WO2006033102A1 - A system and method for three-dimensional location of inclusions in a gemstone - Google Patents

A system and method for three-dimensional location of inclusions in a gemstone Download PDF

Info

Publication number
WO2006033102A1
WO2006033102A1 PCT/IL2005/001006 IL2005001006W WO2006033102A1 WO 2006033102 A1 WO2006033102 A1 WO 2006033102A1 IL 2005001006 W IL2005001006 W IL 2005001006W WO 2006033102 A1 WO2006033102 A1 WO 2006033102A1
Authority
WO
WIPO (PCT)
Prior art keywords
gemstone
dimensional
detector
emitter
radiation
Prior art date
Application number
PCT/IL2005/001006
Other languages
French (fr)
Inventor
Zvi Porat
Original Assignee
Zvi Porat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/944,898 external-priority patent/US7755072B2/en
Priority claimed from IL164190A external-priority patent/IL164190A/en
Application filed by Zvi Porat filed Critical Zvi Porat
Publication of WO2006033102A1 publication Critical patent/WO2006033102A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/87Investigating jewels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; ceramics; glass; bricks
    • G01N33/381Concrete; ceramics; glass; bricks precious stones; pearls

Definitions

  • the present invention generally relates to a non-destructive analyzing system and to a method of three-dimensional location of inclusions in a gemstone.
  • Natural gemstones and diamonds are rare and require skill and tedious processing efforts to draw out the full beauty from the rough stone.
  • Various different shapes of polished gemstones may be obtained from the rough stone; thus that the cut, which utilize most of the stone in terms of weight, shape and clarity, is the most profitable one.
  • the scanned gemstone is maneuvered to a 360 degrees circle by means of a rotating gemstone holder.
  • the images provided by those techniques are obtained separately and only one half of the gemstone is usually photographed at one session.
  • the gemstone is photographed approximately at 5-degrees intervals, resulting in about 36 to 90 images for both halves of a gemstone, a relatively long procedure talcing up to 30 seconds.
  • the images are used to create a three dimensional picture of the gemstone.
  • the system works by use of sequential repeat commands such as (1) take a picture; (2) rotate 5 degrees; and (3) stop; and by repeating these commands until the gemstone has rotated 180 degrees.
  • a number of computerized scanning systems have been adapted to examine gemstones and diamonds and to compare the shape of the stone with a variety of predetermined shapes in order to establish the best fit.
  • the stone is lit from the rear, providing a silhouette thereof, which is analyzed by the computer and compared with a number of silhouettes of finished stones.
  • the stone is scanned perpendicular to the axis, so as to permit the computer to provide a three-dimensional image of the stone.
  • Both types of scanning systems discussed above may be advantageous in detecting protrusions but useless or ineffective in case of reentrants or recesses in the stone, which remain invisible; this may result in incorrect decisions regarding the proper working of the stones.
  • a thin beam of light is projected onto the stone and moved relative to it.
  • the point where the beam strikes the stone as viewed in a direction different from that from which the beam is projected.
  • this method may suffer from inaccuracies in the reentrants measurements.
  • US Pat 6,567,156 discloses a fourth type of examining method comprising coating the gemstone with a removable diffusing coating and determining the silhouette of the gemstone in three dimensions.
  • the method further includes structured light triangulation performed by using laser light to obtain an image of the surface of the gemstone.
  • Gemstone clarity is a measure of a gemstone 's lack of internal flaws and impurities.
  • a gemstone that is virtually free of interior or exterior inclusions is of the highest quality, for nothing interferes with the passage of light through the gemstone.
  • inclusions gravely degrade the finished stone's value, it is desirable to take them into account when optimizing the cut.
  • these inclusions are not visible or locatable until late stages of the polishing process, and thus cannot be avoided in advanced refining stages.
  • a manual method for determining inner inclusions is only partially provided by means of carving a small picking hole or window into the stone and probing through it, using an optical fiber or a stent, in the search for such inclusions.
  • This method cannot map all inclusions potentially residing in the stone and further risks damaging the stone, in part or in whole
  • a method and apparatus for locating inclusions in a diamond wherein said diamond is fixed on a holder and observed under a predetermined angle to obtain an image.
  • a second measurement is carried out to obtain data to be calculated in a computer, either by a depth measurement, or by changing the direction of observation, in order to localize the inclusion with respect to the outer surface of said diamond.
  • This rapid and cost effective method comprises the steps of (a) placing the gemstone on a holder such that the gemstone to be scanned is located in a radiation path comprising inter alia at least one emitter and at least one detector synchronized by a processor; (b) radiating said gemstone by means of said emitter; (c) detecting the emitted irradiation by means of said detector; (d) processing said detection such that a two-dimensional in-scan of said gemstone is obtained by means of said processor; (e) displacing the gemstone in respect to said emitter and said detector. Steps (b) through (e) are repeated for a plurality of predetermined displacements, and the obtained multiple two-dimensional in-scans are integrated into a three-dimensional model of the gemstone.
  • the displacement is preferably provided by rotating the scanned gemstone by circulating the holder along a predetermined XY, XZ, YZ, and/or XYZ planes to a predetermined angle.
  • the gemstone is rotated in an overall rotation angle of about 45° to about 360° or more wherein images are taken in intervals of about 1° to about 10° or more.
  • the gemstone is rotated in an overall rotation angle of about 45° to about 360° or more, wherein images are taken either in relatively large intervals, e.g., 3 to 8 images per overall rotation angle (e.g., intervals of 45° to 120°), in any predetermined intervals as function of the inclusion specific geometry or in small intervals, of about 1° to about 10° or more.
  • This method integrates the multiple two-dimensional in-scans obtained into a comprehensive three-dimensional model of the inclusions and the outer contour of the gemstone.
  • Also provided hereinafter is an effective and retrievable method for identifying, analyzing and/or commercially evaluating a gemstone, by obtaining a three- dimensional coordinated model of the inclusions in respect to the outer contour of the gemstone, by one or more of the methods defined above.
  • This cost effective system comprises inter alia a holder adapted to carry the scanned diamond; at least one emitter adapted to radiate said gemstone; at least one detector adapted to detect the emitted irradiation targeted at the gemstone; a displacing means adapted to repeatedly displace said gemstone both in respect to said emitter and said detector, to a predetermined location; a processor adapted to process said detection such that a two-dimensional in-scan of said gemstone is obtained; and subsequently to integrate the obtained multiple two-dimensional in-scans into a three-dimensional model of the gemstone, wherein the obtained three-dimensional coordinated model is selected from the group consisting of the gemstone' s outer contour; a model of either the inner or outer inclusions of the gemstone, if any; a comprehensive model of said inclusions in respect to said outer contour or any combination thereof.
  • Figure 1 schematically presents an imaging system for three-dimensional location of inclusions in a gemstone comprising a single set of emitter and detector;
  • Figures 2A-2C schematically present a scanned rough gemstone comprising a single tubular flaw made possible by means of the method defined in the present invention, wherein Fig. 2A and 2B are two dimensional diffractions of the stone at 0 and 90 degrees, and Fig. 2C is the corresponding calculated three dimensional image of the same, characterized by well defined XYZ coordinates of the external contour and inner inclusion; and,
  • Figure 3 schematically presents an imaging system for location of inclusions in a gemstone comprising a multiple sets of emitters and detectors; here, one set is adapted to provide a 3D imaging the outer contour of the gemstone and a second set is adapted to provide either 2D or 3D mapping of the inclusions.
  • the term 'gemstone' refers hereinafter to any rough stones or half-processed stones before processing, e.g., such as for determining the rough gemstone value before purchasing it or for planning the subsequent process stages; in the gemstone processing stages, e.g., following the cleaving, sawing, bruting, and/or polishing stages; or after these preparation processes such as for evaluating the quality and value of the product produce thereof.
  • the term specifically refers to rough stones, which provide diamonds and other precious or semi-precious gemstones.
  • inclusion' refers to internal and/or external features, which are wholly or partially surrounded by the stone, for instance, crystalline and solid inclusions, dot- like inclusions, flaws, clouds, clarity affecting phenomena, cracks, cleavage, fracture, tension, feather-like structural phenomena, or any combination thereof.
  • the term 'emitter' in the context of the present invention generally relates to any irradiation delivery device, including inter alia light source or a plurality of light sources emitting either visible light, white or monochromatic beam; and/or invisible light, including infra-red emission (IR), either in the near range or far range, and ultra ⁇ violet emission (UV) either in the near range or far range.
  • IR infra-red emission
  • UV ultra ⁇ violet emission
  • the term also refers hereinafter to an X-ray radiation source and/or collimator of the same; a nucleic magnetic resonance (NMR), NQR, CT and/or MRI scatter; beta radiation emission devices; gamma radiation emission devices; laser beam cannons; photons cannons; microwave or RF emitters, etc.
  • This term further refers to ultra-sound emitters, sonic or ultrasonic emitters or any combination thereof
  • the term 'detector' in the context of the present invention refers to any sensor device adapted to detect the radiation delivered by the aforesaid emitter.
  • the detector is adapted to detect said emitted radiation, a mixture thereof or a plurality of emissions, either directly or indirectly, e.g., through an interpreter.
  • Such an interpreter may be selected from phosphorescent surface or the like.
  • the detection according to the present invention is performed either on a single plane or a plurality of tangent planes, such as those assembled in a polygonal, hive-like, convex and/or concave configuration.
  • the detection may be qualitative e.g., indicating in 0/1 fashion hit or miss of a predetermined measure of radiation on a predefined detecting pixel; or quantitative, e.g., fractional indication of the irradiation percentage detected in a given area or a particular detecting pixel.
  • the aforesaid emission may be amplified prior to detection or filtered, for instance through a filter adapted to lower noise-to-signal ratio, such as any standard Fourier Transform (FT) module and/or by a means of either a stationary or rotating grid adapted to screen back-scattered radiation.
  • FT Fourier Transform
  • the present invention generally relates to a non-destructive method of scanning the contour of a gemstone, while coordinating a well-defined three-dimensional (3D) position of one or more inclusions inside said gemstone.
  • This novel method comprises inter alia the step of placing the gemstone to be examined on a rotatable holder, rotating it to a predetermined angle while emitting irradiation on said scanned gemstone.
  • at least one detector is used for detecting the emitted irradiation after scattering thereof, such that a two-dimensional in-scan of the gemstone is obtained.
  • This process is repeated for a plurality of predetermined angles.
  • a processor integrates the obtained multiple two-dimensional in-scans into a comprehensive three dimensional model of the gemstone 's inner and/or outer portions, positioning the exact three dimensional location of inclusions therein.
  • the displacement is preferably provided by rotating the scanned gemstone by circulating the holder along a predetermined plane to a predetermined angle.
  • the gemstone is rotated in an overall rotation angle of about 45° to about 360° or more wherein images are taken in intervals of about 1° to about 10° or more.
  • the gemstone is rotated in an overall rotation angle of about 45° to about 360° or more, wherein images are taken either in relatively large intervals, e.g., 3 to 8 images per overall rotation angle (e.g., intervals of 45° to 120°), in any predetermined intervals as function of the inclusion specific geometry or in small intervals, of about 1° to about 10° or more.
  • the system comprises a rotatable holder (1), sxich as a carrying dop or circular plate adapted for synchronized rotation (e.g., direction IB) of a gemstone (6) to be scanned when placed thereon.
  • Gemstone (6) is characterized by a boundary portion (e.g., the left rim of contour 6A), and potentially at least one internal or external inclusion (6B).
  • a processor (2) activates a rotation mechanism (IA) of holder (1), such that it circulates it to a predetermined measure (e.g., 1 to 5 degrees), or activates it in a given time to a predetermined location.
  • At least one emitter (3) provides an effective emission targeted towards the gemstone (6).
  • Emitter (3) is also coupled with the processor (2), such that at any time its emission is triggered, regulated, or at least recorded.
  • At least one detector (5) is designed for recording the emitted radiation after striking gemstone (6) at its inner and/or external portions. Detector (5) is also in online or offline communication with the processor (2).
  • at least one grid (4) is positioned between the gemstone and the detector to eliminate scattering and thus increase detection selectivity.
  • Such a grid is either static or activated by a striking movement.
  • Such a rotating grid is selected in a non-limiting manner from bucky grid actuators, rotating grids, cell-like grids, active grids adapted to emit visible or other invisible light etc.
  • the system further comprises an output projecting means (7) such as a screen, data file etc., adapted to project the processed and stored 3D coordinated gemstone diagram.
  • the holder (1) rotation is synchronized by the processor (2) with the activation of the emitter (3), wherein the emission is provided.
  • Detector (5) is further adapted to provide with the time t 1 of the emission detection at a given point, in reference to a time frame t 0 when the emission was emitted, thus allowing processor (2) efficiently to integrate the two-dimensional in-scans into a three-dimensional model.
  • emitter (3) radiates either a focused or unfocused beam onto the gemstone, here for example, via a commercially available collimator of X-rays.
  • a focused or unfocused beam onto the gemstone, here for example, via a commercially available collimator of X-rays.
  • Such an emission is either provided in a series of pulses, in processed intervals or lasts continuously.
  • an X-ray beam targets both the perimeter of the gemstone, such as its left edge (6A), and any internal inclusion (such as flaw 6B).
  • the radiation is at l&ast partially diffracted towards the detector (5), in this example, a single commercially available X-ray detector.
  • the radiation emitted towards the external perimeter (6A) is directed to the grid (4) (see dashed arrow 8A) and then to the detector (8Cl).
  • Radiation emitted towards the inclusion (6B) is either emitted directly to the grid (4) and then to the detector (8C2), or scattered (see dashed arrow 8D) to the grid (4), and subsequently blocked thereof from reaching the detector (see dashed arrow SE).
  • 'CCD' or 'visual detectors' thus refer hereinafter to a video camera, an electronic camera, a digital camera, a digital video camera, hollow fibers and/or any other imaging device, possessing in a non-limiting manner concave, convex, non-zoom, zoom lenses or any combination thereof.
  • grid (4) is designed according to one particulate enibodiment of the present invention such that it emits phosphorus light in those pixels that a sufficient radiation is provided thereon.
  • X- rays 8 A or 8B are translated into visible or other light beams 8Cl or 8C2, respectively, wherein said light beams are detected by means of a CCD or any other visual detector 0).
  • the detector is thus comprised of an array of pixels or has a continuous detecting surface.
  • such a process of rotating while emitting and detecting may be at least partially continuous or discontinuous, and may be provided either manually or automatically, e.g. by a computer-mediated means.
  • FIG. 2A presents a scanned lateral view (20) of the gemstone underlined in respect to non-scattered area (23), in an axis of 0 degrees (i.e., any initial point of view).
  • the gemstone is found to comprise an irregular external contour (21A) and a substantially rectangular inner inclusion (22A).
  • Fig. 2B presents the scanned gemstone in its extreme face view, at 90 degrees view, showing said cloud-like gemstone (21B) containing only one flaw with a circular cross-section.
  • Fig. 2C presents the calculated 3D inner and outer gemstone view (21C) comprising a tubular inclusion (22C) presented at well-defined XYZ coordinates.
  • FIG. 1 schematically presenting a top view of an imaging system according to yet another embodiment of the present invention, especially adapted for the location of inclusions in a gemstone.
  • This system comprising inter alia a multiple sets of emitters and detectors.
  • one set is adapted to provide a 3D imaging the outer contour of the gemstone and a second set is adapted to provide either 2D or 3D mapping of the inclusions.
  • imaging assemblies comprising X-ray means for radiating the gemstone such that a phosphorescent radiation interpreter radiates a invisible light; means for emitting a laser radiation towards said towards the interpreter or detector such that a visible image is detectable; wherein the laser-means and/or detectors thereof are adapted for particulate (e.g., pixel like) detection, or an overall real time detection of the laser- radiated surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

The present invention presents a non-destructive method and means of obtaining either a two-dimensional or three-dimensional model of the outer contours of a gemstone. The method comprising the steps of placing the gemstone on a holder such that the gemstone to be scanned is located in a radiation path comprising inter alia at least one emitter and at least one detector synchronized by a processor; radiating said gemstone by means of said emitter; detecting the emitted irradiation by means of said detector; processing said detection such that a two-dimensional in-scan of said gemstone is obtained by means of said processor; displacing the gemstone in respect to said emitter and said detector; repeating steps (b) through (e) for a plurality of predetermined displacements; and, if a three-dimensional model is required, integrating the obtained multiple two-dimensional in-scans into a three-dimensional model of the gemstone's outer contours; wherein the emitter is an irradiation delivery device, selected from a group consisting of either monochromatic or white light, UV or IR emitters; X-ray radiation source and/or collimator of the same; NMR, CT, NQR and/or MRI scatters; beta radiation emission devices; gamma radiation emission devices; laser beam cannons; photons cannons; microwave or RF emitters; sonic or ultrasonic emitters or any combination thereof.

Description

A SYSTEM AND METHOD FOR THREE-DIMENSIONAL LOCATION OF INCLUSIONS IN A GEMSTONE
FIELD OF THE INVENTION
The present invention generally relates to a non-destructive analyzing system and to a method of three-dimensional location of inclusions in a gemstone.
BACKGROUND OF THE INVENTION
Natural gemstones and diamonds are rare and require skill and tedious processing efforts to draw out the full beauty from the rough stone. Various different shapes of polished gemstones may be obtained from the rough stone; thus that the cut, which utilize most of the stone in terms of weight, shape and clarity, is the most profitable one. Thus, in order to realize the full potential and maximize market value thereof, it is desirable to determine in advance the optimal finished gem, which can be cut from the untreated stone.
In automated gemstone imaging systems known in the art, the scanned gemstone is maneuvered to a 360 degrees circle by means of a rotating gemstone holder. The images provided by those techniques are obtained separately and only one half of the gemstone is usually photographed at one session. The gemstone is photographed approximately at 5-degrees intervals, resulting in about 36 to 90 images for both halves of a gemstone, a relatively long procedure talcing up to 30 seconds. The images are used to create a three dimensional picture of the gemstone. The system works by use of sequential repeat commands such as (1) take a picture; (2) rotate 5 degrees; and (3) stop; and by repeating these commands until the gemstone has rotated 180 degrees.
Moreover, a number of computerized scanning systems have been adapted to examine gemstones and diamonds and to compare the shape of the stone with a variety of predetermined shapes in order to establish the best fit. In one type of scanning system, the stone is lit from the rear, providing a silhouette thereof, which is analyzed by the computer and compared with a number of silhouettes of finished stones. In a second type such as that disclosed in US Pat. 4,417,564, the stone is scanned perpendicular to the axis, so as to permit the computer to provide a three-dimensional image of the stone. Both types of scanning systems discussed above may be advantageous in detecting protrusions but useless or ineffective in case of reentrants or recesses in the stone, which remain invisible; this may result in incorrect decisions regarding the proper working of the stones.
In a third type of system, such as that described in IL Pat. 66292, a thin beam of light is projected onto the stone and moved relative to it. The point where the beam strikes the stone as viewed in a direction different from that from which the beam is projected. However, this method may suffer from inaccuracies in the reentrants measurements.
US Pat 6,567,156 discloses a fourth type of examining method comprising coating the gemstone with a removable diffusing coating and determining the silhouette of the gemstone in three dimensions. The method further includes structured light triangulation performed by using laser light to obtain an image of the surface of the gemstone.
Gemstone clarity is a measure of a gemstone 's lack of internal flaws and impurities. A gemstone that is virtually free of interior or exterior inclusions is of the highest quality, for nothing interferes with the passage of light through the gemstone. As inclusions gravely degrade the finished stone's value, it is desirable to take them into account when optimizing the cut. However in many cases these inclusions are not visible or locatable until late stages of the polishing process, and thus cannot be avoided in advanced refining stages.
A manual method for determining inner inclusions is only partially provided by means of carving a small picking hole or window into the stone and probing through it, using an optical fiber or a stent, in the search for such inclusions. Clearly this method cannot map all inclusions potentially residing in the stone and further risks damaging the stone, in part or in whole
In WO 02/46725 to Sivovlenko et al., a method and apparatus for locating inclusions in a diamond is disclosed, wherein said diamond is fixed on a holder and observed under a predetermined angle to obtain an image. A second measurement is carried out to obtain data to be calculated in a computer, either by a depth measurement, or by changing the direction of observation, in order to localize the inclusion with respect to the outer surface of said diamond. It is thus acknowledged that there is no reference in the prior art that the inner portion of the gemstone, comprising potential inclusions are detected or located in a non¬ destructive means prior to the gemstone processing stages.
A cost-effective method and system for three-dimensional mapping of both the outer and inner surfaces of a gemstone, useful for optimizing yield, thus meets a long felt need.
SUMMARY OF THE INVENTION
It is thus in the scope of the present invention to provide a non-destructive method of obtaining the outer contours of a gemstone. This rapid and cost effective method comprises the steps of (a) placing the gemstone on a holder such that the gemstone to be scanned is located in a radiation path comprising inter alia at least one emitter and at least one detector synchronized by a processor; (b) radiating said gemstone by means of said emitter; (c) detecting the emitted irradiation by means of said detector; (d) processing said detection such that a two-dimensional in-scan of said gemstone is obtained by means of said processor; (e) displacing the gemstone in respect to said emitter and said detector. Steps (b) through (e) are repeated for a plurality of predetermined displacements, and the obtained multiple two-dimensional in-scans are integrated into a three-dimensional model of the gemstone.
The displacement is preferably provided by rotating the scanned gemstone by circulating the holder along a predetermined XY, XZ, YZ, and/or XYZ planes to a predetermined angle. For imaging the inner and/or outer portions of the gemstone, the gemstone is rotated in an overall rotation angle of about 45° to about 360° or more wherein images are taken in intervals of about 1° to about 10° or more. For imaging and or locating the inclusions, the gemstone is rotated in an overall rotation angle of about 45° to about 360° or more, wherein images are taken either in relatively large intervals, e.g., 3 to 8 images per overall rotation angle (e.g., intervals of 45° to 120°), in any predetermined intervals as function of the inclusion specific geometry or in small intervals, of about 1° to about 10° or more.
It is also in the scope of the present invention to provide a non-destructive method as defined above, especially adapted for obtaining a two dimensional (2D) and/or three- dimensional (3D) coordinated model of inclusions located in the inner and/or outer portion of a gemstone, by integrating the obtained multiple two-dimensional in-scans into a three-dimensional model of the inclusions of the gemstone.
It is further in the scope of the present invention to provide a non-destructive method as defined in any of the above, especially adapted for obtaining a three-dimensional coordinated model of inclusions located in the inner and/or outer portion of a gemstone in respect to the outer contour of the gemstone. This method integrates the multiple two-dimensional in-scans obtained into a comprehensive three-dimensional model of the inclusions and the outer contour of the gemstone.
Also provided hereinafter is an effective and retrievable method for identifying, analyzing and/or commercially evaluating a gemstone, by obtaining a three- dimensional coordinated model of the inclusions in respect to the outer contour of the gemstone, by one or more of the methods defined above.
It is still in the scope of the present invention to provide a non-destructive system for obtaining a three-dimensional coordinated model of a gemstone. This cost effective system comprises inter alia a holder adapted to carry the scanned diamond; at least one emitter adapted to radiate said gemstone; at least one detector adapted to detect the emitted irradiation targeted at the gemstone; a displacing means adapted to repeatedly displace said gemstone both in respect to said emitter and said detector, to a predetermined location; a processor adapted to process said detection such that a two-dimensional in-scan of said gemstone is obtained; and subsequently to integrate the obtained multiple two-dimensional in-scans into a three-dimensional model of the gemstone, wherein the obtained three-dimensional coordinated model is selected from the group consisting of the gemstone' s outer contour; a model of either the inner or outer inclusions of the gemstone, if any; a comprehensive model of said inclusions in respect to said outer contour or any combination thereof. BRIEF DESCRIPTION OF THE INVENTION
In order to understand the invention and to see how it may be implemented in practice, several embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawing, in which
Figure 1 schematically presents an imaging system for three-dimensional location of inclusions in a gemstone comprising a single set of emitter and detector;
Figures 2A-2C schematically present a scanned rough gemstone comprising a single tubular flaw made possible by means of the method defined in the present invention, wherein Fig. 2A and 2B are two dimensional diffractions of the stone at 0 and 90 degrees, and Fig. 2C is the corresponding calculated three dimensional image of the same, characterized by well defined XYZ coordinates of the external contour and inner inclusion; and,
Figure 3 Figure 1 schematically presents an imaging system for location of inclusions in a gemstone comprising a multiple sets of emitters and detectors; here, one set is adapted to provide a 3D imaging the outer contour of the gemstone and a second set is adapted to provide either 2D or 3D mapping of the inclusions.
DETAILED DESCRIPTION OF THE INVENTION
The following description is provided, alongside all chapters of the present invention, so as to enable any person skilled in the art to make use of said invention and sets forth the best modes contemplated by the inventor of carrying out this invention. Various modifications, however, will remain apparent to those skilled in the art, since the generic principles of the present invention have been defined specifically to provide a non-destructive analyzing system and method of three-dimensional location of inclusions in a gemstone.
The term 'gemstone' refers hereinafter to any rough stones or half-processed stones before processing, e.g., such as for determining the rough gemstone value before purchasing it or for planning the subsequent process stages; in the gemstone processing stages, e.g., following the cleaving, sawing, bruting, and/or polishing stages; or after these preparation processes such as for evaluating the quality and value of the product produce thereof. The term specifically refers to rough stones, which provide diamonds and other precious or semi-precious gemstones.
The term 'inclusion' refers to internal and/or external features, which are wholly or partially surrounded by the stone, for instance, crystalline and solid inclusions, dot- like inclusions, flaws, clouds, clarity affecting phenomena, cracks, cleavage, fracture, tension, feather-like structural phenomena, or any combination thereof.
The term 'emitter' in the context of the present invention generally relates to any irradiation delivery device, including inter alia light source or a plurality of light sources emitting either visible light, white or monochromatic beam; and/or invisible light, including infra-red emission (IR), either in the near range or far range, and ultra¬ violet emission (UV) either in the near range or far range. The term also refers hereinafter to an X-ray radiation source and/or collimator of the same; a nucleic magnetic resonance (NMR), NQR, CT and/or MRI scatter; beta radiation emission devices; gamma radiation emission devices; laser beam cannons; photons cannons; microwave or RF emitters, etc. This term further refers to ultra-sound emitters, sonic or ultrasonic emitters or any combination thereof
The term 'detector' in the context of the present invention refers to any sensor device adapted to detect the radiation delivered by the aforesaid emitter. The detector is adapted to detect said emitted radiation, a mixture thereof or a plurality of emissions, either directly or indirectly, e.g., through an interpreter. Such an interpreter may be selected from phosphorescent surface or the like. The detection according to the present invention is performed either on a single plane or a plurality of tangent planes, such as those assembled in a polygonal, hive-like, convex and/or concave configuration. The detection may be qualitative e.g., indicating in 0/1 fashion hit or miss of a predetermined measure of radiation on a predefined detecting pixel; or quantitative, e.g., fractional indication of the irradiation percentage detected in a given area or a particular detecting pixel. Moreover, the aforesaid emission may be amplified prior to detection or filtered, for instance through a filter adapted to lower noise-to-signal ratio, such as any standard Fourier Transform (FT) module and/or by a means of either a stationary or rotating grid adapted to screen back-scattered radiation. The present invention generally relates to a non-destructive method of scanning the contour of a gemstone, while coordinating a well-defined three-dimensional (3D) position of one or more inclusions inside said gemstone. This novel method comprises inter alia the step of placing the gemstone to be examined on a rotatable holder, rotating it to a predetermined angle while emitting irradiation on said scanned gemstone. Concurrently or subsequently, at least one detector is used for detecting the emitted irradiation after scattering thereof, such that a two-dimensional in-scan of the gemstone is obtained. This process is repeated for a plurality of predetermined angles. Finally, a processor integrates the obtained multiple two-dimensional in-scans into a comprehensive three dimensional model of the gemstone 's inner and/or outer portions, positioning the exact three dimensional location of inclusions therein.
It is acknowledged in this respect that a plurality of predetermined angles is provided by rotating the stone, the emitter or the detector, or by any combination thereof. Nevertheless, for sake of simplicity in the description, only one possible system, i.e., a system in which the gemstone rotates while both the emitter and the detector are immobilized to their initial place, is described and defined. Hence, it is according to one embodiment of the present invention wherein the step of rotating the gemstone by the holder is performed synchronously with the irradiation emitting, wherein the emission is provided in pulses or, alternatively, in a continuous movement, emission and/or detection.
According to a general embodiment of the present invention, the displacement is preferably provided by rotating the scanned gemstone by circulating the holder along a predetermined plane to a predetermined angle. For imaging the inner and/or outer portions of the gemstone, the gemstone is rotated in an overall rotation angle of about 45° to about 360° or more wherein images are taken in intervals of about 1° to about 10° or more. For imaging and or locating the inclusions, the gemstone is rotated in an overall rotation angle of about 45° to about 360° or more, wherein images are taken either in relatively large intervals, e.g., 3 to 8 images per overall rotation angle (e.g., intervals of 45° to 120°), in any predetermined intervals as function of the inclusion specific geometry or in small intervals, of about 1° to about 10° or more.
Said circular rotation is provided hereinafter along a single XY plane; however rotating and/or displacing the gemstone along a plurality of planes (e.g., XZ, YZ or XYZ) is a technology that may be easily achieved by those are skilled in the art. Reference is made now to Figure 1, presenting a schematic view of one embodiment of the aforesaid novel non-destructive analyzing system, providing for a well-defined three dimensional coordination map of inclusions in a gemstone in respect to said gemstone's external contours.
The system comprises a rotatable holder (1), sxich as a carrying dop or circular plate adapted for synchronized rotation (e.g., direction IB) of a gemstone (6) to be scanned when placed thereon. Gemstone (6) is characterized by a boundary portion (e.g., the left rim of contour 6A), and potentially at least one internal or external inclusion (6B). A processor (2) activates a rotation mechanism (IA) of holder (1), such that it circulates it to a predetermined measure (e.g., 1 to 5 degrees), or activates it in a given time to a predetermined location. At least one emitter (3) provides an effective emission targeted towards the gemstone (6). Emitter (3) is also coupled with the processor (2), such that at any time its emission is triggered, regulated, or at least recorded. At least one detector (5) is designed for recording the emitted radiation after striking gemstone (6) at its inner and/or external portions. Detector (5) is also in online or offline communication with the processor (2). In case of X-ray emission, yet not restricted to such an example, at least one grid (4) is positioned between the gemstone and the detector to eliminate scattering and thus increase detection selectivity. Such a grid is either static or activated by a striking movement. Such a rotating grid is selected in a non-limiting manner from bucky grid actuators, rotating grids, cell-like grids, active grids adapted to emit visible or other invisible light etc. The system further comprises an output projecting means (7) such as a screen, data file etc., adapted to project the processed and stored 3D coordinated gemstone diagram.
The holder (1) rotation is synchronized by the processor (2) with the activation of the emitter (3), wherein the emission is provided. Detector (5) is further adapted to provide with the time t1 of the emission detection at a given point, in reference to a time frame t0 when the emission was emitted, thus allowing processor (2) efficiently to integrate the two-dimensional in-scans into a three-dimensional model.
It is in the scope of the present invention wherein emitter (3) radiates either a focused or unfocused beam onto the gemstone, here for example, via a commercially available collimator of X-rays. Such an emission is either provided in a series of pulses, in processed intervals or lasts continuously. As a result, an X-ray beam targets both the perimeter of the gemstone, such as its left edge (6A), and any internal inclusion (such as flaw 6B). By striking the gemstone, the radiation is at l&ast partially diffracted towards the detector (5), in this example, a single commercially available X-ray detector. The radiation emitted towards the external perimeter (6A) is directed to the grid (4) (see dashed arrow 8A) and then to the detector (8Cl). Radiation emitted towards the inclusion (6B) is either emitted directly to the grid (4) and then to the detector (8C2), or scattered (see dashed arrow 8D) to the grid (4), and subsequently blocked thereof from reaching the detector (see dashed arrow SE).
Following this example, it is acknowledged that solid-state detectors for digital X-ray imaging are currently available commercially. These hybrid detectors incorporate inter alia CCDs with phosphor layers. Hence for example, US Pat. 6,069,361 to Rubinstein of Eastman Kodak Co. discloses a high-resolution solid-state detector for use in a digital X-Ray imaging system. This detector includes two or more silicon CCDs, sandwiched together with phosphor screens or layers between them, in order to improve the overall sensitivity of the detector to X-rays. US Pat. 6,775,348 to Hoffman of General Electric Company teaches a visual detector comprising a scintillator with built-in gain for receiving and converting high frequency electromagnetic energy to light in CT scanners. The terms 'CCD' or 'visual detectors' thus refer hereinafter to a video camera, an electronic camera, a digital camera, a digital video camera, hollow fibers and/or any other imaging device, possessing in a non-limiting manner concave, convex, non-zoom, zoom lenses or any combination thereof.
Hence grid (4) is designed according to one particulate enibodiment of the present invention such that it emits phosphorus light in those pixels that a sufficient radiation is provided thereon. Referring again to figure 1, X- rays 8 A or 8B are translated into visible or other light beams 8Cl or 8C2, respectively, wherein said light beams are detected by means of a CCD or any other visual detector 0). The detector is thus comprised of an array of pixels or has a continuous detecting surface. Moreover, such a process of rotating while emitting and detecting may be at least partially continuous or discontinuous, and may be provided either manually or automatically, e.g. by a computer-mediated means.
Reference is made now to figures 2A-2C, schematically illustrating a rough gemstone containing an elongated blister-like small flaw, as detected by the aforesaid novel system. Fig. 2A presents a scanned lateral view (20) of the gemstone underlined in respect to non-scattered area (23), in an axis of 0 degrees (i.e., any initial point of view). The gemstone is found to comprise an irregular external contour (21A) and a substantially rectangular inner inclusion (22A). Fig. 2B presents the scanned gemstone in its extreme face view, at 90 degrees view, showing said cloud-like gemstone (21B) containing only one flaw with a circular cross-section. Moreover, said inner screening shows that the inclusion is located in a somewhat laterally remote portion of the gemstone, such that the stone's potential economical worth is not necessarily diminished. Fig. 2C presents the calculated 3D inner and outer gemstone view (21C) comprising a tubular inclusion (22C) presented at well-defined XYZ coordinates.
Reference is made now to figures, schematically presenting a top view of an imaging system according to yet another embodiment of the present invention, especially adapted for the location of inclusions in a gemstone. This system comprising inter alia a multiple sets of emitters and detectors. Here, one set is adapted to provide a 3D imaging the outer contour of the gemstone and a second set is adapted to provide either 2D or 3D mapping of the inclusions. Other systems are possible, as such imaging assemblies comprising X-ray means for radiating the gemstone such that a phosphorescent radiation interpreter radiates a invisible light; means for emitting a laser radiation towards said towards the interpreter or detector such that a visible image is detectable; wherein the laser-means and/or detectors thereof are adapted for particulate (e.g., pixel like) detection, or an overall real time detection of the laser- radiated surface.

Claims

1. A non-destructive method of obtaining either a two-dimensional or three- dimensional model of the outer contours of a gemstone, comprising: a. placing the gemstone on a holder such that the gemstone to be scanned is located in a radiation path comprising inter alia at least one emitter an.<J at least one detector synchronized by a processor; b. radiating said gemstone by means of said emitter; c. detecting the emitted irradiation by means of said detector; d. processing said detection such that a two-dimensional in-scan of said gemstone is obtained by means of said processor; e. displacing the gemstone in respect to said emitter and said detector; f. repeating steps (b) through (e) for a plurality of predetermined displacements; and, g. if a three-dimensional model is required, integrating the obtained multiple two-dimensional in-scans into a three-dimensional model of the gemstone's outer contours; wherein the emitter is an irradiation delivery device, selected from a group consisting of either monochromatic or white light, UV or IR emitters; X— ray radiation source and/or collimator of the same; NMR, CT, NQR and/or MIR scatters; beta radiation emission devices; gamma radiation emission devices; laser beam cannons; photons cannons; microwave or RF emitters; sonic or ultrasonic emitters or any combination thereof.
2. The method according to claim 1, wherein the emitter is an X-ray radiation source and/or a collimator of the same.
3. The method according to claim 1, wherein the gemstone is selected from rough gemstones diamonds, or semi-precious gemstones or half-processed gemstones thereof; before processing the gemstone for determining its value before purchasing it or for planning its subsequent process stages; in its processing stages, following its cleaving, sawing, bruting, and/or polishing stages; or after these preparation processes, for evaluating its quality and value of the product produce thereof.
u
4. The method according to claim 1, wherein the detector is a sensing device adapted to detect the radiation delivered by the emitter either directly or indirectly.
5. The method according to claim 4, wherein the detector detects by means of at least one interpreter.
6. The method according to claim 5, wherein the interpreter is selected from phosphorescent radiating surfaces.
7. The method according to claim 4, wherein the detector is located on a single plane or on a plurality of tangent planes, and wherein the detection of the emitted radiation is at least partially qualitative or quantitative, amplified, filtered or any combination thereof.
8. The method according to claim 1, wherein the displacement is provided by rotating the scanned gemstone by circulating the holder along a predetermined plane to a predetermined angle.
9. The method according to claim 8, wherein for imaging the inner and/or outer portions of the gemstone, the gemstone is rotated in an overall rotation angle of about 45° to about 360° or more, wherein images are taken in intervals of about 1° to about 10° or more;
10. The method according to claim 8, wherein for imaging and or locating the inclusions, the gemstone is rotated in an overall rotation angle of about 45° to about 360° or more, wherein images are taken either in relatively large intervals, in any predetermined intervals as function of the inclusion specific geometry, or in small intervals, of about 1° to about 10° or more.
11. The method according to claim 1, wherein the processor synchronizes the radiating step with the displacing step such that every radiation is targeted towards another portion of the face of the scanned gemstone.
12. The method according to claim 1, wherein the radiation is provided either in a synchronized series of pulses or continuously, while the gemstone displacement is synchronized at any given time.
13. The method according to claim 1, additionally comprising radiating the gemstone such that a phosphorescent radiation interpreter radiates a visible light towards the detector.
14. The method according to claim 1, additionally comprising the steps of radiating the gemstone such that a phosphorescent radiation interpreter radiates a invisible light; and emitting a laser radiation towards said towards the interpreter or detector such that a visible image is detectable.
15. The method according to claim 1, adapted for obtaining either a two dimensional or a three-dimensional coordinated model of inclusions located in the inner and/or outer portion of a gemstone, comprising: a. placing the gemstone on a holder such that it is located in a radiation path comprising inter alia at least one emitter and at least one detector synchronized by a processor; b. radiating said gemstone by means of said emitter; c. detecting the emitted irradiation by means of said detector; d. processing said detection such that a two-dimensional in-scan of said gemstone is obtained by means of said processor; e. displacing the gemstone in respect to said emitter and said detector; f. repeating steps (b) through (e) for a plurality of predetermined displacements; and, g. if a three dimensional model is required, integrating the obtained multiple two-dimensional in-scans into a three-dimensional model of the inclusions of the gemstone.
16. The method according to claim 15, wherein the inclusions are either internal and/or external features, wholly or partially surrounded by the gemstone.
17. The method according to claim 1, adapted for obtaining either a two dimensional or a three-dimensional model of inclusions located in the inner and/or outer portion of a gemstone in respect to the outer contours of the gemstone, comprising: a. placing the gemstone on a holder such that it is located in a radiation path comprising inter alia at least one emitter and at least one detector synchronized by a processor; b. radiating said gemstone by means of said emitter; c. detecting the emitted irradiation by means of said detector; d. processing said detection such that a two-dimensional in-scan of said gemstone is obtained by means of said processor; e. displacing the gemstone in respect to said emitter and said detector; f. repeating steps (b) through (e) for a plurality of predetermined displacements; and, g. if a three dimensional model is required, integrating the obtained multiple two-dimensional in-scans into a comprehensive three-dimensional model of the inclusions and the outer contours of the gemstone.
18. A non-destructive method for identifying, analyzing and/or commercially evaluating a gemstone, comprising obtaining either a two-dimensional or a three- dimensional coordinated model of the inclusions in respect to the outer contours of the gemstone by one or more of the methods as defined in claim 1.
19. A non-destructive system for obtaining either a two-dimensional or three- dimensional coordinated model of a gemstone comprising: a. a holder adapted to carry the scanned gemstone; b. at least one emitter adapted to radiate said gemstone; c. at least one detector adapted to detect the emitted irradiation targeted on the gemstone; d. a displacing means adapted to both repeatedly displace said gemstone in respect to said emitter and said detector, to a predetermined location; e. a processor adapted to process said detection such that a two-dimensional in- scan of said gemstone is obtained; and if a three dimensional model is required, to integrate the obtained multiple two-dimensional in-scans into a three-dimensional model of the gemstone, wherein the emitter is an irradiation delivery device, selected from a group consisting of either monochromatic or white light, UV or IR emitters; X-ray radiation source and/or collimator of the same; NMR, CT, NQR and/or MIR scatters; beta radiation emission devices; gamma radiation emission devices; laser beam cannons; photons cannons; microwave or RF emitters; sonic or ultrasonic emitters or any combination thereof; and further wherein the obtained two-dimensional or three-dimensional coordinated model is selected from the group consisting of the gemstone's outer contours; a model of either the inner and/or outer inclusions of the gemstone, if any; a comprehensive model of said inclusions in respect to said outer contours or any combination thereof.
20. The system according to claim 19, wherein gemstone is selected from rough gemstones diamonds, or semi-precious gemstones or half-processed gemstones thereof; before processing the gemstone for determining its value before purchasing it or for planning its subsequent process stages; in its processing stages, following its cleaving, sawing, bruting, and/or polishing stages; or after these preparation processes, for evaluating its quality and value of the product produce thereof.
21. The system according to claim 18, wherein the detector is a sensing device adapted to detect the radiation delivered by the emitter either directly or indirectly.
22. The system according to claim 21, wherein the detector detects by means of at least one interpreter.
23. The system according to claim 22, wherein the interpreter is selected from phosphorescent radiating surfaces.
24. The system according to claim 21, wherein the detector is located on a single plane or on a plurality of tangent planes, and wherein the detection of the emitted radiation is at least partially qualitative or quantitative, amplified, filtered, or any combination thereof.
25. The system according to claim 18, wherein the displacement is provided by rotating the scanned gemstone by circulating the holder along a predetermined plane to a predetermined angle.
26. The system according to claim 18, wherein for imaging the inner and/or outer portions of the gemstone, the gemstone is rotated in an overall rotation angle of about 45° to about 360° or more, wherein images are taken in intervals of about 1° to about 10° or more;
7. The system according to claim 18, wherein for imaging and or locating the inclusions, the gemstone is rotated in an overall rotation angle of about 45° to about 360° or more, wherein images are taken either in relatively large intervals, in any predetermined intervals as function of the inclusion specific geometry, or in small intervals, of about 1° to about 10° or more.
28. The system according to claim 18, wherein the processor synchronizes the radiating step with the displacing step such that every radiation is targeted towards another portion of face of the scanned gemstone.
29. The system according to claim 18, wherein the radiation is provided either in a synchronized series of pulses or continuously, while the gemstone displacement is synchronized at any given time.
30. The system according to claim 18, additionally comprising means for radiating the gemstone such that a phosphorescent radiation interpreter radiates a visible light towards the detector.
31. The system according to claim 18, additionally comprising means for radiating the gemstone such that a phosphorescent radiation interpreter radiates a invisible light; and means for emitting a laser radiation towards said towards the interpreter or detector such that a visible image is detectable.
PCT/IL2005/001006 2004-09-21 2005-09-20 A system and method for three-dimensional location of inclusions in a gemstone WO2006033102A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/944,898 US7755072B2 (en) 2004-09-21 2004-09-21 System and method for three-dimensional location of inclusions in a gemstone
US10/944,898 2004-09-21
IL164190 2004-09-21
IL164190A IL164190A (en) 2004-09-21 2004-09-21 System and method for three-dimensional location of inclusions in a gemstone

Publications (1)

Publication Number Publication Date
WO2006033102A1 true WO2006033102A1 (en) 2006-03-30

Family

ID=35448255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2005/001006 WO2006033102A1 (en) 2004-09-21 2005-09-20 A system and method for three-dimensional location of inclusions in a gemstone

Country Status (1)

Country Link
WO (1) WO2006033102A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133393A1 (en) * 2008-04-30 2009-11-05 De Beers Uk Limited Locating inclusions in diamond
WO2011054822A1 (en) * 2009-11-03 2011-05-12 De Beers Centenary AG Inclusion detection in polished gemstones
WO2016092300A1 (en) * 2014-12-09 2016-06-16 Peter Reischig A method of generating a fingerprint for a gemstone using x-ray imaging
WO2017015956A1 (en) * 2015-07-30 2017-02-02 深圳大学 Natural jewel authenticity identification method and system based on microscopic three-dimensional imaging technique
CN114935574A (en) * 2022-05-17 2022-08-23 河北同光半导体股份有限公司 Method and device for detecting high-purity silicon carbide crystal package

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152069A (en) * 1976-02-05 1979-05-01 Dihaco/Diamanten Handels Compagnie Process and apparatus for ascertainment of the valuation data of gems
GB2017468A (en) * 1978-02-14 1979-10-03 De Beers Cons Mines Ltd Improvements in radiography
US4417564A (en) * 1980-06-04 1983-11-29 Lawrence John C Centering and working gemstones
US4900147A (en) * 1987-03-18 1990-02-13 The British Petroleum Company, P.L.C. Diamond mapping
US6020954A (en) * 1997-12-18 2000-02-01 Imagestatistics, Inc. Method and associated apparatus for the standardized grading of gemstones
US6069361A (en) * 1997-10-31 2000-05-30 Eastman Kodak Company Imaging resolution of X-ray digital sensors
WO2004028288A2 (en) * 2002-09-27 2004-04-08 Dialit Ltd. Three dimensional gemstone-imaging system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152069A (en) * 1976-02-05 1979-05-01 Dihaco/Diamanten Handels Compagnie Process and apparatus for ascertainment of the valuation data of gems
GB2017468A (en) * 1978-02-14 1979-10-03 De Beers Cons Mines Ltd Improvements in radiography
US4417564A (en) * 1980-06-04 1983-11-29 Lawrence John C Centering and working gemstones
US4900147A (en) * 1987-03-18 1990-02-13 The British Petroleum Company, P.L.C. Diamond mapping
US6069361A (en) * 1997-10-31 2000-05-30 Eastman Kodak Company Imaging resolution of X-ray digital sensors
US6020954A (en) * 1997-12-18 2000-02-01 Imagestatistics, Inc. Method and associated apparatus for the standardized grading of gemstones
WO2004028288A2 (en) * 2002-09-27 2004-04-08 Dialit Ltd. Three dimensional gemstone-imaging system and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133393A1 (en) * 2008-04-30 2009-11-05 De Beers Uk Limited Locating inclusions in diamond
WO2011054822A1 (en) * 2009-11-03 2011-05-12 De Beers Centenary AG Inclusion detection in polished gemstones
JP2013510302A (en) * 2009-11-03 2013-03-21 デ ビアーズ センテナリー アーゲー Detection of inclusions in polished rough
US9322785B2 (en) 2009-11-03 2016-04-26 De Beers Uk Ltd. Inclusion detection in polished gemstones
WO2016092300A1 (en) * 2014-12-09 2016-06-16 Peter Reischig A method of generating a fingerprint for a gemstone using x-ray imaging
US11073488B2 (en) * 2014-12-09 2021-07-27 Peter Reischig Method of generating a fingerprint for a gemstone using x-ray imaging
WO2017015956A1 (en) * 2015-07-30 2017-02-02 深圳大学 Natural jewel authenticity identification method and system based on microscopic three-dimensional imaging technique
CN114935574A (en) * 2022-05-17 2022-08-23 河北同光半导体股份有限公司 Method and device for detecting high-purity silicon carbide crystal package

Similar Documents

Publication Publication Date Title
US7755072B2 (en) System and method for three-dimensional location of inclusions in a gemstone
CN101977551B (en) Apparatus for skin imaging, system for skin analysis
CN105510340B (en) To the method for broad stone imaging
US11073488B2 (en) Method of generating a fingerprint for a gemstone using x-ray imaging
RU2523771C2 (en) Improved security system for screening people
US20190325248A1 (en) System for accurate 3d modeling of gemstones
EP1938088B1 (en) A method for evaluation of a diamond
US10130318B2 (en) Integrated microtomography and optical imaging systems
US20030223054A1 (en) Method and apparatus for identifying gemstones
US6014208A (en) Examining a diamond
US6735279B1 (en) Snapshot backscatter radiography system and protocol
JPH08502361A (en) Method and apparatus for inspecting transparent substances
WO2006033102A1 (en) A system and method for three-dimensional location of inclusions in a gemstone
EP1158293A2 (en) Examining a diamond
CA2946232C (en) Gemstone registration and recovery system, and systems for evaluating the light performance of a gemstone and capturing forensic characteristics of a gemstone
US20150346108A1 (en) Gemstone Registration and Recovery System, and Systems for Evaluating the Light Performance of a Gemstone and Capturing Forensic Characteristics of a Gemstone
WO2014194177A1 (en) A surface feature manager
CN110326029A (en) The system and method for obtaining the data of characterization three dimensional object
KR20160084429A (en) Drug efficacy evaluation method and image processing device for drug efficacy evaluation
CN105181809B (en) A kind of jewelry quality identification method and system based on more Spectrum Analysis
WO2000079301A1 (en) Device for detecting and locating a radioactive source emitting gamma rays, use of same
JP2001346894A (en) Dosimeter
JP2003130819A (en) Inspection device using radiation
US7834989B2 (en) Luminescence imagining installation and method
WO2018000186A1 (en) Fluorescence scattering optical tomography system and method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase