WO2006037715A1 - Verfahren und vorrichtung zur ermittlung eines mit einer ditherfrequenz überlagerten pwm-signals zur steuerung eines magnetventils - Google Patents

Verfahren und vorrichtung zur ermittlung eines mit einer ditherfrequenz überlagerten pwm-signals zur steuerung eines magnetventils Download PDF

Info

Publication number
WO2006037715A1
WO2006037715A1 PCT/EP2005/054567 EP2005054567W WO2006037715A1 WO 2006037715 A1 WO2006037715 A1 WO 2006037715A1 EP 2005054567 W EP2005054567 W EP 2005054567W WO 2006037715 A1 WO2006037715 A1 WO 2006037715A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
solenoid valve
dither
dither signal
Prior art date
Application number
PCT/EP2005/054567
Other languages
English (en)
French (fr)
Inventor
Jose Kissler
Thomas Röhrl
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE200550006621 priority Critical patent/DE502005006621D1/de
Priority to EP20050786895 priority patent/EP1797490B1/de
Priority to US11/664,929 priority patent/US7853360B2/en
Publication of WO2006037715A1 publication Critical patent/WO2006037715A1/de

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0675Electromagnet aspects, e.g. electric supply therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/40Actuators for moving a controlled member
    • B60Y2400/405Electric motors actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0251Elements specially adapted for electric control units, e.g. valves for converting electrical signals to fluid signals
    • F16H2061/0255Solenoid valve using PWM or duty-cycle control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F2007/1888Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings using pulse width modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1838Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current by switching-in or -out impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0396Involving pressure control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve

Definitions

  • the invention is based on the preamble of claim 1 of a method for determining a control signal for a solenoid valve.
  • the control signal is assisted by a PWM signal (pulse-width modulated signal) is formed, which is overlaid with egg ⁇ nem dither signal having a lower frequency.
  • the control signal has such a high frequency that the armature of the magnetic valve assumes an intermediate position between an open and a closed position, preferably a middle position ("half open" position) the central position exerts a slight vibration. as a result, reza ⁇ is frictional resistance to the sliding parts in the solenoid valve, so that the solenoid valve can be switched quickly and pre- Ziser.
  • An alternative embodiment of the invention is entspre ⁇ accordingly to the preamble of claim 7 of a device for controlling a solenoid valve of.
  • This device operates according to the aforementioned method and has a current regulator, a dither unit and a PWM unit.
  • Solenoid valves are used in particular in motor vehicles ⁇ set to open or close channels in hydraulic lines.
  • the individual switching stages can be switched smoothly and wear-resistant.
  • the solenoid valves in the linear or analog Be ⁇ rich by PWM signals with a high frequency for the solenoid valve for example, operated at 1 kHz.
  • the armature of the solenoid valve can not mechanically follow this high drive frequency synchronously and then takes an intermediate position one.
  • a duty cycle of 50% of the PWM signal ent ⁇ speaks this then the central position of the valve "half open".
  • a disadvantage with this solution is that both the anchor and the valve controlling the flow of mechanical power is subject to Rei ⁇ environment that result in inaccurate control of the valve position.
  • the magnetic circuit has a hysteresis, through which the control accuracy is further deteriorated.
  • Solenoid valve can be reduced.
  • the dither signal depends on both the PWM frequency and the duty eyelet and thus on the coil current flowing in the solenoid valve.
  • the PWM frequency must be adjusted continuously as a function of the predetermined current setpoint and the amplitude and the frequency of the dither signal are thereby adjusted.
  • a constant amplitude and a constant frequency for the dither signal can not be realized with the known method.
  • the current regulator is simulated by a special software program.
  • the software program is then part of a main program of a computer unit.
  • the dither signal is generated by Modula ⁇ tion of the setpoint before the signal of the current controller.
  • only low dither frequencies can be used in this solution.
  • the dither frequency is in the range of the drive frequency, then an undesirable low-frequency beat of the magnet current can occur. Since ⁇ by the hydraulic system may be damaged even. The beating comes about because the dither frequency can not be synchronized with the drive frequency.
  • the invention is based on the object to improve the control of a solenoid valve with a dither signal. This object is achieved by the characterizing features of the subordinate claims 1 and 7.
  • both of the dither signal and the PWM signal independent of the current Rege ⁇ ment of the current controller can be generated.
  • a constant amplitude for the dithering can advantageously be achieved.
  • Signal are formed, so that the armature of the solenoid valve is always with the same swings about its central position overshoot without the driving frequency of the PWM signal can exert influence nachtei ⁇ time.
  • the reduced frictional resistance can thus be the position of the anchor in front of advantageous ⁇ way much more accurately set and adjust.
  • the main processor which is already busy with a large number of control tasks, can be substantially relieved of load. He is thus available for other tasks.
  • the measures listed in the dependent claims advantageous refinements and improvements of the independent claims 1 and 7 method or the device are given.
  • the low frequency of the dither signal, the vibration of the armature of the solenoid valve can be individually adjusted to the valve type to be used magnetic ⁇ , so an extremely high degree of flexibility that compared to the known hardware solution er ⁇ are.
  • the adaptation to other solenoid valve types can be done by a simple calibration.
  • it is advantageous that high dither frequencies can also be used without great additional effort in order to further reduce frictional resistance.
  • the Fre acid sequence to be so selected for the dither signal that it is a ge ⁇ -numbered divisor, preferably a quarter of the frequency of the PWM signal.
  • the frequency for the dither signal in the range between 100 and 500 Hz.
  • To control the center position of the armature of the solenoid valve is provided, for example, two extended and after ⁇ two shortened PWM signals to form the merged dither signal with the PWM signal.
  • the duty cycle is changed by the desired amplitude of the dither signal exactly every second period. So ⁇ results in a frequency for the dither signal, which is ex ⁇ act a quarter of the frequency of the PWM signal.
  • time-controlled computing unit time processing unit
  • the control signal for the solenoid valve superimposed on the dither signal and the PWM signal can be implemented most simply with a software program. This solution is particularly flexible compared to a hardware solution, in particular for adaptation to different types of solenoid valve.
  • the device according to the invention appears to control egg ⁇ ner mechanical unit in a motor vehicle, preferably for an automatic transmission, particularly advantageous because the individual switching stages gently for the material, smoothly and barely noticeable to the driver.
  • FIG. 1 shows in a known method in the upper part of a first diagram with a current waveform of a Mag ⁇ netventils and in the lower part of an associated PWM signal with a duty cycle of 50%
  • FIG. 3 shows a further known device for forming a control signal for a solenoid valve
  • FIG. 4 shows an embodiment of the invention with a device for forming a drive signal
  • Figure 5 shows a third diagram showing an inventive ⁇ SEN superimposed control signal
  • FIG. 6 shows a fourth diagram with the associated PWM signal
  • FIG. 7 shows a further current diagram with a superimposed dither frequency
  • Figure 8 shows a diagram with a precisely measured on the solenoid valve ⁇ NEN current profile and the associated PWM signal
  • FIG. 9 shows the current and voltage curve at the solenoid valve over a period.
  • the corresponding control signal Darge ⁇ represents, which is designed as a pulse width modulated signal (PWM signal).
  • PWM signal pulse width modulated signal
  • the lower part of the second diagram shows the corresponding PWM signal.
  • FIG. 3 shows a device 1 of a known Heidelbergs ⁇ arrangement for forming a control signal S for a solenoid valve ⁇ VFS. It includes a dither unit D and a current regulator ⁇ Ci.
  • a predetermined target current Is is brought together with a measured at the solenoid valve VFS current Im at a summing point 2, and the difference the current regulator Ci leads ⁇ supplied.
  • the current regulator Ci forms thereof from an appropriately kor ⁇ rigêtteils control signal for the solenoid valve VFS.
  • Dannei ⁇ is lig here that this device only frequencies for low frequency of the dither signal is applicable. If, however, the frequency of the dither signal in the vicinity of the driving frequency of the PWM signal, it can result in the electricity to an undesirable salfre ⁇ -frequency beat. Also, the hydraulic system can be damaged.
  • FIG. 4 shows an exemplary embodiment of a device 1 according to the invention for generating a control signal S for a solenoid valve VFS.
  • Major components are a major ⁇ computer 3, a computer unit 6, and a filter 10.
  • the host computer 3 is zeugs available to process already in a control unit of a driving ⁇ for various control tasks.
  • the main computer 3 has a software program with which the current control for one or more solenoid valves VFS and the duty cycle for the PWM signal can be generated.
  • the main computer 3 to a current regulator 4, which is preferably designed as a PID controller (proportional-integral-difference controller) 4.
  • PID controller proportional-integral-difference controller
  • the PID controller 4 receives a difference signal from a summing point 2 which is formed from a desired value Is and a measured and filtered valve current Ivm. Furthermore is interposed an A / D converter 5, the linstrument the measured at the solenoid valve ⁇ VFS and filtered valve current Ivm digita ⁇ . The A / D converter 5 is synchronized with the frequency of the PWM signal. The PID controller 4 then forms an output variable for the duty cycle (duty cycle) for the PWM signal S.
  • Another block essential to the invention is formed by an independent computer unit 6, which is preferably designed as a time-controlled computer unit (TPU computer, timer processing unit) and is decoupled from the current control for the solenoid valve VFS.
  • TPU computer time-controlled computer unit
  • the TPU computer 6 is already available as a rule. It comprises a dither unit 11 and a PWM unit 8 for generating the dither signal and the PWM signal.
  • a software program is used, with which both the PWM signal and the dither signal with constant amplitude and / or frequency are formed and the ⁇ signals are linked together.
  • the two units 8, 11 are controlled by the output signal (control signal) of the PID controller 4 via a common node 7.
  • the PWM unit 8 is connected via a line to the A / D converter 5, via which a synchronization signal S syn is applied to the A / D converter 5.
  • a filter unit 9 is provided.
  • the filter unit 9 essentially has a filter 10, which is designed as a low-pass filter.
  • the low-pass filter 10 is connected upstream of the A / D converter 5 and connected on the input side to the solenoid valve VFS and filters the measured valve current Ivm.
  • the low-pass filter is designed so that preferably the high-frequency signals are filtered out, so that the current controller regulates as possible only to the average currents.
  • the method according to the invention synchronizes the frequency of the dither signal and the drive frequency of the PWM signal. This will cause unwanted beats and thereby possible Damage to the hydraulic device avoided. Furthermore, high frequencies for the dither signal can also be realized in comparison to the PWM frequency. Furthermore, sung performed to different solenoid valves VFS ⁇ to, but also dispensed with expensive hardware controllers was ⁇ to by the software solution is not just a simple adjustment.
  • the method according to the invention can likewise be used for low dither frequencies, since the dither frequency is fed as a disturbance variable in terms of its operation. If the low-pass 10, the dither frequency can not completely filter at the input of the current controller 4 because this DTowski in the big ⁇ are usually frequencies, a Selektivfil- ter the current regulator 4 can be connected in series to decouple it from the dither frequency. As a result, all applications can be realized inexpensively.
  • a further advantage of this arrangement is that with modified parameters, in particular valve parameters, for example a change in temperature or supply voltage, a simple automatic mathematical adaptation can be carried out so that the frequency, the current and the amplitudes are kept constant.
  • the solenoid valve VFS is designed for a device of a force ⁇ vehicle F, for example, for an automatic transmission ⁇ control. With the method according to the invention of course any solenoid valves VFS can be used for various hydraulic facilities.
  • FIG. 5 shows an example of ei ⁇ NEN course of a valve current Im, in which the frequency of the dither signal is 400 Hz and 1600 Hz of the PWM signal.
  • FIG. 5 shows the associated control voltage of the PWM signal.
  • Figure 6 is removable, are after each two extended PWM voltage pulses two shortened PWM voltage pulses switched. This process is repeated cyclically.
  • the first period is in phase with the dither frequency at 400 Hz, for example from 0.1500 to 0.1525 s.
  • the current waveform shown is not affected by the regulated current of the current regulator 4, since the 400 Hz arebinefil ⁇ tert.
  • the current controller 4 thus always only controls the average value, for example 0.5 A.
  • FIG. 7 shows a further diagram in which a current pulse of the measured valve current Ivm is shown.
  • the power signal oscillates ⁇ first with the high fundamental frequency (part a of the curve) and then the frequency of the dither signal switched (part b), to reduce the effects of friction of the armature. As a result, the position of the armature can be adjusted faster. Because of the constant but low dither amplitude, the mechanical deflection is minimal.
  • FIG. 8 shows a further diagram in which several periods are shown in the upper region with the valve current Ivm measured at the solenoid valve.
  • the corresponding PWM voltage Um is shown in the lower area of the diagram.
  • FIG. 9 shows a further diagram in which the current profile Ivm and the voltage curve Um are recorded over a period.
  • the upper curve shows the valve current Ivm and unte ⁇ re curve shows the PWM voltage.

Abstract

Bei der Steuerung eines Magnetventil (VFS) wird zur Einstellung einer Zwischenstellung (Mittellage) ein PWM-Signal verwendet, das mit einem Dither-Signal überlagert ist. Bei dieser Steuerungsart besteht das Problem, dass die Amplitude des Dither-Signals sehr stark vom Strom des Magnetventils (VFS) und damit vom PWM-Signal abhängt. Zur Lösung dieses Problems wird erfindungsgemäß vorgeschlagen, das PWM-Signal und das Dither-Signal unabhängig von der Stromregelung vorzugsweise in einer Rechnereinheit (6) zu generieren. Durch die separate Signalbildung ergibt sich der Vorteil, dass bei jedem Ansteuersignal für das Magnetventil eine konstante Amplitude für das Dither-Signal erzeugt wird, so dass der Anker des Magnetventils gezielt mit konstanten kleinen Schwindungen um seine Mittellage schwingen kann. Dadurch werden Reibungskräfte zuverlässig verringert und das Magnetventil schneller schaltbar. Darüber hinaus wird der Hauptrechner entlastet. Des Weiteren kann die Signalbildung durch einfache Softwareprogramme gebildet werden, so dass eine bessere Adaption an verschiedene Ventiltypen ermöglicht wird.

Description

Beschreibung
Verfahren und Vorrichtung zur Ermittlung eines mit einer Ditherfrequenz überlagerten PWM-Signals zur Steuerung eines Magnetventils
Die Erfindung geht gemäß dem Oberbegriff von Anspruch 1 von einem Verfahren zur Ermittlung eines Steuersignals für ein Magnetventil aus. Das Steuersignal wird dabei von einem PWM- Signal (Pulsweiten moduliertes Signal) gebildet, das mit ei¬ nem Dither-Signal mit niedrigerer Frequenz überlagert wird. Das Steuersignal weist eine so hohe Frequenz auf, dass der Anker des Magnetventils zwischen einer geöffneten und einer geschlossenen Stellung eine Zwischenstellung, vorzugsweise eine Mittellage (Stellung „halb offen") einnimmt. Das Dither- Signal soll dabei bewirken, dass der Anker des Magnetventils in der Mittellage eine leichte Schwingung ausübt. Dadurch re¬ duzieren sich Reibungswiderstände an den beweglichen Teilen im Magnetventil, so dass das Magnetventil schneller und prä- ziser geschaltet werden kann.
Eine alternative Ausgestaltung der Erfindung geht entspre¬ chend dem Oberbegriff von Anspruch 7 von einer Vorrichtung zur Steuerung eines Magnetventils aus. Diese Vorrichtung ar- beitet nach dem vorgenannten Verfahren und weist einen Strom¬ regler, eine Dither-Einheit und eine PWM-Einheit auf.
Magnetventile werden insbesondere in Kraftfahrzeugen einge¬ setzt, um in hydraulischen Leitungen Kanäle zu öffnen oder zu schließen. Beispielsweise können mit Magnetventilen in einem automatischen Getriebe die einzelnen Schaltstufen ruckfrei und verschleißarm geschaltet werden. Sehr häufig werden dabei die Magnetventile im linearen beziehungsweise analogen Be¬ reich durch PWM-Signale mit einer für das Magnetventil hohen Frequenz, beispielsweise mit 1 KHz betrieben. Der Anker des Magnetventils kann mechanisch dieser hohen Ansteuerfrequenz nicht synchron folgen und nimmt dann eine Zwischenstellung ein. Bei einem Tastverhältnis von 50% des PWM-Signals ent¬ spricht dies dann der Mittellage des Ventil „halb offen".
Nachteilig bei dieser Lösung ist, dass sowohl der Anker als auch das den Durchfluss steuernde Ventil mechanischen Rei¬ bungskräfte unterliegt, die zu einer ungenauen Regelung der Ventilstellung führen. Hinzu kommt, dass der Magnetkreis eine Hysterese aufweist, durch die die Regelgenauigkeit weiter verschlechtert wird.
Bisher wurden diese Probleme dadurch gelöst, dass die Fre¬ quenz des Steuersignals beispielsweise auf 300 Hz soweit her¬ untergesetzt wird, dass der Anker gerade noch ein wenig fol¬ gen kann und in der Zwischenstellung oder Mittellage mög- liehst nur minimal ausgelenkt wird. Dadurch ergibt sich um die Zwischenstellung eine Schwingung des Ankers mit geringer Amplitude und des mit ihm verbundenen Ventils, die üblicher¬ weise als Dither-Schwingung (Dither-Signal) bezeichnet wird. Diese Dither-Schwingung ist prinzipiell erwünscht, da durch sie die Reibungswiderstände an den beweglichen Teilen des
Magnetventils reduziert werden können. Allerdings ist es sehr schwierig, eine möglichst konstante Amplitude des Dither- Signals vorzugeben, da das Dither-Signal sowohl von der PWM- Frequenz als auch vom Tastverhältnis (duty eyele) und damit vom in dem Magnetventil fließenden Spulenstrom abhängt. Bei dem bekannten Verfahren ist es daher nicht möglich, für das Dither-Signal eine konstante Amplitude zu bilden, da die PWM- Frequenz kontinuierlich in Abhängigkeit vom vorgegebenen Strom-Sollwert nachregelt werden muss und sich dabei die Amp- litude und die Frequenz des Dither-Signals entsprechend än¬ dern. Eine konstante Amplitude und eine konstante Frequenz für das Dither-Signal ist mit dem bekannten Verfahren nicht realisierbar.
Eine weitere bekannte Lösung für die genannten Probleme be¬ steht darin, dass der hohen Frequenz des PWM-Signals ein nie¬ derfrequentes Dither-Signal durch Amplitudenmodulation über- lagert wird. Die hohe Frequenz wird von einem Stromregler (Zweipunktregler) erzeugt, der die Regelung des Mittelwertes des Ventilstromes steuert. Die niedrige Modulationsfrequenz (Dither-Frequenz) wird durch Änderung des Strom-Sollwertes erzielt. Diese Lösung wird durch Hardware realisiert, die mit einem speziellen Baustein ausgestaltet ist und eine entspre¬ chend ausgebildete integrierte Schaltung (IC) aufweist, um möglichst kurze Reaktionszeiten zu erreichen. Diese Lösung ist nicht nur kostenintensiv, sondern ist auch sehr unflexi- bei, da die integrierte Schaltung nur für einen speziellen Magnetventiltyp geeignete Dither-Signale erzeugen kann.
Bei einer weiteren bekannten Lösung wird der Stromregler durch ein spezielles Softwareprogramm nachgebildet. Das Soft- wareprogramm ist dann Bestandteil eines Hauptprogrammes einer Rechnereinheit. Zunächst wird das Dither-Signal durch Modula¬ tion des Sollwertes vor dem Signal des Stromreglers erzeugt. Bei dieser Lösung können jedoch nur niedrige Dither- Frequenzen verwendet werden. Liegt die Dither-Frequenz jedoch im Bereich der Ansteuerfrequenz, dann kann eine unerwünschte niederfrequente Schwebung des MagnetStromes auftreten. Da¬ durch kann sogar das hydraulische System beschädigt werden. Die Schwebung kommt zustande, weil die Dither-Frequenz nicht mit der Ansteuerfrequenz synchronisiert werden kann.
Der Erfindung liegt die Aufgabe zu Grunde, die Ansteuerung eines Magnetventils mit einem Dither-Signal zu verbessern. Diese Aufgabe wird mit den kennzeichnenden Merkmalen der ne¬ bengeordneten Ansprüche 1 und 7 gelöst.
Bei dem erfindungsgemäßen Verfahren zur Ermittlung eines Steuersignals für ein Magnetventil und bei der Vorrichtung mit den kennzeichnenden Merkmalen der nebengeordneten Ansprü¬ che 1 bzw. 7 ergibt sich der Vorteil, dass sowohl das Dither- Signal als auch das PWM-Signal unabhängig von der Stromrege¬ lung des Stromreglers erzeugt werden können. Dadurch kann in vorteilhafter Weise eine konstante Amplitude für das Dither- Signal gebildet werden, so dass der Anker des Magnetventils stets mit gleichen Ausschlägen um seine Mittellage schwingt, ohne dass die Ansteuerfrequenz des PWM-Signals einen nachtei¬ ligen Einfluss ausüben kann. Durch den sich dadurch ergeben- den reduzierten Reibungswiderstand lässt sich somit in vor¬ teilhafter Weise die Stellung des Ankers sehr viel genauer einstellen und regeln. Als besonders vorteilhaft wird dabei auch angesehen, dass der Hauptprozessor, der mit einer Viel¬ zahl von Steueraufgaben ohnehin ausgelastet ist, wesentlich entlastet werden kann. Er steht somit für andere Aufgaben zur Verfügung.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des in den nebengeordneten Ansprüche 1 und 7 angegebenen Verfahrens beziehungsweise der Vorrichtung gegeben. Durch die niedrige Frequenz des Dither-Signals kann die Schwingung des Ankers des Magnetventils individuell auf den zu verwendenden Magnet¬ ventiltyp angepasst werden, so dass sich im Vergleich zu der bekannten Hardware-Lösung eine extrem hohe Flexibilität er¬ gibt. Denn die Anpassung an andere Magnetventiltypen kann durch eine einfache Kalibrierung erfolgen. Des Weiteren ist von Vorteil, dass ohne großen Mehraufwand auch hohe Dither- Frequenzen verwendet werden können, um den Reibungswiderstand weiter zu reduzieren.
Es hat sich als vorteilhafte Lösung herausgestellt, die Fre¬ quenz für das Dither-Signal so zu wählen, dass sie einen ge¬ radzahligen Teiler, vorzugsweise ein Viertel der Frequenz des PWM-Signals beträgt. Dadurch wird unter allen Betriebsbedin¬ gungen vermieden, dass sich Schwebungen oder andere störende Effekte ausbilden können.
Für eine bestimmte Gruppe von Magnetventilen hat sich als Vorteil herausgestellt, die Frequenz für das Dither-Signal im Bereich zwischen 100 und 500 Hz zu wählen. Zur Steuerung der Mittellage des Ankers des Magnetventils ist vorgesehen, für das zusammengeführte Dither-Signal mit dem PWM-Signal beispielsweise jeweils zwei verlängerte und nach¬ folgend zwei verkürzte PWM-Signale zu bilden. Mit dieser Maß- nähme wird exakt bei jeder zweiten Periode das Tastverhältnis um die gewünschte Amplitude des Dither-Signals verändert. So¬ mit ergibt sich eine Frequenz für das Dither-Signal, die ex¬ akt ein Viertel der Frequenz des PWM-Signals beträgt.
Erfindungsgemäß ist weiter vorgesehen, die zeitgesteuerte Rechnereinheit bei einem Stromsprung kurzzeitig anzuhalten und nach dem Einschwingen das Dither-Signal wieder einzu¬ schalten, um ein schnelleres Einschwingverhalten zu errei¬ chen.
Bei der Vorrichtung erscheint des Weiteren von Vorteil, als zusätzliche Rechnereinheit eine zeitgesteuerte Recheneinheit (Time Processing Unit) zu verwenden, um die beiden Signale auf einfache Weise mit dem Stromsignal zu synchronisieren.
Das aus dem Dither-Signal und dem PWM-Signal überlagerte Steuersignal für das Magnetventil lässt sich am einfachsten mit einem Softwareprogramm realisieren. Diese Lösung ist ge¬ genüber einer Hardwarelösung insbesondere zur Adaptierung an verschiedene Magnetventiltypen besonders flexibel.
Die erfindungsgemäße Vorrichtung erscheint zur Steuerung ei¬ ner mechanischen Einheit in einem Kraftfahrzeug, vorzugsweise für ein automatisches Getriebe, besonders von Vorteil, da sich die einzelnen Schaltstufen schonend für das Material, ruckfrei und für den Fahrer kaum spürbar schalten lassen.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Figur 1 zeigt bei einem bekannten Verfahren im oberen Teil ein erstes Diagramm mit einem Stromverlauf eines Mag¬ netventils und im unteren Teil ein zugeordnetes PWM- Signal mit einem Tastverhältnis von 50%,
Figur 2 zeigt bei einem bekannten Verfahren im oberen Teil ein zweites Diagramm mit einem Stromverlauf eines Magnetventils und im unteren Teil ein zugeordnetes PWM-Signal mit einem Tastverhältnis vom 25%,
Figur 3 zeigt eine weitere bekannte Vorrichtung zur Bildung eines Steuersignals für ein Magnetventil,
Figur 4 zeigt ein Ausführungsbeispiel der Erfindung mit einer Vorrichtung zur Bildung eines Ansteuersignals,
Figur 5 zeigt ein drittes Diagramm mit einem erfindungsgemä¬ ßen überlagerten Steuersignal,
Figur 6 zeigt ein viertes Diagramm mit dem dazu gehörenden PWM-Signal,
Figur 7 zeigt ein weiteres Stromdiagramm mit einer überlager¬ ten Ditherfrequenz,
Figur 8 zeigt ein Diagramm mit einem am Magnetventil gemesse¬ nen Stromverlauf und das zugeordnete PWM-Signal und
Figur 9 zeigt den Strom- und Spannungsverlauf am Magnetventil über eine Periode.
Zum besseren Verständnis der Erfindung wird zunächst an Hand der Figuren 1 bis 3 erläutert, wie beim bekannten Stand der Technik die Bildung eines Steuersignals zur Steuerung eines Magnetventils durchgeführt wird. Wie aus Figur 1 ersichtlich ist, wird die Ansteuerfrequenz des PWM-Signals beispielsweise auf 300 Hz so weit reduziert, dass bei einem Tastverhältnis von 50% der Anker des Magnetventils dem PWM-Signal gerade noch ein wenig folgen kann. Dadurch ergibt sich ein Schwingen des Ankers um die Mittellage, wobei der Anker nur wenig aus¬ gelenkt wird. Dieses Schwingen um die Mittellage wird im Fachjargon auch als Dither-Frequenz bezeichnet. Im oberen Diagramm ist eine Verlaufskurve für den am Magnetventil ge¬ messenen Strom dargestellt. Im unteren Teil von Figur 1 ist als SpannungsSignal das entsprechende Steuersignal darge¬ stellt, das als pulsweiten moduliertes Signal (PWM-Signal) ausgebildet ist. Wie in Figur 1 erkennbar ist, ist in diesem Fall die Amplitudendifferenz dlm relativ groß ausgebildet. Das bedeutet, dass die Schwingung des Ankers des Magnetven¬ tils um die Mittellage ebenfalls relativ groß ist.
In einem zweiten Diagramm entsprechend der Figur 2 wurde das Tastverhältnis auf 25% reduziert. Der Stromverlauf im oberen Teil des zweiten Diagramms zeigt eine entsprechend kleinere Amplitudendifferenz dlm. Dadurch wird auch die Schwingung des Ankers um seine Mittellage reduziert. Dieses Verhalten führt zu unterschiedlichen Reibungswiderständen an den beweglichen Teilen des Magnetventils, so dass eine genaue Positionsrege¬ lung erschwert wird.
Im unteren Teil des zweiten Diagramms ist das entsprechende PWM-Signal dargestellt.
Wie aus den beiden Diagrammen der Figuren 1 und 2 erkennbar ist, ist die Amplitude des Dither-Signals direkt von der Fre¬ quenz des PWM-Signals als auch von dem Tastverhältnis abhän- gig. Für optimale Verhältnisse ist jedoch eine konstante Amp¬ litude des Dither-Signals gewünscht. Daher muss die Frequenz des PWM-Signals kontinuierlich in Abhängigkeit vom Strom- Sollwert angepasst werden. Bei diesem bekannten Verfahren ist daher die gleichzeitige Bildung einer konstanten Amplitude und einer konstanten Frequenz für das Dither-Signal nicht möglich. Figur 3 zeigt eine Vorrichtung 1 einer bekannten Schaltungs¬ anordnung zur Bildung eines Steuersignals S für ein Magnet¬ ventil VFS. Es weist eine Dither-Einheit D und einen Strom¬ regler Ci auf. An einem Summenpunkt 2 wird ein vorgegebener Sollstrom Is mit einem am Magnetventil VFS gemessenen Strom Im zusammengeführt und die Differenz dem Stromregler Ci zuge¬ führt. Der Stromregler Ci bildet daraus ein entsprechend kor¬ rigiertes Steuersignal für das Magnetventil VFS aus. Nachtei¬ lig ist hier, dass diese Vorrichtung nur für niedrige Fre- quenzen des Dither-Signals anwendbar ist. Liegt dagegen die Frequenz des Dither-Signals in der Nähe der Ansteuerfrequenz des PWM-Signals, kann es zu einer unerwünschten niederfre¬ quenten Schwebung im Strom führen. Auch kann das hydraulische System Schaden nehmen.
Figur 4 zeigt ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung 1 zur Generierung eines Steuersignals S für ein Magnetventil VFS. Wesentliche Bestandteile sind ein Haupt¬ rechner 3, eine Rechnereinheit 6 und ein Filter 10. Der Hauptrechner 3 ist bereits in einem Steuergerät eines Fahr¬ zeugs vorhanden, um diverse Steueraufgaben abzuarbeiten. Bei¬ spielsweise weist der Hauptrechner 3 ein Softwareprogramm auf, mit dem die Stromregelung für ein oder mehrere Magnet¬ ventile VFS sowie das Tastverhältnis für das PWM-Signal gene- riert werden können. Zu diesem Zweck weist der Hauptrechner 3 einen Stromregler 4 auf, der vorzugsweise als PID-Regler (Proportional-Integral-Differenz-Regler) 4 ausgebildet ist. Der PID-Regler 4 erhält von einem Summenpunkt 2 ein Diffe¬ renzsignal, das aus einem Sollwert Is und einem gemessenen und gefilterten Ventilstrom Ivm gebildet wird. Des Weiteren ist ein A/D-Wandler 5 zwischengeschaltet, der den am Magnet¬ ventil VFS gemessenen und gefilterten Ventilstrom Ivm digita¬ lisiert. Der A/D-Wandler 5 ist mit der Frequenz des PWM- Signals synchronisiert. Der PID-Regler 4 bildet dann eine Ausgangsgröße für das Tastverhältnis (Duty Cycle) für das PWM-Signal S. Ein weiterer erfindungswesentlicher Block wird von einer un¬ abhängigen Rechnereinheit 6 gebildet, die vorzugsweise als zeitgesteuerte Rechnereinheit (TPU-Rechner, Timer Processing Unit) ausgebildet ist und von der Stromregelung für das Mag- netventil VFS abgekoppelt ist. Der TPU-Rechner 6 ist in der Regel schon vorhanden. Er weist eine Dither-Einheit 11 und eine PWM-Einheit 8 zur Erzeugung des Dither-Signals und des PWM-Signals auf. Dazu wird ein Softwareprogramm verwendet, mit dem sowohl das PWM-Signal als auch das Dither-Signal mit konstanter Amplitude und/oder Frequenz gebildet und die bei¬ den Signale miteinander verknüpft werden. Die beiden Einhei¬ ten 8,11 werden von dem Ausgangssignal (Ansteuersignal) des PID-Reglers 4 über einen gemeinsamen Knotenpunkt 7 gesteuert. Zur Synchronisation der Phase ist die PWM-Einheit 8 über eine Leitung mit dem A/D-Wandler 5 verbunden, über die ein Syn¬ chronisationssignal Ssyn auf den A/D-Wandler 5 gegeben wird. Am Ausgang der PWM-Einheit 8 steht nun das mit der Frequenz des Dither-Signals überlagerte PWM-Signal S zur Ansteuerung des Magnetventils VFS zur Verfügung. Die Erzeugung des Dither-Signals und des PWM-Signals läuft somit synchron und wird mit konstanter Amplitude zyklisch generiert. Der Haupt¬ rechner 3 ist somit nur noch für die Stromregelung zuständig, so dass er weitgehend entlastet wird.
In einem dritten Block ist eine Filtereinheit 9 vorgesehen. Die Filtereinheit 9 weist im Wesentlichen ein Filter 10 auf, das als Tiefpassfilter ausgebildet ist. Das Tiefpassfilter 10 ist dem A/D-Wandler 5 vorgeschaltet und eingangsseitig mit dem Magnetventil VFS verbunden und filtert den gemessenen Ventilstrom Ivm. Das Tiefpassfilter ist so ausgelegt, dass bevorzugt die hochfrequenten Signale herausgefiltert werden, damit der Stromregler möglichst nur auf die Strommittelwerte regelt.
Das erfindungsgemäße Verfahren synchronisiert die Frequenz des Dither-Signals und der Ansteuerfrequenz des PWM-Signals. Dadurch werden unerwünschte Schwebungen und dadurch mögliche Schäden an der hydraulischen Einrichtung vermieden. Des Wei¬ teren lassen sich im Vergleich zur PWM-Frequenz auch hohe Frequenzen für das Dither-Signal realisieren. Des weiteren kann durch die Softwarelösung nicht nur eine einfache Anpas- sung an unterschiedliche Magnetventile VFS durchgeführt wer¬ den, sondern auch auf teuere Hardwareregler verzichtet wer¬ den.
Das erfindungsgemäße Verfahren ist ebenfalls für niedrige Dither-Frequenzen anwendbar, da die Dither-Frequenz rege¬ lungstechnisch gesehen als Störgröße eingespeist wird. Wenn der Tiefpass 10 am Eingang des Stromreglers 4 die Dither- Frequenz nicht komplett filtern kann, weil diese in der Grö¬ ßenordnung der Regelfrequenzen liegen, kann ein Selektivfil- ter dem Stromregler 4 vorgeschaltet werden, um ihn von der Dither-Frequenz zu entkoppeln. Dadurch lassen sich alle Ap¬ plikationen kostengünstig realisieren.
Ein weiterer Vorteil dieser Anordnung ist, dass bei geänder- ten Parametern, insbesondere Ventilparametern, beispielsweise einer Änderung der Temperatur oder Versorgungsspannung eine einfache automatische rechnerische Anpassung durchgeführt werden kann, so dass die Frequenz, der Strom und die Amplitu¬ de konstant gehalten werden.
Das Magnetventil VFS ist für eine Einrichtung eines Kraft¬ fahrzeugs F, beispielsweise für eine automatische Getriebe¬ steuerung ausgebildet. Mit dem erfindungsgemäßen Verfahren können natürlich beliebige Magnetventile VFS für diverse hyd- raulische Einrichtungen verwendet werden.
Die Funktionsweise dieser Vorrichtung 1 wird an Hand der Fi¬ guren 5 bis 9 näher erläutert. Figur 5 zeigt beispielhaft ei¬ nen Verlauf eines Ventilstromes Im, bei dem die Frequenz des Dither-Signals 400 Hz und des PWM-Signals 1600 Hz beträgt. In Figur 5 ist die zugeordnete Steuerspannung des PWM-Signals dargestellt. Wie Figur 6 entnehmbar ist, sind nach jeweils zwei verlängerten PWM-Spannungspulsen zwei verkürzte PWM- Spannungspulse geschaltet. Dieser Vorgang wiederholt sich zyklisch. Als Folge dessen entsteht der in Figur 5 darge¬ stellte Stromverlauf für den gemessenen Ventilstrom Im. Die erste Periode geht phasengleich für die Dither-Frequenz mit 400 Hz, beispielsweise von 0,1500 bis 0,1525 s. Durch die hö¬ here Frequenz (1600 Hz Grundfrequenz) des PWM-Signals ergeben sich dann die „Zacken" im Stromverlauf, wobei jeweils bei der aufsteigenden Halbwelle eine Stromspitze und bei der abfal- lenden Halbwelle zwei Stromspitzen auftreten. Exakt jede zweite Periode wird das Tastverhältnis um die gewünschte Amp¬ litude des Dither-Signals verändert. Somit ergibt sich eine synchronisierte Frequenz für das Dither-Signal, die exakt ein Viertel der Frequenz des PWM-Signals beträgt.
In alternativer Ausgestaltung der Erfindung ist vorgesehen, auch andere geradzahlige Teilerverhältnisse zu verwenden.
Der dargestellte Stromverlauf ist vom geregelten Strom des Stromreglers 4 nicht beeinflusst, da die 400 Hz herausgefil¬ tert werden. Der Stromregler 4 regelt somit immer nur auf den Mittelwert, beispielsweise 0,5 A.
Figur 7 zeigt ein weiteres Diagramm, bei dem ein Stromimpuls des gemessenen Ventilstroms Ivm dargestellt ist. Das Strom¬ signal schwingt zunächst mit der hohen Grundfrequenz ein (Teil a der Kurve) und danach wird die Frequenz des Dither- Signals aufgeschaltet (Teil b) , um die Reibungseffekte des Ankers zu reduzieren. Dadurch kann die Position des Ankers schneller verstellt werden. Wegen der konstanten, aber gerin¬ gen Dither-Amplitude ist der mechanische Ausschlag minimal.
Figur 8 zeigt ein weiteres Diagramm, bei dem im oberen Be¬ reich mehrere Perioden mit dem am Magnetventil gemessenen Ventilstrom Ivm dargestellt sind. Hier ist die niedrige Fre¬ quenz des Dither-Signals mit der hohen Grundfrequenz zu er- kennen. Im unteren Bereich des Diagramms ist die entsprechen¬ de PWM-Spannung Um dargestellt.
Figur 9 zeigt ein weiteres Diagramm, bei dem der Stromverlauf Ivm und Spannungsverlauf Um über eine Periode aufgezeichnet sind. Die obere Kurve zeigt den Ventilstrom Ivm und die unte¬ re Kurve zeigt die PMW-Spannung Um.

Claims

Patentansprüche
1. Verfahren zur Ermittlung eines Steuersignals (S) für ein Magnetventil (VFS) , wobei das Steuersignal (S) ein mit der Frequenz eines Dither-Signals überlagertes PWM-Signal ist und eine so hohe Frequenz aufweist, dass der Anker des Magnetventils (VFS) zwischen einer geöffneten und ei¬ ner geschlossenen Stellung eine Zwischenstellung, insbe¬ sondere eine Mittellage einnimmt, bei der der Anker mit geringen Auslenkungen mit der Frequenz eines Dither- Signals schwingt und wobei der Ankerstrom von einem Stromregler geregelt wird, dadurch gekennzeichnet, dass das PWM-Signal und das Dither-Signal unabhängig von der Stromregelung des Stromreglers (4) erzeugt werden, dass die Amplitude und/oder die Frequenz des Dither-Signals konstant ist und dass das PWM-Signal mit dem Dither- Signal zusammengeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Frequenz des Dither-Signals niedriger ist als die
Frequenz des PWM-Signals.
3. Verfahren nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, dass die Frequenz des Dither- Signals einen geradzahligen Teiler, vorzugsweise ein Viertel der Frequenz des PWM-Signals aufweist.
4. Verfahren nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, dass die Frequenz für das Dither- Signal in Abhängigkeit vom verwendeten Magnetventiltyp (VFS) vorzugsweise im Bereich zwischen 100 und 500 Hz liegt.
5. Verfahren nach einem der vorhergehenden Ansprüche, da- durch gekennzeichnet, dass zur Bildung des Dither-Signals für das PWM-Signal wenigstens zwei verlängerte und nach¬ folgend zwei verkürzte PWM-Signale gebildet werden.
6. Verfahren nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, dass bei einem Stromsprung das Dither-Signal verzögert aufgeschaltet wird.
7. Vorrichtung zur Steuerung eines Magnetventils (VFS) mit einem Verfahren nach einem der vorhergehenden Ansprüche, mit einer Stromreglereinheit (3) , mit einer Dither- Einheit (11) und mit einer PWM-Einheit (8), dadurch ge- kennzeichnet, dass eine Rechnereinheit (6) verwendbar ist und dass die Rechnereinheit (6) ausgebildet ist, das PWM- Signal und das Dither-Signal mit konstanter Amplitude und/oder Frequenz unabhängig von der Stromreglereinheit (3) zu bilden und miteinander zu verknüpfen.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Rechnereinheit (6) als zeitgesteuerte Rechnereinheit
(TPU) ausgebildet ist.
9. Vorrichtung nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass die Bildung des PWM-Signal und/oder des Dither-Signals mittels eines Softwareprogramms er¬ folgt.
10. Vorrichtung nach einem der Ansprüche 7 bis 9, dadurch ge¬ kennzeichnet, dass das Magnetventil (VFS) zur Steuerung einer mechanischen Einheit in einem Kraftfahrzeugs (F), vorzugsweise zur Steuerung eines automatischen Getriebes verwendet wird.
PCT/EP2005/054567 2004-10-06 2005-09-14 Verfahren und vorrichtung zur ermittlung eines mit einer ditherfrequenz überlagerten pwm-signals zur steuerung eines magnetventils WO2006037715A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE200550006621 DE502005006621D1 (de) 2004-10-06 2005-09-14 Verfahren und vorrichtung zur ermittlung eines mit einer ditherfrequenz überlagerten pwm-signals zur steuerung eines magnetventils
EP20050786895 EP1797490B1 (de) 2004-10-06 2005-09-14 Verfahren und vorrichtung zur ermittlung eines mit einer ditherfrequenz überlagerten pwm-signals zur steuerung eines magnetventils
US11/664,929 US7853360B2 (en) 2004-10-06 2005-09-14 Method and device for determining a PWM signal on which a dither frequency is superimposed in order to control a solenoid valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004048706.5 2004-10-06
DE200410048706 DE102004048706A1 (de) 2004-10-06 2004-10-06 Verfahren und Vorrichtung zur Ermittlung eines mit einer Ditherfrequenz überlagerten PWM-Signals zur Steuerung eines Magnetventils

Publications (1)

Publication Number Publication Date
WO2006037715A1 true WO2006037715A1 (de) 2006-04-13

Family

ID=35457076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/054567 WO2006037715A1 (de) 2004-10-06 2005-09-14 Verfahren und vorrichtung zur ermittlung eines mit einer ditherfrequenz überlagerten pwm-signals zur steuerung eines magnetventils

Country Status (5)

Country Link
US (1) US7853360B2 (de)
EP (1) EP1797490B1 (de)
AT (1) ATE422685T1 (de)
DE (2) DE102004048706A1 (de)
WO (1) WO2006037715A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008040062A1 (de) 2008-07-02 2010-01-07 Robert Bosch Gmbh Verfahren zum Betreiben eines Fluidventils mit einer oszillierenden Ventilbewegung
ITBO20090491A1 (it) * 2009-07-28 2011-01-29 Leda Srl Metodo e dispositivo per controllare l'alimentazione elettrica di un attuatore elettromagnetico
ITBO20100140A1 (it) * 2010-03-09 2011-09-10 Ferrari Spa Metodo di controllo con dithering della posizione di una elettrovalvola
WO2014032893A2 (de) * 2012-08-27 2014-03-06 Robert Bosch Gmbh VERFAHREN ZUM REGELN DER STROMSTÄRKE DES DURCH EINEN INDUKTIVEN VERBRAUCHER FLIEßENDEN ELEKTRISCHEN STROMS SOWIE ENTSPRECHENDE SCHALTUNGSANORDNUNG
EP3165801A1 (de) 2015-11-04 2017-05-10 Selectron Systems AG Verfahren und vorrichtung zum ansteuern eines magnetventils
WO2019057673A1 (de) * 2017-09-23 2019-03-28 Hydac Accessories Gmbh Adaptervorrichtung nebst verfahren zur regelung eines steuerstromes

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006012657A1 (de) * 2006-03-20 2007-09-27 Siemens Ag Steuergerät mit einem Regler zur Regelung des elektrischen Spulenstroms eines Regelmagnetventils
US8176895B2 (en) * 2007-03-01 2012-05-15 Yanmar Co., Ltd. Electronic control governor
US7733073B2 (en) 2007-09-28 2010-06-08 Infineon Technologies Ag Current regulator with current threshold dependent duty cycle
US8104945B2 (en) * 2007-12-27 2012-01-31 Samsung Led Co., Ltd. Backlight unit implementing local dimming for liquid crystal display device
DE102008013602B4 (de) 2008-03-11 2019-07-04 Robert Bosch Gmbh Verfahren zum Ansteuern einer Vielzahl von Ventilen und Steuerblock mit einer Vielzahl von Ventilen
DE102009020359A1 (de) 2009-04-30 2010-11-04 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren und Vorrichtung zur Stromregelung eines ein mechanisches Schließelement umfassenden Ventils
DE102010054095A1 (de) 2010-12-10 2012-06-14 Audi Ag Vorrichtung zum Bewegen eines mechanischen Elements sowie Verfahren zum Bauen von Kraftfahrzeugen mit unterschiedlicher Art von Steuerung von Aktorenvorrichtungen
DE102011075269B4 (de) 2011-05-04 2014-03-06 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern eines Ventils
ITPD20110261A1 (it) 2011-08-03 2013-02-04 Sit La Precisa Spa Con Socio Unico Metodo e sistema di controllo di una unità valvolare modulante includente un elettromagnete
DE102012206419B4 (de) 2012-04-19 2021-08-12 Magna Pt B.V. & Co. Kg Steuerung für ein Druckregelventil
US8719749B2 (en) 2012-07-31 2014-05-06 Nxp B.V. Timer match dithering
DE102014206973A1 (de) * 2014-04-10 2015-10-15 Volkswagen Aktiengesellschaft Verfahren zur Steuerung eines Elektromagnetventils
KR101967306B1 (ko) * 2014-05-21 2019-05-15 주식회사 만도 솔레노이드 밸브 제어장치 및 그 제어방법
JP6546754B2 (ja) * 2015-02-27 2019-07-17 株式会社デンソーテン 制御装置および制御方法
JP6622483B2 (ja) * 2015-05-11 2019-12-18 株式会社デンソー 油圧制御装置
DE112016001920T5 (de) 2015-07-21 2018-01-11 Aisin Aw Co., Ltd. Steuervorrichtung
WO2017027792A1 (en) * 2015-08-13 2017-02-16 G.W. Lisk Company, Inc. Method and apparatus for solenoid position measurement and control
DE102016204461A1 (de) 2016-03-17 2017-09-21 Zf Friedrichshafen Ag Regelung einer induktiven Last mittels eines unstetigen Reglers mit einer stochastisch veränderten Schaltschwelle
DE102016205312A1 (de) * 2016-03-31 2017-10-05 Zf Friedrichshafen Ag Stromsteuerung mit einem Dithersignal
WO2018039580A1 (en) * 2016-08-26 2018-03-01 Hypertherm, Inc. Operating plasma arc processing systems at reduced current and gas pressure levels and related systems and methods
DE102017202077A1 (de) 2017-02-09 2018-08-09 Zf Friedrichshafen Ag Schaltung und Verfahren zur Bewertung der Wirksamkeit eines Dither-Signals für elektromagnetische Aktoren
JP6874518B2 (ja) * 2017-05-12 2021-05-19 株式会社デンソー 電流制御装置
US10786317B2 (en) 2017-12-11 2020-09-29 Verb Surgical Inc. Active backdriving for a robotic arm
AU2017443223B2 (en) * 2017-12-11 2020-12-03 Verb Surgical Inc. Active backdriving for a robotic arm
DE102020113906A1 (de) 2020-05-25 2021-11-25 Schaeffler Technologies AG & Co. KG Magnetaktor für einen Nockenwellenversteller und Verfahren zur Betätigung eines Aktors eines Nockenwellenverstellers
DE102022102073A1 (de) 2022-01-28 2023-08-03 Faurecia Autositze Gmbh Verfahren zum Betrieb eines Fahrzeugsitzkomfortsystems
DE102022206203A1 (de) * 2022-06-21 2023-12-21 Zf Friedrichshafen Ag Steuerung einer Reibkupplung in einem Kraftfahrzeug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960365A (en) * 1988-12-01 1990-10-02 Daikin Industries, Ltd. Hydraulic control apparatus
DE4423102A1 (de) * 1994-07-01 1996-01-04 Rexroth Mannesmann Gmbh Verfahren zur Ansteuerung von Schalt- oder Proportionalmagneten für Proportionalventile
EP0929020A2 (de) * 1998-01-09 1999-07-14 Sumitomo Electric Industries, Ltd. Verfahren zur Steuerung eines elektromagnetischen proportionalbetriebenen Druckregelventils

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0398381B1 (de) * 1989-05-19 1993-12-15 Nissan Motor Co., Ltd. Vorrichtung zur Fehlerfeststellung in einem Steuersystem für den Betrieb einer Last
US5594324A (en) * 1995-03-31 1997-01-14 Space Systems/Loral, Inc. Stabilized power converter having quantized duty cycle
FR2734394A1 (fr) * 1995-05-17 1996-11-22 Caterpillar Inc Commande d'amplitude de tremblement
JP3855209B2 (ja) * 1996-12-09 2006-12-06 株式会社日立製作所 サスペンション制御装置
DE19930965A1 (de) * 1999-07-05 2001-01-11 Mannesmann Sachs Ag Verfahren zum Betätigen eines Stromreglers für ein Stellglied sowie Stromregler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960365A (en) * 1988-12-01 1990-10-02 Daikin Industries, Ltd. Hydraulic control apparatus
DE4423102A1 (de) * 1994-07-01 1996-01-04 Rexroth Mannesmann Gmbh Verfahren zur Ansteuerung von Schalt- oder Proportionalmagneten für Proportionalventile
EP0929020A2 (de) * 1998-01-09 1999-07-14 Sumitomo Electric Industries, Ltd. Verfahren zur Steuerung eines elektromagnetischen proportionalbetriebenen Druckregelventils

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008040062A1 (de) 2008-07-02 2010-01-07 Robert Bosch Gmbh Verfahren zum Betreiben eines Fluidventils mit einer oszillierenden Ventilbewegung
WO2010000546A1 (de) 2008-07-02 2010-01-07 Robert Bosch Gmbh Verfahren zum betreiben eines fluidventils mit einer oszillierenden ventilbewegung
US9027587B2 (en) 2008-07-02 2015-05-12 Robert Bosch Gmbh Method for operating a fluid valve via an oscillating valve motion
ITBO20090491A1 (it) * 2009-07-28 2011-01-29 Leda Srl Metodo e dispositivo per controllare l'alimentazione elettrica di un attuatore elettromagnetico
EP2280403A1 (de) * 2009-07-28 2011-02-02 Leda S.R.L. Verfahren und Vorrichtung zur Steuerung der Stromversorgung eines elektromagnetischen Aktuators
US8571769B2 (en) 2010-03-09 2013-10-29 Ferrari S.P.A. Control method of the position of a solenoid valve using dithering
EP2365232A1 (de) * 2010-03-09 2011-09-14 FERRARI S.p.A. Verfahren zur Kontrolle der Position eines Magnetventils mithilfe von Dithering
ITBO20100140A1 (it) * 2010-03-09 2011-09-10 Ferrari Spa Metodo di controllo con dithering della posizione di una elettrovalvola
WO2014032893A2 (de) * 2012-08-27 2014-03-06 Robert Bosch Gmbh VERFAHREN ZUM REGELN DER STROMSTÄRKE DES DURCH EINEN INDUKTIVEN VERBRAUCHER FLIEßENDEN ELEKTRISCHEN STROMS SOWIE ENTSPRECHENDE SCHALTUNGSANORDNUNG
WO2014032893A3 (de) * 2012-08-27 2014-11-27 Robert Bosch Gmbh VERFAHREN ZUM REGELN DER STROMSTÄRKE DES DURCH EINEN INDUKTIVEN VERBRAUCHER FLIEßENDEN ELEKTRISCHEN STROMS SOWIE ENTSPRECHENDE SCHALTUNGSANORDNUNG
CN104541341A (zh) * 2012-08-27 2015-04-22 罗伯特·博世有限公司 用于调节流经电感性的用电器的电流的电流强度的方法以及相应的电路装置
US9438097B2 (en) 2012-08-27 2016-09-06 Robert Bosch Gmbh Method for controlling the current intensity of the electric current flowing through an inductive consumer and a corresponding circuit configuration
EP3165801A1 (de) 2015-11-04 2017-05-10 Selectron Systems AG Verfahren und vorrichtung zum ansteuern eines magnetventils
US10755843B2 (en) 2015-11-04 2020-08-25 Selectron Systems Ag Method and apparatus for controlling a solenoid valve
WO2019057673A1 (de) * 2017-09-23 2019-03-28 Hydac Accessories Gmbh Adaptervorrichtung nebst verfahren zur regelung eines steuerstromes

Also Published As

Publication number Publication date
DE502005006621D1 (de) 2009-03-26
EP1797490B1 (de) 2009-02-11
ATE422685T1 (de) 2009-02-15
EP1797490A1 (de) 2007-06-20
DE102004048706A1 (de) 2006-04-20
US20090005913A1 (en) 2009-01-01
US7853360B2 (en) 2010-12-14

Similar Documents

Publication Publication Date Title
WO2006037715A1 (de) Verfahren und vorrichtung zur ermittlung eines mit einer ditherfrequenz überlagerten pwm-signals zur steuerung eines magnetventils
EP1999531B1 (de) Steuergerät mit einem regler zur regelung des elektrischen spulenstroms eines regelmagnetventils
WO2015192831A1 (de) Verfahren und schaltungsanordnung zum ansteuern eines schrittmotors
DE2751743A1 (de) Verfahren und regeleinrichtung zum zumessen stroemender medien
DE2537415A1 (de) Regelkreis zum regeln der fahrgeschwindigkeit eines kraftfahrzeuges
EP3642856B1 (de) Verfahren und vorrichtung zum ansteuern eines mittels einer spule bewegbaren teils und magnetventil
EP1880096B1 (de) VERFAHREN UND EINRICHTUNG ZUR ELEKTRISCHEN ANSTEUERUNG EINES VENTILS MIT EINEM MECHANISCHEN SCHLIEßELEMENT
EP3226264B1 (de) Stromsteuerung mit einem dithersignal
DE10304711A1 (de) Verfahren zur Steuerung eines Elektromagnetventils, insbesondere für ein Automatikgetriebe eines Kraftfahrzeugs
DE102008058720A1 (de) Steuerungs- und Regelungsverfahren für eine Brennkraftmaschine mit einem Common-Railsystem
EP2100196B1 (de) Verfahren zum anpassen von reglerparametern eines antriebs an unterschiedliche betriebszustände
DE19614866A1 (de) Verfahren zur Stromregelung
WO2006045719A1 (de) Hybride ansteuerschaltung
EP3529891A1 (de) Verfahren und schaltungsanordnung zum ansteuern eines schrittmotors
DE19736426A1 (de) Steuereinrichtung für eine Aufhängung
DE19930965A1 (de) Verfahren zum Betätigen eines Stromreglers für ein Stellglied sowie Stromregler
WO2003081348A1 (de) Verfahren und regler zur adaptiven regelung mindestens einer komponente einer technischen anlage
DE3143512C2 (de) Regelsystem für Magnetschwebefahrzeuge
DE19963153B4 (de) Verfahren zum Betrieb eines Systems
DE102013212207A1 (de) Verfahren und Vorrichtung zum Ermitteln eines Regelsignals für ein Ventil eines Fahrzeugs
DE102004034470A1 (de) Steuerung für einen geschalteten Reluktanzmotor
DE4426764A1 (de) Verfahren zur Ansteuerung eines Pulswechselrichters durch Stellbefehle eines Pulsmustergenerators
DE19651062C2 (de) System zur Regelung der Position eines Motors gegen eine Rückstellkraft
DE102020123352B4 (de) Verfahren und Vorrichtung zum Betreiben eines mechatronischen Systems mit einem Stromrichter
DE102022208793A1 (de) Verfahren zum Ansteuern einer Anordnung mit mindestens einem Leistungsschalter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005786895

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11664929

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005786895

Country of ref document: EP