WO2006035775A1 - Spatial light modulator, optical processor, coupling prism and method for using coupling prism - Google Patents

Spatial light modulator, optical processor, coupling prism and method for using coupling prism Download PDF

Info

Publication number
WO2006035775A1
WO2006035775A1 PCT/JP2005/017754 JP2005017754W WO2006035775A1 WO 2006035775 A1 WO2006035775 A1 WO 2006035775A1 JP 2005017754 W JP2005017754 W JP 2005017754W WO 2006035775 A1 WO2006035775 A1 WO 2006035775A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
virtual reference
input
spatial light
reflective
Prior art date
Application number
PCT/JP2005/017754
Other languages
French (fr)
Japanese (ja)
Inventor
Hongxin Huang
Takashi Inoue
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to JP2006537755A priority Critical patent/JP4804358B2/en
Publication of WO2006035775A1 publication Critical patent/WO2006035775A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06EOPTICAL COMPUTING DEVICES; COMPUTING DEVICES USING OTHER RADIATIONS WITH SIMILAR PROPERTIES
    • G06E3/00Devices not provided for in group G06E1/00, e.g. for processing analogue or hybrid data
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133362Optically addressed liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/18Function characteristic adaptive optics, e.g. wavefront correction

Definitions

  • the present invention relates to a spatial light modulator, an optical processing device, a coupling prism, and a method for using the coupling prism.
  • a reflective spatial light modulator hereinafter referred to as a reflective SLM
  • a transmissive spatial light modulator SLM having a reflection hologram disposed on the back side
  • a prism see, for example, Patent Document 2
  • the reflection type SLM is a spatial light modulation element (hereinafter referred to as SLM) that has an element reflection surface and reflects incident light.
  • a transmissive SLM is an SLM that transmits incident light.
  • Patent Documents 1 to 3 are displays, the deviation is not only simple illumination light that does not contain information such as parallel light or spherical waves, but also aberrations. Or, arbitrary processing such as phase modulation and amplitude modulation cannot be performed on arbitrary light such as light containing information (light including diffraction components).
  • an optical processing apparatus capable of performing arbitrary phase modulation or amplitude modulation on arbitrary light using SLM
  • a wavefront compensation system for example, a wavefront compensation system, a pattern forming system, a holography system, a 3D display Systems, optical information processing systems, etc. are known.
  • the output light from the laser 602 passes through a lens 603, a pinhole 605, a spatial filter 604 powered by a force, and a collimating lens 6 06. It is converted into parallel light of the beam diameter and reflected as readout light SLM60 Incident on 8 at an angle.
  • the reflective SLM608 displays a predetermined hologram image.
  • the readout light is phase-modulated by the reflective SLM608, reflected obliquely by the element reflection surface, and emitted from the reflective SLM608.
  • the readout light is Fourier transformed by the Fourier transform lens 610 to form a desired pattern on the output surface 612 (see, for example, Patent Document 4).
  • the reflective SLM has a higher effective aperture ratio and less light loss than the transmissive SLM.
  • a prism 624, a Fourier transform lens 626, and a reflective SLM 628 are disposed between the input surface 622 and the output surface 630.
  • the readout light that has exited the input surface 622 is reflected by the slope of the prism 624 and guided to the Fourier transform lens 626.
  • the readout light passes through the Fourier transform lens 626 and then enters the reflective SLM 628 obliquely.
  • the readout light is modulated by the reflective SLM628 and reflected by the element reflection surface. Thereafter, the readout light passes through the Fourier transform lens 626 again, is reflected by the slope on the opposite side of the prism 624, and forms an image on the output surface 630.
  • one Fourier transform lens 626 has two functions of Fourier transform on the incident side and Fourier transform on the output side (see, for example, Patent Document 4).
  • Patent Document 1 JP-A-11-194330 (Pages 4-5, Fig. 1)
  • Patent Document 2 JP 2002-517781 A (Pages 16-18, Fig. 5)
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-4930 (Pages 4-6, Fig. 1)
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-171824 (Pages 3-4, Figures 3 and 7)
  • the optical axis is bent obliquely by the reflective SLM608. This makes it difficult to design, assemble and adjust the optical system.
  • the pattern forming optical system 600 is constructed on a rectangular substrate, the area of the substrate becomes large and it is difficult to reduce the size.
  • both incident light and outgoing light pass through the peripheral portion of the Fourier transform lens 626, and the adverse effect of off-axis aberrations increases.
  • the diameter of the Fourier transform lens 626 is increased, it is difficult to design and manufacture the lens.
  • the diameter of the Flier conversion lens 626 is reduced, the effective beam diameter must be reduced. More In order to sufficiently separate the incident light and the emitted light, the focal length of the Fourier transform lens 626 must be increased. Also, the focal length of the Fourier transform lens on the entrance side and the exit side cannot be made different.
  • This 4f optical system 640 has an input surface 622, a Fourier transform lens 626-1, a reflective SLM 628, a Fourier transform lens 626-2, and an output surface 630.
  • the distance between the input surface 622 and the Fourier transform lens 626-1 and the distance between the Fourier transform lens 626-1 and the reflective SLM628 are both equal to the focal length of the Fourier transform lens 626-1.
  • the distance between the reflective SLM628 and the Fourier transform lens 626-2 and the distance between the Fourier transform lens 626-2 and the output surface 630 are both equal to the focal length of the Fourier transform lens 626-2.
  • a parallel light projection optical system is disposed in front of the input surface 622, and parallel light is projected onto the input surface. According to the 4f optical system 640, the above-described problem in the 4f optical system 620 described with reference to FIG. 2 can be solved.
  • the optical axis 650 on the input side and the optical axis 652 on the output side intersect obliquely at an angle that is not perpendicular. Therefore, it is not easy to accurately set the straight line formed by the optical axis 650 and the straight line formed by the optical axis 652 and accurately place the input-side and output-side optical devices on these straight lines.
  • the optical axis 650 and the optical axis are The axis 652 does not coincide with the reflective SLM628, and one of the forces of the optical axis 650 and the optical axis 652 must be moved in a direction perpendicular to the optical axis.
  • the reflective SLM 628 is moved along the bisector of the two optical axes 650 and 652. Since this bisector is not perpendicular to the two optical axes 650 and 652, it is difficult to move with high accuracy. In addition, since the positional accuracy of the reflective SLM628 needs to be kept high in the plane perpendicular to the bisector, position adjustment in the optical axis direction is very difficult.
  • reflective SLM628-1, 628-2 two reflective SLM628s (hereinafter referred to as reflective SL M628-1, 628-2) as in the 4f optical system 660 shown in FIG. Since two reflective SLM628s are used, there are two bent portions of the optical axis, and three optical axes 654, 650, and 652 extending in different directions are generated. Lenses 626-1 and 626-2 forces S are placed between the reflective SLM628-1 and the reflective SLM628-2 and behind the reflective SLM628-2, respectively. A laser 662, a lens 664, and an aperture 666 are provided in front of the reflective SLM628-1.
  • the present invention uses a reflective SLM, makes it easy to design, assemble, and adjust an optical system with high light energy utilization efficiency, and can reduce the size of the optical system. It is an object of the present invention to provide a spatial light modulation device, an optical processing device, a coupling prism, and a method for using the coupling prism that can perform arbitrary optical processing on incident light. Target.
  • the present invention provides a reflective spatial light modulator provided at a position shifted from a virtual reference line in a direction perpendicular to the virtual reference line, and a virtual reference line.
  • a reflective spatial light modulator provided at a position shifted from a virtual reference line in a direction perpendicular to the virtual reference line, and a virtual reference line.
  • an input side reflection surface for reflecting incident light incident along the virtual reference line and making it incident obliquely as read light on the reflective spatial light modulator.
  • a reflection-type spatial light modulator comprising: an output-side reflection surface that reflects the read light modulated and reflected obliquely by the reflection-type spatial light modulation element and outputs it as emitted light along a virtual reference line; Is provided with an element reflecting surface for reflecting the reading light from the input side reflecting surface, and the input side reflecting surface and the output side reflecting surface are separated by a distance L along the virtual reference straight line.
  • the input side reflection surface, the output side reflection surface, and the element reflection surface are separated by an angle ⁇ 1, ⁇ 2, and ⁇ 3, respectively, with respect to the direction in which the virtual reference straight line extends.
  • the input-side reflecting surface reflects incident light incident along the virtual reference straight line and makes it incident obliquely as read light on the reflective spatial light modulator.
  • the reflection surface of the reflective spatial light modulator reflects the reading light of the input side reflection surface force obliquely.
  • the output-side reflecting surface reflects the readout light modulated by the reflective spatial light modulator and reflected obliquely and outputs it as outgoing light.
  • the emitted light is emitted along a virtual reference line. It is powered. Therefore, the chief ray of incident light incident on the input side reflecting surface of the spatial light modulator and the chief ray of outgoing light emitted from the output side reflecting surface force are on the same virtual reference line. Therefore, the entire optical system can be removed from the comparator, and the optical system can be easily designed, assembled and adjusted. Furthermore, any optical processing can be efficiently performed on any incident light by the reflective spatial light modulator.
  • the input side reflection surface, the output side reflection surface, and the element reflection surface are such that the input side reflection surface reflects all incident light incident on the element reflection surface, and the element reflection surface is reflected by the input side reflection surface. And the output side reflection surface is reflected by the element reflection surface, and has a relative positional relationship that reflects all of the predetermined components of the light modulated by the reflective spatial light modulator. It is preferable.
  • the element reflection surface has a size c
  • the input-side reflection surface has a size al on the side far from the reflective spatial light modulation element force with respect to the virtual reference line, and a side close to the reflection spatial light modulation element.
  • the size of the reflective surface on the output side is closer to the virtual reference straight line from the reflective spatial light modulator, bl, and the size of the side far from the reflective spatial light modulator is b2.
  • the reflective surface has a size cl on the side close to the input-side reflective surface with respect to the optical axis of the incident light reflected by the input-side reflective surface, and the reflective spatial light modulator is 0 to
  • the predetermined component is emitted at the divergence angle in the range of 0 to ⁇
  • the readout light that is incident on the reflective spatial light modulator is convergent light
  • OC takes a positive value
  • a takes a negative value
  • a predetermined value of the readout light emitted from the reflective spatial light modulator is given.
  • the predetermined component is a diffraction component having a diffraction order of 1 or more and n (n is a natural number greater than 0) or less, and ⁇ and) 8 are the wavelength of incident light and the reflection type space. It is preferable that the following expressions (9) and (10) are satisfied with respect to the lattice constant d of the smallest lattice pattern that can be displayed on the light modulation element.
  • the input-side reflecting surface is provided in the first mirror, and the output-side reflecting surface is provided in the second mirror provided independently of the first mirror.
  • the single prism includes a first surface and a second surface formed so as to form a predetermined angle with each other, the input-side reflecting surface being the first surface, and the output-side reflecting surface being the first surface.
  • the input-side reflection surface and the output-side reflection surface each receive incident light incident from the outside of the prism and reflect the incident light toward the outside of the prism.
  • the input side reflection surface and the output side reflection surface are provided in a single prism. Since the input-side reflection surface and the output-side reflection surface can be integrated, the number of parts is reduced, and the design, assembly, and adjustment of the optical system are easier.
  • the single coupling prism includes an input side transmission surface, a first reflection surface, a cemented transmission surface, a second reflection surface, and an output side transmission surface, and is provided with an input side transmission surface.
  • the surface is provided on the virtual reference straight line, transmits incident light incident along the virtual reference straight line, guides the incident light along the virtual reference straight line, and the first reflecting surface is the virtual reference straight line.
  • This is an input-side reflection surface that reflects incident light propagating through the virtual reference line from the input-side transmission surface.
  • the junction transmission surface is perpendicular to the virtual reference line from the virtual reference line.
  • the reflective spatial light modulator Provided at a position shifted in this direction, joined to the reflective spatial light modulator, transmits the incident light reflected by the first reflective surface and propagating through it, and is read from the reflective spatial light modulator. However, it is incident obliquely as light and is modulated obliquely by a reflective spatial light modulator.
  • the emitted reading light is transmitted and propagated inside, and the second reflecting surface is set on the virtual reference straight line, and the reading light propagating inside from the junction transmitting surface is reflected and emitted.
  • This is an output-side reflecting surface that propagates inside the virtual reference line as incident light, and the output-side transmitting surface is provided on the virtual reference line, and propagates inside along the second reflecting surface force virtual reference line. It is preferable to output the outgoing light along the virtual reference straight line.
  • the input-side transmission surface transmits incident light incident along the virtual reference line and guides the incident light into the coupling prism along the virtual reference line.
  • the first reflecting surface reflects the incident light propagating inside along the input side transmission surface force virtual reference line.
  • the bonded transmission surface bonded to the reflective spatial light modulator is the first reflective surface.
  • the incident light that is reflected by the light and propagates inside is transmitted and incident obliquely on the reflective spatial light modulator as readout light, and is read by the reflective spatial light modulator and reflected obliquely. Transmits light and propagates inside.
  • the second reflecting surface reflects the readout light propagating inward from the bonded transmission surface and propagates the inside along the virtual reference line as outgoing light.
  • the output side transmission surface outputs the outgoing light propagating inside along the second reference surface force virtual reference line to the outside along the virtual reference line.
  • the input side reflection surface, the output side reflection surface, and the element reflection surface are the input side reflection surface that reflects all incident light incident on the element reflection surface
  • the element reflection surface is the input side reflection surface. Reflects all of the light reflected by, and has a relative positional relationship in which the output-side reflecting surface is reflected by the element reflecting surface and reflects all of the predetermined components of the light modulated by the reflective spatial light modulator. It is preferable.
  • the refractive index of the coupling prism is m
  • the element reflection surface has a size c
  • the input-side reflection surface is a size on the side far from the reflective spatial light modulator with respect to the virtual reference line.
  • Al and the size a2 on the side close to the reflective spatial light modulator, the output-side reflective surface is close to the virtual reference line from the reflective spatial light modulator, bl, and the reflective type Spatial light modulation B2 on the side far from the element
  • the element reflection surface has a size cl on the side closer to the input reflection surface with respect to the optical axis of the incident light reflected by the input reflection surface.
  • the spatial light modulation element modulates the incident reading light with a convergence angle in the range of 0 to oc, and emits the predetermined component with a divergence angle in the range of 0 to ⁇ , to the reflective spatial light modulation element.
  • OC takes a positive value
  • OC takes a negative value
  • a predetermined component of the readout light emitted from the reflective spatial light modulator diverges.
  • takes a positive value
  • takes a negative value
  • For magnitudes cl, al, a2, bl, b2 and forces a and j8, It is preferable to satisfy ⁇ (8 ⁇ .
  • the predetermined component is a diffraction component having a diffraction order of 1 or more and ⁇ ( ⁇ is a natural number greater than 0) or less, and ⁇ and) 8 are the wavelength of incident light and the reflection type space. It is preferable that the following equations (9 ⁇ and (1 ( ⁇ )) are satisfied with respect to the lattice constant d of the smallest lattice pattern that can be displayed on the light modulation element.
  • the reflective spatial light modulator is preferably a phase modulation type. According to this configuration, arbitrary optical processing can be performed on arbitrary incident light.
  • a spatial light modulation device an input optical system provided on a virtual reference straight line that inputs incident light to the spatial light modulation device along the virtual reference straight line, and a virtual reference Spatial light modulation device power provided on the straight line and an output optical system for processing the emitted light output along the virtual reference straight line, the spatial light modulation device from the virtual reference straight line to the virtual reference straight line
  • a reflective spatial light modulation element provided at a position shifted in the vertical direction and a reflection type that is provided on the virtual reference line and reflects incident light incident from the input optical system along the virtual reference line
  • the reflective surface on the input side for obliquely entering the spatial light modulation element as readout light and the virtual reference straight line, which reflects the readout light modulated and reflected obliquely by the reflective spatial light modulation element.
  • the reflective spatial light modulator has an element reflecting surface for reflecting the reading light of the input side reflecting surface, and includes an input reflecting surface and an output reflecting surface. Is separated by a distance L along the virtual reference line, and the element reflection surface is separated from the virtual reference line by a distance h in a direction perpendicular to the virtual reference line, and the input side reflection surface, the output side reflection surface, and The element reflecting surfaces are inclined by angles ⁇ 1, ⁇ 2, and ⁇ 3 with respect to the direction in which the virtual reference line extends, respectively, and the distances L, h, and angles ⁇ 1, ⁇ 2, and ⁇ 3 Provides an optical processing apparatus characterized by satisfying the following formulas (1) and (2).
  • the input optical system and the output optical system are arranged on the virtual reference straight line. Therefore, an input side reflection surface, an output side reflection surface, and a reflective spatial light modulation element
  • the position of the entire optical processing apparatus can be easily adjusted simply by adjusting the position in the direction perpendicular to the virtual reference line. This simplifies the design, assembly and adjustment of the optical system.
  • the input optical system has a light source and beam conversion means for converting light from the light source into parallel light
  • the output optical system is phase-modulated by a reflective spatial light modulation element and is output side reflection surface It is preferable to have a lens that Fourier transforms the reflected light.
  • the light waveform pattern can be formed into an arbitrary waveform pattern, for example, by efficiently using light.
  • the input optical system has a first lens for Fourier transforming the input image, and the reflective spatial light modulation element phase-transforms the Fourier transform image of the input image with a filter pattern based on the reference image.
  • the modulating and output optical system preferably has a second lens that Fourier-transforms the output light of the spatial light modulator, and outputs an image showing the correlation between the input image and the reference image.
  • the first lens performs a Fourier transform on the input image.
  • the reflective spatial light modulation element phase-modulates the Fourier transform image of the input image with a filter pattern based on the reference image.
  • the second lens outputs an image indicating the correlation between the input image and the reference image by Fourier transforming the output light having the power of the spatial light modulator. Therefore, it is possible to output an image corresponding to the correlation between the input image and the reference image by using light efficiently.
  • the image processing apparatus further includes input image creation means for creating an input image
  • the input image creation means includes another spatial light modulation device
  • the other spatial light modulation device changes from a virtual reference line to a virtual reference line.
  • Reflective spatial light modulation element provided at a position shifted in a direction perpendicular to the vertical direction
  • reflective spatial light modulation provided on the virtual reference straight line to reflect incident light incident along the virtual reference straight line
  • Input-side reflecting surface for obliquely entering the element as readout light and a virtual reference line, which is reflected by the reflective spatial light modulator and reflected obliquely as reflected light.
  • An output-side reflective surface for outputting along a virtual reference straight line, and the reflective spatial light modulator has an element-reflecting surface for reflecting the readout light from the input-side reflective surface.
  • Surface and the output-side reflective surface A distance L is separated along the line, and the element reflection surface is opposed to the virtual reference line from the virtual reference line.
  • the input side reflection surface, the output side reflection surface, and the element reflection surface are separated from each other by an angle ⁇ 1, ⁇ 2, Inclined by ⁇ 3, distances L and h, and angles ⁇ 1, ⁇ 2, and ⁇ 3 satisfy Eqs. (1) and (2), and the first lens has another spatial light modulator power It is preferable to Fourier-transform the output light.
  • the spatial light modulators are connected in multiple stages, so that the input image can be freely generated while using the light efficiently and also with the force.
  • a light splitting element for guiding a part of the emitted light output by the spatial light modulation device, and a wavefront sensor for detecting a distortion of a wavefront of a part of the emitted light guided by the light splitting element
  • a control device that feeds back a signal for correcting the distortion of the wavefront based on the detection result of the wavefront sensor to the reflective spatial light modulator of the spatial light modulator, and the wavefront compensation by the reflective spatial light modulator
  • the emitted light is preferably output to the output optical system.
  • the light splitting element guides a part of the emitted light output from the spatial light modulator.
  • the wavefront sensor detects distortion of a part of the wavefront of the outgoing light guided by the light splitting element. Based on the detection result of the wavefront sensor, the control device feeds back a signal for correcting the distortion of the wavefront to the reflective spatial light modulator. Outgoing light wave-compensated by the reflective spatial light modulator is output to the output optical system. Therefore, phase compensation can be performed using light efficiently.
  • an input-side transmission surface that is provided on a virtual reference line, transmits incident light incident along the virtual reference line and guides the incident light to the inside, and input-side transmission
  • An input-side reflection surface that reflects light propagating from the surface and a position that is perpendicular to the virtual reference line from the virtual reference line, joined to the reflective spatial light modulator, and input-side reflection
  • the light reflected from the surface and propagating through the inside is transmitted, and is incident on the reflective spatial light modulation element obliquely as readout light, and is modulated by the reflective spatial light modulator and reflected obliquely.
  • the joint transmission surface for transmitting the reading light and propagating the inside is provided on the virtual reference line, reflecting the reading light propagating from the bonding transmission surface to the inside as the outgoing light On the output side reflective surface and the virtual reference straight line Only it is, to the outside along the outgoing light propagated through the internal output side reflecting surface forces to the virtual reference line There is provided a coupling prism comprising an output side transmission surface for outputting.
  • the input side transmission surface transmits incident light incident along the virtual reference straight line and guides the incident light into the coupling prism.
  • the input-side reflecting surface reflects light propagating from the input-side transmitting surface.
  • the bonding surface bonded to the reflective spatial light modulator transmits the light reflected by the input-side reflective surface and propagating through it, and enters the reflective spatial light modulator obliquely as read light.
  • the reading light modulated by the reflective spatial light modulator and reflected obliquely is transmitted and propagated inside.
  • the output side reflecting surface reflects the reading light propagating from the bonding transmission surface and propagates it as outgoing light.
  • the output side transmission surface outputs outgoing light propagating from the output side reflection surface to the outside along the virtual reference straight line.
  • the chief ray of incident light incident on the input-side reflecting surface of the coupling prism and the chief ray of outgoing light emitted from the output-side reflecting surface force are on the same virtual reference line.
  • the entire optical system can be removed from the comparator, and the design, assembly, and adjustment of the optical system can be facilitated.
  • any optical processing can be efficiently applied to any incident light by the reflective spatial light modulator.
  • an input side transmission surface that is perpendicular to the virtual reference line and transmits incident light incident along the virtual reference line, and a virtual reference line on the virtual reference line.
  • the input-side reflection surface that totally reflects the light propagating from the input-side transmission surface and extends parallel to the virtual reference line, and is reflected by the input-side reflection surface.
  • the output side reflecting surface for totally reflecting the light propagating from the junction transmission surface and propagating the inside along the virtual reference straight line as outgoing light, and on the virtual reference straight line
  • Ru provide a coupling prism, characterized in that it comprises an output side transmission surface and outputting to the outside along the outgoing light propagated through the inside along an imaginary reference line to a virtual reference line, the.
  • a coupling prism having a powerful structure has a cemented transmission surface in contact with a reflective spatial light modulator. Use together.
  • the input side transmission surface transmits incident light incident along the virtual reference line.
  • the input side reflection surface totally reflects light propagating from the input side transmission surface.
  • Junction The transmission surface transmits the light reflected and propagated by the input-side reflection surface and enters the reflective spatial light modulator at an angle as read light, and is modulated by the reflective spatial light modulator. Then, the reading light reflected obliquely is transmitted and propagated inside.
  • the output-side reflecting surface totally reflects the light propagating from the bonded transmission surface, and propagates the interior along the virtual reference straight line as outgoing light.
  • the output side transmission surface outputs outgoing light propagating from the output side reflection surface along the virtual reference line to the outside along the virtual reference line. Therefore, the principal ray of the incident light incident on the input side reflection surface of the coupling prism and the principal ray of the emission light emitted from the output side reflection surface are on the same virtual reference line. Since the incident light and the incident transmission surface are perpendicular to each other, and the outgoing light and the emission transmission surface are perpendicular to each other, stray light inside the coupling prism can be reduced. Since total reflection is performed on the input-side reflection surface and output-side reflection surface, surface processing is not required. By using a coupling prism, the entire optical system can be compacted, and the design, assembly, and adjustment of the optical system are facilitated. Further, any optical processing can be efficiently performed on any incident light by the reflective spatial light modulator.
  • the first side surface and the second side surface are connected to each other at a 90 ° angle with a pentagonal prism shape having the first to fifth side surfaces in this order, and the second side surface And the third side are connected to each other at an angle of 90 °, the third side surface and the fourth side surface are connected to each other at an angle of 90 ° — ⁇ 2, and the fourth side surface and the fifth side surface are connected to each other.
  • Reflective type with element reflection surface providing a coupling prism with 180 ° + 1 + 2 connected to each other and the 5th side and 1st side connected to each other at 90 ° - ⁇ 1
  • the spatial light modulation element is joined to the second side so that the element reflection surface extends parallel to the second side, the virtual reference straight line passes through the first side and the fifth side, and the fifth side
  • the side surface of the element and the fourth side surface are separated by a distance along the virtual reference line, and the element reflection surface is separated from the virtual reference line in a direction perpendicular to the virtual reference line.
  • the fifth side surface, the fourth side surface, and the element reflecting surface are inclined with respect to the direction in which the virtual reference straight line extends by angles ⁇ 1, ⁇ 2, and ⁇ 3, respectively, and the distances L, h, and
  • the coupling prism is hypothesized so that the angles ⁇ 1, ⁇ 2, and ⁇ 3 satisfy the following expressions (1 ′) and (2 ′): Arranged against the reference straight line,
  • the first side surface transmits incident light incident along the virtual reference line and guides the incident light into the coupling prism.
  • the fifth side reflects light propagating inward from the first side.
  • the second side surface joined to the reflective spatial light modulator transmits the light reflected and propagated by the fifth lateral surface, and obliquely as read light to the reflective spatial light modulator.
  • the reading light that is incident and modulated by the reflective spatial light modulator and reflected obliquely is transmitted and propagated inside.
  • the fourth side reflects the reading light propagating from the second side and propagates it as outgoing light.
  • the third side outputs the outgoing light propagating inside the fourth side force to the outside along the virtual reference line.
  • the principal ray of the incident light incident on the first side surface of the coupling prism and the principal ray of the emitted light emitted from the third side surface are on the same virtual reference line.
  • the refractive index of the coupling prism is m
  • the element reflection surface has a size c
  • the fifth side surface is a reflection-type spatial light modulation element force far away from the virtual reference line. al and the size a2 on the side close to the reflective spatial light modulator, and the fourth side has a size bl on the side close to the reflective spatial light modulator with respect to the virtual reference line, and the reflective space
  • An optical axis of incident light having a size b2 on the side far from the light modulation element and the reflection surface of which is reflected by the fifth side face
  • the reflective spatial light modulation element modulates the reading light incident at a convergence angle in the range of 0 to ⁇ , and the predetermined component is obtained.
  • the predetermined component is a diffraction component having a diffraction order of 1 or more and ⁇ ( ⁇ is a natural number greater than 0) or less, ⁇ and) 8 are the wavelength of incident light and the reflection type It is preferable that the following expressions (9 ⁇ and (1 ( ⁇ )) are satisfied for the lattice constant d of the smallest lattice pattern that can be displayed on the spatial light modulator.
  • a pentagonal prism shape having a first side, a second side, a third side, a fourth side, and a fifth side in this order is provided. The first side and the second side are connected at 90 ° to each other, the second side and the third side are connected at 90 ° to each other, and the third side and the fourth side are connected.
  • the fourth side surface (57) and the fifth side surface (55) are connected to each other at 180 ° + 1 + 2, and the fifth side surface (55 ) And the first ⁇ J plane (54) are connected to each other with a force of 90 ⁇ 1, ⁇ 1, ⁇ 2 force O 0 ⁇ 1 ⁇ 90 °, 0. ⁇ Coupling prisms characterized by satisfying ⁇ 2 ⁇ 90 °.
  • a reflective spatial light modulation element having an element reflecting surface is bonded to the coupling prism having a powerful structure with respect to the second side surface so that the element reflecting surface extends parallel to the second side surface.
  • the virtual reference line passes through the first side surface and the fifth side surface, and the fifth side surface and the fourth side surface are separated from each other by a distance L along the virtual reference line, and the element reflection surface is virtual from the virtual reference line.
  • the fifth side surface, the fourth side surface, and the element reflecting surface are separated by a distance h in a direction perpendicular to the reference straight line, and the angles ⁇ 1 and ⁇ 2 are respectively relative to the direction in which the virtual reference straight line extends.
  • ⁇ 3 only Inclination, distance L, h, and angles ⁇ 1, ⁇ 2, ⁇ 3 satisfy the following formulas (1 ') and (2') so that the coupling prism is a virtual reference line Preferable to place against.
  • the first side surface transmits the incident light incident along the virtual reference line and transmits the incident light inside the coupling prism.
  • the fifth side reflects light propagating from the first side.
  • the second side surface joined to the reflective spatial light modulator transmits the light reflected by the fifth lateral surface and propagates inside, and enters the reflective spatial light modulator obliquely as read light. Transmitting the reading light modulated by the reflective spatial light modulator and reflected obliquely And propagate inside.
  • the fourth side reflects the reading light propagating from the second side and propagates it as outgoing light.
  • the third side outputs the outgoing light transmitted from the fourth side to the outside along the virtual reference line.
  • the chief ray of incident light incident on the first side surface of the coupling prism and the chief ray of outgoing light emitted from the third side surface are on the same virtual reference line.
  • FIG. 1 is a diagram showing a configuration of a conventional optical processing apparatus (pattern forming optical system).
  • FIG. 2 is a diagram showing a configuration of another conventional optical processing apparatus (4f optical system).
  • FIG. 3 is a diagram showing a configuration of a 4f optical system obtained by improving the 4f optical system of FIG.
  • FIG. 4 is a diagram for explaining a problem that occurs in the position adjustment of the reflective SLM in the optical processing apparatus of FIG.
  • FIG. 5 is a diagram showing a configuration of another 4f optical system obtained by applying the 4f optical system of FIG.
  • FIG. 6 is a diagram showing a configuration of a spatial light modulation device according to the first embodiment.
  • FIG. 7 is a diagram showing a configuration of a reflective SLM provided in the spatial light modulation device according to the first embodiment.
  • FIG. 8 is a diagram showing the positional relationship between the chief ray of readout light, the reflective SLM, and two mirrors in the spatial light modulation device of FIG.
  • FIG. 9 is a diagram illustrating a state in which readout light is reflected in the spatial light modulation device in FIG.
  • FIG. 10 is a diagram showing a state in which the principal ray and the marginal ray of the input light beam are reflected on the input side reflection surface in the spatial light modulation device of FIG.
  • FIG. 11 is a diagram showing a state in which the principal ray and the marginal ray of the output light beam are reflected on the output side reflection surface in the spatial light modulation device of FIG.
  • FIG. 12 is a straight light path diagram in which reflections at the respective reflecting surfaces in the spatial light modulator of FIG. 6 are developed.
  • FIG. 13 is a diagram showing a configuration of an optical processing apparatus (4f optical system) that employs the spatial light modulator of FIG.
  • FIG. 14 is a view for explaining the position adjustment of the reflective SLM in the optical processing apparatus of FIG.
  • FIG. 15 is a diagram illustrating a configuration of a spatial light modulation device according to a second embodiment.
  • FIG. 16 is a diagram showing a configuration of an optical processing device (waveform shaping optical system) that employs the spatial light modulation device of FIG.
  • FIG. 17 is a diagram showing a configuration of another optical processing device (4f optical system) that employs the spatial light modulator of FIG.
  • FIG. 18 is a diagram showing a configuration of another optical processing device (4f optical system) that employs the spatial light modulator of FIG.
  • FIG. 19 is a diagram showing a configuration of another optical processing device (wavefront compensation optical system) that employs the spatial light modulation device of FIG.
  • FIG. 20 is a diagram showing a configuration of a spatial light modulation device according to a third embodiment.
  • FIG. 21 is a diagram showing a configuration of a spatial light modulation device according to a fourth embodiment.
  • FIG. 22] is a diagram showing a positional relationship among the reflective SLM, the input-side reflection surface, and the output-side reflection surface in the spatial light modulation device according to the modified example.
  • optical processor 100 optical processor 200 optical processor 300 optical processor 302 input surface
  • a spatial light modulation device, an optical processing device, a coupling prism, and a method of using the coupling prism according to an embodiment of the present invention will be described with reference to the drawings.
  • the spatial light modulation device 1 includes a mirror 3, a reflective spatial light modulator 5 (hereinafter referred to as a reflective SLM5), and a mirror 7. ing.
  • the reflective SLM 5 is arranged at a position shifted from the predetermined virtual reference line 9 in a direction perpendicular to the virtual reference line 9.
  • the reflective SLM 5 includes a modulation unit 5a, a mirror layer 5b, and an address unit 5d.
  • the surface on the modulation section 5a side of the mirror layer 5b defines the element reflection surface 5c.
  • the modulation unit 5a is arranged so as to face the virtual reference straight line 9.
  • the mirrors 3 and 7 are both arranged on the virtual reference straight line 9.
  • the mirrors 3 and 7 are both arranged obliquely with respect to the virtual reference straight line 9. More specifically, the mirrors 3 and 7 are arranged in a “C” shape on the virtual reference straight line 9.
  • the mirror 3 has an input side reflection surface Ml
  • the mirror 7 has an output side reflection surface M2.
  • Read light enters the input side reflecting surface Ml as an input beam along a virtual reference line 9 from an input side optical system (not shown). That is, the principal ray (optical axis) 11 of the input beam travels along the virtual reference line 9.
  • the input side reflection surface Ml reflects the readout light to the reflective SLM5.
  • the readout light incident on the reflective SLM5 is modulated when propagating through the modulator 5a, reflected by the element reflecting surface 5c, propagated again through the modulator 5a, further modulated, and then emitted from the reflective SLM5. .
  • the readout light is reflected by the output-side reflecting surface M2, travels along the virtual reference line 9 as an output beam, exits from the spatial light modulator 1, and is output to an output-side optical system (not shown).
  • the principal ray (optical axis) 17 of the output beam also travels along the virtual reference line 9.
  • a path along which the input beam principal ray 11 and the output beam principal ray 17 pass is defined as the optical axis in the spatial light modulator 1.
  • the angle change of the optical axis of the readout light due to the reflection on the input side reflection surface Ml, reflection type SLM5, and output side reflection surface M2 all occurs within the paper surface of FIG. It is assumed that there is no change in the angle of the optical axis.
  • the reflective SLM5 is, for example, a parallel-aligned nematic liquid crystal spatial light modulation (Parallel-Aligned nematic-Licuid-cnstal Spaciai Light Modula tor: hereinafter referred to as PAL-SLM),
  • the modulation section 5a includes a nematic liquid crystal layer 500 in a horizontal alignment state, a transparent electrode 501, and a transparent substrate 502.
  • the mirror layer 5b is composed of a multilayer dielectric layer 503.
  • the surface on the liquid crystal layer 500 side of the multilayer dielectric layer 503 defines the element reflecting surface 5c.
  • the address portion 5d includes a photoconductive layer 504, a transparent electrode 505, and a transparent substrate 506.
  • the refractive index distribution of the liquid crystal layer 500 changes.
  • the readout light enters the liquid crystal layer 500 through the transparent substrate 502 and the transparent electrode 501, is phase-modulated by the liquid crystal layer 500, and is reflected by the multilayer dielectric layer 503.
  • the readout light is converted into phase-modulated light having a phase distribution corresponding to a desired intensity distribution, and is emitted from the reflective SLM5.
  • the liquid crystal layer 500 can only modulate the phase of the readout light.
  • a relay lens 540, a liquid crystal display (hereinafter referred to as LCD) 530, a collimator lens 520, and a writing light source 510 are opposed to the address part 5d of the reflective SLM5. It is okay to place it.
  • the writing light source 510 emits writing light having a uniform intensity distribution.
  • the collimating lens 520 converts writing light into parallel light.
  • the LCD 530 is a transmissive electric address type intensity modulation type spatial light modulator.
  • the LCD 530 is electrically addressed by a signal input from a control unit (not shown), and converts the incident parallel light into intensity modulated light having a desired intensity distribution.
  • the relay lens 540 forms an image of the intensity-modulated light on the reflective SLM5.
  • the reflective SLM 5, the writing light source 510, the collimating lens 520, the LCD 530, and the relay lens 540 may be housed in a housing and configured as the phase modulation module 6.
  • the phase modulation module 6 by arranging the phase modulation module 6 with respect to the mirrors 3 and 7 as shown in FIG. 7, the positional relationship between the reflective SLM5 and the mirrors 3 and 7 is the same as that shown in FIG. can do.
  • phase modulation module 6 for example, an electrical address type liquid crystal phase modulation module is used.
  • SLMX7550 trade name, manufactured by Hamamatsu Photonics Co., Ltd.
  • the point where the input chief ray 11 is incident on the input side reflecting surface Ml is a point A
  • the point where the chief ray of the light reflected by the input side reflecting surface Ml is incident on the reflective SLM5 is a point.
  • C reflection type S
  • the point where the principal ray of the light modulated by the LM5 and reflected by the element reflection surface 5c is incident on the output-side reflection surface M2 is point B.
  • a straight line A—B connecting points A and B is located on the virtual reference line 9.
  • the input-side reflecting surface Ml extends in a direction that forms an angle ⁇ 1 with respect to the virtual reference line 9.
  • the output-side reflecting surface M2 extends in a direction that forms an angle ⁇ 2 with respect to the virtual reference line 9.
  • the element reflecting surface 5c extends in a direction that forms an angle ⁇ 3 with respect to the virtual reference line 9.
  • ⁇ 1 and ⁇ 3 take positive values counterclockwise from the virtual reference line 9 in FIG.
  • ⁇ 2 takes a positive value in the clockwise direction from the virtual reference line 9 in FIG.
  • ⁇ 1 and ⁇ 2 are 0 ° ⁇ 1 ⁇ 90 ° and 0. ⁇ 2 ⁇ 90 ° is satisfied. That is, the input-side reflecting surface Ml and the output-side reflecting surface M2 extend obliquely with respect to the virtual reference straight line 9.
  • the element reflecting surface 5c extends obliquely or parallel to the virtual reference line 9.
  • both ends of the input-side reflection surface Ml be point Al and point A2.
  • point A2 is located on the reflective SLM5 side from the virtual reference line 9.
  • Point A1 is located on the opposite side of reflective SLM5 from virtual reference line 9.
  • the length of line segment Al—A2 is a
  • the length of line segment A—A1 is al
  • the length of line segment A A2 is a2.
  • Both ends of the output-side reflecting surface M2 are point Bl and point B2.
  • point B1 is located on the reflective SLM5 side from the virtual reference line 9
  • point B2 is located on the opposite side of the reflective reference SLM5 from the virtual reference line 9.
  • the length of line B1-B2 is b, the length of line B-B1 is bl, and the length of line B-B2 is b2.
  • the two end points of the element reflecting surface 5c are point C1 and point C2.
  • Point C1 is located closer to the input reflecting surface Ml than the output reflecting surface M2, and point C2 is located closer to and closer to the output reflecting surface M2 than the input reflecting surface Ml.
  • the length of the line segment C1 C2 (that is, the effective diameter of the reflective SLM5) is c, the length of the line segment C C1 is cl, and the length of the line segment C-C2 is c2.
  • the point C force is also the point D of the perpendicular line to the segment A—B, the length of the perpendicular CD h, and the length of the segment A—B L.
  • the angles ⁇ 1, ⁇ 2, and ⁇ 3 and the lengths L and h have the following relationships (1) and (2).
  • the input main light beam 11 incident on the input-side reflecting surface Ml not only travels along the virtual reference line 9, but also on the output-side reflecting surface M2. It is ensured that the reflected output principal ray 17 also travels along the virtual reference line 9. In other words, it is ensured that the output chief ray 17 is located on the extension of the input chief ray 11 (condition 1)!
  • the readout light (input light beam) is incident from a not-shown input optical system along the virtual reference line 9 at a convergence angle ranging from 0 to ⁇ . I will come.
  • a takes a positive value
  • a takes a negative value.
  • the beam diameter when the reading light (input light beam) enters the reflective SLM 5 is equal to the length c of the element reflecting surface 5c.
  • the readout light modulated by the reflective SLM5 and reflected by the element reflecting surface 5c is emitted from the reflective SLM5.
  • a desired component that is, a desired component desired to be output from the spatial light modulator 1 out of the readout light is emitted as an output light beam at a divergence angle in a range from 0 to 0.
  • takes a positive value when the output light beam is divergent light
  • takes a negative value when the output light beam is convergent light.
  • the absolute values of a and ⁇ are sufficiently small, and the change in the cross-sectional shape of the light beam due to the light converging / diverging near the reflective SLM5 is negligible. Therefore, the length of the input light beam along the element reflection surface 5c near the element reflection surface 5c is substantially equal to the length c of the element reflection surface 5c.
  • the length along the element reflection surface 5c near the element reflection surface 5c of the force light beam is substantially equal to the length c of the element reflection surface 5c.
  • FIG. 9 as in FIG. 8, for the sake of clarity, only the mirror layer 5b of the reflective SLM 5 is shown, and the modulation unit 5a and the address unit 5d are not shown.
  • angles ⁇ 1, ⁇ 2 and the lengths c, cl, h, al, a2, bl, b2, L are as follows: The following relationships (3) to (8) are satisfied.
  • light rays that define the outermost part of the input light beam are input edge light rays 13 and 15. Enter The force edge rays 13 and 15 propagate in a direction that forms a convergence angle ⁇ with respect to the input principal ray 11. Since the input light is symmetric with respect to the input chief ray 11 (optical axis), the intensities of the input marginal rays 13 and 15 are equal to each other. That is, the intensity of the input marginal rays 13 and 15 is a predetermined proportion of the intensity of the input principal ray 11.
  • the light rays that define the outermost part of the output light beam are output edge light rays 19 and 21. The output light beam is symmetric with respect to the output chief ray 17 (optical axis).
  • the output marginal rays 19 and 21 propagate in a direction that forms a divergence angle
  • the input principal ray 11 is reflected by a dot on the mirror 3 to be a reflection type. It reaches point C of SLM5.
  • the input edge ray 13 is reflected at another point on the mirror 3 (a point between the end point A1 and the point A) and reaches one end C1 of the element reflection surface 5c of the reflection type SL M5.
  • the other input edge ray 15 is reflected at another point on the mirror 3 (a point between the end point A2 and the point A) and reaches the other end C2 of the element reflecting surface 5c of the reflective SLM5.
  • the entire input light beam is reflected by the mirror 3 to reach the reflection type SLM5 and is modulated by the reflection type SLM5.
  • the output principal ray 17 is reflected at a point B on the mirror 7.
  • the output edge ray 19 is emitted from one end C1 of the element reflecting surface 5c of the SLM 5 and reflected at a point on the mirror 7 (a point between the end point B1 and the point B).
  • the other output edge ray 21 is reflected at another point on the mirror 7 (a point between the end points B2 and B). In this way, the entire output light beam of the desired component output from the reflective SLM 5 is reflected by the mirror 7 and guided to an output side optical system (not shown).
  • FIG. 12 shows the input side reflection surface Ml
  • element reflection FIG. 6 is a straight light path diagram in which reflection on each surface of the surface 5c and the output-side reflection surface M2 is developed.
  • is the diffraction angle of the ⁇ -order diffracted light.
  • the diffraction angle ⁇ of the ⁇ -order diffracted light is given by the following equation (10).
  • d is the lattice constant of the smallest lattice pattern that can be displayed on the reflective SLM5 (the distance between the centers of adjacent stripes), and ⁇ is the wavelength of the readout light.
  • the convergence angle ex of the input light incident from the input optical system and the desired diffraction order ⁇ [In contrast, the parameters ⁇ 1, () 2, c, cl, h, al, a2, bl, b2, If L is selected to satisfy Equations (1) to (10), the input light can be effectively applied to the reflective SLM5. Furthermore, 1 ⁇ ! Obtained with reflective SLM5! ! The next-order diffracted light can be effectively output from the spatial light modulator 1.
  • the input principal ray 11 and the output principal Since both rays 17 travel along the virtual reference line 9, when the input side optical system and the output side optical system are combined with the spatial light modulator 1, both the input side optical system and the output side optical system are virtual. It can be placed on the reference line 9. Therefore, the design, assembly, and position adjustment of the entire optical system are extremely easy, and the entire optical system can be made compact.
  • a plurality of spatial light modulators 1 can be connected in multiple stages along a single virtual reference line 9.
  • the reflective SLM5 can perform arbitrary modulation on an arbitrary input light beam and can perform arbitrary optical processing.
  • the input-side reflecting surface Ml is configured by the mirror 3 and the output-side reflecting surface is configured by the mirror 7, the configuration of the entire spatial light modulator 1 is simplified.
  • the length of the mirrors 3 and 7 is determined according to the length c (effective area) of the reflective SLM 5, the entire spatial light modulator 1 can be manufactured easily and inexpensively.
  • the reflective SLM5 is difficult and expensive to manufacture compared to the mirrors 3 and 7, whereas the mirrors 3 and 7 are easy to manufacture and inexpensive.
  • the parameters ⁇ 1, 2, c, cl, h, al, a2, bl, b2, L are expressed by the following formula for the convergence angle a of the input beam incident from the input optical system and the desired value ⁇ . If selected so that 11) to (16) are satisfied, the output chief ray 17 is on the extension of the input chief ray 11 (condition 1), and all the input beams to the input side reflecting surface Ml are reflected on the input side. All the beams reflected by the surface Ml (Condition 2) and reflected by the input-side reflective surface Ml are incident on the reflective SLM5 (Condition 3) and all necessary components of the beam modulated by the reflective SLM5 Is reflected by the output-side reflecting surface M2 (condition 4). Since the element reflecting surface 5c is parallel to the virtual reference line 9, the design, assembly and adjustment of the optical system becomes easier.
  • the input-side optical system includes, for example, a pinhole (aperture) and a lens so that the reading light (input light beam) force has a convergence angle in the range of 0 to ⁇ , and the element It is possible to ensure that the light enters the reflective SLM5 with a beam diameter c equal to the length c of the reflective surface 5c. it can.
  • the input edge rays 13 and 15 are rays that have passed through the edge of the pinhole.
  • an input-side optical system causes the readout light (input light beam) to enter the spatial light modulator 1 with an arbitrary convergence angle and an arbitrary beam diameter.
  • the positional relationship among the input-side reflecting surface Ml, output-side reflecting surface M2, and element reflecting surface 5c must be set so as to satisfy Equations (1) to (8) or Equations (11) to (16).
  • Equations (1) to (8) or Equations (11) to (16) are input.
  • All of the readout light reflected by the side reflective surface Ml and reflected by the input side reflective surface Ml is incident on the reflective SLM5, modulated by the reflective SLM5, and emitted from the reflective SLM5 at an angle of 0 to ⁇ . It can be ensured that all desired components of the reading light are reflected by the output-side reflecting surface ⁇ 2.
  • the optical processing device 80 includes a light source 81, a pinhole 83, a collimating lens 82, an input surface 84, a Fourier transform lens 86, a spatial light modulator 1, a Fourier transform lens 88, and an output. It has surface 90.
  • the optical processing device 80 is a 4f optical system (Fourier transform optical system) that outputs a pattern indicating the correlation between the input image displayed on the input surface 84 and the reference image displayed on the reflective SLM 5.
  • the light source 81, the pinhole 83, the collimating lens 82, and the input surface 84 constitute the input optical system I.
  • the light source 81, the pinhole 83, and the collimating lens 82 constitute the parallel light projecting optical system R.
  • the Fourier transform lens 88 and the output surface 90 constitute the output optical system O.
  • the spatial light modulator 1 includes mirrors 3 and 7 and a reflective SLM5.
  • the reflective SLM 5 is, for example, the PAL-SLM described with reference to FIG. 7, and is also incorporated in the phase modulation module 6 described with reference to FIG. In FIG. 13, only the reflective SLM5 is shown for clarity!
  • the light source 81 is a laser and emits linearly polarized light having a predetermined wavelength as readout light.
  • the pinhole 83 and the collimating lens 82 convert the readout light into parallel light having a predetermined beam diameter. Therefore, parallel light having a predetermined beam diameter is projected onto the input surface 84.
  • the input surface 84 is provided with a device (for example, a transmissive object such as a film or a mask displaying the input image) that changes the light intensity and / or phase of the projected parallel light according to the input image. Is placed.
  • the input light (input image) modulated by the input surface 84 is Fourier-transformed by the Fourier transform lens 86 and enters the reflective SLM 5 via the mirror 3.
  • the input light is incident on the reflective SLM 5 at the convergence angle a and the beam diameter c.
  • the reflective SLM5 displays a filter pattern created based on the reference image, and modulates and outputs the input image incident on the reflective SLM5.
  • the output light is reflected by the mirror 7 and propagates along the virtual reference line 9, is Fourier transformed by the Fourier transform lens 88, and outputs a correlation pattern on the output surface 90.
  • the reflective SLM 5 is arranged at a position shifted from the virtual reference line 9 in a direction perpendicular to the virtual reference line 9.
  • Mirrors 3, 7, and reflection type SLM5 satisfy equations (11) to (16), (9), and (10) for the convergence angle ⁇ of the input light beam and the desired maximum diffraction order n. To be arranged.
  • the optical processing device 80 all of the input light output from the input optical system I is incident on the mirror 3, and all components of the light reflected by the mirror 3 are incident on the reflective SLM5. All necessary components (1 to n-order diffracted light) of the light modulated in step 4 are reflected by the mirror 7 and Fourier-transformed by the Fourier transform lens 88. Therefore, the light utilization efficiency can be increased, and the advantages of the reflective SLM5 with a high effective aperture ratio can be utilized.
  • the input optical system I and the output optical system O are arranged on the virtual reference line 9, and both the optical axis 91 of the input light and the optical axis 92 of the output light are on the virtual reference line 9. positioned.
  • the mold SLM5 is in a position that is vertically offset from the virtual reference line 9.
  • the light source 81, the pin Honoré 83, the collimating lens 82, the input surface 84, the Fourier transform lens 86, the Fourier transform lens 88, and the output surface 90 are all the virtual reference straight line 9 with respect to the virtual reference straight line 9. It is arranged in a direction that penetrates perpendicularly.
  • the input optical system I, the output optical system O, and the reflective SLM 5 are arranged in parallel or perpendicular to the single virtual reference line 9. Since the housing of the reflective SLM5 is generally a rectangular parallelepiped, it is easy to match the reflective SLM5 with the input optical system and the output optical system, and it is easy to design the entire optical processing device 80 compactly. Further, when the entire optical processing apparatus 80 is provided on the substrate, the single virtual reference straight line 9 may be set on the substrate, so that machining is facilitated. Therefore, it is easy to design and assemble the optical system.
  • the element reflection surface 5c of the reflective SLM5 is arranged so as to be parallel to the virtual reference line 9, a line parallel to the virtual reference line 9 is used as a reference for the position of the element reflection surface 5c. This makes it easier to design and assemble optical systems. Further, since the input optical system I and the output optical system O are separated from the reflective SLM 5, the optical adjustment of the input optical system I and the output optical system O may be performed on the virtual reference line 9.
  • the input surface 84, the Fourier transform lens 86, the Fourier transform lens 88, and the output surface 90 are arranged in such a direction that the virtual reference straight line 9 passes through the virtual reference straight line 9 perpendicularly to the virtual reference straight line 9, Parallel lines and vertical lines with respect to the virtual reference line 9 can be used for optical adjustment. Therefore, optical adjustment becomes easy.
  • the reflective SLM5 is moved from a position I indicated by a solid line to a position II indicated by a broken line.
  • the mirror 3 and the mirror 7 are also moved from the position indicated by the solid line to the position indicated by the broken line in a direction perpendicular to the virtual reference line 9.
  • Positional force between reflective SLM5 and mirrors 3 and 7 If the equation (12) is satisfied both before and after the movement (broken line), the optical axis 91 of the input light and the optical axis 92 of the output light Keeps on the virtual reference line 9.
  • the triangle ACB formed by the optical path A—CB before movement and the triangle A ′ C ′ B ′ formed by the optical path A′—C ′ B ′ after movement are similar to each other.
  • the length of line segment AB be length L
  • the point where the perpendicular line from point to line segment AB intersects line segment AB is point D
  • the length of line segment CD is length h.
  • the optical path length from the mirror 3 before the movement to the reflective SLM5 is A'A + AC, and after the movement is the length A'C.
  • Length A'A is (w–l) hZtan (2 (i) 1)
  • length AC is hZsin (2 (i) 1)
  • the position adjustment of the reflective SLM5 to adjust the optical path length is facilitated by moving the reflective SL M5 and the mirrors 3 and 7 in a direction perpendicular to the virtual reference line 9. It is not necessary to move the optical axes 91 and 92 related to the optical devices of the input optical system I and the output optical system O. Therefore, the position adjustment in the optical axis direction of the optical devices of the input optical system I and the output optical system O and the position adjustment in the direction perpendicular to the optical axis of the reflective SLM5 and the two mirrors 3 and 7 are performed independently of each other. It can be carried out.
  • ⁇ 3 may not be zero (0). That is, the element reflection surface 5c of the reflection type SL M5 may not be parallel to the virtual reference line 9.
  • the mirrors 3 and 7 and the reflective SLM 5 may be arranged so as to satisfy the equations (1) to (8) instead of the equations (11) to (16). Even if the angle ⁇ 3 formed by the reflective SLM5 and the virtual reference line 9 is not zero, the reflective SLM5 and the mirrors 3 and 7 are connected to the virtual reference line 9 in the same manner as described with reference to FIG. The optical path length can be adjusted simply by moving in the vertical direction.
  • the spatial light modulator 30 is the first except that a prism 32 is provided instead of the mirrors 3 and 7. This is the same as the spatial light modulation device 1 according to the first embodiment. Therefore, the spatial light modulation device 30 includes the reflective SLM 5 and the prism 32.
  • members having the same functions and configurations as those of the spatial light modulator 1 are denoted by the same reference numerals. For the sake of clarity, only the mirror layer 5b of the reflective SLM 5 is shown, and the modulation unit 5a and the address unit 5d are not shown.
  • the reflective SLM 5 is, for example, the PAL-SLM described with reference to FIG. 7, and may be incorporated in the phase modulation module 6 (FIG. 7).
  • the prism 32 is a triangular prism having a triangular cross section. Of the three surfaces SI, S2, S3 (outer surface) that make up the triangular prism, two surfaces SI, S2 are treated to increase the reflectivity. These two surfaces SI and S2 function as the input-side reflecting surface Ml and the output-side reflecting surface M2, respectively.
  • the input-side reflecting surface Ml and the output-side reflecting surface M2 are positioned on the virtual reference line 9, and the remaining one surface S3 is shifted from the virtual reference line 9 in a direction perpendicular to the virtual reference line 9. Arranged to be in the right position! Speak.
  • the input-side reflecting surface Ml reflects the input light incident along the virtual reference line 9 to the reflective SLM5.
  • the reflective SLM5 modulates and reflects the input light reflected by the input-side reflecting surface Ml.
  • the output-side reflecting surface M2 reflects the light from the reflective SLM 5 and outputs it along the virtual reference line 9.
  • the input side reflecting surface Ml, the output side reflecting surface M2, and the element reflecting surface 5c are arranged such that the end point A2 of the input side reflecting surface Ml and the end point B1 of the output side reflecting surface M2 are the same. 8 is the same as the positional relationship among the input-side reflecting surface Ml, the output-side reflecting surface M2, and the element reflecting surface 5c in the first embodiment described with reference to FIG.
  • the point where the input chief ray 11 is incident on the input side reflecting surface Ml is point A, and the chief ray of the light reflected by the input side reflecting surface Ml is incident on the reflective SLM5.
  • the point C is the point where the principal ray of the light modulated by the reflective SLM5 and reflected by the element reflecting surface 5c is incident on the output-side reflecting surface M2.
  • a straight line A—B connecting point A and point B is located on the virtual reference line 9.
  • the angle between the input-side reflecting surface Ml and the virtual reference line 9 is ⁇ 1
  • the angle between the output-side reflecting surface M2 and the virtual reference line 9 is ⁇ 2
  • the angle between the element reflecting surface 5c and the virtual reference line 9 Is defined as ⁇ 3.
  • ⁇ 1 and ⁇ 3 take positive values in the counterclockwise direction from the virtual reference line 9 in FIG. ⁇ 2 is clockwise from the virtual reference line 9 in FIG. The direction is set to a positive value. ⁇ 1, ⁇ 2 ⁇ , 0 ° ⁇ 1 ⁇ 90 °, 0. Satisfying ⁇ 2 ⁇ 90 °.
  • the length of the line segment Al— ⁇ 2 is a
  • the length of the line segment A—Al is al
  • the length of the line segment A—A2 is Let a2.
  • the length of line B1—B2 is b
  • the length of line B—B1 is bl
  • the length of line B—B2 is b2 with respect to points Bl and B2 at both ends of the output-side reflecting surface M2.
  • the length of the line segment C1 C2 (that is, the effective diameter of the reflective SLM5) is c
  • the length of the line segment C C1 is cl
  • the line segment C— C2 Let c2 be the length of.
  • the point C force is defined as point D for the foot of the perpendicular to line A—B, h for the length of perpendicular CD, and L for the length of line A—B.
  • the readout light (input light beam) is converged at a convergence angle in the range of 0 to ⁇ along the virtual reference line 9 from an input optical system (not shown). And enter. Further, it is assumed that the beam diameter when the reading light (input light beam) enters the reflective SLM 5 is equal to the length c of the element reflecting surface 5c. The readout light modulated by the reflective SLM5 and reflected by the element reflecting surface 5c is emitted from the reflective SLM5.
  • a desired component that is, a desired component desired to be output from the spatial light modulator 30
  • the input-side reflecting surface Ml, the output-side reflecting surface ⁇ 2, and the element reflecting surface 5c have the convergence angle value ⁇ and the desired divergence angle value ⁇ with the equations (1) to (8), Or, the relationship of equations (11) to (16) is satisfied.
  • the expressions (1) to (8) or the expressions (11) to (16) are obtained with respect to the convergence angle ⁇ and the desired diffraction order ⁇ .
  • the input-side reflecting surface Ml All of the incident light on the prism 32 is reflected by the input-side reflecting surface Ml, and all of the incident light reflected by the input-side reflecting surface Ml enters the reflective SLM5 as readout light, Further, all the desired components of the readout light modulated by the reflective SLM 5 are reflected by the output side reflecting surface M 2 of the prism 32. Therefore, it is possible to increase the light utilization efficiency and take advantage of the reflective SLM5 with a high effective aperture ratio.
  • the input-side reflecting surface Ml and the output-side reflecting surface M2 are provided in the single prism 32, so that the total number of parts is reduced and the configuration is further simplified. Have been deceived
  • optical processing device 60 that employs the spatial light modulation device 30 will be described with reference to FIG.
  • the optical processing device 60 is a device for performing waveform shaping.
  • the optical processing device 60 includes a laser 62, a lens 64, a pinhole 66, a collimating lens 68, a spatial light modulator 30, a Fourier transform lens 70, and an output surface 72.
  • the laser 62, the lens 64, the pinhole 66, and the collimating lens 68 constitute the input optical system I.
  • the input optical system I also functions as a parallel projection optical system R.
  • the Fourier transform lens 70 and the output surface 72 constitute an output optical system.
  • the spatial light modulator 30 has a prism 32 and a reflective SLM5.
  • the reflection type SLM5 is, for example, the PAL-SLM described with reference to FIG. 7, and is also incorporated in the phase modulation module 6 described with reference to FIG. However, in FIG. 16, only the reflection type SL M5 is shown, and the phase modulation module 6 is not shown.
  • the laser 62, the lens 64, the pin Honoré 66, the collimating lens 68, the Fourier transform lens 70, and the output surface 72 are arranged on the virtual reference line 9 together with the prism 32.
  • the reflective SLM 5 is arranged at a position that is deviated from the virtual reference line 9 in the vertical direction.
  • the laser 62 emits linearly polarized light having a predetermined wavelength as readout light.
  • the chief ray of the readout light propagates on the virtual reference line 9.
  • the lens 64, the pinhole 66, and the collimating lens 68 convert the readout light into parallel light having a predetermined beam diameter.
  • the parallel light propagates along the virtual reference line 9 and enters the input-side reflecting surface Ml of the prism 32.
  • the input-side reflecting surface Ml reflects incident parallel light toward the reflective SLM5.
  • the reflective SLM 5 is built in the phase modulation module 6 (FIG.
  • Reflective SLM 5 reflects the phase-modulated light toward the prism 32.
  • the principal ray of the phase-modulated light reflected by the output-side reflecting surface M2 propagates along the virtual reference straight line 9.
  • the Fourier transform lens 70 Fourier transforms the phase-modulated light, and forms a desired waveform pattern on the output surface 72.
  • the prism 32 and the reflective SLM 5 have the expressions (1) to (8) or the expressions (11) to (16) with respect to the convergence angle oc and the desired maximum diffraction order n. And it is arranged to satisfy (9) and (10). For this reason, all of the input light output from the input optical system I is incident on the input-side reflecting surface Ml of the prism 32, and all of the light reflected by the input-side reflecting surface Ml is incident on the reflective SLM5 for reflection. Of the light modulated by the type SLM5, all necessary components (1 to n-order diffracted light) are reflected by the output-side reflecting surface M2 of the prism 32, and Fourier-transformed by the Fourier transform lens 70. Therefore, the light utilization efficiency can be increased, and the advantages of the reflective SLM5 with a high effective aperture ratio can be utilized.
  • the input optical system I and the output optical system O are arranged on the virtual reference line 9 in the same manner as the optical processing device 80 in the first embodiment described with reference to FIG.
  • the optical axis of the input light and the optical axis of the output light are both located on the virtual reference line 9.
  • the reflection type SLM5 is at a position deviated from the virtual reference line 9 in the vertical direction.
  • Laser 62, lens 64, pinhole 66, collimator lens 68, Fourier transform lens 70, output surface 72 forces are all arranged so that the virtual reference line 9 is perpendicular to and passes through the virtual reference line 9. ing. Therefore, like the optical processing device 80, the design, assembly, and adjustment of the optical system are easy, and the entire optical system can be made compact. However, since the spatial light modulator 30 uses the prism 32, the number of parts is reduced and the configuration is simpler.
  • the optical processing device 100 is the first embodiment described with reference to FIG. 13, except that the spatial light modulator 30 is used instead of the spatial light modulator 1 of the first embodiment.
  • This is substantially the same as the optical processing device 80 of the embodiment. That is, the light source 81, the pinhole 83, the collimating lens 82, the input surface 84, and the Fourier transform lens 86 constitute the input optical system I.
  • light The source 81, the pinhole 83, and the collimating lens 82 constitute a parallel light projection optical system R.
  • the Fourier transform lens 88 and the output surface 90 constitute the output optical system O.
  • the distance between the input surface 84 and the Fourier transform lens 86 and the distance through the prism 3 2 between the Fourier transform lens 86 and the element reflecting surface 5c are the focal length (length fl) of the Fourier transform lens 86. Is set equal to.
  • the distance between the element reflecting surface 5c and the Fourier transform lens 88 via the prism 32 and the distance between the Fourier transform lens 88 and the output surface 90 are the focal length (length) of the Fourier transform lens 88. It is set equal to f2).
  • the readout light (input light beam) is Fourier transformed by the Fourier transform lens 86, reflected by the prism 32, and incident on the reflective SLM5 at a convergence angle ⁇ and a beam diameter c.
  • the optical processing apparatus 100 having such a configuration performs a correlation operation between the input image displayed on the input surface 84 and the reference image displayed on the reflective SLM 5.
  • the reflective SLM5 is, for example, the PAL-SLM described with reference to FIG. 7, and is also incorporated in the phase modulation module 6 described with reference to FIG. However, in FIG. 17, only the reflection type SLM5 is shown, and the phase modulation module 6 is not shown.
  • the prism 32 and the reflective SLM5 have the expressions (1) to (8) or the expressions (11) to (16) with respect to the convergence angle oc and the desired maximum diffraction order n. And they are arranged to satisfy (9) and (10). Therefore, according to the optical processing device 100, the same effect as that of the optical processing device 80 can be obtained, and the force can be reduced by adopting the prism 32 in the spatial light modulation device 30. Has been simplified.
  • the optical processing apparatus 200 includes a spatial light modulator 30 (hereinafter referred to as a second spatial light) between the Fourier transform lens 86 and the Fourier transform lens 88. Modulation device 30-2).
  • the optical processing device 200 further includes another spatial light modulator 30 (hereinafter referred to as a first spatial light modulator 30-1) between the collimating lens 82 and the Fourier transform lens 86 instead of the input surface 84. Is provided).
  • Both the first spatial light modulation device 30-1 and the second spatial light modulation device 30-2 have the same configuration as the spatial light modulation device 30 described with reference to FIG.
  • the device 30-1 includes a reflective SLM5 (hereinafter referred to as a first reflective SLM5-1) and a prism 32 (hereinafter referred to as a first prism 32-1).
  • the reflective SLM5-1 is displaced from the virtual reference straight line 9 in a direction perpendicular to the virtual reference straight line 9.
  • the input side reflection surface Ml and the output side reflection surface M2 of the prism 32-1 are arranged on the virtual reference line 9.
  • the second spatial light modulator 30-2 includes a reflective SLM5 (hereinafter referred to as a second reflective SLM5-2) and a prism 32 (hereinafter referred to as a second prism 32-2).
  • the reflective SLM5-2—2 is shifted from the virtual reference line 9 in a direction perpendicular to the virtual reference line 9, and the input-side reflecting surface Ml and output-side reflecting surface M2 of the prism 32-2 are on the virtual reference line 9. Is arranged.
  • the light source 81, the pinhole 83, the collimating lens 82, and the element reflection surface 5c of the reflection type SLM5-1 of the first spatial light modulation device 30-1 constitute the input optical system I.
  • the light source 81, the pinhole 83, and the collimating lens 82 constitute a parallel light projecting optical system R.
  • the Fourier transform lens 88 and the output surface 90 constitute an output optical system O.
  • the distance between the reflecting surface 5c of the reflective SLM5-1 and the Fourier transform lens 86 via the prism 32-1 and the prism 32 between the Fourier transform lens 86 and the reflecting surface 5c of the reflective SLM5-2-2 The distance through 2 is set equal to the focal length (length fl) of the Fourier transform lens 86.
  • the distance through the prism 3 2-2 between the reflection surface 5c of the reflective SLM5-2—2 and the Fourier transform lens 88 and the distance between the Fourier transform lens 88 and the output surface 90 are the Fourier transform lens 88. Is set equal to the focal length (length f 2).
  • the reflection type SLMs 5-1 and 5-2 are both PAL-SLMs described with reference to FIG. 7, for example, and are incorporated in the phase modulation module 6 described with reference to FIG. In FIG. 18, for the sake of clarity, only the reflective SLMs 5-1 and 5-2 are shown, and the phase modulation module 6 is not shown.
  • the reflective SLM5-1 displays the filter pattern created from the input image, phase-modulates the parallel light from the collimating lens 82, and outputs the input image.
  • the reflection type SLM5-2 displays the filter pattern created based on the reference image. Like the optical processing apparatus 100, the optical processing apparatus 200 having a powerful configuration performs correlation calculation between the input image and the reference image.
  • the 1st to ⁇ th order diffracted light emitted from the reflective SLM5-1 is Fourier transformed by the Fourier transform lens 86, reflected by the prism 32-2, and reflected by the beam diameter convergence angle oc. Incident on 5-2.
  • the prism 32-2 and the reflective SLM5-2 have the following formulas (1) to (8) or (11) to (16) and (9) for the convergence angle ⁇ and the desired maximum diffraction order ⁇ . It is arranged to satisfy (10).
  • the optical processing device 200 can achieve the same effect as the optical processing device 100 and can easily generate an arbitrary input image by the first spatial light modulation device 30-1. Even if the two spatial light modulators 30 are connected in multiple stages, the optical axes related to the collimating lens 82, the Fourier transform lens 86, and the Fourier transform lens 88 all extend on a single virtual reference line 9. It is easy to design, assemble and adjust the optical system.
  • the optical processing device 300 is an example of a wavefront compensation optical system that forms a wavefront having a uniform wavefront or a desired phase distribution by compensating for distortion of an input wavefront.
  • the optical processing device 300 is combined with a beam control optical system used in an optical measurement optical system, a laser processing optical system, an optical manipulation, and the like, and is used to remove those aberrations.
  • the optical processing device 300 includes a light source 81, a pinhole 83, a collimating lens 82, an input surface 302, a relay lens system including a lens 304 and a lens 306, a spatial light modulator 30, a lens 308, and a lens 310. It has a relay lens system, a beam sampler 312, a wavefront sensor 314, a control device 316, and an output surface 318.
  • the spatial light modulator 30 includes a reflective SLM 5 and a prism 32.
  • the reflective SLM 5 is the PAL-SLM described with reference to FIG. 7, and is also incorporated in the phase modulation module 6 described with reference to FIG. In FIG. 19, for the sake of clarity, only the reflective SLM 5 is shown among the internal components of the phase modulation module 6 and the other components are not shown.
  • the light source 81, the pinhole 83, the collimating lens 82, the input surface 302, the lens 304, and the lens 306 constitute an input optical system I.
  • light source 81, pinhole 83, and The reme lens 82 constitutes a parallel light projecting optical system R.
  • the lens 308, the lens 310, the beam sampler 312 and the output surface 318 constitute an output optical system O.
  • Light source 81, pinhole 83, collimating lens 82, input surface 302, lens 304, lens 306, prism 32, lenses 308, 310, beam sampler 312 and output surface 318 are arranged on virtual reference line 9. .
  • the beam sampler 312 also has a mirror force that is arranged at an angle of 45 degrees with respect to the virtual reference line 9.
  • the reflective SLM 5 and the control device 316 are provided at positions shifted from the virtual reference line 9 in a direction perpendicular to the virtual reference line 9.
  • the input surface 302, the output surface 318, the reflection type SLM5, and the wavefront sensor 314 are formed by the lenses 30 4, 306, 308, 310.
  • the relay lens system composed of the lens 304 and the lens 306 and the relay lens system composed of the lens 308 and the lens 310 transmit the image as it is in the f row.
  • the light source 81 is a laser and emits linearly polarized light (reading light) having a predetermined wavelength, and the pinhole 83 and the collimating lens 82 convert the reading light into substantially parallel light having a predetermined beam diameter.
  • the substantially parallel light is incident on the input surface 302 via an optical medium (not shown) such as a measurement target object or the atmosphere that causes the wavefront to be distorted.
  • the light beam incident on the input surface 302 has distortion due to the optical medium. This light beam passes through the lens 304 and the lens 306, is reflected by the prism 32, and forms an image on the reflective SLM5.
  • the light that has been phase-modulated and reflected by the reflective SLM 5 is reflected by the prism 32, passes through the lens 308 and the lens 310, and forms an image on the output surface 318.
  • a part of the light transmitted through the lens 310 is sampled by the beam sampler 312 disposed behind the lens 310 and is incident on the wavefront sensor 314.
  • the wavefront sensor 314 measures the distortion of the incident beam wavefront, feeds back a signal for correcting the distortion to the LCD 530 (FIG. 7) in the phase modulation module 6 via the control device 316, and performs wavefront compensation.
  • a condensing optical system (not shown) is disposed after the output surface 318, and irradiates light to the sensor, the object to be processed, or the object to be processed.
  • the prism 32 and the reflective SLM5 satisfy the expressions (1) to (8) or the expressions (11) to (16) and the expressions (9) and (10). Is arranged.
  • a is set to a value larger than the maximum amount of distortion that can be compensated by the reflective SLM5.
  • the ⁇ is set to a value larger than the allowable residual.
  • the optical path can be bent vertically by the beam sampler 312, the design of the optical system is simplified. Further, since the optical path extends in a direction parallel to or perpendicular to the virtual reference line 9 that is not oblique, consistency with the casing of the phase modulation module 6 or the wavefront sensor 314 that is generally a rectangular parallelepiped. However, it is easy to compact the entire optical processing apparatus 300. In addition, since the prism 32 is used, the total number of parts is reduced and the configuration can be made more compact.
  • the optical path from the input surface 302 to the output surface 318 is arranged on the virtual reference straight line 9, and the spatial light modulator 30 is inserted on this optical path. For this reason, the optical adjustment becomes easy as in the optical processing apparatuses 60, 100, 200 described above.
  • the optical components other than the spatial light modulator 30 may be optically adjusted, and then the spatial light modulator 30 may be inserted and adjusted.
  • the optical processing device 300 may not have the configuration described with reference to FIG. 19 as long as it includes the spatial light modulation device 30 and realizes wavefront compensation.
  • the light source 81 may be a laser, but may not be a laser as long as spatial coherence is high and can be regarded as a point light source.
  • the beam sampler 312 may not be disposed behind the lens 310. The beam sampler 312 can be disposed at an arbitrary position on the rear side of the output-side reflecting surface M2 and on the front side of the output surface 318.
  • an enlargement relay lens system having an image enlargement function and a reduction relay having an image reduction function A functional optical system having an arbitrary function such as a lens system or a dichroic mirror having a function of separating light for each wavelength may be inserted. Further, the reflection type SLM5 and the wavefront sensor 314 may not be in an imaging relationship.
  • a spatial light modulation device 40 that works on the third embodiment will be described with reference to FIG.
  • the spatial light modulation device 40 is the same as the spatial light modulation device 30 according to the second embodiment, except that the prism 42 is employed instead of the prism 32. Therefore, the spatial light modulation device 40 includes the reflective SLM 5 and the prism 42.
  • members having the same functions and configurations as those of the spatial light modulation device 30 according to the second embodiment are denoted by the same reference numerals.
  • the mirror layer 5b is shown in the reflective SLM 5, and the modulation unit 5a and the address unit 5d are not shown.
  • the reflective SLM 5 is, for example, the PAL-SLM described with reference to FIG. 7, and may be incorporated in the phase modulation module 6 (FIG. 7).
  • the prism 42 is a quadrangular prism with a trapezoidal cross section. More specifically, the prism 42 has a trapezoidal cross section formed by cutting off the apex portion of the triangular cross section of the prism 32. Of the four surfaces SI, S2, S3, and S4 (outer surface) that make up the quadrangular prism, the two inclined surfaces SI and S2 that correspond to the hypotenuse of the trapezoidal cross section are treated to increase the reflectivity. For this reason, Sl and S2 function as the input side reflection surface Ml and the output side reflection surface M2.
  • the input-side reflecting surface Ml and the output-side reflecting surface M2 are located on the virtual reference line 9, and the remaining two surfaces corresponding to the lower and upper bases of the trapezoidal cross section (bottom surface S3, upper surface S4) Are arranged so as to sandwich the virtual reference line 9.
  • the input-side reflecting surface Ml reflects the input light incident along the virtual reference line 9 to the reflective SLM5.
  • the reflective SLM5 modulates and reflects the input light reflected by the input-side reflection surface Ml.
  • the output-side reflecting surface M2 reflects the light from the reflective SLM5 and outputs it along the 9th virtual reference line.
  • the readout light (input light beam) is converged at a convergence angle in the range of 0 to ⁇ along the virtual reference line 9 from an input optical system (not shown). And enter. Further, it is assumed that the beam diameter when the reading light (input light beam) enters the reflective SLM 5 is equal to the length c of the element reflecting surface 5c. The readout light modulated by the reflective SLM5 and reflected by the element reflecting surface 5c is emitted from the reflective SLM5. Of the readout light, a desired component (that is, a desired component to be output from the spatial light modulator 40) is obtained.
  • the input side reflecting surface Ml, the output side reflecting surface ⁇ 2 and the element reflecting surface 5c are arranged so that the end point A2 of the input side reflecting surface Ml and the end point B1 of the output side reflecting surface M2 are separated from each other. Is the same as the prism 32 of the second embodiment. That is, the input-side reflecting surface Ml, the output-side reflecting surface M2, and the element reflecting surface 5c are expressed by equations (1) to (8) or (11) with respect to the convergence angle value ⁇ and the desired value j8. ) To (16) are satisfied.
  • equations (1) to (8) or equations (11) to (16) are applied to the convergence angle value ⁇ and the desired diffraction order n. And the relations of the expressions (9) and (10) are satisfied.
  • the spatial light modulation device 40 of the present embodiment has the same effects as the spatial light modulation device 30 of the second embodiment and the spatial light modulation device 1 of the first embodiment. Therefore, the spatial light modulator 40 may be provided in place of the spatial light modulator 30 in the optical processing devices 60, 100, 200, 300 described with reference to FIGS. Further, in the optical processing device 80 described with reference to FIG. 13, a spatial light modulation device 40 may be provided instead of the spatial light modulation device 1.
  • the spatial light modulation device 40 can perform vertical readout in addition to the oblique readout via the input-side reflection surface Ml and the output-side reflection surface M2. That is, as indicated by an arrow V, light is incident perpendicularly to the bottom surface S3 of the prism 42. Then, the light passes through the prism 42, exits vertically from the upper surface S4, and enters the reflection type SLM5 perpendicularly.
  • the light modulated and reflected by the reflective SLM 5 is incident on the upper surface S4 of the prism 42 perpendicularly, is transmitted again through the prism 42, and is emitted perpendicularly from the bottom surface S3.
  • the incident light and the outgoing light travel perpendicular to the bottom surface S3 and the top surface S4 of the prism 42, they are efficiently transmitted through the prism 42 without being reflected by the bottom surface S3 and the top surface S4 of the prism 42.
  • Spatial light modulator 50 employs coupling prism 52 instead of prism 32
  • the spatial light modulation device 30 is the same as that of the second embodiment described with reference to FIG. 15 except that the coupling prism 52 is joined to the reflective SLM 5. Accordingly, the spatial light modulation device 50 includes a reflective SLM 5 and a coupling prism 52 joined to the reflective SLM 5.
  • the members having the same functions and configurations as those of the spatial light modulation device 30 that are useful for the second embodiment are denoted by the same reference numerals.
  • the reflective SL M5 is, for example, the PAL-SLM described with reference to FIG. 7, and may be incorporated in the phase modulation module 6 (FIG. 7).
  • the coupling prism 52 is a pentagonal prism.
  • the coupling prism 52 has five faces 54, 55, 56, 57, 58! Face 54 faces face 58! / Surface 54 and surface 58 extend parallel to each other.
  • Surface 56 is opposite to surface 55 and surface 57.
  • the angle (inner angle) formed by surface 54 and surface 56 is 90 °.
  • the angle (inner angle) formed by surface 56 and surface 58 is also 90 °.
  • the angle (inner angle) formed by surface 54 and surface 55 is 90 ° — ⁇ 1.
  • the angle (inner angle) formed by surface 57 and surface 58 is 90 ° - ⁇ 2.
  • the angle (inner angle) formed by surface 55 and surface 57 is 180 ° + ( ⁇ 1 + ⁇ 2).
  • ⁇ 1 and ⁇ 2 are 0 ° (90 ° — ⁇ 1) 90 °, 0 ° (90 ° — ⁇ 2) 90 °, and 180 ° ⁇ 180 ° + (1 + 2) ⁇ ⁇ 360 ° is satisfied.
  • the surface 56 is bonded to the outer surface of the modulation portion 5a of the reflective SLM5.
  • the reflective SLM5 is the PAL-SLM described with reference to FIG. 7, the surface 56 is bonded to the transparent substrate 502 of the reflective SLM5.
  • the element reflecting surface 5c extends parallel to the surface 56.
  • the coupling prism 52 is arranged in the direction shown in FIG. 21 with respect to the virtual reference straight line 9. That is, the virtual reference line 9 passes through the surface 54 and the surface 58. Surface 54 and surface 58 extend perpendicular to the virtual reference line 9.
  • the plane 56 extends parallel to the virtual reference line 9 at a position shifted from the virtual reference line 9 in a direction perpendicular to the virtual reference line 9. Therefore, the element reflection surface 5c also extends parallel to the virtual reference line 9 at a position shifted from the virtual reference line 9 in a direction perpendicular to the virtual reference line 9.
  • the surface 55 extends obliquely with respect to the virtual reference line 9.
  • the surface 57 also extends obliquely with respect to the virtual reference line 9.
  • the surface 55 extends in a direction that forms an angle ⁇ 1 with respect to the virtual reference line 9.
  • the surface 57 extends in a direction that forms an angle ⁇ 2 with respect to the virtual reference straight line 9.
  • ⁇ 1 takes a positive value counterclockwise from the virtual reference line 9 in FIG.
  • ⁇ 2 takes a positive value in the clockwise direction from the virtual reference straight line 9 in FIG.
  • ⁇ 1 and ⁇ 2 satisfy 0 ° and ⁇ 1 and 90 °, and 0 ° and ⁇ 2 and 90 °.
  • the angle ⁇ 1 and the angle ⁇ 2 are values that satisfy the condition of total reflection with respect to the refractive index m of the material constituting the coupling prism 52.
  • the surface 54 functions as the input-side transmission surface P1, the surface 56 functions as the bonding transmission surface P2, and the surface 58 functions as the output-side transmission surface P3.
  • the inner surface of the surface 55 functions as the input side reflection surface Ml, and the inner surface of the surface 57 functions as the output side reflection surface M2.
  • the readout light that has propagated along the virtual reference straight line 9 passes through the input side transmission surface P 1 and is guided into the coupling prism 52.
  • the readout light propagates inside the coupling prism 52 and is totally reflected by the input-side reflection surface Ml, further propagates inside the coupling prism 52, passes through the junction transmission surface P2, and reaches the reflection type SLM5. To do.
  • the readout light modulated by the modulation unit 5 a and reflected by the element reflection surface 5 c is transmitted again through the cemented transmission surface P 2 and guided into the coupling prism 52.
  • the readout light propagates inside the coupling prism 52 and is totally reflected by the output-side reflecting surface M2, further propagates inside the coupling prism 52, passes through the output-side transmitting surface P3, and is transmitted from the coupling prism 52. Output and propagate along virtual reference line 9
  • the end point A2 of the input-side reflecting surface Ml and the end point B1 of the output-side reflecting surface M2 are the same as in the prism 32 of the second embodiment described with reference to FIG. I'm doing it.
  • the positional relationship among the input side reflection surface Ml, the output side reflection surface M2, and the element reflection surface 5c is that the end point A2 of the input side reflection surface Ml and the end point B1 of the output side reflection surface M2 match.
  • the arrangement relationship between the input side reflection surface Ml, the output side reflection surface M2, and the element reflection surface 5c in the first embodiment described with reference to FIG. 8 is the same.
  • the point where the input chief ray 11 is incident on the input side reflecting surface Ml is point A, and the chief ray of the light reflected by the input side reflecting surface Ml is incident on the reflective SLM5.
  • the point C is the point where the principal ray of the light modulated by the reflective SLM5 and reflected by the element reflecting surface 5c is incident on the output-side reflecting surface M2.
  • a straight line A—B connecting point A and point B is located on the virtual reference line 9.
  • the angle between the input-side reflecting surface Ml and the virtual reference line 9 is ⁇ 1 (0 to ⁇ 1 to 90 °), and the angle between the output-side reflecting surface M2 and the virtual reference line 9 is ⁇ 2 (0 ⁇ 2 ⁇ 90 °) is there.
  • the length of the line segment Al—A2 is a
  • the length of the line segment A—A1 is al
  • the length of the line segment A—A2 is Let a2.
  • the length of line segment B1—B2 is b
  • the length of line segment B—B1 is bl
  • the length of line segment B—B2 is b2.
  • the length of the line segment C1-C2 (that is, the effective aperture of the reflective SLM5) is c
  • the length of the line segment C—C1 is cl
  • the line segment C — Let C2 be the length of C2.
  • D be the leg of the perpendicular line from the dotted line to line segment A—B
  • h be the length of perpendicular line C – D
  • the readout light (input light beam) is in the range of 0 to ⁇ from the input optical system (not shown) along the virtual reference straight line 9.
  • the beam diameter when the reading light (input light beam) enters the reflective SLM 5 is equal to the length c of the element reflecting surface 5c.
  • the readout light modulated by the reflective SLM5 and reflected by the element reflection surface 5c is emitted from the reflective SLM5.
  • a desired component that is, a desired component desired to be output from the spatial light modulator 50
  • the input-side reflecting surface Ml, the output-side reflecting surface M2, and the element reflecting surface 5c are expressed by equations (11) to (11) with respect to the convergence angle value ex and the desired divergence angle value ⁇ .
  • is replaced with a Zm
  • is replaced with ⁇ Zm
  • is replaced with Zm (16) (where m is the refractive index of coupling prism 52) Yes.
  • the desired ingredient is 1 ⁇ ! !
  • the input-side reflecting surface Ml, the output-side reflecting surface M2, and the element reflecting surface 5c are expressed by equations (1 ⁇ ) to (16 ') for the convergence angle value ⁇ and the desired diffraction order n And (9 ') and (1 ( ⁇ ) are satisfied.
  • the equations (9 ⁇ and ( ⁇ ') are
  • the input principal ray 11 and the output principal ray 17 are both located on the virtual reference line 9, and all the incident light to the prism 52 is on the input side. All of the incident light reflected by the reflective surface Ml and reflected by the input-side reflective surface Ml enters the reflective SLM5 as readout light, and all the desired components of the readout light modulated by the reflective SLM5 are prisms. Reflected by 52 output-side reflecting surfaces M2. Therefore, according to the spatial light modulation device 50, the same effect as the spatial light modulation device 30 of the second embodiment and the spatial light modulation device 1 of the first embodiment can be obtained.
  • the spatial light modulator 50 may be provided in place of the spatial light modulator 30 in the optical processing devices 60, 100, 200, and 300 described with reference to FIGS. Further, in the optical processing device 80 described with reference to FIG. 13, the spatial light modulator 50 may be provided instead of the spatial light modulator 1.
  • the input-side reflecting surface Ml and the output-side reflecting surface M2 are provided at a predetermined angle for total reflection, the input-side reflecting surface Ml and the output-side reflecting surface M2 have improved reflectivity. There is no need to apply a process for this. Since the input-side transmission surface P1 and the output-side transmission surface P3 are orthogonal to the virtual reference line 9, stray light is not generated in the coupling prism 52.
  • the spatial light modulation device 50 when adjusting the optical path length, the coupling prism 52 and the reflective SLM 5 are moved together in a direction perpendicular to the virtual reference straight line 9. The optical adjustment is very easy. At this time, the input side transmission surface Pl, the input side reflection surface Ml, the output side reflection surface M2, and the output side transmission surface P3 may be made large in advance so that all necessary components are transmitted or reflected after movement. .
  • the angle ⁇ 1 formed between the input-side reflecting surface Ml and the virtual reference line 9 and the angle ⁇ 2 formed between the output-side reflecting surface M2 and the virtual reference line 9 are values that satisfy the condition of total reflection. It doesn't have to be. In that case, the input-side reflecting surface Ml (the inner surface of the surface 55) and the output-side reflecting surface M2 (the inner surface of the surface 57) may be subjected to a process for increasing the reflectance.
  • ⁇ 3 does not have to be zero (0).
  • the input-side reflecting surface Ml, the output-side reflecting surface M2, and the element reflecting surface 5c are expressed by ⁇ in the equations (1) to (8) with respect to the convergence angle value ex and the desired value ⁇ . If we are satisfied with the formula that replaces a with Zm, replaces ⁇ with ⁇ Zm, and replaces ⁇ with Zm.
  • the desired ingredient is 1 ⁇ !
  • the input-side reflecting surface Ml, the output-side reflecting surface ⁇ 2, and the element reflecting surface 5c are expressed by equations ( ⁇ ) to (8 ⁇ ) with respect to the convergence angle value ⁇ and the desired diffraction order n. As long as the expressions (9, (1CT) are satisfied.
  • any of the spatial light modulators 1, 30, 40, and 50 can be applied to the optical processing devices 60, 80, 100, 200, and 300. If each of the spatial light modulators 1, 30, 40, 50 is combined with an arbitrary input optical system and an arbitrary output optical system, it is possible to perform an arbitrary process on an arbitrary light including arbitrary information.
  • the reflective SLM5 of the above embodiment may not be a PAL-SLM.
  • the reflective SLM5 can be composed of any reflective spatial light modulator.
  • the reflection type SL M5 may be a liquid crystal type or a non-liquid crystal type.
  • the reflective SLM5 may be an optical address type or an electric address type.
  • the reflective SLM5 is a phase shifter that modulates the phase of the readout light.
  • An intensity modulation type that modulates the intensity of the readout light, which is good with the adjustment type, or a complex amplitude modulation type that modulates both the phase and the intensity of the readout light may be used.
  • Equation (9) (or Equations (1 ') to (8') or Equations (11 ') to (16') and Equation (9 ')) are satisfied, and Equation (4) ⁇ (7) or formula (14) ⁇ (16) (or formula (4 ') ⁇ (7') or formula (14 ') ⁇ (16')) Effectively irradiates the reflected SLM5 with the input light and effectively outputs the necessary diffracted light from the spatial light modulators 1, 30, 40, 50, while generating unnecessary diffracted light to the spatial light modulators 1, 30, 40, You can make it not output from 50.
  • the modulator 5a when the reflective SLM 5 is composed of a reflective spatial light modulator using a nonlinear optical crystal, the modulator 5a includes the nonlinear optical crystal.
  • the mirror layer 5b reflects and modulates the readout light by changing the shape of the element reflection surface 5c.
  • the mirror layer 5b itself also serves as the modulation unit 5a. Therefore, when the reflective SLM5 also has variable mirror force, as shown in FIG. 22, the reflective surface 5c of the reflective SLM5 is exposed to the outside and faces the input-side reflective surface Ml and the output-side reflective surface M2. .
  • a spatial light modulation device, an optical processing device, a coupling prism, and a method of using the coupling prism according to the present invention include a wavefront compensation system, a pattern formation system, a holography system, a 3D display system, and an optical information processing system. It can be widely used for various optical processing systems.

Abstract

Mirrors (3, 7) are arranged on a vertical reference straight line (9), and a reflection type SLM (5) is arranged at a position deviated in a vertical direction from the vertical reference straight line (9). Input light inputted along the vertical reference straight line (9) is reflected by the mirror (3) and enters the reflection type SLM (5). The light modulated by the reflection type SLM (5) and reflected by an element reflecting plane (5c) is reflected by the mirror (7) and is outputted as the vertical reference straight line (9).

Description

空間光変調装置、光学処理装置、カップリングプリズム、及び、カップリン グプリズムの使用方法  Spatial light modulator, optical processor, coupling prism, and method of using the coupling prism
技術分野  Technical field
[0001] 本発明は空間光変調装置、光学処理装置、カップリングプリズム、及び、カップリン グプリズムの使用方法に関する。 背景技術  The present invention relates to a spatial light modulator, an optical processing device, a coupling prism, and a method for using the coupling prism. Background art
[0002] ディスプレイにお 、て、ホログラムカラーフィルター付きの反射型空間光変調素子( 以下、反射型 SLMという)に対しカップリングプリズムにより入射光を斜めに入射させ たり(例えば、特許文献 1参照)、裏面側に反射ホログラムが配置された透過型空間 光変調素子 SLM (以下、透過型 SLMという)に対しプリズムにより斜め読み出しを行 つたり(例えば、特許文献 2参照)、複数の色フィルターからなるカラーホイールに対し 反射ミラーにより斜め読み出しを行う(例えば、特許文献 3参照)ことが提案されている 。ここで、反射型 SLMとは、素子反射面を有し入射光を反射させて用いる空間光変 調素子(以下 SLMという)である。一方、透過型 SLMとは、入射光を透過させて用い る SLMである。  In a display, incident light is obliquely incident on a reflective spatial light modulator (hereinafter referred to as a reflective SLM) with a hologram color filter by a coupling prism (for example, see Patent Document 1). The transmissive spatial light modulator SLM (hereinafter referred to as transmissive SLM) having a reflection hologram disposed on the back side is read obliquely by a prism (see, for example, Patent Document 2), or is composed of a plurality of color filters. It has been proposed that oblique reading is performed with respect to a color wheel by a reflecting mirror (see, for example, Patent Document 3). Here, the reflection type SLM is a spatial light modulation element (hereinafter referred to as SLM) that has an element reflection surface and reflects incident light. On the other hand, a transmissive SLM is an SLM that transmits incident light.
[0003] し力しながら、特許文献 1〜3に記載された装置は、 、ずれも、ディスプレイであるた め、平行光もしくは球面波のように情報を含まない単なる照明光のみならず、収差も しくは情報を含んだ光 (回折成分を含む光)等任意の光に対し、位相変調や振幅変 調等の任意の処理を行うことはできな 、。  [0003] However, since the devices described in Patent Documents 1 to 3 are displays, the deviation is not only simple illumination light that does not contain information such as parallel light or spherical waves, but also aberrations. Or, arbitrary processing such as phase modulation and amplitude modulation cannot be performed on arbitrary light such as light containing information (light including diffraction components).
[0004] 一方、 SLMを用い、任意の光に対し、任意の位相変調もしくは振幅変調を施すこと ができる光学処理装置として、例えば、波面補償システム、パターン形成システム、ホ ログラフィシステム、 3D表示ディスプレイシステム、光情報処理システム等が知られて いる。  [0004] On the other hand, as an optical processing apparatus capable of performing arbitrary phase modulation or amplitude modulation on arbitrary light using SLM, for example, a wavefront compensation system, a pattern forming system, a holography system, a 3D display Systems, optical information processing systems, etc. are known.
[0005] 例えば図 1に示すパターン形成光学系 600では、レーザ 602からの出力光は、レン ズ 603とピンホール 605と力らなるスペイシャルフィルタ 604、及び、コリメートレンズ 6 06を介して所望のビーム径の平行光に変換され、読み出し光として反射型 SLM60 8に斜めに入射する。反射型 SLM608は所定のホログラム画像を表示する。読み出 し光は、反射型 SLM608にて位相変調され素子反射面にて斜めに反射されて、反 射型 SLM608から出射する。読み出し光はフーリエ変換レンズ 610にてフーリエ変 換されて、所望のパターンを出力面 612上に形成する (例えば、特許文献 4参照)。こ こで、反射型 SLMは、透過型 SLMよりも有効開口率が高く光のロスが少ない。 For example, in the pattern forming optical system 600 shown in FIG. 1, the output light from the laser 602 passes through a lens 603, a pinhole 605, a spatial filter 604 powered by a force, and a collimating lens 6 06. It is converted into parallel light of the beam diameter and reflected as readout light SLM60 Incident on 8 at an angle. The reflective SLM608 displays a predetermined hologram image. The readout light is phase-modulated by the reflective SLM608, reflected obliquely by the element reflection surface, and emitted from the reflective SLM608. The readout light is Fourier transformed by the Fourier transform lens 610 to form a desired pattern on the output surface 612 (see, for example, Patent Document 4). Here, the reflective SLM has a higher effective aperture ratio and less light loss than the transmissive SLM.
[0006] また、図 2に示す 4f光学系 620では、入力面 622と出力面 630との間に、プリズム 6 24、フーリエ変換レンズ 626、及び、反射型 SLM628が配置されている。入力面 62 2を出た読み出し光は、プリズム 624の斜面によって反射されフーリエ変換レンズ 62 6に導かれる。読み出し光は、フーリエ変換レンズ 626を通過した後、反射型 SLM6 28に斜めに入射する。読み出し光は、反射型 SLM628で変調され素子反射面にて 反射される。その後、読み出し光は、再びフーリエ変換レンズ 626を通過し、プリズム 624の反対側の斜面で反射されて、出力面 630に結像する。このように、一つのフー リエ変換レンズ 626は、入射側のフーリエ変換と出射側のフーリエ変換との 2つの機 能を有している(例えば、特許文献 4参照)。 In the 4f optical system 620 shown in FIG. 2, a prism 624, a Fourier transform lens 626, and a reflective SLM 628 are disposed between the input surface 622 and the output surface 630. The readout light that has exited the input surface 622 is reflected by the slope of the prism 624 and guided to the Fourier transform lens 626. The readout light passes through the Fourier transform lens 626 and then enters the reflective SLM 628 obliquely. The readout light is modulated by the reflective SLM628 and reflected by the element reflection surface. Thereafter, the readout light passes through the Fourier transform lens 626 again, is reflected by the slope on the opposite side of the prism 624, and forms an image on the output surface 630. As described above, one Fourier transform lens 626 has two functions of Fourier transform on the incident side and Fourier transform on the output side (see, for example, Patent Document 4).
特許文献 1:特開平 11— 194330号公報 (第 4― 5頁、第 1図)  Patent Document 1: JP-A-11-194330 (Pages 4-5, Fig. 1)
特許文献 2 :特開 2002— 517781号公報 (第 16— 18頁、第 5図)  Patent Document 2: JP 2002-517781 A (Pages 16-18, Fig. 5)
特許文献 3:特開 2001—4930号公報 (第 4— 6頁、第 1図)  Patent Document 3: Japanese Patent Laid-Open No. 2001-4930 (Pages 4-6, Fig. 1)
特許文献 4:特開 2000— 171824号公報 (第 3— 4頁、第 3、 7図)  Patent Document 4: Japanese Patent Laid-Open No. 2000-171824 (Pages 3-4, Figures 3 and 7)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、図 1を参照して説明したパターン形成光学系 600では、光軸が反射 型 SLM608で斜めに屈曲している。そのために光学系の設計、組立、調整が難しい 。また、パターン形成光学系 600を矩形基板上に構築しょうとすると、基板の面積が 大きくなり、小型化が難しい。  However, in the pattern forming optical system 600 described with reference to FIG. 1, the optical axis is bent obliquely by the reflective SLM608. This makes it difficult to design, assemble and adjust the optical system. In addition, if the pattern forming optical system 600 is constructed on a rectangular substrate, the area of the substrate becomes large and it is difficult to reduce the size.
[0008] 図 2を参照して説明した 4f光学系 620では、入射光と出射光の両方が、フーリエ変 換レンズ 626の周辺部を通ることになり、軸外収差の悪影響が大きくなる。またフーリ ェ変換レンズ 626の径が大きくなるため、レンズ設計'製造等が困難である。逆にフ 一リエ変換レンズ 626の径を小さくすると、有効ビーム径を小さくせざるを得ない。さら に入射光と出射光とを十分に分離させるためには、フーリエ変換レンズ 626の焦点距 離を長くしなければならない。し力も、入射側と出射側のフーリエ変換レンズの焦点 距離を異ならせることができな 、。 In the 4f optical system 620 described with reference to FIG. 2, both incident light and outgoing light pass through the peripheral portion of the Fourier transform lens 626, and the adverse effect of off-axis aberrations increases. In addition, since the diameter of the Fourier transform lens 626 is increased, it is difficult to design and manufacture the lens. Conversely, if the diameter of the Flier conversion lens 626 is reduced, the effective beam diameter must be reduced. More In order to sufficiently separate the incident light and the emitted light, the focal length of the Fourier transform lens 626 must be increased. Also, the focal length of the Fourier transform lens on the entrance side and the exit side cannot be made different.
[0009] そこで、 4f光学系を図 3に示すように構成することが考えられる。この 4f光学系 640 は、入力面 622、フーリエ変換レンズ 626— 1、反射型 SLM628、フーリエ変換レン ズ 626— 2、及び、出力面 630を有して!/ヽる。入力面 622とフーリエ変換レンズ 626— 1との間の距離と、フーリエ変換レンズ 626— 1と反射型 SLM628の間の距離とは、 共に、フーリエ変換レンズ 626— 1の焦点距離長さと等しくなつている。また、反射型 SLM628とフーリエ変換レンズ 626— 2との間の距離と、フーリエ変換レンズ 626— 2 と出力面 630の間の距離とは、共に、フーリエ変換レンズ 626— 2の焦点距離長さと 等しくなつている。入力面 622の前側に平行光投光光学系を配置し、入力面に平行 光を投射する。 4f光学系 640によれば、図 2を参照して説明した 4f光学系 620にお ける上記の問題を解消できる。  Therefore, it is conceivable to configure the 4f optical system as shown in FIG. This 4f optical system 640 has an input surface 622, a Fourier transform lens 626-1, a reflective SLM 628, a Fourier transform lens 626-2, and an output surface 630. The distance between the input surface 622 and the Fourier transform lens 626-1 and the distance between the Fourier transform lens 626-1 and the reflective SLM628 are both equal to the focal length of the Fourier transform lens 626-1. Yes. The distance between the reflective SLM628 and the Fourier transform lens 626-2 and the distance between the Fourier transform lens 626-2 and the output surface 630 are both equal to the focal length of the Fourier transform lens 626-2. It is summer. A parallel light projection optical system is disposed in front of the input surface 622, and parallel light is projected onto the input surface. According to the 4f optical system 640, the above-described problem in the 4f optical system 620 described with reference to FIG. 2 can be solved.
[0010] し力しながら、入力側の光軸 650と出力側の光軸 652とは、垂直でない角度で斜め に交わっている。したがって、光軸 650がなす直線と光軸 652が成す直線とを精度よ く設定し、これらの直線上に入力側及び出力側の光学デバイスをそれぞれ精度よく 配置することは容易ではな 、。  [0010] However, the optical axis 650 on the input side and the optical axis 652 on the output side intersect obliquely at an angle that is not perpendicular. Therefore, it is not easy to accurately set the straight line formed by the optical axis 650 and the straight line formed by the optical axis 652 and accurately place the input-side and output-side optical devices on these straight lines.
[0011] また、 4f光学系 640を組み立てるための組立基板を作成する際には、光軸 650, 6 52が成す斜めの直線を機械力卩ェで基板上に作成しなければならな ヽ。しかしながら 、光軸が互いに垂直でないため、特有の冶具が必要になる。  [0011] Further, when creating an assembly substrate for assembling the 4f optical system 640, an oblique straight line formed by the optical axes 650 and 652 must be created on the substrate by mechanical force. However, since the optical axes are not perpendicular to each other, a special jig is required.
[0012] しカゝも、光学デバイスを組立基板に取り付ける際、光軸に対する平行線と垂直線と を基準とした光学調整ができな 、ため、取り付けが難し 、。  [0012] However, when attaching an optical device to an assembly substrate, optical adjustment based on a parallel line and a vertical line with respect to the optical axis cannot be performed, so that attachment is difficult.
[0013] また、入力面 622とフーリエ変換レンズ 626— 1との間の距離 (光路長)、フーリエ変 換レンズ 626 - 1と反射型 SLM628との間の距離 (光路長)、反射型 SLM628とフ 一リエ変換レンズ 626— 2との間の距離(光路長)、及び、フーリエ変換レンズ 626— 2と出力面 630との間の距離 (光路長)の全てを、焦点深度以内の精度で合わせる必 要がある。運搬や、振動などによって、いずれかのデバイスが光軸方向に移動した場 合、当該デバイスを光軸方向に位置調整する必要が生じる。しかしながら、反射型 S LM628が光軸の屈曲点となっているため、図 4のように、反射型 SLM628の位置を 、例えば、位置 Iから位置 IIへ変化させると、矢印 uで示すように、光軸 650と光軸 652 とが反射型 SLM628上で一致しなくなり、光軸 650と光軸 652とのいずれ力を、当該 光軸に垂直な方向に移動させなければならな 、。 [0013] The distance between the input surface 622 and the Fourier transform lens 626-1 (optical path length), the distance between the Fourier transform lens 626-1 and the reflective SLM628 (optical path length), and the reflective SLM628 All of the distance between the first lens 626-2 (optical path length) and the distance between the Fourier transform lens 626-2 and the output surface 630 (optical path length) are adjusted with accuracy within the depth of focus. There is a need. When any device moves in the optical axis direction due to transportation or vibration, it is necessary to position the device in the optical axis direction. However, reflective S Since the LM628 is the bending point of the optical axis, as shown in FIG. 4, when the position of the reflective SLM628 is changed from position I to position II, for example, the optical axis 650 and the optical axis are The axis 652 does not coincide with the reflective SLM628, and one of the forces of the optical axis 650 and the optical axis 652 must be moved in a direction perpendicular to the optical axis.
[0014] しかし光軸を当該光軸に垂直な方向に移動させることは、当該光軸上に配置され ている全てのデバイスの位置に影響をあたえるため、実質的に不可能である。  However, it is substantially impossible to move the optical axis in a direction perpendicular to the optical axis because it affects the positions of all the devices arranged on the optical axis.
[0015] 以上のように、光軸方向の位置調整であっても、光軸に垂直な面内での位置ずれ が発生するため、 4f光学系 640の光軸方向の位置調整は、容易ではない。  [0015] As described above, even in the position adjustment in the optical axis direction, a positional shift in a plane perpendicular to the optical axis occurs, so that the position adjustment in the optical axis direction of the 4f optical system 640 is not easy. Absent.
[0016] また、反射型 SLM628は、 2つの光軸 650、 652の 2等分線に沿って移動させるこ とになる。この二等分線が 2つの光軸 650、 652と垂直でないため、精度の高い移動 を行うことが難しい。し力も、反射型 SLM628の位置精度をこの 2等分線に垂直な面 内で高く保つ必要があるため、光軸方向の位置調整は大変困難である。  [0016] In addition, the reflective SLM 628 is moved along the bisector of the two optical axes 650 and 652. Since this bisector is not perpendicular to the two optical axes 650 and 652, it is difficult to move with high accuracy. In addition, since the positional accuracy of the reflective SLM628 needs to be kept high in the plane perpendicular to the bisector, position adjustment in the optical axis direction is very difficult.
[0017] また、図 5に示す 4f光学系 660のように、 2個の反射型 SLM628 (以下、反射型 SL M628- 1, 628— 2という)を設けることも考えられる。反射型 SLM628を 2個用いる ため、光軸の屈曲部が 2箇所となり、互いに異なる方向に伸びる 3つの光軸 654、 65 0, 652が生じる。反射型 SLM628— 1と反射型 SLM628— 2との間、及び、反射型 SLM628— 2の後段に、それぞれ、レンズ 626— 1, 626— 2力 S酉己置される。なお、反 射型 SLM628— 1の前段に、レーザ 662、レンズ 664、アパーチャ一 666が設けられ る。  It is also conceivable to provide two reflective SLM628s (hereinafter referred to as reflective SL M628-1, 628-2) as in the 4f optical system 660 shown in FIG. Since two reflective SLM628s are used, there are two bent portions of the optical axis, and three optical axes 654, 650, and 652 extending in different directions are generated. Lenses 626-1 and 626-2 forces S are placed between the reflective SLM628-1 and the reflective SLM628-2 and behind the reflective SLM628-2, respectively. A laser 662, a lens 664, and an aperture 666 are provided in front of the reflective SLM628-1.
[0018] このように反射型 SLMを 2段用いる場合には、斜め反射による問題がさらに大きく なる。すなわち、屈曲点が増えるために、反射型 SLMを 1個設ける場合よりも、機械 加工と光学調整が難しくなる。光軸 650は、光軸 654と光軸 652とに挟まれているた め、光軸 650に関係する光学デバイス(レンズ 626— 1)の位置調整力 特に困難と なる。  [0018] When two reflection SLMs are used in this way, the problem due to oblique reflection becomes even greater. In other words, since the number of bending points increases, machining and optical adjustment are more difficult than when one reflective SLM is provided. Since the optical axis 650 is sandwiched between the optical axis 654 and the optical axis 652, the position adjusting force of the optical device (lens 626-1) related to the optical axis 650 is particularly difficult.
[0019] 本発明は、斯かる実情に鑑み、反射型 SLMを用い、光エネルギーの利用効率が 高ぐ光学系の設計、組立、調整が容易で、光学系の小型化が可能であり、任意の 入射光に対して任意の光学処理を施すことができる空間光変調装置、光学処理装 置、カップリングプリズム、及び、カップリングプリズムの使用方法を提供することを目 的とする。 [0019] In view of such circumstances, the present invention uses a reflective SLM, makes it easy to design, assemble, and adjust an optical system with high light energy utilization efficiency, and can reduce the size of the optical system. It is an object of the present invention to provide a spatial light modulation device, an optical processing device, a coupling prism, and a method for using the coupling prism that can perform arbitrary optical processing on incident light. Target.
課題を解決するための手段  Means for solving the problem
[0020] 上記目的を達成するために、本発明は、仮想基準直線から仮想基準直線に対して 垂直な方向にずれた位置に設けられた反射型空間光変調素子と、仮想基準直線上 に設けられ、仮想基準直線に沿って入射してくる入射光を反射して反射型空間光変 調素子に読みだし光として斜めに入射させるための入力側反射面と、仮想基準直線 上に設けられ、反射型空間光変調素子で変調され斜めに反射された読みだし光を 反射して出射光として仮想基準直線に沿って出力するための出力側反射面と、を備 え、反射型空間光変調素子が、入力側反射面からの読みだし光を反射するための 素子反射面を備え、入力側反射面と出力側反射面とが、仮想基準直線に沿って距 離 Lだけ離間し、素子反射面が仮想基準直線から仮想基準直線に対して垂直な方 向に距離 hだけ離間し、入力側反射面、出力側反射面、及び、素子反射面とが、仮 想基準直線が延びる方向に対して、それぞれ、角度 φ 1、 φ 2、 φ 3だけ傾いており、 距離 L、h、及び、角度 φ 1、 φ 2、 φ 3とが以下の式(1)及び (2)を満足することを特 徴とする空間光変調装置を提供して!/ヽる。  In order to achieve the above object, the present invention provides a reflective spatial light modulator provided at a position shifted from a virtual reference line in a direction perpendicular to the virtual reference line, and a virtual reference line. Provided on the virtual reference line, an input side reflection surface for reflecting incident light incident along the virtual reference line and making it incident obliquely as read light on the reflective spatial light modulator. A reflection-type spatial light modulator comprising: an output-side reflection surface that reflects the read light modulated and reflected obliquely by the reflection-type spatial light modulation element and outputs it as emitted light along a virtual reference line; Is provided with an element reflecting surface for reflecting the reading light from the input side reflecting surface, and the input side reflecting surface and the output side reflecting surface are separated by a distance L along the virtual reference straight line. Direction from the virtual reference line to the virtual reference line The input side reflection surface, the output side reflection surface, and the element reflection surface are separated by an angle φ1, φ2, and φ3, respectively, with respect to the direction in which the virtual reference straight line extends. Provide a spatial light modulator characterized in that the distances L, h and the angles φ1, φ2, φ3 satisfy the following formulas (1) and (2)! .
[数 1] φ, = φλ - φ2 ( 1 ) 及び [Equation 1] φ, = φ λ2 (1) and
[数 2] [Equation 2]
[0021] このような構成によると、入力側反射面は、仮想基準直線に沿って入射してくる入 射光を反射して反射型空間光変調素子に読みだし光として斜めに入射させる。反射 型空間光変調素子の素子反射面が、入力側反射面力 の読みだし光を斜めに反射 する。出力側反射面が、反射型空間光変調素子で変調され斜めに反射された読み だし光を反射して出射光として出力する。このとき出射光は仮想基準直線にそって出 力される。したがって、空間光変調装置の入力側反射面に入射する入射光の主光線 と出力側反射面力 出射する出射光の主光線とが同一の仮想基準直線上になる。 従って、光学系全体をコンパ外ィ匕することができ、しかも、光学系の設計、組立、調 整が容易になる。さらに、反射型空間光変調素子により任意の入射光に対し任意の 光学処理を効率良く施すことができる。 According to such a configuration, the input-side reflecting surface reflects incident light incident along the virtual reference straight line and makes it incident obliquely as read light on the reflective spatial light modulator. The reflection surface of the reflective spatial light modulator reflects the reading light of the input side reflection surface force obliquely. The output-side reflecting surface reflects the readout light modulated by the reflective spatial light modulator and reflected obliquely and outputs it as outgoing light. At this time, the emitted light is emitted along a virtual reference line. It is powered. Therefore, the chief ray of incident light incident on the input side reflecting surface of the spatial light modulator and the chief ray of outgoing light emitted from the output side reflecting surface force are on the same virtual reference line. Therefore, the entire optical system can be removed from the comparator, and the optical system can be easily designed, assembled and adjusted. Furthermore, any optical processing can be efficiently performed on any incident light by the reflective spatial light modulator.
[0022] また、入力側反射面と出力側反射面と素子反射面とは、入力側反射面が素子反射 面に入射する入射光の全てを反射し、素子反射面が入力側反射面で反射された光 の全てを反射し、出力側反射面が素子反射面で反射され反射型空間光変調素子で 変調された光のうち所定の成分の全てを反射する相対的な位置関係を有しているの が好ましい。  [0022] The input side reflection surface, the output side reflection surface, and the element reflection surface are such that the input side reflection surface reflects all incident light incident on the element reflection surface, and the element reflection surface is reflected by the input side reflection surface. And the output side reflection surface is reflected by the element reflection surface, and has a relative positional relationship that reflects all of the predetermined components of the light modulated by the reflective spatial light modulator. It is preferable.
[0023] このような構成によると、素子反射面に入射する光の全てが入力側反射面にて反射 され、入力側反射面力 の反射光の全てが素子反射面で反射され、素子反射面で 反射され反射型空間光変調素子で変調された光の所定の成分全てが出力側反射 面で反射されて、空間光変調装置から仮想基準直線に沿って出力される。素子反射 面全体に光を入射させ、その光を有効に利用することが可能となる。有効開口率の 高い反射型空間光変調素子の利点を活かすことができる。  According to such a configuration, all of the light incident on the element reflection surface is reflected by the input side reflection surface, and all of the reflected light of the input side reflection surface force is reflected by the element reflection surface. All the predetermined components of the light reflected by and modulated by the reflective spatial light modulator are reflected by the output-side reflecting surface and output along the virtual reference line from the spatial light modulator. Light can be incident on the entire element reflection surface and used effectively. The advantages of a reflective spatial light modulator with a high effective aperture ratio can be utilized.
[0024] また、素子反射面が大きさ cを備え、入力側反射面が仮想基準直線に対して反射 型空間光変調素子力 遠い側の大きさ alと、反射型空間光変調素子に近い側の大 きさ a2とを有し、出力側反射面が仮想基準直線に対して反射型空間光変調素子か ら近い側の大きさ b lと、反射型空間光変調素子に遠い側の大きさ b2とを有し、素子 反射面が入力側反射面で反射された入射光の光軸に対して入力側反射面に近い 側の大きさ c lを有し、反射型空間光変調素子が、 0〜 ocの範囲の収束角で入射する 読みだし光を変調して、その所定の成分を 0〜 βの範囲の発散角で出射し、反射型 空間光変調素子へ入射する読み出し光が収束光の場合には OCは正の値をとり発散 光の場合には aは負の値をとり、反射型空間光変調素子から出射する読み出し光の 所定の成分が発散光の場合には βは正の値をとり収束光の場合には βは負の値を とり、大きさ c l、 al、 a2、 b l、及び、 b2力 α及び j8に対して、以下の式(3)〜(8 )を満足することが好ましい。 [数 3] [0024] Further, the element reflection surface has a size c, and the input-side reflection surface has a size al on the side far from the reflective spatial light modulation element force with respect to the virtual reference line, and a side close to the reflection spatial light modulation element. The size of the reflective surface on the output side is closer to the virtual reference straight line from the reflective spatial light modulator, bl, and the size of the side far from the reflective spatial light modulator is b2. The reflective surface has a size cl on the side close to the input-side reflective surface with respect to the optical axis of the incident light reflected by the input-side reflective surface, and the reflective spatial light modulator is 0 to When the readout light that is incident at the convergence angle in the range of oc is modulated, the predetermined component is emitted at the divergence angle in the range of 0 to β, and the readout light that is incident on the reflective spatial light modulator is convergent light In this case, OC takes a positive value, and in the case of diverging light, a takes a negative value, and a predetermined value of the readout light emitted from the reflective spatial light modulator is given. When the component is divergent light, β takes a positive value, and when it is convergent light, β takes a negative value, and for the magnitudes cl, al, a2, bl, and b2 forces α and j8, It is preferable that the following expressions (3) to (8) are satisfied. [Equation 3]
(3)  (3)
1 2 1 2
[数 4] h [Equation 4] h
sina + sin^ -·φ2- ) sina + sin ^-· φ 2- )
(4)  (Four)
sin(^i― a)  sin (^ i― a)
[数 5] h [Equation 5] h
sinor + (c- )sin (^! +な)  sinor + (c-) sin (^! +)
sin(2^i)  sin (2 ^ i)
a2 (5)  a2 (5)
sin^ + a)  sin ^ + a)
[数 6][Equation 6]
[数 7] [Equation 7]
[数 8] [Equation 8]
L>a, cos cos 4 (8) このような構成によると、大きさ cを備える素子反射面に対して 0〜 αの範囲の収束 角で入射する入射光の全てが入力側反射面によって反射される。入力側反射面で 反射された入射光の全てが読みだし光として反射型空間光変調素子の素子反射面 によって反射される。素子反射面によって反射され反射型空間光変調素子で変調さ れた読みだし光のうち 0〜 βの範囲の発散角で出射する成分の全てが、出力側反射 面によって反射される。光の利用効率をより高めることが可能となる。し力も、入力側 反射面と出力側反射面とが重ならないことが確保される。 [0026] なお、特に式 (4)〜(7)の等号が成立する場合には、発散角 j8より大きい角度の成 分を不要成分として除去することができる。 L> a, cos cos 4 (8) According to such a configuration, all incident light incident at a convergence angle in the range of 0 to α is reflected by the input-side reflecting surface with respect to the reflecting surface having the size c. Is done. All of the incident light reflected by the input side reflection surface is reflected by the element reflection surface of the reflective spatial light modulator as readout light. Of the readout light reflected by the element reflection surface and modulated by the reflective spatial light modulation element, all components emitted at a divergence angle in the range of 0 to β are reflected by the output-side reflection surface. It is possible to further increase the light use efficiency. Also, it is ensured that the input-side reflecting surface and the output-side reflecting surface do not overlap. [0026] It should be noted that, particularly when the equal signs of equations (4) to (7) are established, components having an angle greater than the divergence angle j8 can be removed as unnecessary components.
[0027] また、前記所定の成分とは 1以上 n(nは 0より大きい自然数)以下の回折次数の回 折成分であり、 α及び )8が、入射光の波長え、及び、反射型空間光変調素子に表 示可能な最小の格子パターンの格子定数 dに対して、以下の式(9)及び(10)を満足 するのが好ましい。 [0027] The predetermined component is a diffraction component having a diffraction order of 1 or more and n (n is a natural number greater than 0) or less, and α and) 8 are the wavelength of incident light and the reflection type space. It is preferable that the following expressions (9) and (10) are satisfied with respect to the lattice constant d of the smallest lattice pattern that can be displayed on the light modulation element.
[数 9] β = α + δ (9)  [Equation 9] β = α + δ (9)
[数 10] δ = - ^ (1 0) [Equation 10] δ =-^ (1 0)
d sm(^, +έ^)  d sm (^, + έ ^)
[0028] このような構成によると、反射型空間光変調素子で回折された変調読みだし光のう ち、少なくとも 1次以上 η次以下の回折光の全てが出力側反射面によって反射される ことが確保される。従って、光の利用効率をより高めることが可能となる。 [0028] According to such a configuration, at least all of the diffracted light of the 1st order or more and the ηth order or less of the modulated read light diffracted by the reflective spatial light modulation element is reflected by the output-side reflecting surface. Is secured. Accordingly, it is possible to further increase the light use efficiency.
[0029] なお、特に式 (4)〜(7)の等号が成立する場合には、(η+1)次以上の回折光を不 要成分として除去することができる。  [0029] In particular, when the equal signs of equations (4) to (7) hold, diffracted light of (η + 1) order or higher can be removed as an unnecessary component.
[0030] また、距離 L、h、及び、角度 φ1=φ2、 φ 3が以下の式(11)及び(12)を満足する のが好ましい。  [0030] In addition, it is preferable that the distances L and h and the angles φ1 = φ2 and φ3 satisfy the following expressions (11) and (12).
[数 11]  [Equation 11]
«¾3 =0 (1 1) «¾3 = 0 (1 1)
[数 12] [Equation 12]
A = -tan(2^) (1 2) 反射型空間光変調素子の素子反射面が仮想基準直線と平行となるので、光学系 の設計、組立、調整がより一層簡単になる。 [0031] また、入力側反射面は第 1のミラーに備えられ、出力側反射面は第 1のミラーとは独 立して設けられた第 2のミラーに備えられているのが好ましい。簡単な構成によりァラ ィメント容易な空間光変調装置を実現することが可能である。 A = -tan (2 ^) (1 2) Since the reflective surface of the reflective spatial light modulator is parallel to the virtual reference line, the design, assembly, and adjustment of the optical system become even easier. [0031] Preferably, the input-side reflecting surface is provided in the first mirror, and the output-side reflecting surface is provided in the second mirror provided independently of the first mirror. With a simple configuration, it is possible to realize a spatial light modulation device with easy alignment.
[0032] また、単一のプリズムが互いに所定の角度をなすように形成された第 1の面及び第 2の面を備え、入力側反射面が第 1の面に、出力側反射面が第 2の面にそれぞれ形 成され、入力側反射面及び出力側反射面は、それぞれ、プリズムの外側から入射し た入射光を受け取りこれをプリズムの外側に向力つて反射するのが好ましい。  [0032] Further, the single prism includes a first surface and a second surface formed so as to form a predetermined angle with each other, the input-side reflecting surface being the first surface, and the output-side reflecting surface being the first surface. Preferably, the input-side reflection surface and the output-side reflection surface each receive incident light incident from the outside of the prism and reflect the incident light toward the outside of the prism.
[0033] 力かる構成によれば、入力側反射面と出力側反射面とが単一のプリズムに備えられ る。入力側反射面と出力側反射面とを一体ィ匕することができるため、部品点数が少な くなり、光学系の設計、組立、調整がより容易となる。  [0033] According to this configuration, the input side reflection surface and the output side reflection surface are provided in a single prism. Since the input-side reflection surface and the output-side reflection surface can be integrated, the number of parts is reduced, and the design, assembly, and adjustment of the optical system are easier.
[0034] また、単一のカップリングプリズムが、入力側透過面と、第 1の反射面と、接合透過 面と、第 2の反射面と、出力側透過面と、を備え、入力側透過面は、仮想基準直線上 に設けられ、仮想基準直線に沿って入射してくる入射光を透過させて入射光を仮想 基準直線に沿って内部に導き、第 1の反射面は、仮想基準直線上に設けられ、入力 側透過面から仮想基準直線に沿って内部を伝搬してくる入射光を反射する入力側 反射面であり、接合透過面は、仮想基準直線から仮想基準直線に対して垂直な方 向にずれた位置に設けられ、反射型空間光変調素子に接合され、第 1の反射面で 反射され内部を伝搬してくる入射光を透過して反射型空間光変調素子に対し読みだ し光として斜めに入射させ、かつ、反射型空間光変調素子で変調され斜めに反射さ れた読みだし光を透過して内部を伝搬させ、第 2の反射面は、仮想基準直線上に設 けられ、接合透過面から内部を伝搬してくる読みだし光を反射して出射光として仮想 基準直線に沿って内部を伝搬させる出力側反射面であり、出力側透過面は、仮想基 準直線上に設けられ、第 2の反射面力 仮想基準直線に沿って内部を伝搬してくる 出射光を仮想基準直線に沿って外部へ出力するのが好ましい。  [0034] Further, the single coupling prism includes an input side transmission surface, a first reflection surface, a cemented transmission surface, a second reflection surface, and an output side transmission surface, and is provided with an input side transmission surface. The surface is provided on the virtual reference straight line, transmits incident light incident along the virtual reference straight line, guides the incident light along the virtual reference straight line, and the first reflecting surface is the virtual reference straight line. This is an input-side reflection surface that reflects incident light propagating through the virtual reference line from the input-side transmission surface. The junction transmission surface is perpendicular to the virtual reference line from the virtual reference line. Provided at a position shifted in this direction, joined to the reflective spatial light modulator, transmits the incident light reflected by the first reflective surface and propagating through it, and is read from the reflective spatial light modulator. However, it is incident obliquely as light and is modulated obliquely by a reflective spatial light modulator. The emitted reading light is transmitted and propagated inside, and the second reflecting surface is set on the virtual reference straight line, and the reading light propagating inside from the junction transmitting surface is reflected and emitted. This is an output-side reflecting surface that propagates inside the virtual reference line as incident light, and the output-side transmitting surface is provided on the virtual reference line, and propagates inside along the second reflecting surface force virtual reference line. It is preferable to output the outgoing light along the virtual reference straight line.
[0035] このような構成〖こよると、入力側透過面は、仮想基準直線に沿って入射してくる入 射光を透過させて入射光を仮想基準直線に沿ってカップリングプリズム内部に導く。 第 1の反射面は、入力側透過面力 仮想基準直線に沿って内部を伝搬してくる入射 光を反射する。反射型空間光変調素子に接合された接合透過面は、第 1の反射面 で反射され内部を伝搬してくる入射光を透過して反射型空間光変調素子に対し読み だし光として斜めに入射させ、かつ、反射型空間光変調素子で変調され斜めに反射 された読みだし光を透過して内部を伝搬させる。第 2の反射面は、接合透過面から内 部を伝搬してくる読みだし光を反射して出射光として仮想基準直線に沿って内部を 伝搬させる。出力側透過面は、第 2の反射面力 仮想基準直線に沿って内部を伝搬 してくる出射光を仮想基準直線に沿って外部へ出力する。カップリングプリズムを用 いることにより、全体の光学系をコンパクトィ匕することができ、また、光学系の設計、組 立、調整がさらに容易となる。 According to such a configuration, the input-side transmission surface transmits incident light incident along the virtual reference line and guides the incident light into the coupling prism along the virtual reference line. The first reflecting surface reflects the incident light propagating inside along the input side transmission surface force virtual reference line. The bonded transmission surface bonded to the reflective spatial light modulator is the first reflective surface. The incident light that is reflected by the light and propagates inside is transmitted and incident obliquely on the reflective spatial light modulator as readout light, and is read by the reflective spatial light modulator and reflected obliquely. Transmits light and propagates inside. The second reflecting surface reflects the readout light propagating inward from the bonded transmission surface and propagates the inside along the virtual reference line as outgoing light. The output side transmission surface outputs the outgoing light propagating inside along the second reference surface force virtual reference line to the outside along the virtual reference line. By using the coupling prism, the entire optical system can be made compact, and the design, assembly and adjustment of the optical system can be further facilitated.
[0036] ここで、入力側反射面、出力側反射面をそれぞれ仮想基準直線に対して所定の角 度にすれば、光を全反射させることが可能になる。従って、光の利用効率がさらに向 上する。入力側反射面および出力側反射面に光の反射率を高めるための表面加工 等を施す必要がなくなる。  [0036] Here, if the input-side reflection surface and the output-side reflection surface are set at a predetermined angle with respect to the virtual reference straight line, light can be totally reflected. Therefore, the light use efficiency is further improved. It is no longer necessary to apply surface processing or the like to increase the light reflectivity on the input-side reflection surface and the output-side reflection surface.
[0037] ここで、入力側反射面と出力側反射面と素子反射面とは、入力側反射面が素子反 射面に入射する入射光の全てを反射し、素子反射面が入力側反射面で反射された 光の全てを反射し、出力側反射面が素子反射面で反射され反射型空間光変調素子 で変調された光のうち所定の成分の全てを反射する相対的な位置関係を有している ことが好ましい。  [0037] Here, the input side reflection surface, the output side reflection surface, and the element reflection surface are the input side reflection surface that reflects all incident light incident on the element reflection surface, and the element reflection surface is the input side reflection surface. Reflects all of the light reflected by, and has a relative positional relationship in which the output-side reflecting surface is reflected by the element reflecting surface and reflects all of the predetermined components of the light modulated by the reflective spatial light modulator. It is preferable.
[0038] このような構成によると、素子反射面に所定のビーム径にて入射しょうとする光の全 てが入力側反射面にて反射され、入力側反射面からの反射光の全てが素子反射面 で反射され、素子反射面で反射され反射型空間光変調素子で変調された光の所定 の成分全てが出力側反射面で反射されて、空間光変調装置力 仮想基準直線に沿 つて出力される。素子反射面全体に光を入射させ、その光を有効に利用することが 可能となる。有効開口率の高い反射型空間光変調素子の利点を活かすことができる  [0038] According to such a configuration, all of the light entering the element reflecting surface with a predetermined beam diameter is reflected by the input side reflecting surface, and all of the reflected light from the input side reflecting surface is reflected by the element. All predetermined components of the light reflected by the reflecting surface, reflected by the element reflecting surface, and modulated by the reflective spatial light modulator are reflected by the output reflecting surface, and output along the spatial light modulation device force virtual reference line. Is done. It is possible to make light incident on the entire reflection surface of the element and use the light effectively. The advantages of a reflective spatial light modulator with a high effective aperture ratio can be utilized.
[0039] ここで、カップリングプリズムの屈折率は mであり、素子反射面が大きさ cを備え、入 力側反射面が仮想基準直線に対して反射型空間光変調素子から遠い側の大きさ al と、反射型空間光変調素子に近い側の大きさ a2とを有し、出力側反射面が仮想基準 直線に対して反射型空間光変調素子から近い側の大きさ blと、反射型空間光変調 素子に遠い側の大きさ b2とを有し、素子反射面が入力側反射面で反射された入射 光の光軸に対して入力側反射面に近い側の大きさ c lを有し、反射型空間光変調素 子が、 0〜 ocの範囲の収束角で入射する読みだし光を変調して、その所定の成分を 0〜 βの範囲の発散角で出射し、反射型空間光変調素子へ入射する読み出し光が 収束光の場合には OCは正の値をとり発散光の場合には OCは負の値をとり、反射型空 間光変調素子から出射する読み出し光の所定の成分が発散光の場合には βは正の 値をとり収束光の場合には βは負の値をとり、大きさ c l、 al、 a2、 b l、 b2と力 a 及び j8に対し、以下の式(3 〜(8Ίを満足するのが好ましい。 [0039] Here, the refractive index of the coupling prism is m, the element reflection surface has a size c, and the input-side reflection surface is a size on the side far from the reflective spatial light modulator with respect to the virtual reference line. Al and the size a2 on the side close to the reflective spatial light modulator, the output-side reflective surface is close to the virtual reference line from the reflective spatial light modulator, bl, and the reflective type Spatial light modulation B2 on the side far from the element, and the element reflection surface has a size cl on the side closer to the input reflection surface with respect to the optical axis of the incident light reflected by the input reflection surface. The spatial light modulation element modulates the incident reading light with a convergence angle in the range of 0 to oc, and emits the predetermined component with a divergence angle in the range of 0 to β, to the reflective spatial light modulation element. When the incident readout light is convergent light, OC takes a positive value, and when it is divergent light, OC takes a negative value, and a predetermined component of the readout light emitted from the reflective spatial light modulator diverges. In the case of light, β takes a positive value, and in the case of convergent light, β takes a negative value. For magnitudes cl, al, a2, bl, b2 and forces a and j8, It is preferable to satisfy ~ (8Ί.
[数 13]  [Equation 13]
[数 14] [Equation 14]
[数 15] [Equation 15]
[数 16] [Equation 16]
[数 17] [数 18] [Equation 17] [Equation 18]
[0040] このような構成によると、大きさ cを備える前記素子反射面に対して 0〜 αの範囲の 収束角で入射する入射光の全てが入力側反射面によって反射され、入力側反射面 で反射された入射光の全てが読みだし光として反射型空間光変調素子の素子反射 面によって反射され、素子反射面によって反射され反射型空間光変調素子で変調さ れた読みだし光のうち 0〜 βの範囲の発散角で反射型空間光変調素子から出射す る成分の全てが、出力側反射面によって反射される。従って、光の全てを素子反射 面全体に入射させることを可能とし、光の利用効率をより高めることが可能となる。し 力も、入力側反射面と出力側反射面とが重ならないことが確保される。なお、特に式( 4Ί〜(7Ίの等号が成立する場合には、発散角 )8より大きい角度の成分を不要成 分として除去することができる。 [0040] According to such a configuration, all of the incident light incident at a convergence angle in the range of 0 to α with respect to the element reflection surface having the size c is reflected by the input side reflection surface, and the input side reflection surface All of the incident light reflected by the reflection light is reflected by the reflection surface of the reflective spatial light modulator as the readout light, and is reflected by the reflection surface of the reflection spatial light modulator and is modulated by the reflective spatial light modulator 0 All components emitted from the reflective spatial light modulator with a divergence angle in the range of ~ β are reflected by the output-side reflecting surface. Therefore, it is possible to make all of the light incident on the entire element reflecting surface, and it is possible to further improve the light utilization efficiency. Also, it is ensured that the input-side reflecting surface and the output-side reflecting surface do not overlap. It should be noted that a component having an angle greater than 8 can be removed as an unnecessary component, particularly when the equations (4Ί to (7Ί) are established.
[0041] また、前記所定の成分とは 1以上 η (ηは 0より大きい自然数)以下の回折次数の回 折成分であり、 α及び )8が、入射光の波長え、及び、反射型空間光変調素子に表 示可能な最小の格子パターンの格子定数 dに対して、以下の式(9Ί及び(1(Τ )を満 足するのが好ましい。  [0041] Further, the predetermined component is a diffraction component having a diffraction order of 1 or more and η (η is a natural number greater than 0) or less, and α and) 8 are the wavelength of incident light and the reflection type space. It is preferable that the following equations (9Ί and (1 (Τ)) are satisfied with respect to the lattice constant d of the smallest lattice pattern that can be displayed on the light modulation element.
[数 19] [Equation 19]
[数 20] [Equation 20]
[0042] このような構成によると、反射型空間光変調素子で回折された変調読みだし光のう ち、少なくとも 1次以上 η次以下の回折光の全てが出力側反射面によって反射される ことが確保される。なお、特に式 (4Ί〜(7Ίの等号が成立する場合には、(η+ 1)次 以上の回折光を不要成分として除去することができる。 [0042] According to such a configuration, at least all of the diffracted light of the 1st order or more and the ηth order or less of the modulated read light diffracted by the reflective spatial light modulation element is reflected by the output-side reflecting surface. Is secured. In particular, the formula (4Ί ~ (7Ί The above diffracted light can be removed as an unnecessary component.
[0043] また、反射型空間光変調素子は位相変調型であるのが好ま 、。かかる構成によ れば、任意の入射光に対し任意の光学処理を施すことができる。  [0043] The reflective spatial light modulator is preferably a phase modulation type. According to this configuration, arbitrary optical processing can be performed on arbitrary incident light.
[0044] また、本発明の別の観点では、空間光変調装置と、仮想基準直線上に設けられ、 入射光を仮想基準直線に沿って空間光変調装置に入力させる入力光学系と、仮想 基準直線上に設けられ、空間光変調装置力 仮想基準直線に沿って出力された出 射光を処理するための出力光学系とを備え、空間光変調装置は、仮想基準直線から 仮想基準直線に対して垂直な方向にずれた位置に設けられた反射型空間光変調素 子と、仮想基準直線上に設けられ、仮想基準直線に沿って入力光学系から入射して くる入射光を反射して反射型空間光変調素子に読みだし光として斜めに入射させる ための入力側反射面と、仮想基準直線上に設けられ、反射型空間光変調素子で変 調され斜めに反射された読みだし光を反射して出射光として仮想基準直線に沿って 出力するための出力側反射面とを備え、反射型空間光変調素子が、入力側反射面 力 の読みだし光を反射するための素子反射面を備え、入力側反射面と出力側反射 面とが、仮想基準直線に沿って距離 Lだけ離間し、素子反射面が仮想基準直線から 仮想基準直線に対して垂直な方向に距離 hだけ離間し、入力側反射面、出力側反 射面、及び、素子反射面とが、仮想基準直線が延びる方向に対して、それぞれ、角 度 φ 1、 φ 2、 φ 3だけ傾いており、距離 L、 h、及び、角度 φ 1、 φ 2、 φ 3とが以下の 式( 1)及び (2)を満足することを特徴とする光学処理装置を提供して!/ヽる。  [0044] Further, according to another aspect of the present invention, a spatial light modulation device, an input optical system provided on a virtual reference straight line that inputs incident light to the spatial light modulation device along the virtual reference straight line, and a virtual reference Spatial light modulation device power provided on the straight line and an output optical system for processing the emitted light output along the virtual reference straight line, the spatial light modulation device from the virtual reference straight line to the virtual reference straight line A reflective spatial light modulation element provided at a position shifted in the vertical direction and a reflection type that is provided on the virtual reference line and reflects incident light incident from the input optical system along the virtual reference line The reflective surface on the input side for obliquely entering the spatial light modulation element as readout light and the virtual reference straight line, which reflects the readout light modulated and reflected obliquely by the reflective spatial light modulation element. Along the virtual reference line as the outgoing light The reflective spatial light modulator has an element reflecting surface for reflecting the reading light of the input side reflecting surface, and includes an input reflecting surface and an output reflecting surface. Is separated by a distance L along the virtual reference line, and the element reflection surface is separated from the virtual reference line by a distance h in a direction perpendicular to the virtual reference line, and the input side reflection surface, the output side reflection surface, and The element reflecting surfaces are inclined by angles φ1, φ2, and φ3 with respect to the direction in which the virtual reference line extends, respectively, and the distances L, h, and angles φ1, φ2, and φ3 Provides an optical processing apparatus characterized by satisfying the following formulas (1) and (2).
[数 21] 3 = φλ2 ( 1 ) [Equation 21] 3 = φ λ2 (1)
[数 22] [Number 22]
, ^ sin(2^ ) sin(2^2 ) ( 2 ) , ^ sin (2 ^) sin (2 ^ 2 ) ( 2 )
sin(2^[ + 2φ7 ) sin (2 ^ [+ 2φ 7 )
[0045] このような構成によると、入力光学系及び出力光学系が仮想基準直線上に配置さ れている。このため、入力側反射面、出力側反射面、及び、反射型空間光変調素子 を仮想基準直線に対して垂直な方向に位置調整するだけで、光学処理装置全体の 位置調整を簡単に行なうことができる。従って、光学系の設計、組立、調整が簡単と なる。 According to such a configuration, the input optical system and the output optical system are arranged on the virtual reference straight line. Therefore, an input side reflection surface, an output side reflection surface, and a reflective spatial light modulation element The position of the entire optical processing apparatus can be easily adjusted simply by adjusting the position in the direction perpendicular to the virtual reference line. This simplifies the design, assembly and adjustment of the optical system.
[0046] ここで、入力光学系は、光源と、光源からの光を平行光に変換するビーム変換手段 を有し、出力光学系は、反射型空間光変調素子により位相変調され出力側反射面 力も反射された光をフーリエ変換するレンズを有するのが好ましい。  Here, the input optical system has a light source and beam conversion means for converting light from the light source into parallel light, and the output optical system is phase-modulated by a reflective spatial light modulation element and is output side reflection surface It is preferable to have a lens that Fourier transforms the reflected light.
[0047] このような構成によると、光を効率よく利用して、例えば光の波形パターンを任意の 波形パターンに成形することができる。  According to such a configuration, the light waveform pattern can be formed into an arbitrary waveform pattern, for example, by efficiently using light.
[0048] また、入力光学系は、入力画像をフーリエ変換する第 1のレンズを有し、反射型空 間光変調素子は、参照画像に基づくフィルターパターンにて入力画像のフーリエ変 換画像を位相変調し、出力光学系は、空間光変調装置力 の出力光をフーリエ変換 する第 2のレンズを有し、入力画像と参照画像との相関を示す画像を出力するのが 好ましい。  [0048] Further, the input optical system has a first lens for Fourier transforming the input image, and the reflective spatial light modulation element phase-transforms the Fourier transform image of the input image with a filter pattern based on the reference image. The modulating and output optical system preferably has a second lens that Fourier-transforms the output light of the spatial light modulator, and outputs an image showing the correlation between the input image and the reference image.
[0049] このような構成〖こよると、第 1のレンズは入力画像をフーリエ変換する。反射型空間 光変調素子は、参照画像に基づくフィルターパターンにて入力画像のフーリエ変換 画像を位相変調する。第 2のレンズは、空間光変調装置力もの出力光をフーリエ変 換して入力画像と参照画像との相関を示す画像を出力する。従って、光を効率よく利 用して入力画像と参照画像との相関に応じた画像を出力することができる。  [0049] According to such a configuration, the first lens performs a Fourier transform on the input image. The reflective spatial light modulation element phase-modulates the Fourier transform image of the input image with a filter pattern based on the reference image. The second lens outputs an image indicating the correlation between the input image and the reference image by Fourier transforming the output light having the power of the spatial light modulator. Therefore, it is possible to output an image corresponding to the correlation between the input image and the reference image by using light efficiently.
[0050] また、入力画像を作成する入力画像作成手段をさらに備え、入力画像作成手段は 、別の空間光変調装置からなり、別の空間光変調装置は、仮想基準直線から仮想基 準直線に対して垂直な方向にずれた位置に設けられた反射型空間光変調素子と、 仮想基準直線上に設けられ、仮想基準直線に沿って入射してくる入射光を反射して 反射型空間光変調素子に読みだし光として斜めに入射させるための入力側反射面 と、仮想基準直線上に設けられ、反射型空間光変調素子で変調され斜めに反射され た読みだし光を反射して出射光として仮想基準直線に沿って出力するための出力側 反射面とを備え、反射型空間光変調素子が、入力側反射面からの読みだし光を反 射するための素子反射面を備え、入力側反射面と出力側反射面とが、仮想基準直 線に沿って距離 Lだけ離間し、素子反射面が仮想基準直線から仮想基準直線に対 して垂直な方向に距離 hだけ離間し、入力側反射面、出力側反射面、及び、素子反 射面とが、仮想基準直線が延びる方向に対して、それぞれ、角度 Φ 1、 φ 2、 φ 3だけ 傾いており、距離 L、h、及び、角度 φ 1、 φ 2、 φ 3とが式(1)及び (2)を満足し、第 1 のレンズが、別の空間光変調装置力 出力された出射光をフーリエ変換するのが好 ましい。力かる構成によると、空間光変調装置が多段で接続されることになり、光を効 率よく利用しつつ、し力も、入力画像を自由に生成することができる。 [0050] Further, the image processing apparatus further includes input image creation means for creating an input image, and the input image creation means includes another spatial light modulation device, and the other spatial light modulation device changes from a virtual reference line to a virtual reference line. Reflective spatial light modulation element provided at a position shifted in a direction perpendicular to the vertical direction, and reflective spatial light modulation provided on the virtual reference straight line to reflect incident light incident along the virtual reference straight line Input-side reflecting surface for obliquely entering the element as readout light and a virtual reference line, which is reflected by the reflective spatial light modulator and reflected obliquely as reflected light. An output-side reflective surface for outputting along a virtual reference straight line, and the reflective spatial light modulator has an element-reflecting surface for reflecting the readout light from the input-side reflective surface. Surface and the output-side reflective surface A distance L is separated along the line, and the element reflection surface is opposed to the virtual reference line from the virtual reference line. The input side reflection surface, the output side reflection surface, and the element reflection surface are separated from each other by an angle Φ 1, φ 2, Inclined by φ3, distances L and h, and angles φ1, φ2, and φ3 satisfy Eqs. (1) and (2), and the first lens has another spatial light modulator power It is preferable to Fourier-transform the output light. According to such a configuration, the spatial light modulators are connected in multiple stages, so that the input image can be freely generated while using the light efficiently and also with the force.
[0051] また、空間光変調装置力 出力される出射光の一部を導くための光分割素子と、光 分割素子により導かれた出射光の一部の波面の歪みを検出するための波面センサと 、波面センサの検出結果に基づいて波面の歪みを補正する信号を空間光変調装置 の反射型空間光変調素子にフィードバックする制御装置と、をさらに備え、反射型空 間光変調素子により波面補償された出射光が出力光学系に出力されるのが好ましい [0051] Further, a light splitting element for guiding a part of the emitted light output by the spatial light modulation device, and a wavefront sensor for detecting a distortion of a wavefront of a part of the emitted light guided by the light splitting element And a control device that feeds back a signal for correcting the distortion of the wavefront based on the detection result of the wavefront sensor to the reflective spatial light modulator of the spatial light modulator, and the wavefront compensation by the reflective spatial light modulator The emitted light is preferably output to the output optical system.
[0052] このような構成によると、光分割素子は空間光変調装置から出力される出射光の一 部を導く。波面センサは光分割素子により導かれた出射光の一部の波面の歪みを検 出する。制御装置は波面センサの検出結果に基づ 、て波面の歪みを補正する信号 を反射型空間光変調素子にフィードバックする。反射型空間光変調素子により波面 補償された出射光が前記出力光学系に出力される。従って、光を効率よく利用して 位相補償を行なうことができる。 [0052] According to such a configuration, the light splitting element guides a part of the emitted light output from the spatial light modulator. The wavefront sensor detects distortion of a part of the wavefront of the outgoing light guided by the light splitting element. Based on the detection result of the wavefront sensor, the control device feeds back a signal for correcting the distortion of the wavefront to the reflective spatial light modulator. Outgoing light wave-compensated by the reflective spatial light modulator is output to the output optical system. Therefore, phase compensation can be performed using light efficiently.
[0053] また、本発明の別の観点では、仮想基準直線上に設けられ、仮想基準直線に沿つ て入射する入射光を透過させ入射光を内部に導く入力側透過面と、入力側透過面 から内部を伝搬してくる光を反射する入力側反射面と、仮想基準直線から仮想基準 直線に対して垂直にずれた位置に設けられ、反射型空間光変調素子に接合され、 入力側反射面で反射され内部を伝搬してくる光を透過させて、反射型空間光変調素 子に対し読みだし光として斜めに入射させ、かつ、反射型空間光変調素子で変調さ れ斜めに反射された読みだし光を透過して内部を伝搬させるための接合透過面と、 仮想基準直線上に設けられ、接合透過面から内部を伝搬してくる読みだし光を反射 して出射光として内部を伝搬させるための出力側反射面と、仮想基準直線上に設け られ、出力側反射面力 内部を伝搬してくる出射光を仮想基準直線に沿って外部へ 出力する出力側透過面と、を備えることを特徴とするカップリングプリズムを提供して いる。 [0053] Further, according to another aspect of the present invention, an input-side transmission surface that is provided on a virtual reference line, transmits incident light incident along the virtual reference line and guides the incident light to the inside, and input-side transmission An input-side reflection surface that reflects light propagating from the surface and a position that is perpendicular to the virtual reference line from the virtual reference line, joined to the reflective spatial light modulator, and input-side reflection The light reflected from the surface and propagating through the inside is transmitted, and is incident on the reflective spatial light modulation element obliquely as readout light, and is modulated by the reflective spatial light modulator and reflected obliquely. The joint transmission surface for transmitting the reading light and propagating the inside is provided on the virtual reference line, reflecting the reading light propagating from the bonding transmission surface to the inside as the outgoing light On the output side reflective surface and the virtual reference straight line Only it is, to the outside along the outgoing light propagated through the internal output side reflecting surface forces to the virtual reference line There is provided a coupling prism comprising an output side transmission surface for outputting.
[0054] このような構成〖こよると、入力側透過面は、仮想基準直線に沿って入射する入射光 を透過させ入射光をカップリングプリズム内部に導く。入力側反射面は、入力側透過 面から内部を伝搬してくる光を反射する。反射型空間光変調素子に接合された接合 透過面は、入力側反射面で反射され内部を伝搬してくる光を透過させて、反射型空 間光変調素子に対し読みだし光として斜めに入射させ、かつ、反射型空間光変調素 子で変調され斜めに反射された読みだし光を透過して内部を伝搬させる。出力側反 射面は、接合透過面から内部を伝搬してくる読みだし光を反射して出射光として内部 を伝搬させる。出力側透過面は、出力側反射面から内部を伝搬してくる出射光を仮 想基準直線に沿って外部へ出力する。したがって、カップリングプリズムの入力側反 射面に入射する入射光の主光線と出力側反射面力 出射する出射光の主光線とが 同一の仮想基準直線上になる。カップリングプリズムを用いることにより、光学系全体 をコンパ外ィ匕することができ、しかも、光学系の設計、組立、調整が容易になる。さら に、反射型空間光変調素子により任意の入射光に対し任意の光学処理を効率よく施 すことができる。  According to such a configuration, the input side transmission surface transmits incident light incident along the virtual reference straight line and guides the incident light into the coupling prism. The input-side reflecting surface reflects light propagating from the input-side transmitting surface. The bonding surface bonded to the reflective spatial light modulator transmits the light reflected by the input-side reflective surface and propagating through it, and enters the reflective spatial light modulator obliquely as read light. In addition, the reading light modulated by the reflective spatial light modulator and reflected obliquely is transmitted and propagated inside. The output side reflecting surface reflects the reading light propagating from the bonding transmission surface and propagates it as outgoing light. The output side transmission surface outputs outgoing light propagating from the output side reflection surface to the outside along the virtual reference straight line. Therefore, the chief ray of incident light incident on the input-side reflecting surface of the coupling prism and the chief ray of outgoing light emitted from the output-side reflecting surface force are on the same virtual reference line. By using a coupling prism, the entire optical system can be removed from the comparator, and the design, assembly, and adjustment of the optical system can be facilitated. In addition, any optical processing can be efficiently applied to any incident light by the reflective spatial light modulator.
[0055] また、本発明の別の観点では、仮想基準直線に垂直で、仮想基準直線に沿って入 射する入射光を透過させる入力側透過面と、仮想基準直線上に仮想基準直線に対 して所定の角度を成すように設けられ、入力側透過面から内部を伝搬してくる光を全 反射する入力側反射面と、仮想基準直線に対して平行に延び、入力側反射面で反 射され内部を伝搬してくる光を透過させるとともに、外部カゝら入射する光を透過して内 部を伝搬させるための接合透過面と、仮想基準直線上に仮想基準直線に対して所 定の角度を成すように設けられ、接合透過面から内部を伝搬してくる光を全反射し、 出射光として仮想基準直線に沿って内部を伝搬させるための出力側反射面と、仮想 基準直線上に仮想基準直線に対して垂直に設けられ、出力側反射面から仮想基準 直線に沿って内部を伝搬してくる出射光を仮想基準直線に沿って外部へ出力する 出力側透過面と、を備えることを特徴とするカップリングプリズムを提供して ヽる。  [0055] Further, according to another aspect of the present invention, an input side transmission surface that is perpendicular to the virtual reference line and transmits incident light incident along the virtual reference line, and a virtual reference line on the virtual reference line. The input-side reflection surface that totally reflects the light propagating from the input-side transmission surface and extends parallel to the virtual reference line, and is reflected by the input-side reflection surface. Specified with respect to the virtual reference straight line on the virtual reference straight line and the joint transmission surface for transmitting the incident light that propagates inside and transmitting the incident light from the external cover and propagating the inside The output side reflecting surface for totally reflecting the light propagating from the junction transmission surface and propagating the inside along the virtual reference straight line as outgoing light, and on the virtual reference straight line At the output side reflecting surface Ru provide a coupling prism, characterized in that it comprises an output side transmission surface and outputting to the outside along the outgoing light propagated through the inside along an imaginary reference line to a virtual reference line, the.
[0056] 力かる構成のカップリングプリズムは、接合透過面を反射型空間光変調素子に接 合して使用する。入力側透過面は仮想基準直線に沿って入射する入射光を透過さ せる。入力側反射面は入力側透過面から内部を伝搬してくる光を全反射する。接合 透過面は、入力側反射面で反射され内部を伝搬してくる光を透過させて反射型空間 光変調素子に対し読みだし光として斜めに入射させ、かつ、反射型空間光変調素子 で変調され斜めに反射された読みだし光を透過して内部を伝搬させる。出力側反射 面は、接合透過面から内部を伝搬してくる光を全反射し、出射光として仮想基準直 線に沿って内部を伝搬させる。出力側透過面は、出力側反射面から仮想基準直線 に沿って内部を伝搬してくる出射光を仮想基準直線に沿って外部へ出力する。した がって、カップリングプリズムの入力側反射面に入射する入射光の主光線と出力側反 射面から出射する出射光の主光線とが同一の仮想基準直線上になる。入射光と入 射透過面、出射光と出射透過面とが垂直であるので、カップリングプリズム内部の迷 光を低減できる。入力側反射面および出力側反射面では全反射が行われるので、 表面加工が不要となる。カップリングプリズムを用いることにより、光学系全体をコンパ クトイ匕することができ、しかも、光学系の設計、組立、調整が容易になる。さらに、反射 型空間光変調素子により任意の入射光に対し任意の光学処理を効率よく施すことが できる。 [0056] A coupling prism having a powerful structure has a cemented transmission surface in contact with a reflective spatial light modulator. Use together. The input side transmission surface transmits incident light incident along the virtual reference line. The input side reflection surface totally reflects light propagating from the input side transmission surface. Junction The transmission surface transmits the light reflected and propagated by the input-side reflection surface and enters the reflective spatial light modulator at an angle as read light, and is modulated by the reflective spatial light modulator. Then, the reading light reflected obliquely is transmitted and propagated inside. The output-side reflecting surface totally reflects the light propagating from the bonded transmission surface, and propagates the interior along the virtual reference straight line as outgoing light. The output side transmission surface outputs outgoing light propagating from the output side reflection surface along the virtual reference line to the outside along the virtual reference line. Therefore, the principal ray of the incident light incident on the input side reflection surface of the coupling prism and the principal ray of the emission light emitted from the output side reflection surface are on the same virtual reference line. Since the incident light and the incident transmission surface are perpendicular to each other, and the outgoing light and the emission transmission surface are perpendicular to each other, stray light inside the coupling prism can be reduced. Since total reflection is performed on the input-side reflection surface and output-side reflection surface, surface processing is not required. By using a coupling prism, the entire optical system can be compacted, and the design, assembly, and adjustment of the optical system are facilitated. Further, any optical processing can be efficiently performed on any incident light by the reflective spatial light modulator.
また、本発明の別の観点では、第 1〜第 5の側面をこの順に有する 5角柱形状で、 第 1の側面と第 2の側面とが互いに 90° をなして接続し、第 2の側面と第 3の側面と が互いに 90° をなして接続し、第 3の側面と第 4の側面とが互いに 90°— φ 2をなし て接続し、第 4の側面と第 5の側面とが互いに 180° + 1 + 2をなして接続し、第 5 の側面と第 1の側面とが互いに 90°— φ 1をなして接続したカップリングプリズムを用 意し、素子反射面を有する反射型空間光変調素子を、素子反射面が第 2の側面に 対し平行に延びるように、第 2の側面に対し接合し、仮想基準直線が第 1の側面及び 第 5の側面を貫通し、第 5の側面と第 4の側面とが、仮想基準直線に沿って距離しだ け離間し、素子反射面が仮想基準直線から仮想基準直線に対して垂直な方向に距 離 hだけ離間し、第 5の側面と第 4の側面と素子反射面とが、仮想基準直線が延びる 方向に対して、それぞれ、角度 φ 1、 φ 2、 φ 3だけ傾き、距離 L、 h、及び、角度 φ 1、 φ 2、 φ 3とが以下の式(1 ' )及び(2' )を満足するように、カップリングプリズムを仮想 基準直線に対し配置し、 In another aspect of the present invention, the first side surface and the second side surface are connected to each other at a 90 ° angle with a pentagonal prism shape having the first to fifth side surfaces in this order, and the second side surface And the third side are connected to each other at an angle of 90 °, the third side surface and the fourth side surface are connected to each other at an angle of 90 ° —φ2, and the fourth side surface and the fifth side surface are connected to each other. Reflective type with element reflection surface, providing a coupling prism with 180 ° + 1 + 2 connected to each other and the 5th side and 1st side connected to each other at 90 ° -φ1 The spatial light modulation element is joined to the second side so that the element reflection surface extends parallel to the second side, the virtual reference straight line passes through the first side and the fifth side, and the fifth side The side surface of the element and the fourth side surface are separated by a distance along the virtual reference line, and the element reflection surface is separated from the virtual reference line in a direction perpendicular to the virtual reference line. The fifth side surface, the fourth side surface, and the element reflecting surface are inclined with respect to the direction in which the virtual reference straight line extends by angles φ 1, φ 2, and φ 3, respectively, and the distances L, h, and The coupling prism is hypothesized so that the angles φ1, φ2, and φ3 satisfy the following expressions (1 ′) and (2 ′): Arranged against the reference straight line,
[数 23]  [Equation 23]
[数 24] sinC2^, ) sin(2^2 ) [Equation 24] sinC2 ^,) sin (2 ^ 2 )
n = L  n = L
sin(2^ + 2φ2 ) ' ° ' ) 仮想基準直線に沿って第 5の側面に向けて読み出し光を入射させることを特徴とす るカップリングプリズムの使用方法を提供して!/、る。 sin (2 ^ + 2φ 2 ) '°') Provide a method of using a coupling prism, which is characterized by allowing the readout light to enter the fifth side along the virtual reference line! /
[0058] このような方法〖こよると、第 1の側面は、仮想基準直線に沿って入射する入射光を 透過させ入射光をカップリングプリズム内部に導く。第 5の側面は、第 1の側面から内 部を伝搬してくる光を反射する。反射型空間光変調素子に接合された第 2の側面は 、第 5の側面で反射され内部を伝搬してくる光を透過させて、反射型空間光変調素 子に対し読みだし光として斜めに入射させ、かつ、反射型空間光変調素子で変調さ れ斜めに反射された読みだし光を透過して内部を伝搬させる。第 4の側面は、第 2の 側面から内部を伝搬してくる読みだし光を反射して出射光として内部を伝搬させる。 第 3の側面は、第 4の側面力 内部を伝搬してくる出射光を仮想基準直線に沿って 外部へ出力する。したがって、カップリングプリズムの第 1の側面に入射する入射光の 主光線と第 3の側面から出射する出射光の主光線とが同一の仮想基準直線上にな る。カップリングプリズムを用いることにより、光学系全体をコンパクトィ匕することができ 、しかも、光学系の設計、組立、調整が容易になる。さらに、反射型空間光変調素子 により任意の入射光に対し任意の光学処理を効率よく施すことができる。  According to such a method, the first side surface transmits incident light incident along the virtual reference line and guides the incident light into the coupling prism. The fifth side reflects light propagating inward from the first side. The second side surface joined to the reflective spatial light modulator transmits the light reflected and propagated by the fifth lateral surface, and obliquely as read light to the reflective spatial light modulator. The reading light that is incident and modulated by the reflective spatial light modulator and reflected obliquely is transmitted and propagated inside. The fourth side reflects the reading light propagating from the second side and propagates it as outgoing light. The third side outputs the outgoing light propagating inside the fourth side force to the outside along the virtual reference line. Therefore, the principal ray of the incident light incident on the first side surface of the coupling prism and the principal ray of the emitted light emitted from the third side surface are on the same virtual reference line. By using the coupling prism, the entire optical system can be made compact, and the optical system can be easily designed, assembled and adjusted. Furthermore, any optical processing can be efficiently performed on any incident light by the reflective spatial light modulator.
[0059] ここで、カップリングプリズムの屈折率は mであり、素子反射面が大きさ cを備え、第 5の側面が仮想基準直線に対して反射型空間光変調素子力 遠い側の大きさ alと、 反射型空間光変調素子に近い側の大きさ a2とを有し、第 4の側面が仮想基準直線 に対して反射型空間光変調素子から近い側の大きさ b lと、反射型空間光変調素子 に遠 、側の大きさ b2とを有し、素子反射面が第 5の側面で反射された入射光の光軸 に対して第 5の側面に近い側の大きさ c lを有し、反射型空間光変調素子が、 0〜α の範囲の収束角で入射する読みだし光を変調して、その所定の成分を 0〜 βの範囲 の発散角で出射し、反射型空間光変調素子へ入射する読み出し光が収束光の場合 には ocは正の値をとり発散光の場合には OCは負の値をとり、反射型空間光変調素子 から出射する読み出し光の所定の成分が発散光の場合には βは正の値をとり収束 光の場合には 13は負の値をとり、大きさ c l、 al、 a2、 b l、 b2とが以下の式(3 〜 (8')を満足するのが好ましい。 [0059] Here, the refractive index of the coupling prism is m, the element reflection surface has a size c, and the fifth side surface is a reflection-type spatial light modulation element force far away from the virtual reference line. al and the size a2 on the side close to the reflective spatial light modulator, and the fourth side has a size bl on the side close to the reflective spatial light modulator with respect to the virtual reference line, and the reflective space An optical axis of incident light having a size b2 on the side far from the light modulation element and the reflection surface of which is reflected by the fifth side face The reflective spatial light modulation element modulates the reading light incident at a convergence angle in the range of 0 to α, and the predetermined component is obtained. If the readout light that is emitted with a divergence angle in the range of 0 to β and enters the reflective spatial light modulator is convergent light, oc takes a positive value, and if it is divergent light, OC takes a negative value. When the predetermined component of the readout light emitted from the reflective spatial light modulator is divergent light, β takes a positive value, and in the case of convergent light, 13 takes a negative value, and the magnitudes cl, al, It is preferable that a2, bl and b2 satisfy the following expressions (3 to (8 ′).
[数 25]  [Equation 25]
[数 26][Equation 26]
[数 27] [Equation 27]
[数 28][Equation 28]
[数 29][Equation 29]
[数 30] ≥。2 cos φχ + b cos 2 ( 8 ' ) [Equation 30] ≥. 2 cos φχ + b cos 2 (8 ')
[0060] このような構成によると、大きさ cを備える前記素子反射面に対して 0〜 αの範囲の 収束角で入射する入射光の全てが第 5の側面によって反射され、第 5の側面で反射 された入射光の全てが読みだし光として反射型空間光変調素子の素子反射面によ つて反射され、素子反射面によって反射され反射型空間光変調素子で変調された 読みだし光のうち 0〜 βの範囲の発散角で反射型空間光変調素子より出射する成分 の全てが、第 4の側面によって反射される。従って、光の全てを素子反射面全体に入 射させることを可能とし、光の利用効率をより高めることが可能となる。し力も、第 5の 側面と第 4の側面とが重ならないことが確保される。なお、特に式 (4Ί〜(7Ίの等号 が成立する場合には、発散角が βより大きい成分を不要成分として除去することがで きる。 According to such a configuration, all of incident light incident at a convergence angle in the range of 0 to α with respect to the element reflecting surface having the size c is reflected by the fifth side surface, and the fifth side surface All of the incident light reflected by the light is reflected by the element reflection surface of the reflective spatial light modulation element as readout light, and is reflected by the element reflection surface and modulated by the reflective spatial light modulation element. All components emitted from the reflective spatial light modulator with a divergence angle in the range of 0 to β are reflected by the fourth side surface. Accordingly, it is possible to make all of the light incident on the entire element reflection surface, and it is possible to further improve the light use efficiency. Also, it is ensured that the fifth side and the fourth side do not overlap. In particular, when the equation (4Ί ~ (7Ί equality) holds, components with a divergence angle greater than β can be removed as unnecessary components.
[0061] ここで、前記所定の成分とは 1以上 η (ηは 0より大きい自然数)以下の回折次数の回 折成分であり、 α及び )8が、入射光の波長え、及び、反射型空間光変調素子に表 示可能な最小の格子パターンの格子定数 dに対して、以下の式(9Ί及び(1(Τ )を満 足することが好ましい。  [0061] Here, the predetermined component is a diffraction component having a diffraction order of 1 or more and η (η is a natural number greater than 0) or less, α and) 8 are the wavelength of incident light and the reflection type It is preferable that the following expressions (9Ί and (1 (Τ)) are satisfied for the lattice constant d of the smallest lattice pattern that can be displayed on the spatial light modulator.
[数 31] [Equation 31]
[数 32] [Equation 32]
[0062] 反射型空間光変調素子で回折された変調読みだし光のうち、少なくとも 1次以上 η 次以下の回折光の全てが第 4の側面によって反射されることが確保される。なお、特 に式 (4Ί〜(7Ίの等号が成立する場合には、 (η+ 1)次以上の回折光を不要成分 として除去することができる。 [0063] また、本発明の別の観点では、第 1の側面、第 2の側面、第 3の側面,第 4の側面、 及び、第 5の側面をこの順に有する 5角柱形状をなし、第 1の側面と第 2の側面とが互 いに 90° をなして接続し、第 2の側面と第 3の側面とが互いに 90° をなして接続し、 第 3の側面と第 4の側面とが互いに 90° - φ 2をなして接続し、第 4の側面(57)と第 5 の側面(55)とが互いに 180° + 1 + 2をなして接続し、第 5の側面(55)と第 1の 佃 J面(54)と力互!/、に 90 φ 1をなして接続し、 φ 1、 φ 2力O0 < 1 < 90° 、0。 < φ 2く 90° を満足することを特徴とする、カップリングプリズムを提供している。 [0062] Of the modulated read light diffracted by the reflective spatial light modulator, it is ensured that all of the diffracted light of at least the first order and the η order is reflected by the fourth side face. In particular, when the equations (4Ί to (7Ί) are satisfied, diffracted light of (η + 1) order or higher can be removed as an unnecessary component. [0063] Further, in another aspect of the present invention, a pentagonal prism shape having a first side, a second side, a third side, a fourth side, and a fifth side in this order is provided. The first side and the second side are connected at 90 ° to each other, the second side and the third side are connected at 90 ° to each other, and the third side and the fourth side are connected. And the fourth side surface (57) and the fifth side surface (55) are connected to each other at 180 ° + 1 + 2, and the fifth side surface (55 ) And the first 佃 J plane (54) are connected to each other with a force of 90 φ1, φ1, φ2 force O 0 <1 <90 °, 0. <Coupling prisms characterized by satisfying φ 2 <90 °.
[0064] 力かる構造のカップリングプリズムに対し、素子反射面を有する反射型空間光変調 素子を、素子反射面が第 2の側面に対し平行に延びるように、第 2の側面に対し接合 し、仮想基準直線が第 1の側面及び第 5の側面を貫通し、第 5の側面と第 4の側面と 力 仮想基準直線に沿って距離 Lだけ離間し、素子反射面が仮想基準直線から仮想 基準直線に対して垂直な方向に距離 hだけ離間し、第 5の側面と第 4の側面と素子反 射面とが、仮想基準直線が延びる方向に対して、それぞれ、角度 Φ 1、 φ 2、 φ 3だけ 傾き、距離 L、h、及び、角度 φ 1、 φ 2、 φ 3とが以下の式(1 ' )及び (2' )を満足する ように、カップリングプリズムを仮想基準直線に対し配置することが好ま 、。  [0064] A reflective spatial light modulation element having an element reflecting surface is bonded to the coupling prism having a powerful structure with respect to the second side surface so that the element reflecting surface extends parallel to the second side surface. The virtual reference line passes through the first side surface and the fifth side surface, and the fifth side surface and the fourth side surface are separated from each other by a distance L along the virtual reference line, and the element reflection surface is virtual from the virtual reference line. The fifth side surface, the fourth side surface, and the element reflecting surface are separated by a distance h in a direction perpendicular to the reference straight line, and the angles Φ 1 and φ 2 are respectively relative to the direction in which the virtual reference straight line extends. , Φ3 only Inclination, distance L, h, and angles φ1, φ2, φ3 satisfy the following formulas (1 ') and (2') so that the coupling prism is a virtual reference line Preferable to place against.
[数 33]  [Equation 33]
[数 34][Equation 34]
,ヮー) , ヮ ー)
[0065] 仮想基準直線に沿って第 5の側面に向けて読み出し光を入射させると、第 1の側面 は、仮想基準直線に沿って入射する入射光を透過させ入射光をカップリングプリズム 内部に導く。第 5の側面は、第 1の側面から内部を伝搬してくる光を反射する。反射 型空間光変調素子に接合された第 2の側面は、第 5の側面で反射され内部を伝搬し てくる光を透過させて、反射型空間光変調素子に対し読みだし光として斜めに入射 させ、かつ、反射型空間光変調素子で変調され斜めに反射された読みだし光を透過 して内部を伝搬させる。第 4の側面は、第 2の側面から内部を伝搬してくる読みだし光 を反射して出射光として内部を伝搬させる。第 3の側面は、第 4の側面から内部を伝 搬してくる出射光を仮想基準直線に沿って外部へ出力する。したがって、カップリン グプリズムの第 1の側面に入射する入射光の主光線と第 3の側面から出射する出射 光の主光線とが同一の仮想基準直線上になる。カップリングプリズムを用いることによ り、光学系全体をコンパクトィ匕することができ、し力も、光学系の設計、組立、調整が 容易になる。さらに、反射型空間光変調素子により任意の入射光に対し任意の光学 処理を効率よく施すことができる。 [0065] When the readout light is incident on the fifth side surface along the virtual reference line, the first side surface transmits the incident light incident along the virtual reference line and transmits the incident light inside the coupling prism. Lead. The fifth side reflects light propagating from the first side. The second side surface joined to the reflective spatial light modulator transmits the light reflected by the fifth lateral surface and propagates inside, and enters the reflective spatial light modulator obliquely as read light. Transmitting the reading light modulated by the reflective spatial light modulator and reflected obliquely And propagate inside. The fourth side reflects the reading light propagating from the second side and propagates it as outgoing light. The third side outputs the outgoing light transmitted from the fourth side to the outside along the virtual reference line. Therefore, the chief ray of incident light incident on the first side surface of the coupling prism and the chief ray of outgoing light emitted from the third side surface are on the same virtual reference line. By using the coupling prism, the entire optical system can be made compact, and the design, assembly and adjustment of the optical system can be facilitated. Furthermore, any optical processing can be efficiently performed on any incident light by the reflective spatial light modulator.
図面の簡単な説明 Brief Description of Drawings
[図 1]は従来の光学処理装置 (パターン形成光学系)の構成を示す図である。 FIG. 1 is a diagram showing a configuration of a conventional optical processing apparatus (pattern forming optical system).
[図 2]は従来の別の光学処理装置 (4f光学系)の構成を示す図である。 FIG. 2 is a diagram showing a configuration of another conventional optical processing apparatus (4f optical system).
[図 3]は図 2の 4f光学系を改良して得られる 4f光学系の構成を示す図である。 FIG. 3 is a diagram showing a configuration of a 4f optical system obtained by improving the 4f optical system of FIG.
[図 4]は、図 3の光学処理装置における反射型 SLMの位置調整において生じる問題 を説明する図である。 FIG. 4 is a diagram for explaining a problem that occurs in the position adjustment of the reflective SLM in the optical processing apparatus of FIG.
[図 5]は、図 3の 4f光学系を応用して得られる別の 4f光学系の構成を示す図である。  FIG. 5 is a diagram showing a configuration of another 4f optical system obtained by applying the 4f optical system of FIG.
[図 6]は、第 1の実施の形態にかかる、空間光変調装置の構成を示す図である。 FIG. 6 is a diagram showing a configuration of a spatial light modulation device according to the first embodiment.
[図 7]は、第 1の実施の形態にかかる、空間光変調装置に設けられた反射型 SLMの 構成を示す図である。 FIG. 7 is a diagram showing a configuration of a reflective SLM provided in the spatial light modulation device according to the first embodiment.
[図 8]は、図 6の空間光変調装置における読み出し光の主光線と反射型 SLMと 2つ のミラーとの位置関係を示す図である。  FIG. 8 is a diagram showing the positional relationship between the chief ray of readout light, the reflective SLM, and two mirrors in the spatial light modulation device of FIG.
[図 9]は、図 6の空間光変調装置における読み出し光が反射される状態を示す図であ る。  FIG. 9 is a diagram illustrating a state in which readout light is reflected in the spatial light modulation device in FIG.
[図 10]は、図 6の空間光変調装置において入力光ビームの主光線及び辺縁光線が 入力側反射面において反射される状態を示す図である。  FIG. 10 is a diagram showing a state in which the principal ray and the marginal ray of the input light beam are reflected on the input side reflection surface in the spatial light modulation device of FIG.
[図 11]は、図 6の空間光変調装置において出力光ビームの主光線及び辺縁光線が 出力側反射面において反射される状態を示す図である。  FIG. 11 is a diagram showing a state in which the principal ray and the marginal ray of the output light beam are reflected on the output side reflection surface in the spatial light modulation device of FIG.
[図 12]は、図 6の空間光変調装置における各反射面での反射を展開した直線光路図 である。 [図 13]は、図 6の空間光変調装置を採用した光学処理装置 (4f光学系)の構成を示 す図である。 [FIG. 12] is a straight light path diagram in which reflections at the respective reflecting surfaces in the spatial light modulator of FIG. 6 are developed. FIG. 13 is a diagram showing a configuration of an optical processing apparatus (4f optical system) that employs the spatial light modulator of FIG.
[図 14]は、図 13の光学処理装置における反射型 SLMの位置調整を説明する図であ る。  FIG. 14 is a view for explaining the position adjustment of the reflective SLM in the optical processing apparatus of FIG.
[図 15]は、第 2の実施の形態にかかる、空間光変調装置の構成を示す図である。  FIG. 15 is a diagram illustrating a configuration of a spatial light modulation device according to a second embodiment.
[図 16]は、図 15の空間光変調装置を採用した光学処理装置 (波形成形光学系)の 構成を示す図である。 FIG. 16 is a diagram showing a configuration of an optical processing device (waveform shaping optical system) that employs the spatial light modulation device of FIG.
[図 17]は、図 15の空間光変調装置を採用した別の光学処理装置 (4f光学系)の構成 を示す図である。  FIG. 17 is a diagram showing a configuration of another optical processing device (4f optical system) that employs the spatial light modulator of FIG.
[図 18]は、図 15の空間光変調装置を採用した別の光学処理装置 (4f光学系)の構成 を示す図である。  FIG. 18 is a diagram showing a configuration of another optical processing device (4f optical system) that employs the spatial light modulator of FIG.
[図 19]は、図 15の空間光変調装置を採用した別の光学処理装置 (波面補償光学系 )の構成を示す図である。  FIG. 19 is a diagram showing a configuration of another optical processing device (wavefront compensation optical system) that employs the spatial light modulation device of FIG.
[図 20]は、第 3の実施の形態にかかる、空間光変調装置の構成を示す図である。  FIG. 20 is a diagram showing a configuration of a spatial light modulation device according to a third embodiment.
[図 21]は、第 4の実施の形態にかかる、空間光変調装置の構成を示す図である。 圆 22]は、変更例に係る空間光変調装置における反射型 SLMと入力側反射面と出 力側反射面との位置関係を示す図である。 FIG. 21 is a diagram showing a configuration of a spatial light modulation device according to a fourth embodiment. FIG. 22] is a diagram showing a positional relationship among the reflective SLM, the input-side reflection surface, and the output-side reflection surface in the spatial light modulation device according to the modified example.
符号の説明 Explanation of symbols
1空間光変調装置  1 Spatial light modulator
3ミラー 3 mirrors
5反射型 SLM 5 reflective SLM
5c素子反射面 5c element reflection surface
7ミラー 7 mirrors
9仮想基準直線  9 virtual reference line
30空間光変調装置 30 spatial light modulator
32プリズム 32 prisms
40空間光変調装置 40 spatial light modulator
42プリズム 50空間光変調装置 52カップリングプリズム 60光学処理装置 62レーザ 42 prism 50 Spatial light modulator 52 Coupling prism 60 Optical processor 62 Laser
80光学処理装置 81光源 80 Optical processing equipment 81 Light source
82コリメートレンズ 84入力面  82 Collimating lens 84 Input surface
86フーリエ変換レンズ 88フーリエ変換レンズ 90出力面  86 Fourier transform lens 88 Fourier transform lens 90 Output surface
91光軸 91 optical axes
92光軸 92 optical axes
100光学処理装置 200光学処理装置 300光学処理装置 302入力面  100 optical processor 200 optical processor 300 optical processor 302 input surface
312ビームサンプラー 314波面センサ 316制御装置 312 beam sampler 314 wavefront sensor 316 controller
318出力面 318 output surface
Ml入力側反射面 M2出力側反射面 P1入力側透過面 P2接合透過面 P3出力側透過面 I 入力光学系 o 出力光学系 R 平行光投光光学系 Ml Input side reflection surface M2 Output side reflection surface P1 Input side transmission surface P2 Joint transmission surface P3 Output side transmission surface I Input optical system o Output optical system R Parallel light projection optics
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0068] 本発明の実施の形態による空間光変調装置、光学処理装置、カップリングプリズム 、及び、カップリングプリズムの使用方法について、図面を参照して説明する。  A spatial light modulation device, an optical processing device, a coupling prism, and a method of using the coupling prism according to an embodiment of the present invention will be described with reference to the drawings.
[0069] 本発明の第 1の実施の形態による空間光変調装置 1について、図 6乃至図 12に基 づき説明する。  [0069] The spatial light modulation device 1 according to the first embodiment of the present invention will be described with reference to Figs.
[0070] 図 6に示すように、第 1の実施の形態による空間光変調装置 1は、ミラー 3、反射型 空間光変調素子 5 (以下、反射型 SLM5という)、及び、ミラー 7を有している。  As shown in FIG. 6, the spatial light modulation device 1 according to the first embodiment includes a mirror 3, a reflective spatial light modulator 5 (hereinafter referred to as a reflective SLM5), and a mirror 7. ing.
[0071] 反射型 SLM5は、所定の仮想基準直線 9から仮想基準直線 9に対して垂直な方向 にずれた位置に配置されている。反射型 SLM5は、変調部 5aとミラー層 5bとアドレス 部 5dとを備えている。ミラー層 5bの変調部 5a側の面が素子反射面 5cを規定してい る。反射型 SLM5は、変調部 5aが仮想基準直線 9に対向する向きに配置されている  The reflective SLM 5 is arranged at a position shifted from the predetermined virtual reference line 9 in a direction perpendicular to the virtual reference line 9. The reflective SLM 5 includes a modulation unit 5a, a mirror layer 5b, and an address unit 5d. The surface on the modulation section 5a side of the mirror layer 5b defines the element reflection surface 5c. In the reflective SLM5, the modulation unit 5a is arranged so as to face the virtual reference straight line 9.
[0072] ミラー 3、 7は、共に、仮想基準直線 9上に配置されて 、る。ミラー 3、 7は、共に、仮 想基準直線 9に対して斜めに配置されている。より詳しくは、ミラー 3、 7は、仮想基準 直線 9上に、「ハ」の字形状に配置されている。ミラー 3は入力側反射面 Mlを有し、ミ ラー 7は出力側反射面 M2を有している。入力側反射面 Mlには、読み出し光が図示 しない入力側光学系から仮想基準直線 9に沿って入力ビームとして入射してくる。す なわち、入力ビームの主光線 (光軸) 11は仮想基準直線 9に沿って進んでくる。入力 側反射面 Mlは、読み出し光を反射型 SLM5へ反射する。反射型 SLM5に入射した 読み出し光は、変調部 5aを伝搬する際変調され、素子反射面 5cにて反射され、変 調部 5aを再び伝搬してさらに変調された後、反射型 SLM5から出射する。読み出し 光は出力側反射面 M2で反射され、出力ビームとして仮想基準直線 9に沿って進み 空間光変調装置 1から出射し、図示しない出力側光学系へ出力される。こうして、出 力ビームの主光線 (光軸) 17も仮想基準直線 9に沿って進む。なお、入力ビーム主光 線 11及び出力ビーム主光線 17が通る経路を空間光変調装置 1における光軸と定義 する。また、入力側反射面 Ml、反射型 SLM5、及び、出力側反射面 M2の反射によ る読み出し光の光軸の角度変化は全て図 6の紙面内で起こり、紙面に垂直な方向へ の光軸の角度変化はないものとする。 The mirrors 3 and 7 are both arranged on the virtual reference straight line 9. The mirrors 3 and 7 are both arranged obliquely with respect to the virtual reference straight line 9. More specifically, the mirrors 3 and 7 are arranged in a “C” shape on the virtual reference straight line 9. The mirror 3 has an input side reflection surface Ml, and the mirror 7 has an output side reflection surface M2. Read light enters the input side reflecting surface Ml as an input beam along a virtual reference line 9 from an input side optical system (not shown). That is, the principal ray (optical axis) 11 of the input beam travels along the virtual reference line 9. The input side reflection surface Ml reflects the readout light to the reflective SLM5. The readout light incident on the reflective SLM5 is modulated when propagating through the modulator 5a, reflected by the element reflecting surface 5c, propagated again through the modulator 5a, further modulated, and then emitted from the reflective SLM5. . The readout light is reflected by the output-side reflecting surface M2, travels along the virtual reference line 9 as an output beam, exits from the spatial light modulator 1, and is output to an output-side optical system (not shown). In this way, the principal ray (optical axis) 17 of the output beam also travels along the virtual reference line 9. A path along which the input beam principal ray 11 and the output beam principal ray 17 pass is defined as the optical axis in the spatial light modulator 1. In addition, the angle change of the optical axis of the readout light due to the reflection on the input side reflection surface Ml, reflection type SLM5, and output side reflection surface M2 all occurs within the paper surface of FIG. It is assumed that there is no change in the angle of the optical axis.
[0073] 反射型 SLM5が、例えば、光アドレス型の平行配向型ネマッティック液晶空間光変 調 (Parallel— Aligned nematic― Licuid― cnstal Spaciai Light Modula tor:以下、 PAL— SLMという)である場合には、図 7に示すように、変調部 5aは、水 平配向状態のネマティック液晶層 500,透明電極 501,及び、透明基板 502からなる 。ミラー層 5bは多層膜誘電体層 503からなる。多層膜誘電体層 503の液晶層 500側 の面が素子反射面 5cを規定する。アドレス部 5dは、光導電層 504,透明電極 505, 及び、透明基板 506からなる。所望の強度分布を有する強度変調光が透明基板 50 6と透明電極 505とを介して光導電層 504に照射されると、液晶層 500の屈折率分布 が変化する。読み出し光は、透明基板 502及び透明電極 501を介して液晶層 500に 入射し、液晶層 500にて位相変調されて多層膜誘電体層 503にて反射される。こうし て、読み出し光は、所望の強度分布に対応する位相分布を有する位相変調光に変 換され、反射型 SLM5から出射する。この場合、液晶層 500は読み出し光の位相の みを変調することができる。  [0073] When the reflective SLM5 is, for example, a parallel-aligned nematic liquid crystal spatial light modulation (Parallel-Aligned nematic-Licuid-cnstal Spaciai Light Modula tor: hereinafter referred to as PAL-SLM), As shown in FIG. 7, the modulation section 5a includes a nematic liquid crystal layer 500 in a horizontal alignment state, a transparent electrode 501, and a transparent substrate 502. The mirror layer 5b is composed of a multilayer dielectric layer 503. The surface on the liquid crystal layer 500 side of the multilayer dielectric layer 503 defines the element reflecting surface 5c. The address portion 5d includes a photoconductive layer 504, a transparent electrode 505, and a transparent substrate 506. When intensity modulated light having a desired intensity distribution is applied to the photoconductive layer 504 through the transparent substrate 506 and the transparent electrode 505, the refractive index distribution of the liquid crystal layer 500 changes. The readout light enters the liquid crystal layer 500 through the transparent substrate 502 and the transparent electrode 501, is phase-modulated by the liquid crystal layer 500, and is reflected by the multilayer dielectric layer 503. Thus, the readout light is converted into phase-modulated light having a phase distribution corresponding to a desired intensity distribution, and is emitted from the reflective SLM5. In this case, the liquid crystal layer 500 can only modulate the phase of the readout light.
[0074] 例えば、図 7に示すように、反射型 SLM5のアドレス部 5dに対向して、リレーレンズ 540、液晶ディスプレイ(以下、 LCDという) 530、コリメートレンズ 520、及び、書き込 み用光源 510を配置しても良 ヽ。書き込み用光源 510は一様な強度分布を有する書 き込み光を出射する。コリメートレンズ 520は書き込み光を平行光に変換する。 LCD 530は透過型の電気アドレス型強度変調型空間光変調器である。 LCD530は、図 示しな ヽ制御部から入力される信号によって電気アドレス駆動され、入射した平行光 を所望の強度分布を有する強度変調光に変換する。リレーレンズ 540は強度変調光 を反射型 SLM5に結像する。  For example, as shown in FIG. 7, a relay lens 540, a liquid crystal display (hereinafter referred to as LCD) 530, a collimator lens 520, and a writing light source 510 are opposed to the address part 5d of the reflective SLM5. It is okay to place it. The writing light source 510 emits writing light having a uniform intensity distribution. The collimating lens 520 converts writing light into parallel light. The LCD 530 is a transmissive electric address type intensity modulation type spatial light modulator. The LCD 530 is electrically addressed by a signal input from a control unit (not shown), and converts the incident parallel light into intensity modulated light having a desired intensity distribution. The relay lens 540 forms an image of the intensity-modulated light on the reflective SLM5.
[0075] なお、反射型 SLM5、書き込み用光源 510、コリメートレンズ 520、 LCD530、及び 、リレーレンズ 540を、筐体内に収納し位相変調モジュール 6として構成しても良い。 この場合、位相変調モジュール 6をミラー 3, 7に対して図 7に示すように配置すること により、反射型 SLM5とミラー 3, 7との位置関係を図 6に示して説明したものと同一と することができる。  Note that the reflective SLM 5, the writing light source 510, the collimating lens 520, the LCD 530, and the relay lens 540 may be housed in a housing and configured as the phase modulation module 6. In this case, by arranging the phase modulation module 6 with respect to the mirrors 3 and 7 as shown in FIG. 7, the positional relationship between the reflective SLM5 and the mirrors 3 and 7 is the same as that shown in FIG. can do.
[0076] なお、位相変調モジュール 6として、例えば、電気アドレス型液晶位相変調モジユー ル「SLMX7550」(商品名、浜松ホトニタス株式会社製)を使用することができる。 As the phase modulation module 6, for example, an electrical address type liquid crystal phase modulation module is used. "SLMX7550" (trade name, manufactured by Hamamatsu Photonics Co., Ltd.) can be used.
[0077] 次に図 8を参照しながら、入力側反射面 Ml、素子反射面 5c、出力側反射面 M2の 具体的な配置関係を説明する。なお、図 8では、明瞭ィ匕を図るため、反射型 SLM5 のうちミラー層 5bのみを図示し変調部 5a及びアドレス部 5dの図示を省略している。 Next, a specific arrangement relationship among the input side reflection surface Ml, the element reflection surface 5c, and the output side reflection surface M2 will be described with reference to FIG. In FIG. 8, for the sake of clarity, only the mirror layer 5b of the reflective SLM 5 is shown, and the modulation unit 5a and the address unit 5d are not shown.
[0078] 図 8に示すように、入力主光線 11が入力側反射面 Mlに入射する点を点 A、入力 側反射面 Mlで反射した光の主光線が反射型 SLM5に入射する点を点 C、反射型 S LM5で変調され素子反射面 5cにて反射した光の主光線が出力側反射面 M2に入 射する点を点 Bとする。点 Aと点 Bとを結ぶ直線 A—Bは仮想基準直線 9上に位置し ている。入力側反射面 Mlは仮想基準直線 9に対して角度 φ 1をなす方向に延びて いる。出力側反射面 M2は仮想基準直線 9に対して角度 φ 2をなす方向に延びてい る。素子反射面 5cは仮想基準直線 9に対して角度 φ 3をなす方向に延びている。な お、 φ 1及び φ 3は、図 8において、仮想基準直線 9から反時計方向に正の値を採る 。また、 φ 2は、図 8において、仮想基準直線 9から時計方向に正の値を採る。 φ 1、 φ 2は、 0° < 1 < 90° 、 0。 く φ 2< 90° を満足している。すなわち、入力側反 射面 Ml及び出力側反射面 M2は仮想基準直線 9に対して斜めに延びている。素子 反射面 5cは仮想基準直線 9に対して斜めもしくは平行に延びている。また、入力側 反射面 Mlの両端を点 Al、点 A2とする。点 Al、点 A2のうち、点 A2は仮想基準直 線 9より反射型 SLM5側に位置する。点 A1は仮想基準直線 9より反射型 SLM5とは 反対側に位置している。線分 Al— A2の長さを a、線分 A— A1の長さを al、線分 A A2の長さを a2とする。出力側反射面 M2の両端を点 Bl、点 B2とする。点 Bl、点 B 2のうち、点 B1は仮想基準直線 9より反射型 SLM5側に位置し、点 B2は仮想基準直 線 9より反射型 SLM5とは反対側に位置している。線分 B1— B2の長さを b、線分 B— B1の長さを bl、線分 B— B2の長さを b2とする。素子反射面 5cの 2つの端点を点 C1 、点 C2とする。点 C1は、出力側反射面 M2より入力反射面 Mlに近い側に位置し、 点 C2は入力反射面 Mlより出力側反射面 M2に近 、側に位置して 、る。線分 C1 C2の長さ(すなわち、反射型 SLM5の有効口径)を c、線分 C C1の長さを cl、線 分 C— C2の長さを c2とする。さらに、点 C力も線分 A— Bへの垂線の足を点 D、垂線 C Dの長さを h、線分 A—Bの長さを Lとする。 [0079] 本実施の形態では、角度 φ 1、 φ 2、 φ 3と長さ L、 hとは、以下の関係(1) (2)を有し ている。 [0078] As shown in FIG. 8, the point where the input chief ray 11 is incident on the input side reflecting surface Ml is a point A, and the point where the chief ray of the light reflected by the input side reflecting surface Ml is incident on the reflective SLM5 is a point. C, reflection type S The point where the principal ray of the light modulated by the LM5 and reflected by the element reflection surface 5c is incident on the output-side reflection surface M2 is point B. A straight line A—B connecting points A and B is located on the virtual reference line 9. The input-side reflecting surface Ml extends in a direction that forms an angle φ 1 with respect to the virtual reference line 9. The output-side reflecting surface M2 extends in a direction that forms an angle φ 2 with respect to the virtual reference line 9. The element reflecting surface 5c extends in a direction that forms an angle φ 3 with respect to the virtual reference line 9. Φ 1 and φ 3 take positive values counterclockwise from the virtual reference line 9 in FIG. Also, φ 2 takes a positive value in the clockwise direction from the virtual reference line 9 in FIG. φ 1 and φ 2 are 0 ° <1 <90 ° and 0. Φ 2 <90 ° is satisfied. That is, the input-side reflecting surface Ml and the output-side reflecting surface M2 extend obliquely with respect to the virtual reference straight line 9. The element reflecting surface 5c extends obliquely or parallel to the virtual reference line 9. Also, let both ends of the input-side reflection surface Ml be point Al and point A2. Of point Al and point A2, point A2 is located on the reflective SLM5 side from the virtual reference line 9. Point A1 is located on the opposite side of reflective SLM5 from virtual reference line 9. The length of line segment Al—A2 is a, the length of line segment A—A1 is al, and the length of line segment A A2 is a2. Both ends of the output-side reflecting surface M2 are point Bl and point B2. Of point Bl and point B2, point B1 is located on the reflective SLM5 side from the virtual reference line 9, and point B2 is located on the opposite side of the reflective reference SLM5 from the virtual reference line 9. The length of line B1-B2 is b, the length of line B-B1 is bl, and the length of line B-B2 is b2. The two end points of the element reflecting surface 5c are point C1 and point C2. Point C1 is located closer to the input reflecting surface Ml than the output reflecting surface M2, and point C2 is located closer to and closer to the output reflecting surface M2 than the input reflecting surface Ml. The length of the line segment C1 C2 (that is, the effective diameter of the reflective SLM5) is c, the length of the line segment C C1 is cl, and the length of the line segment C-C2 is c2. In addition, the point C force is also the point D of the perpendicular line to the segment A—B, the length of the perpendicular CD h, and the length of the segment A—B L. [0079] In the present embodiment, the angles φ1, φ2, and φ3 and the lengths L and h have the following relationships (1) and (2).
[数 35] 3 = φι - φ2 ( 1 ) 及び [ Equation 35] 3 = φ ι2 (1) and
[数 36] [Equation 36]
[0080] 上記関係(1) (2)が満足されているため、入力側反射面 Mlに入射する入力主光 線 11が仮想基準直線 9に沿って進むのみならず、出力側反射面 M2で反射した出 力主光線 17も仮想基準直線 9に沿って進むことが確保されている。換言すれば、出 力主光線 17は入力主光線 11の延長線上に位置すること(条件 1 )が確保されて!、る [0080] Since the above relations (1) and (2) are satisfied, the input main light beam 11 incident on the input-side reflecting surface Ml not only travels along the virtual reference line 9, but also on the output-side reflecting surface M2. It is ensured that the reflected output principal ray 17 also travels along the virtual reference line 9. In other words, it is ensured that the output chief ray 17 is located on the extension of the input chief ray 11 (condition 1)!
[0081] ここで、図 9に示すように、読み出し光 (入力光ビーム)は、図示しない入力光学系 から、仮想基準直線 9に沿って、 0から αの範囲の収束角にて入射してくるとする。な お、入力光ビームが収束光の場合 aは正の値をとり、発散光の場合 aは負の値をと る。また、読み出し光 (入力光ビーム)の反射型 SLM5に入射する際のビーム径は、 素子反射面 5cの長さ cに等しいとする。また、反射型 SLM5で変調され素子反射面 5 cにて反射された読み出し光が反射型 SLM5から出射する。この読み出し光のうち、 所望の成分 (すなわち、空間光変調装置 1から出力させたい所望の成分)が、 0から の範囲の発散角にて出力光ビームとして出射するとする。なお、出力光ビームが 発散光の場合 βは正の値をとり、収束光の場合には βは負の値をとる。なお、 aと β の絶対値は十分小さぐ反射型 SLM5近くでの光の集光 ·発散による光ビームの断 面形状の変化は無視できるとする。したがって、入力光ビームの素子反射面 5c近く での素子反射面 5cに沿った長さが素子反射面 5cの長さ cに略等しいだけでなぐ出 力光ビームの素子反射面 5c近くでの素子反射面 5cに沿った長さも素子反射面 5cの 長さ cに略等しいとする。なお、図 9でも、図 8同様、明瞭ィ匕を図るため、反射型 SLM 5のうちミラー層 5bのみを図示し変調部 5a及びアドレス部 5dの図示を省略している。 Here, as shown in FIG. 9, the readout light (input light beam) is incident from a not-shown input optical system along the virtual reference line 9 at a convergence angle ranging from 0 to α. I will come. When the input light beam is convergent light, a takes a positive value, and when it is divergent light, a takes a negative value. Further, it is assumed that the beam diameter when the reading light (input light beam) enters the reflective SLM 5 is equal to the length c of the element reflecting surface 5c. Further, the readout light modulated by the reflective SLM5 and reflected by the element reflecting surface 5c is emitted from the reflective SLM5. It is assumed that a desired component (that is, a desired component desired to be output from the spatial light modulator 1) out of the readout light is emitted as an output light beam at a divergence angle in a range from 0 to 0. Note that β takes a positive value when the output light beam is divergent light, and β takes a negative value when the output light beam is convergent light. It is assumed that the absolute values of a and β are sufficiently small, and the change in the cross-sectional shape of the light beam due to the light converging / diverging near the reflective SLM5 is negligible. Therefore, the length of the input light beam along the element reflection surface 5c near the element reflection surface 5c is substantially equal to the length c of the element reflection surface 5c. It is assumed that the length along the element reflection surface 5c near the element reflection surface 5c of the force light beam is substantially equal to the length c of the element reflection surface 5c. In FIG. 9, as in FIG. 8, for the sake of clarity, only the mirror layer 5b of the reflective SLM 5 is shown, and the modulation unit 5a and the address unit 5d are not shown.
[0082] 本実施の形態では、角度 φ 1、 φ2と、長さ c, cl, h、al, a2、 bl, b2, L (図 8)とは 、収束角 αと発散角 βとに対し、以下の関係(3)〜(8)を有している。 [0082] In this embodiment, the angles φ1, φ2 and the lengths c, cl, h, al, a2, bl, b2, L (Fig. 8) are as follows: The following relationships (3) to (8) are satisfied.
[数 37]  [Equation 37]
(3) (3)
[数 38] h [Equation 38] h
。ι≥ (4)  . ι≥ (4)
sin 一 a)  sin one a)
[数 39] h [Equation 39] h
sincr + (c— c sin ( + φι + )  sincr + (c— c sin (+ φι +)
sin(2i¾)  sin (2i¾)
«2 (5)  "twenty five)
sin^ + )  sin ^ +)
[数 40] [Equation 40]
[数 41] h [Equation 41] h
sin(2^2) (7) sin (2 ^ 2 ) (7)
sin(¾zS2 - β) sin (¾zS 2 -β)
[数 42] [Number 42]
[0083] ここで、入力光ビームの最外部を規定する光線を入力辺縁光線 13、 15とする。入 力辺縁光線 13、 15は、入力主光線 11に対して収束角 αをなす方向に伝搬する。入 力光は入力主光線 11 (光軸)に対して対称であるため、入力辺縁光線 13と 15の強 度は互いに等しい。すなわち、入力辺縁光線 13と 15の強度は入力主光線 11の強 度の所定の割合の大きさである。また、出力光ビームの最外部を規定する光線を出 力辺縁光線 19、 21とする。出力光ビームは出力主光線 17 (光軸)に対して対称であ る。出力辺縁光線 19、 21は、出力主光線 17に対して発散角 |8をなす方向に伝搬す る。 Here, light rays that define the outermost part of the input light beam are input edge light rays 13 and 15. Enter The force edge rays 13 and 15 propagate in a direction that forms a convergence angle α with respect to the input principal ray 11. Since the input light is symmetric with respect to the input chief ray 11 (optical axis), the intensities of the input marginal rays 13 and 15 are equal to each other. That is, the intensity of the input marginal rays 13 and 15 is a predetermined proportion of the intensity of the input principal ray 11. The light rays that define the outermost part of the output light beam are output edge light rays 19 and 21. The output light beam is symmetric with respect to the output chief ray 17 (optical axis). The output marginal rays 19 and 21 propagate in a direction that forms a divergence angle | 8 with respect to the output principal ray 17.
[0084] 本実施の形態では、式(3)〜式 (8)を満足しているため、図 10に示すように、入力 主光線 11は、ミラー 3上の点 Αで反射されて反射型 SLM5の点 Cに至る。入力辺縁 光線 13は、ミラー 3上の別の点 (端点 A1と点 Aとの間の点)で反射されて反射型 SL M5の素子反射面 5cの一端 C1に至る。他の入力辺縁光線 15は、ミラー 3上のさらに 別の点 (端点 A2と点 Aとの間の点)で反射されて反射型 SLM5の素子反射面 5cの 他端 C2に至る。こうして、入力光ビーム全体がミラー 3で反射されて反射型 SLM5に 到達し、反射型 SLM5により変調される。  In the present embodiment, since Expressions (3) to (8) are satisfied, as shown in FIG. 10, the input principal ray 11 is reflected by a dot on the mirror 3 to be a reflection type. It reaches point C of SLM5. The input edge ray 13 is reflected at another point on the mirror 3 (a point between the end point A1 and the point A) and reaches one end C1 of the element reflection surface 5c of the reflection type SL M5. The other input edge ray 15 is reflected at another point on the mirror 3 (a point between the end point A2 and the point A) and reaches the other end C2 of the element reflecting surface 5c of the reflective SLM5. Thus, the entire input light beam is reflected by the mirror 3 to reach the reflection type SLM5 and is modulated by the reflection type SLM5.
[0085] さらに、図 11に示すように、出力主光線 17はミラー 7上の点 Bで反射される。出力 辺縁光線 19は、 SLM5の素子反射面 5cの一端 C1から出射し、ミラー 7上の点 (端点 B1と点 Bとの間の点)で反射される。他の出力辺縁光線 21は、ミラー 7上の別の点( 端点 B2と点 Bとの間の点)で反射される。こうして、反射型 SLM5を出力した所望の 成分の出力光ビーム全体がミラー 7で反射され、図示しない出力側光学系に導かれ る。  Further, as shown in FIG. 11, the output principal ray 17 is reflected at a point B on the mirror 7. The output edge ray 19 is emitted from one end C1 of the element reflecting surface 5c of the SLM 5 and reflected at a point on the mirror 7 (a point between the end point B1 and the point B). The other output edge ray 21 is reflected at another point on the mirror 7 (a point between the end points B2 and B). In this way, the entire output light beam of the desired component output from the reflective SLM 5 is reflected by the mirror 7 and guided to an output side optical system (not shown).
[0086] したがって、図 9に示すように、入力側光学系力 の入力ビームの全てが入力側反 射面 Mlによって反射され (条件 2)、入力側反射面 Mlで反射されたビームの全てが 反射型 SLM5に入射し (条件 3)、反射型 SLM5で変調され反射されたビームのうち 必要な成分の全てが出力側反射面 M2によって反射される(条件 4)ことが確保され ている。また、式 (8)により、入力側反射面 Mlと出力側反射面 M2との位置が重なら ないことが確保されている。  Therefore, as shown in FIG. 9, all the input beams of the input side optical system force are reflected by the input side reflection surface Ml (condition 2), and all the beams reflected by the input side reflection surface Ml are all reflected. It is ensured that all necessary components of the beam incident on the reflective SLM5 (condition 3) and modulated and reflected by the reflective SLM5 are reflected by the output reflecting surface M2 (condition 4). In addition, equation (8) ensures that the positions of the input-side reflecting surface Ml and the output-side reflecting surface M2 do not overlap.
[0087] ここで、入力光ビームの収束角度 exと、出力光ビームの発散角度 βとの間には、図 12に示すように、次の関係(9)がある。なお、図 12は、入力側反射面 Ml、素子反射 面 5c、出力側反射面 M2の各面での反射を展開した直線光路図である。 Here, the following relationship (9) exists between the convergence angle ex of the input light beam and the divergence angle β of the output light beam, as shown in FIG. In addition, Fig. 12 shows the input side reflection surface Ml, element reflection FIG. 6 is a straight light path diagram in which reflection on each surface of the surface 5c and the output-side reflection surface M2 is developed.
[数 43] β = α + δ (9)  [Equation 43] β = α + δ (9)
[0088] 例えば、反射型 SLM5で変調されて生成された回折光のうち η次回折光 (なお、 η は 1以上の自然数)までの回折光を空間光変調装置 1から出力させたい場合には、 δは η次回折光の回折角度である。 η次回折光の回折角度 δは、次式(10)により与 えられる。 [0088] For example, when it is desired to output from the spatial light modulation device 1 diffracted light up to η-order diffracted light (where η is a natural number of 1 or more) among the diffracted light generated by being modulated by the reflective SLM5, δ is the diffraction angle of the η-order diffracted light. The diffraction angle δ of the η-order diffracted light is given by the following equation (10).
[数 44] δ = η- ^ (1 0) [Equation 44] δ = η- ^ (1 0)
d sm(^, +έ^)  d sm (^, + έ ^)
[0089] ここで、 dは反射型 SLM5に表示可能な最小の格子パターンの格子定数(隣合った 縞の中心間の距離)であり、 λは読み出し光の波長である。 Here, d is the lattice constant of the smallest lattice pattern that can be displayed on the reflective SLM5 (the distance between the centers of adjacent stripes), and λ is the wavelength of the readout light.
[0090] したがって、入力光学系から入射させる入力光の収束角度 exと所望の回折次数 η 【こ対し、ノ ラメータ Φ 1、 ()2、 c、cl, h、al, a2、bl, b2, Lを数式(1)〜(10)を満 足するように選択すれば、入力光を有効に反射型 SLM5に照射できる。さらに、反射 型 SLM5で得られた 1〜!!次回折光を有効に空間光変調装置 1から出力させることが できる。  [0090] Therefore, the convergence angle ex of the input light incident from the input optical system and the desired diffraction order η [In contrast, the parameters Φ 1, () 2, c, cl, h, al, a2, bl, b2, If L is selected to satisfy Equations (1) to (10), the input light can be effectively applied to the reflective SLM5. Furthermore, 1 ~! Obtained with reflective SLM5! ! The next-order diffracted light can be effectively output from the spatial light modulator 1.
[0091] 例えば、 1次以下の回折光を空間光変調装置 1から出力させたい場合には、 αを 入力光学系から入射させる入力光の収束角度に設定し、回折次数 ηを η=1に設定 し、ノ ラメータ Φ 1、 2, c, cl, h、 al, a2、 bl, b2, Lを数式(1)〜(10)を満足する ように選択すればよい。また、 1次回折光と 2次回折光とを空間光変調装置 1から出 力させた 、場合には、回折次数 nを n= 2に設定しなおせばょ 、。  [0091] For example, when the diffracted light of the first order or lower is desired to be output from the spatial light modulator 1, α is set to the convergence angle of the input light incident from the input optical system, and the diffraction order η is set to η = 1 Once set, the parameters Φ1, 2, c, cl, h, al, a2, bl, b2, L should be selected so as to satisfy Equations (1) to (10). If the first-order diffracted light and the second-order diffracted light are output from the spatial light modulator 1, the diffraction order n should be reset to n = 2.
特に、式 (4)〜(7)において等号が成立するようにパラメータ φ 1、 φ 2、 c、 cl, h、 a 1, a2、 bl, b2, Lを選択すれば、 l〜n次回折光を有効に出力させるのみならず、( n+1)次以上の不要な回折光を除去することができる。  In particular, if the parameters φ1, φ2, c, cl, h, a1, a2, bl, b2, L are selected so that the equal sign holds in equations (4) to (7), l to n Not only can the folding light be output effectively, but it is possible to remove unwanted diffraction light of (n + 1) th order or higher.
[0092] 以上のように本実施の形態の空間光変調装置 1によれば、入力主光線 11と出力主 光線 17とが共に仮想基準直線 9に沿って進むので、空間光変調装置 1に対して入 力側光学系や出力側光学系を組み合わせる際、入力側光学系と出力側光学系とを 共に仮想基準直線 9上に配置することができる。したがって、光学系全体の設計、組 立、位置調整が極めて容易となり、また、光学系全体をコンパクトィ匕することができる 。また、空間光変調装置 1を複数個、単一の仮想基準直線 9に沿って多段接続する ことができる。また、反射型 SLM5は、任意の入力光ビームに対して任意の変調を施 すことができ、任意の光学処理を行うことができる。また、入力側反射面 Mlがミラー 3 で構成され、出力側反射面がミラー 7で構成されるため、空間光変調装置 1全体の構 成が簡単になる。 As described above, according to the spatial light modulation device 1 of the present embodiment, the input principal ray 11 and the output principal Since both rays 17 travel along the virtual reference line 9, when the input side optical system and the output side optical system are combined with the spatial light modulator 1, both the input side optical system and the output side optical system are virtual. It can be placed on the reference line 9. Therefore, the design, assembly, and position adjustment of the entire optical system are extremely easy, and the entire optical system can be made compact. In addition, a plurality of spatial light modulators 1 can be connected in multiple stages along a single virtual reference line 9. In addition, the reflective SLM5 can perform arbitrary modulation on an arbitrary input light beam and can perform arbitrary optical processing. In addition, since the input-side reflecting surface Ml is configured by the mirror 3 and the output-side reflecting surface is configured by the mirror 7, the configuration of the entire spatial light modulator 1 is simplified.
[0093] ミラー 3, 7の長さを反射型 SLM5の長さ c (有効面積)に応じて決定するため、空間 光変調装置 1全体を、容易かつ安価に製造することがきる。反射型 SLM5はミラー 3 , 7に比べると製造が困難で高価であるのに対し、ミラー 3, 7は製造容易で安価だか らである。  [0093] Since the length of the mirrors 3 and 7 is determined according to the length c (effective area) of the reflective SLM 5, the entire spatial light modulator 1 can be manufactured easily and inexpensively. The reflective SLM5 is difficult and expensive to manufacture compared to the mirrors 3 and 7, whereas the mirrors 3 and 7 are easy to manufacture and inexpensive.
[0094] し力も、入力側反射面 Mlへの入射光の全てが入力側反射面 Mlによって反射さ れ、入力側反射面 Mlで反射された入射光の全てが読みだし光として反射型 SLM5 に入射し、さらに反射型 SLM5で変調された読みだし光の所望の成分全てが出力側 反射面 M2によって反射される。したがって、光の利用効率を高めることができ、有効 開口率の高 、反射型 SLM5の利点を活かすことができる。  [0094] All the incident light on the input-side reflecting surface Ml is reflected by the input-side reflecting surface Ml, and all the incident light reflected by the input-side reflecting surface Ml is read out to the reflective SLM5 as reading light. All the desired components of the reading light incident and further modulated by the reflective SLM5 are reflected by the output-side reflecting surface M2. Therefore, the light use efficiency can be increased, and the advantages of the reflective SLM5 can be utilized with a high effective aperture ratio.
[0095] 特に、 φ 3がゼロ(0)の場合、すなわち、素子反射面 5cが仮想基準直線 9に対して 平行な場合には、図 8にお!/、て、 al =b2、 a2 = blとなる。従って、 alと a2力、 blと b 2かのどちらか片方の組のパラメータを決定すれば、もう片方の組も自動的に決定さ れる。 α > βのときは alと a2を、 j8 > αの場合は blと b2の方を考慮すればよい。今 、 j8 > αとすると、式(1)乃至(8)は、以下の(11)〜(16)のように書き換えることが できる。  [0095] In particular, when φ 3 is zero (0), that is, when the element reflection surface 5c is parallel to the virtual reference line 9, FIG. 8 shows! /, Al = b2, a2 = bl. Therefore, if one of the parameters of either al and a2 forces or bl and b2 is determined, the other is automatically determined. If α> β, consider al and a2. If j8> α, consider bl and b2. If j8> α, then equations (1) to (8) can be rewritten as the following (11) to (16).
[数 45]  [Equation 45]
≠3 = 0 ( 1 1 ) ≠ 3 = 0 (1 1)
[数 46] /7 = -tan(2^) ( 1 2) [Equation 46] / 7 = -tan (2 ^) (1 2)
[数 47] [Equation 47]
(1 3: (13:
[数 48] h [Equation 48] h
sin β + C\ sin(2^2 + β)  sin β + C \ sin (2 ^ 2 + β)
sin(2¾/S2 ) sin (2¾ / S 2 )
a2 =b\≥ (1 4)  a2 = b \ ≥ (1 4)
sin(^2 + β) sin (^ 2 + β)
[数 49] h [Equation 49] h
sin β + {c-C ) sin(2^2  sin β + (c-C) sin (2 ^ 2
sin(2 )  sin (2)
(1 5)  (1 5)
sin(¾zi2 - β) sin (¾zi 2 -β)
[数 50] [Number 50]
(1 6) (1 6)
2 cos ^2  2 cos ^ 2
[0096] 入力光学系から入射させる入力ビームの収束角度 aと所望の値 βとに対し、パラメ ータ φ 1、 2, c, cl, h、al, a2、 bl, b2, Lを数式(11)〜(16)を満足するように 選択すれば、出力主光線 17が入力主光線 11の延長線上にあり(条件 1)、入力側反 射面 Mlへの入力ビームの全てが入力側反射面 Mlによって反射され (条件 2)、入 力側反射面 Mlで反射されたビームの全てが反射型 SLM5に入射し (条件 3)、反射 型 SLM5で変調されたビームのうち必要な成分の全てが出力側反射面 M2によって 反射される(条件 4)ことが確保される。素子反射面 5cが仮想基準直線 9に対して平 行なため、光学系の設計、組立、調整がより容易となる。 [0096] The parameters φ1, 2, c, cl, h, al, a2, bl, b2, L are expressed by the following formula for the convergence angle a of the input beam incident from the input optical system and the desired value β. If selected so that 11) to (16) are satisfied, the output chief ray 17 is on the extension of the input chief ray 11 (condition 1), and all the input beams to the input side reflecting surface Ml are reflected on the input side. All the beams reflected by the surface Ml (Condition 2) and reflected by the input-side reflective surface Ml are incident on the reflective SLM5 (Condition 3) and all necessary components of the beam modulated by the reflective SLM5 Is reflected by the output-side reflecting surface M2 (condition 4). Since the element reflecting surface 5c is parallel to the virtual reference line 9, the design, assembly and adjustment of the optical system becomes easier.
[0097] なお、図示しない入力側光学系は、例えば、ピンホール(開口)とレンズとを備えるこ とにより、読み出し光 (入力光ビーム)力 0〜αの範囲の収束角で、かつ、素子反射 面 5cの長さ cに等しいビーム径 cにて反射型 SLM5に入射することを確保することが できる。この場合、入力辺縁光線 13、 15は、ピンホールの縁を通過した光線となる。 Note that the input-side optical system (not shown) includes, for example, a pinhole (aperture) and a lens so that the reading light (input light beam) force has a convergence angle in the range of 0 to α, and the element It is possible to ensure that the light enters the reflective SLM5 with a beam diameter c equal to the length c of the reflective surface 5c. it can. In this case, the input edge rays 13 and 15 are rays that have passed through the edge of the pinhole.
[0098] なお、図示しない入力側光学系が、空間光変調装置 1に対し、読み出し光 (入力光 ビーム)を任意の収束角及び任意のビーム径で入射させる場合を考える。この場合 にも、入力側反射面 Ml ,出力側反射面 M2,素子反射面 5cの位置関係を式(1)〜 (8)もしくは式( 11)〜( 16)を満足するように設定することにより、入力側反射面 M 1 に入射した読み出し光のうち、主光線 11に対して 0〜 ocの角度をなす方向に伝搬し て反射型 SLM5の素子反射面 5cに入射する成分の全てが入力側反射面 Mlによつ て反射され、入力側反射面 Mlで反射された読み出し光の全てが反射型 SLM5に 入射し、反射型 SLM5で変調され 0〜 βの角度で反射型 SLM5より出射する読みだ し光の所望の成分全てが出力側反射面 Μ2によって反射されることが確保できる。  It is assumed that an input-side optical system (not shown) causes the readout light (input light beam) to enter the spatial light modulator 1 with an arbitrary convergence angle and an arbitrary beam diameter. In this case as well, the positional relationship among the input-side reflecting surface Ml, output-side reflecting surface M2, and element reflecting surface 5c must be set so as to satisfy Equations (1) to (8) or Equations (11) to (16). As a result, all the components of the readout light incident on the input-side reflective surface M 1 that propagate in the direction that forms an angle of 0 to oc with respect to the principal ray 11 and enter the element reflective surface 5c of the reflective SLM5 are input. All of the readout light reflected by the side reflective surface Ml and reflected by the input side reflective surface Ml is incident on the reflective SLM5, modulated by the reflective SLM5, and emitted from the reflective SLM5 at an angle of 0 to β. It can be ensured that all desired components of the reading light are reflected by the output-side reflecting surface Μ2.
[0099] 次に、図 13及び図 14を参照しながら、上記空間光変調装置 1を採用した光学処理 装置 80について説明する。  Next, an optical processing device 80 that employs the spatial light modulation device 1 will be described with reference to FIG. 13 and FIG.
[0100] 図 13に示すように、光学処理装置 80は、光源 81、ピンホール 83、コリメートレンズ 82、入力面 84、フーリエ変換レンズ 86、空間光変調装置 1、フーリエ変換レンズ 88、 及び、出力面 90を備えている。光学処理装置 80は、入力面 84に表示される入力画 像と反射型 SLM5に表示される参照画像との相関を示すパターンを出力する 4f光学 系(フーリエ変換光学系)である。光源 81、ピンホール 83、コリメートレンズ 82、入力 面 84が入力光学系 Iを構成している。このうち、光源 81、ピンホール 83、コリメ一トレ ンズ 82が平行投光光学系 Rを構成している。フーリエ変換レンズ 88と出力面 90とが 出力光学系 Oを構成して 、る。  As shown in FIG. 13, the optical processing device 80 includes a light source 81, a pinhole 83, a collimating lens 82, an input surface 84, a Fourier transform lens 86, a spatial light modulator 1, a Fourier transform lens 88, and an output. It has surface 90. The optical processing device 80 is a 4f optical system (Fourier transform optical system) that outputs a pattern indicating the correlation between the input image displayed on the input surface 84 and the reference image displayed on the reflective SLM 5. The light source 81, the pinhole 83, the collimating lens 82, and the input surface 84 constitute the input optical system I. Among these, the light source 81, the pinhole 83, and the collimating lens 82 constitute the parallel light projecting optical system R. The Fourier transform lens 88 and the output surface 90 constitute the output optical system O.
[0101] 空間光変調装置 1は、ミラー 3、 7及び反射型 SLM5を有している。反射型 SLM5 は、例えば、図 7を参照して説明した PAL— SLMであり、やはり図 7を参照して説明 した位相変調モジュール 6に内蔵されている。なお、図 13では、明瞭化を図るため、 反射型 SLM5のみを図示して!/、る。  [0101] The spatial light modulator 1 includes mirrors 3 and 7 and a reflective SLM5. The reflective SLM 5 is, for example, the PAL-SLM described with reference to FIG. 7, and is also incorporated in the phase modulation module 6 described with reference to FIG. In FIG. 13, only the reflective SLM5 is shown for clarity!
[0102] 光源 81、ピンホール 83、コリメートレンズ 82、入力面 84、フーリエ変換レンズ 86、フ 一リエ変換レンズ 88、出力面 90、ミラー 3、及び、ミラー 7が、仮想基準直線 9上に配 置されている。入力面 84とフーリエ変換レンズ 86との間の距離と、フーリエ変換レン ズ 86と素子反射面 5cとの間のミラー 3を介した距離とは、フーリエ変換レンズ 86の焦 点距離 (長さ fl)に等しく設定されている。素子反射面 5cとフーリエ変換レンズ 88との 間のミラー 7を介した距離と、フーリエ変換レンズ 88と出力面 90との間の距離とは、フ 一リエ変換レンズ 88の焦点距離 (長さ f 2)に等しく設定されている。光源 81は、レー ザであって、所定の波長の直線偏光光を読み出し光として出射する。ピンホール 83 及びコリメートレンズ 82は、読み出し光を所定のビーム径の平行光に変換する。した がって、入力面 84には所定のビーム径の平行光が投射される。入力面 84には、投 射された平行光の光強度もしくは位相またはその両方を入力画像に応じて変化させ るデバイス (例えば、入力画像を表示したフィルムやマスク等の透過型の物体)が配 置されている。入力面 84で変調された入力光 (入力画像)はフーリエ変換レンズ 86 でフーリエ変換され、ミラー 3を介して反射型 SLM5に入射する。このとき、入力光は 、収束角度 a、かつ、ビーム径 cにて、反射型 SLM5に入射する。反射型 SLM5は、 参照画像に基づいて作成されたフィルタパターンを表示しており、反射型 SLM5に 入射した入力画像を変調し出力する。出力光はミラー 7で反射され仮想基準直線 9 に沿って伝搬し、フーリエ変換レンズ 88でフーリエ変換されて出力面 90に相関バタ ーンを出力する。 [0102] Light source 81, pinhole 83, collimating lens 82, input surface 84, Fourier transform lens 86, Fourier transform lens 88, output surface 90, mirror 3 and mirror 7 are arranged on virtual reference line 9. Is placed. The distance between the input surface 84 and the Fourier transform lens 86 and the distance through the mirror 3 between the Fourier transform lens 86 and the element reflecting surface 5c are the focal points of the Fourier transform lens 86. It is set equal to the point distance (length fl). The distance through the mirror 7 between the element reflecting surface 5c and the Fourier transform lens 88 and the distance between the Fourier transform lens 88 and the output surface 90 are the focal length (length f) of the Fourier transform lens 88. It is set equal to 2). The light source 81 is a laser and emits linearly polarized light having a predetermined wavelength as readout light. The pinhole 83 and the collimating lens 82 convert the readout light into parallel light having a predetermined beam diameter. Therefore, parallel light having a predetermined beam diameter is projected onto the input surface 84. The input surface 84 is provided with a device (for example, a transmissive object such as a film or a mask displaying the input image) that changes the light intensity and / or phase of the projected parallel light according to the input image. Is placed. The input light (input image) modulated by the input surface 84 is Fourier-transformed by the Fourier transform lens 86 and enters the reflective SLM 5 via the mirror 3. At this time, the input light is incident on the reflective SLM 5 at the convergence angle a and the beam diameter c. The reflective SLM5 displays a filter pattern created based on the reference image, and modulates and outputs the input image incident on the reflective SLM5. The output light is reflected by the mirror 7 and propagates along the virtual reference line 9, is Fourier transformed by the Fourier transform lens 88, and outputs a correlation pattern on the output surface 90.
[0103] 空間光変調装置 1では、反射型 SLM5は、仮想基準直線 9から仮想基準直線 9〖こ 対して垂直な方向にずれた位置に配置されて!、る。反射型 SLM5の素子反射面 5c は仮想基準直線 9に平行に配置されている。すなわち、反射型 SLM5は、 φ 3 = 0 ( 図 8)となるように、配置されている。ミラー 3, 7,反射型 SLM5は、入力光ビームの収 束角度 αと所望の最大回折次数 nとに対し、式(11)〜(16)、及び、(9)、 (10)を満 足するように、配置されている。  In the spatial light modulation device 1, the reflective SLM 5 is arranged at a position shifted from the virtual reference line 9 in a direction perpendicular to the virtual reference line 9. The reflective surface 5c of the reflective SLM5 is arranged in parallel to the virtual reference line 9. That is, the reflection type SLM5 is arranged so that φ 3 = 0 (FIG. 8). Mirrors 3, 7, and reflection type SLM5 satisfy equations (11) to (16), (9), and (10) for the convergence angle α of the input light beam and the desired maximum diffraction order n. To be arranged.
[0104] 光学処理装置 80によれば、入力光学系 Iから出力された入力光の全てがミラー 3に 入射し、ミラー 3で反射した光の成分全てが反射型 SLM5に入射し、反射型 SLM5 で変調された光のうち必要な成分(l〜n次回折光)の全てがミラー 7で反射しフーリ ェ変換レンズ 88にてフーリエ変換される。したがって、光の利用効率を高めることが でき、有効開口率の高い反射型 SLM5の利点を活かすことができる。  [0104] According to the optical processing device 80, all of the input light output from the input optical system I is incident on the mirror 3, and all components of the light reflected by the mirror 3 are incident on the reflective SLM5. All necessary components (1 to n-order diffracted light) of the light modulated in step 4 are reflected by the mirror 7 and Fourier-transformed by the Fourier transform lens 88. Therefore, the light utilization efficiency can be increased, and the advantages of the reflective SLM5 with a high effective aperture ratio can be utilized.
[0105] また、入力光学系 Iと出力光学系 Oとが仮想基準直線 9上に配置されており、入力 光の光軸 91と出力光の光軸 92とが両方とも仮想基準直線 9上に位置している。反射 型 SLM5は仮想基準直線 9から垂直方向にずれた位置にある。また、光源 81、ピン ホーノレ 83、コリメートレンズ 82、入力面 84、フーリエ変換レンズ 86、フーリエ変換レン ズ 88、及び、出力面 90は、全て、仮想基準直線 9に対し、仮想基準直線 9がこれらを 直交して貫通する向きに配置されている。このように、入力光学系 Iと出力光学系 Oと 反射型 SLM5とは、単一の仮想基準直線 9に対して、平行あるいは垂直な向きに配 置されている。反射型 SLM5の筐体は一般に直方体であるため、反射型 SLM5と入 力光学系と出力光学系との整合性が取りやすぐ光学処理装置 80全体をコンパクト に設計することが容易である。また、光学処理装置 80全体を基板上に設ける際にも、 単一の仮想基準直線 9を基板上に設定すればよいため、機械加工も容易となる。し たがって、光学系の設計及び組立が容易となる。 [0105] The input optical system I and the output optical system O are arranged on the virtual reference line 9, and both the optical axis 91 of the input light and the optical axis 92 of the output light are on the virtual reference line 9. positioned. Reflection The mold SLM5 is in a position that is vertically offset from the virtual reference line 9. The light source 81, the pin Honoré 83, the collimating lens 82, the input surface 84, the Fourier transform lens 86, the Fourier transform lens 88, and the output surface 90 are all the virtual reference straight line 9 with respect to the virtual reference straight line 9. It is arranged in a direction that penetrates perpendicularly. As described above, the input optical system I, the output optical system O, and the reflective SLM 5 are arranged in parallel or perpendicular to the single virtual reference line 9. Since the housing of the reflective SLM5 is generally a rectangular parallelepiped, it is easy to match the reflective SLM5 with the input optical system and the output optical system, and it is easy to design the entire optical processing device 80 compactly. Further, when the entire optical processing apparatus 80 is provided on the substrate, the single virtual reference straight line 9 may be set on the substrate, so that machining is facilitated. Therefore, it is easy to design and assemble the optical system.
[0106] 反射型 SLM5の素子反射面 5cが仮想基準直線 9に対して平行になるように配置さ れて 、るため、仮想基準直線 9に平行な線を素子反射面 5cの位置の基準として利用 することができ、光学系の設計、組立がより容易となっている。また、入力光学系 Iと出 力光学系 Oとは反射型 SLM5から分離されているため、入力光学系 I及び出力光学 系 Oの光学調整は仮想基準直線 9上で行えばよい。し力も、入力面 84、フーリエ変 換レンズ 86、フーリエ変換レンズ 88、及び、出力面 90が仮想基準直線 9に対し仮想 基準直線 9がこれらを直交して貫通する向きに配置されているため、仮想基準直線 9 に対する平行線と垂直線とを光学調整の際に利用することができる。したがって、光 学調整も容易となる。 [0106] Since the element reflection surface 5c of the reflective SLM5 is arranged so as to be parallel to the virtual reference line 9, a line parallel to the virtual reference line 9 is used as a reference for the position of the element reflection surface 5c. This makes it easier to design and assemble optical systems. Further, since the input optical system I and the output optical system O are separated from the reflective SLM 5, the optical adjustment of the input optical system I and the output optical system O may be performed on the virtual reference line 9. Since the input surface 84, the Fourier transform lens 86, the Fourier transform lens 88, and the output surface 90 are arranged in such a direction that the virtual reference straight line 9 passes through the virtual reference straight line 9 perpendicularly to the virtual reference straight line 9, Parallel lines and vertical lines with respect to the virtual reference line 9 can be used for optical adjustment. Therefore, optical adjustment becomes easy.
[0107] 以下、図 14を参照して、この光学調整について具体的に説明する。 Hereinafter, this optical adjustment will be specifically described with reference to FIG.
[0108] 例えば、反射型 SLM5の光軸方向の位置を変化させるために、反射型 SLM5を実 線で示す位置 Iから破線で示す位置 IIに移動させるとする。このとき、同時に、ミラー 3 とミラー 7も仮想基準直線 9に対して垂直な方向に実線で示す位置から破線で示す 位置まで移動させる。反射型 SLM5とミラー 3、 7の位置関係力 移動前(実線)にお いても移動後 (破線)においても式(12)を満たし続ければ、入力光の光軸 91と出力 光の光軸 92とは仮想基準直線 9上に位置しつづける。ただし、 al、 a2、 bl、 b2等の 長さについては、予め調整用の余裕を考えて長めに設定してあり、移動後において も式(14)乃至(16)の不等式が満足され続けて!/、るとする。 [0109] 移動前の光路 A— C Bが形成する三角形 ACBと移動後の光路 A'— C' B'が 形成する三角形 A' C' B'とは互いに相似である。線分 ABの長さを長さ L、点じから 線分 ABに下ろした垂線が線分 ABと交わる点を点 Dとし、線分 CDの長さを長さ hとす る。いま、三角形 A' C' B'の辺の長さが、三角形 ACBより w倍大きいとする。すなわ ち、仮想基準直線 9と反射型 SLM5との距離が移動の前後で w倍大きくなつたとする For example, in order to change the position of the reflective SLM5 in the optical axis direction, it is assumed that the reflective SLM5 is moved from a position I indicated by a solid line to a position II indicated by a broken line. At the same time, the mirror 3 and the mirror 7 are also moved from the position indicated by the solid line to the position indicated by the broken line in a direction perpendicular to the virtual reference line 9. Positional force between reflective SLM5 and mirrors 3 and 7 If the equation (12) is satisfied both before and after the movement (broken line), the optical axis 91 of the input light and the optical axis 92 of the output light Keeps on the virtual reference line 9. However, the lengths of al, a2, bl, b2, etc. are set longer in consideration of the margin for adjustment in advance, and the inequalities (14) to (16) continue to be satisfied even after movement. ! / The triangle ACB formed by the optical path A—CB before movement and the triangle A ′ C ′ B ′ formed by the optical path A′—C ′ B ′ after movement are similar to each other. Let the length of line segment AB be length L, the point where the perpendicular line from point to line segment AB intersects line segment AB is point D, and the length of line segment CD is length h. Now, suppose that the side length of triangle A 'C' B 'is w times larger than triangle ACB. In other words, assume that the distance between the virtual reference line 9 and the reflective SLM5 is w times larger before and after the movement.
[0110] 移動前のミラー 3から反射型 SLM5までの光路長は A' A+ACであり、移動後は長 さ A' C,である。長さ A' Aは(w— l) hZtan (2 (i) 1)、長さ ACは hZsin (2 (i) 1)、長さ A' Cは wACである。移動前後の光路長の変化 dは、 A' C - (A' A+AC)で計算 できるので、 d= (w- l) htan ( φ 1)で表される。また、反射型 SLM5およびミラー 3、 7の仮想基準直線 9に対して垂直な方向への移動量を A hとすると、 A h= (w- l) h = dZtan ( (i) 1)となる。 [0110] The optical path length from the mirror 3 before the movement to the reflective SLM5 is A'A + AC, and after the movement is the length A'C. Length A'A is (w–l) hZtan (2 (i) 1), length AC is hZsin (2 (i) 1), and length A 'C is wAC. Since the change d of the optical path length before and after movement can be calculated by A 'C-(A' A + AC), it is expressed as d = (w- l) htan (φ 1). If the amount of movement of the reflective SLM5 and mirrors 3 and 7 in the direction perpendicular to the virtual reference line 9 is A h, then A h = (w-l) h = dZtan ((i) 1) .
[0111] このように、光路長を調整するために行う反射型 SLM5の位置調整は、反射型 SL M5とミラー 3、 7を仮想基準直線 9に対して垂直な方向に移動させることによって容 易に実現でき、入力光学系 I及び出力光学系 Oの光学デバイスに関係する光軸 91, 92を移動させる必要がない。したがって、入力光学系 I及び出力光学系 Oの光学デ バイスの光軸方向における位置調整と、反射型 SLM5と 2つのミラー 3、 7の光軸に 垂直な方向における位置調整とを、互いに独立に行うことができる。  [0111] In this way, the position adjustment of the reflective SLM5 to adjust the optical path length is facilitated by moving the reflective SL M5 and the mirrors 3 and 7 in a direction perpendicular to the virtual reference line 9. It is not necessary to move the optical axes 91 and 92 related to the optical devices of the input optical system I and the output optical system O. Therefore, the position adjustment in the optical axis direction of the optical devices of the input optical system I and the output optical system O and the position adjustment in the direction perpendicular to the optical axis of the reflective SLM5 and the two mirrors 3 and 7 are performed independently of each other. It can be carried out.
[0112] なお、光学処理装置 80でも、 φ 3はゼロ(0)でなくても良い。すなわち、反射型 SL M5の素子反射面 5cは仮想基準直線 9に対して平行でなくても良い。この場合には 、ミラー 3、 7及び反射型 SLM5を数式(11)〜(16)の代わりに、数式(1)〜(8)を満 足するように、配置すれば良い。反射型 SLM5と仮想基準直線 9との成す角度 φ 3が ゼロでなくても、図 14を参照して説明したのと同様に、反射型 SLM5とミラー 3、 7を 仮想基準直線 9に対して垂直な方向に移動させるだけで、光路長を調整することが できる。  [0112] In the optical processing apparatus 80, φ3 may not be zero (0). That is, the element reflection surface 5c of the reflection type SL M5 may not be parallel to the virtual reference line 9. In this case, the mirrors 3 and 7 and the reflective SLM 5 may be arranged so as to satisfy the equations (1) to (8) instead of the equations (11) to (16). Even if the angle φ 3 formed by the reflective SLM5 and the virtual reference line 9 is not zero, the reflective SLM5 and the mirrors 3 and 7 are connected to the virtual reference line 9 in the same manner as described with reference to FIG. The optical path length can be adjusted simply by moving in the vertical direction.
[0113] 次に、第 2の実施の形態に力かる空間光変調装置 30について、図 15を参照しなが ら説明する。  Next, the spatial light modulation device 30 that works on the second embodiment will be described with reference to FIG.
[0114] 空間光変調装置 30は、ミラー 3, 7の代わりにプリズム 32を備えている点を除き、第 1の実施の形態にかかる空間光変調装置 1と同一である。したがって、空間光変調装 置 30は、反射型 SLM5とプリズム 32とを備えている。なお、図 15では、空間光変調 装置 1と同様の機能、構成を有する部材には同一の番号を付している。また、明瞭ィ匕 を図るため、反射型 SLM5のうちミラー層 5bのみを図示し変調部 5a及びアドレス部 5 dの図示を省略している。反射型 SLM5は、例えば、図 7を参照して説明した PAL— SLMであり、位相変調モジュール 6 (図 7)に内蔵されていてもよい。 [0114] The spatial light modulator 30 is the first except that a prism 32 is provided instead of the mirrors 3 and 7. This is the same as the spatial light modulation device 1 according to the first embodiment. Therefore, the spatial light modulation device 30 includes the reflective SLM 5 and the prism 32. In FIG. 15, members having the same functions and configurations as those of the spatial light modulator 1 are denoted by the same reference numerals. For the sake of clarity, only the mirror layer 5b of the reflective SLM 5 is shown, and the modulation unit 5a and the address unit 5d are not shown. The reflective SLM 5 is, for example, the PAL-SLM described with reference to FIG. 7, and may be incorporated in the phase modulation module 6 (FIG. 7).
[0115] プリズム 32は、断面が三角形状の 3角柱である。 3角柱を構成する 3つの面 SI, S2 , S3 (外表面)のうち 2つの面 SI, S2に反射率を高めるための処理が施されている。 これら 2つの面 SI, S2が、それぞれ、入力側反射面 Mlと出力側反射面 M2として機 能する。プリズム 32は、入力側反射面 Mlと出力側反射面 M2とが仮想基準直線 9上 に位置し、残りの 1つの面 S3が仮想基準直線 9から仮想基準直線 9に対して垂直な 方向にずれた位置に位置するように、配置されて!ヽる。  [0115] The prism 32 is a triangular prism having a triangular cross section. Of the three surfaces SI, S2, S3 (outer surface) that make up the triangular prism, two surfaces SI, S2 are treated to increase the reflectivity. These two surfaces SI and S2 function as the input-side reflecting surface Ml and the output-side reflecting surface M2, respectively. In the prism 32, the input-side reflecting surface Ml and the output-side reflecting surface M2 are positioned on the virtual reference line 9, and the remaining one surface S3 is shifted from the virtual reference line 9 in a direction perpendicular to the virtual reference line 9. Arranged to be in the right position! Speak.
[0116] 入力側反射面 Mlは、仮想基準直線 9に沿って入射する入力光を、反射型 SLM5 に反射する。反射型 SLM5は、入力側反射面 Mlで反射された入力光を変調して反 射する。出力側反射面 M2は、反射型 SLM5からの光を反射して、仮想基準直線 9 に沿って出力する。  [0116] The input-side reflecting surface Ml reflects the input light incident along the virtual reference line 9 to the reflective SLM5. The reflective SLM5 modulates and reflects the input light reflected by the input-side reflecting surface Ml. The output-side reflecting surface M2 reflects the light from the reflective SLM 5 and outputs it along the virtual reference line 9.
[0117] 入力側反射面 Mlと出力側反射面 M2と素子反射面 5cとの配置関係は、入力側反 射面 Mlの端点 A2と出力側反射面 M2の端点 B1とが一致している点を除き、図 8を 参照して説明した第 1の実施の形態における入力側反射面 Mlと出力側反射面 M2 と素子反射面 5cとの配置関係と同一である。  [0117] The input side reflecting surface Ml, the output side reflecting surface M2, and the element reflecting surface 5c are arranged such that the end point A2 of the input side reflecting surface Ml and the end point B1 of the output side reflecting surface M2 are the same. 8 is the same as the positional relationship among the input-side reflecting surface Ml, the output-side reflecting surface M2, and the element reflecting surface 5c in the first embodiment described with reference to FIG.
[0118] すなわち、図 15に示すように、入力主光線 11が入力側反射面 Mlに入射する点を 点 A、入力側反射面 Mlで反射した光の主光線が反射型 SLM5に入射する点を点 C 、反射型 SLM5で変調され素子反射面 5cにて反射した光の主光線が出力側反射面 M2に入射する点を点 Bとする。点 Aと点 Bとを結ぶ直線 A—Bは仮想基準直線 9上に 位置している。入力側反射面 Mlと仮想基準直線 9との成す角度を φ 1、出力側反射 面 M2と仮想基準直線 9との成す角度を φ 2、素子反射面 5cと仮想基準直線 9との成 す角度を Φ 3と定義する。なお、 φ 1及び φ 3は、図 15において、仮想基準直線 9か ら反時計方向に正の値を採る。 φ 2は、図 15において、仮想基準直線 9から時計方 向【こ正の値を採る。 φ 1、 φ 2ίま、 0° < 1 < 90° 、0。 く φ 2< 90° を満足して ヽ る。また、入力側反射面 Mlの両端の点 Al、点 Α2に対して、線分 Al— Α2の長さを a、線分 A— Alの長さを al、線分 A— A2の長さを a2とする。出力側反射面 M2の両 端の点 Bl、点 B2に対して、線分 B1— B2の長さを b、線分 B— B1の長さを bl、線分 B— B2の長さを b2とする。素子反射面 5cの 2つの端点 Cl、 C2に対して、線分 C1 C2の長さ(すなわち、反射型 SLM5の有効口径)を c、線分 C C1の長さを cl、線 分 C— C2の長さを c2とする。さらに、点 C力も線分 A— Bへの垂線の足を点 D、垂線 C Dの長さを h、線分 A— Bの長さを Lとする。 That is, as shown in FIG. 15, the point where the input chief ray 11 is incident on the input side reflecting surface Ml is point A, and the chief ray of the light reflected by the input side reflecting surface Ml is incident on the reflective SLM5. Is the point C, and the point where the principal ray of the light modulated by the reflective SLM5 and reflected by the element reflecting surface 5c is incident on the output-side reflecting surface M2 is the point B. A straight line A—B connecting point A and point B is located on the virtual reference line 9. The angle between the input-side reflecting surface Ml and the virtual reference line 9 is φ1, the angle between the output-side reflecting surface M2 and the virtual reference line 9 is φ2, and the angle between the element reflecting surface 5c and the virtual reference line 9 Is defined as Φ 3. Note that φ 1 and φ 3 take positive values in the counterclockwise direction from the virtual reference line 9 in FIG. φ 2 is clockwise from the virtual reference line 9 in FIG. The direction is set to a positive value. φ1, φ2ί, 0 ° <1 <90 °, 0. Satisfying φ 2 <90 °. Also, with respect to the points Al and Α2 on both ends of the input-side reflecting surface Ml, the length of the line segment Al—Α2 is a, the length of the line segment A—Al is al, and the length of the line segment A—A2 is Let a2. The length of line B1—B2 is b, the length of line B—B1 is bl, and the length of line B—B2 is b2 with respect to points Bl and B2 at both ends of the output-side reflecting surface M2. And With respect to the two end points Cl and C2 of the element reflection surface 5c, the length of the line segment C1 C2 (that is, the effective diameter of the reflective SLM5) is c, the length of the line segment C C1 is cl, and the line segment C— C2 Let c2 be the length of. In addition, the point C force is defined as point D for the foot of the perpendicular to line A—B, h for the length of perpendicular CD, and L for the length of line A—B.
[0119] 本実施の形態でも、第 1の実施の形態同様、読み出し光 (入力光ビーム)は、図示 しない入力光学系から、仮想基準直線 9に沿って、 0から αの範囲の収束角度にて 入射してくるとする。また、読み出し光 (入力光ビーム)の反射型 SLM5に入射する際 のビーム径は、素子反射面 5cの長さ cに等しいとする。反射型 SLM5で変調され素 子反射面 5cにて反射された読み出し光が反射型 SLM5から出射する。この読み出 し光のうち、所望の成分 (すなわち、空間光変調装置 30から出力させたい所望の成 分)が、 0から の範囲の発散角で、出力光ビームとして出射するとする。本実施の形 態でも、入力側反射面 Mlと出力側反射面 Μ2と素子反射面 5cとは、収束角度値 α と所望の発散角度値 βとに対し、式(1)〜 (8)、もしくは、式(11)〜(16)の関係を満 足している。例えば、所望の成分力^〜 η次回折光である場合には、収束角度 αと所 望の回折次数 ηとに対して、式(1)〜(8)、もしくは、式(11)〜(16)、及び、式(9)、( 10)の関係を満足している。  [0119] Also in this embodiment, as in the first embodiment, the readout light (input light beam) is converged at a convergence angle in the range of 0 to α along the virtual reference line 9 from an input optical system (not shown). And enter. Further, it is assumed that the beam diameter when the reading light (input light beam) enters the reflective SLM 5 is equal to the length c of the element reflecting surface 5c. The readout light modulated by the reflective SLM5 and reflected by the element reflecting surface 5c is emitted from the reflective SLM5. It is assumed that a desired component (that is, a desired component desired to be output from the spatial light modulator 30) out of the readout light is emitted as an output light beam with a divergence angle in a range from 0 to 0. Even in the present embodiment, the input-side reflecting surface Ml, the output-side reflecting surface Μ2, and the element reflecting surface 5c have the convergence angle value α and the desired divergence angle value β with the equations (1) to (8), Or, the relationship of equations (11) to (16) is satisfied. For example, in the case of the desired component power ^ to η order diffracted light, the expressions (1) to (8) or the expressions (11) to (16) are obtained with respect to the convergence angle α and the desired diffraction order η. ) And the relationships of formulas (9) and (10).
[0120] したがって、本実施の形態の空間光変調装置 30でも、第 1の実施の形態の空間光 変調装置 1同様、入力主光線 11と出力主光線 17とが共に仮想基準直線 9上に位置 する。従って、入力光学系や出力光学系と組み合わせて光学系を作成する際、光学 系全体の設計、組立、調整が容易となる。さらに φ 3 = 0であれば、光学系全体の設 計、組立、調整がよりいつそう容易となる。また、光学系全体をコンパクトィ匕することが できる。空間光変調装置 30を複数個仮想基準直線 9に沿って多段接続することもで きる。プリズム 32への入射光の全てが入力側反射面 Mlによって反射され、入力側 反射面 Mlで反射された入射光の全てが読みだし光として反射型 SLM5に入射し、 さらに反射型 SLM5で変調された読みだし光の所望の成分全てがプリズム 32の出 力側反射面 M2によって反射される。したがって、光の利用効率を高めることが可能 になり、有効開口率の高い反射型 SLM5の利点を活かすことができる。し力も、本実 施の形態によれば、入力側反射面 Mlと出力側反射面 M2とが単一のプリズム 32に 備えられているので、全体の部品点数が少なくなり、構成がさらに単純ィ匕されている Therefore, also in the spatial light modulation device 30 of the present embodiment, the input principal ray 11 and the output principal ray 17 are both positioned on the virtual reference line 9 as in the spatial light modulation device 1 of the first embodiment. To do. Therefore, when an optical system is created in combination with an input optical system or an output optical system, the entire optical system can be easily designed, assembled and adjusted. Furthermore, if φ 3 = 0, it will be easier to design, assemble and adjust the entire optical system. In addition, the entire optical system can be made compact. It is also possible to connect a plurality of spatial light modulators 30 along the virtual reference line 9 in multiple stages. All of the incident light on the prism 32 is reflected by the input-side reflecting surface Ml, and all of the incident light reflected by the input-side reflecting surface Ml enters the reflective SLM5 as readout light, Further, all the desired components of the readout light modulated by the reflective SLM 5 are reflected by the output side reflecting surface M 2 of the prism 32. Therefore, it is possible to increase the light utilization efficiency and take advantage of the reflective SLM5 with a high effective aperture ratio. According to this embodiment, the input-side reflecting surface Ml and the output-side reflecting surface M2 are provided in the single prism 32, so that the total number of parts is reduced and the configuration is further simplified. Have been deceived
[0121] 次に、図 16を参照しながら、空間光変調装置 30を採用した光学処理装置 60につ いて説明する。 Next, the optical processing device 60 that employs the spatial light modulation device 30 will be described with reference to FIG.
[0122] 光学処理装置 60は波形成形を行うための装置である。光学処理装置 60は、レー ザ 62、レンズ 64、ピンホール 66、コリメートレンズ 68、空間光変調装置 30、フーリエ 変換レンズ 70、及び、出力面 72を有している。レーザ 62、レンズ 64、ピンホール 66 、コリメートレンズ 68が入力光学系 Iを構成している。なお、入力光学系 Iは平行投光 光学系 Rとしても機能する。フーリエ変換レンズ 70及び出力面 72が出力光学系を構 成している。空間光変調装置 30は、プリズム 32と反射型 SLM5とを有している。反射 型 SLM5は、例えば、図 7を参照して説明した PAL— SLMであり、やはり図 7を参照 して説明した位相変調モジュール 6に内蔵されている。但し、図 16では、反射型 SL M5のみを図示し、位相変調モジュール 6の図示を省略している。  The optical processing device 60 is a device for performing waveform shaping. The optical processing device 60 includes a laser 62, a lens 64, a pinhole 66, a collimating lens 68, a spatial light modulator 30, a Fourier transform lens 70, and an output surface 72. The laser 62, the lens 64, the pinhole 66, and the collimating lens 68 constitute the input optical system I. The input optical system I also functions as a parallel projection optical system R. The Fourier transform lens 70 and the output surface 72 constitute an output optical system. The spatial light modulator 30 has a prism 32 and a reflective SLM5. The reflection type SLM5 is, for example, the PAL-SLM described with reference to FIG. 7, and is also incorporated in the phase modulation module 6 described with reference to FIG. However, in FIG. 16, only the reflection type SL M5 is shown, and the phase modulation module 6 is not shown.
[0123] レーザ 62、レンズ 64、ピンホーノレ 66、コリメートレンズ 68、フーリエ変換レンズ 70、 及び、出力面 72は、プリズム 32とともに仮想基準直線 9上に配置されている。反射型 SLM5は、仮想基準直線 9から垂直方向にずれた位置に配置されている。  The laser 62, the lens 64, the pin Honoré 66, the collimating lens 68, the Fourier transform lens 70, and the output surface 72 are arranged on the virtual reference line 9 together with the prism 32. The reflective SLM 5 is arranged at a position that is deviated from the virtual reference line 9 in the vertical direction.
[0124] レーザ 62は、所定の波長の直線偏光光を読み出し光として出射する。読み出し光 の主光線は仮想基準直線 9上を伝搬する。レンズ 64、ピンホール 66、及び、コリメ一 トレンズ 68は読み出し光を所定のビーム径の平行光に変換する。平行光は仮想基 準直線 9に沿って伝搬しプリズム 32の入力側反射面 Mlに入射する。入力側反射面 Mlは、入射した平行光を反射型 SLM5に向けて反射する。反射型 SLM5には、読 み出し光が収束角 ex ( = 0)、ビーム径 cで入射する。反射型 SLM5は、位相変調モ ジュール 6 (図 7)に内蔵されており、図示しない制御部力も LCD530 (図 7)に入力さ れる信号によって、入射した読み出し光に対し所望の位相変調を行う。反射型 SLM 5は、位相変調した光をプリズム 32に向けて反射する。出力側反射面 M2で反射され た位相変調光の主光線は仮想基準直線 9に沿って伝搬する。フーリエ変換レンズ 70 は位相変調光をフーリエ変換し、波形成形された所望の波形パターンを出力面 72に 形成する。 [0124] The laser 62 emits linearly polarized light having a predetermined wavelength as readout light. The chief ray of the readout light propagates on the virtual reference line 9. The lens 64, the pinhole 66, and the collimating lens 68 convert the readout light into parallel light having a predetermined beam diameter. The parallel light propagates along the virtual reference line 9 and enters the input-side reflecting surface Ml of the prism 32. The input-side reflecting surface Ml reflects incident parallel light toward the reflective SLM5. The reflected light enters the reflective SLM5 with a convergence angle ex (= 0) and a beam diameter c. The reflective SLM 5 is built in the phase modulation module 6 (FIG. 7), and a control unit force (not shown) also performs desired phase modulation on the incident read light by a signal input to the LCD 530 (FIG. 7). Reflective SLM 5 reflects the phase-modulated light toward the prism 32. The principal ray of the phase-modulated light reflected by the output-side reflecting surface M2 propagates along the virtual reference straight line 9. The Fourier transform lens 70 Fourier transforms the phase-modulated light, and forms a desired waveform pattern on the output surface 72.
[0125] 空間光変調装置 30では、プリズム 32及び反射型 SLM5は、収束角度 ocと所望の 最大回折次数 nとに対し、式(1)〜(8)あるいは式(11)〜(16)、及び、(9)、 (10)を 満足するように、配置されている。このため、入力光学系 Iから出力された入力光の全 てがプリズム 32の入力側反射面 Mlに入射し、入力側反射面 Mlで反射した光の全 てが反射型 SLM5に入射し、反射型 SLM5で変調された光のうち必要な成分(l〜n 次回折光)の全てがプリズム 32の出力側反射面 M2で反射し、フーリエ変換レンズ 7 0にてフーリエ変換される。したがって、光の利用効率を高めることができ、有効開口 率の高い反射型 SLM5の利点を活かすことができる。  [0125] In the spatial light modulation device 30, the prism 32 and the reflective SLM 5 have the expressions (1) to (8) or the expressions (11) to (16) with respect to the convergence angle oc and the desired maximum diffraction order n. And it is arranged to satisfy (9) and (10). For this reason, all of the input light output from the input optical system I is incident on the input-side reflecting surface Ml of the prism 32, and all of the light reflected by the input-side reflecting surface Ml is incident on the reflective SLM5 for reflection. Of the light modulated by the type SLM5, all necessary components (1 to n-order diffracted light) are reflected by the output-side reflecting surface M2 of the prism 32, and Fourier-transformed by the Fourier transform lens 70. Therefore, the light utilization efficiency can be increased, and the advantages of the reflective SLM5 with a high effective aperture ratio can be utilized.
[0126] 光学処理装置 60では、図 13を参照して説明した第 1の実施の形態における光学 処理装置 80と同様、入力光学系 Iと出力光学系 Oとが仮想基準直線 9上に配置され ており、入力光の光軸と出力光の光軸とが両方とも仮想基準直線 9上に位置する。反 射型 SLM5が仮想基準直線 9から垂直方向にずれた位置にある。レーザ 62、レンズ 64、ピンホール 66、コリメ一卜レンズ 68、フーリエ変換レンズ 70、出力面 72力 全て、 仮想基準直線 9に対し、仮想基準直線 9がこれらを直交して貫通する向きに配置され ている。このため、光学処理装置 80と同様、光学系の設計、組立、調整が容易で、ま た、光学系全体をコンパクトにすることができる。し力も、空間光変調装置 30がプリズ ム 32を採用しているため、全体の部品点数が少なくなり、構成がより単純になってい る。  In the optical processing device 60, the input optical system I and the output optical system O are arranged on the virtual reference line 9 in the same manner as the optical processing device 80 in the first embodiment described with reference to FIG. The optical axis of the input light and the optical axis of the output light are both located on the virtual reference line 9. The reflection type SLM5 is at a position deviated from the virtual reference line 9 in the vertical direction. Laser 62, lens 64, pinhole 66, collimator lens 68, Fourier transform lens 70, output surface 72 forces are all arranged so that the virtual reference line 9 is perpendicular to and passes through the virtual reference line 9. ing. Therefore, like the optical processing device 80, the design, assembly, and adjustment of the optical system are easy, and the entire optical system can be made compact. However, since the spatial light modulator 30 uses the prism 32, the number of parts is reduced and the configuration is simpler.
[0127] 次に、図 17を参照しながら、空間光変調装置 30を採用した別の光学処理装置 10 0について説明する。  Next, another optical processing device 100 that employs the spatial light modulation device 30 will be described with reference to FIG.
[0128] 光学処理装置 100は、第 1の実施の形態の空間光変調装置 1の代わりに空間光変 調装置 30を採用した点を除き、図 13を参照して説明した第 1の実施の形態の光学 処理装置 80と略同一である。すなわち、光源 81、ピンホール 83、コリメートレンズ 82 、入力面 84、及び、フーリエ変換レンズ 86が入力光学系 Iを構成する。このうち、光 源 81、ピンホール 83、コリメートレンズ 82が平行光投光光学系 Rを構成する。フーリ ェ変換レンズ 88と出力面 90とが出力光学系 Oを構成する。入力面 84とフーリエ変換 レンズ 86との間の距離と、フーリエ変換レンズ 86と素子反射面 5cとの間のプリズム 3 2を介した距離とは、フーリエ変換レンズ 86の焦点距離 (長さ fl)に等しく設定されて いる。素子反射面 5cとフーリエ変換レンズ 88との間のプリズム 32を介した距離と、フ 一リエ変換レンズ 88と出力面 90との間の距離とは、フーリエ変換レンズ 88の焦点距 離 (長さ f2)に等しく設定されている。 The optical processing device 100 is the first embodiment described with reference to FIG. 13, except that the spatial light modulator 30 is used instead of the spatial light modulator 1 of the first embodiment. This is substantially the same as the optical processing device 80 of the embodiment. That is, the light source 81, the pinhole 83, the collimating lens 82, the input surface 84, and the Fourier transform lens 86 constitute the input optical system I. Of this, light The source 81, the pinhole 83, and the collimating lens 82 constitute a parallel light projection optical system R. The Fourier transform lens 88 and the output surface 90 constitute the output optical system O. The distance between the input surface 84 and the Fourier transform lens 86 and the distance through the prism 3 2 between the Fourier transform lens 86 and the element reflecting surface 5c are the focal length (length fl) of the Fourier transform lens 86. Is set equal to. The distance between the element reflecting surface 5c and the Fourier transform lens 88 via the prism 32 and the distance between the Fourier transform lens 88 and the output surface 90 are the focal length (length) of the Fourier transform lens 88. It is set equal to f2).
[0129] 読み出し光 (入力光ビーム)は、フーリエ変換レンズ 86でフーリエ変換され、プリズ ム 32で反射されて、収束角 αかつビーム径 cにて反射型 SLM5に入射する。かかる 構成の光学処理装置 100は、入力面 84に表示される入力画像と反射型 SLM5に表 示される参照画像との相関演算を行う。反射型 SLM5は、例えば、図 7を参照して説 明した PAL— SLMであり、やはり図 7を参照して説明した位相変調モジュール 6に 内蔵されている。但し、図 17では、反射型 SLM5のみを図示し、位相変調モジユー ル 6の図示を省略している。  [0129] The readout light (input light beam) is Fourier transformed by the Fourier transform lens 86, reflected by the prism 32, and incident on the reflective SLM5 at a convergence angle α and a beam diameter c. The optical processing apparatus 100 having such a configuration performs a correlation operation between the input image displayed on the input surface 84 and the reference image displayed on the reflective SLM 5. The reflective SLM5 is, for example, the PAL-SLM described with reference to FIG. 7, and is also incorporated in the phase modulation module 6 described with reference to FIG. However, in FIG. 17, only the reflection type SLM5 is shown, and the phase modulation module 6 is not shown.
[0130] 空間光変調装置 30では、プリズム 32及び反射型 SLM5は、収束角度 ocと所望の 最大回折次数 nとに対し、式(1)〜(8)あるいは式(11)〜(16)、及び、(9)、(10)を 満足するように、配置されている。したがって、光学処理装置 100によれば、光学処 理装置 80と同一の効果が得られ、し力も、空間光変調装置 30がプリズム 32を採用し たことにより、全体の部品点数がより少なくなり構成がより単純化されている。  [0130] In the spatial light modulation device 30, the prism 32 and the reflective SLM5 have the expressions (1) to (8) or the expressions (11) to (16) with respect to the convergence angle oc and the desired maximum diffraction order n. And they are arranged to satisfy (9) and (10). Therefore, according to the optical processing device 100, the same effect as that of the optical processing device 80 can be obtained, and the force can be reduced by adopting the prism 32 in the spatial light modulation device 30. Has been simplified.
[0131] 次に、図 18を参照しながら、 2つの空間光変調装置 30を仮想基準直線 9に沿って カスケード状に 2段接続した光学処理装置 200について説明する。  Next, an optical processing device 200 in which two spatial light modulation devices 30 are cascade-connected along the virtual reference line 9 will be described with reference to FIG.
[0132] 光学処理装置 200は、図 17を参照して説明した光学処理装置 100同様、フーリエ 変換レンズ 86とフーリエ変換レンズ 88との間に、空間光変調装置 30 (以下、第 2の 空間光変調装置 30— 2という)を備えている。光学処理装置 200は、さらに、コリメ一 トレンズ 82とフーリエ変換レンズ 86との間に、入力面 84の代わりに、もう一つの空間 光変調装置 30 (以下、第 1の空間光変調装置 30— 1という)を備えている。第 1の空 間光変調装置 30— 1と第 2の空間光変調装置 30— 2とは、共に、図 15を参照して説 明した空間光変調装置 30と同一の構成を備えている。すなわち、第 1の空間光変調 装置 30— 1は、反射型 SLM5 (以下、第 1の反射型 SLM5— 1という)とプリズム 32 ( 以下、第 1のプリズム 32— 1という)とを備えている。反射型 SLM5— 1は仮想基準直 線 9から仮想基準直線 9に対して垂直な方向にずれている。プリズム 32— 1の入力側 反射面 Mlと出力側反射面 M2とは仮想基準直線 9上に配置されている。第 2の空間 光変調装置 30— 2は、反射型 SLM5 (以下、第 2の反射型 SLM5— 2という)とプリズ ム 32 (以下、第 2のプリズム 32— 2という)とを備えている。反射型 SLM5— 2は仮想 基準直線 9から仮想基準直線 9に対して垂直な方向にずれており、プリズム 32— 2の 入力側反射面 Mlと出力側反射面 M2とは仮想基準直線 9上に配置されている。 Similar to the optical processing apparatus 100 described with reference to FIG. 17, the optical processing apparatus 200 includes a spatial light modulator 30 (hereinafter referred to as a second spatial light) between the Fourier transform lens 86 and the Fourier transform lens 88. Modulation device 30-2). The optical processing device 200 further includes another spatial light modulator 30 (hereinafter referred to as a first spatial light modulator 30-1) between the collimating lens 82 and the Fourier transform lens 86 instead of the input surface 84. Is provided). Both the first spatial light modulation device 30-1 and the second spatial light modulation device 30-2 have the same configuration as the spatial light modulation device 30 described with reference to FIG. That is, the first spatial light modulation The device 30-1 includes a reflective SLM5 (hereinafter referred to as a first reflective SLM5-1) and a prism 32 (hereinafter referred to as a first prism 32-1). The reflective SLM5-1 is displaced from the virtual reference straight line 9 in a direction perpendicular to the virtual reference straight line 9. The input side reflection surface Ml and the output side reflection surface M2 of the prism 32-1 are arranged on the virtual reference line 9. The second spatial light modulator 30-2 includes a reflective SLM5 (hereinafter referred to as a second reflective SLM5-2) and a prism 32 (hereinafter referred to as a second prism 32-2). The reflective SLM5-2—2 is shifted from the virtual reference line 9 in a direction perpendicular to the virtual reference line 9, and the input-side reflecting surface Ml and output-side reflecting surface M2 of the prism 32-2 are on the virtual reference line 9. Is arranged.
[0133] 光源 81、ピンホール 83、コリメートレンズ 82、及び、第 1の空間光変調装置 30— 1 の反射型 SLM5— 1の素子反射面 5cが入力光学系 Iを構成している。このうち、光源 81、ピンホール 83、及び、コリメートレンズ 82が平行投光光学系 Rを構成している。 フーリエ変換レンズ 88と出力面 90とが出力光学系 Oを構成している。反射型 SLM5 - 1の素子反射面 5cとフーリエ変換レンズ 86との間のプリズム 32— 1を介した距離と 、フーリエ変換レンズ 86と反射型 SLM5— 2の素子反射面 5cとの間のプリズム 32— 2を介した距離とは、フーリエ変換レンズ 86の焦点距離 (長さ fl)に等しく設定されて いる。反射型 SLM5— 2の素子反射面 5cとフーリエ変換レンズ 88との間のプリズム 3 2— 2を介した距離と、フーリエ変換レンズ 88と出力面 90との間の距離とは、フーリエ 変換レンズ 88の焦点距離 (長さ f 2)に等しく設定されている。反射型 SLM5— 1, 5— 2は、共に、例えば、図 7を参照して説明した PAL— SLMであり、それぞれ、やはり 図 7を参照して説明した位相変調モジュール 6に内蔵されている。なお、図 18でも、 明瞭ィ匕を図るため、反射型 SLM5— 1, 5— 2のみを図示し、位相変調モジュール 6 の図示を省略している。反射型 SLM5— 1は入力画像から作成したフィルタパターン を表示し、コリメートレンズ 82からの平行光を位相変調して入力画像を出力する。反 射型 SLM5 - 2は参照画像に基づ 、て作成されたフィルタパターンを表示する。力 かる構成の光学処理装置 200は、光学処理装置 100同様、入力画像と参照画像と の相関演算を行う。 The light source 81, the pinhole 83, the collimating lens 82, and the element reflection surface 5c of the reflection type SLM5-1 of the first spatial light modulation device 30-1 constitute the input optical system I. Among these, the light source 81, the pinhole 83, and the collimating lens 82 constitute a parallel light projecting optical system R. The Fourier transform lens 88 and the output surface 90 constitute an output optical system O. The distance between the reflecting surface 5c of the reflective SLM5-1 and the Fourier transform lens 86 via the prism 32-1 and the prism 32 between the Fourier transform lens 86 and the reflecting surface 5c of the reflective SLM5-2-2 — The distance through 2 is set equal to the focal length (length fl) of the Fourier transform lens 86. The distance through the prism 3 2-2 between the reflection surface 5c of the reflective SLM5-2—2 and the Fourier transform lens 88 and the distance between the Fourier transform lens 88 and the output surface 90 are the Fourier transform lens 88. Is set equal to the focal length (length f 2). The reflection type SLMs 5-1 and 5-2 are both PAL-SLMs described with reference to FIG. 7, for example, and are incorporated in the phase modulation module 6 described with reference to FIG. In FIG. 18, for the sake of clarity, only the reflective SLMs 5-1 and 5-2 are shown, and the phase modulation module 6 is not shown. The reflective SLM5-1 displays the filter pattern created from the input image, phase-modulates the parallel light from the collimating lens 82, and outputs the input image. The reflection type SLM5-2 displays the filter pattern created based on the reference image. Like the optical processing apparatus 100, the optical processing apparatus 200 having a powerful configuration performs correlation calculation between the input image and the reference image.
[0134] 読み出し光は、コリメートレンズ 82でコリメートされ、プリズム 32— 1で反射されて、ビ ーム径 c、収束角 α ( = 0)にて反射型 SLM5— 1に入射する。プリズム 32— 1及び反 射型 SLM5— 1は、収束角 α ( = 0)と所望の最大回折次数 ηとに対し、式(1)〜(8) あるいは式(11)〜(16)、及び、(9)、(10)を満足するように、配置されている。 The readout light is collimated by the collimating lens 82, reflected by the prism 32-1, and enters the reflective SLM5-1 at the beam diameter c and the convergence angle α (= 0). Prism 32-1 and anti The shot-type SLM5-1 has the following formulas (1) to (8) or (11) to (16) and (9) and (9) for the convergence angle α (= 0) and the desired maximum diffraction order η. Arranged to satisfy 10).
[0135] また、反射型 SLM5— 1から出射した 1〜η次回折光は、フーリエ変換レンズ 86でフ 一リエ変換され、プリズム 32— 2で反射されて、ビーム径 収束角 ocにて反射型 SL Μ5— 2に入射する。プリズム 32— 2及び反射型 SLM5— 2は、収束角 αと所望の最 大回折次数 ηとに対し、式(1)〜(8)あるいは式(11)〜(16)、及び、(9)、 (10)を満 足するように、配置されている。  [0135] The 1st to ηth order diffracted light emitted from the reflective SLM5-1 is Fourier transformed by the Fourier transform lens 86, reflected by the prism 32-2, and reflected by the beam diameter convergence angle oc. Incident on 5-2. The prism 32-2 and the reflective SLM5-2 have the following formulas (1) to (8) or (11) to (16) and (9) for the convergence angle α and the desired maximum diffraction order η. It is arranged to satisfy (10).
[0136] したがって、光学処理装置 200は、光学処理装置 100と同一の効果を達成する他 、第 1の空間光変調装置 30— 1にて任意の入力画像を容易に生成することができる 。 2個の空間光変調装置 30を多段で接続しても、コリメートレンズ 82,フーリエ変換レ ンズ 86,フーリエ変換レンズ 88に関係する光軸が全て一直線の仮想基準直線 9上 に延びているため、光学系の設計、組立、調整が容易である。  Therefore, the optical processing device 200 can achieve the same effect as the optical processing device 100 and can easily generate an arbitrary input image by the first spatial light modulation device 30-1. Even if the two spatial light modulators 30 are connected in multiple stages, the optical axes related to the collimating lens 82, the Fourier transform lens 86, and the Fourier transform lens 88 all extend on a single virtual reference line 9. It is easy to design, assemble and adjust the optical system.
[0137] 次に、図 19を参照しながら、空間光変調装置 30を採用した別の光学処理装置 30 0について説明する。  Next, another optical processing device 300 that employs the spatial light modulation device 30 will be described with reference to FIG.
[0138] 光学処理装置 300は、入力波面の歪みを補償して、均一な波面もしくは所望の位 相分布を持つ波面を形成する波面補償光学系の一例である。光学処理装置 300は 、光計測光学系やレーザー加工光学系、光マニュピレーシヨンなどで用いられるビー ム制御光学系などと組み合わされ、それらの収差を除去するために用いられる。  The optical processing device 300 is an example of a wavefront compensation optical system that forms a wavefront having a uniform wavefront or a desired phase distribution by compensating for distortion of an input wavefront. The optical processing device 300 is combined with a beam control optical system used in an optical measurement optical system, a laser processing optical system, an optical manipulation, and the like, and is used to remove those aberrations.
[0139] 光学処理装置 300は、光源 81、ピンホール 83、コリメートレンズ 82、入力面 302、 レンズ 304とレンズ 306とからなるリレーレンズ系、空間光変調装置 30、レンズ 308と レンズ 310とからなるリレーレンズ系、ビームサンプラー 312、波面センサ 314、制御 装置 316、及び、出力面 318を有している。空間光変調装置 30は、反射型 SLM5お よびプリズム 32を有している。この例では、反射型 SLM5は、図 7を参照して説明し た PAL— SLMであり、やはり図 7を参照して説明した位相変調モジュール 6に内蔵さ れている。なお、図 19でも、明瞭ィ匕を図るため、位相変調モジュール 6の内部の構成 要素のうち反射型 SLM5のみ図示し他の構成要素の図示は省略している。  The optical processing device 300 includes a light source 81, a pinhole 83, a collimating lens 82, an input surface 302, a relay lens system including a lens 304 and a lens 306, a spatial light modulator 30, a lens 308, and a lens 310. It has a relay lens system, a beam sampler 312, a wavefront sensor 314, a control device 316, and an output surface 318. The spatial light modulator 30 includes a reflective SLM 5 and a prism 32. In this example, the reflective SLM 5 is the PAL-SLM described with reference to FIG. 7, and is also incorporated in the phase modulation module 6 described with reference to FIG. In FIG. 19, for the sake of clarity, only the reflective SLM 5 is shown among the internal components of the phase modulation module 6 and the other components are not shown.
[0140] 光源 81、ピンホール 83、コリメートレンズ 82、入力面 302、レンズ 304、及び、レン ズ 306は、入力光学系 Iを構成している。このうち、光源 81、ピンホール 83、及び、コ リメ一トレンズ 82は平行光投光学系 Rを構成している。レンズ 308、レンズ 310、ビー ムサンプラー 312、及び、出力面 318は、出力光学系 Oを構成している。光源 81、ピ ンホール 83、コリメートレンズ 82、入力面 302、レンズ 304、レンズ 306、プリズム 32、 レンズ 308、 310、ビームサンプラー 312、及び、出力面 318は、仮想基準直線 9上 に配置されている。なお、ビームサンプラー 312は、仮想基準直線 9に対して斜め 45 度の向きに配置されたノ、一フミラー力もなる。反射型 SLM5及び制御装置 316は、 仮想基準直線 9から仮想基準直線 9に対して垂直な方向にずれた位置に設けられて いる。入力面 302、出力面 318、反射型 SLM5、及び、波面センサ 314は、レンズ 30 4, 306, 308, 310【こよって結像関係【こ保たれて!/、る。なお、この f列で ίま、レンズ 30 4とレンズ 306とからなるリレーレンズ系、及び、レンズ 308とレンズ 310とからなるリレ 一レンズ系は、像をそのままの大きさで伝達する。 The light source 81, the pinhole 83, the collimating lens 82, the input surface 302, the lens 304, and the lens 306 constitute an input optical system I. Of these, light source 81, pinhole 83, and The reme lens 82 constitutes a parallel light projecting optical system R. The lens 308, the lens 310, the beam sampler 312 and the output surface 318 constitute an output optical system O. Light source 81, pinhole 83, collimating lens 82, input surface 302, lens 304, lens 306, prism 32, lenses 308, 310, beam sampler 312 and output surface 318 are arranged on virtual reference line 9. . The beam sampler 312 also has a mirror force that is arranged at an angle of 45 degrees with respect to the virtual reference line 9. The reflective SLM 5 and the control device 316 are provided at positions shifted from the virtual reference line 9 in a direction perpendicular to the virtual reference line 9. The input surface 302, the output surface 318, the reflection type SLM5, and the wavefront sensor 314 are formed by the lenses 30 4, 306, 308, 310. Note that the relay lens system composed of the lens 304 and the lens 306 and the relay lens system composed of the lens 308 and the lens 310 transmit the image as it is in the f row.
[0141] 光源 81はレーザであって所定の波長の直線偏光光 (読み出し光)を出射し、ピンホ ール 83及びコリメートレンズ 82は、読み出し光を所定のビーム径の略平行光に変換 する。この略平行光が、図示しない、計測対象物体、大気など、波面を歪ませる要因 となる光学媒質を経て、入力面 302に入射する。入力面 302に入射した光ビームは、 光学媒質による歪みを有している。この光ビームは、レンズ 304とレンズ 306とを透過 して、プリズム 32によって反射されて、反射型 SLM5に結像する。反射型 SLM5で 位相変調され反射された光は、プリズム 32にて反射され、レンズ 308、レンズ 310を 透過して出力面 318上に結像する。ここで、レンズ 310を透過した光の一部は、レン ズ 310の後方に配置されたビームサンプラー 312によってサンプルされ、波面センサ 314に入射する。波面センサ 314は、入射したビーム波面の歪みを計測し、制御装 置 316を介して、位相変調モジュール 6内の LCD530 (図 7)にその歪みを補正する 信号をフィードバックし、波面補償を行う。出力面 318の後には、図示しない集光光 学系が配置されており、センサもしくは加工対象物、もしくはマ-ュピレーシヨン対象 物などに光を照射する。  [0141] The light source 81 is a laser and emits linearly polarized light (reading light) having a predetermined wavelength, and the pinhole 83 and the collimating lens 82 convert the reading light into substantially parallel light having a predetermined beam diameter. The substantially parallel light is incident on the input surface 302 via an optical medium (not shown) such as a measurement target object or the atmosphere that causes the wavefront to be distorted. The light beam incident on the input surface 302 has distortion due to the optical medium. This light beam passes through the lens 304 and the lens 306, is reflected by the prism 32, and forms an image on the reflective SLM5. The light that has been phase-modulated and reflected by the reflective SLM 5 is reflected by the prism 32, passes through the lens 308 and the lens 310, and forms an image on the output surface 318. Here, a part of the light transmitted through the lens 310 is sampled by the beam sampler 312 disposed behind the lens 310 and is incident on the wavefront sensor 314. The wavefront sensor 314 measures the distortion of the incident beam wavefront, feeds back a signal for correcting the distortion to the LCD 530 (FIG. 7) in the phase modulation module 6 via the control device 316, and performs wavefront compensation. A condensing optical system (not shown) is disposed after the output surface 318, and irradiates light to the sensor, the object to be processed, or the object to be processed.
[0142] 空間光変調装置 30では、プリズム 32及び反射型 SLM5は、式(1)〜(8)あるいは 式(11)〜(16)、及び、式(9)、 (10)を満足するように、配置されている。ここで、これ らの式中、 aは反射型 SLM5で補償可能な最大歪み量より大きな値に設定されてい る。また、 βは許容残差より大きな値に設定されている。 [0142] In the spatial light modulation device 30, the prism 32 and the reflective SLM5 satisfy the expressions (1) to (8) or the expressions (11) to (16) and the expressions (9) and (10). Is arranged. Here, in these equations, a is set to a value larger than the maximum amount of distortion that can be compensated by the reflective SLM5. The Β is set to a value larger than the allowable residual.
[0143] したがって、入力光学系 Iから出力された入力光のうち SLM5で補償可能な成分の 全てがプリズム 32の入力側反射面 Mlに入射し、入力側反射面 Mlで反射した光の 全てが反射型 SLM5に入射して反射型 SLM5で変調 (補償)され、反射型 SLM5で 変調された光のうち許容できる成分の全てがプリズム 32の出力側反射面 M2で反射 し出力光学系 Oに導かれる。したがって、光の利用効率を高めることができ、有効開 口率の高 、反射型 SLM5の利点を活かすことができる。  Therefore, of the input light output from the input optical system I, all the components that can be compensated by the SLM5 are incident on the input-side reflecting surface Ml of the prism 32, and all the light reflected by the input-side reflecting surface Ml All of the allowable components of the light incident on the reflective SLM5, modulated (compensated) by the reflective SLM5, and modulated by the reflective SLM5 are reflected by the output-side reflecting surface M2 of the prism 32 and guided to the output optical system O. It is burned. Therefore, the light utilization efficiency can be increased, and the advantages of the reflective SLM5 can be utilized with a high effective aperture ratio.
[0144] また、ビームサンプラー 312にて光路を垂直に折り曲げることができるため、光学系 の設計が簡単になる。さらに、光路が斜めではなぐ仮想基準直線 9に対して平行あ るいは垂直な方向に伸びて 、るため、一般に直方体である位相変調モジュール 6の 筐体や波面センサ 314の筐体との整合性が取りやすぐ光学処理装置 300全体をコ ンパクトイ匕することが容易である。しかも、プリズム 32を利用しているため、全体の部 品点数が少なくなり構成がよりコンパクトィ匕できる。  [0144] Further, since the optical path can be bent vertically by the beam sampler 312, the design of the optical system is simplified. Further, since the optical path extends in a direction parallel to or perpendicular to the virtual reference line 9 that is not oblique, consistency with the casing of the phase modulation module 6 or the wavefront sensor 314 that is generally a rectangular parallelepiped. However, it is easy to compact the entire optical processing apparatus 300. In addition, since the prism 32 is used, the total number of parts is reduced and the configuration can be made more compact.
[0145] また、入力面 302から出力面 318までの光路が仮想基準直線 9上に配置されてお り、この光路上に空間光変調装置 30が挿入されている。このため、既述の光学処理 装置 60, 100, 200と同様に光学調整が容易となる。なお、光学調整を行う際には、 空間光変調装置 30以外の光学部品を光学調整した後、空間光変調装置 30を挿入 し調整すればよい。  [0145] The optical path from the input surface 302 to the output surface 318 is arranged on the virtual reference straight line 9, and the spatial light modulator 30 is inserted on this optical path. For this reason, the optical adjustment becomes easy as in the optical processing apparatuses 60, 100, 200 described above. When performing the optical adjustment, the optical components other than the spatial light modulator 30 may be optically adjusted, and then the spatial light modulator 30 may be inserted and adjusted.
[0146] なお、光学処理装置 300は、空間光変調装置 30を備え波面補償を実現するので あれば、図 19を参照して説明した構成でなくてもよい。例えば、光源 81としては、レ 一ザ一でもよいが、空間コヒーレンスが高く点光源とみなせれば、レーザーでなくても よい。また、ビームサンプラー 312は、レンズ 310の後方に配置しなくても良い。ビー ムサンプラー 312は、出力側反射面 M2の後側で、かつ、出力面 318の前側の任意 の位置に配置することができる。また、反射型 SLM5と波面センサ 314との間に、レン ズ 308とレンズ 310と力もなるリレーレンズ系の代わりに、像の拡大機能を有する拡大 リレーレンズ系や、像の縮小機能を有する縮小リレーレンズ系、波長毎に光を分離す る機能を有するダイクロイツクミラー等、任意の機能を有する機能光学系を挿入しても 良い。また、反射型 SLM5と波面センサ 314とは、結像関係に無くても良い。 [0147] 次に、第 3の実施の形態に力かる空間光変調装置 40について、図 20を参照しなが ら説明する。 Note that the optical processing device 300 may not have the configuration described with reference to FIG. 19 as long as it includes the spatial light modulation device 30 and realizes wavefront compensation. For example, the light source 81 may be a laser, but may not be a laser as long as spatial coherence is high and can be regarded as a point light source. Further, the beam sampler 312 may not be disposed behind the lens 310. The beam sampler 312 can be disposed at an arbitrary position on the rear side of the output-side reflecting surface M2 and on the front side of the output surface 318. In addition, instead of the relay lens system that also works with the lens 308 and the lens 310, between the reflective SLM5 and the wavefront sensor 314, an enlargement relay lens system having an image enlargement function and a reduction relay having an image reduction function A functional optical system having an arbitrary function such as a lens system or a dichroic mirror having a function of separating light for each wavelength may be inserted. Further, the reflection type SLM5 and the wavefront sensor 314 may not be in an imaging relationship. Next, a spatial light modulation device 40 that works on the third embodiment will be described with reference to FIG.
[0148] 空間光変調装置 40は、プリズム 32の代わりにプリズム 42を採用した点を除き、第 2 の実施の形態にかかる空間光変調装置 30と同一である。したがって、空間光変調装 置 40は、反射型 SLM5とプリズム 42とを備えている。なお、図 20では、第 2の実施の 形態にかかる空間光変調装置 30と同様の機能、構成を有する部材には同一の番号 を付している。また、明瞭ィ匕を図るため、反射型 SLM5のうちミラー層 5bのみを図示 し変調部 5a及びアドレス部 5dの図示を省略している。反射型 SLM5は、例えば、図 7を参照して説明した PAL— SLMであり、位相変調モジュール 6 (図 7)に内蔵されて いてもよい。  The spatial light modulation device 40 is the same as the spatial light modulation device 30 according to the second embodiment, except that the prism 42 is employed instead of the prism 32. Therefore, the spatial light modulation device 40 includes the reflective SLM 5 and the prism 42. In FIG. 20, members having the same functions and configurations as those of the spatial light modulation device 30 according to the second embodiment are denoted by the same reference numerals. For the sake of clarity, only the mirror layer 5b is shown in the reflective SLM 5, and the modulation unit 5a and the address unit 5d are not shown. The reflective SLM 5 is, for example, the PAL-SLM described with reference to FIG. 7, and may be incorporated in the phase modulation module 6 (FIG. 7).
[0149] プリズム 42は、断面が台形状の 4角柱である。より詳しくは、プリズム 42は、プリズム 32の三角形断面の頂点部分を切り落として形成した台形断面を持つ。 4角柱を構成 する 4つの面 SI, S2, S3, S4 (外表面)のうち台形断面の斜辺に対応する 2つの斜 面 SI, S2に反射率を高めるための処理が施されている。このため、 Sl、 S2は入力 側反射面 Mlと出力側反射面 M2として機能する。プリズム 42は、入力側反射面 Ml と出力側反射面 M2とが仮想基準直線 9上に位置し、台形断面の下底及び上底に対 応する残りの 2つの面 (底面 S3,上面 S4)が仮想基準直線 9を挟むように、配置され ている。  The prism 42 is a quadrangular prism with a trapezoidal cross section. More specifically, the prism 42 has a trapezoidal cross section formed by cutting off the apex portion of the triangular cross section of the prism 32. Of the four surfaces SI, S2, S3, and S4 (outer surface) that make up the quadrangular prism, the two inclined surfaces SI and S2 that correspond to the hypotenuse of the trapezoidal cross section are treated to increase the reflectivity. For this reason, Sl and S2 function as the input side reflection surface Ml and the output side reflection surface M2. In the prism 42, the input-side reflecting surface Ml and the output-side reflecting surface M2 are located on the virtual reference line 9, and the remaining two surfaces corresponding to the lower and upper bases of the trapezoidal cross section (bottom surface S3, upper surface S4) Are arranged so as to sandwich the virtual reference line 9.
[0150] 入力側反射面 Mlは、仮想基準直線 9に沿って入射する入力光を、反射型 SLM5 へ反射する。反射型 SLM5は、入力側反射面 Mlで反射した入力光を変調して反射 する。出力側反射面 M2は、反射型 SLM5からの光を反射して、仮想基準直線 9〖こ 沿って出力する。  [0150] The input-side reflecting surface Ml reflects the input light incident along the virtual reference line 9 to the reflective SLM5. The reflective SLM5 modulates and reflects the input light reflected by the input-side reflection surface Ml. The output-side reflecting surface M2 reflects the light from the reflective SLM5 and outputs it along the 9th virtual reference line.
[0151] 本実施の形態でも、第 2の実施の形態同様、読み出し光 (入力光ビーム)は、図示 しない入力光学系から、仮想基準直線 9に沿って、 0から αの範囲の収束角度にて 入射してくるとする。また、読み出し光 (入力光ビーム)の反射型 SLM5に入射する際 のビーム径は、素子反射面 5cの長さ cに等しいとする。反射型 SLM5で変調され素 子反射面 5cにて反射された読み出し光が反射型 SLM5から出射する。この読み出 し光のうち、所望の成分 (すなわち、空間光変調装置 40から出力させたい所望の成 分)が、 0から βの範囲の発散角で、出力光ビームとして出射するとする。ここで、入 力側反射面 Mlと出力側反射面 Μ2と素子反射面 5cとの配置関係は、入力側反射 面 Mlの端点 A2と出力側反射面 M2の端点 B1とが離間している点を除き、第 2の実 施の形態のプリズム 32と同一である。すなわち、入力側反射面 Mlと出力側反射面 M2と素子反射面 5cとは、収束角度値 αと所望の値 j8とに対し、式(1)〜(8)、もしく は、式(11)〜(16)の関係を満足している。例えば、 l〜n次回折光を出力したい場 合には、収束角度値 αと所望の回折次数 nとに対して、式(1)〜(8)、もしくは、式(1 1)〜(16)、及び、式(9)、(10)の関係を満足している。 [0151] Also in the present embodiment, as in the second embodiment, the readout light (input light beam) is converged at a convergence angle in the range of 0 to α along the virtual reference line 9 from an input optical system (not shown). And enter. Further, it is assumed that the beam diameter when the reading light (input light beam) enters the reflective SLM 5 is equal to the length c of the element reflecting surface 5c. The readout light modulated by the reflective SLM5 and reflected by the element reflecting surface 5c is emitted from the reflective SLM5. Of the readout light, a desired component (that is, a desired component to be output from the spatial light modulator 40) is obtained. Is emitted as an output light beam with a divergence angle ranging from 0 to β. Here, the input side reflecting surface Ml, the output side reflecting surface Μ2 and the element reflecting surface 5c are arranged so that the end point A2 of the input side reflecting surface Ml and the end point B1 of the output side reflecting surface M2 are separated from each other. Is the same as the prism 32 of the second embodiment. That is, the input-side reflecting surface Ml, the output-side reflecting surface M2, and the element reflecting surface 5c are expressed by equations (1) to (8) or (11) with respect to the convergence angle value α and the desired value j8. ) To (16) are satisfied. For example, if it is desired to output l to n-order diffracted light, equations (1) to (8) or equations (11) to (16) are applied to the convergence angle value α and the desired diffraction order n. And the relations of the expressions (9) and (10) are satisfied.
[0152] したがって、本実施の形態の空間光変調装置 40は、第 2の実施の形態の空間光変 調装置 30や第 1の実施の形態の空間光変調装置 1と同様の効果を奏する。したがつ て、図 16— 19を参照して説明した光学処理装置 60, 100, 200, 300において、空 間光変調装置 30の代わりに空間光変調装置 40を設けてもよい。また、図 13を参照 して説明した光学処理装置 80において、空間光変調装置 1の代わりに空間光変調 装置 40を設けてもよい。  Accordingly, the spatial light modulation device 40 of the present embodiment has the same effects as the spatial light modulation device 30 of the second embodiment and the spatial light modulation device 1 of the first embodiment. Therefore, the spatial light modulator 40 may be provided in place of the spatial light modulator 30 in the optical processing devices 60, 100, 200, 300 described with reference to FIGS. Further, in the optical processing device 80 described with reference to FIG. 13, a spatial light modulation device 40 may be provided instead of the spatial light modulation device 1.
[0153] なお、入力側反射面 Mlと出力側反射面 M2と素子反射面 5cとが式(11)〜(16) の関係を満足している場合には、素子反射面 5cとプリズム 42の面 S3、 S4とは、仮想 基準直線 9に平行に配置される。この場合には、空間光変調装置 40は、上述した入 力側反射面 Mlと出力側反射面 M2とを介した斜め読み出しの他、垂直読み出しをも 行うことができる。すなわち、矢印 Vに示すように、光を、プリズム 42の底面 S3に対し て垂直に入射させる。すると、光はプリズム 42内を透過し上面 S4から垂直に出射し 反射型 SLM5に垂直に入射する。反射型 SLM5で変調され反射された光はプリズム 42の上面 S4に再び垂直に入射しプリズム 42内を再び透過し底面 S3から垂直に出 射する。このとき、入射光及び出射光はプリズム 42の底面 S3及び上面 S4に対して 垂直に進むため、プリズム 42の底面 S3及び上面 S4にて反射されることなく効率よく プリズム 42を透過する。  [0153] When the input-side reflecting surface Ml, the output-side reflecting surface M2, and the element reflecting surface 5c satisfy the relationships of the expressions (11) to (16), the element reflecting surface 5c and the prism 42 The planes S3 and S4 are arranged parallel to the virtual reference straight line 9. In this case, the spatial light modulation device 40 can perform vertical readout in addition to the oblique readout via the input-side reflection surface Ml and the output-side reflection surface M2. That is, as indicated by an arrow V, light is incident perpendicularly to the bottom surface S3 of the prism 42. Then, the light passes through the prism 42, exits vertically from the upper surface S4, and enters the reflection type SLM5 perpendicularly. The light modulated and reflected by the reflective SLM 5 is incident on the upper surface S4 of the prism 42 perpendicularly, is transmitted again through the prism 42, and is emitted perpendicularly from the bottom surface S3. At this time, since the incident light and the outgoing light travel perpendicular to the bottom surface S3 and the top surface S4 of the prism 42, they are efficiently transmitted through the prism 42 without being reflected by the bottom surface S3 and the top surface S4 of the prism 42.
[0154] 次に、第 4の実施の形態に力かる空間光変調装置 50、及び、空間光変調装置 50 に使用されるカップリングプリズム 52について、図 21を参照しながら説明する。  [0154] Next, the spatial light modulator 50 and the coupling prism 52 used in the spatial light modulator 50 according to the fourth embodiment will be described with reference to FIG.
[0155] 空間光変調装置 50は、プリズム 32の代わりにカップリングプリズム 52を採用した点 、及び、カップリングプリズム 52を反射型 SLM5に接合した点を除き、図 15を参照し て説明した第 2の実施の形態に力かる空間光変調装置 30と同一である。したがって 、空間光変調装置 50は、反射型 SLM5と反射型 SLM5に接合されたカップリングプ リズム 52とを備えている。図 21においては、第 2の実施の形態に力かる空間光変調 装置 30と同様の機能、構成を有する部材には同一の番号を付している。反射型 SL M5は、例えば、図 7を参照して説明した PAL— SLMであり、位相変調モジュール 6 (図 7)に内蔵されていてもよい。 [0155] Spatial light modulator 50 employs coupling prism 52 instead of prism 32 The spatial light modulation device 30 is the same as that of the second embodiment described with reference to FIG. 15 except that the coupling prism 52 is joined to the reflective SLM 5. Accordingly, the spatial light modulation device 50 includes a reflective SLM 5 and a coupling prism 52 joined to the reflective SLM 5. In FIG. 21, the members having the same functions and configurations as those of the spatial light modulation device 30 that are useful for the second embodiment are denoted by the same reference numerals. The reflective SL M5 is, for example, the PAL-SLM described with reference to FIG. 7, and may be incorporated in the phase modulation module 6 (FIG. 7).
[0156] カップリングプリズム 52は 5角柱形状のプリズムである。カツプリングプリズム 52は、 5つの面 54、 55, 56, 57, 58を備えて!/ヽる。面 54は面 58に対向して!/、る。面 54と面 58とは互いに平行に延びている。面 56は面 55と面 57と〖こ対向している。面 54と面 5 6とのなす角度(内角)は 90°である。面 56と面 58とのなす角度(内角)も 90°である。 面 54と面 55とのなす角度(内角)は 90°— φ 1である。面 57と面 58とのなす角度(内 角)は 90° - φ 2である。面 55と面 57とのなす角度(内角)は 180° + ( φ 1 + φ 2)で ある。ここで、 φ 1及び φ 2は、 0° く (90° — φ 1)く 90° 、0° く (90° — φ 2)く 90 ° 、及び、 180° < { 180° + ( 1 + 2) } < 360° を満足している。面 56は反射型 SLM5の変調部 5aの外側表面と接合されている。例えば、反射型 SLM5が図 7を参 照して説明した PAL— SLMである場合には、面 56は反射型 SLM5の透明基板 50 2に接合されている。素子反射面 5cは、面 56に対して平行に延びている。  [0156] The coupling prism 52 is a pentagonal prism. The coupling prism 52 has five faces 54, 55, 56, 57, 58! Face 54 faces face 58! / Surface 54 and surface 58 extend parallel to each other. Surface 56 is opposite to surface 55 and surface 57. The angle (inner angle) formed by surface 54 and surface 56 is 90 °. The angle (inner angle) formed by surface 56 and surface 58 is also 90 °. The angle (inner angle) formed by surface 54 and surface 55 is 90 ° —φ1. The angle (inner angle) formed by surface 57 and surface 58 is 90 ° -φ2. The angle (inner angle) formed by surface 55 and surface 57 is 180 ° + (φ 1 + φ 2). Where φ 1 and φ 2 are 0 ° (90 ° — φ 1) 90 °, 0 ° (90 ° — φ 2) 90 °, and 180 ° <{180 ° + (1 + 2)} <360 ° is satisfied. The surface 56 is bonded to the outer surface of the modulation portion 5a of the reflective SLM5. For example, when the reflective SLM5 is the PAL-SLM described with reference to FIG. 7, the surface 56 is bonded to the transparent substrate 502 of the reflective SLM5. The element reflecting surface 5c extends parallel to the surface 56.
[0157] カップリングプリズム 52は、仮想基準直線 9に対して図 21に示す向きに配置されて いる。すなわち、仮想基準直線 9が面 54と面 58とを貫通している。面 54と面 58とは 仮想基準直線 9に対して垂直に伸びている。面 56は仮想基準直線 9から仮想基準 直線 9に対して垂直な方向にずれた位置にお ヽて仮想基準直線 9に対して平行に 延びている。したがって、素子反射面 5cも、仮想基準直線 9から仮想基準直線 9に対 して垂直な方向にずれた位置にぉ 、て仮想基準直線 9に対して平行に延びて 、る。 面 55は仮想基準直線 9に対して斜めに延びて ヽる。面 57も仮想基準直線 9に対して 斜めに延びている。すなわち、面 55は仮想基準直線 9に対して角度 φ 1をなす方向 に延びている。面 57は仮想基準直線 9に対して角度 φ 2をなす方向に延びている。 なお、 φ 1は、図 21において、仮想基準直線 9から反時計方向に正の値を採る。また 、 φ 2は、図 21において、仮想基準直線 9から時計方向に正の値を採る。 φ 1、 φ 2 は、 0° く φ 1く 90° 、0° く φ 2く 90° を満足している。なお、本実施の形態では 、角度 φ 1と角度 φ 2とは、カップリングプリズム 52を構成する材料の屈折率 mに対し て全反射の条件を満たす値となって!/、る。 The coupling prism 52 is arranged in the direction shown in FIG. 21 with respect to the virtual reference straight line 9. That is, the virtual reference line 9 passes through the surface 54 and the surface 58. Surface 54 and surface 58 extend perpendicular to the virtual reference line 9. The plane 56 extends parallel to the virtual reference line 9 at a position shifted from the virtual reference line 9 in a direction perpendicular to the virtual reference line 9. Therefore, the element reflection surface 5c also extends parallel to the virtual reference line 9 at a position shifted from the virtual reference line 9 in a direction perpendicular to the virtual reference line 9. The surface 55 extends obliquely with respect to the virtual reference line 9. The surface 57 also extends obliquely with respect to the virtual reference line 9. That is, the surface 55 extends in a direction that forms an angle φ 1 with respect to the virtual reference line 9. The surface 57 extends in a direction that forms an angle φ 2 with respect to the virtual reference straight line 9. Note that φ 1 takes a positive value counterclockwise from the virtual reference line 9 in FIG. Also Φ 2 takes a positive value in the clockwise direction from the virtual reference straight line 9 in FIG. φ 1 and φ 2 satisfy 0 ° and φ 1 and 90 °, and 0 ° and φ 2 and 90 °. In the present embodiment, the angle φ 1 and the angle φ 2 are values that satisfy the condition of total reflection with respect to the refractive index m of the material constituting the coupling prism 52.
[0158] 面 54は入力側透過面 P1として機能し、面 56は接合透過面 P2として機能し、面 58 は出力側透過面 P3として機能する。面 55の内側表面は入力側反射面 Mlとして機 能し、面 57の内側表面は出力側反射面 M2として機能する。  [0158] The surface 54 functions as the input-side transmission surface P1, the surface 56 functions as the bonding transmission surface P2, and the surface 58 functions as the output-side transmission surface P3. The inner surface of the surface 55 functions as the input side reflection surface Ml, and the inner surface of the surface 57 functions as the output side reflection surface M2.
[0159] すなわち、仮想基準直線 9に沿って伝搬してきた読み出し光は、入力側透過面 P1 を透過してカップリングプリズム 52内部に導かれる。読み出し光は、カップリングプリ ズム 52内部を伝搬して入力側反射面 Mlにて全反射され、カップリングプリズム 52内 部をさらに伝搬して、接合透過面 P2を透過して反射型 SLM5に到達する。変調部 5 aで変調され素子反射面 5cにて反射された読み出し光は接合透過面 P2を再び透過 して、カップリングプリズム 52内部へ導かれる。読み出し光は、カップリングプリズム 5 2内部を伝搬して出力側反射面 M2にて全反射され、カップリングプリズム 52内部を さらに伝搬して、出力側透過面 P3を透過してカップリングプリズム 52から出力され、 仮想基準直線 9に沿って伝搬する。  That is, the readout light that has propagated along the virtual reference straight line 9 passes through the input side transmission surface P 1 and is guided into the coupling prism 52. The readout light propagates inside the coupling prism 52 and is totally reflected by the input-side reflection surface Ml, further propagates inside the coupling prism 52, passes through the junction transmission surface P2, and reaches the reflection type SLM5. To do. The readout light modulated by the modulation unit 5 a and reflected by the element reflection surface 5 c is transmitted again through the cemented transmission surface P 2 and guided into the coupling prism 52. The readout light propagates inside the coupling prism 52 and is totally reflected by the output-side reflecting surface M2, further propagates inside the coupling prism 52, passes through the output-side transmitting surface P3, and is transmitted from the coupling prism 52. Output and propagate along virtual reference line 9
[0160] 本実施の形態でも、図 15を参照して説明した第 2の実施の形態のプリズム 32と同 様、入力側反射面 Mlの端点 A2と出力側反射面 M2の端点 B1とが一致している。 すなわち、入力側反射面 Mlと出力側反射面 M2と素子反射面 5cとの配置関係は、 入力側反射面 Mlの端点 A2と出力側反射面 M2の端点 B1とが一致している点を除 き、図 8を参照して説明した第 1の実施の形態における入力側反射面 Mlと出力側反 射面 M2と素子反射面 5cとの配置関係と同一である。  [0160] Also in this embodiment, the end point A2 of the input-side reflecting surface Ml and the end point B1 of the output-side reflecting surface M2 are the same as in the prism 32 of the second embodiment described with reference to FIG. I'm doing it. In other words, the positional relationship among the input side reflection surface Ml, the output side reflection surface M2, and the element reflection surface 5c is that the end point A2 of the input side reflection surface Ml and the end point B1 of the output side reflection surface M2 match. The arrangement relationship between the input side reflection surface Ml, the output side reflection surface M2, and the element reflection surface 5c in the first embodiment described with reference to FIG. 8 is the same.
[0161] すなわち、図 21に示すように、入力主光線 11が入力側反射面 Mlに入射する点を 点 A、入力側反射面 Mlで反射した光の主光線が反射型 SLM5に入射する点を点 C 、反射型 SLM5で変調され素子反射面 5cにて反射した光の主光線が出力側反射面 M2に入射する点を点 Bとする。点 Aと点 Bとを結ぶ直線 A—Bは仮想基準直線 9上に 位置している。入力側反射面 Mlと仮想基準直線 9との成す角度は φ 1 (0く φ 1く 9 0° )、出力側反射面 M2と仮想基準直線 9との成す角度は φ 2 (0< φ 2< 90° )で ある。素子反射面 5cは仮想基準直線 9に対して角度 φ 3をなす方向に延びている。 なお、 φ 3は、図 21において、仮想基準直線 9から反時計方向に正の値を採る。この 例では、 φ 3は、 φ 3 = 0を満足している。また、入力側反射面 Mlの両端の点 Al、 点 A2に対して、線分 Al— A2の長さを a、線分 A— A1の長さを al、線分 A— A2の 長さを a2とする。出力側反射面 M2の両端の点 Bl、点 B2に対して、線分 B1— B2の 長さを b、線分 B— B1の長さを bl、線分 B— B2の長さを b2とする。素子反射面 5cの 2つの端点 Cl、 C2に対して、線分 C1一 C2の長さ(すなわち、反射型 SLM5の有効 口径)を c、線分 C— C1の長さを cl、線分 C— C2の長さを c2とする。さらに、点じから 線分 A— Bへの垂線の足を点 D、垂線 C一 Dの長さを h、線分 A— Bの長さをしとする That is, as shown in FIG. 21, the point where the input chief ray 11 is incident on the input side reflecting surface Ml is point A, and the chief ray of the light reflected by the input side reflecting surface Ml is incident on the reflective SLM5. Is the point C, and the point where the principal ray of the light modulated by the reflective SLM5 and reflected by the element reflecting surface 5c is incident on the output-side reflecting surface M2 is the point B. A straight line A—B connecting point A and point B is located on the virtual reference line 9. The angle between the input-side reflecting surface Ml and the virtual reference line 9 is φ 1 (0 to φ 1 to 90 °), and the angle between the output-side reflecting surface M2 and the virtual reference line 9 is φ 2 (0 <φ 2 <90 °) is there. The element reflecting surface 5c extends in a direction that forms an angle φ 3 with respect to the virtual reference line 9. Note that φ 3 takes a positive value counterclockwise from the virtual reference line 9 in FIG. In this example, φ 3 satisfies φ 3 = 0. Also, with respect to point Al and point A2 on both ends of the input-side reflecting surface Ml, the length of the line segment Al—A2 is a, the length of the line segment A—A1 is al, and the length of the line segment A—A2 is Let a2. The length of line segment B1—B2 is b, the length of line segment B—B1 is bl, and the length of line segment B—B2 is b2. To do. For the two end points Cl and C2 of the element reflection surface 5c, the length of the line segment C1-C2 (that is, the effective aperture of the reflective SLM5) is c, the length of the line segment C—C1 is cl, and the line segment C — Let C2 be the length of C2. Furthermore, let D be the leg of the perpendicular line from the dotted line to line segment A—B, h be the length of perpendicular line C – D, and let it be the length of line segment A—B.
[0162] 本実施の形態でも、第 2、第 3の実施の形態同様、読み出し光 (入力光ビーム)は、 図示しない入力光学系から、仮想基準直線 9に沿って、 0から αの範囲の収束角度 にて入射してくるとする。また、読み出し光 (入力光ビーム)の反射型 SLM5に入射す る際のビーム径は、素子反射面 5cの長さ cに等しいとする。また、反射型 SLM5で変 調され素子反射面 5cにて反射された読み出し光が反射型 SLM5から出射する。この 読み出し光のうち、所望の成分 (すなわち、空間光変調装置 50から出力させたい所 望の成分)が、 0度力 角度 の範囲の発散角で、出力光ビームとして出射するとす る。 [0162] Also in this embodiment, as in the second and third embodiments, the readout light (input light beam) is in the range of 0 to α from the input optical system (not shown) along the virtual reference straight line 9. Suppose that it is incident at the convergence angle. Further, it is assumed that the beam diameter when the reading light (input light beam) enters the reflective SLM 5 is equal to the length c of the element reflecting surface 5c. Further, the readout light modulated by the reflective SLM5 and reflected by the element reflection surface 5c is emitted from the reflective SLM5. Of the readout light, a desired component (that is, a desired component desired to be output from the spatial light modulator 50) is emitted as an output light beam with a divergence angle in the range of 0 ° force angle.
[0163] 本実施の形態においては、入力側反射面 Mlと出力側反射面 M2と素子反射面 5c とは、収束角度値 exと所望の発散角度値 βとに対し、式(11)〜(16)において αを a Zmに置き換え βを β Zmに置き換え λをえ Zmに置き換えた式(1 Γ)〜(16 (ただし、 mは、カップリングプリズム 52の屈折率である)を満足している。  [0163] In the present embodiment, the input-side reflecting surface Ml, the output-side reflecting surface M2, and the element reflecting surface 5c are expressed by equations (11) to (11) with respect to the convergence angle value ex and the desired divergence angle value β. In (16), α is replaced with a Zm, β is replaced with β Zm, and λ is replaced with Zm (16) (where m is the refractive index of coupling prism 52) Yes.
即ち、  That is,
[数 51]  [Equation 51]
< =。 ( 1 1 ) <=. (1 1)
[数 53] [Equation 53]
( 1 3 ' )  ( 13 ' )
[数 54] [Equation 54]
一、 —— sin / +c, sinC2(z5, +P/ )  1, —— sin / + c, sinC2 (z5, + P /)
sin(2^2) 1 Y1 sin (2 ^ 2 ) 1 Y1
sinW2 + J sinW 2 + J
( 1 4 ' )  ( 14 ' )
[数 55] [Equation 55]
[数 56] [Number 56]
2cos¾¾ ( 1 6 ' ) を満足している。  2cos¾¾ (1 6 ') is satisfied.
例えば、所望の成分が 1〜!!次回折光である場合には、入力側反射面 Ml、出力側 反射面 M2、素子反射面 5cは収束角度値 αと所望の回折次数 nとに対して、式(1Γ )〜(16')、及び、式(9')、(1(Τ)とを満足している。ここで式(9Ί、 (ΙΟ')は、 [数 57] For example, the desired ingredient is 1 ~! ! In the case of the next-order diffracted light, the input-side reflecting surface Ml, the output-side reflecting surface M2, and the element reflecting surface 5c are expressed by equations (1Γ) to (16 ') for the convergence angle value α and the desired diffraction order n And (9 ') and (1 (Τ) are satisfied. Here, the equations (9Ί and (ΙΟ') are
[数 58] ηλ [Equation 58] ηλ
md sin(^, + φ2 ) となる。 md sin (^, + φ 2 )
[0164] したがって、本実施の形態の空間光変調装置 50でも、入力主光線 11と出力主光 線 17とが共に仮想基準直線 9上に位置し、プリズム 52への入射光の全てが入力側 反射面 Mlによって反射され、入力側反射面 Mlで反射された入射光の全てが読み だし光として反射型 SLM5に入射し、さらに反射型 SLM5で変調された読みだし光 の所望の成分全てがプリズム 52の出力側反射面 M2によって反射される。したがって 、空間光変調装置 50によれば、第 2の実施の形態の空間光変調装置 30や第 1の実 施の形態の空間光変調装置 1と同様の効果が得られる。したがって、図 16— 19を参 照して説明した光学処理装置 60, 100, 200, 300において、空間光変調装置 30の 代わりに空間光変調装置 50を設けてもよい。また、図 13を参照して説明した光学処 理装置 80において、空間光変調装置 1の代わりに空間光変調装置 50を設けてもよ い。  Therefore, also in the spatial light modulation device 50 of the present embodiment, the input principal ray 11 and the output principal ray 17 are both located on the virtual reference line 9, and all the incident light to the prism 52 is on the input side. All of the incident light reflected by the reflective surface Ml and reflected by the input-side reflective surface Ml enters the reflective SLM5 as readout light, and all the desired components of the readout light modulated by the reflective SLM5 are prisms. Reflected by 52 output-side reflecting surfaces M2. Therefore, according to the spatial light modulation device 50, the same effect as the spatial light modulation device 30 of the second embodiment and the spatial light modulation device 1 of the first embodiment can be obtained. Therefore, the spatial light modulator 50 may be provided in place of the spatial light modulator 30 in the optical processing devices 60, 100, 200, and 300 described with reference to FIGS. Further, in the optical processing device 80 described with reference to FIG. 13, the spatial light modulator 50 may be provided instead of the spatial light modulator 1.
[0165] さらに、入力側反射面 Mlと出力側反射面 M2とは全反射を行う所定の角度に備え られているので、入力側反射面 Mlと出力側反射面 M2には反射率を向上させるた めの処理を施す必要がな ヽ。入力側透過面 P1及び出力側透過面 P3は仮想基準直 線 9と直交しているので、カップリングプリズム 52内に迷光が発生しない。  [0165] Furthermore, since the input-side reflecting surface Ml and the output-side reflecting surface M2 are provided at a predetermined angle for total reflection, the input-side reflecting surface Ml and the output-side reflecting surface M2 have improved reflectivity. There is no need to apply a process for this. Since the input-side transmission surface P1 and the output-side transmission surface P3 are orthogonal to the virtual reference line 9, stray light is not generated in the coupling prism 52.
[0166] また、空間光変調装置 50によれば、光路長の調整を行う際には、仮想基準直線 9 に垂直な方向にカップリングプリズム 52と反射型 SLM5とを一体的に移動させれば よぐ光学調整が極めて容易である。このとき、入力側透過面 Pl、入力側反射面 Ml 、出力側反射面 M2、出力側透過面 P3は、移動後にも必要な成分が全て透過また は反射するように予め大きく作っておけば良い。  [0166] Also, according to the spatial light modulation device 50, when adjusting the optical path length, the coupling prism 52 and the reflective SLM 5 are moved together in a direction perpendicular to the virtual reference straight line 9. The optical adjustment is very easy. At this time, the input side transmission surface Pl, the input side reflection surface Ml, the output side reflection surface M2, and the output side transmission surface P3 may be made large in advance so that all necessary components are transmitted or reflected after movement. .
[0167] なお、入力側反射面 Mlと仮想基準直線 9とのなす角度 φ 1、及び、出力側反射面 M2と仮想基準直線 9とのなす角度 φ 2は、全反射の条件を満たす値となっていなく ても良い。その場合には、入力側反射面 Ml (面 55の内側表面)と出力側反射面 M2 (面 57の内側表面)とに対し、反射率を高めるための処理を施せば良い。 なお、上記説明では、面 56及び素子反射面 5cは仮想基準直線 9に対して平行に 延びていた。すなわち、 φ 3 = 0であった。しかしながら、面 56及び素子反射面 5cは 仮想基準直線 9に対して斜めに延びていても良い。すなわち、 φ 3はゼロ(0)でなく ても良い。この場合には、入力側反射面 Mlと出力側反射面 M2と素子反射面 5cと は、収束角度値 exと所望の値 βとに対し、式(1)〜(8)にお 、て αを a Zmに置き換 え βを β Zmに置き換え λをえ Zmに置き換えた式を満足して 、れば良 、。 [0167] The angle φ 1 formed between the input-side reflecting surface Ml and the virtual reference line 9 and the angle φ 2 formed between the output-side reflecting surface M2 and the virtual reference line 9 are values that satisfy the condition of total reflection. It doesn't have to be. In that case, the input-side reflecting surface Ml (the inner surface of the surface 55) and the output-side reflecting surface M2 (the inner surface of the surface 57) may be subjected to a process for increasing the reflectance. In the above description, the surface 56 and the element reflection surface 5c extend in parallel to the virtual reference line 9. That is, φ 3 = 0. However, the surface 56 and the element reflecting surface 5c may extend obliquely with respect to the virtual reference straight line 9. That is, φ3 does not have to be zero (0). In this case, the input-side reflecting surface Ml, the output-side reflecting surface M2, and the element reflecting surface 5c are expressed by α in the equations (1) to (8) with respect to the convergence angle value ex and the desired value β. If we are satisfied with the formula that replaces a with Zm, replaces β with βZm, and replaces λ with Zm.
即ち、以下の式(Γ)〜(8Ίを満足していれば良い。 That is, it is sufficient if the following expressions (Γ) to (8 () are satisfied.
[数 59] [Numerical 59]
[数 60][Equation 60]
[数 61] [Equation 61]
[数 62] [Numerical 62]
[数 63] [Equation 63]
[数 64] b、≥ ( 6 ' )[Equation 64] b, ≥ (6 ')
[数 65] [Equation 65]
> ( 7> (7
[数 66] [Equation 66]
L≥a2 cos + i cos ώ ( 8 ' ) を満足していればよい。 It suffices if L≥a2 cos + i cos ώ (8 ') is satisfied.
[0169] 例えば、所望の成分が 1〜!!次回折光である場合には、入力側反射面 Ml、出力側 反射面 Μ2、素子反射面 5cは、収束角度値値 αと所望の回折次数 nとに対して、式( Γ)〜(8Ί、及び、式(9 、(1CT)を満足していれば良い。  [0169] For example, the desired ingredient is 1 ~! In the case of the next-order diffracted light, the input-side reflecting surface Ml, the output-side reflecting surface Μ2, and the element reflecting surface 5c are expressed by equations (Γ) to (8Ί) with respect to the convergence angle value α and the desired diffraction order n. As long as the expressions (9, (1CT) are satisfied.
[0170] 以上、添付図面を参照しながら本発明による空間光変調装置、光学処理装置、力 ップリングプリズム、及び、カップリングプリズムの使用方法の好適な実施形態につい て説明したが、本発明は上述した実施の形態に限定されない。当業者であれば、特 許請求の範囲に記載された技術的思想の範疇内において各種の変形や改良が可 能である。  [0170] The preferred embodiments of the spatial light modulation device, the optical processing device, the force coupling prism, and the method of using the coupling prism according to the present invention have been described above with reference to the accompanying drawings. The present invention is not limited to the embodiment described above. Those skilled in the art can make various modifications and improvements within the scope of the technical idea described in the claims.
[0171] 例えば、上記各空間光変調装置 1、 30、 40、 50のいずれをも、上記各光学処理装 置 60、 80、 100, 200, 300に適用すること力 Sできる。各空間光変調装置 1、 30、 40 、 50を任意の入力光学系及び任意の出力光学系と組み合わせれば、任意の情報を 含んだ任意の光に対し任意の処理を行うことができる。  [0171] For example, any of the spatial light modulators 1, 30, 40, and 50 can be applied to the optical processing devices 60, 80, 100, 200, and 300. If each of the spatial light modulators 1, 30, 40, 50 is combined with an arbitrary input optical system and an arbitrary output optical system, it is possible to perform an arbitrary process on an arbitrary light including arbitrary information.
[0172] 上記実施の形態の反射型 SLM5は、 PAL— SLMでなくても良い。反射型 SLM5 は、任意の反射型空間光変調素子で構成することができる。具体的には、反射型 SL M5は、液晶型でも良ぐ非液晶型でも良い。反射型 SLM5は、光アドレス型でもよく 、電気アドレス型でも良い。反射型 SLM5は、読み出し光の位相を変調する位相変 調型でも良ぐ読み出し光の強度を変調する強度変調型でも良ぐあるいは、読み出 し光の位相と強度の両方を変調する複素振幅変調型であっても良い。 [0172] The reflective SLM5 of the above embodiment may not be a PAL-SLM. The reflective SLM5 can be composed of any reflective spatial light modulator. Specifically, the reflection type SL M5 may be a liquid crystal type or a non-liquid crystal type. The reflective SLM5 may be an optical address type or an electric address type. The reflective SLM5 is a phase shifter that modulates the phase of the readout light. An intensity modulation type that modulates the intensity of the readout light, which is good with the adjustment type, or a complex amplitude modulation type that modulates both the phase and the intensity of the readout light may be used.
[0173] 例えば、反射型 SLM5力LCoS (Liquid Crystal on Silicon)型である場合に は、画素と画素の間に不動作領域 (ギャップ)がある。このため、この構造に由来する 不要な回折光が発生する。力かる場合には、数式 (9)を満たす δの値として、式(10 )を満足する値を設定する代わりに、不要な回折光の最大発散角の値を設定すれば よ ヽ。そして、 δと αとに対し、ノ ラメータ φ 1、 2, c, cl, h、al, a2、 bl, b2, Lを 、数式(1)〜(8)もしくは数式(11)〜(16)と数式 (9) (または、数式(1 ' )〜(8' )もし くは、数式(11 ' )〜(16 ' )と数式 (9' ) )とを満足し、かつ、数式 (4)〜(7)もしくは数 式(14)〜(16) (または、数式 (4' )〜(7' )もしくは数式(14' )〜(16' ) )において等 号が成立するように選択すれば、入力光を有効に反射型 SLM5に照射し必要な回 折光を有効に空間光変調装置 1、 30, 40, 50から出力させつつ、不要な回折光を 空間光変調装置 1、 30, 40, 50から出力させないようにすることができる。  [0173] For example, in the case of a reflective SLM5 force LCoS (Liquid Crystal on Silicon) type, there is a non-operating region (gap) between pixels. For this reason, unnecessary diffracted light derived from this structure is generated. In this case, instead of setting a value that satisfies Equation (10) as the value of δ that satisfies Equation (9), set the value of the maximum divergence angle of unnecessary diffracted light. Then, for δ and α, the parameters φ1, 2, c, cl, h, al, a2, bl, b2, L are expressed by equations (1) to (8) or equations (11) to (16). And Equation (9) (or Equations (1 ') to (8') or Equations (11 ') to (16') and Equation (9 ')) are satisfied, and Equation (4) ~ (7) or formula (14) ~ (16) (or formula (4 ') ~ (7') or formula (14 ') ~ (16')) Effectively irradiates the reflected SLM5 with the input light and effectively outputs the necessary diffracted light from the spatial light modulators 1, 30, 40, 50, while generating unnecessary diffracted light to the spatial light modulators 1, 30, 40, You can make it not output from 50.
[0174] 例えば、反射型 SLM5が、非線形光学結晶を用いた反射型空間光変調素子から なる場合には、変調部 5aは非線形光学結晶を備える。  [0174] For example, when the reflective SLM 5 is composed of a reflective spatial light modulator using a nonlinear optical crystal, the modulator 5a includes the nonlinear optical crystal.
[0175] また、反射型 SLM5が可変鏡力もなる場合には、ミラー層 5bは、素子反射面 5cの 形状を変化させることにより、読み出し光を反射しつっこれを変調する。このように、 可変鏡では、ミラー層 5b自体が変調部 5aを兼ねる。このため、反射型 SLM5が可変 鏡力もなる場合には、図 22に示すように、反射型 SLM5の素子反射面 5cが外部に 露出し、入力側反射面 Ml及び出力側反射面 M2に対向する。  [0175] When the reflective SLM 5 also has variable mirror force, the mirror layer 5b reflects and modulates the readout light by changing the shape of the element reflection surface 5c. Thus, in the deformable mirror, the mirror layer 5b itself also serves as the modulation unit 5a. Therefore, when the reflective SLM5 also has variable mirror force, as shown in FIG. 22, the reflective surface 5c of the reflective SLM5 is exposed to the outside and faces the input-side reflective surface Ml and the output-side reflective surface M2. .
産業上の利用可能性  Industrial applicability
[0176] 本発明による空間光変調装置、光学処理装置、カップリングプリズム、及び、カップ リングプリズムの使用方法は、波面補償システム、パターン形成システム、ホログラフ ィシステム、 3D表示ディスプレイシステム、光情報処理システム等、様々な光処理シ ステムに広く利用できる。 [0176] A spatial light modulation device, an optical processing device, a coupling prism, and a method of using the coupling prism according to the present invention include a wavefront compensation system, a pattern formation system, a holography system, a 3D display system, and an optical information processing system. It can be widely used for various optical processing systems.

Claims

請求の範囲 [1] 仮想基準直線 (9)から前記仮想基準直線 (9)に対して垂直な方向にずれた位置に 設けられた反射型空間光変調素子 (5)と、 前記仮想基準直線 (9)上に設けられ、前記仮想基準直線 (9)に沿って入射してく る入射光を反射して前記反射型空間光変調素子 (5)に読みだし光として斜めに入射 させるための入力側反射面 (Ml)と、 前記仮想基準直線 (9)上に設けられ、前記反射型空間光変調素子 (5)で変調され 斜めに反射された読みだし光を反射して出射光として前記仮想基準直線 (9)に沿つ て出力するための出力側反射面 (M2)と、 を備え、 前記反射型空間光変調素子 (5)が、前記入力側反射面 (Ml)からの読みだし光を 反射するための素子反射面(5c)を備え、 前記入力側反射面 (Ml)と前記出力側反射面 (M2)とが、前記仮想基準直線 (9) に沿って距離 Lだけ離間し、前記素子反射面 (5c)が前記仮想基準直線 (9)から前 記仮想基準直線 (9)に対して垂直な方向に距離 hだけ離間し、前記入力側反射面( Ml)、前記出力側反射面 (M2)、及び、前記素子反射面 (5c)とが、前記仮想基準 直線(9)が延びる方向に対して、それぞれ、角度 φ 1、 φ 2、 φ 3だけ傾いており、 前記距離 L、h、及び、前記角度 φ 1、 φ 2、 φ 3とが以下の式(1)及び (2)を満足す ることを特徴とする空間光変調装置(1, 30, 40, 50)。 Claims [1] A reflective spatial light modulator (5) provided at a position shifted in a direction perpendicular to the virtual reference line (9) from the virtual reference line (9), and the virtual reference line ( 9) An input side provided on the input side for reflecting incident light incident along the virtual reference straight line (9) and making it incident obliquely as read light on the reflective spatial light modulator (5). Reflecting surface (Ml) and the virtual reference straight line (9), reflected by the reflective spatial light modulation element (5) and reflected obliquely, the reflected light is reflected and output as the virtual reference An output-side reflecting surface (M2) for outputting along a straight line (9), and the reflective spatial light modulator (5) receives the readout light from the input-side reflecting surface (Ml). An element reflection surface (5c) for reflection is provided, and the input-side reflection surface (Ml) and the output-side reflection surface (M2) are separated along the virtual reference straight line (9). The element reflecting surface (5c) is separated by a distance h in a direction perpendicular to the virtual reference straight line (9) from the virtual reference straight line (9). The output-side reflection surface (M2) and the element reflection surface (5c) are inclined by angles φ1, φ2, and φ3, respectively, with respect to the direction in which the virtual reference straight line (9) extends. The spatial light modulators (1, 30, 30), wherein the distances L, h and the angles φ1, φ2, φ3 satisfy the following expressions (1) and (2): 40, 50).
[数 1] 及び [Number 1] as well as
[数 2] [Equation 2]
[2] 前記入力側反射面 (Ml)と前記出力側反射面 (M2)と前記素子反射面(5c)とは、 前記入力側反射面 (Ml)が前記素子反射面(5c)に入射する入射光の全てを反射 し、 [2] The input side reflection surface (Ml), the output side reflection surface (M2), and the element reflection surface (5c) are: The input side reflection surface (Ml) reflects all incident light incident on the element reflection surface (5c);
前記素子反射面(5c)が前記入力側反射面 (Ml)で反射された光の全てを反射し 前記出力側反射面 (M2)が前記素子反射面 (5c)で反射され前記反射型空間光 変調素子 (5)で変調された光のうち所定の成分の全てを反射する相対的な位置関 係を有していることを特徴とする請求項 1に記載の空間光変調装置(1 , 30, 40, 50) 前記素子反射面 (5c)が大きさ cを備え、  The element reflecting surface (5c) reflects all of the light reflected by the input side reflecting surface (Ml), and the output side reflecting surface (M2) is reflected by the element reflecting surface (5c) and reflects the reflection type spatial light. The spatial light modulator (1, 30) according to claim 1, characterized in that it has a relative positional relationship that reflects all of the predetermined components of the light modulated by the modulation element (5). 40, 50) The element reflecting surface (5c) has a size c,
前記入力側反射面 (Ml)が前記仮想基準直線 (9)に対して前記反射型空間光変 調素子(5)から遠い側の大きさ alと、前記反射型空間光変調素子(5)に近い側の大 きさ a2とを有し、  The input-side reflecting surface (Ml) has a size al farther from the reflective spatial light modulator (5) than the virtual reference line (9), and the reflective spatial light modulator (5). The size of the near side a2,
前記出力側反射面 (M2)が前記仮想基準直線 (9)に対して前記反射型空間光変 調素子(5)から近い側の大きさ blと、前記反射型空間光変調素子(5)に遠い側の大 きさ b2とを有し、  The output side reflecting surface (M2) has a size bl closer to the virtual reference straight line (9) than the reflective spatial light modulator (5), and the reflective spatial light modulator (5). The far side size b2,
前記素子反射面(5c)が前記入力側反射面 (Ml)で反射された前記入射光の光軸 に対して前記入力側反射面 (Ml)に近い側の大きさ clを有し、  The element reflection surface (5c) has a size cl on the side close to the input-side reflection surface (Ml) with respect to the optical axis of the incident light reflected by the input-side reflection surface (Ml),
前記反射型空間光変調素子(5)が、 0〜 ocの範囲の収束角で入射する読みだし光 を変調して、その所定の成分を 0〜 βの範囲の発散角で出射し、  The reflective spatial light modulator (5) modulates the reading light incident at a convergence angle in the range of 0 to oc, and emits the predetermined component at a divergence angle in the range of 0 to β.
前記反射型空間光変調素子(5)へ入射する読み出し光が収束光の場合には αは 正の値をとり発散光の場合には αは負の値をとり、前記反射型空間光変調素子(5) から出射する読み出し光の前記所定の成分が発散光の場合には βは正の値をとり 収束光の場合には βは負の値をとり、  When the readout light incident on the reflective spatial light modulator (5) is convergent light, α takes a positive value, and when divergent light, α takes a negative value, and the reflective spatial light modulator (5) When the predetermined component of the readout light emitted from is a divergent light, β takes a positive value, and for a convergent light, β takes a negative value,
前記大きさ c、 cl、 al、 a2、 b l、及び、 b2が、 α及び j8に対して、以下の式(3)〜( 8)を満足することを特徴とする請求項 1に記載の空間光変調装置(1 , 30, 40)。  The space according to claim 1, wherein the sizes c, cl, al, a2, bl, and b2 satisfy the following expressions (3) to (8) with respect to α and j8. Light modulator (1, 30, 40).
[数 3] cx = - c ( 3 ) [数 4] h [Equation 3] c x = -c (3) [Equation 4] h
sin or + sin + ^2 - or) sin or + sin + ^ 2 -or)
sin(2<^ )  sin (2 <^)
(4)  (Four)
sin(^ - a)  sin (^-a)
[数 5] [Equation 5]
"2 "2
[数 6][Equation 6]
[数 7] h[Equation 7] h
ηβ + {€-€λ)ύ {φ +φ1- β) ηβ + (€-€ λ ) ύ (φ + φ 1 -β)
sin(2^2) (7) sin (2 ^ 2 ) (7)
sin(¾zi2 - β) sin (¾zi 2 -β)
[数 8] [Equation 8]
L>a cos +ΒΛ COS (8) 前記所定の成分とは 1以上 n (nは 0より大きい自然数)以下の回折次数の回折成分 であり、 a及び が、前記入射光の波長 λ、及び、前記反射型空間光変調素子(5) に表示可能な最小の格子パターンの格子定数 dに対して、以下の式(9)及び(10)を 満足することを特徴とする請求項 3に記載の空間光変調装置(1, 30, 40)。 L> a cos + ΒΛ COS (8) The predetermined component is a diffraction component having a diffraction order of 1 or more and n (n is a natural number greater than 0), and a and are the wavelength λ of the incident light, and the reflective space 4. The spatial light modulator according to claim 3, wherein the following formulas (9) and (10) are satisfied with respect to a lattice constant d of a minimum lattice pattern that can be displayed on the light modulation element (5): (1, 30, 40).
[数 9] β = α + δ (9) [Equation 9] β = α + δ (9)
[数 10] ηλ [Equation 10] ηλ
δ = (10)  δ = (10)
d ήη φχ + 2) [5] 距離 L、h、及び、角度 φ 1 = φ 2、 φ 3が以下の式(11)及び(12)を満足することを 特徴とする請求項 1に記載の空間光変調装置(1, 30, 40, 50)。 d ήη φ χ + 2 ) [5] The spatial light modulator (1) according to claim 1, wherein the distances L and h and the angles φ 1 = φ 2 and φ 3 satisfy the following expressions (11) and (12): , 30, 40, 50).
[数 11] = 0 ( 1 1 )  [Equation 11] = 0 (1 1)
[数 12] [Equation 12]
[6] 前記入力側反射面 (Ml)は第 1のミラー(3)に備えられ、前記出力側反射面 (Μ2) は前記第 1のミラー(3)とは独立して設けられた第 2のミラー(7)に備えられて 、ること を特徴とする請求項 1に記載の空間光変調装置( 1)。 [6] The input-side reflecting surface (Ml) is provided in the first mirror (3), and the output-side reflecting surface (Μ2) is a second mirror provided independently of the first mirror (3). The spatial light modulation device (1) according to claim 1, wherein the spatial light modulation device (1) is provided in the mirror (7).
[7] 単一のプリズム(32, 42)が互いに所定の角度をなすように形成された第 1の面(S1) 及び第 2の面 (S2)を備え、前記入力側反射面 (Ml)が前記第 1の面 (S1)に、前記 出力側反射面 (M2)が前記第 2の面 (S2)にそれぞれ形成され、前記入力側反射面 (Ml)及び前記出力側反射面 (M2)は、それぞれ、前記プリズム(32, 42)の外側か ら入射した入射光を受け取りこれを前記プリズム (32, 42)の外側に向かって反射す ることを特徴とする請求項 1に記載の空間光変調装置(30, 40)。  [7] The first prism (32, 42) includes a first surface (S1) and a second surface (S2) formed so as to form a predetermined angle with each other, and the input-side reflecting surface (Ml) Are formed on the first surface (S1) and the output-side reflection surface (M2) is formed on the second surface (S2), respectively, and the input-side reflection surface (Ml) and the output-side reflection surface (M2). The space according to claim 1, characterized in that each receives incident light incident from outside the prism (32, 42) and reflects the incident light toward the outside of the prism (32, 42). Light modulator (30, 40).
[8] 単一のカップリングプリズム(52)が、入力側透過面 (54)と、第 1の反射面 (55)と、接 合透過面(56)と、第 2の反射面(57)と、出力側透過面(58)と、を備え、  [8] A single coupling prism (52) includes an input side transmission surface (54), a first reflection surface (55), a joint transmission surface (56), and a second reflection surface (57). And an output side transmission surface (58),
前記入力側透過面 (54)は、前記仮想基準直線 (9)上に設けられ、前記仮想基準 直線 (9)に沿って入射してくる入射光を透過させて前記入射光を前記仮想基準直線 (9)に沿って内部に導き、  The input side transmission surface (54) is provided on the virtual reference straight line (9), transmits incident light incident along the virtual reference straight line (9), and transmits the incident light to the virtual reference straight line (9). Led inside along (9),
前記第 1の反射面 (55)は、前記仮想基準直線 (9)上に設けられ、前記入力側透 過面(54)から前記仮想基準直線 (9)に沿って内部を伝搬してくる入射光を反射する 入力側反射面 (Ml)であり、  The first reflecting surface (55) is provided on the virtual reference line (9), and is incident on the inside through the input side transmitting surface (54) along the virtual reference line (9). Input side reflecting surface (Ml) that reflects light,
前記接合透過面 (56)は、前記仮想基準直線 (9)から前記仮想基準直線 (9)に対 して垂直な方向にずれた位置に設けられ、前記反射型空間光変調素子 (5)に接合 され、前記第 1の反射面(55)で反射され内部を伝搬してくる入射光を透過して前記 反射型空間光変調素子 (5)に対し読みだし光として斜めに入射させ、かつ、前記反 射型空間光変調素子 (5)で変調され斜めに反射された読みだし光を透過して内部を 伝搬させ、 The bonded transmission surface (56) is provided at a position shifted from the virtual reference straight line (9) in a direction perpendicular to the virtual reference straight line (9), and is attached to the reflective spatial light modulator (5). Joining The incident light reflected by the first reflecting surface (55) and propagating through the first reflecting surface (55) is transmitted and obliquely incident on the reflective spatial light modulator (5) as readout light; and Transmits the reading light modulated by the reflection-type spatial light modulator (5) and reflected obliquely, and propagates inside.
前記第 2の反射面 (57)は、前記仮想基準直線 (9)上に設けられ、前記接合透過 面から内部を伝搬してくる読みだし光を反射して出射光として前記仮想基準直線 (9) に沿って内部を伝搬させる出力側反射面 (M2)であり、  The second reflecting surface (57) is provided on the virtual reference line (9), reflects the reading light propagating through the junction transmission surface, and outputs the light as the emitted light. ) Is the output-side reflecting surface (M2) that propagates inside along
前記出力側透過面 (58)は、前記仮想基準直線 (9)上に設けられ、前記第 2の反 射面 (57)力 前記仮想基準直線 (9)に沿って内部を伝搬してくる出射光を前記仮 想基準直線 (9)に沿って外部へ出力することを特徴とする請求項 1に記載の空間光 変調装置 (50)。  The output side transmission surface (58) is provided on the virtual reference line (9), and the second reflection surface (57) force propagates inside along the virtual reference line (9). The spatial light modulator (50) according to claim 1, wherein the light is output to the outside along the virtual reference straight line (9).
[9] 前記入力側反射面 (Ml)と前記出力側反射面 (M2)と前記素子反射面(5c)とは、 前記入力側反射面 (Ml)が前記素子反射面(5c)に入射する入射光の全てを反射 し、  [9] The input-side reflecting surface (Ml), the output-side reflecting surface (M2), and the element reflecting surface (5c) are such that the input-side reflecting surface (Ml) is incident on the element reflecting surface (5c). Reflects all of the incident light,
前記素子反射面(5c)が前記入力側反射面 (Ml)で反射された光の全てを反射し 前記出力側反射面 (M2)が前記素子反射面 (5c)で反射され前記反射型空間光 変調素子 (5)で変調された光のうち所定の成分の全てを反射する相対的な位置関 係を有して 、ることを特徴とする請求項 8に記載の空間光変調装置(50)。  The element reflecting surface (5c) reflects all of the light reflected by the input side reflecting surface (Ml), and the output side reflecting surface (M2) is reflected by the element reflecting surface (5c) and reflects the reflection type spatial light. The spatial light modulation device (50) according to claim 8, wherein the spatial light modulation device (50) has a relative positional relationship of reflecting all of predetermined components of the light modulated by the modulation element (5). .
[10] 前記カップリングプリズムの屈折率は mであり、 [10] The refractive index of the coupling prism is m,
前記素子反射面 (5c)が大きさ cを備え、  The element reflecting surface (5c) has a size c;
前記入力側反射面 (Ml)が前記仮想基準直線 (9)に対して前記反射型空間光変 調素子(5)から遠い側の大きさ alと、前記反射型空間光変調素子(5)に近い側の大 きさ a2とを有し、  The input-side reflecting surface (Ml) has a size al farther from the reflective spatial light modulator (5) than the virtual reference line (9), and the reflective spatial light modulator (5). The size of the near side a2,
前記出力側反射面 (M2)が前記仮想基準直線 (9)に対して前記反射型空間光変 調素子(5)から近い側の大きさ blと、前記反射型空間光変調素子(5)に遠い側の大 きさ b2とを有し、  The output side reflecting surface (M2) has a size bl closer to the virtual reference straight line (9) than the reflective spatial light modulator (5), and the reflective spatial light modulator (5). The far side size b2,
前記素子反射面(5c)が前記入力側反射面 (Ml)で反射された前記入射光の光軸 に対して前記入力側反射面 (Ml)に近い側の大きさ clを有し、 The optical axis of the incident light reflected by the input-side reflecting surface (Ml) by the element reflecting surface (5c) With respect to the input-side reflecting surface (Ml), the size cl
前記反射型空間光変調素子(5)が、 0〜 ocの範囲の収束角で入射する読みだし光 を変調して、その所定の成分を 0〜 βの範囲の発散角で出射し、  The reflective spatial light modulator (5) modulates the reading light incident at a convergence angle in the range of 0 to oc, and emits the predetermined component at a divergence angle in the range of 0 to β.
前記反射型空間光変調素子(5)へ入射する読み出し光が収束光の場合には αは 正の値をとり発散光の場合には αは負の値をとり、前記反射型空間光変調素子(5) から出射する読み出し光の前記所定の成分が発散光の場合には βは正の値をとり 収束光の場合には βは負の値をとり、  When the readout light incident on the reflective spatial light modulator (5) is convergent light, α takes a positive value, and when divergent light, α takes a negative value, and the reflective spatial light modulator (5) When the predetermined component of the readout light emitted from is a divergent light, β takes a positive value, and for a convergent light, β takes a negative value,
前記大きさ c、 cl、 al、 a2、 bl、 b2とが、 α及び j8〖こ対し、以下の式(3 〜(8 を 満足することを特徴とする請求項 8に記載の空間光変調装置 (50)。  9. The spatial light modulation device according to claim 8, wherein the sizes c, cl, al, a2, bl, b2 satisfy α and j8 and satisfy the following expressions (3 to (8): (50).
[数 13] [Equation 13]
Cl =f (3 ' ) Cl = f (3 ')
[数 14] [Equation 14]
h / ,  h /,
sm a/ + c, sm( , +φΊ -α/ ) sm a / + c, sm (, + φ Ί - α /)
sin(2^) _ J_ Ψ1ノ (4 ' ) sin (2 ^) _ J_ Ψ1ノ (4 ')
sin (^! -a/) sin (^!- a /)
[数 15] [Equation 15]
h / /  h / /
s a/ +(c- c,)sin(fi¾, + φ + as a / + (c- c,) sin (fi¾, + φ + a c
sin(2^,) ― ,m Ψ1 _ Ψ2 Jm sin (2 ^,) -, m Ψ1 _ Ψ2 J m
a, > (5  a,> (5
sin(^ +« )  sin (^ + «)
[数 16] [Equation 16]
[数 17] > ( 7[Equation 17] > (7
[数 18] [Equation 18]
[11] 前記所定の成分とは 1以上 n (nは 0より大き ヽ自然数)以下の回折次数の回折成分 であり、 a及び βが、前記入射光の波長 λ、及び、前記反射型空間光変調素子 (5) に表示可能な最小の格子パターンの格子定数 dに対して、以下の式(9Ί及び(1(Τ )を満足することを特徴とする請求項 10に記載の空間光変調装置 (50)。 [11] The predetermined component is a diffraction component having a diffraction order of 1 or more and n (n is a natural number greater than or equal to 0), and a and β are the wavelength λ of the incident light and the reflective spatial light. 11. The spatial light modulation device according to claim 10, wherein the following formulas (9Ί and (1 (Τ)) are satisfied with respect to a lattice constant d of a minimum lattice pattern that can be displayed on the modulation element (5): (50).
[数 19] [Equation 19]
[数 20] / ηλ [Equation 20] / ηλ
,m md η φλ + φ2 ) ( 1 0 ) , m md η φ λ + φ 2 ) (1 0)
[12] 前記反射型空間光変調素子 (5)は位相変調型であることを特徴とする請求項 1に記 載の空間光変調装置(1, 30, 40, 50)。 12. The spatial light modulator (1, 30, 40, 50) according to claim 1, wherein the reflective spatial light modulator (5) is a phase modulation type.
[13] 空間光変調装置(1, 30, 40, 50)と、 [13] Spatial light modulator (1, 30, 40, 50),
前記仮想基準直線 (9)上に設けられ、入射光を前記仮想基準直線 (9)に沿って前 記空間光変調装置(1, 30, 40, 50)に入力させる入力光学系(I)と、  An input optical system (I) provided on the virtual reference straight line (9) and configured to input incident light to the spatial light modulator (1, 30, 40, 50) along the virtual reference straight line (9); ,
前記仮想基準直線 (9)上に設けられ、前記空間光変調装置(1, 30, 40, 50)から 仮想基準直線 (9)に沿って出力された出射光を処理するための出力光学系(Ο)とを 備え、  An output optical system for processing outgoing light provided on the virtual reference line (9) and output from the spatial light modulator (1, 30, 40, 50) along the virtual reference line (9) ( Ο)
前記空間光変調装置(1, 30, 40, 50)は、  The spatial light modulator (1, 30, 40, 50)
前記仮想基準直線 (9)から前記仮想基準直線 (9)に対して垂直な方向にずれた 位置に設けられた反射型空間光変調素子 (5)と、 Deviated from the virtual reference line (9) in a direction perpendicular to the virtual reference line (9) A reflective spatial light modulator (5) provided at a position;
前記仮想基準直線 (9)上に設けられ、前記仮想基準直線 (9)に沿って前記入力光 学系 (I)から入射してくる入射光を反射して前記反射型空間光変調素子 (5)に読み だし光として斜めに入射させるための入力側反射面 (Ml)と、  The reflective spatial light modulator (5) is provided on the virtual reference line (9) and reflects incident light incident from the input optical system (I) along the virtual reference line (9). ) Input side reflecting surface (Ml) for oblique incidence as readout light,
前記仮想基準直線 (9)上に設けられ、前記反射型空間光変調素子 (5)で変調され 斜めに反射された読みだし光を反射して出射光として前記仮想基準直線 (9)に沿つ て出力するための出力側反射面 (M2)と、  Provided on the virtual reference straight line (9), reflected by the reflective spatial light modulation element (5) and reflected obliquely, the reflected reading light is reflected along the virtual reference straight line (9) as outgoing light. Output side reflecting surface (M2) for output
を備え、 With
前記反射型空間光変調素子 (5)が、前記入力側反射面 (Ml)からの読みだし光を 反射するための素子反射面(5c)を備え、  The reflective spatial light modulator (5) includes an element reflective surface (5c) for reflecting the readout light from the input-side reflective surface (Ml),
前記入力側反射面 (Ml)と前記出力側反射面 (M2)とが、前記仮想基準直線 (9) に沿って距離 Lだけ離間し、前記素子反射面 (5c)が前記仮想基準直線 (9)から前 記仮想基準直線 (9)に対して垂直な方向に距離 hだけ離間し、前記入力側反射面( Ml)、前記出力側反射面 (M2)、及び、前記素子反射面 (5c)とが、前記仮想基準 直線(9)が延びる方向に対して、それぞれ、角度 φ 1、 φ 2、 φ 3だけ傾いており、 前記距離 L、h、及び、前記角度 φ 1、 φ 2、 φ 3とが以下の式(1)及び (2)を満足す ることを特徴とする光学処理装置(60, 80, 100, 200, 300)。  The input-side reflection surface (Ml) and the output-side reflection surface (M2) are separated by a distance L along the virtual reference straight line (9), and the element reflection surface (5c) is the virtual reference straight line (9 ) From the virtual reference straight line (9) in a direction perpendicular to the virtual reference line (9) by a distance h, the input-side reflective surface (Ml), the output-side reflective surface (M2), and the element reflective surface (5c) Are inclined by angles φ 1, φ 2 and φ 3 with respect to the direction in which the virtual reference straight line (9) extends, respectively, and the distances L and h and the angles φ 1, φ 2 and φ An optical processing apparatus (60, 80, 100, 200, 300) characterized in that 3 satisfies the following formulas (1) and (2).
[数 21] [Number 21]
<k = <k - <h ( 1 ) <k = <k-<h (1)
[数 22] h L sin(2^)sin(2^2 ) ( 2 ) [Equation 22] h L sin (2 ^) sin (2 ^ 2 ) ( 2 )
sin(2^! + 2 2 ) 前記入力光学系(I)は、光源(62、 81)と、前記光源(62、 81)からの光を平行光に 変換するビーム変換手段 (R)を有し、 sin (2 ^! + 2 2 ) The input optical system (I) has a light source (62, 81) and beam conversion means (R) for converting light from the light source (62, 81) into parallel light. And
前記出力光学系 (Ο)は、前記反射型空間光変調素子 (5)により位相変調され前記 出力側反射面 (Μ2)力 反射された光をフーリエ変換するレンズ (70, 88)を有する ことを特徴とする請求項 13に記載の光学処理装置(60, 80, 100, 200)。 The output optical system (Ο) has lenses (70, 88) for Fourier transforming the light that is phase-modulated by the reflective spatial light modulator (5) and reflected by the output-side reflecting surface (Μ2). 14. The optical processing device (60, 80, 100, 200) according to claim 13.
[15] 前記入力光学系(I)は、入力画像をフーリエ変換する第 1のレンズ (86)を有し、 前記反射型空間光変調素子(5, 5— 2)は、参照画像に基づくフィルターパターン にて前記入力画像のフーリエ変換画像を位相変調し、 [15] The input optical system (I) includes a first lens (86) for Fourier transforming an input image, and the reflective spatial light modulator (5, 5-2) is a filter based on a reference image. Phase-modulate the Fourier transform image of the input image with a pattern,
前記出力光学系 (O)は、前記空間光変調装置力もの出力光をフーリエ変換する第 2のレンズ (88)を有し、前記入力画像と前記参照画像との相関を示す画像を出力す ることを特徴とする請求項 13に記載の光学処理装置(80, 100, 200)。  The output optical system (O) has a second lens (88) for Fourier transforming the output light of the spatial light modulator, and outputs an image showing the correlation between the input image and the reference image. The optical processing device (80, 100, 200) according to claim 13,
[16] 前記入力画像を作成する入力画像作成手段(30— 1)をさらに備え、 [16] Input image creating means (30-1) for creating the input image is further provided,
前記入力画像作成手段 (30— 1)は、別の空間光変調装置(1, 30, 40, 50)から なり、  The input image creating means (30-1) is composed of another spatial light modulator (1, 30, 40, 50),
前記別の空間光変調装置(1, 30, 40, 50)は、  The other spatial light modulator (1, 30, 40, 50)
前記仮想基準直線 (9)から前記仮想基準直線 (9)に対して垂直な方向にずれた 位置に設けられた反射型空間光変調素子 (5— 1)と、  A reflective spatial light modulator (5-1) provided at a position shifted in a direction perpendicular to the virtual reference line (9) from the virtual reference line (9);
前記仮想基準直線 (9)上に設けられ、前記仮想基準直線 (9)に沿って入射してく る入射光を反射して前記反射型空間光変調素子 (5— 1)に読みだし光として斜めに 入射させるための入力側反射面 (Ml)と、  Provided on the virtual reference straight line (9), reflects incident light incident along the virtual reference straight line (9) and is obliquely read out as light to the reflective spatial light modulator (5-1). An input-side reflecting surface (Ml) for incidence on
前記仮想基準直線 (9)上に設けられ、前記反射型空間光変調素子 (5— 1)で変調 され斜めに反射された読みだし光を反射して出射光として前記仮想基準直線 (9)に 沿って出力するための出力側反射面 (M2)とを備え、  The reading light provided on the virtual reference line (9), modulated by the reflective spatial light modulator (5-1) and reflected obliquely is reflected to the virtual reference line (9) as outgoing light. Output side reflective surface (M2) for output along
前記反射型空間光変調素子 (5— 1)が、前記入力側反射面 (Ml)からの読みだし 光を反射するための素子反射面(5c)を備え、  The reflective spatial light modulator (5-1) includes an element reflecting surface (5c) for reflecting the reading light from the input-side reflecting surface (Ml),
前記入力側反射面 (Ml)と前記出力側反射面 (M2)とが、前記仮想基準直線 (9) に沿って距離 Lだけ離間し、前記素子反射面 (5c)が前記仮想基準直線 (9)から前 記仮想基準直線 (9)に対して垂直な方向に距離 hだけ離間し、前記入力側反射面( Ml)、前記出力側反射面 (M2)、及び、前記素子反射面 (5c)とが、前記仮想基準 直線(9)が延びる方向に対して、それぞれ、角度 φ 1、 φ 2、 φ 3だけ傾いており、前 記距離 L、h、及び、前記角度 φ 1、 φ 2、 φ 3とが前記式(1)及び (2)を満足し、 前記第 1のレンズ (86)力 前記別の空間光変調装置(1, 30, 40, 50)から出力さ れた出射光をフーリエ変換することを特徴とする請求項 15に記載の光学処理装置( 200)。 The input-side reflection surface (Ml) and the output-side reflection surface (M2) are separated by a distance L along the virtual reference straight line (9), and the element reflection surface (5c) is the virtual reference straight line (9 ) From the virtual reference straight line (9) in a direction perpendicular to the virtual reference line (9) by a distance h, the input-side reflective surface (Ml), the output-side reflective surface (M2), and the element reflective surface (5c) Are inclined by angles φ 1, φ 2, φ 3 with respect to the direction in which the virtual reference straight line (9) extends, respectively, and the distances L, h and the angles φ 1, φ 2, φ 3 satisfies the equations (1) and (2), and the first lens (86) force is output from the other spatial light modulator (1, 30, 40, 50). 16. The optical processing device (200) according to claim 15, wherein the emitted light is subjected to Fourier transform.
[17] 前記空間光変調装置(1, 30, 40, 50)から出力される出射光の一部を導くための光 分割素子 (312)と、  [17] A light splitting element (312) for guiding a part of the emitted light output from the spatial light modulator (1, 30, 40, 50);
前記光分割素子(312)により導かれた出射光の一部の波面の歪みを検出するた めの波面センサ(314)と、  A wavefront sensor (314) for detecting distortion of a part of the wavefront of the emitted light guided by the light splitting element (312);
前記波面センサ(314)の検出結果に基づいて波面の歪みを補正する信号を前記 空間光変調装置(1, 30, 40, 50)の反射型空間光変調素子 (5)にフィードバックす る制御装置(316)と、をさらに備え、  A control device that feeds back a signal for correcting wavefront distortion based on the detection result of the wavefront sensor (314) to the reflective spatial light modulator (5) of the spatial light modulator (1, 30, 40, 50) (316), and
前記反射型空間光変調素子 (5)により波面補償された出射光が前記出力光学系( O)に出力されることを特徴とする請求項 13に記載の光学処理装置(300)。  14. The optical processing device (300) according to claim 13, wherein the outgoing light wave-compensated by the reflective spatial light modulator (5) is output to the output optical system (O).
[18] 仮想基準直線 (9)上に設けられ、前記仮想基準直線 (9)に沿って入射する入射光を 透過させ前記入射光を内部に導く入力側透過面(54)と、 [18] An input-side transmission surface (54) provided on the virtual reference line (9) and transmitting incident light incident along the virtual reference line (9) and guiding the incident light to the inside;
前記入力側透過面(54)から内部を伝搬してくる光を反射する入力側反射面(55) と、  An input side reflecting surface (55) for reflecting light propagating from the input side transmitting surface (54);
前記仮想基準直線 (9)から前記仮想基準直線 (9)に対して垂直にずれた位置に 設けられ、反射型空間光変調素子 (5)に接合され、前記入力側反射面 (55)で反射 され内部を伝搬してくる光を透過させて、前記反射型空間光変調素子 (5)に対し読 みだし光として斜めに入射させ、かつ、前記反射型空間光変調素子(5)で変調され 斜めに反射された読みだし光を透過して内部を伝搬させるための接合透過面(56)と 前記仮想基準直線 (9)上に設けられ、前記接合透過面 (56)カゝら内部を伝搬してく る読みだし光を反射して出射光として内部を伝搬させるための出力側反射面(57)と 前記仮想基準直線 (9)上に設けられ、前記出力側反射面 (M2)力 内部を伝搬し てくる出射光を前記仮想基準直線 (9)に沿って外部へ出力する出力側透過面 (58) と、  Provided at a position shifted perpendicularly from the virtual reference line (9) to the virtual reference line (9), joined to the reflective spatial light modulator (5), and reflected by the input-side reflection surface (55) Then, the light propagating through the inside is transmitted to enter the reflection type spatial light modulation element (5) obliquely as read light and is modulated by the reflection type spatial light modulation element (5). A transmission surface (56) for transmitting the reading light reflected by the light beam and propagating through the inside, and the virtual reference line (9), and propagating through the interior of the bonding transmission surface (56). The output side reflection surface (57) for reflecting the incoming reading light and propagating the inside as outgoing light and the virtual reference line (9) are provided on the output side reflection surface (M2) force and propagates inside. An output side transmission surface (58) for outputting the emitted light to the outside along the virtual reference straight line (9), and
を備えることを特徴とするカップリングプリズム (52)。 [19] 仮想基準直線 (9)に垂直で、前記仮想基準直線 (9)に沿って入射する入射光を透 過させる入力側透過面(54)と、 A coupling prism (52) characterized by comprising: [19] An input side transmission surface (54) perpendicular to the virtual reference line (9) and transmitting incident light incident along the virtual reference line (9);
前記仮想基準直線 (9)上に前記仮想基準直線 (9)に対して所定の角度を成すよう に設けられ、前記入力側透過面(54)から内部を伝搬してくる光を全反射する入力側 反射面(55)と、  An input that is provided on the virtual reference line (9) so as to form a predetermined angle with respect to the virtual reference line (9) and that totally reflects light propagating through the input side transmission surface (54). Side reflective surface (55),
前記仮想基準直線 (9)に対して平行に延び、前記入力側反射面 (55)で反射され 内部を伝搬してくる光を透過させるとともに、外部力 入射する光を透過して内部を 伝搬させるための接合透過面(56)と、  Extends parallel to the virtual reference line (9), transmits light that is reflected by the input-side reflecting surface (55) and propagates inside, and transmits light that is incident on the external force and propagates inside. Bonding transmission surface (56) for,
前記仮想基準直線 (9)上に前記仮想基準直線 (9)に対して所定の角度を成すよう に設けられ、前記接合透過面(56)から内部を伝搬してくる光を全反射し、出射光と して前記仮想基準直線 (9)に沿って内部を伝搬させるための出力側反射面 (57)と、 前記仮想基準直線 (9)上に前記仮想基準直線 (9)に対して垂直に設けられ、前記 出力側反射面 (57)力 前記仮想基準直線 (9)に沿って内部を伝搬してくる出射光 を前記仮想基準直線 (9)に沿って外部へ出力する出力側透過面 (58)と、 を備えることを特徴とするカップリングプリズム (52)。  It is provided on the virtual reference line (9) so as to form a predetermined angle with respect to the virtual reference line (9), and totally reflects the light propagating through the junction transmission surface (56) and outputs it. An output-side reflecting surface (57) for propagating the interior along the virtual reference line (9) as incident light, and perpendicular to the virtual reference line (9) on the virtual reference line (9) Output side reflection surface (57) force provided on the output side transmission surface for outputting the outgoing light propagating inside along the virtual reference line (9) to the outside along the virtual reference line (9) ( 58) and a coupling prism (52).
[20] 第 1〜第 5の側面(54, 56, 58, 57, 55)をこの順に有する 5角柱形状で、第 1の側 面(54)と第 2の側面(56)とが互いに 90° をなして接続し、第 2の側面(56)と第 3の 側面(58)とが互いに 90° をなして接続し、第 3の側面(58)と第 4の側面(57)とが互 いに 90° - φ 2をなして接続し、第 4の側面(57)と第 5の側面(55)とが互いに 180° + 1 + 2をなして接続し、第 5の側面(55)と第 1の側面(54)とが互いに 90°— φ 1をなして接続したカップリングプリズム (52)を用意し、 [20] It is a pentagonal column having the first to fifth side surfaces (54, 56, 58, 57, 55) in this order, and the first side surface (54) and the second side surface (56) are 90 to each other. The second side surface (56) and the third side surface (58) are connected to each other at 90 °, and the third side surface (58) and the fourth side surface (57) are connected to each other. The fourth side (57) and the fifth side (55) are connected to each other at an angle of 180 ° + 1 + 2, and the fifth side (55 ) And the first side surface (54) are connected to each other at 90 ° —φ 1 and a coupling prism (52) is prepared,
素子反射面 (5c)を有する反射型空間光変調素子 (5)を、素子反射面 (5c)が第 2 の側面(56)に対し平行に延びるように、第 2の側面(56)に対し接合し、  A reflective spatial light modulator (5) having an element reflecting surface (5c) is formed on the second side surface (56) so that the element reflecting surface (5c) extends parallel to the second side surface (56). Joined,
仮想基準直線 (9)が第 1の側面(54)及び第 5の側面(55)を貫通し、第 5の側面(5 5)と第 4の側面 (57)とが、前記仮想基準直線 (9)に沿って距離 Lだけ離間し、前記 素子反射面(5c)が前記仮想基準直線 (9)から前記仮想基準直線 (9)に対して垂直 な方向に距離 hだけ離間し、第 5の側面 (55)と第 4の側面 (57)と素子反射面 (5c)と 力 前記仮想基準直線 (9)が延びる方向に対して、それぞれ、角度 φ 1、 φ 2、 φ 3だ け傾き、前記距離 L、 h、及び、前記角度 φ 1、 φ 2、 φ 3とが以下の式(1 ' )及び (2 ' ) を満足するように、カップリングプリズム(52)を仮想基準直線(9)に対し配置し、 A virtual reference line (9) passes through the first side surface (54) and the fifth side surface (55), and the fifth side surface (55) and the fourth side surface (57) 9), the element reflecting surface (5c) is separated from the virtual reference line (9) by a distance h in a direction perpendicular to the virtual reference line (9), Side surface (55), fourth side surface (57), element reflecting surface (5c), and force Angles φ1, φ2, and φ3 with respect to the direction in which the virtual reference straight line (9) extends, respectively. The coupling prism (52) is assumed to be a virtual reference so that the inclination, the distance L, h, and the angles φ1, φ2, and φ3 satisfy the following expressions (1 ′) and (2 ′): Placed against the straight line (9)
[数 23] [Equation 23]
[数 24] sinC2^, ) sin(2^2 ) [Equation 24] sinC2 ^,) sin (2 ^ 2 )
n = L  n = L
sin(2^ + Ζφ2 ) ( 2 ' ) 前記仮想基準直線 (9)に沿って第 5の側面(55)に向けて読み出し光を入射させる ことを特徴とする、カップリングプリズム (52)の使用方法。 sin (2 ^ + Ζφ 2 ) (2 ') The coupling prism (52) is characterized in that the readout light is incident on the fifth side surface (55) along the virtual reference line (9). how to use.
前記カップリングプリズムの屈折率は mであり、 The refractive index of the coupling prism is m,
前記素子反射面 (5c)が大きさ cを備え、  The element reflecting surface (5c) has a size c;
前記第 5の側面 (55)が前記仮想基準直線 (9)に対して前記反射型空間光変調素 子(5)から遠い側の大きさ alと、前記反射型空間光変調素子(5)に近い側の大きさ a 2とを有し、  The fifth side surface (55) has a size al farther from the reflective spatial light modulation element (5) than the virtual reference line (9), and the reflective spatial light modulation element (5). Having a size a 2 on the near side,
前記第 4の側面 (57)が前記仮想基準直線 (9)に対して前記反射型空間光変調素 子(5)から近い側の大きさ blと、前記反射型空間光変調素子(5)に遠い側の大きさ b 2とを有し、  The fourth side surface (57) has a size bl closer to the virtual reference line (9) than the reflective spatial light modulator (5), and the reflective spatial light modulator (5). With the size b 2 on the far side,
前記素子反射面(5c)が前記第 5の側面(55)で反射された前記入射光の光軸に 対して前記第 5の側面(55)に近い側の大きさ c lを有し、  The element reflecting surface (5c) has a size cl on the side close to the fifth side surface (55) with respect to the optical axis of the incident light reflected by the fifth side surface (55);
前記反射型空間光変調素子(5)が、 0〜 ocの範囲の収束角で入射する読みだし光 を変調して、その所定の成分を 0〜 βの範囲の発散角で出射し、  The reflective spatial light modulator (5) modulates the reading light incident at a convergence angle in the range of 0 to oc, and emits the predetermined component at a divergence angle in the range of 0 to β.
前記反射型空間光変調素子(5)へ入射する読み出し光が収束光の場合には αは 正の値をとり発散光の場合には αは負の値をとり、前記反射型空間光変調素子(5) から出射する読み出し光の前記所定の成分が発散光の場合には βは正の値をとり 収束光の場合には βは負の値をとり、  When the readout light incident on the reflective spatial light modulator (5) is convergent light, α takes a positive value, and when divergent light, α takes a negative value, and the reflective spatial light modulator (5) When the predetermined component of the readout light emitted from is a divergent light, β takes a positive value, and for a convergent light, β takes a negative value,
前記大きさ c、 cl、 al、 a2、 b l、 b2とが以下の式(3 〜(8 を満足することを特徴 とする請求項 20に記載のカップリングプリズム (52)の使用方法。 The sizes c, cl, al, a2, bl, b2 satisfy the following formulas (3 to (8): 21. A method of using the coupling prism (52) according to claim 20.
[数 25] [Equation 25]
^ 2 (3 ^ 2 ( 3
[数 26] sin a/ + c, sin ( + 7 -a/ ) [Equation 26] sin a / + c, sin (+ 7 - a /)
sin(2^) 1 1 2 ,m sin (2 ^) 1 1 2 , m
(4 ' )  (Four ' )
sin ( -a/^ sin ( -a / ^
[数 27] h / / [Equation 27] h / /
s a/ + (c- c,)sm(d, +φΊ +a/ ) s a / + (c- c,) sm (d, + φ Ί + a /)
α2 > ~ ( 5 ) α 2 > ~ (5)
sin +«/)  sin + «/)
[数 28] sin β/ + c, sin ( + ώ +β/ ) [Equation 28] sin β / + c, sin (+ ώ + β /)
sin(2 ) 1 ΨΨ1 ,m sin (2) 1 Ψ , Ψ1 , m
(6 ' )  (6 ')
[数 29] > (7[Number 29]> (7
[数 30] 前記所定の成分とは 1以上 η (ηは 0より大き ヽ自然数)以下の回折次数の回折成分 であり、 a及び βが、前記入射光の波長 λ、及び、前記反射型空間光変調素子 (5) に表示可能な最小の格子パターンの格子定数 dに対して、以下の式(9Ί及び(1(Τ )を満足することを特徴とする請求項 20に記載の記載 [Equation 30] The predetermined component is a diffraction component having a diffraction order of 1 or more and η (η is greater than 0 ヽ natural number) or less, and a and β are the wavelength λ of the incident light and the reflective spatial light modulator ( 5) For the lattice constant d of the smallest lattice pattern that can be displayed in (9) and (1 (Τ 21) The description according to claim 20,
使用方法。 how to use.
[数 31] [Equation 31]
[数 32][Equation 32]
第 1の側面(54)、第 2の側面(56)、第 3の側面(58),第 4の側面(57)、及び、第 5 の側面(55)をこの順に有する 5角柱形状をなし、 It has a pentagonal prism shape having a first side surface (54), a second side surface (56), a third side surface (58), a fourth side surface (57), and a fifth side surface (55) in this order. ,
前記第 1の側面(54)と前記第 2の側面(56)とが互いに 90° をなして接続し、 前記第 2の側面(56)と前記第 3の側面(58)とが互いに 90° をなして接続し、 前記第 3の側面(58)と前記第 4の側面(57)とが互いに 90° - φ 2をなして接続し、 前記第 4の側面(57)と前記第 5の側面(55)とが互いに 180° + φ 1+ φ 2をなして 接続し、  The first side surface (54) and the second side surface (56) are connected to each other at 90 °, and the second side surface (56) and the third side surface (58) are connected to each other at 90 °. The third side surface (58) and the fourth side surface (57) are connected to each other at 90 ° -φ2, and the fourth side surface (57) and the fifth side surface (57) are connected to each other. Side (55) and 180 ° + φ 1+ φ 2 are connected to each other,
前記第 5の側面(55)と前記第 1の側面(54)とが互いに 90° - φ 1をなして接続し、 01、 ()2が0° < φ1<90° 、0° < φ2<90° を満足することを特徴とする、カツ プリングプリズム(52)。  The fifth side surface (55) and the first side surface (54) are connected to each other at 90 ° -φ1, and 01, () 2 is 0 ° <φ1 <90 °, 0 ° <φ2 < Coupling prism (52) characterized by satisfying 90 °.
PCT/JP2005/017754 2004-09-27 2005-09-27 Spatial light modulator, optical processor, coupling prism and method for using coupling prism WO2006035775A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006537755A JP4804358B2 (en) 2004-09-27 2005-09-27 Spatial light modulation device, optical processing device, and method of using coupling prism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-280001 2004-09-27
JP2004280001 2004-09-27

Publications (1)

Publication Number Publication Date
WO2006035775A1 true WO2006035775A1 (en) 2006-04-06

Family

ID=36118921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017754 WO2006035775A1 (en) 2004-09-27 2005-09-27 Spatial light modulator, optical processor, coupling prism and method for using coupling prism

Country Status (2)

Country Link
JP (1) JP4804358B2 (en)
WO (1) WO2006035775A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044929A1 (en) * 2007-10-03 2009-04-09 Nikon Corporation Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
WO2009057822A1 (en) * 2007-10-31 2009-05-07 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, exposure method, and device manufacturing method
WO2010061884A1 (en) * 2008-11-28 2010-06-03 浜松ホトニクス株式会社 Light modulating device and laser processing device
JP2010128327A (en) * 2008-11-28 2010-06-10 Hamamatsu Photonics Kk Light modulating device
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
WO2013157607A1 (en) * 2012-04-20 2013-10-24 浜松ホトニクス株式会社 Zoom lens
WO2013157606A1 (en) * 2012-04-20 2013-10-24 浜松ホトニクス株式会社 Beam expander
WO2013157605A1 (en) * 2012-04-20 2013-10-24 浜松ホトニクス株式会社 Beam-shaping device
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
CN107144948A (en) * 2017-06-15 2017-09-08 中国科学院西安光学精密机械研究所 A kind of spatial light modulator coupling device based on three corner reflectors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264429B (en) * 2013-06-06 2018-06-29 浜松光子学株式会社 Corresponding relation determining method, wavefront distortion compensation method, adaptive optics system and the recording medium for storing adaptive optics system program of adaptive optics system
CN105264428B (en) * 2013-06-06 2018-06-29 浜松光子学株式会社 Method of adjustment, adaptive optics system and the recording medium for storing adaptive optics system program of adaptive optics system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326648A (en) * 1986-07-21 1988-02-04 Minolta Camera Co Ltd Mirror image forming device
JP2001272634A (en) * 2000-01-19 2001-10-05 Hamamatsu Photonics Kk Image projection device and image projecting method
WO2003036368A1 (en) * 2001-10-25 2003-05-01 Hamamatsu Photonics K.K. Phase modulation apparatus and phase modulation method
JP2004070052A (en) * 2002-08-07 2004-03-04 Sun Tec Kk Optical attenuator and optical attenuator array
JP2004098691A (en) * 2002-09-10 2004-04-02 Eastman Kodak Co Color printer equipped with linear diffraction grating spatial light modulator
JP2004157522A (en) * 2002-10-17 2004-06-03 Sony Corp Image generating device, image display device, image display method, and device for adjusting optical modulation element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326648A (en) * 1986-07-21 1988-02-04 Minolta Camera Co Ltd Mirror image forming device
JP2001272634A (en) * 2000-01-19 2001-10-05 Hamamatsu Photonics Kk Image projection device and image projecting method
WO2003036368A1 (en) * 2001-10-25 2003-05-01 Hamamatsu Photonics K.K. Phase modulation apparatus and phase modulation method
JP2004070052A (en) * 2002-08-07 2004-03-04 Sun Tec Kk Optical attenuator and optical attenuator array
JP2004098691A (en) * 2002-09-10 2004-04-02 Eastman Kodak Co Color printer equipped with linear diffraction grating spatial light modulator
JP2004157522A (en) * 2002-10-17 2004-06-03 Sony Corp Image generating device, image display device, image display method, and device for adjusting optical modulation element

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
WO2009044929A1 (en) * 2007-10-03 2009-04-09 Nikon Corporation Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
JP2009093175A (en) * 2007-10-03 2009-04-30 Nikon Corp Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
KR101680620B1 (en) 2007-10-24 2016-11-29 가부시키가이샤 니콘 Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2009057822A1 (en) * 2007-10-31 2009-05-07 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, exposure method, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US9285579B2 (en) 2008-11-28 2016-03-15 Hamamatsu Photonics K.K. Light modulating device and laser processing device
US20110267679A1 (en) * 2008-11-28 2011-11-03 Hamamatsu Photonics K.K. Light modulating device and laser processing device
CN102227667A (en) * 2008-11-28 2011-10-26 浜松光子学株式会社 Light modulating device and laser processing device
JP2010128327A (en) * 2008-11-28 2010-06-10 Hamamatsu Photonics Kk Light modulating device
WO2010061884A1 (en) * 2008-11-28 2010-06-03 浜松ホトニクス株式会社 Light modulating device and laser processing device
WO2013157606A1 (en) * 2012-04-20 2013-10-24 浜松ホトニクス株式会社 Beam expander
US9519127B2 (en) 2012-04-20 2016-12-13 Hamamatsu Photonics K.K. Zoom lens
US9442295B2 (en) 2012-04-20 2016-09-13 Hamamatsu Photonics K.K. Beam-shaping device
CN104246574A (en) * 2012-04-20 2014-12-24 浜松光子学株式会社 Zoom lens
WO2013157605A1 (en) * 2012-04-20 2013-10-24 浜松ホトニクス株式会社 Beam-shaping device
CN104246582A (en) * 2012-04-20 2014-12-24 浜松光子学株式会社 Beam-shaping device
JPWO2013157606A1 (en) * 2012-04-20 2015-12-21 浜松ホトニクス株式会社 Beam expander
US10067401B2 (en) 2012-04-20 2018-09-04 Hamamatsu Photonics K.K. Beam expander
CN104246572A (en) * 2012-04-20 2014-12-24 浜松光子学株式会社 Beam expander
JPWO2013157605A1 (en) * 2012-04-20 2015-12-21 浜松ホトニクス株式会社 Beam shaping device
JPWO2013157607A1 (en) * 2012-04-20 2015-12-21 浜松ホトニクス株式会社 Zoom lens
WO2013157607A1 (en) * 2012-04-20 2013-10-24 浜松ホトニクス株式会社 Zoom lens
CN107144948A (en) * 2017-06-15 2017-09-08 中国科学院西安光学精密机械研究所 A kind of spatial light modulator coupling device based on three corner reflectors

Also Published As

Publication number Publication date
JPWO2006035775A1 (en) 2008-05-15
JP4804358B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
WO2006035775A1 (en) Spatial light modulator, optical processor, coupling prism and method for using coupling prism
JP7199402B2 (en) pupil dilation
KR20200000043U (en) Compact Collimating Optical Device and System
JP6736695B2 (en) Waveguide structure
JP2021509736A (en) Methods for processing optical waveguides
US10394189B2 (en) Display device for holographic reconstruction
WO2015128913A1 (en) Display apparatus
JP2022091982A (en) Waveguide with uniform output illumination
US20190033684A1 (en) Saw Modulator Having Optical Power Component for Extended Angular Redirection of Light
JP2019534478A (en) Method and system for wide field of view display using a scanning reflector
JP2019520595A (en) Holographic waveguide device for structured light projection
EP1069451A2 (en) Virtual image optical system
CN113835145B (en) Holographic grating manufacturing device, holographic grating and two-dimensional holographic grating optical waveguide
EP2157472A1 (en) Tunable filter, light source device and spectrum distribution measuring device
Nam et al. Aberration-corrected full-color holographic augmented reality near-eye display using a Pancharatnam-Berry phase lens
US20200192101A1 (en) Pupil expansion
CN112327587B (en) Holographic projector
CN117480427A (en) Light field projector with small form factor
JP2019174511A (en) Light guide plate, method for manufacturing light guide plate, and video display device
CN110794644B (en) Optical device and method for manufacturing the same
KR20220074893A (en) Display using astigmatism optics and aberration compensation
US7375868B2 (en) Image scanning apparatus
CN113227912A (en) Method for producing a Holographic Optical Element (HOE), holographic optical element, projection device, spectacle lens for data spectacles and data spectacles
US20220035159A1 (en) Waveguide-based projector
JP2001142029A (en) Optical information processor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006537755

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase