WO2006036495A1 - Reduced capacitance display element - Google Patents

Reduced capacitance display element Download PDF

Info

Publication number
WO2006036495A1
WO2006036495A1 PCT/US2005/032020 US2005032020W WO2006036495A1 WO 2006036495 A1 WO2006036495 A1 WO 2006036495A1 US 2005032020 W US2005032020 W US 2005032020W WO 2006036495 A1 WO2006036495 A1 WO 2006036495A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective layer
display element
display device
layer
moveable
Prior art date
Application number
PCT/US2005/032020
Other languages
French (fr)
Inventor
William J. Cummings
Brian J. Gally
Original Assignee
Idc, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/051,258 external-priority patent/US7710632B2/en
Priority claimed from US11/155,939 external-priority patent/US8004504B2/en
Application filed by Idc, Llc filed Critical Idc, Llc
Priority to EP05796215A priority Critical patent/EP1800167A1/en
Priority to BRPI0516050-2A priority patent/BRPI0516050A/en
Priority to AU2005289996A priority patent/AU2005289996A1/en
Priority to CN2005800321196A priority patent/CN101027592B/en
Publication of WO2006036495A1 publication Critical patent/WO2006036495A1/en
Priority to IL181905A priority patent/IL181905A0/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters

Definitions

  • the field of the invention relates to microelectromechanical systems (MEMS). Description of the Related Technology
  • Microelectromechanical systems include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices.
  • MEMS device One type of MEMS device is called an interferometric modulator.
  • interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference.
  • an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal, hi a particular embodiment, one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. As described herein in more detail, the position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator.
  • Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
  • a display element comprises a substantially transparent conductive layer, a partially reflective insulator, and a moveable reflective layer, the partially reflective insulator being positioned between the conductive layer and the moveable reflective layer, wherein a voltage applied between the conductive layer and the moveable reflective layer induces movement of the moveable reflective layer.
  • a method of fabricating a display element forming a substantially transparent conductive layer, forming a partially reflective insulator, and forming a moveable reflective layer, the partially reflective insulator being positioned between the conductive layer and the moveable reflective layer, wherein a voltage applied between the conductive layer and the moveable reflective layer induces movement of the moveable reflective layer.
  • a display element comprises a means for conducting, the conducting means being substantially transparent, a means for partially reflecting, the partially reflecting means being insulative, and a means for reflecting that is moveable, wherein the partially reflecting means is positioned between the conducting means and the movable reflecting means, wherein a voltage applied between the conducting means and the movable reflecting means induces movement of the movable reflecting means.
  • a display system comprises a display comprising a plurality of display elements.
  • each of the display elements comprisese a substantially transparent conductive layer, a partially reflective insulator, and a moveable reflective layer, the partially reflective insulator being positioned between the conductive layer and the moveable reflective layer, wherein a voltage applied between the conductive layer and the moveable reflective layer induces movement of the moveable reflective layer.
  • the display system further comprises a processor that is in electrical communication with the display, the processor being configured to process image data, and a memory device in electrical communication with the processor.
  • a display element comprises a substantially transparent conductive layer, a dielectric layer, a partially reflective layer, wherein the dielectric layer is positioned between the conductive layer and the partially reflective layer, and a moveable reflective layer, wherein a voltage applied between the conductive layer and the moveable reflective layer induces movement of the moveable reflective layer.
  • a display element comprises a means for conducting, the conducting means being substantially transparent, a means for insulating, a means for partially reflecting, wherein the insulating means is positioned between the conducting means and the partially reflecting means, and means for reflecting that is moveable, wherein a voltage applied between the conducting means and the movable reflecting means induces movement of the movable reflecting means.
  • a method of fabricating a display element comprises forming a substantially transparent conductive layer, forming a dielectric layer, forming a partially reflective layer, the dielectric layer being positioned between the conductive layer and the partially reflective layer, and forming a moveable reflective layer, wherein a voltage applied between the conductive layer and the moveable reflective layer induces movement of the moveable reflective layer.
  • a display system comprises a display comprising a plurality of display elements, hi one embodiment, each of the display elements comprises a substantially transparent conductive layer, a dielectric layer, a partially reflective layer, wherein the dielectric layer is positioned between the conductive layer and the partially reflective layer, and a moveable reflective layer, wherein a voltage applied between the conductive layer and the moveable reflective layer induces movement of the moveable reflective layer.
  • the display system further comprises a processor that is in electrical communication with the display, the processor being configured to process image data, and memory device in electrical communication with the processor.
  • a display element comprises a substantially transparent conductive layer, a dielectric layer, a partially reflective layer, the dielectric layer being positioned between the conductive layer and the partially reflective layer, and a moveable reflective layer, the moveable reflective layer being separated from the partially reflective layer by a gap, wherein when the display element is in an actuated state, the display element appears white to a viewer and in a released state the display element appears non-white to the viewer.
  • FIG. 1 is an isometric view depicting a portion of one embodiment of an interferometric modulator display in which a movable reflective layer of a first interferometric modulator is in a relaxed position and a movable reflective layer of a second interferometric modulator is in an actuated position.
  • FIG. 2 is a system block diagram illustrating one embodiment of an electronic device incorporating a 3x3 interferometric modulator display.
  • FIG. 3 is a diagram of movable mirror position versus applied voltage for one exemplary embodiment of an interferometric modulator of FIG. 1.
  • FIG. 4 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display.
  • FIG. 5A illustrates one exemplary frame of display data in the 3x3 interferometric modulator display of FIG. 2.
  • FIG. 5B illustrates one exemplary timing diagram for row and column signals that may be used to write the frame of FIG. 5 A.
  • FIGS. 6 A and 6B are system block diagrams illustrating an embodiment of a visual display device comprising a plurality of interferometric modulators.
  • FIG. 7A is a cross section of the device of FIG. 1.
  • FIG. 7B is a cross section of an alternative embodiment of an interferometric modulator.
  • FIG. 7C is a cross section of another alternative embodiment of an interferometric modulator.
  • FIG 7D is a cross section of yet another alternative embodiment of an interferometric modulator.
  • FIG. 7E is a cross section of an additional alternative embodiment of an interferometric modulator.
  • Figure 8 is a cross-section of an exemplary interferometric modulator having a transparent conductor.
  • Figure 9 is a cross-sectional view of an exemplary reduced capacitance interferometric modulator.
  • Figure 10 is a cross-sectional view of another exemplary reduced capacitance interferometric modulator.
  • the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry).
  • MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
  • interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in Figure 1.
  • the pixels are in either a bright or dark state, hi the bright ("on” or “open") state, the display element reflects a large portion of incident visible light to a user.
  • the dark (“off or “closed”) state the display element reflects little incident visible light to the user.
  • the light reflectance properties of the "on” and “off states may be reversed.
  • MEMS pixels can be configured to reflect predominantly at selected colors, allowing for a color display in addition to black and white.
  • Figure 1 is an isometric view depicting two adjacent pixels in a series of pixels of a visual display, wherein each pixel comprises a MEMS interferometric modulator.
  • an interferometric modulator display comprises a row/column array of these interferometric modulators.
  • Each interferometric modulator includes a pair of reflective layers positioned at a variable and controllable distance from each other to form a resonant optical cavity with at least one variable dimension.
  • one of the reflective layers may be moved between two positions. In the first position, referred to herein as the relaxed position, the movable reflective layer is positioned at a relatively large distance from a fixed partially reflective layer.
  • the movable reflective layer In the second position, referred to herein as the actuated position, the movable reflective layer is positioned more closely adjacent to the partially reflective layer. Incident light that reflects from the two layers interferes constructively or destructively depending on the position of the movable reflective layer, producing either an overall reflective or non-reflective state for each pixel.
  • the depicted portion of the pixel array in Figure 1 includes two adjacent interferometric modulators 12a and 12b.
  • a movable reflective layer 14a is illustrated in a relaxed position at a predetermined distance from an optical stack 16a, which includes a partially reflective layer.
  • the movable reflective layer 14b is illustrated in an actuated position adjacent to the optical stack 16b.
  • optical stack 16 typically comprise of several fused layers, which can include an electrode layer, such as indium tin oxide (ITO), a partially reflective layer, such as chromium, and a transparent dielectric.
  • ITO indium tin oxide
  • the optical stack 16 is thus electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20.
  • the layers are patterned into parallel strips, and may form row electrodes in a display device as described further below.
  • the movable reflective layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the movable reflective layers 14a, 14b are separated from the optical stacks 16a, 16b by a defined gap 19.
  • a highly conductive and reflective material such as aluminum may be used for the reflective layers 14, and these strips may form column electrodes in a display device.
  • the cavity 19 remains between the movable reflective layer 14a and optical stack 16a, with the movable reflective layer 14a in a mechanically relaxed state, as illustrated by the pixel 12a in Figure 1.
  • a potential difference is applied to a selected row and column, the capacitor formed at the intersection of the row and column electrodes at the corresponding pixel becomes charged, and electrostatic forces pull the electrodes together.
  • the movable reflective layer 14 is deformed and is forced against the optical stack 16.
  • a dielectric layer (not illustrated in this Figure) within the optical stack 16 may prevent shorting and control the separation distance between layers 14 and 16, as illustrated by pixel 12b on the right in Figure 1. The behavior is the same regardless of the polarity of the applied potential difference. In this way, row/column actuation that can control the reflective vs. non-reflective pixel states is analogous in many ways to that used in conventional LCD and other display technologies.
  • Figures 2 through 5B illustrate one exemplary process and system for using an array of interferometric modulators in a display application.
  • FIG. 2 is a system block diagram illustrating one embodiment of an electronic device that may incorporate aspects of the invention.
  • the electronic device includes a processor 21 which may be any general purpose single- or multi-chip microprocessor such as an ARM, Pentium®, Pentium II®, Pentium III®, Pentium IV®, Pentium® Pro, an 8051, a MIPS®, a Power PC®, an ALPHA®, or any special purpose microprocessor such as a digital signal processor, microcontroller, or a programmable gate array.
  • a processor 21 which may be any general purpose single- or multi-chip microprocessor such as an ARM, Pentium®, Pentium II®, Pentium III®, Pentium IV®, Pentium® Pro, an 8051, a MIPS®, a Power PC®, an ALPHA®, or any special purpose microprocessor such as a digital signal processor, microcontroller, or a programmable gate array.
  • the processor 21 may be configured to execute one or more software modules, hi addition to executing an operating system, the processor may be configured to execute one or more software applications, including a web browser, a telephone application, an email program, or any other software application. hi one embodiment, the processor 21 is also configured to communicate with an array driver 22.
  • the array driver 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a display array or panel 30.
  • the cross section of the array illustrated in Figure 1 is shown by the lines 1-1 in Figure 2.
  • the row/column actuation protocol may take advantage of a hysteresis property of these devices illustrated in Figure 3.
  • the row/column actuation protocol can be designed such that during row strobing, pixels in the strobed row that are to be actuated are exposed to a voltage difference of about 10 volts, and pixels that are to be relaxed are exposed to a voltage difference of close to zero volts. After the strobe, the pixels are exposed to a steady state voltage difference of about 5 volts such that they remain in whatever state the row strobe put them in. After being written, each pixel sees a potential difference within the "stability window" of 3-7 volts in this example.
  • each pixel of the interferometric modulator whether in the actuated or relaxed state, is essentially a capacitor formed by the fixed and moving reflective layers, this stable state can be held at a voltage within the hysteresis window with almost no power dissipation. Essentially no current flows into the pixel if the applied potential is fixed.
  • a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines.
  • the asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row.
  • a pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes.
  • the row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second.
  • a wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
  • Figures 4, 5A, and 5B illustrate one possible actuation protocol for creating a display frame on the 3x3 array of Figure 2.
  • Figure 4 illustrates a possible set of column and row voltage levels that may be used for pixels exhibiting the hysteresis curves of Figure 3.
  • actuating a pixel involves setting the appropriate column to - Vbias, and the appropriate row to + ⁇ V, which may correspond to -5 volts and +5 volts respectively Relaxing the pixel is accomplished by setting the appropriate column to ⁇ Vbias, and the appropriate row to the same + ⁇ V, producing a zero volt potential difference across the pixel.
  • the pixels are stable in whatever state they were originally in, regardless of whether the column is at +Vbias, or -Vbias.
  • voltages of opposite polarity than those described above can be used, e.g., actuating a pixel can involve setting the appropriate column to +Vbias, and the appropriate row to - ⁇ V.
  • releasing the pixel is accomplished by setting the appropriate column to - Vbias, and the appropriate row to the same - ⁇ V, producing a zero volt potential difference across the pixel.
  • FIG. 5B is a timing diagram showing a series of row and column signals applied to the 3x3 array of Figure 2 which will result in the display arrangement illustrated in Figure 5A, where actuated pixels are non-reflective.
  • the pixels Prior to writing the frame illustrated in Figure 5A, the pixels can be in any state, and in this example, all the rows are at 0 volts, and all the columns are at +5 volts. With these applied voltages, all pixels are stable in their existing actuated or relaxed states. hi the Figure 5A frame, pixels (1,1), (1,2), (2,2), (3,2) and (3,3) are actuated. To accomplish this, during a "line time" for row 1, columns 1 and 2 are set to -5 volts, and column 3 is set to +5 volts. This does not change the state of any pixels, because all the pixels remain in the 3-7 volt stability window. Row 1 is then strobed with a pulse that goes from 0, up to 5 volts, and back to zero.
  • the row potentials are zero, and the column potentials can remain at either +5 or -5 volts, and the display is then stable in the arrangement of Figure 5A. It will be appreciated that the same procedure can be employed for arrays of dozens or hundreds of rows and columns. It will also be appreciated that the timing, sequence, and levels of voltages used to perform row and column actuation can be varied widely within the general principles outlined above, and the above example is exemplary only, and any actuation voltage method can be used with the systems and methods described herein.
  • FIGS 6A and 6B are system block diagrams illustrating an embodiment of a display device 40.
  • the display device 40 can be, for example, a cellular or mobile telephone.
  • the same components of display device 40 or slight variations thereof are also illustrative of various types of display devices such as televisions and portable media players.
  • the display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46.
  • the housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding, and vacuum forming, hi addition, the housing 41 may be made from any of a variety of materials, including but not limited to plastic, metal, glass, rubber, and ceramic, or a combination thereof.
  • the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
  • the display 30 of exemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein.
  • the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art.
  • the display 30 includes an interferometric modulator display, as described herein.
  • the components of one embodiment of exemplary display device 40 are schematically illustrated in Figure 6B.
  • the illustrated exemplary display device 40 includes a housing 41 and can include additional components at least partially enclosed therein.
  • the exemplary display device 40 includes a network interface 27 that includes an antenna 43 which is coupled to a transceiver 47.
  • the transceiver 47 is connected to a processor 21, which is connected to conditioning hardware 52.
  • the conditioning hardware 52 may be configured to condition a signal (e.g. filter a signal).
  • the conditioning hardware 52 is connected to a speaker 45 and a microphone 46.
  • the processor 21 is also connected to an input device 48 and a driver controller 29.
  • the driver controller 29 is coupled to a frame buffer 28, and to an array driver 22, which in turn is coupled to a display array 30.
  • a power supply 50 provides power to all components as required by the particular exemplary display device 40 design.
  • the network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one ore more devices over a network. In one embodiment the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21.
  • the antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.11 standard, including EEEE 802.11 (a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other known signals that are used to communicate within a wireless cell phone network.
  • the transceiver 47 pre-processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21.
  • the transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.
  • the transceiver 47 can be replaced by a receiver.
  • network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21.
  • the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
  • Processor 21 generally controls the overall operation of the exemplary display device 40.
  • the processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data.
  • the processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage.
  • Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
  • the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40.
  • Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.
  • the driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22.
  • a driver controller 29 such as a LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
  • the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.
  • driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller).
  • array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display), hi one embodiment, a driver controller 29 is integrated with the array driver 22.
  • display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).
  • the input device 48 allows a user to control the operation of the exemplary display device 40.
  • input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, a pressure- or heat-sensitive membrane,
  • the microphone 46 is an input device for the exemplary display device 40.
  • voice commands may be provided by a user for controlling operations of the exemplary display device 40.
  • Power supply 50 can include a variety of energy storage devices as are well known in the art.
  • power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery.
  • power supply 50 is a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell, and solar-cell paint
  • power supply 50 is configured to receive power from a wall outlet.
  • control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system, hi some cases control programmability resides in the array driver 22.
  • Figures 7A-7E illustrate five different embodiments of the movable reflective layer 14 and its supporting structures.
  • Figure 7A is a cross section of the embodiment of Figure 1, where a strip of metal material 14 is deposited on orthogonally extending supports 18.
  • Figure 7B the moveable reflective layer 14 is attached to supports at the corners only, on tethers 32.
  • Figure 7C the moveable reflective layer 14 is suspended from a deformable layer 34, which may comprise a flexible metal.
  • the deformable layer 34 connects, directly or indirectly, to the substrate 20 around the perimeter of the deformable layer 34. These connections are herein referred to as support posts.
  • the embodiment illustrated in Figure 7D has support post plugs 42 upon which the deformable layer 34 rests.
  • the movable reflective layer 14 remains suspended over the cavity, as in Figures 7A-7C, but the deformable layer 34 does not form the support posts by filling holes between the deformable layer 34 and the optical stack 16. Rather, the support posts are formed of a planarization material, which is used to form support post plugs 42.
  • the embodiment illustrated in Figure 7E is based on the embodiment shown in Figure 7D, but may also be adapted to work with any of the embodiments illustrated in Figures 7A-7C as well as additional embodiments not shown.
  • an extra layer of metal or other conductive material has been used to form a bus structure 44.
  • This allows signal routing along the back of the interferometric modulators, eliminating a number of electrodes that may otherwise have had to be formed on the substrate 20.
  • the interferometric modulators function as direct-view devices, in which images are viewed from the front side of the transparent substrate 20, the side opposite to that upon which the modulator is arranged, hi these embodiments, the reflective layer 14 optically shields the portions of the interferometric modulator on the side of the reflective layer opposite the substrate 20, including the deformable layer 34. This allows the shielded areas to be configured and operated upon without negatively affecting the image quality.
  • Such shielding allows the bus structure 44 in Figure 7E, which provides the ability to separate the optical properties of the modulator from the electromechanical properties of the modulator, such as addressing and the movements that result from that addressing.
  • This separable modulator architecture allows the structural design and materials used for the electromechanical aspects and the optical aspects of the modulator to be selected and to function independently of each other.
  • the embodiments shown in Figures 7C-7E have additional benefits deriving from the decoupling of the optical properties of the reflective layer 14 from its mechanical properties, which are carried out by the deformable layer 34. This allows the structural design and materials used for the reflective layer 14 to be optimized with respect to the optical properties, and the structural design and materials used for the deformable layer 34 to be optimized with respect to desired mechanical properties.
  • FIG 8 is a cross-section of an exemplary interferometric modulator 100.
  • the interferometric modulator 100 comprises a substrate 120, a transparent conductor 140, a partial reflector 116, a dielectric 112, a movable mirror 114, and supports 118.
  • the supports 118 support moveable mirror 114 and define an air gap 119 between the dielectric layer 112 and the moveable mirror.
  • the air gap 119 is sized according to the desired optical characteristics of the interferometric modulator.
  • the air gap 119 may be sized in order to reflect a desired color from the interferometric modulator.
  • the movable mirror 14 and the partial reflector 16 are at least partially conductive so that they may be connected to the row and column lines of the display device.
  • the partial reflector 16 is also an electrode of the interferometric modulator ( Figures 7A, 7B, and 7C, for example)
  • the partial reflector may comprise chromium, titanium, and/or molybdenum.
  • the transparent conductor 140 is shown positioned between the partial reflector 116 and the substrate 120.
  • the transparent conductor 140 is configured as an electrode of the interferometric modulator and, thus, the interferometric modulator 100 may be actuated by placing an appropriate voltage difference, e.g., 10 volts, between the moveable mirror 114 and the transparent conductor 140.
  • the transparent conductor 140 comprises Indium Tin Oxide (ITO), Zinc Oxide, Florine doped Zinc Oxide, Cadmium Tin Oxide, Aluminum doped Zinc Oxide, Florine doped Tin Oxide, and/or Zinc Oxide doped with Gallium, Boron or Indium.
  • ITO Indium Tin Oxide
  • Zinc Oxide Zinc Oxide
  • Florine doped Zinc Oxide Cadmium Tin Oxide
  • Aluminum doped Zinc Oxide Florine doped Tin Oxide
  • Zinc Oxide doped with Gallium, Boron or Indium Zinc Oxide
  • the partial reflector 116 is not required to be conductive and, thus, the partial reflector 116 may comprise any suitable partially reflective material, either conductive or nonconductive.
  • a reflectivity of the partial reflector 116 is within the range of about 30-36%.
  • the reflectivity of the partial reflector 116 is about 31%.
  • other reflectivities are usable in connection with the systems and methods described herein.
  • the reflectivity of the partial reflector 116 may be set to other levels according to the desired output criteria for the interferometric modulator 100.
  • the reflectivity of the partial reflector increases, thus reducing the effectiveness of a dark state and limiting the contrast of the interferometric modulator. Therefore, in order to achieve a desired reflectivity of the partial reflector, in many embodiments reduction of a thickness of a partial reflector is desired.
  • the partial reflector 116 may advantageously be thinner due to the fact that the transparent conductor 140 serves as the electrode.
  • the partial reflector does not need to be conductive, because the transparent conductor serves as the electrode.
  • a thickness of a partial reflector may be reduced in order to achieve a desired reflectivity, hi one embodiment, the partial reflector 116 has a thickness of about 75 Angstoms.
  • the partial reflector 116 has a thickness in the range of about 60 - 100 Angstroms, hi yet another embodiment, the partial reflector 116 has a thickness in the range of about 40 - 150 Angstroms.
  • the partial reflector comprises silicon nitride, which is a non- conductive, partially reflective material.
  • oxides of chromium are used, including, but not limited to, CrO2, CrO3, Cr2O3, Cr2O, and CrOCN.
  • low conductivity dielectric materials are used as the partial reflector. These low conductivity dielectric materials are generally referred to as "high-k dielectrics", where "high-k dielectrics" refers to materials having a dielectric constant greater than or equal to about 3.9.
  • High-k dielectrics may include, for example, SiO2, Si3N4, A12O3, Y2O3, La2O3, Ta2O5, TiO2, HfO2, and ZrO2, for example.
  • the partial reflector 116 comprises a dielectric stack having alternating layers of dielectrics with different indices of refraction.
  • the output characteristics of the interferometric modulator 100 e.g., the color of light that is reflected from the interferometric modulator 100
  • tuning of the reflectivity of the partial reflector 116 may be performed in order to achieve desired output characteristics.
  • the index of refraction of the partial reflector 116 can be fine-tuned by using a partial reflector 116 comprising a combination of dielectric materials in a stack structure.
  • the partial reflector 116 may comprise a layer of SiO2 and a layer of CrOCN.
  • the material layers above substrate 120 include a layer of ITO that is about 500 Angstroms thick, a layer of SiO2 that is about 1000 Angstroms thick, a layer of CrOCN that is about 110 Angstroms thick, a layer of SiO2 that is about 275 Angstroms thick, an air gap that is about 2000 Angstroms thick, and an Al reflector.
  • the partial reflector comprises a layer of SiO2 that is about 1000 Angstroms thick and a layer of CrOCN that is about 110 Angstroms thick.
  • a power required to change voltages across the display elements increases.
  • a capacitance of any actuated display elements in an interferometric modulator display increases, the current required to change voltage levels on the columns of the display also increases. Accordingly, display elements with reduced capacitance are desired.
  • the display elements of Figures 9 and 10 are exemplary embodiments of display elements having reduced capacitance.
  • Figure 9 is a cross-sectional view of a reduced capacitance interferometric modulator 200.
  • the interferometric modulator 200 of Figure 9 comprises the substrate 120, the transparent conductor 140, a dielectric 130, the partial reflector 116, the dielectric 112, movable mirror 114, supports 118, and air gap 119.
  • the relative thicknesses of these layers are selected so that a thickness of the air gap 119 is larger than a combined thickness of the partial reflector 116, the dielectric 112, and the dielectric 130.
  • a lower capacitance is achieved by de ⁇ coupling the partial reflector 116 from the transparent conductor 140, thus increasing a distance between electrodes (e.g., moveable mirror 114 and transparent conductor 140) of the interferometric modulator.
  • the additional dielectric 130 is positioned between the transparent conductor 140 and the partial reflector 116.
  • the addition of the dielectric 130 does not change a distance between the partial reflector 116 and the movable mirror 114, but does, however, increase the distance between the transparent conductor 140 and the movable mirror 114.
  • the dielectric 130 has a thickness of about 1,000 Angstroms. In other embodiments, the dielectric 130 may have a thickness in the range of about 800 - 3,000 Angstroms.
  • interferometric modulator embodiments including a transparent conductor 140 may be actuated by placing a voltage between the transparent conductor 140 and the movable mirror 114.
  • the resulting distance between the movable mirror 114 and the energized transparent conductor 140 is increased by the thickness of dielectric layer 130.
  • capacitance varies inversely to a distance separating capacitive electrodes
  • the addition of the dielectric 130 does not significantly affect the optical characteristics of the interferometric modulator 200, but does decrease a capacitance between the electrodes, e.g., the movable mirror 114 and the transparent conductor 140.
  • Figure 10 is a cross-sectional view of an exemplary reduced capacitance interferometric modulator 300.
  • the interferometric modulator 300 of Figure 10 comprises a substrate 312, a transparent conductor 310, a dielectric 308, a partial reflector 306, a dielectric 304, a movable mirror 302, supports 318, and an air gap 303.
  • the movable mirror 302 and the partial reflector 306 are separated by the dielectric layer 304 and an air gap 303.
  • the air gap 303 and dielectric 308 are sized so that in the released state, e.g., the state shown in Figure 10, the interferometric modulator 300 absorb substantially all light incident on the substrate 312 so that a viewer sees the interferometric modulator 300 as black.
  • the interferometric modulator 300 is actuated, e.g., the movable mirror 302 is collapsed so that it contacts the dielectric 304, the interferometric modulator 300 reflects substantially all wavelengths of incident light so that the interferometric modulator 300 appears white to a viewer.
  • reflection of substantially all wavelengths of light provides white light that is referred to as "broadband white.” Due to the fact that the interferometric modulator 300 operates in a reverse manner when compared to the interferometric modulators 100 and 200 (e.g. the interferometric modulator 300 produces color or white in the released state and black in the actuated state), the interferometric modulator 300 is referred to as a "reverse interferometric modulator.”
  • an optical gap (including the air gap 303 and the dielectric 306) of the reverse interferometric modulator 300 is much smaller than an optical gap of an interferometric modulator that produces black in an actuated state and color or white in a released state (e.g., Figure 100).
  • the dielectric 304 may have a thickness of less than about 150 Angstroms and the air gap 304 may have a thickness of about 1,400 Angstroms, while the interferometric modulator 100 may have a dielectric thickness in the range of about 350 to 850 Angstroms and an air gap in the range of about 2,000 - 3,000 Angstroms.
  • reverse interferometric modulators such as the interferometric modulator 300
  • the distance between the moveable mirror 302 and the partial reflector 306 is in the range of about 150 to 200 Angstroms when the interferometric modulator 300 is in a collapsed position.
  • This distance comprises the thickness of the dielectric 304 (about 150 Angstroms in the embodiment of Figure 10) and a small gap of about 0-50 Angstroms that is present because the moveable mirror 302 and dielectric 304 may not be intimately contacting one another in the collapsed position.
  • the optical gap and distance between electrodes may be greater or smaller than the figures introduced above.
  • the capacitance of reverse interferometric modulators is generally higher than regular interferometric modulators. Accordingly, reverse interferometric modulators may consume additional power when changing voltages across their row and/or column terminals.
  • the dielectric layer 308 is positioned between the terminals of the interferometric modulator.
  • the interferometric modulator 300 includes a dielectric 308 adjacent to the transparent conductor 310.
  • addition of the dielectric 308 does not affect a distance between the partial reflector 306 and the movable mirror 302, but does, however increase the distance between the transparent conductor 310 and the movable mirror 302, thus decreasing a capacitance of the interferometric modulator 300. Accordingly, a capacitance of the reverse interferometric modulator 300 may be significantly reduced with the addition of the dielectric layer 308 between the electrodes of the interferometric modulator.
  • the interferometric modulators 100, 200, and 300 each include a movable mirror (mirror 114 in Figures 8 and 9, and mirror 302 in Figure 10). These exemplary moveable mirrors are deformable so that they collapse against the dielectric 112 ( Figures 8 and 9), 304 ( Figure 10) when an appropriate voltage is present across the terminals of the interferometric modulators.
  • a movable mirror mirror 114 in Figures 8 and 9, and mirror 302 in Figure 10
  • These exemplary moveable mirrors are deformable so that they collapse against the dielectric 112 ( Figures 8 and 9), 304 ( Figure 10) when an appropriate voltage is present across the terminals of the interferometric modulators.
  • Those of skill in the art will recognize, however, that the improvements described above with respect to Figures 8, 9, and 10, may be implemented in other embodiments of interferometric modulators having differently configured movable mirrors.
  • the interferometric modulators 100, 200, and 300 may be modified to have moveable mirrors that are attached to supports at the corners only, such as by tethers (e.g., Figure 7B) or may have moveable mirrors suspended from deformable layers (e.g., Figure 7C).
  • moveable mirrors that are attached to supports at the corners only, such as by tethers (e.g., Figure 7B) or may have moveable mirrors suspended from deformable layers (e.g., Figure 7C).

Abstract

A display element, such as an interferometric modulator, comprises a transparent conductor configured as a first electrode and a movable mirror configured as a second electrode. Advantageously, the partial reflector is positioned between the transparent conductor and the movable mirror. Because the transparent conductor serves as an electrode, the partial reflector does not need to be conductive. Accordingly, a greater range of materials may be used for the partial reflector. In addition, a transparent insulative material, such as a dielectric, may be positioned between the transparent conductor and the partial reflector in order to decrease a capacitance of the display element without changing a gap distance between the partial reflector and the movable mirror. Thus, a capacitance of the display element may be reduced without changing the optical characteristics of the display element.

Description

REDUCED CAPACITANCE DISPLAY ELEMENT
Field of the Invention
The field of the invention relates to microelectromechanical systems (MEMS). Description of the Related Technology
Microelectromechanical systems (MEMS) include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In certain embodiments, an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal, hi a particular embodiment, one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. As described herein in more detail, the position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
Summary of Certain Embodiments
The systems, methods, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled "Detailed Description of Certain Embodiments" one will understand how the features of this invention provide advantages over other display devices.
In one embodiment, a display element comprises a substantially transparent conductive layer, a partially reflective insulator, and a moveable reflective layer, the partially reflective insulator being positioned between the conductive layer and the moveable reflective layer, wherein a voltage applied between the conductive layer and the moveable reflective layer induces movement of the moveable reflective layer.
In another embodiment, a method of fabricating a display element forming a substantially transparent conductive layer, forming a partially reflective insulator, and forming a moveable reflective layer, the partially reflective insulator being positioned between the conductive layer and the moveable reflective layer, wherein a voltage applied between the conductive layer and the moveable reflective layer induces movement of the moveable reflective layer.
In another embodiment, a display element comprises a means for conducting, the conducting means being substantially transparent, a means for partially reflecting, the partially reflecting means being insulative, and a means for reflecting that is moveable, wherein the partially reflecting means is positioned between the conducting means and the movable reflecting means, wherein a voltage applied between the conducting means and the movable reflecting means induces movement of the movable reflecting means.
In another embodiment, a display system comprises a display comprising a plurality of display elements. In one embodiment, each of the display elements comprisese a substantially transparent conductive layer, a partially reflective insulator, and a moveable reflective layer, the partially reflective insulator being positioned between the conductive layer and the moveable reflective layer, wherein a voltage applied between the conductive layer and the moveable reflective layer induces movement of the moveable reflective layer. In one embodiment, the display system further comprises a processor that is in electrical communication with the display, the processor being configured to process image data, and a memory device in electrical communication with the processor.
In another embodiment, a display element comprises a substantially transparent conductive layer, a dielectric layer, a partially reflective layer, wherein the dielectric layer is positioned between the conductive layer and the partially reflective layer, and a moveable reflective layer, wherein a voltage applied between the conductive layer and the moveable reflective layer induces movement of the moveable reflective layer.
In another embodiment, a display element comprises a means for conducting, the conducting means being substantially transparent, a means for insulating, a means for partially reflecting, wherein the insulating means is positioned between the conducting means and the partially reflecting means, and means for reflecting that is moveable, wherein a voltage applied between the conducting means and the movable reflecting means induces movement of the movable reflecting means.
In another embodiment, a method of fabricating a display element comprises forming a substantially transparent conductive layer, forming a dielectric layer, forming a partially reflective layer, the dielectric layer being positioned between the conductive layer and the partially reflective layer, and forming a moveable reflective layer, wherein a voltage applied between the conductive layer and the moveable reflective layer induces movement of the moveable reflective layer.
In another embodiment, a display system comprises a display comprising a plurality of display elements, hi one embodiment, each of the display elements comprises a substantially transparent conductive layer, a dielectric layer, a partially reflective layer, wherein the dielectric layer is positioned between the conductive layer and the partially reflective layer, and a moveable reflective layer, wherein a voltage applied between the conductive layer and the moveable reflective layer induces movement of the moveable reflective layer. In one embodiment, the display system further comprises a processor that is in electrical communication with the display, the processor being configured to process image data, and memory device in electrical communication with the processor.
In another embodiment, a display element comprises a substantially transparent conductive layer, a dielectric layer, a partially reflective layer, the dielectric layer being positioned between the conductive layer and the partially reflective layer, and a moveable reflective layer, the moveable reflective layer being separated from the partially reflective layer by a gap, wherein when the display element is in an actuated state, the display element appears white to a viewer and in a released state the display element appears non-white to the viewer.
Brief Description of the Drawings
FIG. 1 is an isometric view depicting a portion of one embodiment of an interferometric modulator display in which a movable reflective layer of a first interferometric modulator is in a relaxed position and a movable reflective layer of a second interferometric modulator is in an actuated position.
FIG. 2 is a system block diagram illustrating one embodiment of an electronic device incorporating a 3x3 interferometric modulator display.
FIG. 3 is a diagram of movable mirror position versus applied voltage for one exemplary embodiment of an interferometric modulator of FIG. 1. FIG. 4 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display.
FIG. 5A illustrates one exemplary frame of display data in the 3x3 interferometric modulator display of FIG. 2.
FIG. 5B illustrates one exemplary timing diagram for row and column signals that may be used to write the frame of FIG. 5 A.
FIGS. 6 A and 6B are system block diagrams illustrating an embodiment of a visual display device comprising a plurality of interferometric modulators.
FIG. 7A is a cross section of the device of FIG. 1.
FIG. 7B is a cross section of an alternative embodiment of an interferometric modulator.
FIG. 7C is a cross section of another alternative embodiment of an interferometric modulator.
FIG 7D is a cross section of yet another alternative embodiment of an interferometric modulator.
FIG. 7E is a cross section of an additional alternative embodiment of an interferometric modulator.
Figure 8 is a cross-section of an exemplary interferometric modulator having a transparent conductor.
Figure 9 is a cross-sectional view of an exemplary reduced capacitance interferometric modulator.
Figure 10 is a cross-sectional view of another exemplary reduced capacitance interferometric modulator.
Detailed Description of Certain Embodiments
The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the embodiments may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in Figure 1. In these devices, the pixels are in either a bright or dark state, hi the bright ("on" or "open") state, the display element reflects a large portion of incident visible light to a user. When in the dark ("off or "closed") state, the display element reflects little incident visible light to the user. Depending on the embodiment, the light reflectance properties of the "on" and "off states may be reversed. MEMS pixels can be configured to reflect predominantly at selected colors, allowing for a color display in addition to black and white.
Figure 1 is an isometric view depicting two adjacent pixels in a series of pixels of a visual display, wherein each pixel comprises a MEMS interferometric modulator. In some embodiments, an interferometric modulator display comprises a row/column array of these interferometric modulators. Each interferometric modulator includes a pair of reflective layers positioned at a variable and controllable distance from each other to form a resonant optical cavity with at least one variable dimension. In one embodiment, one of the reflective layers may be moved between two positions. In the first position, referred to herein as the relaxed position, the movable reflective layer is positioned at a relatively large distance from a fixed partially reflective layer. In the second position, referred to herein as the actuated position, the movable reflective layer is positioned more closely adjacent to the partially reflective layer. Incident light that reflects from the two layers interferes constructively or destructively depending on the position of the movable reflective layer, producing either an overall reflective or non-reflective state for each pixel.
The depicted portion of the pixel array in Figure 1 includes two adjacent interferometric modulators 12a and 12b. In the interferometric modulator 12a on the left, a movable reflective layer 14a is illustrated in a relaxed position at a predetermined distance from an optical stack 16a, which includes a partially reflective layer. In the interferometric modulator 12b on the right, the movable reflective layer 14b is illustrated in an actuated position adjacent to the optical stack 16b.
The optical stacks 16a and 16b (collectively referred to as optical stack 16), as referenced herein, typically comprise of several fused layers, which can include an electrode layer, such as indium tin oxide (ITO), a partially reflective layer, such as chromium, and a transparent dielectric. The optical stack 16 is thus electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20. In some embodiments, the layers are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable reflective layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the movable reflective layers 14a, 14b are separated from the optical stacks 16a, 16b by a defined gap 19. A highly conductive and reflective material such as aluminum may be used for the reflective layers 14, and these strips may form column electrodes in a display device.
With no applied voltage, the cavity 19 remains between the movable reflective layer 14a and optical stack 16a, with the movable reflective layer 14a in a mechanically relaxed state, as illustrated by the pixel 12a in Figure 1. However, when a potential difference is applied to a selected row and column, the capacitor formed at the intersection of the row and column electrodes at the corresponding pixel becomes charged, and electrostatic forces pull the electrodes together. If the voltage is high enough, the movable reflective layer 14 is deformed and is forced against the optical stack 16. A dielectric layer (not illustrated in this Figure) within the optical stack 16 may prevent shorting and control the separation distance between layers 14 and 16, as illustrated by pixel 12b on the right in Figure 1. The behavior is the same regardless of the polarity of the applied potential difference. In this way, row/column actuation that can control the reflective vs. non-reflective pixel states is analogous in many ways to that used in conventional LCD and other display technologies.
Figures 2 through 5B illustrate one exemplary process and system for using an array of interferometric modulators in a display application.
Figure 2 is a system block diagram illustrating one embodiment of an electronic device that may incorporate aspects of the invention. In the exemplary embodiment, the electronic device includes a processor 21 which may be any general purpose single- or multi-chip microprocessor such as an ARM, Pentium®, Pentium II®, Pentium III®, Pentium IV®, Pentium® Pro, an 8051, a MIPS®, a Power PC®, an ALPHA®, or any special purpose microprocessor such as a digital signal processor, microcontroller, or a programmable gate array. As is conventional in the art, the processor 21 may be configured to execute one or more software modules, hi addition to executing an operating system, the processor may be configured to execute one or more software applications, including a web browser, a telephone application, an email program, or any other software application. hi one embodiment, the processor 21 is also configured to communicate with an array driver 22. In one embodiment, the array driver 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a display array or panel 30. The cross section of the array illustrated in Figure 1 is shown by the lines 1-1 in Figure 2. For MEMS interferometric modulators, the row/column actuation protocol may take advantage of a hysteresis property of these devices illustrated in Figure 3. It may require, for example, a 10 volt potential difference to cause a movable layer to deform from the relaxed state to the actuated state. However, when the voltage is reduced from that value, the movable layer maintains its state as the voltage drops back below 10 volts. In the exemplary embodiment of Figure 3, the movable layer does not relax completely until the voltage drops below 2 volts. There is thus a range of voltage, about 3 to 7 V in the example illustrated in Figure 3, where there exists a window of applied voltage within which the device is stable in either the relaxed or actuated state. This is referred to herein as the "hysteresis window" or "stability window." For a display array having the hysteresis characteristics of Figure 3, the row/column actuation protocol can be designed such that during row strobing, pixels in the strobed row that are to be actuated are exposed to a voltage difference of about 10 volts, and pixels that are to be relaxed are exposed to a voltage difference of close to zero volts. After the strobe, the pixels are exposed to a steady state voltage difference of about 5 volts such that they remain in whatever state the row strobe put them in. After being written, each pixel sees a potential difference within the "stability window" of 3-7 volts in this example. This feature makes the pixel design illustrated in Figure 1 stable under the same applied voltage conditions in either an actuated or relaxed pre-existing state. Since each pixel of the interferometric modulator, whether in the actuated or relaxed state, is essentially a capacitor formed by the fixed and moving reflective layers, this stable state can be held at a voltage within the hysteresis window with almost no power dissipation. Essentially no current flows into the pixel if the applied potential is fixed. In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
Figures 4, 5A, and 5B illustrate one possible actuation protocol for creating a display frame on the 3x3 array of Figure 2. Figure 4 illustrates a possible set of column and row voltage levels that may be used for pixels exhibiting the hysteresis curves of Figure 3. In the Figure 4 embodiment, actuating a pixel involves setting the appropriate column to - Vbias, and the appropriate row to +ΔV, which may correspond to -5 volts and +5 volts respectively Relaxing the pixel is accomplished by setting the appropriate column to ÷Vbias, and the appropriate row to the same +ΔV, producing a zero volt potential difference across the pixel. In those rows where the row voltage is held at zero volts, the pixels are stable in whatever state they were originally in, regardless of whether the column is at +Vbias, or -Vbias. As is also illustrated in Figure 4, it will be appreciated that voltages of opposite polarity than those described above can be used, e.g., actuating a pixel can involve setting the appropriate column to +Vbias, and the appropriate row to -ΔV. In this embodiment, releasing the pixel is accomplished by setting the appropriate column to - Vbias, and the appropriate row to the same -ΔV, producing a zero volt potential difference across the pixel. As is also illustrated in Figure 4, it will be appreciated that voltages of opposite polarity than those described above can be used, e.g., actuating a pixel can involve setting the appropriate column to +Vbias, and the appropriate row to -ΔV. In this embodiment, releasing the pixel is accomplished by setting the appropriate column to - Vbias, and the appropriate row to the same -ΔV, producing a zero volt potential difference across the pixel. Figure 5B is a timing diagram showing a series of row and column signals applied to the 3x3 array of Figure 2 which will result in the display arrangement illustrated in Figure 5A, where actuated pixels are non-reflective. Prior to writing the frame illustrated in Figure 5A, the pixels can be in any state, and in this example, all the rows are at 0 volts, and all the columns are at +5 volts. With these applied voltages, all pixels are stable in their existing actuated or relaxed states. hi the Figure 5A frame, pixels (1,1), (1,2), (2,2), (3,2) and (3,3) are actuated. To accomplish this, during a "line time" for row 1, columns 1 and 2 are set to -5 volts, and column 3 is set to +5 volts. This does not change the state of any pixels, because all the pixels remain in the 3-7 volt stability window. Row 1 is then strobed with a pulse that goes from 0, up to 5 volts, and back to zero. This actuates the (1,1) and (1,2) pixels and relaxes the (1,3) pixel. No other pixels in the array are affected. To set row 2 as desired, column 2 is set to -5 volts, and columns 1 and 3 are set to +5 volts. The same strobe applied to row 2 will then actuate pixel (2,2) and relax pixels (2,1) and (2,3). Again, no other pixels of the array are affected. Row 3 is similarly set by setting columns 2 and 3 to -5 volts, and column 1 to +5 volts. The row 3 strobe sets the row 3 pixels as shown in Figure 5A. After writing the frame, the row potentials are zero, and the column potentials can remain at either +5 or -5 volts, and the display is then stable in the arrangement of Figure 5A. It will be appreciated that the same procedure can be employed for arrays of dozens or hundreds of rows and columns. It will also be appreciated that the timing, sequence, and levels of voltages used to perform row and column actuation can be varied widely within the general principles outlined above, and the above example is exemplary only, and any actuation voltage method can be used with the systems and methods described herein.
Figures 6A and 6B are system block diagrams illustrating an embodiment of a display device 40. The display device 40 can be, for example, a cellular or mobile telephone. However, the same components of display device 40 or slight variations thereof are also illustrative of various types of display devices such as televisions and portable media players.
The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46. The housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding, and vacuum forming, hi addition, the housing 41 may be made from any of a variety of materials, including but not limited to plastic, metal, glass, rubber, and ceramic, or a combination thereof. In one embodiment the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
The display 30 of exemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein. In other embodiments, the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art. However, for purposes of describing the present embodiment, the display 30 includes an interferometric modulator display, as described herein.
The components of one embodiment of exemplary display device 40 are schematically illustrated in Figure 6B. The illustrated exemplary display device 40 includes a housing 41 and can include additional components at least partially enclosed therein. For example, in one embodiment, the exemplary display device 40 includes a network interface 27 that includes an antenna 43 which is coupled to a transceiver 47. The transceiver 47 is connected to a processor 21, which is connected to conditioning hardware 52. The conditioning hardware 52 may be configured to condition a signal (e.g. filter a signal). The conditioning hardware 52 is connected to a speaker 45 and a microphone 46. The processor 21 is also connected to an input device 48 and a driver controller 29. The driver controller 29 is coupled to a frame buffer 28, and to an array driver 22, which in turn is coupled to a display array 30. A power supply 50 provides power to all components as required by the particular exemplary display device 40 design.
The network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one ore more devices over a network. In one embodiment the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21. The antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.11 standard, including EEEE 802.11 (a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other known signals that are used to communicate within a wireless cell phone network. The transceiver 47 pre-processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.
In an alternative embodiment, the transceiver 47 can be replaced by a receiver. In yet another alternative embodiment, network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. For example, the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
Processor 21 generally controls the overall operation of the exemplary display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
In one embodiment, the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40. Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.
The driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as a LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22. Typically, the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.
In one embodiment, the driver controller 29, array driver 22, and display array 30 are appropriate for any of the types of displays described herein. For example, in one embodiment, driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller). In another embodiment, array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display), hi one embodiment, a driver controller 29 is integrated with the array driver 22. Such an embodiment is common in highly integrated systems such as cellular phones, watches, and other small area displays, hi yet another embodiment, display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).
The input device 48 allows a user to control the operation of the exemplary display device 40. hi one embodiment, input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, a pressure- or heat-sensitive membrane, hi one embodiment, the microphone 46 is an input device for the exemplary display device 40. When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40.
Power supply 50 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment, power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery. In another embodiment, power supply 50 is a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell, and solar-cell paint, hi another embodiment, power supply 50 is configured to receive power from a wall outlet. hi some implementations control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system, hi some cases control programmability resides in the array driver 22. Those of skill in the art will recognize that the above-described optimization may be implemented in any number of hardware and/or software components and in various configurations. The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example, Figures 7A-7E illustrate five different embodiments of the movable reflective layer 14 and its supporting structures. Figure 7A is a cross section of the embodiment of Figure 1, where a strip of metal material 14 is deposited on orthogonally extending supports 18. In Figure 7B, the moveable reflective layer 14 is attached to supports at the corners only, on tethers 32. hi Figure 7C, the moveable reflective layer 14 is suspended from a deformable layer 34, which may comprise a flexible metal. The deformable layer 34 connects, directly or indirectly, to the substrate 20 around the perimeter of the deformable layer 34. These connections are herein referred to as support posts. The embodiment illustrated in Figure 7D has support post plugs 42 upon which the deformable layer 34 rests. The movable reflective layer 14 remains suspended over the cavity, as in Figures 7A-7C, but the deformable layer 34 does not form the support posts by filling holes between the deformable layer 34 and the optical stack 16. Rather, the support posts are formed of a planarization material, which is used to form support post plugs 42. The embodiment illustrated in Figure 7E is based on the embodiment shown in Figure 7D, but may also be adapted to work with any of the embodiments illustrated in Figures 7A-7C as well as additional embodiments not shown. In the embodiment shown in Figure 7E, an extra layer of metal or other conductive material has been used to form a bus structure 44. This allows signal routing along the back of the interferometric modulators, eliminating a number of electrodes that may otherwise have had to be formed on the substrate 20. hi embodiments such as those shown in Figure 7, the interferometric modulators function as direct-view devices, in which images are viewed from the front side of the transparent substrate 20, the side opposite to that upon which the modulator is arranged, hi these embodiments, the reflective layer 14 optically shields the portions of the interferometric modulator on the side of the reflective layer opposite the substrate 20, including the deformable layer 34. This allows the shielded areas to be configured and operated upon without negatively affecting the image quality. Such shielding allows the bus structure 44 in Figure 7E, which provides the ability to separate the optical properties of the modulator from the electromechanical properties of the modulator, such as addressing and the movements that result from that addressing. This separable modulator architecture allows the structural design and materials used for the electromechanical aspects and the optical aspects of the modulator to be selected and to function independently of each other. Moreover, the embodiments shown in Figures 7C-7E have additional benefits deriving from the decoupling of the optical properties of the reflective layer 14 from its mechanical properties, which are carried out by the deformable layer 34. This allows the structural design and materials used for the reflective layer 14 to be optimized with respect to the optical properties, and the structural design and materials used for the deformable layer 34 to be optimized with respect to desired mechanical properties.
Figure 8 is a cross-section of an exemplary interferometric modulator 100. The interferometric modulator 100 comprises a substrate 120, a transparent conductor 140, a partial reflector 116, a dielectric 112, a movable mirror 114, and supports 118. In the embodiment of Figure 8, the supports 118 support moveable mirror 114 and define an air gap 119 between the dielectric layer 112 and the moveable mirror. In an advantageous embodiment, the air gap 119 is sized according to the desired optical characteristics of the interferometric modulator. For example, the air gap 119 may be sized in order to reflect a desired color from the interferometric modulator.
As described above with respect to Figures 7A, 7B, and 7C, typically a voltage difference is placed across the movable mirror 14 and the partial reflector 16 in order to actuate the interferometric modulator. Thus, in the embodiment of Figures 7A, 7B, and 7C, for example, the movable mirror 14 and the partial reflector 16 are at least partially conductive so that they may be connected to the row and column lines of the display device. In exemplary embodiments where the partial reflector 16 is also an electrode of the interferometric modulator (Figures 7A, 7B, and 7C, for example), the partial reflector may comprise chromium, titanium, and/or molybdenum.
In the exemplary interferometric modulator 100, the transparent conductor 140 is shown positioned between the partial reflector 116 and the substrate 120. In this embodiment, the transparent conductor 140 is configured as an electrode of the interferometric modulator and, thus, the interferometric modulator 100 may be actuated by placing an appropriate voltage difference, e.g., 10 volts, between the moveable mirror 114 and the transparent conductor 140. In an exemplary embodiment, the transparent conductor 140 comprises Indium Tin Oxide (ITO), Zinc Oxide, Florine doped Zinc Oxide, Cadmium Tin Oxide, Aluminum doped Zinc Oxide, Florine doped Tin Oxide, and/or Zinc Oxide doped with Gallium, Boron or Indium. In this embodiment, the partial reflector 116 is not required to be conductive and, thus, the partial reflector 116 may comprise any suitable partially reflective material, either conductive or nonconductive. In certain embodiments of interferometric modulator, a reflectivity of the partial reflector 116 is within the range of about 30-36%. For example, in one embodiment the reflectivity of the partial reflector 116 is about 31%. hi other embodiments, other reflectivities are usable in connection with the systems and methods described herein. In other embodiments, the reflectivity of the partial reflector 116 may be set to other levels according to the desired output criteria for the interferometric modulator 100. In a typical interferometric modulator, as a thickness of the partial reflector increases, the reflectivity of the partial reflector also increases, thus reducing the effectiveness of a dark state and limiting the contrast of the interferometric modulator. Therefore, in order to achieve a desired reflectivity of the partial reflector, in many embodiments reduction of a thickness of a partial reflector is desired.
In the embodiment of Figure 8, the partial reflector 116 may advantageously be thinner due to the fact that the transparent conductor 140 serves as the electrode. Thus, the partial reflector does not need to be conductive, because the transparent conductor serves as the electrode. Accordingly, in embodiments including a transparent conductor, such as transparent conductor 140, a thickness of a partial reflector may be reduced in order to achieve a desired reflectivity, hi one embodiment, the partial reflector 116 has a thickness of about 75 Angstoms. In another embodiment, the partial reflector 116 has a thickness in the range of about 60 - 100 Angstroms, hi yet another embodiment, the partial reflector 116 has a thickness in the range of about 40 - 150 Angstroms. hi one embodiment, the partial reflector comprises silicon nitride, which is a non- conductive, partially reflective material. In other embodiments, oxides of chromium are used, including, but not limited to, CrO2, CrO3, Cr2O3, Cr2O, and CrOCN. In some embodiments, low conductivity dielectric materials are used as the partial reflector. These low conductivity dielectric materials are generally referred to as "high-k dielectrics", where "high-k dielectrics" refers to materials having a dielectric constant greater than or equal to about 3.9. High-k dielectrics may include, for example, SiO2, Si3N4, A12O3, Y2O3, La2O3, Ta2O5, TiO2, HfO2, and ZrO2, for example.
In other embodiments, the partial reflector 116 comprises a dielectric stack having alternating layers of dielectrics with different indices of refraction. As those of skill in the art will recognize, the output characteristics of the interferometric modulator 100, e.g., the color of light that is reflected from the interferometric modulator 100, are affected by the reflectivity of the partial reflector 116. Accordingly, tuning of the reflectivity of the partial reflector 116 may be performed in order to achieve desired output characteristics. In one embodiment, the index of refraction of the partial reflector 116 can be fine-tuned by using a partial reflector 116 comprising a combination of dielectric materials in a stack structure. For example, in one embodiment, the partial reflector 116 may comprise a layer of SiO2 and a layer of CrOCN. hi an exemplary embodiment of an interferometric modulator having a partial reflector comprising a dielectric stack, the material layers above substrate 120 include a layer of ITO that is about 500 Angstroms thick, a layer of SiO2 that is about 1000 Angstroms thick, a layer of CrOCN that is about 110 Angstroms thick, a layer of SiO2 that is about 275 Angstroms thick, an air gap that is about 2000 Angstroms thick, and an Al reflector. Thus, in this exemplary embodiment, the partial reflector comprises a layer of SiO2 that is about 1000 Angstroms thick and a layer of CrOCN that is about 110 Angstroms thick. Those of skill in the art will recognize that there are many other suitable conductive or non-conductive materials that may be used alone, or in combination with other materials, as part of the partial reflector 116. Use of these materials in combination with the systems and methods described herein is expressly contemplated.
In a typical display, as a capacitance of the individual display elements, e.g., interferometric modulators, increases, a power required to change voltages across the display elements also increases. For example, as a capacitance of any actuated display elements in an interferometric modulator display increases, the current required to change voltage levels on the columns of the display also increases. Accordingly, display elements with reduced capacitance are desired. The display elements of Figures 9 and 10 are exemplary embodiments of display elements having reduced capacitance.
Figure 9 is a cross-sectional view of a reduced capacitance interferometric modulator 200. The interferometric modulator 200 of Figure 9 comprises the substrate 120, the transparent conductor 140, a dielectric 130, the partial reflector 116, the dielectric 112, movable mirror 114, supports 118, and air gap 119. In an exemplary embodiment, the relative thicknesses of these layers are selected so that a thickness of the air gap 119 is larger than a combined thickness of the partial reflector 116, the dielectric 112, and the dielectric 130. In the embodiment of Figure 9, a lower capacitance is achieved by de¬ coupling the partial reflector 116 from the transparent conductor 140, thus increasing a distance between electrodes (e.g., moveable mirror 114 and transparent conductor 140) of the interferometric modulator. More particularly, in the embodiment of Figure 9, the additional dielectric 130 is positioned between the transparent conductor 140 and the partial reflector 116. The addition of the dielectric 130 does not change a distance between the partial reflector 116 and the movable mirror 114, but does, however, increase the distance between the transparent conductor 140 and the movable mirror 114. In one embodiment, the dielectric 130 has a thickness of about 1,000 Angstroms. In other embodiments, the dielectric 130 may have a thickness in the range of about 800 - 3,000 Angstroms.
As described above with respect to Figure 8, for example, interferometric modulator embodiments including a transparent conductor 140 may be actuated by placing a voltage between the transparent conductor 140 and the movable mirror 114. In the exemplary embodiment of Figure 9, when the movable mirror 114 collapses against dielectric layer 112, the resulting distance between the movable mirror 114 and the energized transparent conductor 140 is increased by the thickness of dielectric layer 130. Because capacitance varies inversely to a distance separating capacitive electrodes, by increasing a distance between the electrodes of the interferometric modulator 200, a capacitance of the interferometric modulator 200 is correspondingly decreased. Thus, the addition of the dielectric 130 does not significantly affect the optical characteristics of the interferometric modulator 200, but does decrease a capacitance between the electrodes, e.g., the movable mirror 114 and the transparent conductor 140.
Figure 10 is a cross-sectional view of an exemplary reduced capacitance interferometric modulator 300. The interferometric modulator 300 of Figure 10 comprises a substrate 312, a transparent conductor 310, a dielectric 308, a partial reflector 306, a dielectric 304, a movable mirror 302, supports 318, and an air gap 303. In the embodiment of Figure 10, the movable mirror 302 and the partial reflector 306 are separated by the dielectric layer 304 and an air gap 303. In this embodiment, the air gap 303 and dielectric 308 are sized so that in the released state, e.g., the state shown in Figure 10, the interferometric modulator 300 absorb substantially all light incident on the substrate 312 so that a viewer sees the interferometric modulator 300 as black. When the interferometric modulator 300 is actuated, e.g., the movable mirror 302 is collapsed so that it contacts the dielectric 304, the interferometric modulator 300 reflects substantially all wavelengths of incident light so that the interferometric modulator 300 appears white to a viewer. In certain embodiments, reflection of substantially all wavelengths of light provides white light that is referred to as "broadband white." Due to the fact that the interferometric modulator 300 operates in a reverse manner when compared to the interferometric modulators 100 and 200 (e.g. the interferometric modulator 300 produces color or white in the released state and black in the actuated state), the interferometric modulator 300 is referred to as a "reverse interferometric modulator."
In one embodiment, an optical gap (including the air gap 303 and the dielectric 306) of the reverse interferometric modulator 300 is much smaller than an optical gap of an interferometric modulator that produces black in an actuated state and color or white in a released state (e.g., Figure 100). For example, the dielectric 304 may have a thickness of less than about 150 Angstroms and the air gap 304 may have a thickness of about 1,400 Angstroms, while the interferometric modulator 100 may have a dielectric thickness in the range of about 350 to 850 Angstroms and an air gap in the range of about 2,000 - 3,000 Angstroms. Thus, reverse interferometric modulators, such as the interferometric modulator 300, have smaller optical gaps than regular interferometric modulators and, accordingly, the electrodes of reverse interferometric modulators are generally closer together. In the exemplary embodiment of Figure 10, the distance between the moveable mirror 302 and the partial reflector 306 is in the range of about 150 to 200 Angstroms when the interferometric modulator 300 is in a collapsed position. This distance comprises the thickness of the dielectric 304 (about 150 Angstroms in the embodiment of Figure 10) and a small gap of about 0-50 Angstroms that is present because the moveable mirror 302 and dielectric 304 may not be intimately contacting one another in the collapsed position. In other reverse interferometric modulators, the optical gap and distance between electrodes may be greater or smaller than the figures introduced above.
Due to the decreased distance between electrodes, the capacitance of reverse interferometric modulators is generally higher than regular interferometric modulators. Accordingly, reverse interferometric modulators may consume additional power when changing voltages across their row and/or column terminals. In order to reduce the capacitance of the reverse interferometric modulator 300, the dielectric layer 308 is positioned between the terminals of the interferometric modulator. For example, the interferometric modulator 300 includes a dielectric 308 adjacent to the transparent conductor 310. In the same manner as discussed above with respect to Figure 9, for example, addition of the dielectric 308 does not affect a distance between the partial reflector 306 and the movable mirror 302, but does, however increase the distance between the transparent conductor 310 and the movable mirror 302, thus decreasing a capacitance of the interferometric modulator 300. Accordingly, a capacitance of the reverse interferometric modulator 300 may be significantly reduced with the addition of the dielectric layer 308 between the electrodes of the interferometric modulator.
The interferometric modulators 100, 200, and 300 each include a movable mirror (mirror 114 in Figures 8 and 9, and mirror 302 in Figure 10). These exemplary moveable mirrors are deformable so that they collapse against the dielectric 112 (Figures 8 and 9), 304 (Figure 10) when an appropriate voltage is present across the terminals of the interferometric modulators. Those of skill in the art will recognize, however, that the improvements described above with respect to Figures 8, 9, and 10, may be implemented in other embodiments of interferometric modulators having differently configured movable mirrors. For example, the interferometric modulators 100, 200, and 300, may be modified to have moveable mirrors that are attached to supports at the corners only, such as by tethers (e.g., Figure 7B) or may have moveable mirrors suspended from deformable layers (e.g., Figure 7C). Use of the improved systems and methods described with respect to Figures 7, 8, and 9, are expressly contemplated with these other configurations of movable mirrors.
Various embodiments of the invention have been described above. Although this invention has been described with reference to these specific embodiments, the descriptions are intended to be illustrative of the invention and are not intended to be limiting. Various modifications and applications may occur to those skilled in the art without departing from the true spirit and scope of the invention.

Claims

WHAT IS CLAIMED IS:
1. A display device comprising: a substantially transparent conductive layer; a partially reflective insulator; and a moveable reflective layer, the partially reflective insulator being positioned between the conductive layer and the moveable reflective layer, wherein a voltage applied between the conductive layer and the moveable reflective layer induces movement of the moveable reflective layer.
2. The display device of Claim 1, wherein when the voltage is applied between the conductive layer and the moveable reflective layer, at least a portion of the moveable reflective layer moves so that the at least a portion of the moveable reflective layer physically contacts the partially reflective insulator.
3. The display device of Claim 1, further comprising: a thin dielectric layer positioned between the partially reflective insulator and the moveable reflective layer.
4. The display device of Claim 1, further comprising: a dielectric layer positioned between the conductive layer and the partially reflective insulator.
5. The display device of Claim 4, wherein the dielectric layer comprises materials selected from the group comprising: SiO2 , Al2O3, and Silicon Nitride.
6. The display device of Claim 1, wherein the partially reflective insulator comprises materials selected from the group comprising: Silicon Nitride, CrO2, CrO3, Cr2O3, Cr2O, and CrOCN.
7. The display device of Claim 1, wherein when the display element is in an actuated state, the display device appears white to a viewer and in a released state the display element appears non-white to the viewer.
8. The display device of Claim 7, wherein the partially reflective layer has a thickness of between about 40 and 150 Angstroms.
9. The display device of Claim 7, wherein the dielectric layer has a thickness of between about 800 and 3,000 Angstroms.
10. The display device of Claim 7, wherein a distance between the partially reflective layer and the moveable reflective layer when the display device is in the actuated state is less than about 200 Angstroms.
11. The display device of Claim 10, wherein a distance between the partially reflective layer and the moveable reflective layer when the display device is in the released state is less than about 1,550 Angstroms.
12. The display device of Claim 1, further comprising: a processor that is in electrical communication with at least one of said conductive layer and said moveable reflective layer, the processor being configured to process image data; and a memory device in electrical communication with the processor.
13. The display device of Claim 12, further comprising a driver circuit configured to send at least one signal to at least one of said conductive layer and said moveable reflective layer.
14. The display device of Claim 13, further comprising a controller configured to send at least a portion of the image data to the driver circuit.
15. The display device of Claim 12, further comprising an image source module configured to send the image data to the processor.
16. The display device of Claim 15, wherein the image source module comprises at least one of a receiver, a transceiver, and a transmitter.
17. The display device of Claim 12, further comprising an input device configured to receive input data and to communicate the input data to the processor.
18. A method of fabricating a display element, the method comprising: forming a substantially transparent conductive layer; forming a partially reflective insulator; and forming a moveable reflective layer, the partially reflective insulator being positioned between the conductive layer and the moveable reflective layer, wherein a voltage applied between the conductive layer and the moveable reflective layer induces movement of the moveable reflective layer.
19. The method of Claim 18, wherein the partially reflective insulator comprises materials selected from the group comprising: Silicon Nitride, CrO2, CrO3, Cr2O3, Cr2O, and CrOCN.
20. The method of Claim 18, wherein when the display element is in an actuated state, the display element appears white to a viewer and in a released state the display element appears non-white to the viewer.
21. The method of Claim 20, wherein a distance between the partially reflective layer and the moveable reflective layer when the display element is in the actuated state is less than about 200 Angstroms.
22. The method of Claim 21, wherein a distance between the partially reflective layer and the moveable reflective layer when the display element is in the released state is less than about 1,550 Angstroms.
23. A display element fabricated by the method of any of Claims 18-22.
24. A display element comprising: a means for conducting, the conducting means being substantially transparent; a means for partially reflecting, the partially reflecting means being insulative; and a means for reflecting that is moveable, wherein the partially reflecting means is positioned between the conducting means and the movable reflecting means, wherein a voltage applied between the conducting means and the movable reflecting means induces movement of the movable reflecting means.
25. The display element of Claim 24, wherein the conducting means comprises a conductive layer.
26. The display element of Claim 24 or 25, wherein the partially reflecting means comprises a partially reflective layer.
27. The display element of Claim 24, 25 or 26, wherein the movable reflecting means comprises a movable reflective layer.
28. A display device comprising: a substantially transparent conductive layer; a dielectric layer; a partially reflective layer, wherein the dielectric layer is positioned between the conductive layer and the partially reflective layer; and a moveable reflective layer, wherein a voltage applied between the conductive layer and the moveable reflective layer induces movement of the moveable reflective layer.
29. The display device of Claim 28, wherein the dielectric layer has a thickness of between about 800 and 3,000 Angstroms.
30. The display device of Claim 28, wherein the partially reflective layer is conductive.
31. The display device of Claim 28, wherein the partially reflective layer is substantially non-conductive.
32. The display device of Claim 28, further comprising another dielectric layer positioned between the partially reflective layer and the moveable reflective layer.
33. The display device of Claim 28, wherein when the display element is in an actuated state, the display device appears white to a viewer and in a released state the display element appears non-white to the viewer.
34. The display device of Claim 33, wherein the partially reflective layer has a thickness of between about 40 and 150 Angstroms.
35. The display device of Claim 33, wherein the dielectric layer has a thickness of between about 800 and 3,000 Angstroms.
36. The display device of Claim 33, wherein a distance between the partially reflective layer and the moveable reflective layer when the display device is in the actuated state is less than about 200 Angstroms.
37. The display device of Claim 36, wherein a distance between the partially reflective layer and the moveable reflective layer when the display device is in the released state is less than about 1,550 Angstroms.
38. The display device of Claim 28, further comprising: a processor that is in electrical communication with at least one of said conductive layer and said moveable reflective layer, the processor being configured to process image data; and a memory device in electrical communication with the processor.
39. The display device of Claim 38, further comprising a driver circuit configured to send at least one signal to at least one of said conductive layer and said moveable reflective layer.
40. The display device of Claim 39, further comprising a controller configured to send at least a portion of the image data to the driver circuit.
41. The display device of Claim 38, further comprising an image source module configured to send the image data to the processor.
42. The display device of Claim 41, wherein the image source module comprises at least one of a receiver, a transceiver, and a transmitter.
43. The display device of Claim 38, further comprising an input device configured to receive input data and to communicate the input data to the processor.
44. A display element comprising: means for conducting, the conducting means being substantially transparent; means for insulating; means for partially reflecting, wherein the insulating means is positioned between the conducting means and the partially reflecting means; and means for reflecting that is moveable, wherein a voltage applied between the conducting means and the movable reflecting means induces movement of the movable reflecting means.
45. The display element of Claim 44, wherein the conducting means comprises a conductive layer.
46. The display element of Claim 44 or 45, wherein the insulating means comprises a dielectric layer.
47. The display element of Claim 44, 45 or 46, wherein the partially reflecting means comprises a partially reflective layer.
48. The display element of Claim 44, 45, 46 or 47, wherein the movable reflecting means comprises a movable reflective layer.
49. A method of fabricating a display element, the method comprising: forming a substantially transparent conductive layer; forming a dielectric layer; forming a partially reflective layer, the dielectric layer being positioned between the conductive layer and the partially reflective layer; and forming a moveable reflective layer, wherein a voltage applied between the conductive layer and the moveable reflective layer induces movement of the moveable reflective layer.
50. The display element of Claim 49, wherein when the display element is in an actuated state, the display element appears white to a viewer and in a released state the display element appears non-white to the viewer.
51. The method of Claim 50, wherein when the display element is in an actuated state, the display element appears white to a viewer and in a released state the display element appears non-white to the viewer.
52. The method of Claim 51, wherein a distance between the partially reflective layer and the moveable reflective layer when the display element is in the actuated state is less than about 200 Angstroms.
53. The method of Claim 52, wherein a distance between the partially reflective layer and the moveable reflective layer when the display element is in the released state is less than about 1,550 Angstroms.
54. A display element formed by the method of any of Claims 49-53.
55. A display element comprising: a substantially transparent conductive layer; a dielectric layer; a partially reflective layer, the dielectric layer being positioned between the conductive layer and the partially reflective layer; and a moveable reflective layer, the moveable reflective layer being separated from the partially reflective layer by a gap, wherein when the display element is in an actuated state, the display element appears white to a viewer and in a released state the display element appears non-white to the viewer.
56. The display element of Claim 55, wherein the gap is sized so that in the released state the display element appears at least one of black, blue, green, and red.
57. The display element of Claim 55, wherein the partially reflective layer is substantially non-conductive.
58. The display element of Claim 55, wherein the partially reflective layer has a thickness of between about 40 and 150 Angstroms.
59. The display element of Claim 55, wherein the dielectric layer has a thickness of between about 800 and 3,000 Angstroms.
60. The display element of Claim 55, wherein a distance between the partially reflective layer and the moveable reflective layer when the display element is in the actuated state is less than about 200 Angstroms.
61. The display element of Claim 60, wherein a distance between the partially reflective layer and the moveable reflective layer when the display element is in the released state is less than about 1,550 Angstroms.
62. The display element of Claim 55, further comprising an additional dielectric layer positioned between the partially reflective layer and the moveable reflective layer, wherein a thickness of the dielectric layer is less than about 150 Angstroms.
PCT/US2005/032020 2004-09-27 2005-09-08 Reduced capacitance display element WO2006036495A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05796215A EP1800167A1 (en) 2004-09-27 2005-09-08 Reduced capacitance display element
BRPI0516050-2A BRPI0516050A (en) 2004-09-27 2005-09-08 display element with reduced capacitance
AU2005289996A AU2005289996A1 (en) 2004-09-27 2005-09-08 Reduced capacitance display element
CN2005800321196A CN101027592B (en) 2004-09-27 2005-09-08 Reduced capacitance display element
IL181905A IL181905A0 (en) 2004-09-27 2007-03-13 Reduced capacitance display element

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US61354204P 2004-09-27 2004-09-27
US61348804P 2004-09-27 2004-09-27
US60/613,542 2004-09-27
US60/613,488 2004-09-27
US11/051,258 US7710632B2 (en) 2004-09-27 2005-02-04 Display device having an array of spatial light modulators with integrated color filters
US11/051,258 2005-02-04
US11/155,939 2005-06-17
US11/155,939 US8004504B2 (en) 2004-09-27 2005-06-17 Reduced capacitance display element

Publications (1)

Publication Number Publication Date
WO2006036495A1 true WO2006036495A1 (en) 2006-04-06

Family

ID=35447360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/032020 WO2006036495A1 (en) 2004-09-27 2005-09-08 Reduced capacitance display element

Country Status (7)

Country Link
EP (1) EP1800167A1 (en)
CN (2) CN101027592B (en)
AU (1) AU2005289996A1 (en)
BR (1) BRPI0516050A (en)
IL (1) IL181905A0 (en)
TW (2) TW200638061A (en)
WO (1) WO2006036495A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US9110289B2 (en) 1998-04-08 2015-08-18 Qualcomm Mems Technologies, Inc. Device for modulating light with multiple electrodes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667548A1 (en) * 1994-01-27 1995-08-16 AT&T Corp. Micromechanical modulator
WO1995030924A1 (en) * 1994-05-05 1995-11-16 Etalon, Inc. Visible spectrum modulator arrays
WO1997017628A1 (en) * 1995-11-06 1997-05-15 Etalon, Inc. Interferometric modulation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791089B2 (en) * 1988-12-13 1995-10-04 セントラル硝子株式会社 Heat ray reflective glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667548A1 (en) * 1994-01-27 1995-08-16 AT&T Corp. Micromechanical modulator
WO1995030924A1 (en) * 1994-05-05 1995-11-16 Etalon, Inc. Visible spectrum modulator arrays
WO1997017628A1 (en) * 1995-11-06 1997-05-15 Etalon, Inc. Interferometric modulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARATANI K ET AL: "SURFACE MICROMACHINED TUNEABLE INTERFEROMETER ARRAY", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. A43, no. 1/3, 1 May 1994 (1994-05-01), pages 17 - 23, XP000454081, ISSN: 0924-4247 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US9110289B2 (en) 1998-04-08 2015-08-18 Qualcomm Mems Technologies, Inc. Device for modulating light with multiple electrodes
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device

Also Published As

Publication number Publication date
IL181905A0 (en) 2007-07-04
CN101027592A (en) 2007-08-29
AU2005289996A1 (en) 2006-04-06
BRPI0516050A (en) 2008-08-19
CN101027592B (en) 2011-02-23
CN102012559A (en) 2011-04-13
TW201213850A (en) 2012-04-01
TW200638061A (en) 2006-11-01
EP1800167A1 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
US8004504B2 (en) Reduced capacitance display element
US7652814B2 (en) MEMS device with integrated optical element
US7446927B2 (en) MEMS switch with set and latch electrodes
US7924494B2 (en) Apparatus and method for reducing slippage between structures in an interferometric modulator
EP1640336B1 (en) Method and device for a display having transparent components integrated therein
US7884989B2 (en) White interferometric modulators and methods for forming the same
US7310179B2 (en) Method and device for selective adjustment of hysteresis window
US7999993B2 (en) Reflective display device having viewable display on both sides
US8488228B2 (en) Interferometric display with interferometric reflector
EP1640770A2 (en) Device having a conductive light absorbing mask and method for fabricating same
EP2012168A2 (en) Microelectromechanical device with optical function separated from mechanical and electrical function
US20080218834A1 (en) Method and apparatus for providing a light absorbing mask in an interferometric modulator display
WO2009032525A2 (en) Interferometric optical modulator with broadband reflection characteristics
WO2009126585A1 (en) Device having thin black mask and method of fabricating the same
WO2009158357A1 (en) Backlight displays
EP2095385A1 (en) Mems switches with deforming membranes
EP1949165B1 (en) MEMS switch with set and latch electrodes
EP1800167A1 (en) Reduced capacitance display element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 181905

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 200580032119.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005289996

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005796215

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005796215

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0516050

Country of ref document: BR