WO2006038674A1 - Optical transmission apparatus - Google Patents

Optical transmission apparatus Download PDF

Info

Publication number
WO2006038674A1
WO2006038674A1 PCT/JP2005/018552 JP2005018552W WO2006038674A1 WO 2006038674 A1 WO2006038674 A1 WO 2006038674A1 JP 2005018552 W JP2005018552 W JP 2005018552W WO 2006038674 A1 WO2006038674 A1 WO 2006038674A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
unit
signal
spatial light
Prior art date
Application number
PCT/JP2005/018552
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiko Yasue
Satoshi Furusawa
Masaru Fuse
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006038674A1 publication Critical patent/WO2006038674A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1121One-way transmission

Definitions

  • the present invention relates to an optical transmission device that optically transmits a signal, and particularly to an optical transmission device that optically transmits a signal via free space or an optical fiber.
  • an optical transmission device that optically transmits a signal
  • an optical transmission device that transmits an optical signal through a free space
  • an optical transmission device that transmits an optical signal through an optical transmission path
  • Patent Document 1 describes an optical transmission device that transmits an optical signal through free space (FIG. 7 of Patent Document 1).
  • FIG. 17 is a diagram showing a configuration of a conventional optical space transmission device described in Patent Document 1. In FIG.
  • the conventional optical space transmission device described in Patent Document 1 includes an optical transmission unit 700 and an optical reception unit 710.
  • the optical transmitter 700 and the optical receiver 710 are installed so as to face each other.
  • the optical transmitter 700 includes a light source 71 and a condensing optical system 72.
  • the light receiving unit 710 includes a condensing optical system 74 and a light receiving element 75.
  • the light source 71 is composed of a semiconductor laser, for example, and modulates the output intensity of the output light (oscillation light) based on the input signal (data signal) and outputs it as a light beam signal.
  • the condensing optical system 72 is composed of, for example, a lens or the like, expands the light beam diameter, converts the light beam signal into parallel light, and emits it to the free space 73.
  • the condensing optical system 74 is constituted by a lens, for example, and condenses the light beam signal propagated through the free space 73.
  • the light receiving element 75 photoelectrically converts the collected light beam signal and outputs it as an output signal.
  • an optical signal can be transmitted through a free space.
  • Patent Document 2 describes an optical transmission device that optically transmits a signal via a large-diameter optical fiber (FIG. 1 of Patent Document 2).
  • the optical transmitter and the optical receiver are connected via a plastic fiber.
  • the conventional optical transmission device described in Patent Document 2 is the same as the conventional optical transmission device described in Patent Document 1.
  • the optical transmission unit converts the input signal into an optical signal and transmits it.
  • the receiving unit receives an optical signal transmitted through a large-diameter optical fiber as an output signal.
  • an optical signal can be transmitted through a large-diameter optical fiber.
  • Patent Document 1 JP-A-7-221710
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-22643
  • Non-Patent Document 1 JY Law and GP Agrawal, “Mode—Partition Noise in Vertical -Cavity Surface” Emitting Laser), I Tripley 'Photo Nitas' Technology' Letters (IEEE Photonics Technology Letters), VOL. 9, no. 4, April 1997, p43 7-439
  • the modulated light beam signal is radiated into free space. Therefore, since it is relatively easy to intercept and decode the input signal by receiving the light beam signal propagating in space, there is a problem that the secrecy is poor. Also in the conventional optical transmission device described in Patent Document 2, the original input signal can be decoded if a part of the optical signal propagating through the optical transmission line is branched and extracted.
  • an object of the present invention is to provide an optical transmission device that is excellent in secrecy.
  • the present invention is an optical transmission device for transmitting an optical signal modulated by a signal to be transmitted, wherein the output light of the light source is modulated with the signal to obtain an optical beam signal, and the optical beam signal is converted into the optical beam signal.
  • Output light beam output unit and light beam output unit power The output light beam signal is modulated according to a predetermined method (modulation Z demodulation code and control parameters described later) and output as an optical modulation signal.
  • a spatial light modulation unit that demodulates the output optical modulation signal by a method corresponding to a predetermined method and outputs it as an optical demodulation signal, Interferometric light demodulating power
  • the optical light demodulating signal is photoelectrically converted and output as an output signal.
  • the spatial light modulating section outputs an optical beam signal for each predetermined unit space according to a predetermined method. Modulate.
  • the light beam output unit outputs an optical beam signal comprising a plurality of oscillation modes, and the spatial light modulation unit modulates the light beam signal for each oscillation mode according to a predetermined method.
  • the light beam signal is modulated and transmitted by a predetermined method for each unit space.
  • it is necessary to demodulate the optical modulation signal by a method corresponding to the method used for the modulation of the optical modulation signal. Therefore, even if a third party who cannot grasp the method held by the proper receiver intercepts the optical modulation signal, the optical modulation signal cannot be reproduced normally. Therefore, it is possible to provide a highly confidential optical transmission device that prevents eavesdropping by a third party.
  • unpredictable fluctuations occur in the mode distribution ratio distributed to each mode.
  • the light source may be a multimode light source that outputs light having a plurality of oscillation modes.
  • the light beam output unit may include a plurality of light sources, and output light beam signals by modulating output light output from the plurality of light sources.
  • the light beam output unit may include a multimode fiber that emits a light beam signal as a light beam signal composed of a plurality of propagation modes.
  • the spatial light modulation unit may radiate a light modulation signal to free space, and the spatial light demodulation unit may demodulate the light modulation signal propagating in the free space.
  • the optical modulation signal can be transmitted through free space.
  • the spatial light modulator and the spatial light demodulator may be connected via an optical transmission path. Thereby, an optical modulation signal can be transmitted through the optical transmission line.
  • the light source may be a surface emitting laser, or a Fabry-Perot resonator laser. There may be.
  • the light source may be a light emitting diode.
  • the spatial light modulation unit includes a longitudinal mode separation unit that separates the light beam signal into a plurality of longitudinal modes and outputs the separated light beam signal to the spatial light modulation unit.
  • the spatial light modulation unit includes a longitudinal mode multiplexing unit that inputs the output optical decoded signal and multiplexes the longitudinal mode, and the spatial light modulation unit follows a predetermined method for each longitudinal mode separated by the longitudinal mode separation unit. You can modulate the light beam signal.
  • the light beam signal can be separated into a plurality of different longitudinal modes. Therefore, an eavesdropper cannot normally reproduce the intercepted light modulation signal unless it understands both the separated longitudinal mode and the method for demodulating the intercepted light modulation signal. Therefore, confidentiality can be further improved.
  • a mode dispersion detector that detects a mode dispersion characteristic of the optical demodulated signal is provided, and the spatial light demodulator is a characteristic opposite to the mode dispersion characteristic based on the result detected by the mode dispersion detector. Add correction with.
  • the mode dispersion detection unit may detect a delay amount due to mode dispersion.
  • the spatial light demodulator may add a predetermined delay amount for each oscillation mode so as to correct the delay amount due to mode dispersion detected by the mode dispersion detector.
  • the mode dispersion detection unit may detect the amount of loss due to mode dispersion.
  • the spatial light demodulation unit may add a predetermined loss amount for each oscillation mode so as to correct the loss amount due to mode dispersion detected by the mode dispersion detection unit.
  • the spatial light modulation unit may modulate the light beam signal based on a predetermined code, and the spatial light demodulation unit may demodulate the light modulation signal based on a code corresponding to the predetermined code.
  • a predetermined code (modulation code) for the spatial light modulation unit to modulate the light beam signal and a code (demodulation code) corresponding to the predetermined code for the spatial light demodulation unit to demodulate the optical modulation signal
  • a sign changing unit for changing for changing.
  • the modulation code and the demodulation code can be changed every time. Therefore, compared to the case where these codes are always constant, it becomes difficult for an eavesdropper to grasp a method for normally recovering the optical modulation signal, so that the confidentiality can be improved. .
  • the spatial light modulation unit and the spatial light demodulation unit may be configured by a liquid crystal spatial light modulation element, or may be configured by a micromirror device.
  • the spatial light modulator and the spatial light demodulator may be configured by a spatial light modulator using a magneto-optic effect, or by a light modulator using a multiple quantum well effect. Well, okay.
  • the spatial light modulation unit and the spatial light demodulation unit may be configured by a light modulation element using an acousto-optic effect.
  • the spatial light modulation unit may control the intensity of the light beam signal as an example of the control parameter, and the spatial light demodulation unit may control the intensity of the light modulation signal.
  • the spatial light modulation unit may control the phase of the light beam signal
  • the spatial light demodulation unit may control the phase of the light modulation signal
  • the spatial light modulator may control the polarization state of the light beam signal, and the spatial light demodulator may control the polarization state of the light modulation signal.
  • an optical transmission apparatus excellent in secrecy is provided.
  • FIG. 1 is a diagram showing a configuration of an optical transmission apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of the optical transmission apparatus shown in FIG.
  • FIG. 3A is a diagram showing the light intensity of the light beam signal output from the multimode light source 11 for each oscillation mode.
  • FIG. 3B is a diagram showing an example of a modulation code (spreading code) used for optical modulation processing.
  • FIG. 3C is a diagram showing an example of a demodulated code (despread code) used in the optical demodulation process.
  • FIG. 3D is a diagram showing a mode distribution ratio in an optical demodulated signal output from the spatial light demodulator 15.
  • FIG. 3E is a diagram showing the sum of the spreading code and the despreading code for each mode.
  • FIG. 3F is a diagram showing, for each mode order, the light intensity of the light modulation signal when the light modulation signal radiated from the spatial light modulation unit 13 to the free space 14 is directly received.
  • FIG. 4 is a diagram showing an example of a noise distribution (frequency characteristic) of an output signal output from the light receiving unit 17.
  • FIG. 5A is a diagram showing the optical power density of a light beam signal output from a general light source.
  • FIG. 5B is a diagram showing a configuration of the nth-order mode modulation element 13-n according to the present embodiment.
  • FIG. 5C is a diagram showing the optical power density of the optical modulation signal output from the optical spatial modulation unit 13.
  • FIG. 6A is a diagram showing a configuration of the spatial light modulator 13 when the modulation elements are two-dimensionally arranged.
  • FIG. 6B is a diagram showing a configuration of the spatial light modulation unit 13 in the case where the modulation element power corresponding to each oscillation mode is used.
  • FIG. 7A is a diagram showing a configuration of the multimode light source 11 described in the present embodiment.
  • FIG. 7B is a diagram showing a configuration of a light source when the light source is composed of a single mode light source 51 and a multimode fiber 52.
  • FIG. 7C is a diagram showing a configuration of a light source when the light source also has an array type light source power. is there.
  • FIG. 8 is a diagram showing a configuration of an optical transmission device 2 according to the second embodiment of the present invention.
  • FIG. 9 is a diagram showing a configuration of an optical transmission apparatus according to a third embodiment of the present invention.
  • FIG. 10 is a block diagram showing a configuration of the optical transmission apparatus shown in FIG.
  • FIG. 11A is a diagram showing the light intensity of the light beam signal output from the single mode light source 21.
  • FIG. 11B is a diagram showing an example of a modulation code (spreading code) used for optical modulation processing.
  • FIG. 11C is a diagram showing an example of a demodulated code (despread code) used for optical demodulation processing assigned to each spatial region.
  • FIG. 11D is a diagram showing the light intensity of the optical demodulated signal output from the spatial light demodulator 15.
  • FIG. 11E is a diagram showing the sum of the spatial regions of the spreading code and the despreading code.
  • FIG. 11F is a diagram showing the light intensity of the light modulation signal for each spatial region when the light modulation signal radiated from the spatial light modulation unit 13 to the free space 14 is directly received.
  • FIG. 12 is a block diagram showing a configuration of an optical transmission apparatus according to a fourth embodiment of the present invention.
  • FIG. 13A is a diagram illustrating an arrangement example of the n′m-order mode modulation elements 13-nm when the longitudinal mode separation unit 22 separates and outputs the light beam signal in the lateral direction.
  • FIG. 13B is a diagram showing an arrangement example of n′m-th order mode spatial light modulation elements 13-nm when the longitudinal mode separation unit 22 separates and outputs the light beam signal.
  • FIG. 14A is a diagram showing the light intensity of the light beam signal output from the longitudinal mode separation unit 22 for each mode.
  • FIG. 14B is a diagram showing an example of a modulation code corresponding to the optical modulation processing performed in each mode.
  • FIG. 14C is a diagram showing an example of a demodulation code corresponding to the optical demodulation processing performed in each mode.
  • FIG. 14D shows the mode components in the optical demodulated signal output from the spatial light demodulator 15b. It is a figure which shows a distribution ratio.
  • FIG. 14E is a diagram showing the sum of the spreading code and the despreading code for each mode.
  • FIG. 14F is a diagram showing the light intensity of the light modulation signal for each mode order when the light modulation signal radiated from the spatial light modulation unit 13b to the free space 14 is directly received.
  • FIG. 15 is a block diagram showing a configuration of an optical transmission apparatus according to a fifth embodiment of the present invention.
  • FIG. 16 is a block diagram showing a configuration of an optical transmission apparatus according to a sixth embodiment of the present invention.
  • FIG. 17 is a diagram showing a configuration of a conventional optical space transmission device described in Patent Document 1.
  • Multi-mode file 53 Array type light source
  • FIG. 1 is a diagram showing a configuration of the optical transmission device 1 according to the first embodiment of the present invention
  • FIG. 2 is a block diagram showing a configuration of the optical transmission device 1 shown in FIG.
  • the configuration of the optical transmission device 1 will be described with reference to FIG. 1 and FIG.
  • the optical transmission device 1 is an optical space transmission device that optically transmits a signal through the free space 14.
  • the optical transmission device 1 includes an optical transmission unit 100 and an optical reception unit 110.
  • the optical transmitter 100 and the optical receiver 110 are installed in a state of facing each other.
  • the optical transmission unit 100 includes a data input unit 9, a light beam output unit 10, and a spatial light modulation unit 13.
  • the light receiving unit 110 includes a spatial light demodulating unit 15, a light collecting unit 16, a light receiving unit 17, and a data output unit 18.
  • the data input unit 9 and the data output unit 18 are not shown.
  • the light condensing unit 16 is not shown.
  • the data input unit 9 outputs a data signal to be transmitted to the optical reception unit 110 to the optical beam output unit 10.
  • the light beam output unit 10 includes a multimode light source 11 and a condensing unit 12.
  • the multimode light source 11 is composed of, for example, a surface emitting laser.
  • the multi-mode light source 11 modulates output light composed of n different oscillation modes (n: an integer equal to or greater than 0) based on a data signal (input signal) input from the data input unit 9 to generate a light beam signal. Output as.
  • the multimode light source 11 has four different oscillation modes will be described as an example.
  • the multimode light source 11 outputs a 0th-order to third-order mode light beam signal.
  • the condensing unit 12 is an optical system including, for example, a lens.
  • the condensing unit 12 outputs the light beam signal output from the multi-mode light source 11 as parallel light.
  • the spatial light modulation unit 13 modulates the light beam signal output from the light collecting unit 12 for each unit space (space 1 to N + 1 in FIG. 2) by a predetermined method. Specifically, the spatial light modulator 13 performs light modulation processing based on a predetermined code (hereinafter referred to as a modulation code or a spread code) for each oscillation mode (spatial region) of the light beam signal, and performs light modulation. Radiates to free space 14 as a signal.
  • a predetermined code hereinafter referred to as a modulation code or a spread code
  • the spatial light modulator 13 includes a plurality of n (n is an integer from 0 to N) order mode modulation elements 13-0 to 13-N. These n-order mode modulation elements 13-0 to 13-N are collectively referred to as n-order mode modulation elements 13-n when it is not necessary to distinguish them.
  • the n-order mode modulation elements 13-n are spatial light modulation elements that are made of, for example, liquid crystal, and are spatially arranged.
  • the spatial light modulator 13 has 0th-order to 3rd-order mode modulation elements 13-0 to 13-3 as modulation elements corresponding to light beam signals in the 0th-order to third-order mode.
  • the code used for the light modulation processing represents the transmittance (that is, the parameter for controlling the light intensity).
  • a predetermined code is assigned to each nth-order mode modulation element 13-n.
  • the optical code processing by the spatial light modulator 13 is realized by performing optical modulation processing by a plurality of n-order mode modulation elements.
  • the spatial light demodulator 15 demodulates the optical modulation signal by a method corresponding to the modulation method used by the spatial light modulator 13, and outputs it as an optical demodulated signal.
  • the spatial light demodulator 15 performs an optical demodulation process on the optical modulation signal based on a predetermined code (hereinafter referred to as a demodulation code or a despread code) for each unit space described above.
  • the spatial light demodulation unit 15 includes a plurality of n (n is an integer from 0 to N) order mode demodulation elements 15-0 to 15-N. These n-order mode demodulation elements 15-0 to 15-N are collectively referred to as n-order mode demodulation elements 15-n when it is not necessary to distinguish them.
  • the nth-order mode demodulating elements 15-n are spatial light modulation elements made of, for example, liquid crystal, and are spatially arranged.
  • the spatial light demodulator 15 uses the corresponding nth-order mode demodulating element 15-n for each oscillation mode of the optical modulation signal that has propagated through the free space 14, and based on the despread code corresponding to the spread code. Demodulated and output as an optical demodulated signal To help.
  • the n-order mode demodulating elements are arranged so as to correspond to the arrangement of the n-order mode modulating elements in the spatial light modulating unit 13.
  • the spatial light demodulator 15 has 0th to 3rd mode modulation elements 15-0 to 15-3. Each demodulating element has a predetermined transmittance.
  • the optical demodulation processing is performed by the spatial light modulation unit 15 by performing the optical demodulation processing by the plurality of n-order mode demodulation elements.
  • the condensing unit 16 is a condensing optical system including, for example, a lens.
  • the condensing unit 16 condenses the optical demodulated signal output from the spatial light demodulating unit 15.
  • the light receiving unit 17 is, for example, a light receiving element such as a photodiode.
  • the light receiving unit 17 photoelectrically converts the optical demodulated signal output from the light collecting unit 16 and outputs the result to the data output unit 18 as an output signal.
  • FIG. 3 is a diagram showing the light intensity and modulation / demodulation code of each signal according to the present embodiment.
  • FIG. 3A is a diagram showing the light intensity of the light beam signal output from the multimode light source 11 for each oscillation mode.
  • each mode is set at time tl and time t2.
  • the ratio of the distributed light intensity (mode distribution ratio) fluctuates.
  • FIG. 3B is a diagram illustrating an example of a modulation code (spreading code) used for optical modulation processing.
  • the 0th to 3rd mode modulators 13-0 to 13-3 are connected to the 0th to 3rd modes based on the modulation codes f (0) to f (3) shown in FIG. 3B.
  • Light modulation processing is applied to the light beam signal.
  • FIG. 3C is a diagram showing an example of a demodulated code (despread code) used for optical demodulation processing.
  • the 0th to 3rd mode demodulating elements 15-0 to 15-3 are used to convert the optical modulation signal into an optical signal based on the demodulated codes g (0) to g (3) shown in FIG. 3C. Demodulate.
  • FIG. 3E is a diagram showing the sum of the spreading code and the despreading code for each mode.
  • the sum of the spreading code and the despreading code in each mode is a constant level for all modes.
  • the transfer function h (n) is a force set so that f (n) X g (n) is constant for all n.
  • the transfer function h (n) is set so that f (n) + g (n) is constant for all n.
  • FIG. 3D is a diagram showing a mode distribution ratio in the optical demodulated signal output from the spatial light demodulator 15.
  • the mode distribution ratio of each mode of the optical demodulated signal output from the spatial light demodulator 15 is the same as the mode distribution ratio of the optical beam signal output from the multimode light source 11 (FIG. 3A). It becomes.
  • the legitimate receiver has a despread code complementary to the spread code shown in FIG. 3B, so that the input signal can be reproduced normally.
  • FIG. 4 is a diagram showing an example of the noise distribution (frequency characteristics) of the output signal output from the light receiving unit 17.
  • the vertical axis represents relative intensity noise
  • the horizontal axis represents frequency.
  • the solid line indicates the noise distribution of the output signal obtained by the authorized receiver
  • the dotted line indicates the noise distribution of the output signal obtained by the eavesdropper.
  • FIG. 3F is a diagram showing the light intensity of the light modulation signal for each mode order when the light modulation signal radiated from the spatial light modulation unit 13 to the free space 14 is directly received.
  • the optical modulation signal received by the eavesdropper is obtained by multiplying the light beam signal shown in FIG. 3A by the spreading code shown in FIG. 3B. In other words, the optical intensity of the optical modulation signal received by the eavesdropper is significantly different from the optical beam signal shown in FIG. No.
  • the optical transmission device uses the fluctuation of the mode distribution ratio of the light beam signal output from the multimode light source and the optical code processing by the optical spatial modulation unit. To transmit an optical modulation signal.
  • the eavesdropper cannot grasp the mode distribution ratio of the multimode light and the demodulation code corresponding to the modulation code, and thus cannot normally demodulate the signal. Therefore, highly confidential optical space transmission can be realized.
  • FIG. 5A to 5C are diagrams showing the optical power density of the optical beam signal and the optical modulation signal, and the configuration of the modulation element.
  • FIG. 5A is a diagram showing the optical power density of a light beam signal output from a general light source.
  • the optical power density of the light beam signal output from the light source generally has a Gaussian distribution with respect to the radiation angle, and has a property of exhibiting a peak at a specific radiation angle. /!
  • the distribution may be biased in either the XY direction (perpendicular to the optical axis Z direction shown in Fig. 1).
  • a light beam having a peak with respect to a specific radiation angle with a constant optical power density is likely to have a negative effect on the eye.
  • FIG. 5B is a diagram showing a configuration of the nth-order mode modulation element 13-n according to the present embodiment. As shown in FIG. 5B, in the n-order mode modulation element 13-n, the transmittance of the region through which the light beam signal with high optical power density passes is lower than the transmittance of the other regions. In this way, by controlling the modulation code in the region through which the light beam signal having a high photoelectric density passes, the optical power density of the light beam signal can be set to a predetermined threshold value or less.
  • FIG. 5C is a diagram showing the optical power density of the optical modulation signal output from the optical spatial modulation unit 13.
  • the light modulation signal radiated to the free space 14 has a flat photoelectric density distribution and does not show a peak at a specific radiation angle.
  • the modulation code used in the light spatial modulation section 13 the light modulation signal radiated to the free space 14 has little influence on the eyes, that is, high eye safety can be ensured.
  • the aspect ratio of the optical modulation signal (optical power density ratio in the XY directions) is preferable to a force close to 1. This ensures high eye safety regardless of the characteristics of the multimode light source 11.
  • the optical modulation signal radiated into free space has a flat optical power density distribution and does not exhibit a peak at a specific radiation angle. Therefore, safety for human eyes can be ensured.
  • the n-order mode modulation element and the n-order mode demodulation element are arranged one-dimensionally in the X direction as shown in FIG.
  • the n-order mode modulation element and the n-order mode demodulation element may be arranged in the X direction and the Y direction and arranged two-dimensionally.
  • 6A and 6B are diagrams illustrating an example of the configuration of the spatial light modulator 13.
  • FIG. 6A is a diagram showing the configuration of the spatial light modulator 13 when the modulation elements are arranged in a two-dimensional manner. As shown in FIG. 6A, when the modulation elements are arranged two-dimensionally, the number of combinations of modulation codes increases, so that the secrecy is further improved.
  • the n-order mode modulation elements are arranged point-symmetrically with the 0-order mode modulation element as the center of symmetry.
  • the spatial light modulator is 1 for each oscillation mode.
  • One n-order mode modulation element may be provided.
  • FIG. 6B is a diagram showing the configuration of the spatial light modulation unit 13 in the case where there is one modulation element corresponding to each oscillation mode.
  • the configuration of the spatial light modulation unit 13 shown in FIG. 6B is compared with the configuration of the spatial light modulation unit 13 shown in FIG. 1, and the primary to tertiary mode modulation elements corresponding to the primary to tertiary mode light beam signals. 13— 1 to 13 3 are different in that they are one by one.
  • the first-order to third-order mode modulation elements 13-1 to 13-3 are arranged below the zero-order mode modulation element 13-0. However, these modulation elements are It may be arranged above the mode modulation element 13-0.
  • the mode order of the multimode light and the type of the mode modulation element correspond to each other on a one-to-one basis. It can be applied, or a certain mode of light can be assigned to multiple modulation elements.
  • the configuration of the spatial light demodulator 15 provided in the optical receiver 110 is as shown in FIG.
  • the modulation code and the demodulation code may be set.
  • the multimode light source may be other than the surface emitting laser.
  • the multimode light source may be a Fabry-Perot resonator laser or a light emitting diode.
  • the force light source described in the case of using a multi-mode light source as an example of the light source is not limited to the multi-mode light source, and may be any configuration that can output a plurality of oscillation mode lights.
  • Good. 7A to 7C are diagrams showing an example of a light source applicable to the present invention.
  • FIG. 7A is a diagram showing a configuration of the multimode light source 11 described in the present embodiment.
  • FIG. 7B is a diagram showing the configuration of the light source when the light source is composed of a single mode light source 51 and a multimode fiber 52. As shown in FIG. 7B, a plurality of oscillation mode lights can be output by connecting a single mode light source 51 and a multimode fiber 52.
  • a multimode light source may be used instead of the single mode light source 51. Yes.
  • FIG. 7C is a diagram showing a configuration of the light source when the light source is an array type light source.
  • the array light source 53 is also configured with a force such as a plurality of surface emitting lasers. In this way, an array type light source 53 may be used to configure a pseudo multimode light source! /.
  • the liquid crystal spatial light modulation element has been described as an example of the spatial light modulation unit.
  • the spatial light modulation unit may be a micro-mirror device or a spatial light modulation element using a magneto-optic effect, a multiple quantum well effect, and an acousto-optic effect.
  • the configuration of the spatial light demodulator is the same as this.
  • the control parameter used for the optical modulation / demodulation processing may be optical phase information (including optical delay information) or polarization state information. That is, instead of the spatial light modulator controlling the intensity of the light beam and the spatial light demodulator controlling the intensity of the light modulation signal, the spatial light modulator controls the phase of the light beam and the spatial light demodulator The phase of the modulation signal may be controlled, the spatial light modulation unit may control the polarization state of the light beam, and the spatial light demodulation unit may control the polarization state of the light modulation signal.
  • FIG. 8 is a diagram showing a configuration of the optical transmission device 2 according to the second embodiment of the present invention.
  • the optical transmission device 2 includes a light beam output unit 10, a spatial light modulation unit 13, an optical fiber 60, a spatial light demodulation unit 15, a condensing unit 16, and a light receiving unit 17.
  • the spatial light modulator 13 spatially arranges a plurality of n-order mode modulators 13-n.
  • the spatial light demodulator 15 spatially arranges a plurality of nth-order mode demodulating elements 15-n.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the difference between the optical transmission device 2 shown in FIG. 8 and the optical transmission device 1 according to the first embodiment shown in FIG. 1 is that a large-diameter optical fiber 60 that is not a free space is used as a transmission line. This is the point used.
  • the large-diameter optical fiber is, for example, a plastic fiber.
  • the optical transmitter 100 and the optical receiver 110 are connected via an optical fiber 60.
  • the optical modulation signal output from the spatial light modulator 13 is transmitted via the optical fiber 60 and input to the spatial light demodulator 15 of the optical receiver 110.
  • the optical modulation signal transmitted by the optical transmission unit is optically transmitted through the large-diameter optical fiber, and the optical reception unit Can be received as an output signal. Therefore, the present invention can also be applied to uses such as an optical transmission device using a large-diameter optical fiber.
  • multimode light is output using a multimode light source.
  • single mode light is output using a single mode light source.
  • FIG. 9 is a diagram showing a configuration of the optical transmission device la according to the third embodiment of the present invention
  • FIG. 10 is a block diagram showing a configuration of the optical transmission device la shown in FIG. .
  • the optical transmission device la includes an optical transmission unit 100a and an optical reception unit 110.
  • the optical transmission unit 100a includes a data input unit 9, a light beam output unit 10a, and a spatial light modulation unit 13.
  • the light receiving unit 110 includes a spatial light demodulating unit 15, a light collecting unit 16, a light receiving unit 17, and a data output unit 18.
  • the optical transmission device la shown in FIG. 10 differs from the optical transmission device 1 according to the first embodiment shown in FIG. 2 in the configuration of the beam light output unit 10a. Since the other configuration is the same as that in FIG. 2, the same reference numeral is given to the same configuration as that in FIG. 2, and the description is omitted.
  • the light beam output unit 10a includes a single mode light source 21 and a condensing unit 12.
  • the single mode light source 21 outputs a 0th-order mode light beam signal.
  • the condensing unit 12 outputs the 0th-order mode light beam signal output from the single mode light source 21 as parallel light.
  • the spatial light modulation unit 13 includes a plurality of space n (n is an integer from 1 to N) modulation elements 13-1 to 13-N, and the light beam signal is transmitted to a plurality of spatial regions 1 to N. Modulate every N (integer greater than 1). These spatial n modulation elements 13-1 to 13-N are collectively referred to as spatial n modulation elements 13-n when it is not necessary to distinguish them.
  • the spatial n modulation element 13-n has the same configuration as the nth-order mode modulation element 13-n in the first embodiment. In the present embodiment, the case where the spatial light modulator 13 has four spatial n modulation elements (space 1 to spatial 4 modulation elements) will be described.
  • the light beam signal and the light modulation element are illustrated in an enlarged manner.
  • Single mode The output light output from the light source 21 corresponds to the 0th-order mode light output from the multimode light source shown in FIG.
  • the spatial light demodulation unit 15 includes a plurality of spaces n (n is an integer from 1 to N) demodulation elements 15-1 to 15 N. These spatial n demodulating elements 15-1 to 15-N are collectively referred to as spatial n demodulating elements 15-n when it is not necessary to distinguish them.
  • the spatial n demodulating element 15-n has the same configuration as the n-th mode demodulating element 15-n in the first embodiment.
  • FIGS. 11A to 11F are diagrams showing the light intensity and modulation / demodulation code of each signal in the present embodiment.
  • FIG. 11A is a diagram showing the light intensity of the light beam signal output from the single mode light source 21.
  • the 0th-order mode light beam signal output from the single-mode light source 21 is input to the space 1 to space 4 modulation elements 13-0 to 13-3 via the condensing unit 12.
  • the intensity of the 0th-order mode light beam signal output at time tl is constant.
  • FIG. 11B is a diagram showing an example of a modulation code (spreading code) used for the optical modulation processing.
  • the spatial 1 to spatial 4 modulation elements 13-1 to 13-4 perform optical modulation processing on the light beam signal using the modulation codes f (0) to f (3) shown in FIG. 11B. .
  • FIG. 11C is a diagram illustrating an example of a demodulation code (despread code) used for optical demodulation processing assigned to each spatial region.
  • the spatial 1 to spatial 4 demodulating elements 15-1 to 15-4 use the demodulation codes g (0) to g (3) shown in FIG. Apply processing.
  • FIG. 11E is a diagram showing the sum of the spatial regions of the spreading code and the despreading code.
  • FIG. 11D is a diagram showing the light intensity of the optical demodulated signal output from the spatial light demodulator 15.
  • the optical intensity ratio of the optical demodulated signal output from the spatial light demodulator 15 is the same as the optical intensity ratio of the optical beam signal output from the single mode light source 21 shown in FIG. 11A. Become one.
  • the legitimate receiver has a despreading code complementary to the spreading code shown in FIG. 11B, so that the input signal can be reproduced normally.
  • FIG. 11F is a diagram illustrating the light intensity of the light modulation signal for each spatial region when the light modulation signal radiated from the spatial light modulation unit 13 to the free space 14 is directly received.
  • the optical modulation signal received by the eavesdropper is obtained by multiplying the light beam signal shown in FIG. 11A by the spreading code shown in FIG. 11B.
  • the optical intensity ratio of the optical demodulated signal received by the eavesdropper is significantly different from the optical intensity ratio of the optical beam signal shown in FIG. 11A, as shown in FIG. 11F.
  • the eavesdropper does not have the spatial light demodulation unit 15 held only by the authorized receiver, the eavesdropper cannot normally reproduce the received optical modulation signal.
  • the eavesdropper does not have a decoding code corresponding to the modulation code, the optical modulation signal cannot be normally reproduced even if the light modulation signal is received improperly. Therefore, it is highly confidential using the optical code Z decoding process.
  • each oscillation mode is separated into each oscillation mode and optical code processing is performed.
  • each oscillation mode is further separated into different longitudinal modes and optical code processing is performed.
  • FIG. 12 is a block diagram showing a configuration of an optical transmission device lb according to the fourth embodiment of the present invention.
  • the optical transmission device lb includes an optical transmitter 100b and an optical receiver 110b.
  • the optical transmission unit 100b includes a data input unit 9, a light beam output unit 10, a spatial light modulation unit 13b, and a longitudinal mode separation unit 22.
  • the light receiving unit 110b includes a spatial light demodulating unit 15b, a light collecting unit 16, a light receiving unit 17, and a data output unit 18.
  • the optical transmission device lb shown in FIG. 12 includes a spatial light modulation unit 13b further including a longitudinal mode separation unit 22,
  • the optical demodulator 15 b is different in that it includes a longitudinal mode multiplexer 23. Since the other configuration is the same as that of the first embodiment, the same reference numeral is given to the same configuration as that of FIG. 1, and the description thereof is omitted.
  • the longitudinal mode separation unit 22 separates the light beam signal output from the multi-mode light source 11 into a plurality of hand longitudinal modes and outputs it. Specifically, the longitudinal mode separation unit 22 separates the n-order mode light beam signal into light components of different wavelengths of m (m: integer of 1 or more) order. Implementation In the embodiment, a case where the longitudinal mode separation unit 22 has two light component forces O-order and first-order will be described as an example.
  • the longitudinal mode separation unit 22 separates the 0th-order mode light beam signal into a 0th-order and a 1st-order longitudinal mode and outputs them. Therefore, the 0th-order mode light beam signal is output from the longitudinal mode separation unit 22 as a 0 ⁇ 0th-order mode light beam signal and a 0 ⁇ 1st-order mode light beam signal.
  • light whose oscillation mode is ⁇ order and longitudinal mode is m order is expressed as n'm order mode.
  • the spatial light modulation unit 13b includes an n ⁇ m-th order mode modulation element 13-nm corresponding to the n′m-order mode light beam signal output from the longitudinal mode separation unit 22.
  • the oscillation modes of the light beam signal output from the multimode light source 11 are four modes from 0th to 3rd
  • the total number of modes of the light beam signal output from the longitudinal mode separation unit 22 is 0 ⁇ 0th to 3rd.
  • FIGS. 13A and 13B are diagrams showing the configuration of the n′m-order mode spatial light modulator 13-nm included in the spatial light modulator 13b.
  • FIG. 13A is a diagram illustrating an arrangement example of the n′m-th order mode modulation elements 13-nm when the longitudinal mode separation unit 22 separates and outputs the light beam signal in the lateral direction.
  • the 0 ⁇ 1st order mode modulation element is arranged on the right side of the 0 ⁇ 0th order mode modulation element
  • the 1 ⁇ 1st order mode modulation element is arranged on the right side of the 1 ⁇ 0th order mode modulation element. .
  • the 0th-order mode light beam signal output from the multimode light source 11 is separated into a 0 ⁇ 0th order and a 0 ⁇ 1st order mode by the longitudinal mode separation unit 22 and outputted.
  • the 0 ⁇ 0th order mode space modulation element 13-00 performs optical modulation processing on the 0 ⁇ 0th order mode light beam signal output from the longitudinal mode separation unit 22.
  • 0 ⁇ 1st-order mode spatial modulation element 13-01 is placed beside 0 ⁇ 0th-order mode spatial modulation element 13-00 and output from longitudinal mode separation unit 22 0 ⁇ 1st-order mode light beam signal Modulation processing is performed.
  • longitudinal mode separation unit 22 may separate and output the light beam signal in any direction.
  • FIG. 13B is a diagram showing an arrangement example of n′m-order mode spatial light modulators 13-nm when the longitudinal mode separation unit 22 separates and outputs the light beam signal in the vertical direction.
  • the 0 ⁇ 1st mode spatial modulation element 13-00 is arranged immediately below the 0 ⁇ 0th order mode spatial modulation element 13-00.
  • the spatial light demodulator 15b has an n ⁇ m-order mode spatial light demodulator 15-nm corresponding to an n′m-order mode optical modulation signal propagating in the free space.
  • the n ⁇ mth-order mode spatial light demodulator 15-nm is arranged to have a complementary relationship with the n'mth-order mode spatial light modulator 13-nm.
  • the longitudinal mode multiplexing unit 23 multiplexes the n'm-order mode optical demodulated signal output from the n'm-order mode spatial light demodulating element 15-nm, and supplies it to the light receiving unit 17 as the n-order mode optical demodulated signal.
  • FIGS. 14A to 14F are diagrams showing the light intensity and modulation / demodulation code of each signal in the present embodiment.
  • the case where the oscillation modes (transverse modes) of the light beam signal output from the multimode light source 11 are two, ie, 0th order and 1st order will be described as an example.
  • FIG. 14A is a diagram showing the light intensity of the light beam signal output from the longitudinal mode separation unit 22 for each mode.
  • the longitudinal mode separation unit 22 separates the 0th order light beam signal output from the multimode light source 11 into 0 ⁇ 0th order and 0 ⁇ 1st order modes and outputs the separated signals. Accordingly, as shown in FIG. 14 (b), the modes of the light beam signal output from the longitudinal mode separation unit 22 are four orders of 0 ⁇ 0th order, 0 ⁇ 1st order, 1 ⁇ 0th order, and 1 ⁇ 1st order.
  • the ratio of the light intensity distributed to each mode fluctuates at time tl and time t2.
  • FIG. 14B is a diagram illustrating an example of a modulation code corresponding to the optical modulation processing performed in each mode.
  • the 0 ⁇ 0th to 1 ⁇ 1st order mode modulation elements 13-00 to 13-11 are represented by the spread codes 0'0) to; [(1'1) shown in FIG. Then, optical modulation processing is applied to the light beam signal.
  • FIG. 14C is a diagram illustrating an example of a demodulation code corresponding to the optical demodulation processing performed in each mode.
  • the spatial light demodulator 15b the 0 ⁇ 0th to 1 ⁇ 1st order mode demodulator elements 15-00 to 15-11 have the despread codes 8 (0'0) to 8 (1'1) shown in FIG. In this case, the optical beam signal is optically demodulated.
  • FIG. 14E is a diagram showing the sum of the spreading code and the despreading code for each mode.
  • FIG. 14D is a diagram showing a mode distribution ratio in the optical demodulated signal output from the spatial light demodulator 15b.
  • the legitimate receiver has a despreading code complementary to the spreading code shown in FIG. 14B, so that the input signal can be reproduced normally.
  • FIG. 14F is a diagram showing the light intensity of the light modulation signal for each mode order when the light modulation signal radiated from the spatial light modulation unit 13b to the free space 14 is directly received.
  • the optical modulation signal received by the eavesdropper is obtained by multiplying the light beam signal shown in FIG. 14A by the spreading code shown in FIG. 14B.
  • the optical intensity of the optical demodulated signal received by the eavesdropper is significantly different from the optical beam signal shown in FIG. 14A in the mode distribution ratio of the optical demodulated signal, as shown in FIG. 14F.
  • the eavesdropper since the eavesdropper has the spatial light demodulator 15b held only by the authorized receiver, the optically modulated signal cannot be reproduced normally.
  • the optical transmission device in addition to the fluctuation of the mode distribution ratio of the light beam signal output from the multimode light source, and the optical code processing by the optical spatial modulation unit, Further, the optical modulation signal is transmitted using the longitudinal mode separation of the light component. Thereby, compared with 1st Embodiment, confidentiality can be improved further.
  • FIG. 15 is a block diagram showing a configuration of an optical transmission apparatus lc according to the fifth embodiment of the present invention.
  • the optical transmission device lc includes an optical transmitter 100 and an optical receiver 110c.
  • the optical transmission unit 100 includes a data input unit 9, a light beam output unit 10, and a spatial light modulation unit 13.
  • the optical receiving unit 110c includes a spatial light demodulating unit 15, a condensing unit 16, a light receiving unit 17, a data output unit 18, and a distortion adjustment unit 24.
  • the optical transmission device lc shown in FIG. 15 is different from the optical transmission device 1 according to the first embodiment shown in FIG. 2 in that the optical reception unit 110c further includes a distortion adjustment unit 24. . Since the other configuration is the same as that of the first embodiment, the same reference numeral is given to the same configuration as that in FIG. 2, and the description thereof is omitted.
  • the optical transmitter 100 transmits a test signal for testing having a predetermined pattern to the optical receiver 110c prior to data transmission.
  • the light receiving unit 17 detects the optical intensity of the test optical demodulated signal demodulated by the spatial light demodulating unit 15.
  • the distortion adjustment unit 24 stores in advance the light intensity when the test signal is received without being degraded by mode dispersion.
  • the distortion adjusting unit 24 compares the light intensity detected by the light receiving unit 17 with the light intensity stored in advance. Thereby, the distortion adjusting unit 24 functions as a mode dispersion detecting unit that detects the mode dispersion characteristic of the optical demodulated signal. Then, the distortion adjustment unit 24 stores the light intensity force detected by the light receiving unit 17 in advance, and adjusts the demodulation code used by the spatial light demodulation unit 15 for demodulation so as to match the light intensity.
  • the distortion adjustment unit 24 adjusts the transmittance of the liquid crystal spatial demodulation element.
  • the spatial light demodulator 15 can demodulate the optical modulation signal based on the result detected by the distortion adjuster 24. That is, the spatial light demodulator 15 demodulates the optical modulation signal by applying correction with a characteristic opposite to the mode dispersion characteristic based on the result detected by the mode dispersion detector.
  • the loss can be compensated by detecting the loss due to mode dispersion (deterioration of light intensity) and adjusting the demodulation code. That is, the spatial light demodulator adds the loss amount for each oscillation mode so as to correct the loss amount due to the mode dispersion detected by the mode dispersion detector. Therefore, the optical modulation signal received by the authorized receiver can be accurately reproduced.
  • the distortion adjustment unit adjusts the optical intensity of the optical demodulated signal output from the demodulation unit.
  • the distortion adjustment unit may adjust the delay time of each oscillation mode due to mode dispersion.
  • the distortion adjustment unit determines whether or not the delay time (delay amount) of the optical signal detected by the light receiving unit is correct. Then, the distortion adjustment unit adds a predetermined delay amount to the optical demodulated signals output from each n-th mode demodulating element so that the delay times of the optical demodulated signals output from the plurality of n-th mode demodulating elements match. give.
  • the spatial light demodulator adds a predetermined delay amount for each oscillation mode so as to correct the delay amount due to mode dispersion detected by the mode dispersion detector (distortion detector). In this way, by adjusting the delay due to mode dispersion, it is possible to accurately reproduce the optical modulation signal received by the authorized receiver.
  • the distortion adjustment unit adjusts the loss or delay of a signal due to mode dispersion
  • the distortion adjustment unit may be provided in the optical transmission unit. In this case, the distortion adjustment unit may give a predetermined loss or delay amount to the optical modulation signal output to each n-order mode modulation element force.
  • FIG. 16 is a block diagram showing a configuration of an optical transmission device Id according to the fifth embodiment of the present invention.
  • the optical transmission device Id includes an optical transmitter lOOd and an optical receiver 110d.
  • the optical transmission unit lOOd includes a data input unit 9, a light beam output unit 10, a spatial light modulation unit 13, and a parameter change unit 25-1.
  • the light receiving unit 110d includes a spatial light demodulating unit 15, a light collecting unit 16, a light receiving unit 17, a data output unit 18, and a parameter changing unit 25-2.
  • the optical transmission device Id shown in Fig. 16 includes an optical transmission unit lOOd further including a parameter changing unit 25-1.
  • the receiving unit 110d is different in that it further includes a force parameter changing unit 25-2. Since the other configuration is the same as that of the first embodiment, the same reference numeral is given to the same configuration as that in FIG. 2, and the description is omitted.
  • the meter changing units 25-1 and 25-2 are connected via a transmission line (not shown).
  • the parameter changing units 25-1 and 25-2 adjust the parameters of the modulation code and the demodulation code in the spatial light modulation unit 13 and the spatial light demodulation unit 15 in synchronization with each other.
  • the modulation / demodulation parameter corresponds to the transmittance.
  • the parameter changing units 25-1 and 25-2 change the parameters of the modulation code and the demodulation code every predetermined time. That is, the parameter changing units 25-1 and 25-2 function as a code changing unit for changing a predetermined code and a code corresponding to the predetermined code.
  • the parameter changing units 25-1 and 25-2 may change the modulation code and demodulation code meters in accordance with user instructions.
  • a user instruction input unit that receives an instruction from the user may be provided in the optical transmitter lOOd and the optical receiver 110d.
  • the parameters of the modulation code and the demodulation code can be changed. Therefore, compared with the case where the modulation / demodulation code parameter is constant, 'Gender can be improved.
  • the optical transmission device has been described as transmitting an optical modulation signal via free space.
  • the optical transmitter and the optical receiver may be connected via a large-diameter optical fiber.
  • the light source provided in the optical transmission device has been described as a multi-mode light source.
  • the light source is a single mode. It may be a light source.
  • the present invention is useful as an optical transmission device having excellent secrecy.

Abstract

An optical beam output part (10) modifies an output light from a light source with a signal and outputs the modified output light as an optical beam signal. A spatial light modulating part (13) modulates the optical beam signal from the optical beam output part (10), in accordance with a predetermined unit spatial region or in accordance with a predetermined system (such as spread code or the like) for each of oscillation and longitudinal mode, to perform an optical encoding process. A spatial light demodulating part (15) demodulates the optical modulated signal from the spatial light modulating part (13) with a system corresponding to the predetermined system (such as despread code or the like) to perform an optical decoding process. A light receiving part (17) subjects the signal from the spatial light demodulating part (15) to a photoelectrical conversion to provide the converted signal as an output signal.

Description

明 細 書  Specification
光伝送装置  Optical transmission equipment
技術分野  Technical field
[0001] 本発明は、信号を光伝送する光伝送装置に関し、特に、自由空間や光ファイバを 介して信号を光伝送する光伝送装置に関する。  TECHNICAL FIELD [0001] The present invention relates to an optical transmission device that optically transmits a signal, and particularly to an optical transmission device that optically transmits a signal via free space or an optical fiber.
背景技術  Background art
[0002] 従来、信号を光伝送する光伝送装置として、自由空間を介して光信号を伝送するも のや、光伝送路を介して光信号を伝送するものがある。  Conventionally, as an optical transmission device that optically transmits a signal, there are an optical transmission device that transmits an optical signal through a free space and an optical transmission device that transmits an optical signal through an optical transmission path.
[0003] 特許文献 1には、自由空間を介して光信号を伝送する光伝送装置が記載されてい る(特許文献 1の図 7)。図 17は、特許文献 1に記載の従来の光空間伝送装置の構成 を示す図である。 Patent Document 1 describes an optical transmission device that transmits an optical signal through free space (FIG. 7 of Patent Document 1). FIG. 17 is a diagram showing a configuration of a conventional optical space transmission device described in Patent Document 1. In FIG.
[0004] 図 17において、特許文献 1に記載の従来の光空間伝送装置は、光送信部 700と、 光受信部 710とを備える。光送信部 700と光受信部 710とは、互いに対面するように 設置される。光送信部 700は、光源 71と、集光光学系 72とを含む。光受信部 710は 、集光光学系 74と、受光素子 75とを含む。  In FIG. 17, the conventional optical space transmission device described in Patent Document 1 includes an optical transmission unit 700 and an optical reception unit 710. The optical transmitter 700 and the optical receiver 710 are installed so as to face each other. The optical transmitter 700 includes a light source 71 and a condensing optical system 72. The light receiving unit 710 includes a condensing optical system 74 and a light receiving element 75.
[0005] 光送信部 700において、光源 71は、例えば半導体レーザなどで構成され、入力信 号 (データ信号)に基づいて、出力光 (発振光)を光強度変調し、光ビーム信号として 出力する。集光光学系 72は、例えばレンズなどで構成され、光ビーム径を拡大し、光 ビーム信号を平行光とした上で、自由空間 73に放出する。  [0005] In the optical transmitter 700, the light source 71 is composed of a semiconductor laser, for example, and modulates the output intensity of the output light (oscillation light) based on the input signal (data signal) and outputs it as a light beam signal. . The condensing optical system 72 is composed of, for example, a lens or the like, expands the light beam diameter, converts the light beam signal into parallel light, and emits it to the free space 73.
[0006] 光受信部 710において、集光光学系 74は、例えばレンズで構成され、自由空間 73 を伝播された光ビーム信号を集光する。受光素子 75は、集光された光ビーム信号を 光電気変換し、出力信号として出力する。このように、特許文献 1によれば、自由空 間を介して光信号を伝送することができる。  [0006] In the light receiving unit 710, the condensing optical system 74 is constituted by a lens, for example, and condenses the light beam signal propagated through the free space 73. The light receiving element 75 photoelectrically converts the collected light beam signal and outputs it as an output signal. Thus, according to Patent Document 1, an optical signal can be transmitted through a free space.
[0007] 一方、特許文献 2には、大口径の光ファイバを介して信号を光伝送する光伝送装 置が記載されている(特許文献 2の図 1)。特許文献 2に記載の従来の光伝送装置に おいて、光送信部と光受信部とは、プラスチックファイバを介して接続されている。特 許文献 2に記載の従来の光伝送装置は、特許文献 1に記載の従来の光伝送装置と 同様に、光送信部において入力信号を光信号に変換して送信する。受信部は、大 口径の光ファイバを介して送信されてくる光信号を出力信号として受信する。このよう に、特許文献 2によれば、大口径の光ファイバを介して光信号を伝送することができ る。 On the other hand, Patent Document 2 describes an optical transmission device that optically transmits a signal via a large-diameter optical fiber (FIG. 1 of Patent Document 2). In the conventional optical transmission device described in Patent Document 2, the optical transmitter and the optical receiver are connected via a plastic fiber. The conventional optical transmission device described in Patent Document 2 is the same as the conventional optical transmission device described in Patent Document 1. Similarly, the optical transmission unit converts the input signal into an optical signal and transmits it. The receiving unit receives an optical signal transmitted through a large-diameter optical fiber as an output signal. Thus, according to Patent Document 2, an optical signal can be transmitted through a large-diameter optical fiber.
特許文献 1 :特開平 7— 221710号公報  Patent Document 1: JP-A-7-221710
特許文献 2:特開 2000 - 22643号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-22643
非特許文献 1 :ジエイ.ワイ.ロー (J. Y. Law)およびジー.ピー.ァグロバル(G. P. Agrawal) , 「モード'パーティション ノイズ イン バーティカル キヤビティ サーフィ ス.ェミツティング レーザー(Mode— Partition Noise in Vertical -Cavity S urface- Emitting Laser)」、アイトリプルィー 'フォト二タス 'テクノロジー 'レターズ (IEEE Photonics Technology Letters) , VOL. 9、 no. 4、 1997年 4月、 p43 7-439  Non-Patent Document 1: JY Law and GP Agrawal, “Mode—Partition Noise in Vertical -Cavity Surface” Emitting Laser), I Tripley 'Photo Nitas' Technology' Letters (IEEE Photonics Technology Letters), VOL. 9, no. 4, April 1997, p43 7-439
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] しかしながら、特許文献 1に記載の従来の光伝送装置では、変調された光ビーム信 号は、自由空間に放射される。したがって、空間を伝播する光ビーム信号を受光する ことによって、入力信号を傍受し、解読することが比較的容易であるため、秘匿性に 乏しいという課題がある。また、特許文献 2に記載の従来の光伝送装置においても、 光伝送路を伝搬する光信号の一部を分岐して取り出せば、元の入力信号を解読す ることが可能である。 However, in the conventional optical transmission device described in Patent Document 1, the modulated light beam signal is radiated into free space. Therefore, since it is relatively easy to intercept and decode the input signal by receiving the light beam signal propagating in space, there is a problem that the secrecy is poor. Also in the conventional optical transmission device described in Patent Document 2, the original input signal can be decoded if a part of the optical signal propagating through the optical transmission line is branched and extracted.
[0009] それゆえに、本発明の目的は、秘匿性に優れた光伝送装置を提供することである。  Therefore, an object of the present invention is to provide an optical transmission device that is excellent in secrecy.
課題を解決するための手段  Means for solving the problem
[0010] 本発明は、伝送すべき信号によって変調された光信号を伝送するための光伝送装 置であって、光源の出力光を信号で変調して光ビーム信号とし、当該光ビーム信号 を出力する光ビーム出力部と、光ビーム出力部力 出力された光ビーム信号を、所 定の方式 (後述する変調 Z復調符号や制御パラメータ)に従って変調し、光変調信 号として出力する空間光変調部と、空間光変調部力 出力された光変調信号を、所 定の方式に対応する方式で復調し、光復調信号として出力する空間光復調部と、空 間光復調部力 出力された光復調信号を光電気変換し、出力信号として出力する受 光部とを備え、空間光変調部は、所定の方式に従って所定の単位空間ごとに光ビー ム信号を変調する。好ましくは、光ビーム出力部は、複数の発振モードからなる光ビ ーム信号を出力し、空間光変調部は、所定の方式に従って発振モードごとに前記光 ビーム信号を変調する。 [0010] The present invention is an optical transmission device for transmitting an optical signal modulated by a signal to be transmitted, wherein the output light of the light source is modulated with the signal to obtain an optical beam signal, and the optical beam signal is converted into the optical beam signal. Output light beam output unit and light beam output unit power The output light beam signal is modulated according to a predetermined method (modulation Z demodulation code and control parameters described later) and output as an optical modulation signal. And a spatial light modulation unit that demodulates the output optical modulation signal by a method corresponding to a predetermined method and outputs it as an optical demodulation signal, Interferometric light demodulating power The optical light demodulating signal is photoelectrically converted and output as an output signal. The spatial light modulating section outputs an optical beam signal for each predetermined unit space according to a predetermined method. Modulate. Preferably, the light beam output unit outputs an optical beam signal comprising a plurality of oscillation modes, and the spatial light modulation unit modulates the light beam signal for each oscillation mode according to a predetermined method.
[0011] 本発明によれば、光ビーム信号は、単位空間ごとに所定の方式で変調されて送信 される。これにより、光変調信号を正常に再生するためには、光変調信号の変調に用 いられた方式に対応する方式で光変調信号を復調することが必要となる。よって、正 規受信者が保持する方式を把握することができない第三者が光変調信号を傍受して も、光変調信号を正常に再生することができない。したがって、第三者による盗聴を 妨げ、秘匿性の高い光伝送装置を提供することができる。さらに、マルチモード光源 力 出力されるマルチモード光において、各モードに分配されるモード分配比には、 予測不能な揺らぎが生じる。盗聴者は、マルチモード光のモード分配比を把握するこ とができないため、光変調信号を傍受しても正常に再生することができない。したがつ て、モード分配比に予測不能な揺らぎが生じるマルチモード光に光符号処理を み 合わせることによって、さらに秘匿性を向上させることができる。  [0011] According to the present invention, the light beam signal is modulated and transmitted by a predetermined method for each unit space. Thus, in order to normally reproduce the optical modulation signal, it is necessary to demodulate the optical modulation signal by a method corresponding to the method used for the modulation of the optical modulation signal. Therefore, even if a third party who cannot grasp the method held by the proper receiver intercepts the optical modulation signal, the optical modulation signal cannot be reproduced normally. Therefore, it is possible to provide a highly confidential optical transmission device that prevents eavesdropping by a third party. Furthermore, in the multimode light that is output from the multimode light source, unpredictable fluctuations occur in the mode distribution ratio distributed to each mode. Since an eavesdropper cannot grasp the mode distribution ratio of multimode light, it cannot reproduce normally even if an optical modulation signal is intercepted. Therefore, the confidentiality can be further improved by matching the optical code processing with the multimode light in which the mode distribution ratio fluctuates unpredictably.
[0012] 一例として、光源は、複数の発振モードからなる光を出力するマルチモード光源で あってもよい。  As an example, the light source may be a multimode light source that outputs light having a plurality of oscillation modes.
[0013] 他の例として、光ビーム出力部は、光源を複数含み、複数の光源から出力される出 力光を変調することによって光ビーム信号を出力してもよい。  [0013] As another example, the light beam output unit may include a plurality of light sources, and output light beam signals by modulating output light output from the plurality of light sources.
[0014] また、他の例として、光ビーム出力部は、光ビーム信号を複数の伝搬モードからな る光ビーム信号として放射するマルチモードファイバを含んで 、てもよ 、。 As another example, the light beam output unit may include a multimode fiber that emits a light beam signal as a light beam signal composed of a plurality of propagation modes.
[0015] また、空間光変調部は、光変調信号を自由空間に放射し、空間光復調部は、自由 空間を伝播する光変調信号を復調してもよい。これにより、自由空間を介して光変調 信号を送信することができる。 [0015] Further, the spatial light modulation unit may radiate a light modulation signal to free space, and the spatial light demodulation unit may demodulate the light modulation signal propagating in the free space. As a result, the optical modulation signal can be transmitted through free space.
[0016] また、空間光変調部と、空間光復調部とは、光伝送路を介して接続されていてもよ い。これにより、光伝送路を介して光変調信号を送信することができる。 [0016] The spatial light modulator and the spatial light demodulator may be connected via an optical transmission path. Thereby, an optical modulation signal can be transmitted through the optical transmission line.
[0017] 例えば、光源は、面発光レーザであってもよぐまた、フアブリ'ぺロ共振器レーザで あってもよい。また、光源は、発光ダイオードであってもよい。 [0017] For example, the light source may be a surface emitting laser, or a Fabry-Perot resonator laser. There may be. The light source may be a light emitting diode.
[0018] さらに、空間光変調部は、光ビーム信号を複数の縦モードに分離し、空間光変調 部に出力する縦モード分離部とを備え、空間光復調部は、前記空間光復調部から出 力された前記光復号信号を入力し、当該縦モードを多重化する縦モード多重部を含 み、空間光変調部は、縦モード分離部によって分離された縦モードごとに所定の方 式に従って光ビーム信号を変調してもよ 、。  [0018] Further, the spatial light modulation unit includes a longitudinal mode separation unit that separates the light beam signal into a plurality of longitudinal modes and outputs the separated light beam signal to the spatial light modulation unit. The spatial light modulation unit includes a longitudinal mode multiplexing unit that inputs the output optical decoded signal and multiplexes the longitudinal mode, and the spatial light modulation unit follows a predetermined method for each longitudinal mode separated by the longitudinal mode separation unit. You can modulate the light beam signal.
[0019] これにより、光ビーム信号を、互いに異なる複数の縦モードに分離することができる 。よって、盗聴者は、分離された縦モードと、傍受した光変調信号を復調するための 方式との双方を把握しない限り、傍受した光変調信号を正常に再生することができな い。したがって、秘匿性をより向上させることができる。  Thereby, the light beam signal can be separated into a plurality of different longitudinal modes. Therefore, an eavesdropper cannot normally reproduce the intercepted light modulation signal unless it understands both the separated longitudinal mode and the method for demodulating the intercepted light modulation signal. Therefore, confidentiality can be further improved.
[0020] さらに、光復調信号が有するモード分散特性を検出するモード分散検出部を備え、 空間光復調部は、モード分散検出部によって検出された結果に基づいて、モード分 散特性と逆の特性で補正を加える。  [0020] In addition, a mode dispersion detector that detects a mode dispersion characteristic of the optical demodulated signal is provided, and the spatial light demodulator is a characteristic opposite to the mode dispersion characteristic based on the result detected by the mode dispersion detector. Add correction with.
[0021] これにより、モード分散による歪みを検出することによって、光変調信号の復調時に 歪みを補償することができる。したがって、正規受信者は、受信した光変調信号を精 度よく再生することができる。  [0021] Thus, by detecting distortion due to mode dispersion, it is possible to compensate for distortion during demodulation of the optical modulation signal. Therefore, the authorized receiver can accurately reproduce the received light modulation signal.
[0022] 一例として、モード分散検出部は、モード分散による遅延量を検出することとしても よい。  [0022] As an example, the mode dispersion detection unit may detect a delay amount due to mode dispersion.
[0023] さらに、空間光復調部は、モード分散検出部によって検出されたモード分散による 遅延量を補正するよう、発振モード毎に所定の遅延量を加えるとよい。  [0023] Further, the spatial light demodulator may add a predetermined delay amount for each oscillation mode so as to correct the delay amount due to mode dispersion detected by the mode dispersion detector.
[0024] 他の例として、モード分散検出部は、モード分散による損失量を検出することとして ちょい。  [0024] As another example, the mode dispersion detection unit may detect the amount of loss due to mode dispersion.
[0025] さらに、空間光復調部は、モード分散検出部によって検出されたモード分散による 損失量を補正するよう、発振モード毎に所定の損失量を加えるとよい。  Furthermore, the spatial light demodulation unit may add a predetermined loss amount for each oscillation mode so as to correct the loss amount due to mode dispersion detected by the mode dispersion detection unit.
[0026] これにより、空間光変調部から出力される光変調信号の光電力密度を調整すること ができる。したがって、例えば、光変調信号の光電力密度が放射角に対して一定とな るように、変調パラメータを調整することによって、高いアイ'セーフティを得ることがで きる。 [0027] また、空間光変調部は、所定の符号に基づいて光ビーム信号を変調し、空間光復 調部は、所定の符号に対応する符号に基づいて光変調信号を復調することとしても よい。 [0026] Thereby, it is possible to adjust the optical power density of the light modulation signal output from the spatial light modulation unit. Therefore, for example, by adjusting the modulation parameter so that the optical power density of the optical modulation signal is constant with respect to the radiation angle, high eye safety can be obtained. [0027] The spatial light modulation unit may modulate the light beam signal based on a predetermined code, and the spatial light demodulation unit may demodulate the light modulation signal based on a code corresponding to the predetermined code. .
[0028] さらに、空間光変調部が光ビーム信号を変調するための所定の符号 (変調符号)と 、空間光復調部が光変調信号を復調するための所定の符号に対応する符号 (復調 符号)とを変更する符号変更部を備えて 、てもよ 、。  [0028] Further, a predetermined code (modulation code) for the spatial light modulation unit to modulate the light beam signal, and a code (demodulation code) corresponding to the predetermined code for the spatial light demodulation unit to demodulate the optical modulation signal ) And a sign changing unit for changing.
[0029] これにより、時間ごとに、変調符号および復調符号を変更することができる。したが つて、これらの符号が常に一定である場合に比べ、盗聴者が光変調信号を正常に復 調するための方式を把握することが困難になるため、秘匿性を向上させることができ る。  [0029] Thereby, the modulation code and the demodulation code can be changed every time. Therefore, compared to the case where these codes are always constant, it becomes difficult for an eavesdropper to grasp a method for normally recovering the optical modulation signal, so that the confidentiality can be improved. .
[0030] 空間光変調部および空間光復調部は、液晶空間光変調素子によって構成されて いてもよぐまた、マイクロミラーデバイスによって構成されていてもよい。  [0030] The spatial light modulation unit and the spatial light demodulation unit may be configured by a liquid crystal spatial light modulation element, or may be configured by a micromirror device.
[0031] また、空間光変調部および空間光復調部は、磁気光学効果を用いた空間光変調 素子によって構成されていてもよいし、多重量子井戸効果を用いた光変調素子によ つて構成されて 、てもよ 、。 [0031] Further, the spatial light modulator and the spatial light demodulator may be configured by a spatial light modulator using a magneto-optic effect, or by a light modulator using a multiple quantum well effect. Well, okay.
[0032] また、空間光変調部および空間光復調部は、音響光学効果を用いた光変調素子 によって構成されて 、てもよ 、。 [0032] Further, the spatial light modulation unit and the spatial light demodulation unit may be configured by a light modulation element using an acousto-optic effect.
[0033] また、空間光変調部は、制御パラメータの一例として、光ビーム信号の強度を制御 し、空間光復調部は、光変調信号の強度を制御してもよい。 [0033] Further, the spatial light modulation unit may control the intensity of the light beam signal as an example of the control parameter, and the spatial light demodulation unit may control the intensity of the light modulation signal.
[0034] また、空間光変調部は、制御パラメータの他の例として、光ビーム信号の位相を制 御し、空間光復調部は、光変調信号の位相を制御してもよい。 [0034] Further, as another example of the control parameter, the spatial light modulation unit may control the phase of the light beam signal, and the spatial light demodulation unit may control the phase of the light modulation signal.
[0035] また、空間光変調部は、光ビーム信号の偏光状態を制御し、空間光復調部は、光 変調信号の偏光状態を制御してもよ 、。 [0035] The spatial light modulator may control the polarization state of the light beam signal, and the spatial light demodulator may control the polarization state of the light modulation signal.
発明の効果  The invention's effect
[0036] 本発明によれば、秘匿性に優れた光伝送装置が提供される。  [0036] According to the present invention, an optical transmission apparatus excellent in secrecy is provided.
図面の簡単な説明  Brief Description of Drawings
[0037] [図 1]図 1は、本発明の第 1の実施形態に係る光伝送装置の構成を示す図である。  FIG. 1 is a diagram showing a configuration of an optical transmission apparatus according to a first embodiment of the present invention.
[図 2]図 2は、図 1に示す光伝送装置の構成を示すブロック図である。 [図 3A]図 3Aは、マルチモード光源 11から出力される光ビーム信号の光強度を発振 モードごとに示す図である。 FIG. 2 is a block diagram showing a configuration of the optical transmission apparatus shown in FIG. FIG. 3A is a diagram showing the light intensity of the light beam signal output from the multimode light source 11 for each oscillation mode.
圆 3B]図 3Bは、光変調処理に用いられる変調符号 (拡散符号)の一例を示す図であ る。 [3B] FIG. 3B is a diagram showing an example of a modulation code (spreading code) used for optical modulation processing.
圆 3C]図 3Cは、光復調処理に用いられる復調符号 (逆拡散符号)の一例を示す図 である。 [3C] FIG. 3C is a diagram showing an example of a demodulated code (despread code) used in the optical demodulation process.
[図 3D]図 3Dは、空間光復調部 15から出力される光復調信号におけるモード分配比 を示す図である。  FIG. 3D is a diagram showing a mode distribution ratio in an optical demodulated signal output from the spatial light demodulator 15.
[図 3E]図 3Eは、拡散符号および逆拡散符号のモードごとの和を示す図である。  FIG. 3E is a diagram showing the sum of the spreading code and the despreading code for each mode.
[図 3F]図 3Fは、空間光変調部 13から自由空間 14に放射された光変調信号を直接 受信した場合における、光変調信号の光強度を、モード次数毎に示す図である。 FIG. 3F is a diagram showing, for each mode order, the light intensity of the light modulation signal when the light modulation signal radiated from the spatial light modulation unit 13 to the free space 14 is directly received.
[図 4]図 4は、受光部 17から出力される出力信号の雑音分布 (周波数特性)の一例を 示す図である。 FIG. 4 is a diagram showing an example of a noise distribution (frequency characteristic) of an output signal output from the light receiving unit 17.
[図 5A]図 5Aは、一般的な光源から出力される光ビーム信号の光電力密度を示す図 である。  FIG. 5A is a diagram showing the optical power density of a light beam signal output from a general light source.
[図 5B]図 5Bは、本実施形態に係る n次モード変調素子 13— nの構成を示す図であ る。  FIG. 5B is a diagram showing a configuration of the nth-order mode modulation element 13-n according to the present embodiment.
[図 5C]図 5Cは、光空間変調部 13から出力される光変調信号の光電力密度を示す 図である。  FIG. 5C is a diagram showing the optical power density of the optical modulation signal output from the optical spatial modulation unit 13.
[図 6A]図 6Aは、変調素子を 2次元に配列した場合の空間光変調部 13の構成を示 す図である。  [FIG. 6A] FIG. 6A is a diagram showing a configuration of the spatial light modulator 13 when the modulation elements are two-dimensionally arranged.
圆 6B]図 6Bは、各発振モードに対応する変調素子力 つである場合における空間 光変調部 13の構成を示す図である。 [6B] FIG. 6B is a diagram showing a configuration of the spatial light modulation unit 13 in the case where the modulation element power corresponding to each oscillation mode is used.
圆 7A]図 7Aは、本実施形態で説明したマルチモード光源 11の構成を示す図である [7A] FIG. 7A is a diagram showing a configuration of the multimode light source 11 described in the present embodiment.
[図 7B]図 7Bは、光源が、シングルモード光源 51とマルチモードファイバ 52とからなる 場合における光源の構成を示す図である。 FIG. 7B is a diagram showing a configuration of a light source when the light source is composed of a single mode light source 51 and a multimode fiber 52.
[図 7C]図 7Cは、光源が、アレイ型光源力もなる場合における光源の構成を示す図で ある。 [FIG. 7C] FIG. 7C is a diagram showing a configuration of a light source when the light source also has an array type light source power. is there.
[図 8]図 8は、本発明の第 2の実施形態に係る光伝送装置 2の構成を示す図である。  FIG. 8 is a diagram showing a configuration of an optical transmission device 2 according to the second embodiment of the present invention.
[図 9]図 9は、本発明の第 3の実施形態に係る光伝送装置の構成を示す図である。 FIG. 9 is a diagram showing a configuration of an optical transmission apparatus according to a third embodiment of the present invention.
[図 10]図 10は、図 9に示す光伝送装置の構成を示すブロック図である。 FIG. 10 is a block diagram showing a configuration of the optical transmission apparatus shown in FIG.
[図 11A]図 11Aは、単一モード光源 21から出力される光ビーム信号の光強度を示す 図である。 FIG. 11A is a diagram showing the light intensity of the light beam signal output from the single mode light source 21.
[図 11B]図 11Bは、光変調処理に用いられる変調符号 (拡散符号)の一例を示す図 である。  FIG. 11B is a diagram showing an example of a modulation code (spreading code) used for optical modulation processing.
[図 11C]図 11Cは、それぞれの空間領域に割り当てた光復調処理に用いられる復調 符号 (逆拡散符号)の一例を示す図である。  FIG. 11C is a diagram showing an example of a demodulated code (despread code) used for optical demodulation processing assigned to each spatial region.
圆 11D]図 11Dは、空間光復調部 15から出力される光復調信号の光強度を示す図 である。 [11D] FIG. 11D is a diagram showing the light intensity of the optical demodulated signal output from the spatial light demodulator 15.
圆 11E]図 11Eは、拡散符号および逆拡散符号の各空間領域の和を示す図である。 [11E] FIG. 11E is a diagram showing the sum of the spatial regions of the spreading code and the despreading code.
[図 11F]図 11Fは、空間光変調部 13から自由空間 14に放射された光変調信号を直 接受信した場合における、光変調信号の光強度を空間領域毎に示す図である。 FIG. 11F is a diagram showing the light intensity of the light modulation signal for each spatial region when the light modulation signal radiated from the spatial light modulation unit 13 to the free space 14 is directly received.
[図 12]図 12は、本発明の第 4の実施形態に係る光伝送装置の構成を示すブロック図 である。 FIG. 12 is a block diagram showing a configuration of an optical transmission apparatus according to a fourth embodiment of the present invention.
圆 13A]図 13Aは、縦モード分離部 22が、光ビーム信号を横方向に分離して出力す る場合における n'm次モード変調素子 13— nmの配置例を示す図である。 [13A] FIG. 13A is a diagram illustrating an arrangement example of the n′m-order mode modulation elements 13-nm when the longitudinal mode separation unit 22 separates and outputs the light beam signal in the lateral direction.
[図 13B]図 13Bは、縦モード分離部 22が、光ビーム信号を上下に分離して出力する 場合における n'm次モード空間光変調素子 13— nmの配置例を示す図である。 [FIG. 13B] FIG. 13B is a diagram showing an arrangement example of n′m-th order mode spatial light modulation elements 13-nm when the longitudinal mode separation unit 22 separates and outputs the light beam signal.
[図 14A]図 14Aは、縦モード分離部 22から出力される光ビーム信号の光強度をモー ドごとに示す図である。 FIG. 14A is a diagram showing the light intensity of the light beam signal output from the longitudinal mode separation unit 22 for each mode.
[図 14B]図 14Bは、各モードに施される光変調処理に対応する変調符号の一例を示 す図である。  FIG. 14B is a diagram showing an example of a modulation code corresponding to the optical modulation processing performed in each mode.
[図 14C]図 14Cは、各モードに施される光復調処理に対応する復調符号の一例を示 す図である。  FIG. 14C is a diagram showing an example of a demodulation code corresponding to the optical demodulation processing performed in each mode.
[図 14D]図 14Dは、空間光復調部 15bから出力される光復調信号におけるモード分 配比を示す図である。 [FIG. 14D] FIG. 14D shows the mode components in the optical demodulated signal output from the spatial light demodulator 15b. It is a figure which shows a distribution ratio.
[図 14E]図 14Eは、拡散符号および逆拡散符号のモードごとの和を示す図である。  FIG. 14E is a diagram showing the sum of the spreading code and the despreading code for each mode.
[図 14F]図 14Fは、空間光変調部 13bから自由空間 14に放射された光変調信号を 直接受信した場合における、光変調信号の光強度をモード次数毎に示す図である。 FIG. 14F is a diagram showing the light intensity of the light modulation signal for each mode order when the light modulation signal radiated from the spatial light modulation unit 13b to the free space 14 is directly received.
[図 15]図 15は、本発明の第 5の実施形態に係る光伝送装置の構成を示すブロック図 である。 FIG. 15 is a block diagram showing a configuration of an optical transmission apparatus according to a fifth embodiment of the present invention.
[図 16]図 16は、本発明の第 6の実施形態に係る光伝送装置の構成を示すブロック図 である。  FIG. 16 is a block diagram showing a configuration of an optical transmission apparatus according to a sixth embodiment of the present invention.
[図 17]図 17は、特許文献 1に記載の従来の光空間伝送装置の構成を示す図である 符号の説明  FIG. 17 is a diagram showing a configuration of a conventional optical space transmission device described in Patent Document 1.
1、 2 光伝送装置 1, 2 Optical transmission equipment
9 データ入力部 9 Data input section
10 光ビーム出力部  10 Light beam output section
11 マルチモード光源  11 Multi-mode light source
12、 16 集光部  12, 16 Condenser
13 空間光変調部  13 Spatial light modulator
14 自由空間  14 Free space
15 空間光復調部  15 Spatial light demodulator
17 受光部  17 Receiver
18 データ出力部  18 Data output section
21 単一モード光源  21 Single mode light source
22 縦モード分離部  22 Vertical mode separator
23 縦モード多重部  23 Longitudinal mode multiplexing section
24 歪み調整部  24 Distortion adjuster
25 パラメータ変更部  25 Parameter change section
51 光源  51 Light source
52 マルチモードファ 53 アレイ型光源 52 Multi-mode file 53 Array type light source
60 光ファイバ  60 optical fiber
100、 700 光送信部  100, 700 Optical transmitter
110、 710 光受信部  110, 710 Optical receiver
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0039] 以下、本発明の実施の形態について、図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0040] (第 1の実施形態)  [0040] (First embodiment)
図 1は、本発明の第 1の実施形態に係る光伝送装置 1の構成を示す図であり、図 2 は、図 1に示す光伝送装置 1の構成を示すブロック図である。以下、図 1および図 2を 参照して、光伝送装置 1の構成について説明する。  FIG. 1 is a diagram showing a configuration of the optical transmission device 1 according to the first embodiment of the present invention, and FIG. 2 is a block diagram showing a configuration of the optical transmission device 1 shown in FIG. Hereinafter, the configuration of the optical transmission device 1 will be described with reference to FIG. 1 and FIG.
[0041] 光伝送装置 1は、自由空間 14を介して信号を光伝送する光空間伝送装置である。  The optical transmission device 1 is an optical space transmission device that optically transmits a signal through the free space 14.
図 2において、光伝送装置 1は、光送信部 100と、光受信部 110とを備える。光送信 部 100と光受信部 110とは、互いに対面している状態で設置される。光送信部 100 は、データ入力部 9と、光ビーム出力部 10と、空間光変調部 13とを含む。光受信部 1 10は、空間光復調部 15と、集光部 16と、受光部 17と、データ出力部 18を含む。な お、図 1において、データ入力部 9およびデータ出力部 18の図示は省略されている。 また、図 2において、集光部 16の図示は省略されている。  In FIG. 2, the optical transmission device 1 includes an optical transmission unit 100 and an optical reception unit 110. The optical transmitter 100 and the optical receiver 110 are installed in a state of facing each other. The optical transmission unit 100 includes a data input unit 9, a light beam output unit 10, and a spatial light modulation unit 13. The light receiving unit 110 includes a spatial light demodulating unit 15, a light collecting unit 16, a light receiving unit 17, and a data output unit 18. In FIG. 1, the data input unit 9 and the data output unit 18 are not shown. In FIG. 2, the light condensing unit 16 is not shown.
[0042] 光送信部 100において、データ入力部 9は、光受信部 110に送信すべきデータ信 号を光ビーム出力部 10に出力する。  In the optical transmission unit 100, the data input unit 9 outputs a data signal to be transmitted to the optical reception unit 110 to the optical beam output unit 10.
[0043] 光ビーム出力部 10は、マルチモード光源 11と、集光部 12とを有する。マルチモー ド光源 11は、例えば面発光レーザで構成される。マルチモード光源 11は、 n個の異 なる発振モード (n: 0以上の整数)から成る出力光を、データ入力部 9から入力される データ信号 (入力信号)に基づいて変調し、光ビーム信号として出力する。なお、本 実施形態では、マルチモード光源 11は、 4つの異なる発振モードを有する場合を例 に説明する。この場合、マルチモード光源 11は、 0次〜 3次モードの光ビーム信号を 出力する。  The light beam output unit 10 includes a multimode light source 11 and a condensing unit 12. The multimode light source 11 is composed of, for example, a surface emitting laser. The multi-mode light source 11 modulates output light composed of n different oscillation modes (n: an integer equal to or greater than 0) based on a data signal (input signal) input from the data input unit 9 to generate a light beam signal. Output as. In the present embodiment, the case where the multimode light source 11 has four different oscillation modes will be described as an example. In this case, the multimode light source 11 outputs a 0th-order to third-order mode light beam signal.
[0044] 集光部 12は、例えばレンズなどで構成される光学系である。集光部 12は、マルチ モード光源 11から出力される光ビーム信号を平行光にして出力する。 [0045] 空間光変調部 13は、集光部 12から出力される光ビーム信号を単位空間(図 2では 、空間 1〜N+ 1)ごとに所定の方式で変調する。具体的には、空間光変調部 13は、 光ビーム信号の発振モード (空間領域)毎に、所定の符号 (以下、変調符号または拡 散符号と呼ぶ)に基づく光変調処理を施し、光変調信号として自由空間 14に放射す る。空間光変調部 13は、複数の n(nは、 0から Nまでの整数)次モード変調素子 13— 0〜 13— Nを有する。これらの複数の n次モード変調素子 13— 0〜 13— Nを特に区 別する必要がない場合には、 n次モード変調素子 13— nと総称する。 [0044] The condensing unit 12 is an optical system including, for example, a lens. The condensing unit 12 outputs the light beam signal output from the multi-mode light source 11 as parallel light. The spatial light modulation unit 13 modulates the light beam signal output from the light collecting unit 12 for each unit space (space 1 to N + 1 in FIG. 2) by a predetermined method. Specifically, the spatial light modulator 13 performs light modulation processing based on a predetermined code (hereinafter referred to as a modulation code or a spread code) for each oscillation mode (spatial region) of the light beam signal, and performs light modulation. Radiates to free space 14 as a signal. The spatial light modulator 13 includes a plurality of n (n is an integer from 0 to N) order mode modulation elements 13-0 to 13-N. These n-order mode modulation elements 13-0 to 13-N are collectively referred to as n-order mode modulation elements 13-n when it is not necessary to distinguish them.
[0046] n次モード変調素子 13— nは、例えば液晶を材料にして構成される空間光変調素 子であり、空間的に配列されている。図 1では、空間光変調部 13は、 0次〜 3次モー ドの光ビーム信号に対応する変調素子として、 0次〜 3次モード変調素子 13— 0〜1 3— 3を有している。また、本実施形態では、光変調処理に用いられる符号は、透過 率 (即ち、光強度を制御するためのパラメータ)を表すものとして説明する。各 n次モ ード変調素子 13— nには、所定の符号が割り当てられている。図 1では、例えば、透 過率の高い順に、 0次モード変調素子 13— 0 (白)、 3次モード変調素子 13— 3 (ドッ ト柄)、 2次モード変調素子 13— 2 (斜線)、 1次モード変調素子 13— 1 (黒)となる。こ のように、複数の n次モード変調素子によって光変調処理が行われることにより、空間 光変調部 13による光符号処理が実現される。  [0046] The n-order mode modulation elements 13-n are spatial light modulation elements that are made of, for example, liquid crystal, and are spatially arranged. In FIG. 1, the spatial light modulator 13 has 0th-order to 3rd-order mode modulation elements 13-0 to 13-3 as modulation elements corresponding to light beam signals in the 0th-order to third-order mode. . In the present embodiment, the description will be made assuming that the code used for the light modulation processing represents the transmittance (that is, the parameter for controlling the light intensity). A predetermined code is assigned to each nth-order mode modulation element 13-n. In FIG. 1, for example, the 0th-order mode modulation element 13-0 (white), the third-order mode modulation element 13-3 (dot pattern), and the second-order mode modulation element 13-2 (hatched) in descending order of transmittance. The primary mode modulation element 13-1 (black) is obtained. Thus, the optical code processing by the spatial light modulator 13 is realized by performing optical modulation processing by a plurality of n-order mode modulation elements.
[0047] 光受信部 110において、空間光復調部 15は、空間光変調部 13が用いる変調方式 に対応する方式で光変調信号を復調し、光復調信号として出力する。空間光復調部 15は、光変調信号に対して、前述の単位空間ごとに所定の符号 (以下、復調符号ま たは逆拡散符号と呼ぶ)に基づく光復調処理を施す。空間光復調部 15は、複数の n (nは、 0から Nまでの整数)次モード復調素子 15— 0〜 15— Nを有する。これらの複 数の n次モード復調素子 15— 0〜15—Nを特に区別する必要がない場合には、 n次 モード復調素子 15— nと総称する。  In the optical receiver 110, the spatial light demodulator 15 demodulates the optical modulation signal by a method corresponding to the modulation method used by the spatial light modulator 13, and outputs it as an optical demodulated signal. The spatial light demodulator 15 performs an optical demodulation process on the optical modulation signal based on a predetermined code (hereinafter referred to as a demodulation code or a despread code) for each unit space described above. The spatial light demodulation unit 15 includes a plurality of n (n is an integer from 0 to N) order mode demodulation elements 15-0 to 15-N. These n-order mode demodulation elements 15-0 to 15-N are collectively referred to as n-order mode demodulation elements 15-n when it is not necessary to distinguish them.
[0048] n次モード復調素子 15— nは、例えば液晶を材料にして構成される空間光変調素 子であり、空間的に配列されている。空間光復調部 15は、自由空間 14を伝播してき た光変調信号の発振モード毎に、対応する n次モード復調素子 15— nを用いて、拡 散符号に対応した逆拡散符号に基づいて光復調処理を施し、光復調信号として出 力する。空間光復調部 15において、 n次モード復調素子は、空間光変調部 13にお ける n次モード変調素子の配列に対応するように配置されている。図 1では、空間光 復調部 15は、 0次〜3次モード変調素子15— 0〜15— 3を有してぃる。それぞれの 復調素子は、所定の透過率をもつ。このように、複数の n次モード復調素子によって 光復調処理が行われることにより、空間光変調部 15による光復号ィヒ処理が実現され る。 [0048] The nth-order mode demodulating elements 15-n are spatial light modulation elements made of, for example, liquid crystal, and are spatially arranged. The spatial light demodulator 15 uses the corresponding nth-order mode demodulating element 15-n for each oscillation mode of the optical modulation signal that has propagated through the free space 14, and based on the despread code corresponding to the spread code. Demodulated and output as an optical demodulated signal To help. In the spatial light demodulating unit 15, the n-order mode demodulating elements are arranged so as to correspond to the arrangement of the n-order mode modulating elements in the spatial light modulating unit 13. In FIG. 1, the spatial light demodulator 15 has 0th to 3rd mode modulation elements 15-0 to 15-3. Each demodulating element has a predetermined transmittance. As described above, the optical demodulation processing is performed by the spatial light modulation unit 15 by performing the optical demodulation processing by the plurality of n-order mode demodulation elements.
[0049] 集光部 16は、例えばレンズで構成される集光光学系である。集光部 16は、空間光 復調部 15から出力される光復調信号を集光する。受光部 17は、例えば、フォトダイ オード等の受光素子である。受光部 17は、集光部 16から出力された光復調信号を 光電気変換し、出力信号としてデータ出力部 18に出力する。  [0049] The condensing unit 16 is a condensing optical system including, for example, a lens. The condensing unit 16 condenses the optical demodulated signal output from the spatial light demodulating unit 15. The light receiving unit 17 is, for example, a light receiving element such as a photodiode. The light receiving unit 17 photoelectrically converts the optical demodulated signal output from the light collecting unit 16 and outputs the result to the data output unit 18 as an output signal.
[0050] つづいて、モード分配雑音と光符号処理を用いる本発明の原理について説明する 。図 3は、本実施形態に係る各信号の光強度と変復調符号を示す図である。  [0050] Next, the principle of the present invention using mode distribution noise and optical code processing will be described. FIG. 3 is a diagram showing the light intensity and modulation / demodulation code of each signal according to the present embodiment.
[0051] 図 3Aは、マルチモード光源 11から出力される光ビーム信号の光強度を発振モード ごとに示す図である。ここで、着目すべきは、当該マルチモード光源 11から出力され る光ビーム信号の全モードの合計光強度が時間的に一定に保たれていたとしても、 時刻 tlと時刻 t2において、各モードに分配される光強度の比(モード分配比)が揺ら いでいる点である。  FIG. 3A is a diagram showing the light intensity of the light beam signal output from the multimode light source 11 for each oscillation mode. Here, it should be noted that even if the total light intensity of all modes of the light beam signal output from the multi-mode light source 11 is kept constant in time, each mode is set at time tl and time t2. The ratio of the distributed light intensity (mode distribution ratio) fluctuates.
[0052] 図 3Bは、光変調処理に用いられる変調符号 (拡散符号)の一例を示す図である。  FIG. 3B is a diagram illustrating an example of a modulation code (spreading code) used for optical modulation processing.
空間光変調部 13において、 0次〜 3次モード変調素子 13— 0〜13— 3は、図 3Bに 示す変調符号 f (0)〜f (3)に基づいて、 0次〜 3次モードの光ビーム信号に光変調 処理を施す。  In the spatial light modulator 13, the 0th to 3rd mode modulators 13-0 to 13-3 are connected to the 0th to 3rd modes based on the modulation codes f (0) to f (3) shown in FIG. 3B. Light modulation processing is applied to the light beam signal.
[0053] 図 3Cは、光復調処理に用いられる復調符号 (逆拡散符号)の一例を示す図である 。空間光復調部 15において、 0次〜 3次モード復調素子 15— 0から 15— 3は、図 3C に示す復調符号 g (0)〜g (3)に基づ 、て、光変調信号に光復調処理を施す。  FIG. 3C is a diagram showing an example of a demodulated code (despread code) used for optical demodulation processing. In the spatial light demodulator 15, the 0th to 3rd mode demodulating elements 15-0 to 15-3 are used to convert the optical modulation signal into an optical signal based on the demodulated codes g (0) to g (3) shown in FIG. 3C. Demodulate.
[0054] 上記における変調符号や復調符号を表現する制御パラメータとしては、例えば、光 強度情報を用いることができる。例えば、変調素子として、液晶空間変調素子を用い る場合、液晶空間変調素子の透過率を制御することによって、上記の変復調符号を 表現することが可能である。 [0055] 図 3Eは、拡散符号および逆拡散符号のモードごとの和を示す図である。図 3Bに示 す拡散符号と、図 3Cに示す逆拡散符号とは、互いに相補的であり、光変復調全体 の伝達関数 h (n) =f (n) X g (n)は、全ての nについて一定となるように設定されてい る。即ち、図 3Eに示すように、各モードの拡散符号と逆拡散符号との和は、全てのモ ードに対して一定レベルとなる。なお、拡散符号および逆拡散符号を透過率で表記 した場合、伝達関数 h(n)は、全ての nについて f (n) X g (n)が一定になるように設定 される力 例えば、拡散符号および逆拡散符号をデシベル (dB)で表記した場合、伝 達関数 h (n)は、全ての nについて f (n) +g (n)が一定になるように設定される。 [0054] As the control parameter expressing the modulation code and the demodulation code in the above, for example, light intensity information can be used. For example, when a liquid crystal spatial modulation element is used as the modulation element, the modulation / demodulation code can be expressed by controlling the transmittance of the liquid crystal spatial modulation element. [0055] FIG. 3E is a diagram showing the sum of the spreading code and the despreading code for each mode. The spreading code shown in Fig. 3B and the despreading code shown in Fig. 3C are complementary to each other, and the transfer function h (n) = f (n) X g (n) of the entire optical modulation / demodulation is Is set to be constant. That is, as shown in FIG. 3E, the sum of the spreading code and the despreading code in each mode is a constant level for all modes. When spreading codes and despreading codes are expressed in terms of transmittance, the transfer function h (n) is a force set so that f (n) X g (n) is constant for all n. When the code and despread code are expressed in decibels (dB), the transfer function h (n) is set so that f (n) + g (n) is constant for all n.
[0056] 図 3Dは、空間光復調部 15から出力される光復調信号におけるモード分配比を示 す図である。図 3Dに示すように、空間光復調部 15から出力される光復調信号の各 モードのモード分配比は、マルチモード光源 11から出力される光ビーム信号のモー ド分配比(図 3A)と同一となる。正規受信者は、図 3Cに示すように、図 3Bに示す拡 散符号に相補的な逆拡散符号を有しているため、入力信号を正常に再生することが できる。  FIG. 3D is a diagram showing a mode distribution ratio in the optical demodulated signal output from the spatial light demodulator 15. As shown in FIG. 3D, the mode distribution ratio of each mode of the optical demodulated signal output from the spatial light demodulator 15 is the same as the mode distribution ratio of the optical beam signal output from the multimode light source 11 (FIG. 3A). It becomes. As shown in FIG. 3C, the legitimate receiver has a despread code complementary to the spread code shown in FIG. 3B, so that the input signal can be reproduced normally.
[0057] 図 4は、受光部 17から出力される出力信号の雑音分布 (周波数特性)の一例を示 す図である。図 4において、縦軸は相対強度雑音を示し、横軸は周波数を示す。また 、実線は、正規受信者が得た出力信号の雑音分布を示し、点線は、盗聴者が得た出 力信号の雑音分布を示す。上述のように、正規受信者は、入力信号を正常に再生す ることができるため、盗聴者が得る出力信号に比べ、出力信号における相対強度雑 音が小さくなる。  FIG. 4 is a diagram showing an example of the noise distribution (frequency characteristics) of the output signal output from the light receiving unit 17. In FIG. 4, the vertical axis represents relative intensity noise, and the horizontal axis represents frequency. The solid line indicates the noise distribution of the output signal obtained by the authorized receiver, and the dotted line indicates the noise distribution of the output signal obtained by the eavesdropper. As described above, since the legitimate receiver can reproduce the input signal normally, the relative intensity noise in the output signal becomes smaller than the output signal obtained by the eavesdropper.
[0058] 次に、空間光変調部 13と空間光復調部 15の間の自由空間 14を伝播する光変調 信号を不法に受信 (盗聴)する場合について説明する。ここで、盗聴者は、正規受信 者だけが保持する空間光復調部 15を有しておらず、拡散符号に関する情報を知ら ないものとする。例えば、図 3Fは、空間光変調部 13から自由空間 14に放射された 光変調信号を直接受信した場合における、光変調信号の光強度を、モード次数毎に 示す図である。盗聴者が受信する光変調信号は、図 3Aに示す光ビーム信号と、図 3 Bに示す拡散符号とを乗算したものとなる。つまり、盗聴者が受信する光変調信号の 光強度は、図 3Fに示すように、モード分配比が図 3Aに示す光ビーム信号と著しく相 違する。 Next, a case where an optical modulation signal propagating in the free space 14 between the spatial light modulator 13 and the spatial light demodulator 15 is illegally received (wired) will be described. Here, it is assumed that the eavesdropper does not have the spatial light demodulation unit 15 held only by the authorized receiver and does not know the information regarding the spread code. For example, FIG. 3F is a diagram showing the light intensity of the light modulation signal for each mode order when the light modulation signal radiated from the spatial light modulation unit 13 to the free space 14 is directly received. The optical modulation signal received by the eavesdropper is obtained by multiplying the light beam signal shown in FIG. 3A by the spreading code shown in FIG. 3B. In other words, the optical intensity of the optical modulation signal received by the eavesdropper is significantly different from the optical beam signal shown in FIG. No.
[0059] 図 3Fに示すように、マルチモード光のモード分配比が発振時と異なる状態に変更 された場合、当該光信号を光電気変換 (受信)した際の雑音成分は、図 4中の点線に 示すように、正規受信者の場合に比べて著しく増加すると共に、広帯域に亘つて分 布する現象が起こる。このように、盗聴者が受信した信号には、物理現象に基づく予 測不能のモード分配雑音が重畳されるため、盗聴者は、信号を正常に再生すること が極めて困難となる。また、盗聴者が、特定のモードのみを受光した場合においても 、各発振モードの光強度は常に揺らいでいるため、受信した信号は、レベルが常に 変動する雑音性の高いものとなる。したがって、この場合においても、盗聴者は、信 号を正常に再生することができな 、。  [0059] As shown in FIG. 3F, when the mode distribution ratio of the multimode light is changed to a state different from that at the time of oscillation, the noise component when the optical signal is photoelectrically converted (received) is shown in FIG. As shown by the dotted line, there is a phenomenon in which the number of subscribers increases significantly compared to the case of regular recipients and is distributed over a wide band. In this way, the signal received by the eavesdropper is superimposed with the unpredictable mode distribution noise based on the physical phenomenon, so that it is extremely difficult for the eavesdropper to reproduce the signal normally. Even when an eavesdropper receives only a specific mode, the light intensity of each oscillation mode is constantly fluctuating, so that the received signal is highly noisy with the level constantly fluctuating. Therefore, even in this case, the eavesdropper cannot reproduce the signal normally.
[0060] 以上のように、本実施形態によれば、光伝送装置は、マルチモード光源から出力さ れる光ビーム信号のモード分配比の揺らぎと、光空間変調部による光符号処理とを 利用して光変調信号を送信する。これにより、盗聴者は、マルチモード光のモード分 配比と、変調符号に対応する復調符号とを把握することができないため、信号を正常 に復調することができない。したがって、秘匿性の高い光空間伝送を実現することが できる。  [0060] As described above, according to the present embodiment, the optical transmission device uses the fluctuation of the mode distribution ratio of the light beam signal output from the multimode light source and the optical code processing by the optical spatial modulation unit. To transmit an optical modulation signal. As a result, the eavesdropper cannot grasp the mode distribution ratio of the multimode light and the demodulation code corresponding to the modulation code, and thus cannot normally demodulate the signal. Therefore, highly confidential optical space transmission can be realized.
[0061] また、本実施形態に係る光伝送装置を用いれば、変調符号を制御することによって 、眼への安全性 (アイ'セーフティ)を確保することができる。図 5A〜Cは、光ビーム信 号と光変調信号の光電力密度、および変調素子の構成を示す図である。図 5Aは、 一般的な光源から出力される光ビーム信号の光電力密度を示す図である。図 5Aに 示すように、光源力 出力される光ビーム信号の光電力密度は、一般的に、放射角 に対してガウス型分布となり、特定の放射角にお 、てピークを示す性質を有して!/、る 。また、光源によっては、 XY方向(図 1に示す光軸 Z方向に対して垂直方向)のいず れかに偏った分布を持つ。しかしながら、図 5Aに示すような、光電力密度が一定で なぐ特定の放射角に対してピークを示す光ビームは、眼に対して悪影響を及ぼす 可能 ¾が高い。  [0061] Furthermore, by using the optical transmission apparatus according to the present embodiment, it is possible to ensure eye safety (eye safety) by controlling the modulation code. 5A to 5C are diagrams showing the optical power density of the optical beam signal and the optical modulation signal, and the configuration of the modulation element. FIG. 5A is a diagram showing the optical power density of a light beam signal output from a general light source. As shown in FIG. 5A, the optical power density of the light beam signal output from the light source generally has a Gaussian distribution with respect to the radiation angle, and has a property of exhibiting a peak at a specific radiation angle. /! Depending on the light source, the distribution may be biased in either the XY direction (perpendicular to the optical axis Z direction shown in Fig. 1). However, as shown in FIG. 5A, a light beam having a peak with respect to a specific radiation angle with a constant optical power density is likely to have a negative effect on the eye.
[0062] そこで、本実施形態においては、マルチモード光源 11から出力される光ビーム信 号の光電力密度分布と、自由空間 14に放射すべき理想的な (平坦な)光電力密度 分布とを考慮して、光空間変調部 13で用いる変調符号を制御する。図 5Bは、本実 施形態に係る n次モード変調素子 13— nの構成を示す図である。図 5Bに示すように 、 n次モード変調素子 13— nにおいて、光電力密度の高い光ビーム信号が通過する 領域の透過率は、その他の領域の透過率よりも低くなつている。このように、光電カ密 度の高い光ビーム信号が通過する領域における変調符号を制御することによって、 光ビーム信号の光電力密度を所定の閾値以下とすることができる。 Therefore, in the present embodiment, the optical power density distribution of the optical beam signal output from the multimode light source 11 and the ideal (flat) optical power density to be radiated to the free space 14 The modulation code used in the optical spatial modulation unit 13 is controlled in consideration of the distribution. FIG. 5B is a diagram showing a configuration of the nth-order mode modulation element 13-n according to the present embodiment. As shown in FIG. 5B, in the n-order mode modulation element 13-n, the transmittance of the region through which the light beam signal with high optical power density passes is lower than the transmittance of the other regions. In this way, by controlling the modulation code in the region through which the light beam signal having a high photoelectric density passes, the optical power density of the light beam signal can be set to a predetermined threshold value or less.
[0063] 図 5Cは、光空間変調部 13から出力される光変調信号の光電力密度を示す図であ る。自由空間 14に放射される光変調信号は、図 5Cに示すように、平坦な光電カ密 度分布を有し、特定の放射角でピークを示さないものが理想的である。光空間変調 部 13で用いる変調符号を制御することによって、自由空間 14に放射される光変調信 号を、眼に対する影響が小さい、つまり、高いアイ'セーフティを確保することができる 。なお、光変調信号のアスペクト比 (XY方向の光電力密度比)は、 1に近い方力 より 望ましい。これにより、マルチモード光源 11の特性に関わらず、高いアイ'セーフティ を確保することができる。このように、変調符号を制御することによって、自由空間に 放射される光変調信号は、平坦な光電力密度分布を有し、かつ特定の放射角でピ ークを示すことがない。したがって、人間の眼に対する安全性を確保することができる FIG. 5C is a diagram showing the optical power density of the optical modulation signal output from the optical spatial modulation unit 13. As shown in FIG. 5C, it is ideal that the light modulation signal radiated to the free space 14 has a flat photoelectric density distribution and does not show a peak at a specific radiation angle. By controlling the modulation code used in the light spatial modulation section 13, the light modulation signal radiated to the free space 14 has little influence on the eyes, that is, high eye safety can be ensured. Note that the aspect ratio of the optical modulation signal (optical power density ratio in the XY directions) is preferable to a force close to 1. This ensures high eye safety regardless of the characteristics of the multimode light source 11. Thus, by controlling the modulation code, the optical modulation signal radiated into free space has a flat optical power density distribution and does not exhibit a peak at a specific radiation angle. Therefore, safety for human eyes can be ensured.
[0064] なお、本実施形態では、説明の簡略化のため、 n次モード変調素子および n次モー ド復調素子は、図 1に示すように、 X方向に対して 1次元的に配置される場合を例に 説明した。ここで、マルチモード光源を用いる場合、 1次〜 n次モード光は、 0次モー ド光を中心として同心円状に放射される。したがって、 n次モード変調素子および n次 モード復調素子を X方向および Y方向に配置し、 2次元的に配列してもよい。図 6A 〜Bは、空間光変調部 13の構成の一例を示す図である。図 6Aは、変調素子を 2次 元に配列した場合の空間光変調部 13の構成を示す図である。図 6Aに示すように、 変調素子を 2次元に配列した場合、変調符号の組み合わせが増大することとなるた め、秘匿性がさらに向上する。 In this embodiment, for simplification of description, the n-order mode modulation element and the n-order mode demodulation element are arranged one-dimensionally in the X direction as shown in FIG. The case was explained as an example. Here, when a multi-mode light source is used, the first-order to n-order mode light is emitted concentrically around the zero-order mode light. Therefore, the n-order mode modulation element and the n-order mode demodulation element may be arranged in the X direction and the Y direction and arranged two-dimensionally. 6A and 6B are diagrams illustrating an example of the configuration of the spatial light modulator 13. FIG. FIG. 6A is a diagram showing the configuration of the spatial light modulator 13 when the modulation elements are arranged in a two-dimensional manner. As shown in FIG. 6A, when the modulation elements are arranged two-dimensionally, the number of combinations of modulation codes increases, so that the secrecy is further improved.
[0065] また、本実施形態では、 n次モード変調素子は、 0次モード変調素子を対称の中心 として点対称に配置されていた。ここで、空間光変調部は、各発振モードに対して 1 つずつの n次モード変調素子を有していてもよい。図 6Bは、各発振モードに対応す る変調素子が 1つである場合における空間光変調部 13の構成を示す図である。図 6 Bに示す空間光変調部 13の構成は、図 1に示す空間光変調部 13の構成と比較する と、 1次〜 3次モード光ビーム信号に対応する 1次〜 3次モード変調素子 13— 1〜13 3が 1つずつである点で相違する。なお、図 6Bでは、 1次〜 3次モード変調素子 13 — 1〜 13— 3が 0次モード変調素子 13— 0よりも下側に配置されて 、るが、これらの 変調素子は、 0次モード変調素子 13— 0よりも上側に配置されていてもよい。 In the present embodiment, the n-order mode modulation elements are arranged point-symmetrically with the 0-order mode modulation element as the center of symmetry. Here, the spatial light modulator is 1 for each oscillation mode. One n-order mode modulation element may be provided. FIG. 6B is a diagram showing the configuration of the spatial light modulation unit 13 in the case where there is one modulation element corresponding to each oscillation mode. The configuration of the spatial light modulation unit 13 shown in FIG. 6B is compared with the configuration of the spatial light modulation unit 13 shown in FIG. 1, and the primary to tertiary mode modulation elements corresponding to the primary to tertiary mode light beam signals. 13— 1 to 13 3 are different in that they are one by one. In FIG. 6B, the first-order to third-order mode modulation elements 13-1 to 13-3 are arranged below the zero-order mode modulation element 13-0. However, these modulation elements are It may be arranged above the mode modulation element 13-0.
[0066] また、本実施形態では、マルチモード光のモード次数とモード変調素子の種類が 1 対 1に対応していたが、その限りではなぐ複数のモードの光を一つの変調素子に割 り当てても良 、し、あるモードの光を複数の変調素子に割り当てても良 、。  [0066] In this embodiment, the mode order of the multimode light and the type of the mode modulation element correspond to each other on a one-to-one basis. It can be applied, or a certain mode of light can be assigned to multiple modulation elements.
[0067] なお、図 6Aまたは図 6Bに示す空間光変調部 13を用いて n次モードの光ビーム信 号を変調する場合、光受信部 110に設けられる空間光復調部 15の構成は、図 6Aま たは図 6Bに示す空間光変調部 13に対して相補的なものとし、光変復調全体の伝達 関数 h (n) =f (n) X g (n)力 全ての nについて一定となるように変調符号および復調 符号を設定すればよい。また、本発明で利用したモード分配雑音の性質に関しては 、面発光レーザを例として、非特許文献 1に詳しく記述されている。  [0067] When the n-order mode light beam signal is modulated using the spatial light modulator 13 shown in FIG. 6A or 6B, the configuration of the spatial light demodulator 15 provided in the optical receiver 110 is as shown in FIG. Complementary to the spatial light modulator 13 shown in 6A or 6B, the transfer function h (n) = f (n) X g (n) force of the entire optical modulation / demodulation is constant for all n In this way, the modulation code and the demodulation code may be set. Further, the nature of the mode distribution noise used in the present invention is described in detail in Non-Patent Document 1, taking a surface emitting laser as an example.
[0068] なお、本実施形態にぉ 、て、マルチモード光源の例として、面発光レーザを挙げて 説明したが、マルチモード光源は、面発光レーザ以外のものであってもよい。例えば 、マルチモード光源は、フアブリ'ぺロ共振器レーザや、発光ダイオードであってもよ い。  In the present embodiment, a surface emitting laser has been described as an example of the multimode light source. However, the multimode light source may be other than the surface emitting laser. For example, the multimode light source may be a Fabry-Perot resonator laser or a light emitting diode.
[0069] また、本実施形態では、光源としてマルチモード光源を用いる場合を例に説明した 力 光源は、マルチモード光源に限られず、複数の発振モード光を出力することがで きる構成であればよい。図 7A〜Cは、本発明に適用可能な光源の一例を示す図で ある。図 7Aは、本実施形態で説明したマルチモード光源 11の構成を示す図である。 図 7Bは、光源が、シングルモード光源 51とマルチモードファイバ 52とからなる場合 における光源の構成を示す図である。図 7Bに示すように、シングルモード光源 51と マルチモードファイバ 52とを接続することによって、複数の発振モード光を出力する ことができる。なお、シングルモード光源 51の代わりにマルチモード光源を用いてもよ い。 [0069] In the present embodiment, the force light source described in the case of using a multi-mode light source as an example of the light source is not limited to the multi-mode light source, and may be any configuration that can output a plurality of oscillation mode lights. Good. 7A to 7C are diagrams showing an example of a light source applicable to the present invention. FIG. 7A is a diagram showing a configuration of the multimode light source 11 described in the present embodiment. FIG. 7B is a diagram showing the configuration of the light source when the light source is composed of a single mode light source 51 and a multimode fiber 52. As shown in FIG. 7B, a plurality of oscillation mode lights can be output by connecting a single mode light source 51 and a multimode fiber 52. A multimode light source may be used instead of the single mode light source 51. Yes.
[0070] 図 7Cは、光源が、アレイ型光源カゝらなる場合における光源の構成を示す図である。  FIG. 7C is a diagram showing a configuration of the light source when the light source is an array type light source.
アレイ型光源 53は、例えば、複数の面発光レーザなど力も構成される。このように、ァ レイ型光源 53を用いて、擬似的にマルチモード光源を構成してもよ!/、。  The array light source 53 is also configured with a force such as a plurality of surface emitting lasers. In this way, an array type light source 53 may be used to configure a pseudo multimode light source! /.
[0071] また、本実施形態では、空間光変調部の例として、液晶空間光変調素子を挙げて 説明した。ここで、空間光変調部は、マイクロミラーデバイスや、磁気光学効果、多重 量子井戸効果、および音響光学効果を用いた空間光変調素子としてもよい。空間光 復調部の構成についても、これと同様である。  Further, in the present embodiment, the liquid crystal spatial light modulation element has been described as an example of the spatial light modulation unit. Here, the spatial light modulation unit may be a micro-mirror device or a spatial light modulation element using a magneto-optic effect, a multiple quantum well effect, and an acousto-optic effect. The configuration of the spatial light demodulator is the same as this.
[0072] また、本実施形態では、光変復調処理に用いる具体的な制御パラメータの例として 、光強度情報を用いた場合について説明した。ここで、光変復調処理に用いる制御 パラメータは、光位相情報 (光遅延の情報を含む)や偏光状態の情報であってもよ ヽ 。すなわち、空間光変調部が光ビームの強度を制御し、空間光復調部が光変調信号 の強度を制御する代りに、空間光変調部が光ビームの位相を制御し、空間光復調部 が光変調信号の位相を制御するとしてもよいし、空間光変調部が光ビームの偏光状 態を制御し、空間光復調部が光変調信号の偏光状態を制御するとしてもよ 、。  Further, in the present embodiment, a case has been described in which light intensity information is used as an example of a specific control parameter used for light modulation / demodulation processing. Here, the control parameter used for the optical modulation / demodulation processing may be optical phase information (including optical delay information) or polarization state information. That is, instead of the spatial light modulator controlling the intensity of the light beam and the spatial light demodulator controlling the intensity of the light modulation signal, the spatial light modulator controls the phase of the light beam and the spatial light demodulator The phase of the modulation signal may be controlled, the spatial light modulation unit may control the polarization state of the light beam, and the spatial light demodulation unit may control the polarization state of the light modulation signal.
[0073] (第 2の実施形態)  [0073] (Second Embodiment)
図 8は、本発明の第 2の実施形態に係る光伝送装置 2の構成を示す図である。図 8 において、光伝送装置 2は、光ビーム出力部 10と、空間光変調部 13と、光ファイバ 6 0と、空間光復調部 15と、集光部 16と、受光部 17とを含む。空間光変調部 13は、複 数の n次モード変調素子 13— nを空間的に配列している。また、空間光復調部 15は 、複数の n次モード復調素子 15— nを空間的に配列している。なお、図 8において、 図 1と同様の構成要素には同一の符号を付し、説明を省略する。  FIG. 8 is a diagram showing a configuration of the optical transmission device 2 according to the second embodiment of the present invention. In FIG. 8, the optical transmission device 2 includes a light beam output unit 10, a spatial light modulation unit 13, an optical fiber 60, a spatial light demodulation unit 15, a condensing unit 16, and a light receiving unit 17. The spatial light modulator 13 spatially arranges a plurality of n-order mode modulators 13-n. The spatial light demodulator 15 spatially arranges a plurality of nth-order mode demodulating elements 15-n. In FIG. 8, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
[0074] 図 8に示す光伝送装置 2と、図 1に示す第 1の実施形態に係る光伝送装置 1との相 違点は、伝送路として、自由空間ではなぐ大口径の光ファイバ 60が用いられている 点である。大口径の光ファイバは、例えば、プラスチックファイバである。  [0074] The difference between the optical transmission device 2 shown in FIG. 8 and the optical transmission device 1 according to the first embodiment shown in FIG. 1 is that a large-diameter optical fiber 60 that is not a free space is used as a transmission line. This is the point used. The large-diameter optical fiber is, for example, a plastic fiber.
[0075] 図 8に示すように、光送信部 100および光受信部 110は、光ファイバ 60を介して接 続されている。光送信部 100において、空間光変調部 13から出力される光変調信号 は、光ファイバ 60を介して伝送され、光受信部 110の空間光復調部 15に入力される [0076] 以上のように、本実施形態によれば、第 1の実施形態と同様に、光送信部が送信し た光変調信号を大口径の光ファイバを介して光伝送し、光受信部において出力信号 として受信することが可能となる。従って、本発明は、大口径の光ファイバを用いた光 伝送装置等の用途にも応用することができる。 As shown in FIG. 8, the optical transmitter 100 and the optical receiver 110 are connected via an optical fiber 60. In the optical transmitter 100, the optical modulation signal output from the spatial light modulator 13 is transmitted via the optical fiber 60 and input to the spatial light demodulator 15 of the optical receiver 110. As described above, according to the present embodiment, similarly to the first embodiment, the optical modulation signal transmitted by the optical transmission unit is optically transmitted through the large-diameter optical fiber, and the optical reception unit Can be received as an output signal. Therefore, the present invention can also be applied to uses such as an optical transmission device using a large-diameter optical fiber.
[0077] (第 3の実施形態)  [0077] (Third embodiment)
第 1の実施形態では、マルチモード光源を用いて、マルチモード光を出力していた 。これに対し、第 3の実施形態では、単一モード光源を用いてシングルモード光を出 力する。  In the first embodiment, multimode light is output using a multimode light source. In contrast, in the third embodiment, single mode light is output using a single mode light source.
[0078] 図 9は、本発明の第 3の実施形態に係る光伝送装置 laの構成を示す図であり、図 1 0は、図 9に示す光伝送装置 laの構成を示すブロック図である。図 10において、光 伝送装置 laは、光送信部 100aと、光受信部 110とを備える。光送信部 100aは、デ ータ入力部 9と、光ビーム出力部 10aと、空間光変調部 13とを含む。光受信部 110は 、空間光復調部 15と、集光部 16と、受光部 17と、データ出力部 18とを含む。図 10に 示す光伝送装置 laは、図 2に示す第 1の実施形態に係る光伝送装置 1と比較すると 、ビーム光出力部 10aの構成が異なる。それ以外の構成は、図 2と同様であるため、 図 2と同様の構成には同一の符号を付し、説明を省略する。  FIG. 9 is a diagram showing a configuration of the optical transmission device la according to the third embodiment of the present invention, and FIG. 10 is a block diagram showing a configuration of the optical transmission device la shown in FIG. . In FIG. 10, the optical transmission device la includes an optical transmission unit 100a and an optical reception unit 110. The optical transmission unit 100a includes a data input unit 9, a light beam output unit 10a, and a spatial light modulation unit 13. The light receiving unit 110 includes a spatial light demodulating unit 15, a light collecting unit 16, a light receiving unit 17, and a data output unit 18. The optical transmission device la shown in FIG. 10 differs from the optical transmission device 1 according to the first embodiment shown in FIG. 2 in the configuration of the beam light output unit 10a. Since the other configuration is the same as that in FIG. 2, the same reference numeral is given to the same configuration as that in FIG. 2, and the description is omitted.
[0079] 光ビーム出力部 10aは、単一モード光源 21と、集光部 12とを有する。  The light beam output unit 10a includes a single mode light source 21 and a condensing unit 12.
[0080] 単一モード光源 21は、 0次モードの光ビーム信号を出力する。集光部 12は、単一 モード光源 21から出力された 0次モードの光ビーム信号を平行光にして出力する。  The single mode light source 21 outputs a 0th-order mode light beam signal. The condensing unit 12 outputs the 0th-order mode light beam signal output from the single mode light source 21 as parallel light.
[0081] 空間光変調部 13は、複数の空間 n (nは、 1から Nまでの整数)変調素子 13— 1〜1 3— Nを有し、光ビーム信号を複数の空間領域 1〜N (N : 1以上の整数)ごとに変調 する。これらの複数の空間 n変調素子 13— 1〜13— Nを特に区別する必要がない場 合には、空間 n変調素子 13— nと総称する。なお、空間 n変調素子 13— nは、第 1の 実施形態における n次モード変調素子 13— nと同様の構成を有する。なお、本実施 形態では、空間光変調部 13は、 4つの空間 n変調素子 (空間 1〜空間 4変調素子)を 有する場合について説明する。  The spatial light modulation unit 13 includes a plurality of space n (n is an integer from 1 to N) modulation elements 13-1 to 13-N, and the light beam signal is transmitted to a plurality of spatial regions 1 to N. Modulate every N (integer greater than 1). These spatial n modulation elements 13-1 to 13-N are collectively referred to as spatial n modulation elements 13-n when it is not necessary to distinguish them. The spatial n modulation element 13-n has the same configuration as the nth-order mode modulation element 13-n in the first embodiment. In the present embodiment, the case where the spatial light modulator 13 has four spatial n modulation elements (space 1 to spatial 4 modulation elements) will be described.
[0082] なお、図 9では、光ビーム信号と光変調素子とを拡大して図示している。単一モード 光源 21から出力される出力光は、図 1に示すマルチモード光源から出力される 0次 モード光に相当する。 In FIG. 9, the light beam signal and the light modulation element are illustrated in an enlarged manner. Single mode The output light output from the light source 21 corresponds to the 0th-order mode light output from the multimode light source shown in FIG.
[0083] 空間光復調部 15は、複数の空間 n (nは、 1から Nまでの整数)復調素子 15— 1〜1 5 Nを有する。これらの複数の空間 n復調素子 15— 1〜 15— Nを特に区別する必 要がない場合には、空間 n復調素子 15— nと総称する。なお、空間 n復調素子 15— nは、第 1の実施形態における n次モード復調素子 15— nと同様の構成を有する。  The spatial light demodulation unit 15 includes a plurality of spaces n (n is an integer from 1 to N) demodulation elements 15-1 to 15 N. These spatial n demodulating elements 15-1 to 15-N are collectively referred to as spatial n demodulating elements 15-n when it is not necessary to distinguish them. The spatial n demodulating element 15-n has the same configuration as the n-th mode demodulating element 15-n in the first embodiment.
[0084] 図 11A〜Fは、本実施形態における各信号の光強度と変復調符号とを示す図であ る。  FIGS. 11A to 11F are diagrams showing the light intensity and modulation / demodulation code of each signal in the present embodiment.
[0085] 図 11Aは、単一モード光源 21から出力される光ビーム信号の光強度を示す図であ る。単一モード光源 21から出力された 0次モードの光ビーム信号は、集光部 12を経 由して、空間 1〜空間 4変調素子 13— 0〜13— 3に入力される。ここで、時刻 tlに出 力される 0次モードの光ビーム信号の強度は一定である。  FIG. 11A is a diagram showing the light intensity of the light beam signal output from the single mode light source 21. The 0th-order mode light beam signal output from the single-mode light source 21 is input to the space 1 to space 4 modulation elements 13-0 to 13-3 via the condensing unit 12. Here, the intensity of the 0th-order mode light beam signal output at time tl is constant.
[0086] 図 11Bは、光変調処理に用いられる変調符号 (拡散符号)の一例を示す図である。  FIG. 11B is a diagram showing an example of a modulation code (spreading code) used for the optical modulation processing.
空間光変調部 13において、空間 1〜空間 4変調素子 13— 1〜13—4は、図 11Bに 示す変調符号 f (0)〜f (3)を用いて光ビーム信号に光変調処理を施す。  In the spatial light modulator 13, the spatial 1 to spatial 4 modulation elements 13-1 to 13-4 perform optical modulation processing on the light beam signal using the modulation codes f (0) to f (3) shown in FIG. 11B. .
[0087] 図 11Cは、それぞれの空間領域に割り当てた光復調処理に用いられる復調符号( 逆拡散符号)の一例を示す図である。空間光復調部 15において、空間 1〜空間 4復 調素子 15— 1〜15— 4は、図 11Cに示す復調符号 g (0)〜g ( 3)を用 、て光変調信 号に光復調処理を施す。  FIG. 11C is a diagram illustrating an example of a demodulation code (despread code) used for optical demodulation processing assigned to each spatial region. In the spatial light demodulator 15, the spatial 1 to spatial 4 demodulating elements 15-1 to 15-4 use the demodulation codes g (0) to g (3) shown in FIG. Apply processing.
[0088] 図 11Eは、拡散符号および逆拡散符号の各空間領域の和を示す図である。第 1の 実施形態と同様に、図 11Bに示す拡散符号と、図 11Cに示す逆拡散符号とは、互い に相補的であり、光変復調全体の伝達関数 h(n) =f (n) X g (n)は、全ての nについ て一定となるように設定されて 、る。  [0088] FIG. 11E is a diagram showing the sum of the spatial regions of the spreading code and the despreading code. As in the first embodiment, the spreading code shown in FIG. 11B and the despreading code shown in FIG. 11C are complementary to each other, and the transfer function h (n) = f (n) X g (n) is set to be constant for all n.
[0089] 図 11Dは、空間光復調部 15から出力される光復調信号の光強度を示す図である。  FIG. 11D is a diagram showing the light intensity of the optical demodulated signal output from the spatial light demodulator 15.
図 11Dに示すように、空間光復調部 15から出力される光復調信号の光強度の比は 、図 11Aに示す、単一モード光源 21から出力される光ビーム信号の光強度の比と同 一となる。正規受信者は、図 11Cに示すように、図 11Bに示す拡散符号に相補的な 逆拡散符号を有しているため、入力信号を正常に再生することができる。 [0090] 図 11Fは、空間光変調部 13から自由空間 14に放射された光変調信号を直接受信 した場合における、光変調信号の光強度を空間領域毎に示す図である。盗聴者が 受信する光変調信号は、図 11Aに示す光ビーム信号と、図 11Bに示す拡散符号と を乗算したものとなる。つまり、盗聴者が受信する光復調信号の光強度の比は、図 11 Fに示すように、図 11Aに示す光ビーム信号の光強度の比と著しく相違する。しかし ながら、盗聴者は、正規受信者だけが保持する空間光復調部 15を有していないため 、受信した光変調信号を正常に再生することができない。 As shown in FIG. 11D, the optical intensity ratio of the optical demodulated signal output from the spatial light demodulator 15 is the same as the optical intensity ratio of the optical beam signal output from the single mode light source 21 shown in FIG. 11A. Become one. As shown in FIG. 11C, the legitimate receiver has a despreading code complementary to the spreading code shown in FIG. 11B, so that the input signal can be reproduced normally. FIG. 11F is a diagram illustrating the light intensity of the light modulation signal for each spatial region when the light modulation signal radiated from the spatial light modulation unit 13 to the free space 14 is directly received. The optical modulation signal received by the eavesdropper is obtained by multiplying the light beam signal shown in FIG. 11A by the spreading code shown in FIG. 11B. That is, the optical intensity ratio of the optical demodulated signal received by the eavesdropper is significantly different from the optical intensity ratio of the optical beam signal shown in FIG. 11A, as shown in FIG. 11F. However, since the eavesdropper does not have the spatial light demodulation unit 15 held only by the authorized receiver, the eavesdropper cannot normally reproduce the received optical modulation signal.
[0091] 以上のように、本実施形態によれば、単一モード光源を用いた場合においても、秘 匿性の高い光空間伝送を実現することができる。盗聴者は、変調符号に対応する復 調符号を有していないため、光変調信号を不当に受信しても、光変調信号を正常に 再生することができない。したがって、光符号 Z復号化処理を利用した、秘匿性の高 As described above, according to the present embodiment, even when a single mode light source is used, highly confidential optical space transmission can be realized. Since the eavesdropper does not have a decoding code corresponding to the modulation code, the optical modulation signal cannot be normally reproduced even if the light modulation signal is received improperly. Therefore, it is highly confidential using the optical code Z decoding process.
V、光伝送を実現することができる。 V, optical transmission can be realized.
[0092] (第 4の実施形態)  [0092] (Fourth embodiment)
第 1の実施形態では、複数の発振モード光を、各発振モードに分離して光符号処 理していた。これに対し、第 4の実施形態では、各発振モードをさらに異なる縦モード に分離して光符号処理する。  In the first embodiment, a plurality of oscillation mode lights are separated into each oscillation mode and optical code processing is performed. On the other hand, in the fourth embodiment, each oscillation mode is further separated into different longitudinal modes and optical code processing is performed.
[0093] 図 12は、本発明の第 4の実施形態に係る光伝送装置 lbの構成を示すブロック図で ある。図 12において、光伝送装置 lbは、光送信部 100bと、光受信部 110bとを備え る。光送信部 100bは、データ入力部 9と、光ビーム出力部 10と、空間光変調部 13b と、縦モード分離部 22とを含む。光受信部 110bは、空間光復調部 15bと、集光部 1 6と、受光部 17と、データ出力部 18とを含む。  FIG. 12 is a block diagram showing a configuration of an optical transmission device lb according to the fourth embodiment of the present invention. In FIG. 12, the optical transmission device lb includes an optical transmitter 100b and an optical receiver 110b. The optical transmission unit 100b includes a data input unit 9, a light beam output unit 10, a spatial light modulation unit 13b, and a longitudinal mode separation unit 22. The light receiving unit 110b includes a spatial light demodulating unit 15b, a light collecting unit 16, a light receiving unit 17, and a data output unit 18.
[0094] 図 12に示す光伝送装置 lbは、図 1に示す第 1の実施形態に係る光伝送装置 1と比 較すると、空間光変調部 13bが、縦モード分離部 22をさらに含み、空間光復調部 15 bが、縦モード多重部 23を含む点で相違する。それ以外の構成は、第 1の実施形態 と同様であるため、図 1と同様の構成には同一の符号を付し、説明を省略する。  Compared with the optical transmission device 1 according to the first embodiment shown in FIG. 1, the optical transmission device lb shown in FIG. 12 includes a spatial light modulation unit 13b further including a longitudinal mode separation unit 22, The optical demodulator 15 b is different in that it includes a longitudinal mode multiplexer 23. Since the other configuration is the same as that of the first embodiment, the same reference numeral is given to the same configuration as that of FIG. 1, and the description thereof is omitted.
[0095] 縦モード分離部 22は、マルチモード光源 11から出力される光ビーム信号を複数の 手縦モードに分離して出力する。具体的には、縦モード分離部 22は、 n次モードの 光ビーム信号を m (m: 1以上の整数)次の異なる波長の光成分に分離する。本実施 形態では、縦モード分離部 22が分離する光成分力O次および 1次の 2つである場合 を例に説明する。 The longitudinal mode separation unit 22 separates the light beam signal output from the multi-mode light source 11 into a plurality of hand longitudinal modes and outputs it. Specifically, the longitudinal mode separation unit 22 separates the n-order mode light beam signal into light components of different wavelengths of m (m: integer of 1 or more) order. Implementation In the embodiment, a case where the longitudinal mode separation unit 22 has two light component forces O-order and first-order will be described as an example.
[0096] 例えば、縦モード分離部 22は、 0次モードの光ビーム信号を、 0次および 1次の縦 モードに分離して出力する。したがって、 0次モードの光ビーム信号は、 0·0次モード 光ビーム信号および 0· 1次モード光ビーム信号として縦モード分離部 22から出力さ れる。ここで、発振モードが η次で、縦モードが m次の光を、 n'm次モードと表記する  [0096] For example, the longitudinal mode separation unit 22 separates the 0th-order mode light beam signal into a 0th-order and a 1st-order longitudinal mode and outputs them. Therefore, the 0th-order mode light beam signal is output from the longitudinal mode separation unit 22 as a 0 · 0th-order mode light beam signal and a 0 · 1st-order mode light beam signal. Here, light whose oscillation mode is η order and longitudinal mode is m order is expressed as n'm order mode.
[0097] 空間光変調部 13bは、縦モード分離部 22から出力される n'm次モードの光ビーム 信号に対応する n · m次モード変調素子 13— nmを有する。マルチモード光源 11から 出力される光ビーム信号の発振モードが 0次〜 3次の 4つである場合、縦モード分離 部 22から出力される光ビーム信号の総モード数は 0·0次〜 3 · 1次の 8つとなる。 The spatial light modulation unit 13b includes an n · m-th order mode modulation element 13-nm corresponding to the n′m-order mode light beam signal output from the longitudinal mode separation unit 22. When the oscillation modes of the light beam signal output from the multimode light source 11 are four modes from 0th to 3rd, the total number of modes of the light beam signal output from the longitudinal mode separation unit 22 is 0 · 0th to 3rd. · Primary 8
[0098] 図 13A及び Βは、空間光変調部 13bが有する n'm次モード空間光変調素子 13— nmの構成を示す図である。図 13Aは、縦モード分離部 22が、光ビーム信号を横方 向に分離して出力する場合における n'm次モード変調素子 13— nmの配置例を示 す図である。図 13Aにおいて、 0· 1次モード変調素子は、 0 ·0次モード変調素子の 右側に配置され、 1 · 1次モード変調素子は、 1 ·0次モード変調素子の右側に配置さ れている。  FIGS. 13A and 13B are diagrams showing the configuration of the n′m-order mode spatial light modulator 13-nm included in the spatial light modulator 13b. FIG. 13A is a diagram illustrating an arrangement example of the n′m-th order mode modulation elements 13-nm when the longitudinal mode separation unit 22 separates and outputs the light beam signal in the lateral direction. In FIG. 13A, the 0 · 1st order mode modulation element is arranged on the right side of the 0 · 0th order mode modulation element, and the 1 · 1st order mode modulation element is arranged on the right side of the 1 · 0th order mode modulation element. .
[0099] マルチモード光源 11から出力された 0次モードの光ビーム信号は、縦モード分離 部 22によって 0·0次および 0· 1次モードに分離されて出力される。 0·0次モード空間 変調素子 13— 00は、縦モード分離部 22から出力される 0·0次モード光ビーム信号 に光変調処理を施す。 0· 1次モード空間変調素子 13— 01は、 0·0次モード空間変 調素子 13— 00の横に配置され、縦モード分離部 22から出力される 0· 1次モード光 ビーム信号に光変調処理を施す。  The 0th-order mode light beam signal output from the multimode light source 11 is separated into a 0 · 0th order and a 0 · 1st order mode by the longitudinal mode separation unit 22 and outputted. The 0 · 0th order mode space modulation element 13-00 performs optical modulation processing on the 0 · 0th order mode light beam signal output from the longitudinal mode separation unit 22. 0 · 1st-order mode spatial modulation element 13-01 is placed beside 0 · 0th-order mode spatial modulation element 13-00 and output from longitudinal mode separation unit 22 0 · 1st-order mode light beam signal Modulation processing is performed.
[0100] なお、縦モード分離部 22は、光ビーム信号をどの方向に分離して出力してもよい。  Note that the longitudinal mode separation unit 22 may separate and output the light beam signal in any direction.
図 13Bは、縦モード分離部 22が、光ビーム信号を上下に分離して出力する場合に おける n'm次モード空間光変調素子 13— nmの配置例を示す図である。この場合、 図 13Bに示すように、 0· 1次モード空間変調素子 13— 00は、 0·0次モード空間変調 素子 13— 00の直下に配置される。 [0101] 図 12の説明に戻り、空間光復調部 15bは、自由空間 14を伝播する n'm次モード の光変調信号に対応する n · m次モード空間光復調素子 15— nmを有する。 n · m次 モード空間光復調素子 15— nmは、 n'm次モード空間光変調素子 13— nmと相補 的な関係になるように配置される。 FIG. 13B is a diagram showing an arrangement example of n′m-order mode spatial light modulators 13-nm when the longitudinal mode separation unit 22 separates and outputs the light beam signal in the vertical direction. In this case, as shown in FIG. 13B, the 0 · 1st mode spatial modulation element 13-00 is arranged immediately below the 0 · 0th order mode spatial modulation element 13-00. Returning to the description of FIG. 12, the spatial light demodulator 15b has an n · m-order mode spatial light demodulator 15-nm corresponding to an n′m-order mode optical modulation signal propagating in the free space. The n · mth-order mode spatial light demodulator 15-nm is arranged to have a complementary relationship with the n'mth-order mode spatial light modulator 13-nm.
[0102] 縦モード多重部 23は、 n'm次モード空間光復調素子 15— nmから出力される n'm 次モード光復調信号を多重し、 n次モードの光復調信号として受光部 17に出力する  [0102] The longitudinal mode multiplexing unit 23 multiplexes the n'm-order mode optical demodulated signal output from the n'm-order mode spatial light demodulating element 15-nm, and supplies it to the light receiving unit 17 as the n-order mode optical demodulated signal. Output
[0103] 図 14A〜Fは、本実施形態における各信号の光強度と変復調符号とを示す図であ る。図 14A〜Fにおいて、マルチモード光源 11から出力される光ビーム信号の発振 モード (横モード)は、 0次および 1次の 2つである場合を例に説明する。 14A to 14F are diagrams showing the light intensity and modulation / demodulation code of each signal in the present embodiment. In FIGS. 14A to 14F, the case where the oscillation modes (transverse modes) of the light beam signal output from the multimode light source 11 are two, ie, 0th order and 1st order will be described as an example.
[0104] 図 14Aは、縦モード分離部 22から出力される光ビーム信号の光強度をモードごと に示す図である。縦モード分離部 22は、マルチモード光源 11から出力される 0次の 光ビーム信号を、 0·0次および 0· 1次モードに分離して出力する。したがって、図 14 Αに示すように、縦モード分離部 22から出力される光ビーム信号のモードは、 0·0次 、 0· 1次、 1 ·0次、 1 · 1次の 4つとなる。また、第 1の実施形態と同様に、時刻 tlと時刻 t2において、各モードに分配される光強度の比(モード分配比)は揺らいでいる。  FIG. 14A is a diagram showing the light intensity of the light beam signal output from the longitudinal mode separation unit 22 for each mode. The longitudinal mode separation unit 22 separates the 0th order light beam signal output from the multimode light source 11 into 0 · 0th order and 0 · 1st order modes and outputs the separated signals. Accordingly, as shown in FIG. 14 (b), the modes of the light beam signal output from the longitudinal mode separation unit 22 are four orders of 0 · 0th order, 0 · 1st order, 1 · 0th order, and 1 · 1st order. Similarly to the first embodiment, the ratio of the light intensity distributed to each mode (mode distribution ratio) fluctuates at time tl and time t2.
[0105] 図 14Bは、各モードに施される光変調処理に対応する変調符号の一例を示す図で ある。空間光変調部 13bにおいて、 0·0次〜 1 · 1次モード変調素子 13— 00〜13— 11は、図14 に示す拡散符号 0'0)〜;[(1 ' 1)を用ぃて、光ビーム信号に光変調 処理を施す。  [0105] FIG. 14B is a diagram illustrating an example of a modulation code corresponding to the optical modulation processing performed in each mode. In the spatial light modulation unit 13b, the 0 · 0th to 1 · 1st order mode modulation elements 13-00 to 13-11 are represented by the spread codes 0'0) to; [(1'1) shown in FIG. Then, optical modulation processing is applied to the light beam signal.
[0106] 図 14Cは、各モードに施される光復調処理に対応する復調符号の一例を示す図で ある。空間光復調部 15bにおいて、 0·0次〜 1 · 1次モード復調素子 15— 00〜15— 11は、図14じに示す逆拡散符号8 (0'0)〜8 (1 ' 1)を用ぃて、光ビーム信号に光復 調処理を施す。 [0106] FIG. 14C is a diagram illustrating an example of a demodulation code corresponding to the optical demodulation processing performed in each mode. In the spatial light demodulator 15b, the 0 · 0th to 1 · 1st order mode demodulator elements 15-00 to 15-11 have the despread codes 8 (0'0) to 8 (1'1) shown in FIG. In this case, the optical beam signal is optically demodulated.
[0107] 図 14Eは、拡散符号および逆拡散符号のモードごとの和を示す図である。第 1の実 施形態と同様に、図 14Bに示す拡散符号と、図 14Cに示す逆拡散符号とは、互いに 相補的であり、光変復調全体の伝達関数 h (n'm) =f (n-m) X g (n-m)力 全ての n •mにつ 、て一定となるように設定されて!、る。 [0108] 図 14Dは、空間光復調部 15bから出力される光復調信号におけるモード分配比を 示す図である。正規受信者は、図 14Cに示すように、図 14Bに示す拡散符号に相補 的な逆拡散符号を有しているため、入力信号を正常に再生することができる。 FIG. 14E is a diagram showing the sum of the spreading code and the despreading code for each mode. As in the first embodiment, the spreading code shown in FIG. 14B and the despreading code shown in FIG. 14C are complementary to each other, and the transfer function h (n'm) = f (nm ) X g (nm) force All n • m are set to be constant! RU FIG. 14D is a diagram showing a mode distribution ratio in the optical demodulated signal output from the spatial light demodulator 15b. As shown in FIG. 14C, the legitimate receiver has a despreading code complementary to the spreading code shown in FIG. 14B, so that the input signal can be reproduced normally.
[0109] 図 14Fは、空間光変調部 13bから自由空間 14に放射された光変調信号を直接受 信した場合における、光変調信号の光強度をモード次数毎に示す図である。盗聴者 が受信する光変調信号は、図 14Aに示す光ビーム信号と、図 14Bに示す拡散符号 とを乗算したものとなる。つまり、盗聴者が受信する光復調信号の光強度は、図 14F に示すように、光復調信号のモード分配比が図 14Aに示す光ビーム信号と著しく相 違する。しかしながら、盗聴者は、正規受信者だけが保持する空間光復調部 15bを 有して 、な 、ため、光変調信号を正常に再生することができな 、。  FIG. 14F is a diagram showing the light intensity of the light modulation signal for each mode order when the light modulation signal radiated from the spatial light modulation unit 13b to the free space 14 is directly received. The optical modulation signal received by the eavesdropper is obtained by multiplying the light beam signal shown in FIG. 14A by the spreading code shown in FIG. 14B. In other words, the optical intensity of the optical demodulated signal received by the eavesdropper is significantly different from the optical beam signal shown in FIG. 14A in the mode distribution ratio of the optical demodulated signal, as shown in FIG. 14F. However, since the eavesdropper has the spatial light demodulator 15b held only by the authorized receiver, the optically modulated signal cannot be reproduced normally.
[0110] 以上のように、本実施形態によれば、光伝送装置は、マルチモード光源から出力さ れる光ビーム信号のモード分配比の揺らぎと、光空間変調部による光符号処理とに 加え、さらに、光成分の縦モード分離を利用して光変調信号を送信する。これにより、 第 1の実施形態と比較して、さらに秘匿性を向上させることができる。  [0110] As described above, according to the present embodiment, the optical transmission device, in addition to the fluctuation of the mode distribution ratio of the light beam signal output from the multimode light source, and the optical code processing by the optical spatial modulation unit, Further, the optical modulation signal is transmitted using the longitudinal mode separation of the light component. Thereby, compared with 1st Embodiment, confidentiality can be improved further.
[0111] (第 5の実施形態)  [0111] (Fifth embodiment)
図 15は、本発明の第 5の実施形態に係る光伝送装置 lcの構成を示すブロック図で ある。図 15において、光伝送装置 lcは、光送信部 100と、光受信部 110cとを備える 。光送信部 100は、データ入力部 9と、光ビーム出力部 10と、空間光変調部 13とを 含む。光受信部 110cは、空間光復調部 15と、集光部 16と、受光部 17と、データ出 力部 18と、歪み調整部 24とを含む。  FIG. 15 is a block diagram showing a configuration of an optical transmission apparatus lc according to the fifth embodiment of the present invention. In FIG. 15, the optical transmission device lc includes an optical transmitter 100 and an optical receiver 110c. The optical transmission unit 100 includes a data input unit 9, a light beam output unit 10, and a spatial light modulation unit 13. The optical receiving unit 110c includes a spatial light demodulating unit 15, a condensing unit 16, a light receiving unit 17, a data output unit 18, and a distortion adjustment unit 24.
[0112] 図 15に示す光伝送装置 lcは、図 2に示す第 1の実施形態に係る光伝送装置 1と比 較すると、光受信部 110cが、歪み調整部 24をさらに含む点で相違する。それ以外 の構成は、第 1の実施形態と同様であるため、図 2と同様の構成には同一の符号を 付し、説明を省略する。  The optical transmission device lc shown in FIG. 15 is different from the optical transmission device 1 according to the first embodiment shown in FIG. 2 in that the optical reception unit 110c further includes a distortion adjustment unit 24. . Since the other configuration is the same as that of the first embodiment, the same reference numeral is given to the same configuration as that in FIG. 2, and the description thereof is omitted.
[0113] 本実施形態において、光送信部 100は、データの送信に先立ち、所定のパターン を有するテスト用のテスト信号を光受信部 110cに送信する。  In the present embodiment, the optical transmitter 100 transmits a test signal for testing having a predetermined pattern to the optical receiver 110c prior to data transmission.
[0114] 受光部 17は、空間光復調部 15によって復調されたテスト用の光復調信号の光強 度を検出する。 [0115] 歪み調整部 24は、モード分散によってテスト信号が劣化されることなく受信した場 合における光強度を予め記憶している。歪み調整部 24は、受光部 17によって検出さ れた光強度と、予め記憶している光強度とを比較する。これによつて、歪み調整部 24 は、光復調信号が有するモード分散特性を検出するモード分散検出部として機能す る。そして、歪み調整部 24は、受光部 17によって検出された光強度力 予め記憶し て 、る光強度と一致するように、空間光復調部 15が復調に用いる復調符号を調整す る。例えば、復調素子として液晶空間復調素子を用いる場合、歪み調整部 24は、液 晶空間復調素子の透過率を調整する。これによつて、空間光復調部 15は、歪み調 整部 24によって検出された結果に基づいて、光変調信号を復調することができる。 すなわち、空間光復調部 15は、モード分散検出部によって検出された結果に基づ いて、モード分散特性と逆の特性で補正を加えることによって、光変調信号を復調す る。 The light receiving unit 17 detects the optical intensity of the test optical demodulated signal demodulated by the spatial light demodulating unit 15. [0115] The distortion adjustment unit 24 stores in advance the light intensity when the test signal is received without being degraded by mode dispersion. The distortion adjusting unit 24 compares the light intensity detected by the light receiving unit 17 with the light intensity stored in advance. Thereby, the distortion adjusting unit 24 functions as a mode dispersion detecting unit that detects the mode dispersion characteristic of the optical demodulated signal. Then, the distortion adjustment unit 24 stores the light intensity force detected by the light receiving unit 17 in advance, and adjusts the demodulation code used by the spatial light demodulation unit 15 for demodulation so as to match the light intensity. For example, when a liquid crystal spatial demodulation element is used as the demodulation element, the distortion adjustment unit 24 adjusts the transmittance of the liquid crystal spatial demodulation element. As a result, the spatial light demodulator 15 can demodulate the optical modulation signal based on the result detected by the distortion adjuster 24. That is, the spatial light demodulator 15 demodulates the optical modulation signal by applying correction with a characteristic opposite to the mode dispersion characteristic based on the result detected by the mode dispersion detector.
[0116] 以上のように、本実施形態によれば、モード分散による損失 (光強度の劣化)を検 出し、復調符号を調整することによって、損失を補償することができる。すなわち、空 間光復調部は、モード分散検出部によって検出されたモード分散による損失量を補 正するよう、発振モード毎の損失量を加える。したがって、正規受信者が受信する光 変調信号を精度よく再生することができる。  As described above, according to the present embodiment, the loss can be compensated by detecting the loss due to mode dispersion (deterioration of light intensity) and adjusting the demodulation code. That is, the spatial light demodulator adds the loss amount for each oscillation mode so as to correct the loss amount due to the mode dispersion detected by the mode dispersion detector. Therefore, the optical modulation signal received by the authorized receiver can be accurately reproduced.
[0117] なお、本実施形態では、歪み調整部は、復調部から出力される光復調信号の光強 度を調整していた。ここで、複数の発振モード光を送信する場合、各モードの伝搬時 間が異なるため、波長による伝搬遅延が生じる場合がある。その場合、歪み調整部 は、モード分散による各発振モードの遅延時間を調整することとしてもよい。この場合 、歪み調整部は、受光部によって検出された光信号の遅延時間(遅延量)がー致し ている力否かを判断する。そして、歪み調整部は、複数の n次モード復調素子から出 力される光復調信号の遅延時間が一致するように、各 n次モード復調素子から出力さ れる光復調信号に所定の遅延量を与える。すなわち、空間光復調部は、モード分散 検出部 (歪み検出部)によって検出されたモード分散による遅延量を補正するよう、 発振モード毎に所定の遅延量を加える。このように、モード分散による遅延を調整す ることによって、正規受信者が受信する光変調信号を精度よく再生することができる。 [0118] また、歪み調整部が、モード分散による信号の損失や遅延を調整する場合、歪み 調整部は、光送信部に設けられてもよい。この場合、歪み調整部は、各 n次モード変 調素子力 出力される光変調信号に所定の損失や遅延量を与えることとすればよい In the present embodiment, the distortion adjustment unit adjusts the optical intensity of the optical demodulated signal output from the demodulation unit. Here, when a plurality of oscillation mode lights are transmitted, the propagation time of each mode is different, so that a propagation delay due to wavelength may occur. In that case, the distortion adjustment unit may adjust the delay time of each oscillation mode due to mode dispersion. In this case, the distortion adjustment unit determines whether or not the delay time (delay amount) of the optical signal detected by the light receiving unit is correct. Then, the distortion adjustment unit adds a predetermined delay amount to the optical demodulated signals output from each n-th mode demodulating element so that the delay times of the optical demodulated signals output from the plurality of n-th mode demodulating elements match. give. That is, the spatial light demodulator adds a predetermined delay amount for each oscillation mode so as to correct the delay amount due to mode dispersion detected by the mode dispersion detector (distortion detector). In this way, by adjusting the delay due to mode dispersion, it is possible to accurately reproduce the optical modulation signal received by the authorized receiver. [0118] When the distortion adjustment unit adjusts the loss or delay of a signal due to mode dispersion, the distortion adjustment unit may be provided in the optical transmission unit. In this case, the distortion adjustment unit may give a predetermined loss or delay amount to the optical modulation signal output to each n-order mode modulation element force.
[0119] (第 6の実施形態) [0119] (Sixth embodiment)
図 16は、本発明の第 5の実施形態に係る光伝送装置 Idの構成を示すブロック図で ある。図 16において、光伝送装置 Idは、光送信部 lOOdと、光受信部 110dとを備え る。光送信部 lOOdは、データ入力部 9と、光ビーム出力部 10と、空間光変調部 13と 、パラメータ変更部 25— 1とを含む。光受信部 110dは、空間光復調部 15と、集光部 16と、受光部 17と、データ出力部 18と、パラメータ変更部 25— 2とを含む。  FIG. 16 is a block diagram showing a configuration of an optical transmission device Id according to the fifth embodiment of the present invention. In FIG. 16, the optical transmission device Id includes an optical transmitter lOOd and an optical receiver 110d. The optical transmission unit lOOd includes a data input unit 9, a light beam output unit 10, a spatial light modulation unit 13, and a parameter change unit 25-1. The light receiving unit 110d includes a spatial light demodulating unit 15, a light collecting unit 16, a light receiving unit 17, a data output unit 18, and a parameter changing unit 25-2.
[0120] 図 16に示す光伝送装置 Idは、図 2に示す第 1の実施形態に係る光伝送装置 1と比 較すると、光送信部 lOOdが、パラメータ変更部 25— 1をさらに含み、光受信部 110d 力 パラメータ変更部 25— 2をさらに含む点で相違する。それ以外の構成は、第 1の 実施形態と同様であるため、図 2と同様の構成には同一の符号を付し、説明を省略 する。  [0120] In comparison with the optical transmission device 1 according to the first embodiment shown in Fig. 2, the optical transmission device Id shown in Fig. 16 includes an optical transmission unit lOOd further including a parameter changing unit 25-1. The receiving unit 110d is different in that it further includes a force parameter changing unit 25-2. Since the other configuration is the same as that of the first embodiment, the same reference numeral is given to the same configuration as that in FIG. 2, and the description is omitted.
[0121] ノ メータ変更部 25— 1および 25— 2は、図示しない伝送路を介して接続されてい る。パラメータ変更部 25— 1および 25— 2は、互いに同期し、空間光変調部 13およ び空間光復調部 15における変調符号および復調符号のパラメータを調整する。例 えば、変復調素子として液晶空間変復調素子を用いる場合、変復調パラメータは、 透過率に相当する。パラメータ変更部 25— 1および 25— 2は、所定の時間ごとに、変 調符号および復調符号のパラメータを変更する。すなわち、パラメータ変更部 25— 1 および 25— 2は、所定の符号及び所定の符号に対応する符号とを変更するための 符号変更部として機能する。なお、パラメータ変更部 25— 1および 25— 2は、ユーザ 力もの指示に応じて変調符号および復調符号のノ メータを変更することとしてもよ い。その場合、ユーザからの指示を受け取るユーザ指示入力部を光送信部 lOOdお よび光受信部 110dに設けるとよ 、。  [0121] The meter changing units 25-1 and 25-2 are connected via a transmission line (not shown). The parameter changing units 25-1 and 25-2 adjust the parameters of the modulation code and the demodulation code in the spatial light modulation unit 13 and the spatial light demodulation unit 15 in synchronization with each other. For example, when a liquid crystal spatial modulation / demodulation element is used as the modulation / demodulation element, the modulation / demodulation parameter corresponds to the transmittance. The parameter changing units 25-1 and 25-2 change the parameters of the modulation code and the demodulation code every predetermined time. That is, the parameter changing units 25-1 and 25-2 function as a code changing unit for changing a predetermined code and a code corresponding to the predetermined code. The parameter changing units 25-1 and 25-2 may change the modulation code and demodulation code meters in accordance with user instructions. In that case, a user instruction input unit that receives an instruction from the user may be provided in the optical transmitter lOOd and the optical receiver 110d.
[0122] 以上のように、本実施形態によれば、変調符号および復調符号のパラメータを変更 することができる。したがって、変復調符号パラメータが一定である場合に比べ、秘匿 '性をより向上させることができる。 [0122] As described above, according to the present embodiment, the parameters of the modulation code and the demodulation code can be changed. Therefore, compared with the case where the modulation / demodulation code parameter is constant, 'Gender can be improved.
[0123] なお、第 3〜第 6の実施形態において、光伝送装置は、自由空間を介して光変調 信号を送信するものとして説明した。ここで、第 2の実施形態と同様に、光送信部と光 受信部とは、大口径の光ファイバを介して接続されて 、てもよ 、。  [0123] In the third to sixth embodiments, the optical transmission device has been described as transmitting an optical modulation signal via free space. Here, as in the second embodiment, the optical transmitter and the optical receiver may be connected via a large-diameter optical fiber.
[0124] また、第 4〜第 6の実施形態において、光伝送装置に設けられた光源はマルチモ ード光源であるものとして説明したが、第 2の実施形態と同様に、光源は単一モード 光源であってもよい。  [0124] In the fourth to sixth embodiments, the light source provided in the optical transmission device has been described as a multi-mode light source. However, as in the second embodiment, the light source is a single mode. It may be a light source.
産業上の利用可能性  Industrial applicability
[0125] 本発明は、秘匿性に優れた光伝送装置等として有用である。 The present invention is useful as an optical transmission device having excellent secrecy.

Claims

請求の範囲 The scope of the claims
[1] 伝送すべき信号によって変調された光信号を伝送するための光伝送装置であって 光源の出力光を前記信号で変調して光ビーム信号とし、当該光ビーム信号を出力 する光ビーム出力部と、  [1] An optical transmission device for transmitting an optical signal modulated by a signal to be transmitted, which modulates the output light of the light source with the signal to form a light beam signal, and outputs the light beam signal And
前記光ビーム出力部から出力された前記光ビーム信号を、所定の方式に従って変 調し、光変調信号として出力する空間光変調部と、  A spatial light modulation unit that modulates the light beam signal output from the light beam output unit according to a predetermined method and outputs the modulated signal as a light modulation signal;
前記空間光変調部から出力された光変調信号を、前記所定の方式に対応する方 式で復調し、光復調信号として出力する空間光復調部と、  A spatial light demodulation unit that demodulates the light modulation signal output from the spatial light modulation unit in a method corresponding to the predetermined method, and outputs the demodulated signal as an optical demodulation signal;
前記空間光復調部から出力された前記光復調信号を光電気変換し、出力信号とし て出力する受光部とを備え、  A light receiving unit that photoelectrically converts the optical demodulated signal output from the spatial light demodulating unit and outputs the result as an output signal;
前記空間光変調部は、前記所定の方式に従って所定の単位空間ごとに前記光ビ ーム信号を変調することを特徴とする、  The spatial light modulation unit modulates the optical beam signal for each predetermined unit space according to the predetermined method.
光伝送装置。  Optical transmission device.
[2] 前記光ビーム出力部は、複数の発振モード光力 なる光ビーム信号を出力し、 前記空間光変調部は、前記所定の方式に従って発振モードごとに前記光ビームを 変調することを特徴とする、請求項 1に記載の光伝送装置。  [2] The light beam output unit outputs a light beam signal having a plurality of oscillation mode light powers, and the spatial light modulation unit modulates the light beam for each oscillation mode according to the predetermined method. The optical transmission device according to claim 1.
[3] 前記光源は、複数の発振モードからなる光を出力するマルチモード光源であること を特徴とする、請求項 2に記載の光伝送装置。 3. The optical transmission device according to claim 2, wherein the light source is a multi-mode light source that outputs light having a plurality of oscillation modes.
[4] 前記光ビーム出力部は、前記光源を複数含み、複数の前記光源から出力される出 力光を変調することによって前記光ビーム信号を出力することを特徴とする、請求項[4] The light beam output unit includes a plurality of the light sources, and outputs the light beam signal by modulating output light output from the plurality of light sources.
2に記載の光伝送装置。 2. An optical transmission device according to 2.
[5] 前記光ビーム出力部は、前記光ビーム信号を複数の伝搬モードからなる光ビーム 信号として放射するマルチモードファイバを含むことを特徴とする、請求項 2に記載の 光伝送装置。 5. The optical transmission device according to claim 2, wherein the light beam output unit includes a multimode fiber that radiates the light beam signal as a light beam signal composed of a plurality of propagation modes.
[6] 前記空間光変調部は、前記光変調信号を自由空間に放射し、  [6] The spatial light modulation unit radiates the light modulation signal to free space,
前記空間光復調部は、前記自由空間を伝播する前記光変調信号を復調することを 特徴とする、請求項 2に記載の光伝送装置。 The optical transmission apparatus according to claim 2, wherein the spatial light demodulation unit demodulates the optical modulation signal propagating in the free space.
[7] 前記空間光変調部と、前記空間光復調部とは、光伝送路を介して接続されて 、る ことを特徴とする、請求項 2に記載の光伝送装置。 7. The optical transmission device according to claim 2, wherein the spatial light modulation unit and the spatial light demodulation unit are connected via an optical transmission path.
[8] 前記光源は、面発光レーザであることを特徴とする、請求項 2に記載の光伝送装置 8. The optical transmission device according to claim 2, wherein the light source is a surface emitting laser.
[9] 前記光源は、フアブリ'ぺロ共振器レーザであることを特徴とする、請求項 2に記載 の光伝送装置。 9. The optical transmission device according to claim 2, wherein the light source is a Fabry-Perot resonator laser.
[10] 前記光源は、発光ダイオードであることを特徴とする、請求項 2に記載の光伝送装 置。  10. The optical transmission device according to claim 2, wherein the light source is a light emitting diode.
[11] さらに、前記光ビーム信号を複数の縦モードに分離し、前記空間光変調部に出力 する縦モード分離部と、  [11] Further, the light beam signal is separated into a plurality of longitudinal modes and output to the spatial light modulator,
前記空間光復調部から出力された前記光復号信号を入力し、当該縦モードを多重 化する縦モード多重部とを備え、  A vertical mode multiplexing unit that inputs the optical decoded signal output from the spatial light demodulation unit and multiplexes the vertical mode;
前記空間光変調部は、前記縦モード分離部によって分離された縦モードごとに前 記所定の方式に従って前記光ビーム信号を変調することを特徴とする、請求項 2に 記載の光伝送装置。  The optical transmission device according to claim 2, wherein the spatial light modulation unit modulates the light beam signal in accordance with the predetermined method for each longitudinal mode separated by the longitudinal mode separation unit.
[12] さらに、前記光復調信号が有するモード分散特性を検出するモード分散検出部を 備え、  [12] Further, a mode dispersion detection unit for detecting a mode dispersion characteristic of the optical demodulated signal is provided,
前記空間光復調部は、前記モード分散検出部によって検出された結果に基づいて 、前記モード分散特性と逆の特性で補正を加えることを特徴とする、請求項 2に記載 の光伝送装置。  The optical transmission device according to claim 2, wherein the spatial light demodulating unit performs correction with a characteristic opposite to the mode dispersion characteristic based on a result detected by the mode dispersion detecting unit.
[13] 前記モード分散検出部は、モード分散による遅延量を検出することを特徴とする、 請求項 12に記載の光伝送装置。  13. The optical transmission device according to claim 12, wherein the mode dispersion detection unit detects a delay amount due to mode dispersion.
[14] 前記空間光復調部は、前記モード分散検出部によって検出されたモード分散によ る遅延量を補正するよう、前記発振モード毎に所定の遅延量を加えることを特徴とす る、請求項 12に記載の光伝送装置。 [14] The spatial light demodulating unit adds a predetermined delay amount for each oscillation mode so as to correct a delay amount due to mode dispersion detected by the mode dispersion detecting unit. Item 13. The optical transmission device according to Item 12.
[15] 前記モード分散検出部は、モード分散による損失量を検出することを特徴とする、 請求項 12に記載の光伝送装置。 15. The optical transmission device according to claim 12, wherein the mode dispersion detection unit detects an amount of loss due to mode dispersion.
[16] 前記空間光復調部は、前記モード分散検出部によって検出されたモード分散によ る損失量を補正するよう、前記発振モード毎に所定の損失量を加えることを特徴とす る、請求項 12に記載の光伝送装置。 [16] The spatial light demodulator may be configured to detect the mode dispersion detected by the mode dispersion detector. 13. The optical transmission device according to claim 12, wherein a predetermined loss amount is added for each oscillation mode so as to correct the loss amount.
[17] 前記空間光変調部は、所定の符号に基づいて前記光ビーム信号を変調し、 [17] The spatial light modulator modulates the light beam signal based on a predetermined code,
前記空間光復調部は、前記所定の符号に対応する符号に基づいて前記光変調信 号を復調することを特徴とする、請求項 2に記載の光伝送装置。  3. The optical transmission device according to claim 2, wherein the spatial light demodulating unit demodulates the optical modulation signal based on a code corresponding to the predetermined code.
[18] さらに、前記空間光変調部が前記光ビーム信号を変調するための前記所定の符号 と、前記空間光復調部が前記光変調信号を復調するための前記所定の符号に対応 する前記符号とを変更する符号変更部を備える、請求項 17に記載の光伝送装置。 [18] Further, the predetermined code for the spatial light modulation unit to modulate the light beam signal, and the code corresponding to the predetermined code for the spatial light demodulation unit to demodulate the light modulation signal The optical transmission device according to claim 17, further comprising: a code changing unit that changes
[19] 前記空間光変調部および前記空間光復調部は、液晶空間光変調素子によって構 成されていることを特徴とする、請求項 2に記載の光伝送装置。 19. The optical transmission device according to claim 2, wherein the spatial light modulator and the spatial light demodulator are configured by a liquid crystal spatial light modulator.
[20] 前記空間光変調部および前記空間光復調部は、マイクロミラーデバイスによって構 成されていることを特徴とする、請求項 2に記載の光伝送装置。 20. The optical transmission apparatus according to claim 2, wherein the spatial light modulator and the spatial light demodulator are configured by a micromirror device.
[21] 前記空間光変調部および前記空間光復調部は、磁気光学効果を用いた空間光変 調素子によって構成されていることを特徴とする、請求項 2に記載の光伝送装置。 21. The optical transmission device according to claim 2, wherein the spatial light modulator and the spatial light demodulator are configured by a spatial light modulator using a magneto-optic effect.
[22] 前記空間光変調部および前記空間光復調部は、多重量子井戸効果を用いた光変 調素子によって構成されていることを特徴とする、請求項 2に記載の光伝送装置。 22. The optical transmission device according to claim 2, wherein the spatial light modulation unit and the spatial light demodulation unit are configured by an optical modulation element using a multiple quantum well effect.
[23] 前記空間光変調部および前記空間光復調部は、音響光学効果を用いた光変調素 子によって構成されていることを特徴とする、請求項 2に記載の光伝送装置。 23. The optical transmission device according to claim 2, wherein the spatial light modulation unit and the spatial light demodulation unit are configured by a light modulation element using an acoustooptic effect.
[24] 前記空間光変調部は、前記光ビーム信号の強度を制御し、 [24] The spatial light modulator controls the intensity of the light beam signal,
前記空間光復調部は、前記光変調信号の強度を制御することを特徴とする、請求 項 2に記載の光伝送装置。  The optical transmission apparatus according to claim 2, wherein the spatial light demodulator controls the intensity of the optical modulation signal.
[25] 前記空間光変調部は、前記光ビーム信号の位相を制御し、 [25] The spatial light modulator controls the phase of the light beam signal,
前記空間光復調部は、前記光変調信号の位相を制御することを特徴とする、請求 項 2に記載の光伝送装置。  The optical transmission device according to claim 2, wherein the spatial light demodulator controls the phase of the optical modulation signal.
[26] 前記空間光変調部は、前記光ビーム信号の偏光状態を制御し、 [26] The spatial light modulator controls a polarization state of the light beam signal,
前記空間光復調部は、前記光変調信号の偏光状態を制御することを特徴とする、 請求項 2に記載の光伝送装置。  The optical transmission device according to claim 2, wherein the spatial light demodulator controls a polarization state of the optical modulation signal.
PCT/JP2005/018552 2004-10-07 2005-10-06 Optical transmission apparatus WO2006038674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004295343 2004-10-07
JP2004-295343 2004-10-07

Publications (1)

Publication Number Publication Date
WO2006038674A1 true WO2006038674A1 (en) 2006-04-13

Family

ID=36142744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018552 WO2006038674A1 (en) 2004-10-07 2005-10-06 Optical transmission apparatus

Country Status (1)

Country Link
WO (1) WO2006038674A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866699A (en) * 1987-06-22 1989-09-12 Bell Communications Research, Inc. Optical telecommunications system using code division multiple access
US5410147A (en) * 1992-08-20 1995-04-25 General Electric Company Optical communication system using coplanar light modulators
US5532860A (en) * 1995-03-20 1996-07-02 General Electric Company Spatial synchronization for optical communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866699A (en) * 1987-06-22 1989-09-12 Bell Communications Research, Inc. Optical telecommunications system using code division multiple access
US5410147A (en) * 1992-08-20 1995-04-25 General Electric Company Optical communication system using coplanar light modulators
US5532860A (en) * 1995-03-20 1996-07-02 General Electric Company Spatial synchronization for optical communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAKAMURA M ET AL: "Image fiber optic space-CDMA parallel transmission experiment using 8 8 VCSEL PD arrays.", APPLIED OPTICS., vol. 41, no. 32, 10 November 2002 (2002-11-10), pages 6901 - 6906, XP002994937 *
RIZA NA ET AL: "A novel multi-dimensional coding schema for multi-access optical communications.", PROCEEDINGS OF SPIE- THE INTERNATIONSL SOCIETY FOR OPTICAL ENGINEERING., vol. 1787, 8 September 1992 (1992-09-08), pages 110 - 120, XP000874888 *

Similar Documents

Publication Publication Date Title
US11424838B2 (en) Quantum communication network
US7917038B2 (en) Multimode optical transmission device
US9584161B2 (en) Transmission device
JP6829766B2 (en) Optical transmitters, optical receivers and optical transmission systems
US20170353241A1 (en) Image-Processing System to Improve Modal Purity and Reduce Modal Crosstalk
US20140301736A1 (en) Directly modulated multi-level optical signal generator and method thereof
KR20060061045A (en) Passive optical network
Fang et al. A novel PON architecture based on OAM multiplexing for efficient bandwidth utilization
KR101018606B1 (en) Reducing crosstalk in free-space optical communications
CN111181650A (en) Optical frequency hopping system based on electric absorption modulation laser
KR100916582B1 (en) System, apparatus for communicating using wavelength-band division multiplexing in the optical wireless communication and the method thereof
KR101561593B1 (en) Wave length-coded quantum communication systems
JP5940966B2 (en) Optical transmission system, optical transmitter, optical receiver, optical transmission method, optical reception method
Huang et al. A novel optical frequency-hopping scheme based on a flexible structure for secure optical communications
US20130279912A1 (en) Bandwidth efficient dual carrier
WO2006038674A1 (en) Optical transmission apparatus
US20230155685A1 (en) Signal processing device
EP3738227A1 (en) Transmitter and receiver for quantum key distribution
KR20090016179A (en) Noise cancellation method and optical tranceiver
CN113422650A (en) Multichannel optical frequency hopping system, signal encryption method and optical communication equipment
JP2008092443A (en) Data transmitting apparatus, and data receiving apparatus
JP3798766B2 (en) Optical wireless communication system and optical receiver used in this optical wireless communication system
US20100028016A1 (en) Optical Signal Processing Device
Yen Optical code-division multiple-access embedded with a polarisation diversity scheme for radio-over-fibre transmissions
JP2007158251A (en) Wavelength stabilization apparatus and wavelength stabilization method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP