Llc Distraction and reduction facilitating plate system and method
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
ES2710339T3 (en) 2012-12-28 2019-04-24 Paragon 28 Inc Alignment guide system
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US9453526B2 (en) 2013-04-30 2016-09-27 Degen Medical, Inc. Bottom-loading anchor assembly
US9510880B2 (en) 2013-08-13 2016-12-06 Zimmer, Inc. Polyaxial locking mechanism
US9468479B2 (en) 2013-09-06 2016-10-18 Cardinal Health 247, Inc. Bone plate
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US9629664B2 (en) 2014-01-20 2017-04-25 Neurostructures, Inc. Anterior cervical plate
US9486250B2 (en) 2014-02-20 2016-11-08 Mastros Innovations, LLC. Lateral plate
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
US20160151166A1 (en) * 2014-07-01 2016-06-02 Alliance Partners, Llc Low profile standalone cervical interbody with screw locking clips and method of using same
US10213237B2 (en) 2014-10-03 2019-02-26 Stryker European Holdings I, Llc Periprosthetic extension plate
DE102014117175A1 (en) * 2014-11-24 2016-05-25 Aesculap Ag Pedicle screw system and spine stabilization system
EP3250155A4 (en) 2015-01-27 2018-08-22 Spinal Elements Inc. Facet joint implant
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
WO2017096098A1 (en) 2015-12-01 2017-06-08 Revivo Medical, Llc Bone fixation apparatus with fastener securement mechanism and methods of use
US10251685B2 (en) 2016-03-17 2019-04-09 Stryker European Holdings I, Llc Floating locking insert
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
WO2018157170A1 (en) 2017-02-27 2018-08-30 Paragon 28, Inc. Targeting instruments, systems and methods of use
WO2018183875A1 (en) * 2017-03-30 2018-10-04 Paragon 28, Inc. Bone fixation system, assembly, implants, devices, alignment guides, and methods of use
US10980641B2 (en) 2017-05-04 2021-04-20 Neurostructures, Inc. Interbody spacer
US10512547B2 (en) 2017-05-04 2019-12-24 Neurostructures, Inc. Interbody spacer
US11076892B2 (en) 2018-08-03 2021-08-03 Neurostructures, Inc. Anterior cervical plate
CA3111008A1 (en) 2018-09-20 2020-03-26 Spinal Elements, Inc. Spinal implant device
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11071629B2 (en) 2018-10-13 2021-07-27 Neurostructures Inc. Interbody spacer
JP2022519896A (en) 2019-02-13 2022-03-25 パラゴン28・インコーポレイテッド Implants, adjustment guides, systems, and usage
CN110123433A (en) * 2019-05-15 2019-08-16 山东新华联合骨科器材股份有限公司 A kind of internal fixing system for anterior cervical vertebrae
US11382761B2 (en) 2020-04-11 2022-07-12 Neurostructures, Inc. Expandable interbody spacer
US11304817B2 (en) 2020-06-05 2022-04-19 Neurostructures, Inc. Expandable interbody spacer
US11911284B2 (en) 2020-11-19 2024-02-27 Spinal Elements, Inc. Curved expandable interbody devices and deployment tools
US11717419B2 (en) 2020-12-10 2023-08-08 Neurostructures, Inc. Expandable interbody spacer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085660A (en) * 1990-11-19 1992-02-04 Lin Kwan C Innovative locking plate system
US6235033B1 (en) * 2000-04-19 2001-05-22 Synthes (Usa) Bone fixation assembly

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8513288U1 (en) 1985-05-06 1986-09-04 Wolter, Dietmar, Prof. Dr., 2000 Hamburg Osteosynthesis plate
CA2132832C (en) 1993-01-25 2001-08-14 Synthes Ag Lock washer for bone plate osteosynthesis
US5364399A (en) 1993-02-05 1994-11-15 Danek Medical, Inc. Anterior cervical plating system
US5558674A (en) 1993-12-17 1996-09-24 Smith & Nephew Richards, Inc. Devices and methods for posterior spinal fixation
AU3207895A (en) 1994-08-23 1996-03-14 Spine-Tech, Inc. Cervical spine stabilization system
US5578034A (en) 1995-06-07 1996-11-26 Danek Medical, Inc. Apparatus for preventing screw backout in a bone plate fixation system
US6139550A (en) 1997-02-11 2000-10-31 Michelson; Gary K. Skeletal plating system
DE69839498D1 (en) 1997-02-11 2008-06-26 Warsaw Orthopedic Inc Plate for the anterior cervical spine with fixation system for one screw
ZA983955B (en) 1997-05-15 2001-08-13 Sdgi Holdings Inc Anterior cervical plating system.
US5954722A (en) 1997-07-29 1999-09-21 Depuy Acromed, Inc. Polyaxial locking plate
WO1999021502A1 (en) 1997-10-24 1999-05-06 Bray Robert S Jr Bone plate and bone screw guide mechanism
US5957927A (en) 1998-02-24 1999-09-28 Synthes (Usa) Bone fixation device introducer
US5951558A (en) 1998-04-22 1999-09-14 Fiz; Daniel Bone fixation device
US6533786B1 (en) 1999-10-13 2003-03-18 Sdgi Holdings, Inc. Anterior cervical plating system
US6258089B1 (en) 1998-05-19 2001-07-10 Alphatec Manufacturing, Inc. Anterior cervical plate and fixation system
US5904683A (en) 1998-07-10 1999-05-18 Sulzer Spine-Tech Inc. Anterior cervical vertebral stabilizing device
US6159213A (en) 1998-10-02 2000-12-12 Rogozinski; Chaim Cervical plate
FR2784570B1 (en) 1998-10-19 2001-02-16 Scient X INTERVERTEBRAL CONNECTION DEVICE HAVING ANTI-EXTRACTION MEANS FOR ANCHORAGE SCREWS
US6129730A (en) 1999-02-10 2000-10-10 Depuy Acromed, Inc. Bi-fed offset pitch bone screw
US6224599B1 (en) 1999-05-19 2001-05-01 Matthew G. Baynham Viewable wedge distractor device
US6261291B1 (en) 1999-07-08 2001-07-17 David J. Talaber Orthopedic implant assembly
AU1493301A (en) 1999-09-27 2001-04-30 Blackstone Medical, Inc. A surgical screw system and related methods
US6224602B1 (en) 1999-10-11 2001-05-01 Interpore Cross International Bone stabilization plate with a secured-locking mechanism for cervical fixation
US6436101B1 (en) 1999-10-13 2002-08-20 James S. Hamada Rasp for use in spine surgery
JP3816342B2 (en) 2000-02-15 2006-08-30 株式会社リコー Digital image reader
US6533789B1 (en) * 2000-04-04 2003-03-18 Synthes (Usa) Device for rotational stabilization of bone segments
US6503250B2 (en) 2000-11-28 2003-01-07 Kamaljit S. Paul Bone support assembly
US6413259B1 (en) 2000-12-14 2002-07-02 Blackstone Medical, Inc Bone plate assembly including a screw retaining member
US7044952B2 (en) 2001-06-06 2006-05-16 Sdgi Holdings, Inc. Dynamic multilock anterior cervical plate system having non-detachably fastened and moveable segments
US6890335B2 (en) 2001-08-24 2005-05-10 Zimmer Spine, Inc. Bone fixation device
DE10152094C2 (en) 2001-10-23 2003-11-27 Biedermann Motech Gmbh Bone fixation device
US6695846B2 (en) 2002-03-12 2004-02-24 Spinal Innovations, Llc Bone plate and screw retaining mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085660A (en) * 1990-11-19 1992-02-04 Lin Kwan C Innovative locking plate system
US6235033B1 (en) * 2000-04-19 2001-05-22 Synthes (Usa) Bone fixation assembly

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE46431E1 (en) 2003-06-18 2017-06-13 Roger P Jackson Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US11426216B2 (en) 2003-12-16 2022-08-30 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US10039578B2 (en) 2003-12-16 2018-08-07 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US10299839B2 (en) 2003-12-16 2019-05-28 Medos International Sárl Percutaneous access devices and bone anchor assemblies
US9918751B2 (en) 2004-02-27 2018-03-20 Roger P. Jackson Tool system for dynamic spinal implants
US9050139B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US9743957B2 (en) 2004-11-10 2017-08-29 Roger P. Jackson Polyaxial bone screw with shank articulation pressure insert and method
US9629669B2 (en) 2004-11-23 2017-04-25 Roger P. Jackson Spinal fixation tool set and method
US11389214B2 (en) 2004-11-23 2022-07-19 Roger P. Jackson Spinal fixation tool set and method
US10039577B2 (en) 2004-11-23 2018-08-07 Roger P Jackson Bone anchor receiver with horizontal radiused tool attachment structures and parallel planar outer surfaces
USRE47551E1 (en) 2005-02-22 2019-08-06 Roger P. Jackson Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures
US10076361B2 (en) 2005-02-22 2018-09-18 Roger P. Jackson Polyaxial bone screw with spherical capture, compression and alignment and retention structures
US10194951B2 (en) 2005-05-10 2019-02-05 Roger P. Jackson Polyaxial bone anchor with compound articulation and pop-on shank
US11234745B2 (en) 2005-07-14 2022-02-01 Roger P. Jackson Polyaxial bone screw assembly with partially spherical screw head and twist in place pressure insert
US10729469B2 (en) 2006-01-09 2020-08-04 Roger P. Jackson Flexible spinal stabilization assembly with spacer having off-axis core member
US10470801B2 (en) 2007-01-18 2019-11-12 Roger P. Jackson Dynamic spinal stabilization with rod-cord longitudinal connecting members
US10258382B2 (en) 2007-01-18 2019-04-16 Roger P. Jackson Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord
US10792074B2 (en) 2007-01-22 2020-10-06 Roger P. Jackson Pivotal bone anchor assemly with twist-in-place friction fit insert
US10383660B2 (en) 2007-05-01 2019-08-20 Roger P. Jackson Soft stabilization assemblies with pretensioned cords
US7951170B2 (en) 2007-05-31 2011-05-31 Jackson Roger P Dynamic stabilization connecting member with pre-tensioned solid core
US9907574B2 (en) 2008-08-01 2018-03-06 Roger P. Jackson Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features
US10363070B2 (en) 2009-06-15 2019-07-30 Roger P. Jackson Pivotal bone anchor assemblies with pressure inserts and snap on articulating retainers
US9980753B2 (en) 2009-06-15 2018-05-29 Roger P Jackson pivotal anchor with snap-in-place insert having rotation blocking extensions
US9918745B2 (en) 2009-06-15 2018-03-20 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
US10182844B2 (en) 2010-08-30 2019-01-22 Zimmer Spine, Inc. Polyaxial pedicle screw
US10925646B2 (en) 2010-08-30 2021-02-23 Zimmer Spine, Inc. Polyaxial pedicle screw
US10945766B2 (en) 2010-08-30 2021-03-16 Zimmer Spine, Inc. Polyaxial pedicle screw
US11166751B2 (en) 2010-08-30 2021-11-09 Zimmer Spine, Inc. Polyaxial pedicle screw
US9636148B2 (en) 2010-08-30 2017-05-02 Zimmer Spine, Inc. Polyaxial pedicle screw
US9198695B2 (en) 2010-08-30 2015-12-01 Zimmer Spine, Inc. Polyaxial pedicle screw

Also Published As

Publication number Publication date
WO2006028537A3 (en) 2006-10-05
WO2006028537B1 (en) 2006-11-16
US20050027296A1 (en) 2005-02-03
US7175623B2 (en) 2007-02-13

Similar Documents

Publication Publication Date Title
US7175623B2 (en) Cervical plate with backout protection
US8795373B2 (en) Interbody fusion device, integral retention device, and associated methods
US9320549B2 (en) Spinal fixation plates
US7815681B2 (en) Orthopedic support locating or centering feature and method
US7481811B2 (en) Translational plate with spring beam retainer
US6558387B2 (en) Porous interbody fusion device having integrated polyaxial locking interference screws
JP5042014B2 (en) Bone fixation plate
US7993380B2 (en) Active compression orthopedic plate system and method for using the same
US20130297028A1 (en) Locking bone plate
WO2020251943A1 (en) Expandable implant assembly with compression features
US9675466B2 (en) Expandable spinal implant
US20100016901A1 (en) Bone screw retaining system
US20060030851A1 (en) Implant subsidence control
US9545275B2 (en) Medical device locking mechanisms and related methods and systems
JP2007532283A5 (en)
WO2006060506A1 (en) Unidirectional translation system for bone fixation
AU2012296522A1 (en) Expandable implant
JP2015519148A (en) Orthopedic device with locking mechanism
CA2600732A1 (en) Translational scissor plate fixation system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase