WO2006038543A2 - Light emitting device, lighting equipment or liquid crystal display device using such light emitting device - Google Patents

Light emitting device, lighting equipment or liquid crystal display device using such light emitting device Download PDF

Info

Publication number
WO2006038543A2
WO2006038543A2 PCT/JP2005/018083 JP2005018083W WO2006038543A2 WO 2006038543 A2 WO2006038543 A2 WO 2006038543A2 JP 2005018083 W JP2005018083 W JP 2005018083W WO 2006038543 A2 WO2006038543 A2 WO 2006038543A2
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting device
light emitting
aluminum nitride
substrate
Prior art date
Application number
PCT/JP2005/018083
Other languages
French (fr)
Japanese (ja)
Other versions
WO2006038543A3 (en
WO2006038543A1 (en
Inventor
Keiichi Yano
Original Assignee
Toshiba Kk
Toshiba Materials Co Ltd
Keiichi Yano
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Kk, Toshiba Materials Co Ltd, Keiichi Yano filed Critical Toshiba Kk
Priority to US11/576,533 priority Critical patent/US7812360B2/en
Priority to EP05788119A priority patent/EP1806789B1/en
Priority to CN200580033649.2A priority patent/CN101036238B/en
Priority to JP2006539258A priority patent/JP4960099B2/en
Publication of WO2006038543A2 publication Critical patent/WO2006038543A2/en
Publication of WO2006038543A1 publication Critical patent/WO2006038543A1/en
Publication of WO2006038543A3 publication Critical patent/WO2006038543A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to a light emitting device in which a light emitting element such as a light emitting diode (LED) or a semiconductor laser is mounted on the surface of an insulating substrate, and particularly has a simple manufacturing process and excellent heat dissipation.
  • the present invention relates to a light-emitting device capable of flowing a larger current, having high luminous efficiency and capable of significantly increasing luminance, and a lighting fixture or a liquid crystal display device using the light-emitting device.
  • a light-emitting diode (hereinafter also referred to as an LED chip) is a light-emitting element that acts as a light source when a voltage is applied. It regenerates electrons and holes near the contact surface (pn junction) of two semiconductors. It is a light-emitting element that utilizes light emitted by coupling. Because this light-emitting element is small and has high conversion efficiency to light, it is widely used as home appliances, lighting fixtures, illuminated operation switches, and LED displays.
  • FIG. 2 As a conventional light-emitting device on which a light-emitting element such as the above-described LED chip is mounted, for example, a light-emitting device shown in FIG. 2 has been proposed (see, for example, Patent Document 1).
  • This light-emitting device 1 is electrically connected to the conductor wiring 2 via a bonding wire 4 in a ceramic package 3 in which a conductor wiring 2 is arranged and a large number of concave openings are integrally formed.
  • the LED chip 5 as a connected light emitting element, the first metal layer 6 and the second metal layer 7 formed on the side wall of the concave opening, and the resin mold 8 for sealing the concave opening. And is composed of.
  • the first metal layer 6 provided in the concave opening improves the adhesion with the ceramic package 3, and the light from the LED chip 5 is transmitted to the second metal layer. Reflected by layer 7, light loss can be reduced, and contrast of display etc. can be improved
  • Patent Document 1 Japanese Patent No. 3316838
  • the ceramic package with the LED chip is mainly made of alumina (Al 2 O 3), and the thermal conductivity is 15 to 20 W / m'K.
  • the heat conductivity is low, it is made of a ceramic material, and the heat conductivity of the resin mold that seals the LED chip is low. Therefore, if a high voltage or high current is applied, the LED chip will be destroyed by heat generation. Therefore, the current value at which the voltage that can be applied to the LED chip is low is also limited to about several tens of mA, which causes a problem of low emission luminance.
  • the conventional light-emitting device uses a ceramic package integrally formed with a large number of concave openings for accommodating light-emitting elements, which complicates the manufacturing process and has a configuration.
  • the finish accuracy of parts was low and sufficient light emission characteristics could not be obtained. That is, there is a problem that a machining operation for integrally forming a large number of concave openings in a hard and brittle ceramic material is extremely difficult and requires a great number of machining steps.
  • the side surface of the concave opening that accommodates the light emitting element functions as a light reflector (reflector). Since the reflector is formed integrally with the ceramic substrate body, The surface roughness of the inner wall of the fretater was as rough as 0.5 m-Ra, and there was a problem that light scattering was likely to occur. Moreover, in order to control the light reflection direction, even if an inner wall surface of the reflector is given a constant inclination angle, it is difficult to stably obtain a constant inclination angle with a large variation in the inclination angle. In any case, it has been difficult to control the shape accuracy of the concave opening. In addition, even when trying to adjust to a predetermined finish accuracy, there was a problem that the number of man-hours that hard to work with ceramic materials would increase significantly.
  • the light emission of the LED chip force is concave.
  • the light emission efficiency was reduced due to absorption by the inner wall of the opening, resulting in a decrease in luminous efficiency. Therefore, in the known example, two metal layers that reflect light are formed on the inner wall of the concave opening to reduce light absorption loss.
  • the inner wall of the opening itself has a structure that prevents the light from traveling.
  • the present invention has been made to solve the above-described conventional problems.
  • the manufacturing process is simple, the heat dissipation is excellent, a larger current can flow, the luminous efficiency is high, and the luminance is greatly increased.
  • An object is to provide a light emitting device capable of increasing the number of calories.
  • the present invention is a light emitting device in which at least one light emitting element is mounted on a surface of a co-fired substrate having an aluminum nitride force by a flip chip method.
  • a reflector (light reflector) having an inclined surface that reflects light emitted from the light emitting element force in a front direction is bonded to the surface of the aluminum nitride substrate so as to surround the light emitting element.
  • the light-emitting element may be supplied with power through the internal wiring layer of the aluminum nitride substrate.
  • the printed wiring board includes a through hole immediately below the aluminum nitride substrate, and a heat sink having a convex portion fitted into the through hole is closely bonded to the back surface of the aluminum nitride substrate. It is preferable to do.
  • the surface of the aluminum nitride substrate on which the light-emitting element is mounted is mirror-polished so as to have a surface roughness of 0.3 ⁇ mRa or less.
  • a metal film made of aluminum or silver is formed on the inclined surface of the reflector.
  • A1N substrate it is preferable to use an A1N substrate having a thermal conductivity of 170 W / m ⁇ K or more.
  • the heat dissipation of the light-emitting device is greatly increased, the current-carrying limit of the light-emitting element is increased, and a large current can flow, so that the light emission luminance is increased. It becomes possible to raise it significantly.
  • the reflector (light reflector) has an inclined surface that reflects light emitted from the light emitting element in the front direction.
  • a metal material such as Kovar alloy or copper (Cu) is used as ABS. It is formed of a greave material such as fat.
  • This reflector is not formed integrally with the A1N substrate body, but is prepared in advance as a separate component such as metal or grease, and then joined to the surface of the aluminum nitride substrate so as to surround the light emitting element. . Therefore, it is possible to control the finisher surface roughness, dimensions, reflection surface inclination angle, etc. with high precision. It is possible to mass-produce a reflector with excellent reflection characteristics in a simple process.
  • the inner wall surface (inclined surface) of the reflector can be easily mirror-polished, and the angle of the inclined surface can be precisely controlled.
  • a printed wiring board in which wiring is connected to electrode pads installed on the outer peripheral portion of the back surface of the aluminum nitride substrate is disposed on the back surface of the aluminum nitride substrate, and the internal wiring of the aluminum nitride substrate from the printed wiring board
  • the light emitting element is mounted on the surface of the co-fired substrate having an aluminum nitride force by a flip chip method, the light emitting element is energized from the electrode formed on the back surface of the aluminum nitride substrate to the internal wiring layer.
  • the light emitting element on the surface side is formed through This simplifies the wiring structure that does not require the wiring to be connected by the wire bonding method on the surface side of the A1N substrate, and does not protrude in the thickness direction of the bonding wire. Thin and compact.
  • the printed wiring board has a through hole immediately below the aluminum nitride substrate, while a heat sink having a convex portion fitted into the through hole is closely attached to the back surface of the aluminum nitride substrate.
  • the reflectance on the polished surface is increased, and the light emitted from the bonding surface side force of the light emitting element is effectively reflected to the A1N substrate surface side.
  • the emission intensity (luminance) can be substantially increased.
  • the surface roughness of the mirror polished surface is 0.3 mRa or less based on the arithmetic average roughness (Ra) standard defined by Japanese Industrial Standard CFIS B0601). When this surface roughness is roughened to exceed 0.3 mRa, the light emission intensity is likely to be lowered, which is likely to cause irregular reflection and absorption of light emission on the polished surface.
  • the surface roughness of the mirror-polished surface is set to 0.3 ⁇ mRa or less.
  • the reflectance of light emission can be further increased.
  • the light emission intensity in the front direction of the light emitting device can be increased. Can do.
  • a metal film having a reflectance of light emission from the light emitting element of 90% or more on the inclined surface light emitted from the side of the light emitting element is effectively reflected by the metal film and inverted to the front side.
  • the metal film having a reflectance of 90% or more is preferably composed of aluminum or silver. This metal film is formed by chemical vapor deposition (CVD) or sputtering so as to have a thickness of about 1 to 5 ⁇ m, preferably 1 to 3 ⁇ m.
  • the reflectance is given by the ratio of the emission intensity of reflected light to the emission intensity of incident light.
  • the light emitting element is formed.
  • an electrode plate or the like is not necessary, so that light can be extracted from the entire back surface of the light emitting element.
  • the arrangement pitch between the light emitting elements can be reduced, the mounting density of the light emitting elements is increased, and the light emitting device can be downsized.
  • a metal bump such as a solder bump is formed at a connection end of a light emitting element such as an LED chip, and this bump is formed on the back surface of the substrate via a land provided at a via hole and an end of a wiring conductor. It is possible to perform face-down wiring that connects to the energized wiring of the printed circuit board. According to this face-down wiring structure, any position force electrode on the surface of the light emitting element can be taken out, so that the light emitting element and the wiring conductor can be connected in the shortest distance, and the number of electrodes As the LED increases, the size of the LED chip as a light-emitting element does not increase, and the mounting force and ultra-thin mounting become possible.
  • the substrate (LED package) on which the LED chip is mounted has a high thermal conductivity and uses an aluminum nitride (A1N) cofire substrate (co-fired substrate).
  • A1N aluminum nitride
  • the heat dissipation of the light-emitting device is greatly increased, and the current-carrying limit is increased. Since it becomes possible to flow an electric current, it is possible to greatly increase the light emission luminance.
  • the reflector 1 is not formed integrally with the A1N substrate body, but is prepared as a separate component in advance and then joined to the surface of the aluminum nitride substrate. Therefore, it is easy to apply force at the parts stage, and the finisher surface roughness, dimensions, reflection surface inclination angle, etc. of the reflector can be controlled with high precision, and a reflector with excellent reflection characteristics can be obtained. The emission efficiency of emitted light can be increased. Furthermore, since the light-emitting element is mounted and connected to the A1N substrate by the flip-chip method, it is possible to extract the entire back surface of the light-emitting element. In addition, since the arrangement pitch between the light emitting elements can be reduced, the mounting density of the light emitting elements is increased, and the light emitting device can be downsized.
  • FIG. 1 is a sectional view showing an embodiment of a light emitting device according to the present invention. That is, the light-emitting device 11 according to this embodiment is a light-emitting device in which three LED chips 15 as light-emitting elements are mounted on the surface of a co-fired substrate (A1N multilayer substrate) 13 made of aluminum nitride by the flip-chip method.
  • the Kovar reflector 16 having an inclined surface 14 that reflects light emitted from the LED chip 15 as the light emitting element in the front direction surrounds the LED chip 15 so that the surface of the aluminum nitride substrate 13 Solder-bonded to each other.
  • the thermal conductivity is 200W / m'K
  • the two-layer co-fired A1N multi-layer substrate of length 5mm x width 5mm x thickness 0.5mm is used. It was.
  • a printed wiring board 19 whose wiring is connected to the electrode pads 17 provided on the outer peripheral portion of the back surface of the aluminum nitride substrate 13 is disposed on the back surface of the aluminum nitride substrate 13.
  • An electrode pad for flip chip connection is formed on the surface side of the aluminum nitride substrate 13, and this electrode pad is conducted to the internal wiring layer 12 of the aluminum nitride substrate 13 through a via hole.
  • the internal wiring layer 12 is routed from the electrode pad at the center of the A1N board 13 to the outer periphery of the A1N board. Connection electrode pads 17 are formed.
  • Bumps made of Au, A1, and solder are formed on the flip chip connecting electrode pads on the surface of the aluminum nitride substrate 13, and the LED chip is bonded via the bumps.
  • the printed wiring board 19 is also supplied with power to the LED chip 15 via the electrode pad 17, via hole, and internal wiring layer 12.
  • the printed wiring board 19 has a through hole 20 immediately below the aluminum nitride substrate 13, and the back surface of the A1N substrate 13 is exposed to the through hole 20.
  • a copper heat sink 21 having a convex portion 21a that fits into the through hole 20 is joined to the back surface of the aluminum nitride substrate 13 so as to be in close contact with heat radiating grease or solder.
  • the internal space of the reflector 16 is filled with a phosphor 22 that emits light of a predetermined wavelength by light emission from the LED chip 15 and a mold resin 18.
  • the LED chip 15 when the LED chip 15 is energized from the printed wiring board 19 through the electrode pad 17, via hole, and internal wiring layer 12, the LED chip 15 emits light, and this light emission Is irradiated onto the phosphor 22 to emit light of a specific wavelength.
  • the light emitted from the side surface of the LED chip 15 is reflected by the inclined surface 14 of the reflector 16 and is emitted in the front direction.
  • the surface of the aluminum nitride substrate 13 on which the LED chip 15 is mounted is mirror-polished so as to have a surface roughness of 0.3 mRa or less, it is emitted toward the back surface of the LED chip 15.
  • the reflected light is reflected on the surface of the aluminum nitride substrate 13. Therefore, the brightness of the light emitted in the front direction of the light emitting device 11 can be increased.
  • the heat released from the heated LED chip 15 can be quickly dissipated in the direction of the heat sink 21 via the aluminum nitride substrate 13. Therefore, in combination with the heat transfer effect of the A1N substrate 13 having high thermal conductivity, the heat dissipation of the light emitting device 11 can be greatly enhanced.
  • the reflector 16 is made of a Kovar alloy, the inclined surface 14 can be formed extremely smoothly and has a sufficient light reflection function.
  • a metal film made of silver (Ag) or aluminum (A1) on the inclined surface 14 by chemical vapor deposition or the like, the light reflection characteristics of the reflector 16 can be further enhanced.
  • the aluminum chip (A1N) cofire substrate sinultaneously fired substrate with high thermal conductivity is used as the substrate (LED package) on which the LED chip 15 is mounted. Therefore, the heat dissipation of the light-emitting device 10 is greatly increased, the current limit of the LED chip is increased, and a large current can flow. It became possible.
  • the reflector 16 is not formed integrally with the A1N substrate body, but is prepared as a separate component in advance and then joined to the surface of the aluminum nitride substrate 13. Therefore, by processing at the component stage, the finish roughness, dimensions, inclination angle of the inclined surface (light reflecting surface) 14, etc. can be controlled with high precision, and the reflector 16 with excellent reflection characteristics can be obtained. As a result, it was possible to increase the light emission efficiency.
  • the LED chip 15 is mounted and connected to the A1N substrate 13 by the flip chip method, the entire back surface force of the LED chip 15 can extract light. Further, since the arrangement pitch between the LED chips 15 can be reduced, the mounting density of the LED chips 15 is increased, and the light emitting device 11 is downsized.
  • a printed wiring board 19 whose wiring is connected to the electrode pad 17 provided on the outer periphery of the back surface of the aluminum nitride substrate 13 is disposed on the back surface of the aluminum nitride substrate 13, and from the printed wiring board 19.
  • the LED chip 15 is mounted on the surface of the co-fired substrate 13 that also has aluminum nitride force by the flip chip method, the current to the LED chip 15 is formed on the back surface of the aluminum nitride substrate 13.
  • the electrode pads 17 are applied to the LED chip 15 on the surface side through the internal wiring layer 12. This simplifies the wiring structure that eliminates the need to connect the wires by the wire bonding method on the surface side of the A1N substrate 13, and also provides a bonder. Since there is no protrusion in the thickness direction of the ing wire, the light emitting device 11 can be formed thin and small.
  • the printed wiring board 19 has a through hole 20 immediately below the aluminum nitride substrate 13, and a heat sink 21 having a convex portion 21 a fitted into the through hole 20 is in close contact with the back surface of the aluminum nitride substrate 13.
  • Example 2 is the same as Example 1 except that a 2 m thick metal film 23 having a silver (Ag) force is formed on the inclined surface 14 of the reflector 16 shown in FIG. A light emitting device was prepared.
  • a light emitting device according to Example 3 was prepared in the same manner as in Example 1 except that the heat sink 21 shown in FIG.
  • a flat heat sink 21 having no protrusion 21a shown in FIG. 1 is processed in the same manner as in Example 1 except that it is joined to the A1N substrate 13 through a printed wiring board that does not form a through hole.
  • Example 4 A light emitting device according to was prepared.
  • Table 1 below shows the average values obtained by measuring the thermal resistance values, the LED conduction limit amounts, and the light emission luminances of ten light emitting devices according to the respective examples prepared as described above.
  • the inclined surface 14 of the reflector 16 further has silver ( According to the light emitting device according to Example 2 in which the metal film 23 made of (Ag) is formed, the light reflectance at the inclined surface 14 is further increased and the light emission luminance is improved by 10 to 20% as compared with Example 1. There was found.
  • the thermal resistance value is increased 18 times compared to Examples 1 and 2, and the LED energization limit amount and the light emission luminance are relatively high. Declined.
  • a light fixture was prepared by assembling the light emitting device according to Examples 1 and 2 above to a lighting fixture body, and further arranging a lighting device on the fixture body. It was confirmed that each lighting fixture has excellent heat dissipation characteristics, can pass a larger current (the limit of LED energization), has high luminous efficiency, and can greatly increase brightness. .
  • a linear light source can be obtained by arranging a plurality of light emitting devices as shown in FIG. 1 in rows or columns in the vertical or horizontal direction, while a plurality of light emitting devices are arranged two-dimensionally in the vertical and horizontal directions.
  • a surface-emitting light source was obtained effectively.
  • a liquid crystal display device was assembled by arranging a liquid crystal display device (LCD) main body and the light emitting device according to Examples 1 and 2 as a backlight on the main body of the device.
  • Each liquid crystal display (LCD) uses an A1N substrate with excellent heat dissipation as the substrate of the light-emitting device. It is highly efficient and the brightness of the display device can be greatly increased.
  • the thermal conductivity is 200 W / m ⁇ K and 2
  • the thermal resistance was reduced by about 20-30%, and the current-carrying limit and emission luminance could be increased by about 20-30%.
  • the substrate (LED package) on which the LED chip is mounted has high thermal conductivity! Aluminum nitride (A1N) cofire substrate (co-fired substrate) ) Is used, the heat dissipation of the light emitting device is greatly increased, the current supply limit is increased, and a large current can flow. Therefore, the light emission luminance can be significantly increased.
  • A1N Aluminum nitride
  • the reflector 1 is not formed integrally with the A1N substrate body, but is prepared as a separate component in advance and then joined to the surface of the aluminum nitride substrate. Therefore, it is easy to apply force at the parts stage, and the finisher surface roughness, dimensions, reflection surface inclination angle, etc. of the reflector can be controlled with high precision, and a reflector with excellent reflection characteristics can be obtained. The emission efficiency of emitted light can be increased. Furthermore, since the light-emitting element is mounted and connected to the A1N substrate by the flip-chip method, it is possible to extract the entire back surface of the light-emitting element. In addition, since the arrangement pitch between the light emitting elements can be reduced, the mounting density of the light emitting elements is increased, and the light emitting device can be downsized.
  • FIG. 1 is a cross-sectional view showing an embodiment of a light emitting device according to the present invention.
  • FIG. 2 is a cross-sectional view illustrating a configuration example of a conventional light emitting device.

Abstract

A light emitting device (11) is characterized in that at least one light emitting element (15) is mounted on a surface of a cofired substrate (13) made of aluminum nitride by flip chip method; and a reflector (16), which has an inclined plane (14) for reflecting the light emitted from the light emitting element (15) in a front direction, is bonded on the surface of the aluminum nitride substrate (13) so as to surround the circumference of the light emitting element (15). The light emitting device can be manufactured by a simple manufacturing process, has excellent heat dissipating performance, permits a larger current to flow, has high light emitting efficiency and remarkably increases luminance.

Description

明 細 書  Specification
発光装置及びそれを用いた照明器具または液晶表示装置  Light emitting device and lighting apparatus or liquid crystal display device using the same
技術分野  Technical field
[0001] 本発明は、発光ダイオード(LED: Light Emitting Diode)や半導体レーザー等の発 光素子を絶縁基板表面に搭載した発光装置に係り、特に製造工程が簡素であり、ま た放熱性が優れ、より大きな電流を流すことができ、発光効率が高く輝度を大幅に増 カロさせることが可能な発光装置及びそれを用いた照明器具または液晶表示装置に 関する。  [0001] The present invention relates to a light emitting device in which a light emitting element such as a light emitting diode (LED) or a semiconductor laser is mounted on the surface of an insulating substrate, and particularly has a simple manufacturing process and excellent heat dissipation. In addition, the present invention relates to a light-emitting device capable of flowing a larger current, having high luminous efficiency and capable of significantly increasing luminance, and a lighting fixture or a liquid crystal display device using the light-emitting device.
背景技術  Background art
[0002] 発光ダイオード (以下、 LEDチップとも ヽぅ。)は、電圧を印加すると光源として作用 する発光素子であり、二つの半導体の接触面 (pn接合)付近での電子と正孔との再 結合によって発光する光を利用する発光素子である。この発光素子は小型で電気工 ネルギ一の光への変換効率が高いため、家電製品、照明器具や照光式操作スイツ チ、 LED表示器として広く用いられている。  [0002] A light-emitting diode (hereinafter also referred to as an LED chip) is a light-emitting element that acts as a light source when a voltage is applied. It regenerates electrons and holes near the contact surface (pn junction) of two semiconductors. It is a light-emitting element that utilizes light emitted by coupling. Because this light-emitting element is small and has high conversion efficiency to light, it is widely used as home appliances, lighting fixtures, illuminated operation switches, and LED displays.
[0003] また、フィラメントを用いる電球とは異なり、半導体素子であるために球切れがなぐ 初期駆動特性に優れ、振動や繰り返しの ONZOFF操作にも優れた耐久性を有す るため、自動車用ダッシュボードなどの表示装置のノ ックライトとしても用いられる。特 に、太陽光に影響されずに高彩度で鮮ゃ力な色の発光が得られるため、屋外に設置 される表示装置、交通用表示装置や信号機等にも、今後その用途が拡大される状況 である。  [0003] Unlike a light bulb using a filament, it is a semiconductor element, so it has excellent initial drive characteristics that the ball breaks. It also has excellent durability against vibration and repeated ONZOFF operation. It is also used as a knocklight for display devices such as boards. In particular, because it is possible to obtain high-saturation and bright colors without being affected by sunlight, its use will be expanded to display devices installed outdoors, traffic display devices, traffic lights, etc. It is.
[0004] 上記の LEDチップのような発光素子を搭載した従来の発光装置としては、例えば 図 2に示す発光装置が提案されている (例えば、特許文献 1参照)。この発光装置 1 は導体配線 2を内部に配し多数の凹状開口部を一体に形成したセラミックスパッケ一 ジ 3と、この凹状開口部内においてボンディングワイヤ 4を介して上記導体配線 2と電 気的に接続された発光素子としての LEDチップ 5と、上記凹状開口部側壁に形成さ れた第 1の金属層 6および第 2の金属層 7と、上記凹状開口部を封止する榭脂モー ルド 8とを備えて構成されて 、る。 [0005] 上記従来の発光装置によれば、凹状開口部内に設けた第 1の金属層 6によってセ ラミックスパッケージ 3との密着性が高まると共に、 LEDチップ 5からの光が第 2の金 属層 7によって反射され、光損失を低減でき、ディスプレイなどのコントラストの向上が 可能とされている [0004] As a conventional light-emitting device on which a light-emitting element such as the above-described LED chip is mounted, for example, a light-emitting device shown in FIG. 2 has been proposed (see, for example, Patent Document 1). This light-emitting device 1 is electrically connected to the conductor wiring 2 via a bonding wire 4 in a ceramic package 3 in which a conductor wiring 2 is arranged and a large number of concave openings are integrally formed. The LED chip 5 as a connected light emitting element, the first metal layer 6 and the second metal layer 7 formed on the side wall of the concave opening, and the resin mold 8 for sealing the concave opening. And is composed of. [0005] According to the conventional light emitting device described above, the first metal layer 6 provided in the concave opening improves the adhesion with the ceramic package 3, and the light from the LED chip 5 is transmitted to the second metal layer. Reflected by layer 7, light loss can be reduced, and contrast of display etc. can be improved
特許文献 1 :特許第 3316838号公報  Patent Document 1: Japanese Patent No. 3316838
し力しながら、上記従来の発光装置においては、 LEDチップを搭載したセラミックス パッケージがアルミナ (Al O )を主体とし、熱伝導率が 15〜20W/m'Kであるように  However, in the conventional light emitting device, the ceramic package with the LED chip is mainly made of alumina (Al 2 O 3), and the thermal conductivity is 15 to 20 W / m'K.
2 3  twenty three
熱伝導率が低 、セラミックス材で形成されており、また LEDチップを封止する榭脂モ 一ルドの熱伝導率も低力つたために、放熱性が極めて悪い致命的な欠点があった。 そのため、高電圧'高電流を印加すると、発熱により LEDチップが破壊されてしまうこ とになる。したがって、 LEDチップに印加できる電圧が低ぐ電流値も数十 mA程度 に制限されるため、発光輝度が低い問題点があった。  The heat conductivity is low, it is made of a ceramic material, and the heat conductivity of the resin mold that seals the LED chip is low. Therefore, if a high voltage or high current is applied, the LED chip will be destroyed by heat generation. Therefore, the current value at which the voltage that can be applied to the LED chip is low is also limited to about several tens of mA, which causes a problem of low emission luminance.
[0006] なお従来の LEDチップを使用した発光装置では、要求される発光輝度も小さかつ たため、上記従来の発光装置における通電量でも実用上は大きな障害もなく用いら れていた。し力しながら、近年において LED発光装置の具体的な応用範囲が拡大さ れるにしたがって、より高出力で通電量が数 A程度までに高めることが可能であり、発 光輝度を大きくできる構造を実現することが技術上の課題となっている。  [0006] Note that, in the light emitting device using the conventional LED chip, the required light emission luminance is also low, and therefore, the amount of energization in the above conventional light emitting device is used without any major obstacle in practice. However, as the specific application range of LED light-emitting devices has been expanded in recent years, it is possible to increase the energization amount to several A with higher output, and a structure that can increase the light emission luminance. Realization is a technical challenge.
[0007] また、上記従来の発光装置においては、発光素子を収容するための多数の凹状開 口部を一体に形成したセラミックスパッケージを用いて 、るために、製造工程が煩雑 化すると共に、構成部品の仕上がり精度が低く十分な発光特性が得られない問題点 があった。すなわち、硬く脆弱なセラミックス材料に多数の凹状開口部を一体に形成 する加工操作は極めて困難で多大な加工工数を要する問題点があった。一方、軟 質なセラミックス成形体の段階で孔加工して多数の開口部を形成した後に焼結する 場合には、収縮誤差、原料組成の不均一性等に起因して開口部の寸法精度、仕上 力 Sり精度や表面粗さのばらつきが大きくなり、所定の光反射特性が得られない問題点 かあつた。  [0007] In addition, the conventional light-emitting device uses a ceramic package integrally formed with a large number of concave openings for accommodating light-emitting elements, which complicates the manufacturing process and has a configuration. There was a problem that the finish accuracy of parts was low and sufficient light emission characteristics could not be obtained. That is, there is a problem that a machining operation for integrally forming a large number of concave openings in a hard and brittle ceramic material is extremely difficult and requires a great number of machining steps. On the other hand, in the case of sintering after forming a large number of openings by drilling at the stage of a soft ceramic molded body, the dimensional accuracy of the openings due to shrinkage error, non-uniformity of the raw material composition, etc. The problem was that the required light reflection characteristics could not be obtained due to large variations in finishing accuracy and surface roughness.
[0008] 上記発光素子を収容する凹状開口部の側面は、光の反射体 (リフレタター)として 機能するが、このリフレタターをセラミックス基板本体と一体に形成しているために、リ フレタター内壁面の表面粗さは 0. 5 m— Ra程度と粗くなり、光の散乱が生じ易い 問題もあった。また、光の反射方向を制御するために、リフレタター内壁面に一定の 傾斜角度を持たせようとしても、傾斜角度のばらつきが大きく一定の傾斜角度を安定 して得ることは困難であった。いずれにしても、凹状開口部の形状精度を制御するこ とは困難であった。さらに、所定の仕上がり精度に調整加工しょうとしても、硬くて脆 いセラミックス材料は加工しにくぐ加工工数が大幅に増加してしまう問題点もあった [0008] The side surface of the concave opening that accommodates the light emitting element functions as a light reflector (reflector). Since the reflector is formed integrally with the ceramic substrate body, The surface roughness of the inner wall of the fretater was as rough as 0.5 m-Ra, and there was a problem that light scattering was likely to occur. Moreover, in order to control the light reflection direction, even if an inner wall surface of the reflector is given a constant inclination angle, it is difficult to stably obtain a constant inclination angle with a large variation in the inclination angle. In any case, it has been difficult to control the shape accuracy of the concave opening. In addition, even when trying to adjust to a predetermined finish accuracy, there was a problem that the number of man-hours that hard to work with ceramic materials would increase significantly.
[0009] また、図 2に示すような従来の発光装置では、ワイヤボンディング法を使用して LED チップと導体配線とを電気的に接合していたために、ワイヤや、 LEDチップ上に設置 した電極パッドが光を部分的に遮断することになり、発光の取り出し効率が悪ィ匕して しまう問題点もあった。さらに、ボンディングワイヤが立ち上がった部分が厚さ方向に 突出することになり、またボンディングワイヤの端部を接続するための大きな電極領域 が必要となるため、配線構造も含めた LEDパッケージが大型化する難点があった。 [0009] In addition, in the conventional light emitting device as shown in Fig. 2, since the LED chip and the conductor wiring are electrically bonded using the wire bonding method, the wire or the electrode installed on the LED chip is used. There was also a problem that the pad partly blocked the light and the extraction efficiency of the emitted light deteriorated. Furthermore, the portion where the bonding wire rises protrudes in the thickness direction, and a large electrode area is required to connect the ends of the bonding wire, so the LED package including the wiring structure is enlarged. There were difficulties.
[0010] さらに、上記ボンディングワイヤが厚さ方向に突出する影響を回避するために、図 2 に示すように、凹状開口部内に LEDチップを収容するように構成すると、 LEDチップ 力 の発光が凹状開口部内壁に吸収されて光の損失が増カロして発光効率が低下し てしまう問題点もあった。そのために、前記公知例では凹状開口部内壁に、光を反射 する金属層を 2層も形成し光の吸収損失を低減している。しかしながら、曲面状の内 壁を有する凹状開口部内に均一に反射用金属層を形成することは極めて困難であり 、部分的に発光が内壁に吸収されて光の損失が生じることになり、また凹状開口部の 内壁自体が光の進行を妨げる構造であるために、発光輝度が低下する問題点があ つた o  Furthermore, in order to avoid the influence of the bonding wire protruding in the thickness direction, as shown in FIG. 2, when the LED chip is accommodated in the concave opening, the light emission of the LED chip force is concave. There was also a problem that the light emission efficiency was reduced due to absorption by the inner wall of the opening, resulting in a decrease in luminous efficiency. Therefore, in the known example, two metal layers that reflect light are formed on the inner wall of the concave opening to reduce light absorption loss. However, it is extremely difficult to form a reflective metal layer uniformly in a concave opening having a curved inner wall, and light emission is partially absorbed by the inner wall, resulting in loss of light. The inner wall of the opening itself has a structure that prevents the light from traveling.
[0011] 発明の開示  [0011] Disclosure of the Invention
本発明は上記従来の問題点を解決するためになされたものであり、特に製造工程 が簡素であり、また放熱性が優れ、より大きな電流を流すことができ、発光効率が高く 輝度を大幅に増カロさせることが可能な発光装置を提供することを目的とする。  The present invention has been made to solve the above-described conventional problems. In particular, the manufacturing process is simple, the heat dissipation is excellent, a larger current can flow, the luminous efficiency is high, and the luminance is greatly increased. An object is to provide a light emitting device capable of increasing the number of calories.
[0012] 上記目的を達成するために本発明は、窒化アルミニウム力 成る同時焼成基板の 表面に少なくとも 1個の発光素子がフリップチップ法により実装された発光装置であり 、上記発光素子力 の発光を正面方向に反射する傾斜面を有するリフレタター(光反 射体)が、上記発光素子の周囲を取り囲むように窒化アルミニウム基板表面に接合さ れていることを特徴とする。 In order to achieve the above object, the present invention is a light emitting device in which at least one light emitting element is mounted on a surface of a co-fired substrate having an aluminum nitride force by a flip chip method. A reflector (light reflector) having an inclined surface that reflects light emitted from the light emitting element force in a front direction is bonded to the surface of the aluminum nitride substrate so as to surround the light emitting element. .
[0013] また、上記発光装置において、前記窒化アルミニウム基板の裏面外周部に設置さ れた電極に配線が接続されるプリント配線基板を窒化アルミニウム基板の裏面に配 置し、上記プリント配線基板力ゝら窒化アルミニウム基板の内部配線層を経由して発光 素子に給電するように構成すると良 、。  [0013] Further, in the light emitting device, a printed wiring board in which wiring is connected to an electrode disposed on the outer periphery of the back surface of the aluminum nitride substrate is disposed on the back surface of the aluminum nitride substrate, and the printed wiring board strength is increased. In other words, the light-emitting element may be supplied with power through the internal wiring layer of the aluminum nitride substrate.
[0014] さらに、上記発光装置において、前記プリント配線基板は窒化アルミニウム基板の 直下部に貫通口を備える一方、この貫通口に嵌入する凸部を有するヒートシンクを上 記窒化アルミニウム基板の裏面に密着接合することが好ましい。  [0014] Further, in the light emitting device, the printed wiring board includes a through hole immediately below the aluminum nitride substrate, and a heat sink having a convex portion fitted into the through hole is closely bonded to the back surface of the aluminum nitride substrate. It is preferable to do.
[0015] また、上記発光装置において、前記発光素子が搭載される窒化アルミニウム基板 の表面が 0. 3 μ mRa以下の表面粗さを有するように鏡面研摩されて 、ることが好ま しい。  [0015] In the light-emitting device, it is preferable that the surface of the aluminum nitride substrate on which the light-emitting element is mounted is mirror-polished so as to have a surface roughness of 0.3 μmRa or less.
[0016] さらに、上記発光装置において、前記リフレタターの傾斜面にアルミニウムまたは銀 から成る金属膜が形成されて ヽることが好ま ヽ。  Furthermore, in the light emitting device, it is preferable that a metal film made of aluminum or silver is formed on the inclined surface of the reflector.
[0017] すなわち、本発明に係る発光装置おいては、 LEDチップを搭載するセラミックス基 板 (LED用パッケージ)として、熱伝導率が高く内部に配線層を形成した窒化アルミ ユウム (A1N)のコファイア基板(同時焼成基板)や A1Nメタライズ基板を使用する。こ の同時焼成 A1N基板としては、熱伝導率が 170W/m · K以上の A1N基板を使用する ことが好ましい。特に、熱伝導率が高い窒化アルミニウム基板を使用することにより、 発光装置の放熱性が大幅に高まり、発光素子の通電限界量が増大し大電流を流す ことが可能になるために、発光輝度を大幅に高くすることが可能になる。  [0017] That is, in the light emitting device according to the present invention, as a ceramic substrate (LED package) on which an LED chip is mounted, an aluminum nitride (A1N) cofire with a high thermal conductivity and a wiring layer formed inside Use substrate (co-fired substrate) or A1N metallized substrate. As this co-fired A1N substrate, it is preferable to use an A1N substrate having a thermal conductivity of 170 W / m · K or more. In particular, by using an aluminum nitride substrate with high thermal conductivity, the heat dissipation of the light-emitting device is greatly increased, the current-carrying limit of the light-emitting element is increased, and a large current can flow, so that the light emission luminance is increased. It becomes possible to raise it significantly.
[0018] ここで上記リフレタター(光反射体)は、発光素子からの発光を正面方向に反射する 傾斜面を有するものであり、コバール (Kovar)合金や銅 (Cu)等の金属材ゃ ABS榭 脂等の榭脂材で形成される。このリフレクタ一は A1N基板本体と一体に形成されるも のではなぐ予め別体部品として金属や榭脂等力 調製された後に、発光素子の周 囲を取り囲むように窒化アルミニウム基板表面に接合される。したがって、リフレタター 表面の仕上がり粗さ、寸法、反射面の傾斜角度等について高精度に制御することが でき、反射特性に優れたリフレタターを簡単な工程で量産することができる。特に、リ フレタターの内壁面 (傾斜面)を鏡面研磨することも容易であり、傾斜面の角度も精密 に制御することができる。 [0018] Here, the reflector (light reflector) has an inclined surface that reflects light emitted from the light emitting element in the front direction. A metal material such as Kovar alloy or copper (Cu) is used as ABS. It is formed of a greave material such as fat. This reflector is not formed integrally with the A1N substrate body, but is prepared in advance as a separate component such as metal or grease, and then joined to the surface of the aluminum nitride substrate so as to surround the light emitting element. . Therefore, it is possible to control the finisher surface roughness, dimensions, reflection surface inclination angle, etc. with high precision. It is possible to mass-produce a reflector with excellent reflection characteristics in a simple process. In particular, the inner wall surface (inclined surface) of the reflector can be easily mirror-polished, and the angle of the inclined surface can be precisely controlled.
[0019] また、前記窒化アルミニウム基板の裏面外周部に設置された電極パッドに配線が 接続されるプリント配線基板を窒化アルミニウム基板の裏面に配置し、上記プリント配 線基板から窒化アルミニウム基板の内部配線層を経由して発光素子に給電するよう に構成することにより、発光素子の正面側 (光放射方向)に配線層や電極が配置され ることがなぐ光の遮断が解消するので発光輝度を高めることができる。  In addition, a printed wiring board in which wiring is connected to electrode pads installed on the outer peripheral portion of the back surface of the aluminum nitride substrate is disposed on the back surface of the aluminum nitride substrate, and the internal wiring of the aluminum nitride substrate from the printed wiring board By providing power to the light-emitting element via the layer, the light emission is improved because the light blocking that the wiring layer and electrodes are placed on the front side (light emission direction) of the light-emitting element is eliminated. be able to.
[0020] さらに、窒化アルミニウム力 成る同時焼成基板の表面に発光素子がフリップチッ プ法により実装される構造であるため、発光素子への通電は窒化アルミニウム基板の 裏面に形成された電極から内部配線層を介して表面側の発光素子になされる。その ため、 A1N基板の表面側にぉ 、てワイヤボンディング法によって配線を接続する必 要がなぐ配線構造が簡素化される上に、ボンディングワイヤの厚さ方向への突出が ないため、発光装置を薄く小型に形成できる。  [0020] Furthermore, since the light emitting element is mounted on the surface of the co-fired substrate having an aluminum nitride force by a flip chip method, the light emitting element is energized from the electrode formed on the back surface of the aluminum nitride substrate to the internal wiring layer. The light emitting element on the surface side is formed through This simplifies the wiring structure that does not require the wiring to be connected by the wire bonding method on the surface side of the A1N substrate, and does not protrude in the thickness direction of the bonding wire. Thin and compact.
[0021] また、前記プリント配線基板が窒化アルミニウム基板の直下部に貫通穴を備える一 方、この貫通穴に嵌入する凸部を有するヒートシンクを上記窒化アルミニウム基板の 裏面に密着して接合するように構成することにより、発光素子力 発生した熱を、窒 化アルミニウム基板を経由してヒートシンク方向に迅速に放散させることができる。し たがって、熱伝導率が高!ヽ A1N基板の伝熱効果と相乗して発光装置の放熱性を大 幅に高めることができる。  [0021] Further, the printed wiring board has a through hole immediately below the aluminum nitride substrate, while a heat sink having a convex portion fitted into the through hole is closely attached to the back surface of the aluminum nitride substrate. By configuring, heat generated by the light emitting element force can be quickly dissipated in the direction of the heat sink via the aluminum nitride substrate. Therefore, the thermal conductivity is high!相乗 In combination with the heat transfer effect of the A1N substrate, the heat dissipation of the light emitting device can be greatly enhanced.
[0022] さらに、発光素子が搭載される A1N基板表面を鏡面研摩することにより、研摩面で の反射率が高くなり発光素子の接合面側力 の発光が効果的に A1N基板表面側に 反射され、発光強度 (輝度)を実質的に上昇させることができる。なお、鏡面研摩面の 表面粗さは、日本工業規格 CFIS B0601)で規定される算術平均粗さ (Ra)基準で 0 . 3 mRa以下とされる。この表面粗さが 0. 3 mRaを超えるように粗くなると、上記 研摩面での発光の乱反射や吸収が起こり易ぐ発光強度が低下し易くなる。そのため 、上記鏡面研摩面の表面粗さは 0. 3 μ mRa以下とされるが、 0. 1 mRa以下とする ことにより、さらに発光の反射率を高めることができる。 [0023] さらに、発光素子からの光を反射するリフレタターの傾斜面にアルミニウムまたは銀 から成る金属膜を蒸着法やめつき法によって形成することにより、発光装置の正面方 向への発光強度を高めることができる。特に、発光素子からの発光の反射率が 90% 以上である金属膜を傾斜面に形成することにより、発光素子の側方からの発光が効 果的に金属膜によって反射され正面側に反転されるため、 A1N基板表面側への発 光強度 (輝度)をさらに高めることができる。なお、反射率が 90%以上である金属膜と しては、アルミニウムまたは銀力 構成することが好ましい。この金属膜は化学的蒸着 法(CVD法)やスパッタリング法によって、厚さが 1〜5 μ m程度、好ましくは 1〜3 μ mとなるように形成する。なお、上記反射率は、入射光の発光強度に対する反射光の 発光強度の比で与えられる。 [0022] Further, by mirror polishing the surface of the A1N substrate on which the light emitting element is mounted, the reflectance on the polished surface is increased, and the light emitted from the bonding surface side force of the light emitting element is effectively reflected to the A1N substrate surface side. The emission intensity (luminance) can be substantially increased. The surface roughness of the mirror polished surface is 0.3 mRa or less based on the arithmetic average roughness (Ra) standard defined by Japanese Industrial Standard CFIS B0601). When this surface roughness is roughened to exceed 0.3 mRa, the light emission intensity is likely to be lowered, which is likely to cause irregular reflection and absorption of light emission on the polished surface. Therefore, the surface roughness of the mirror-polished surface is set to 0.3 μmRa or less. However, by setting the surface roughness to 0.1 mRa or less, the reflectance of light emission can be further increased. [0023] Furthermore, by forming a metal film made of aluminum or silver on the inclined surface of the reflector that reflects light from the light emitting element by vapor deposition or tacking, the light emission intensity in the front direction of the light emitting device can be increased. Can do. In particular, by forming a metal film having a reflectance of light emission from the light emitting element of 90% or more on the inclined surface, light emitted from the side of the light emitting element is effectively reflected by the metal film and inverted to the front side. Therefore, the light intensity (luminance) toward the A1N substrate surface side can be further increased. The metal film having a reflectance of 90% or more is preferably composed of aluminum or silver. This metal film is formed by chemical vapor deposition (CVD) or sputtering so as to have a thickness of about 1 to 5 μm, preferably 1 to 3 μm. The reflectance is given by the ratio of the emission intensity of reflected light to the emission intensity of incident light.
[0024] また、上記発光装置において、発光素子が搭載される窒化アルミニウム基板の表 面と裏面とを貫通し発光素子に裏面力 導通させるための内部配線層やビアホール を形成することにより、発光素子をフリップチップ法により窒化アルミニウム基板に実 装することが可能になる。このように、発光素子をフリップチップ法で A1N基板に実装 接続することにより、電極板等が不要になるために、発光素子の裏面全面から光を取 り出すことができる。また、発光素子間の配設ピッチを狭小化できるために、発光素 子の実装密度が高まり、発光装置の小型化が実現する。  [0024] Further, in the above light emitting device, by forming an internal wiring layer and a via hole for penetrating the front surface and the back surface of the aluminum nitride substrate on which the light emitting element is mounted and conducting the back surface force to the light emitting element, the light emitting element is formed. Can be mounted on an aluminum nitride substrate by a flip chip method. In this manner, by mounting and connecting the light emitting element to the A1N substrate by the flip chip method, an electrode plate or the like is not necessary, so that light can be extracted from the entire back surface of the light emitting element. Further, since the arrangement pitch between the light emitting elements can be reduced, the mounting density of the light emitting elements is increased, and the light emitting device can be downsized.
[0025] 具体的には、 LEDチップなどの発光素子の接続端部にソルダバンプなどの金属バ ンプを形成し、このバンプをビアホールおよび配線導体端部に設けたランドを介して 、基板の裏面に配置したプリント配線基板の通電配線と接続するフェイスダウン方式 による配線が可能になる。このフェイスダウン方式による配線構造によれば、発光素 子表面の任意の位置力 電極を取り出すことが可能であるため、発光素子と配線導 体とが最短距離で接続可能である上に、電極数が増加しても発光素子としての LED チップのサイズが大型化せず、し力も超薄型実装も可能になる。  Specifically, a metal bump such as a solder bump is formed at a connection end of a light emitting element such as an LED chip, and this bump is formed on the back surface of the substrate via a land provided at a via hole and an end of a wiring conductor. It is possible to perform face-down wiring that connects to the energized wiring of the printed circuit board. According to this face-down wiring structure, any position force electrode on the surface of the light emitting element can be taken out, so that the light emitting element and the wiring conductor can be connected in the shortest distance, and the number of electrodes As the LED increases, the size of the LED chip as a light-emitting element does not increase, and the mounting force and ultra-thin mounting become possible.
[0026] [発明の効果]  [Effect of the invention]
上記構成に係る発光装置によれば、 LEDチップを搭載する基板 (LED用パッケ一 ジ)として、熱伝導率が高 、窒化アルミニウム (A1N)のコファイア基板(同時焼成基板 )を使用しているため、発光装置の放熱性が大幅に高まり、通電限界量が増大し大 電流を流すことが可能になるために、発光輝度を大幅に高くすることが可能になる。 According to the light emitting device having the above configuration, the substrate (LED package) on which the LED chip is mounted has a high thermal conductivity and uses an aluminum nitride (A1N) cofire substrate (co-fired substrate). , The heat dissipation of the light-emitting device is greatly increased, and the current-carrying limit is increased. Since it becomes possible to flow an electric current, it is possible to greatly increase the light emission luminance.
[0027] また、リフレクタ一は A1N基板本体と一体に形成されるものではなぐ予め別体部品 として調製された後に窒化アルミニウム基板表面に接合される。したがって、部品段 階において力卩ェが容易であり、リフレタターの表面の仕上がり粗さ、寸法、反射面の 傾斜角度等について高精度に制御することができ、反射特性に優れたリフレタターが 得られ、発光の取り出し効率を高めることができる。さらに、発光素子をフリップチップ 法で A1N基板に実装接続しているため、発光素子の裏面全面力 光を取り出すこと ができる。また、発光素子間の配設ピッチを狭小化できるために、発光素子の実装密 度が高まり、発光装置の小型化が実現する。  In addition, the reflector 1 is not formed integrally with the A1N substrate body, but is prepared as a separate component in advance and then joined to the surface of the aluminum nitride substrate. Therefore, it is easy to apply force at the parts stage, and the finisher surface roughness, dimensions, reflection surface inclination angle, etc. of the reflector can be controlled with high precision, and a reflector with excellent reflection characteristics can be obtained. The emission efficiency of emitted light can be increased. Furthermore, since the light-emitting element is mounted and connected to the A1N substrate by the flip-chip method, it is possible to extract the entire back surface of the light-emitting element. In addition, since the arrangement pitch between the light emitting elements can be reduced, the mounting density of the light emitting elements is increased, and the light emitting device can be downsized.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 次に本発明に係る発光装置の実施形態について下記実施例および添付図面を参 照してより具体的に説明する。 Next, embodiments of the light emitting device according to the present invention will be described in more detail with reference to the following examples and the accompanying drawings.
[0029] [実施例 1] [0029] [Example 1]
図 1は本発明に係る発光装置の一実施形態を示す断面図である。すなわち、本実 施形態に係る発光装置 11は、窒化アルミニウム力 成る同時焼成基板 (A1N多層基 板) 13の表面に 3個の発光素子としての LEDチップ 15がフリップチップ法により実装 された発光装置 11であり、上記発光素子としての LEDチップ 15からの発光を正面方 向に反射する傾斜面 14を有するコバール製のリフレタター 16が、上記 LEDチップ 1 5の周囲を取り囲むように窒化アルミニウム基板 13表面に半田接合されて配置されて いる。  FIG. 1 is a sectional view showing an embodiment of a light emitting device according to the present invention. That is, the light-emitting device 11 according to this embodiment is a light-emitting device in which three LED chips 15 as light-emitting elements are mounted on the surface of a co-fired substrate (A1N multilayer substrate) 13 made of aluminum nitride by the flip-chip method. The Kovar reflector 16 having an inclined surface 14 that reflects light emitted from the LED chip 15 as the light emitting element in the front direction surrounds the LED chip 15 so that the surface of the aluminum nitride substrate 13 Solder-bonded to each other.
[0030] 上記同時焼成基板 (A1N多層基板) 13としては、熱伝導率が 200W/m'Kであり、 縦 5mm X横 5mm X厚さ 0. 5mmの 2層同時焼成の A1N多層基板を用いた。  [0030] As the above co-fired substrate (A1N multi-layer substrate) 13, the thermal conductivity is 200W / m'K, and the two-layer co-fired A1N multi-layer substrate of length 5mm x width 5mm x thickness 0.5mm is used. It was.
[0031] また、窒化アルミニウム基板 13の裏面外周部に設置された電極パッド 17に配線が 接続されるプリント配線基板 19が窒化アルミニウム基板 13の裏面に配置される。窒 化アルミニウム基板 13の表面側にはフリップチップ接続用の電極パッドが形成され、 この電極パッドは、窒化アルミニウム基板 13の内部配線層 12までビアホールを介し て導通されている。内部配線層 12は、 A1N基板 13中央部の電極パッドから A1N基 板外周部まで引き回してあり、 A1N基板 13の裏面の外周部に、プリント配線基板 19 接続用の電極パッド 17が形成されている。窒化アルミニウム基板 13の表面のフリップ チップ接続用電極パッドには、 Au, A1,半田から成るバンプが形成され、このバンプ を介して LEDチップが接合される。プリント配線基板 19には、 A1N基板 13裏面の外 周部に形成された電極パッド位置に対応した配線が形成されており、この配線と A1N 基板 13の電極部とが半田により接合されている。こうして、上記プリント配線基板 19 力も電極パッド 17、ビアホール、内部配線層 12を経由して LEDチップ 15に給電する ように構成されている。 In addition, a printed wiring board 19 whose wiring is connected to the electrode pads 17 provided on the outer peripheral portion of the back surface of the aluminum nitride substrate 13 is disposed on the back surface of the aluminum nitride substrate 13. An electrode pad for flip chip connection is formed on the surface side of the aluminum nitride substrate 13, and this electrode pad is conducted to the internal wiring layer 12 of the aluminum nitride substrate 13 through a via hole. The internal wiring layer 12 is routed from the electrode pad at the center of the A1N board 13 to the outer periphery of the A1N board. Connection electrode pads 17 are formed. Bumps made of Au, A1, and solder are formed on the flip chip connecting electrode pads on the surface of the aluminum nitride substrate 13, and the LED chip is bonded via the bumps. On the printed wiring board 19, wiring corresponding to electrode pad positions formed on the outer peripheral portion of the back surface of the A1N substrate 13 is formed, and this wiring and the electrode portion of the A1N substrate 13 are joined by solder. Thus, the printed wiring board 19 is also supplied with power to the LED chip 15 via the electrode pad 17, via hole, and internal wiring layer 12.
[0032] さらに、プリント配線基板 19は窒化アルミニウム基板 13の直下部に貫通口 20を備 え、 A1N基板 13の裏面が貫通口 20に露出している。この貫通口 20に嵌入する凸部 21aを有する銅製のヒートシンク 21が上記窒化アルミニウム基板 13の裏面に、放熱 グリースまたは半田を介して密着するように接合されている。 LEDチップ 15の上部で リフレタター 16の内部空間には、 LEDチップ 15からの発光によって所定の波長光を 発する蛍光体 22およびモールド榭脂 18が充填されている。  Further, the printed wiring board 19 has a through hole 20 immediately below the aluminum nitride substrate 13, and the back surface of the A1N substrate 13 is exposed to the through hole 20. A copper heat sink 21 having a convex portion 21a that fits into the through hole 20 is joined to the back surface of the aluminum nitride substrate 13 so as to be in close contact with heat radiating grease or solder. In the upper part of the LED chip 15, the internal space of the reflector 16 is filled with a phosphor 22 that emits light of a predetermined wavelength by light emission from the LED chip 15 and a mold resin 18.
[0033] 上記構成に係る発光装置において、プリント配線基板 19から電極パッド 17、ビアホ ール、内部配線層 12を介して LEDチップ 15に通電されると、 LEDチップ 15が発光 し、さらにこの発光が蛍光体 22に照射されることにより、特定波長の光が放射される。  In the light emitting device according to the above configuration, when the LED chip 15 is energized from the printed wiring board 19 through the electrode pad 17, via hole, and internal wiring layer 12, the LED chip 15 emits light, and this light emission Is irradiated onto the phosphor 22 to emit light of a specific wavelength.
[0034] このとき、 LEDチップ 15の側面から放出された光は、リフレタター 16の傾斜面 14に おいて反射し、正面方向に放射される。また、 LEDチップ 15が搭載される窒化アルミ -ゥム基板 13の表面が 0. 3 mRa以下の表面粗さを有するように鏡面研摩されて いる場合には、 LEDチップ 15の背面方向に放出された光が窒化アルミニウム基板 1 3の表面で反射する。そのため、発光装置 11の正面方向に放射される光の輝度を増 カロさせることができる。  At this time, the light emitted from the side surface of the LED chip 15 is reflected by the inclined surface 14 of the reflector 16 and is emitted in the front direction. In addition, when the surface of the aluminum nitride substrate 13 on which the LED chip 15 is mounted is mirror-polished so as to have a surface roughness of 0.3 mRa or less, it is emitted toward the back surface of the LED chip 15. The reflected light is reflected on the surface of the aluminum nitride substrate 13. Therefore, the brightness of the light emitted in the front direction of the light emitting device 11 can be increased.
[0035] 一方、発熱した LEDチップ 15から放出された熱は、窒化アルミニウム基板 13を経 由してヒートシンク 21方向に迅速に放散させることができる。したがって、熱伝導率が 高い A1N基板 13の伝熱効果と相乗して発光装置 11の放熱性を大幅に高めることが できる。  On the other hand, the heat released from the heated LED chip 15 can be quickly dissipated in the direction of the heat sink 21 via the aluminum nitride substrate 13. Therefore, in combination with the heat transfer effect of the A1N substrate 13 having high thermal conductivity, the heat dissipation of the light emitting device 11 can be greatly enhanced.
[0036] なお、本実施例においては、リフレタター 16はコバール合金で形成されているため に、傾斜面 14は極めて平滑に形成でき光の反射機能は十分である。しかしながら、 この傾斜面 14に、銀 (Ag)またはアルミニウム (A1)から成る金属膜を化学蒸着法等 によって形成することにより、リフレタター 16における光の反射特性をより高めることが できる。 In the present embodiment, since the reflector 16 is made of a Kovar alloy, the inclined surface 14 can be formed extremely smoothly and has a sufficient light reflection function. However, By forming a metal film made of silver (Ag) or aluminum (A1) on the inclined surface 14 by chemical vapor deposition or the like, the light reflection characteristics of the reflector 16 can be further enhanced.
[0037] 上記本実施例に係る発光装置 11によれば、 LEDチップ 15を搭載する基板 (LED 用パッケージ)として、熱伝導率が高い窒化アルミニウム (A1N)のコファイア基板(同 時焼成基板) 13を使用しているため、発光装置 10の放熱性が大幅に高まり、 LEDチ ップの通電限界量が増大し大電流を流すことが可能になるために、発光輝度を大幅 に高くすることが可能になった。  [0037] According to the light-emitting device 11 according to this example, the aluminum chip (A1N) cofire substrate (simultaneously fired substrate) with high thermal conductivity is used as the substrate (LED package) on which the LED chip 15 is mounted. Therefore, the heat dissipation of the light-emitting device 10 is greatly increased, the current limit of the LED chip is increased, and a large current can flow. It became possible.
[0038] また、リフレタター 16は A1N基板本体と一体に形成されるものではなぐ予め別体 部品として調製された後に窒化アルミニウム基板 13表面に接合される。したがって、 部品段階での加工により、リフレタター 16の表面の仕上がり粗さ、寸法、傾斜面 (光 反射面) 14の傾斜角度等について高精度に制御することができ、反射特性に優れた リフレタター 16が得られ、発光の取り出し効率を高めることができた。  [0038] The reflector 16 is not formed integrally with the A1N substrate body, but is prepared as a separate component in advance and then joined to the surface of the aluminum nitride substrate 13. Therefore, by processing at the component stage, the finish roughness, dimensions, inclination angle of the inclined surface (light reflecting surface) 14, etc. can be controlled with high precision, and the reflector 16 with excellent reflection characteristics can be obtained. As a result, it was possible to increase the light emission efficiency.
[0039] さらに、 LEDチップ 15をフリップチップ法で A1N基板 13に実装接続しているため、 LEDチップ 15の裏面全面力も光を取り出すことができた。また、 LEDチップ 15間の 配設ピッチを狭小化できるために、 LEDチップ 15の実装密度が高まり、発光装置 11 の小型化が実現した。  Furthermore, since the LED chip 15 is mounted and connected to the A1N substrate 13 by the flip chip method, the entire back surface force of the LED chip 15 can extract light. Further, since the arrangement pitch between the LED chips 15 can be reduced, the mounting density of the LED chips 15 is increased, and the light emitting device 11 is downsized.
[0040] また、前記窒化アルミニウム基板 13の裏面外周部に設置された電極パッド 17に配 線が接続されるプリント配線基板 19を窒化アルミニウム基板 13の裏面に配置し、上 記プリント配線基板 19から窒化アルミニウム基板 13の内部配線層 12を経由して LE Dチップ 15に給電するように構成することにより、 LEDチップ 15の正面側に配線層 や電極が配置されることがなぐ光の遮断が解消するので発光輝度を高めることがで きる。  In addition, a printed wiring board 19 whose wiring is connected to the electrode pad 17 provided on the outer periphery of the back surface of the aluminum nitride substrate 13 is disposed on the back surface of the aluminum nitride substrate 13, and from the printed wiring board 19. By configuring the power supply to the LED chip 15 via the internal wiring layer 12 of the aluminum nitride substrate 13, the blocking of light without the wiring layer or electrode being placed on the front side of the LED chip 15 is eliminated. As a result, the luminance can be increased.
[0041] さらに、窒化アルミニウム力も成る同時焼成基板 13の表面に LEDチップ 15がフリツ プチップ法により実装される構造であるため、 LEDチップ 15への通電は窒化アルミ -ゥム基板 13の裏面に形成された電極パッド 17から内部配線層 12を介して表面側 の LEDチップ 15になされる。そのため、 A1N基板 13の表面側においてワイヤボンデ イング法によって配線を接続する必要がなぐ配線構造が簡素化される上に、ボンデ イングワイヤの厚さ方向への突出がないため、発光装置 11を薄く小型に形成できた。 [0041] Furthermore, since the LED chip 15 is mounted on the surface of the co-fired substrate 13 that also has aluminum nitride force by the flip chip method, the current to the LED chip 15 is formed on the back surface of the aluminum nitride substrate 13. The electrode pads 17 are applied to the LED chip 15 on the surface side through the internal wiring layer 12. This simplifies the wiring structure that eliminates the need to connect the wires by the wire bonding method on the surface side of the A1N substrate 13, and also provides a bonder. Since there is no protrusion in the thickness direction of the ing wire, the light emitting device 11 can be formed thin and small.
[0042] また、前記プリント配線基板 19が窒化アルミニウム基板 13の直下部に貫通穴 20を 備える一方、この貫通穴 20に嵌入する凸部 21aを有するヒートシンク 21を上記窒化 アルミニウム基板 13の裏面に密着接合するように構成することにより、 LEDチップ 15 から発生した熱を、窒化アルミニウム基板 13を経由してヒートシンク 21方向に迅速に 放散させることができる。したがって、熱伝導率が高い A1N基板 13の伝熱効果と相乗 して発光装置 11の放熱性を大幅に高めることができた。 The printed wiring board 19 has a through hole 20 immediately below the aluminum nitride substrate 13, and a heat sink 21 having a convex portion 21 a fitted into the through hole 20 is in close contact with the back surface of the aluminum nitride substrate 13. By being configured to be bonded, the heat generated from the LED chip 15 can be quickly dissipated toward the heat sink 21 via the aluminum nitride substrate 13. Therefore, in combination with the heat transfer effect of the A1N substrate 13 having a high thermal conductivity, the heat dissipation of the light emitting device 11 could be greatly improved.
[0043] [実施例 2] [0043] [Example 2]
図 1に示すレフレクター 16の傾斜面 14に、さらに銀 (Ag)力も成る厚さ 2 mの金属 膜 23をめつき法によって形成した点以外は実施例 1と同様に処理して実施例 2に係 る発光装置を調製した。  Example 2 is the same as Example 1 except that a 2 m thick metal film 23 having a silver (Ag) force is formed on the inclined surface 14 of the reflector 16 shown in FIG. A light emitting device was prepared.
[0044] [実施例 3] [0044] [Example 3]
図 1に示すヒートシンク 21を装着しない点以外は実施例 1と同様に処理して実施例 3に係る発光装置を調製した。  A light emitting device according to Example 3 was prepared in the same manner as in Example 1 except that the heat sink 21 shown in FIG.
[0045] [実施例 4] [0045] [Example 4]
図 1に示す凸部 21aを有しない平板状のヒートシンク 21を、貫通穴を形成しないプ リント配線基板を介して A1N基板 13に接合した点以外は実施例 1と同様に処理して 実施例 4に係る発光装置を調製した。  A flat heat sink 21 having no protrusion 21a shown in FIG. 1 is processed in the same manner as in Example 1 except that it is joined to the A1N substrate 13 through a printed wiring board that does not form a through hole. Example 4 A light emitting device according to was prepared.
[0046] 上記のように調製した各実施例に係る 10個ずつの発光装置の熱抵抗値、 LED通 電限界量および発光輝度をそれぞれ測定して得た平均値を下記表 1に示す。 [0046] Table 1 below shows the average values obtained by measuring the thermal resistance values, the LED conduction limit amounts, and the light emission luminances of ten light emitting devices according to the respective examples prepared as described above.
[表 1]  [table 1]
[0047] 上記表 1に示す結果から明らかなように、レフレクター 16の傾斜面 14に、さらに銀( Ag)から成る金属膜 23を形成した実施例 2に係る発光装置によれば、実施例 1と比 較してさらに傾斜面 14における光の反射率が高まり発光輝度が 10〜20%向上する ことが判明した。 [0047] As is clear from the results shown in Table 1 above, the inclined surface 14 of the reflector 16 further has silver ( According to the light emitting device according to Example 2 in which the metal film 23 made of (Ag) is formed, the light reflectance at the inclined surface 14 is further increased and the light emission luminance is improved by 10 to 20% as compared with Example 1. There was found.
[0048] また、ヒートシンク 21を装着しない実施例 3に係る発光装置においては、実施例 1 〜2と比較して熱抵抗値が 18倍も上昇し、 LED通電限界量および発光輝度が相対 的に低下した。  [0048] In addition, in the light emitting device according to Example 3 in which the heat sink 21 is not attached, the thermal resistance value is increased 18 times compared to Examples 1 and 2, and the LED energization limit amount and the light emission luminance are relatively high. Declined.
[0049] 一方、凸部 21aを有しない平板状のヒートシンク 21を、平板状のプリント配線基板を 介して A1N基板 13に積層した実施例 4に係る発光装置においては、ヒートシンクが A IN基板に直接接触しないために、熱抵抗値が大きくなり、発光輝度も相対的に低下 した。  [0049] On the other hand, in the light emitting device according to Example 4 in which the flat heat sink 21 having no protrusion 21a is stacked on the A1N substrate 13 via the flat printed wiring board, the heat sink is directly on the A IN substrate. Since they were not in contact with each other, the thermal resistance value increased and the light emission luminance also decreased relatively.
[0050] [実施例 5]  [0050] [Example 5]
上記実施例 1〜2に係る発光装置を照明器具本体に組み付け、さらに器具本体に 点灯装置を配設することにより照明器具を調製した。各照明器具は優れた放熱特性 を有し、より大きな電流 (LED通電可能限界量)を流すことが可能になり、発光効率 が高く輝度を大幅に増加させることが可能になることが確認された。  A light fixture was prepared by assembling the light emitting device according to Examples 1 and 2 above to a lighting fixture body, and further arranging a lighting device on the fixture body. It was confirmed that each lighting fixture has excellent heat dissipation characteristics, can pass a larger current (the limit of LED energization), has high luminous efficiency, and can greatly increase brightness. .
[0051] なお、上記図 1に示すような発光装置を縦方向または横方向に複数個列状に配置 することにより線発光光源が得られる一方、複数の発光装置を縦横に 2次元的に配 置することにより面発光光源が効果的に得られた。  [0051] It should be noted that a linear light source can be obtained by arranging a plurality of light emitting devices as shown in FIG. 1 in rows or columns in the vertical or horizontal direction, while a plurality of light emitting devices are arranged two-dimensionally in the vertical and horizontal directions. Thus, a surface-emitting light source was obtained effectively.
[0052] [実施例 6]  [0052] [Example 6]
液晶表示装置 (LCD)本体と、この装置本体に実施例 1〜2に係る発光装置をバッ クライトとして配設することにより液晶表示装置を組み立てた。各液晶表示装置 (LCD )は、発光装置の基板として放熱性に優れた A1N基板を使用しているために、より大 きな電流 (LED通電可能限界量)を流すことが可能になり、発光効率が高く表示装置 の輝度を大幅に増加させることが可能になった。  A liquid crystal display device was assembled by arranging a liquid crystal display device (LCD) main body and the light emitting device according to Examples 1 and 2 as a backlight on the main body of the device. Each liquid crystal display (LCD) uses an A1N substrate with excellent heat dissipation as the substrate of the light-emitting device. It is highly efficient and the brightness of the display device can be greatly increased.
[0053] なお、上記各実施例では熱伝導率が 200W/m'Kの A1N多層基板を使用した例 で説明して 、るが、熱伝導率が 170W/m · Kおよび 230W/m · Kの A1N基板を使用 した場合にも、優れた放熱特性および発光特性が得られた。ちなみに熱伝導率が 17 OW/m · Kの A1N基板を使用した場合と比較して、熱伝導率が 200W/m · Kおよび 2 30W/m'Kの A1N基板を使用した場合には、熱抵抗が 20〜30%程度減少し、通電 限界量および発光輝度も 20〜30%程度大幅に増加させることができた。 [0053] In each of the above embodiments, an example in which an A1N multilayer substrate having a thermal conductivity of 200 W / m'K is used is described. However, the thermal conductivity is 170 W / m · K and 230 W / m · K. Even with the A1N substrate, excellent heat dissipation and light emission characteristics were obtained. By the way, compared to the case of using an A1N substrate with a thermal conductivity of 17 OW / m · K, the thermal conductivity is 200 W / m · K and 2 When the 30W / m'K A1N substrate was used, the thermal resistance was reduced by about 20-30%, and the current-carrying limit and emission luminance could be increased by about 20-30%.
産業上の利用可能性  Industrial applicability
[0054] 上述したように本発明に係る発光装置によれば、 LEDチップを搭載する基板 (LE D用パッケージ)として、熱伝導率が高!ヽ窒化アルミニウム (A1N)のコファイア基板 ( 同時焼成基板)を使用しているため、発光装置の放熱性が大幅に高まり、通電限界 量が増大し大電流を流すことが可能になるために、発光輝度を大幅に高くすることが 可會 になる。 [0054] As described above, according to the light emitting device of the present invention, the substrate (LED package) on which the LED chip is mounted has high thermal conductivity! Aluminum nitride (A1N) cofire substrate (co-fired substrate) ) Is used, the heat dissipation of the light emitting device is greatly increased, the current supply limit is increased, and a large current can flow. Therefore, the light emission luminance can be significantly increased.
[0055] また、リフレクタ一は A1N基板本体と一体に形成されるものではなぐ予め別体部品 として調製された後に窒化アルミニウム基板表面に接合される。したがって、部品段 階において力卩ェが容易であり、リフレタターの表面の仕上がり粗さ、寸法、反射面の 傾斜角度等について高精度に制御することができ、反射特性に優れたリフレタターが 得られ、発光の取り出し効率を高めることができる。さらに、発光素子をフリップチップ 法で A1N基板に実装接続しているため、発光素子の裏面全面力 光を取り出すこと ができる。また、発光素子間の配設ピッチを狭小化できるために、発光素子の実装密 度が高まり、発光装置の小型化が実現する。  Further, the reflector 1 is not formed integrally with the A1N substrate body, but is prepared as a separate component in advance and then joined to the surface of the aluminum nitride substrate. Therefore, it is easy to apply force at the parts stage, and the finisher surface roughness, dimensions, reflection surface inclination angle, etc. of the reflector can be controlled with high precision, and a reflector with excellent reflection characteristics can be obtained. The emission efficiency of emitted light can be increased. Furthermore, since the light-emitting element is mounted and connected to the A1N substrate by the flip-chip method, it is possible to extract the entire back surface of the light-emitting element. In addition, since the arrangement pitch between the light emitting elements can be reduced, the mounting density of the light emitting elements is increased, and the light emitting device can be downsized.
図面の簡単な説明  Brief Description of Drawings
[0056] [図 1]本発明に係る発光装置の一実施例を示す断面図。 FIG. 1 is a cross-sectional view showing an embodiment of a light emitting device according to the present invention.
[図 2]従来の発光装置の構成例を示す断面図。  FIG. 2 is a cross-sectional view illustrating a configuration example of a conventional light emitting device.

Claims

請求の範囲 The scope of the claims
[1] 窒化アルミニウム力 成る同時焼成基板の表面に少なくとも 1個の発光素子がフリツ プチップ法により実装された発光装置であり、上記発光素子からの発光を正面方向 に反射する傾斜面を有するリフレタターが、上記発光素子の周囲を取り囲むように窒 化アルミニウム基板表面に接合されていることを特徴とする発光装置。  [1] A light-emitting device in which at least one light-emitting element is mounted on a surface of a co-fired substrate made of aluminum nitride by a flip chip method, and a reflector having an inclined surface that reflects light emitted from the light-emitting element in a front direction. A light-emitting device characterized by being bonded to the surface of the aluminum nitride substrate so as to surround the light-emitting element.
[2] 請求項 1記載の発光装置において、前記窒化アルミニウム基板の裏面外周部に設 置された電極に配線が接続されるプリント配線基板を窒化アルミニウム基板の裏面に 配置し、上記プリント配線基板力ゝら窒化アルミニウム基板の内部配線層を経由して発 光素子に給電するように構成したことを特徴とする発光装置。  [2] The light-emitting device according to claim 1, wherein a printed wiring board in which wiring is connected to an electrode disposed on the outer periphery of the back surface of the aluminum nitride substrate is disposed on the back surface of the aluminum nitride substrate, In addition, the light emitting device is configured to supply power to the light emitting element through the internal wiring layer of the aluminum nitride substrate.
[3] 請求項 2記載の発光装置において、前記プリント配線基板は窒化アルミニウム基板 の直下部に貫通穴を備える一方、この貫通穴に嵌入する凸部を有するヒートシンクが 上記窒化アルミニウム基板の裏面に密着接合されていることを特徴とする発光装置。  [3] The light-emitting device according to claim 2, wherein the printed wiring board has a through hole immediately below the aluminum nitride substrate, and a heat sink having a convex portion fitted into the through hole is in close contact with the back surface of the aluminum nitride substrate. A light-emitting device which is bonded.
[4] 請求項 1記載の発光装置において、前記発光素子が搭載される窒化アルミニウム 基板の表面が 0. 3 μ mRa以下の表面粗さを有するように鏡面研摩されて 、ることを 特徴とする発光装置。  [4] The light-emitting device according to claim 1, wherein the surface of the aluminum nitride substrate on which the light-emitting element is mounted is mirror-polished so as to have a surface roughness of 0.3 μmRa or less. Light emitting device.
[5] 請求項 1記載の発光装置において、前記リフレタターの傾斜面にアルミニウムまた は銀から成る金属膜が形成されていることを特徴とする発光装置。  5. The light emitting device according to claim 1, wherein a metal film made of aluminum or silver is formed on the inclined surface of the reflector.
[6] 器具本体と、 ヽし 4の ヽずれか 1項記載の発光装 置と、器具本体に配設された点灯装置とを具備していることを特徴とする照明器具。 [6] The instrument body; A light fixture comprising the light emitting device according to claim 1 and a lighting device disposed on the fixture body.
[7] 液晶表示装置本体と、この装置本体に配設された請求項 1な 、し 4の 、ずれか 1項 記載の発光装置とを具備していることを特徴とする液晶表示装置。  [7] A liquid crystal display device comprising: a liquid crystal display device main body; and the light-emitting device according to any one of claims 1 and 4 disposed in the device main body.
PCT/JP2005/018083 2004-10-04 2005-09-30 Light emitting device, lighting equipment or liquid crystal display device using such light emitting device WO2006038543A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/576,533 US7812360B2 (en) 2004-10-04 2005-09-30 Light emitting device, lighting equipment or liquid crystal display device using such light emitting device
EP05788119A EP1806789B1 (en) 2004-10-04 2005-09-30 Lighting apparatus comprising light emitting diodes and liquid crystal display comprising the lighting apparatus
CN200580033649.2A CN101036238B (en) 2004-10-04 2005-09-30 Light emitting device, lighting equipment or liquid crystal display device using such light emitting device
JP2006539258A JP4960099B2 (en) 2004-10-04 2005-09-30 Light emitting device and lighting apparatus or liquid crystal display device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-291608 2004-10-04
JP2004291608 2004-10-04

Publications (3)

Publication Number Publication Date
WO2006038543A2 true WO2006038543A2 (en) 2006-04-13
WO2006038543A1 WO2006038543A1 (en) 2006-04-13
WO2006038543A3 WO2006038543A3 (en) 2006-05-26

Family

ID=

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299879A (en) * 2006-04-28 2007-11-15 Stanley Electric Co Ltd Semiconductor light emitting device
WO2010007781A1 (en) * 2008-07-17 2010-01-21 株式会社 東芝 Light emitting device, backlight using the device, liquid crystal display device, and illumination device
JP2010027955A (en) * 2008-07-23 2010-02-04 Stanley Electric Co Ltd Optical semiconductor device module
JPWO2010150824A1 (en) * 2009-06-24 2012-12-10 古河電気工業株式会社 Optical semiconductor device lead frame, optical semiconductor device lead frame manufacturing method, and optical semiconductor device
JP2018503984A (en) * 2015-05-27 2018-02-08 深▲セン▼市華星光電技術有限公司 Light emitting device assembly structure
JPWO2017017885A1 (en) * 2015-07-24 2018-07-05 日本電気株式会社 Mounting structure, manufacturing method of mounting structure, and radio
JP2020107708A (en) * 2018-12-27 2020-07-09 デンカ株式会社 Phosphor substrate manufacturing method, light emitting substrate manufacturing method, and lighting device manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498355B1 (en) 2001-10-09 2002-12-24 Lumileds Lighting, U.S., Llc High flux LED array
US20040041222A1 (en) 2002-09-04 2004-03-04 Loh Ban P. Power surface mount light emitting die package
WO2004084319A1 (en) 2003-03-18 2004-09-30 Sumitomo Electric Industries Ltd. Light emitting element mounting member, and semiconductor device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498355B1 (en) 2001-10-09 2002-12-24 Lumileds Lighting, U.S., Llc High flux LED array
US20040041222A1 (en) 2002-09-04 2004-03-04 Loh Ban P. Power surface mount light emitting die package
WO2004084319A1 (en) 2003-03-18 2004-09-30 Sumitomo Electric Industries Ltd. Light emitting element mounting member, and semiconductor device using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1806789A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299879A (en) * 2006-04-28 2007-11-15 Stanley Electric Co Ltd Semiconductor light emitting device
TWI467794B (en) * 2006-04-28 2015-01-01 Stanley Electric Co Ltd Light emitting semiconductor apparatus
WO2010007781A1 (en) * 2008-07-17 2010-01-21 株式会社 東芝 Light emitting device, backlight using the device, liquid crystal display device, and illumination device
US8174180B2 (en) 2008-07-17 2012-05-08 Kabushiki Kaisha Toshiba Light-emitting device having scattering reflector with preset square average inclination
JP5773649B2 (en) * 2008-07-17 2015-09-02 株式会社東芝 LIGHT EMITTING DEVICE AND BACKLIGHT, LIQUID CRYSTAL DISPLAY DEVICE AND LIGHTING DEVICE USING THE SAME
JP2010027955A (en) * 2008-07-23 2010-02-04 Stanley Electric Co Ltd Optical semiconductor device module
JPWO2010150824A1 (en) * 2009-06-24 2012-12-10 古河電気工業株式会社 Optical semiconductor device lead frame, optical semiconductor device lead frame manufacturing method, and optical semiconductor device
JP2018503984A (en) * 2015-05-27 2018-02-08 深▲セン▼市華星光電技術有限公司 Light emitting device assembly structure
JPWO2017017885A1 (en) * 2015-07-24 2018-07-05 日本電気株式会社 Mounting structure, manufacturing method of mounting structure, and radio
US10506702B2 (en) 2015-07-24 2019-12-10 Nec Corporation Mounting structure, method for manufacturing mounting structure, and radio device
JP2020107708A (en) * 2018-12-27 2020-07-09 デンカ株式会社 Phosphor substrate manufacturing method, light emitting substrate manufacturing method, and lighting device manufacturing method

Also Published As

Publication number Publication date
TWI295860B (en) 2008-04-11
JP4960099B2 (en) 2012-06-27
CN101036238B (en) 2014-01-08
CN101036238A (en) 2007-09-12
KR100867970B1 (en) 2008-11-11
US7812360B2 (en) 2010-10-12
WO2006038543A3 (en) 2006-05-26
KR20070089784A (en) 2007-09-03
EP1806789A2 (en) 2007-07-11
US20070247855A1 (en) 2007-10-25
EP1806789A4 (en) 2009-09-02
JPWO2006038543A1 (en) 2008-05-15
TW200616265A (en) 2006-05-16
EP1806789B1 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4960099B2 (en) Light emitting device and lighting apparatus or liquid crystal display device using the same
US7772609B2 (en) LED package with structure and materials for high heat dissipation
US7473933B2 (en) High power LED package with universal bonding pads and interconnect arrangement
US7670872B2 (en) Method of manufacturing ceramic LED packages
JP4818215B2 (en) Light emitting device
US9653663B2 (en) Ceramic LED package
JP5140711B2 (en) LED package die with one small footprint
US20050116235A1 (en) Illumination assembly
JPWO2006046655A1 (en) Light-emitting element mounting substrate, light-emitting element storage package, light-emitting device, and lighting device
JP3872490B2 (en) Light emitting element storage package, light emitting device, and lighting device
KR20060042215A (en) Light-emitting apparatus and illuminating apparatus
JP2007096285A (en) Light emitting device mounting substrate, light emitting device accommodating package, light emitting device and lighting device
JP4659515B2 (en) Light-emitting element mounting substrate, light-emitting element storage package, light-emitting device, and lighting device
JP2005150408A (en) Light source apparatus and package for mounting light emitting element
JP4557613B2 (en) Light emitting element storage package, light emitting device, and lighting device
JP2005039193A (en) Package for housing light emitting element, light emitting device, and luminair
KR102085649B1 (en) Overlay circuit structure for interconnecting light emitting semiconductors
JP4480736B2 (en) Light emitting device
KR101163645B1 (en) High power led module and method for manufacturing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006539258

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005788119

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580033649.2

Country of ref document: CN

Ref document number: 11576533

Country of ref document: US

Ref document number: 1020077007653

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2005788119

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11576533

Country of ref document: US