WO2006051807A1 - 疎水性多孔質膜用親水化剤、これを用いた疎水性多孔質膜の親水化方法及び検査方法 - Google Patents

疎水性多孔質膜用親水化剤、これを用いた疎水性多孔質膜の親水化方法及び検査方法 Download PDF

Info

Publication number
WO2006051807A1
WO2006051807A1 PCT/JP2005/020518 JP2005020518W WO2006051807A1 WO 2006051807 A1 WO2006051807 A1 WO 2006051807A1 JP 2005020518 W JP2005020518 W JP 2005020518W WO 2006051807 A1 WO2006051807 A1 WO 2006051807A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophobic porous
membrane
porous membrane
hydrophilizing
surfactant
Prior art date
Application number
PCT/JP2005/020518
Other languages
English (en)
French (fr)
Inventor
Noritaka Shibata
Makoto Ideguchi
Wataru Fujii
Original Assignee
Mitsubishi Rayon Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Engineering Co., Ltd. filed Critical Mitsubishi Rayon Engineering Co., Ltd.
Priority to EP05806224.1A priority Critical patent/EP1839729B8/en
Priority to AT05806224T priority patent/ATE548106T1/de
Priority to CN2005800384123A priority patent/CN101056694B/zh
Publication of WO2006051807A1 publication Critical patent/WO2006051807A1/ja
Priority to US11/798,004 priority patent/US7882962B2/en
Priority to HK08101963.3A priority patent/HK1108135A1/xx
Priority to US12/982,246 priority patent/US20110095223A1/en
Priority to US13/412,756 priority patent/US20120160765A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/102Detection of leaks in membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/109Testing of membrane fouling or clogging, e.g. amount or affinity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/216Surfactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/46Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes

Definitions

  • the present invention relates to a hydrophilizing agent for a hydrophobic porous membrane, comprising a low foaming surfactant.
  • the present invention relates to the use of the above-mentioned hydrophobic porous membrane in hydrophilization treatment of hydrophobic porous membranes such as microfiltration membranes and ultrafiltration membranes.
  • Porous membranes such as microfiltration membranes and ultrafiltration membranes have been used in a wide range of fields for the purpose of treating pollutants such as industrial wastewater and sterilizing pharmaceutical water.
  • the membranes used can be broadly classified into hydrophobic porous membranes and hydrophilic porous membranes, but in the field of solid-liquid separation, such as chemical resistance, contamination resistance, weather resistance, and oxidation degradation resistance. From the surface, a hydrophobic porous membrane is preferably used. However, because the hydrophobic porous membrane is hydrophobic, water or an aqueous solution cannot pass through the pores of the hydrophobic porous membrane as it is, or even if it can pass, considerable pressure must be applied. .
  • the hydrophobic porous membrane is hydrophilized in advance so that it can easily pass through water or an aqueous solution.
  • This hydrophilization treatment is not limited to the case where the membrane is used for the first time after the production of the hydrophobic porous membrane, but also when a hydrophobic porous membrane is inspected, cleaned, or part of the hydrophobic porous membrane during long-term shutdown. It is also required when all parts are exposed to air and dried.
  • a hydrophobic porous membrane made of a polymer having high hydrophobicity such as a fluororesin is required to have an appropriate hydrophilicity since the liquid permeation performance is remarkably lowered once dried.
  • Patent Document 1 a method of introducing a hydrophilic group into the membrane itself (Patent Document 1), a membrane with degassed water (Patent Document 2), alcohol (Patent Document 3). ), Dalyserin (Patent Document 4) and an inorganic salt (Patent Document 5).
  • Patent Document 1 In the method of introducing a hydrophilic group into the membrane itself (Patent Document 1), it is necessary to sufficiently wash the membrane with a cleaning solution such as a large amount of water in order to remove the monomer that constitutes the unreacted hydrophilic group remaining in the membrane. there were.
  • Patent Document 2 In the method of treating the membrane with deaerated water (Patent Document 2), the deaeration is substantially It was necessary to pressurize water through the membrane, and the treatment method was complicated. Furthermore, since it is necessary to always keep the hydrophilic membrane moist, the module including the hydrophilic membrane must be transported, transported, sold, etc. in a state filled with a wetting liquid, which is inconvenient to handle. Met.
  • Patent Documents 3 to 5 In the method of treating the membrane with alcohol or the like (Patent Documents 3 to 5), the alcohol used for the treatment remains in the hydrophobic porous membrane, so that a large amount of cleaning solution is sufficient for use of the membrane. There was a need to wash.
  • Patent Document 6 As another hydrophilic treatment method for a hydrophobic porous membrane, a method of treating a membrane with a surfactant using a specific method is also disclosed (Patent Document 6).
  • Patent Document 6 states that when a membrane is treated with a surfactant, the surfactant remains, so that it gradually elutes in the treated water.
  • the specific method of Patent Document 6 is used to reduce the amount of surfactant used to suppress this elution defect. That is, Patent Document 6 does not solve the fundamental problem of elution of a surfactant simply by reducing the amount of surfactant used to reduce the amount of surfactant elution.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-296686
  • Patent Document 2 JP-A-5-208121
  • Patent Document 3 JP-A-58-96633
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-95939
  • Patent Document 5 JP-A-6-277470
  • Patent Document 6 JP-A-1 119310
  • a first object of the present invention is to provide a hydrophilizing agent suitable for hydrophilizing a hydrophobic porous membrane and a hydrophilizing method using the hydrophilizing agent.
  • the second object of the present invention is a hydrophilizing agent for hydrophilizing the hydrophobic porous membrane, and the amount of the hydrophilizing agent remaining after the hydrophobic porous membrane is treated is reduced as much as possible.
  • Another object of the present invention is to provide a hydrophilizing agent capable of easily removing the remaining hydrophilizing agent and a hydrophilizing method using the hydrophilizing agent.
  • the third object of the present invention is a hydrophilizing agent that immerses the membrane module in the inspection of leaks, missing parts, clogging, etc. of the membrane module including the hydrophobic porous membrane. It is an object of the present invention to provide a method for detecting a membrane module that can suitably suppress bubbles generated therein.
  • a fourth object of the present invention is to immerse a membrane module including a hydrophobic porous membrane disposed in a membrane separation tank including a solution to be processed (processing solution) provided with an aeration apparatus in the processing solution.
  • An object of the present invention is to provide a suitable method for hydrophilization treatment.
  • the present invention relates to a hydrophobizing agent for hydrophobic porous membranes, which has foaming properties with a foam height of 40 mm or less.
  • hydrophobic porous membrane hydrophilizing agent according to any one of 1 to 3 above, wherein the surfactant is acetylene glycol, an ethoxylated product of the acetylene glycol, or a mixture thereof.
  • a method for hydrophilizing a hydrophobic porous membrane comprising contacting the hydrophobic porous membrane with a hydrophilizing agent for a hydrophobic porous membrane according to any one of the above 1 to 4. 6. Further, the hydrophobic porous membrane according to 5, further comprising drying the hydrophobic porous membrane in contact with the hydrophilizing agent for hydrophobic porous membrane according to any one of the above:! To 4
  • the present invention relates to a method for hydrophilicity of a membrane.
  • a method for detecting a membrane module is based on
  • Hydrophilization method comprising the following steps:
  • the present invention relates to a method for testing and hydrophilizing the membrane module.
  • the separation membrane By immersing and drying a highly hydrophobic membrane such as a fluorine-based separation membrane in the surfactant solution with low foaming property of the present invention for a predetermined time, the separation membrane can be stably dried without being spoiled for a long period of time.
  • a highly hydrophobic membrane such as a fluorine-based separation membrane
  • the separation membrane can be stably dried without being spoiled for a long period of time.
  • a porous membrane that has once been dried to become hydrophobic can be easily and smoothly manufactured at low cost with a small amount of drug, labor, and time. At The liquid permeation performance can be recovered satisfactorily, which is extremely advantageous industrially.
  • FIG. 1 is a schematic configuration diagram of an example suitable for carrying out the membrane hydrophilization method of the present invention.
  • the hydrophilizing agent for hydrophobic porous membrane of the present invention contains a low foaming surfactant, an optional solvent, and an optional additive.
  • the surfactant of the present invention has low foaming properties. Foaming property is Ross Miles method Ciis ⁇
  • the Ross-Miles method 200 ml of a surfactant aqueous solution is dropped for 30 seconds from a height of 90 cm onto a 50 ml surfactant aqueous solution placed in a glass cylinder having an inner diameter of 50 mm. It measures the height (mm) of the foam.
  • the surfactant of the present invention has a foam height force of not more than Omm, preferably not more than 30 mm, more preferably not more than 20 mm immediately after foaming by the Ross-Miles method. If it is 40 mm or less, foaming by the surfactant can be kept low, which is preferable.
  • the surfactant of the present invention has a foam height of not more than 20 mm, preferably not more than 15 mm, more preferably not less than 5 mm after foaming in the Ross-Miles method (JIS K 3362). 0 to: 10 mm is appropriate. If it is less than 20mm, It is preferable because the foam can be kept low.
  • the surfactant used in the present invention preferably has a static surface tension (room temperature) of a 0.1 mass% aqueous solution of 29 mN / m or less. More preferably, it is 28 mN / m or less, and further preferably in the range of 20 to 28 mNZm.
  • the static surface tension can be measured by the JIS Willher Noremi (plate) method automatic surface tension meter CBVP-Z (Kyowa Interface Science Co., Ltd.).
  • a static surface tension of 30 mN / m or less is preferable because the hydrophobic membrane can be hydrophilized in a relatively short time.
  • the surfactant used in the present invention preferably has a dynamic surface tension (room temperature) of a 0.1 mass% aqueous solution of 50 mN / m or less.
  • the range is more preferably 10 to 50 mN / m, and further preferably 25 to 40 mN / m.
  • the dynamic surface tension can also be measured, for example, at 1 Hz and 10 Hz in a 0.1% by weight aqueous solution using a bubble pressure type 1 dynamic surface tension meter Cruz BP-2 (manufactured by KRUSS). .
  • the surfactant that can be used in the present invention can be selected from an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant. Foaming • From the viewpoint of low foaming, nonionic surfactants are particularly preferred.
  • nonionic surfactants include acetylene glycol surfactants, acetylene alcohol surfactants, polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene dodecyl phenyl ether , Polyoxyethylene alkyl ether, polyoxyethylene oleyl ether, polyoxyethylene lauryl ether, polyoxyethylene alkyl ether, polyoxyalkylene alkyl ether, and other ethers, polyoxyethylene oleic acid, polyoxyethylene Oleate, polyoxyethylene distearate ester, sonorebitan laurate, sonolebitan monostearate, sonorebitan monooleate, recbitane sesquiole Fluorine-containing compounds such as ester surfactants such as polyoxyethylene monooleate and polyoxyethylene stearate, silicon surfactants such as dimethylpolysiloxane, other fluorine alkyl esters and perfluoroalkyl carboxy
  • acetylene glycol surfactants are It is preferable because it has excellent wettability, permeability and antifoaming property.
  • Acetylene glycol surfactants are relatively stable and have the characteristics that they are not subject to spoilage even during long-term membrane storage.
  • Acetylene glycol surfactants have characteristics such as high permeability, particularly low dynamic surface tension. Therefore, it can be suitably used for hydrophilic treatment of a hollow fiber membrane having a relatively large film thickness, and has effects such as shortening the treatment time.
  • acetylene alcohol surfactants include 2, 4, 7, 9-tetramethyl_5-decyne-1,4,7-diol, 3,6-dimethyl_4-octyne-3,6-diol, 3, Examples thereof include 5-dimethyl_1-hexyne_3ol, 2,5,8,11-tetramethyl_6-dodecyne-1,8-diol, and ethoxylated compounds thereof.
  • those having an ethylene oxide addition mole total number in the range of 2 to 30 moles in the ethoxylated product are preferable. More preferably, the range is from 4 to 12 moles.
  • the total number of moles of ethylene oxide is 30 moles or less, static and dynamic surface tensions are lowered, and it can be suitably used as a hydrophilizing agent.
  • Acetylene glycol surfactants and ethoxy loupe derivatives thereof are also available on the market, such as Air Products Surfinol 104, 82, 465, 485, TG, Orshin STG manufactured by Nisshin Chemical Co., Ltd.
  • Examples include Orphin E1010, Orphin EXP4036, and Orphin PD-001.
  • one kind of acetylene glycol surfactant Onolefin EXP4036 exhibits a static surface tension of 30 mN / m or less at 0.1 wt%.
  • Orphin PD— ⁇ ⁇ Orphine STG both manufactured by Nissin Chemical Industry Co., Ltd.
  • the acetylene glycol-based surfactant can exhibit good hydrophilicity at an extremely low concentration.
  • the solvent for dissolving the surfactant of the present invention includes water, an aqueous solution containing an electrolyte such as physiological saline, lower alcohols having 1 to 4 carbon atoms such as ethanol and methanol, preferably carbon number:! To 2 , Pyridine, chloroform, cyclohexane, ethyl acetate Can use toluene or a mixed solvent thereof.
  • an aqueous solution containing an electrolyte such as physiological saline, lower alcohols having 1 to 4 carbon atoms such as ethanol and methanol, preferably carbon number:!
  • To 2 Pyridine, chloroform, cyclohexane, ethyl acetate
  • the water used is preferably obtained by filtering normal tap water or ion-exchanged water through a hollow
  • additives can be further added to the hydrophilizing agent for the hydrophobic porous membrane of the present invention.
  • additives include surfactants other than those described above, glycerin, and the like.
  • a polymer composed of ethylene oxide, propylene oxide, a mixture thereof, or a block copolymer thereof eg, Evan 750, No. 1.
  • a block copolymer thereof eg, Evan 750, No. 1.
  • hydrophilizing agent of the present invention can be used in a range that does not impair the properties of the hydrophilizing agent of the present invention, for example, 5 to 90% by mass, more preferably 5 to 50% by mass with respect to the entire hydrophilizing agent. Can be used with S. Furthermore, pure water or a water-soluble organic solvent can be used as long as the properties of the hydrophilizing agent of the present invention are not impaired. For example, it is 25% by mass or less, more preferably, 10% by mass with respect to the total hydrophilizing agent. It can be used in the range of ⁇ 20% by mass.
  • the hydrophobic porous membrane hydrophilizing agent of the present invention is prepared by dissolving the surfactant as it is or by dissolving the surfactant and optional additives in a solvent.
  • the method for dissolving the surfactant include a method of mixing by a known mixing preparation method such as a propeller type stirrer.
  • components that are solid at room temperature can be heated and mixed if necessary.
  • the above-mentioned surfactant is added in an amount of 0.05 to 5% by mass, preferably 0.05 to It is preferably contained in the range of mass%.
  • the surfactant By setting the surfactant to 0.05% by mass or more, excellent properties as a hydrophilizing agent tend to be imparted.
  • the surfactant By setting the surfactant to 5% by mass or less, the amount of elution from the membrane is reduced and COD tends to be reduced.
  • the hydrophilizing agent for a hydrophobic porous membrane of the present invention is used to make the hydrophobic porous membrane in the membrane module hydrophilic.
  • Various modules such as a flat membrane type, a cylindrical type, a pleat type, and a hollow fiber type can be used as the membrane module.
  • the membrane module has a body, an inlet, an outlet, and a porous membrane. Specifically, an inlet and an outlet are provided in the membrane module body, and a porous membrane is provided inside the body.
  • the inlet and outlet may be provided at both ends of the main body (linear both-end type), and either the inlet or the outlet may be greatly opened (linear one-sided opening type).
  • the porous membrane is connected to the inside of the main body so as to divide the main body into a first chamber having an inlet and a second chamber having an outlet.
  • the connection includes one in which the end of the porous membrane is bonded or sealed to the inner wall of the main body, or the end of the porous membrane is detachably connected to the inner wall of the main body. Therefore, the membrane module of the present invention has a structure in which the liquid and gas introduced from the inlet enter the main body, always pass through the porous membrane, and are discharged from the outlet.
  • the inlet, outlet and main body of the membrane module of the present invention may be made of a metal such as stainless steel or steel, a resin such as a fluororesin, an ABS resin, a polyolefin resin, or a vinyl chloride resin.
  • any porous membrane can be used as long as it is a hydrophobic porous membrane.
  • the shape of the hydrophobic porous membrane of the present invention include a flat membrane, a hollow purple membrane, a tubular membrane, and a spiral membrane.
  • the hydrophobic porous membrane of the present invention may be a separation membrane such as a microfiltration membrane (MF), an ultrafiltration membrane (UF), and a nanofiltration membrane (NF).
  • the hydrophobic porous membrane of the present invention can be formed from various materials as long as it can be molded into the shape of a separation membrane such as cellulose-based 'polyolefin-based' polyvinyl alcohol-based, polysulfone-based, polyacrylonitrile-based, and fluorine-based resin. Can be used to do. Examples thereof include polyethylene, polypropylene, polyvinylidene fluoride, polytetrafluoroethylene, and polysulfone.
  • a highly hydrophobic resin Is preferable, and a fluorine-based resin is particularly preferable.
  • vinylidene fluoride resin in addition to a homopolymer of vinylidene fluoride, a copolymer of vinylidene fluoride and a monomer copolymerizable with vinylidene fluoride can be listed.
  • the copolymerizable monomer include butyl fluoride, tetrafluorinated styrene, trifluorinated styrene, and hexafluoropropylene.
  • the hydrophobic porous membrane of the present invention has a plurality of pores.
  • the pores are preferably continuous pores penetrating the front and back surfaces of the hydrophobic porous membrane.
  • the pore diameter is a force that can be arbitrarily selected according to the purpose. For example, 0.01 to 5 x m, preferably 0.1 to L m. Force S is appropriate.
  • the hydrophobic porous membrane of the present invention preferably has an asymmetric structure in which the pore size on one surface of the hydrophobic porous membrane is small and the pore size on the other surface is large. In the case of an asymmetric structure, it is appropriate that the pore diameter of one surface is greater than 1 and less than 100 times, preferably 2 to 10 times the pore diameter of the other surface.
  • the outer diameter of the hollow fiber is, for example, 0.1 to 10 mm, preferably 0.5 to 5 mm.
  • the hydrophobic porous membrane of the present invention has a pure water permeability coefficient of 10 to 250 m 3 / m 2 / hr / MPa, preferably 20 to 150 m 3 / m 2 / hr / It is suitable that it is MPa.
  • the pure water permeability coefficient can be obtained from the following equation.
  • Pure water permeability coefficient [Pure water permeation amount (m 3 )] / [Porous membrane surface area (m 2 )] / [Permeation time (hr)] / [Pure water pressure (MPa)]
  • the membrane surface is exposed to air, such as when changing the membrane, washing the membrane with chemicals, or not using the membrane for a long period of time. It may become dry. In this case, even if it is attempted to filter the liquid to be treated by immersing it in a liquid to be treated again (the liquid to be treated), the liquid permeation performance deteriorates and the original function as a separation membrane cannot be exhibited. Therefore, by once hydrophilizing the pores of the hydrophobic porous membrane and passing the liquid to be treated, it is possible to achieve both improved liquid permeation performance and good contamination resistance of the membrane.
  • the hydrophilizing agent is obtained by passing a liquid through the hydrophobic porous membrane. It is preferable that it is removed quickly in view of eliminating the inefficiency of recovering the treated liquid as a waste liquid, and using the hydrophobic porous membrane at an early stage.
  • hydrophilization of the hydrophobic porous membrane includes bringing the hydrophobic porous membrane into contact with the hydrophilizing agent for the hydrophobic porous membrane.
  • description will be made taking the hydrophobic porous membrane in the membrane module as an example.
  • the hydrophilization treatment using the hydrophobic porous membrane of the present invention is performed by injecting the hydrophilizing agent for the hydrophobic porous membrane from the side facing the second chamber having the outlet of the hydrophobic porous membrane. Is done by.
  • Hydrophobizing agent for hydrophobic porous membrane can be injected from all outlets.
  • the structure is complicated and bubbles are likely to stay.
  • the outlet force and hydrophilicity will be increased.
  • the agent By pushing the agent at a predetermined pressure and a predetermined flow rate with a pump or the like, bubbles inside the membrane module are released, and the entire membrane module can be filled with the hydrophilizing agent.
  • the hydrophilization liquid is pumped from the water collection part in the lower part of the membrane module. And push the gas remaining in the pipe and membrane module from the water collecting part at the top of the membrane module, and place the bubbles with a hydrophilizing agent. Instead, it is preferable to fill the entire membrane module with a hydrophilizing agent.
  • the concentration of the surfactant is 0.3% by mass, for example, 0.5 to 5 liters per lm 2 of the membrane area, A range of 2 to 3 liters is suitable. If the flow rate is 0.5 liter or more per lm 2 of membrane area, the effect of hydrophilizing the membrane can be expected sufficiently. In addition, if the flow rate is 5 liters or less per lm 2 of membrane area, no extra load is applied to the membrane separation tank.
  • the injection rate of the hydrophilizing agent for hydrophobic porous membrane is, for example, in the range of 0.005 to 3 m 3 / m 2 'D, preferably 0.01 to 0.3 m 3 Zm 2 ' D per unit membrane area. It is. If the injection speed is 3 m 3 / m 2 ′ D or less, the entire membrane surface can be made hydrophilic evenly, and if it is 0.005 m 3 / m 2 ′ D or more, the hydrophilic treatment can be performed quickly. .
  • the adhesion rate of the hydrophobizing agent for hydrophobic porous membrane to the hydrophobic porous membrane is, for example, 0.01 to 1.0 mass%, preferably 0.05 to 0.5 mass%. Is appropriate.
  • the adhesion rate refers to the mass (W) (g) of the hydrophobic porous membrane before hydrophilization treatment and the hydrophilization treatment.
  • Adhesion rate (%) [ ⁇ (g) -W (g)) / W (g)] X 100
  • the adhesion rate is 0.01% by mass or more, good hydrophilicity is exhibited, and if it is 1.0% by mass or less, an extra hydrophilizing agent for a hydrophobic porous membrane should be included in the membrane module. This is preferable.
  • the temperature of the hydrophilizing agent for hydrophobic porous membrane of the present invention at the time of hydrophilization is, for example, 10 to 50 ° C, preferably 20 to 30 ° C. If it is 10 ° C or higher, the hydrophilization treatment is sufficiently performed without lowering the hydrophilization rate, and the liquid permeation performance can be improved. In addition, when the temperature is 50 ° C or lower, the liquid permeation performance does not decrease due to heat shrinkage and thermal deterioration of the hydrophilizing agent.
  • the immersion time of the hydrophilic agent for hydrophobic porous membrane may be recovered immediately after injecting the hydrophilic agent for hydrophobic porous membrane, but at least 3 For more than 0 seconds, 10 to 120 minutes, preferably 30 to 90 minutes, the hydrophilizing agent for hydrophobic porous membranes is allowed to stand still in the hydrophobic porous membrane so that it is completely hydrophilized and transparent. It is also preferable for improving the liquid performance.
  • the hydrophilizing agent for hydrophobic porous membrane of the present invention staying in the membrane module discharges the excess hydrophilizing agent staying in the module after the hydrophilization treatment by tilting the membrane module or the like. Depending on the situation, it can be appropriately recovered. Further, the hydrophilizing agent for the hydrophobic porous membrane can be extruded by passing the liquid or water to be treated from the first chamber side having the inlet to the second chamber side having the outlet. This is preferable because the hydrophilization efficiency of the membrane is further improved and the labor for collection can be reduced.
  • the water used here is preferably clean water, such as pure water or purified water, that does not contaminate the second chamber side having the outlet.
  • it may be a bactericidal liquid such as an aqueous sodium hypochlorite solution. Further, it may be water obtained by filtering normal tap water or ion-exchanged water through a hollow fiber membrane having a pore diameter of 0.0 :! to l z m.
  • FIG. 1 is a schematic view of a membrane separation apparatus including a membrane module of the present invention.
  • a microorganism to be processed liquid to be processed
  • the liquid to be treated (3) is first introduced into the membrane separation tank (1) and subjected to microbial treatment in the membrane separation tank (1).
  • the organic substance usually contains protein, amino acid, saccharide 'lipid or other biodegradable substance, and these organic substances are significantly removed by microorganisms and the membrane module of the present invention. can do.
  • microorganisms those contained in activated sludge or those for bioreactors for producing useful substances can be used.
  • microorganism treatment air is fed into the membrane separation tank (1) from the air diffuser (4).
  • the microorganism-treated liquid is treated (treated liquid) through a hydrophobic porous membrane (not shown) in the membrane module (2), and is discharged through the pipe (5).
  • hydrophilizing the hydrophobic porous membrane of the present invention first, a hydrophobic porous membrane hydrophilizing agent is added from the side of the pipe (5) to the hydrophobic porous membrane (not shown) in the membrane module (2). )). film When the module (2) has a plurality of outlets, excess hydrophilizing agent for the hydrophobic porous membrane may be discharged from one outlet into the membrane separation tank (1). Thereafter, the hydrophobic porous membrane hydrophilizing agent is held in the hydrophobic porous membrane for a predetermined time. After a predetermined time has passed, clear water is introduced from the pipe (5) side into the hydrophobic porous membrane (not shown) in the membrane module (2), and water, the hydrophilic agent for the hydrophobic porous membrane, Is replaced.
  • air may be sent from the air diffuser (4) into the membrane separation tank (1).
  • hydrophilicity is performed, and the concentration of the hydrophilizing agent for the hydrophobic porous membrane contained in the initial flow of the treatment liquid after the hydrophilic treatment can be appropriately reduced.
  • the hydrophilizing agent for a hydrophobic porous membrane which is an aqueous solution of a low-foaming property and a surfactant
  • the hydrophobic porous Even if at least part of the membrane dries and the liquid permeability of the membrane (membrane flux) decreases, the membrane flux can be recovered with a small amount of hydrophilizing agent, labor, time and cost. Can do.
  • a surfactant with low foaming property is used, even if a part of the surfactant flows into the membrane separation tank (1) as a result of the hydrophilization treatment, gas is then released from the air diffuser (4).
  • the increase in soluble COD in the membrane separation tank (1) can be suppressed.
  • a known method can be used. For example, it can be measured by measuring absorbance in accordance with JIS K0102. For example, when water is passed through a porous membrane so that the injection rate is 0.01 m 3 / m 2 'D per unit area, the value of COD is hydrophilized within 5 days, preferably within 4 days. The previous value is appropriate.
  • the membrane module has a main body, an inlet, an outlet, and a porous membrane as described above.
  • the porous membrane is connected to the inside of the main body so as to divide the main body into a first chamber having an inlet and a second chamber having an outlet.
  • defects for example, holes, cracks, incomplete connection, clogging of porous membrane, etc.
  • the members themselves such as the main body, inlet, outlet, and porous membrane, and in the connection part between the porous membrane and the main body.
  • bubble point method One of the typical methods for product inspection is the “bubble point method”. This method was originally developed for the purpose of pore size evaluation. It is often used in integrity tests of filtration membranes and ultrafiltration membranes, and the method is specified in JIS K383 2 “Bubble point test method for microfiltration membrane elements and modules”.
  • the method for detecting the membrane module of the present invention is as follows.
  • step (2) comprises
  • the hydrophilizing agent for a hydrophobic porous membrane into which the membrane module is immersed includes the low-foaming surfactant of the present invention described above and an arbitrary solvent.
  • the membrane module may be introduced with an inspection gas immediately after being immersed, but if the membrane module remains immersed for a specified time, It is also preferable to complete the hydrophilization.
  • the immersion time of the membrane module is, for example, 30 seconds to 30 minutes, preferably 5 to 20 minutes.
  • an inert gas such as air, nitrogen, or argon can be used.
  • the gas for detection is inspected by gradually applying it to the target pressure in the range of 5kPa to IMPa.
  • a large part in the process such as a defect in a potting part, it can be found at a relatively low pressure.
  • the inspection gas introduced into the membrane module is discharged from the outlet.
  • the end of the outlet may be closed to detect defects in the connection portions such as the inlet, outlet, and main body. From the entire membrane module, inlet, outlet, bubbles that can be released from the main body, bubbles that can be released from the connection part of each member, hydrophobic porous membrane and the connection part between this and the main body Visually observe bubbles that may be released.
  • the hydrophobic porous membrane is dried, hydrophobized, and hydrophobized by aeration gas for inspection. It is possible to suppress a decrease in liquid permeation performance. This is because, even if a gas for inspection is ventilated, the hydrophobic porous membrane spontaneously gets wet with water by contact with the hydrophilizing agent for hydrophobic porous membrane of the present invention. Further, by using a low-foaming surfactant as in the present invention, it is possible that the foam generated by the defective partial force stays on the water surface, making it difficult to find the defective part.
  • the membrane module may be hydrophilized.
  • the hydrophilization treatment is mainly performed by immersing the membrane module in the step (1) in the hydrophilizing agent for hydrophobic porous membrane of the present invention, and then dried in the step (4).
  • the surface of the hydrophobic porous membrane is hydrophilized and can be circulated as a product in a dry state.
  • the liquid to be treated has high liquid permeability without further hydrophilization treatment. It is possible to provide a membrane module product in which the initial flow of processed liquid recovered as waste liquid can be reduced as much as possible.
  • the hydrophilizing agent for hydrophobic porous membranes of the present invention has low foaming properties, the defect inspection and the hydrophilization treatment can be performed simultaneously in this way.
  • the drying temperature after defect detection is, for example, in the range of 20 to 120 ° C, preferably 30 to 60 ° C.
  • the drying temperature is 20 ° C or higher, sufficiently high liquid permeability can be imparted.
  • the drying temperature is 120 ° C or lower, the thermal shrinkage of the hydrophobic porous membrane and the hydrophobic porous membrane of the present invention are achieved. A decrease in liquid permeation performance due to thermal degradation of the hydrophilizing agent can also be suppressed.
  • an acetylene glycol-based surfactant (ONOREFIN EXP4036 (manufactured by Nissin Chemical Industry Co., Ltd.)) 0.3 mass% aqueous solution (static surface tension 25.8 mNZm, When converted to the static surface tension of 0.1 mass% aqueous solution, 27.lmN / m) was used.
  • a 30% aqueous solution of ethanol 99.5% Wako Pure Chemicals grade 1 reagent was used as the hydrophilizing agent.
  • a membrane composed of a hollow fiber membrane (made by Mitsubishi Rayon Co., Ltd.) made of polyvinylidene fluoride having a pure water permeability coefficient of 1 OOmVmVhr / MPa, an outer diameter of 2.4 mm, and a pore diameter of 0 was prepared as a hydrophobic porous membrane. .
  • a membrane composed of a hollow fiber membrane made of polyethylene resin (manufactured by Mitsubishi Rayon Co., Ltd.) having a pure water permeability coefficient of 30 m 3 Zm 2 Zhr / MPa, an outer diameter of 0.54 mm, and a pore size of 0 is used as a hydrophobic porous membrane. And prepared.
  • a plurality of the porous membranes 1 were bundled to produce a membrane module having a membrane area of 4.4 m 2 .
  • the hydrophobizing agent for the hydrophobic porous membrane of Example 1 was tested for foamability by the Ross Miles method. The test was conducted according to JIS K 3362. Water was further added to the aqueous solution of the hydrophobizing agent for hydrophobic porous membrane of Example 1 to obtain a 0.1% by mass aqueous solution. Thereafter, at 25 ° C, the foam height was measured immediately after foaming and 5 minutes after foaming.
  • Porous membrane 1 is immersed in the hydrophobizing agent for hydrophobic porous membrane of Example 1 for 10 minutes. Inlet force of the rear membrane module Pressurized air (50 kPa) was introduced, and the outlet and the inlet were sealed. Foam was generated from the defective part of the membrane module, but the generated foam disappeared immediately, so it was not an obstacle to find the defective point, and it was easy to continue the inspection of missing parts.
  • Pure water permeability coefficient [Pure water permeation (m 3 )] / [Porous membrane surface area (m 2 )] / [Permeation time (hr)] / [Pure water pressure (MPa)]
  • a compliant absorbance COD measurement set (manufactured by Central Science Co., Ltd.) was used.
  • Porous membrane 2 having no defects was immersed in the hydrophilizing agent for hydrophobic porous membrane of Example 1 for 10 minutes, and subjected to a hydrophilic treatment. Thereafter, the porous membrane 1 was dried at 50 ° C. for 4 hours in the same manner as in the test 1, and the pure membrane was measured in pure water.
  • Comparative test 2 The porous film 1 having no defects was replaced with the 40 mass% glycerin aqueous solution of Comparative Example 1 10 It was soaked for 2 seconds and subjected to a hydrophilic treatment. Thereafter, the porous membrane 1 was dried at 50 ° C. for 4 hours in the same manner as in Test 1, and the pure water permeability coefficient was measured in water. In addition, the water pressure at the membrane module was measured at 0. IMPa 30 minutes after the start of water flow.
  • Test 1 and Comparative Test 2 showed a pure water permeability coefficient comparable to that obtained when ethanol (30% aqueous solution) was similarly hydrophilized and replaced with water. However, Comparative Test 2 resulted in a large amount of glycerin dissolved.
  • a membrane separator (1) of a membrane separator having a 7m 3 membrane separator (1) was filled with the general domestic wastewater after pretreatment such as coagulation sedimentation as the liquid to be treated (3). Activated sludge was added as microorganisms in the membrane separation tank (1).
  • Membrane separation tank (1) membrane module (2) into the dipping 'is installed, pipe (5) Karamaku module hydrophobic porous membrane hydrophilizing agent of Example 1 (2), membrane area lm 2 per The injection was performed in an amount of 2 liters so that the injection rate was 0.01 m 3 / m 2 'D per unit membrane area. After completion of the injection, the mixture was allowed to stand for 60 minutes for hydrophilic treatment. Water filtered through a hollow fiber membrane (pore size: 0.
  • the hydrophilization treatment was sufficiently applied for one week after the hydrophilization treatment, without the sudden decrease in the pure water permeability coefficient. Also, immediately after the hydrophilic treatment, the liquid to be treated (3) is foamed by aeration of air from the air diffuser (4), and the bubbles and liquid to be treated (3) do not overflow from the membrane separation tank (1). It was possible to operate smoothly.
  • the COD value of the treated liquid is 4 mg in the initial flow after 15 minutes compared to before hydrophilization treatment.
  • the pure water permeability coefficient of the hydrophobic porous membrane and the COD of the treated liquid were the same as in Test 3 except that the 40% by mass glycerin aqueous solution of Comparative Example 1 was used from the pipe (5) to the membrane module (2).
  • the Mn value was measured.

Abstract

 界面活性剤を含み、該界面活性剤が、ロス-マイルス法(JIS K 3362)に従って、25°Cにおける0.1質量%前記界面活性剤水溶液を用いて測定した起泡直後の泡高さが40mm以下である起泡性を有し、好ましくはさらに、起泡から5分経過後の泡高さが20mm以下である起泡性を有することを特徴とする、疎水性多孔質膜用親水化剤、この親水化剤を用いた疎水性多孔質膜の親水化方法、ならびにこの親水化剤を用いた膜モジュールの検査・親水化方法。

Description

明 細 書
疎水性多孔質膜用親水化剤、これを用いた疎水性多孔質膜の親水化方 法及び検査方法
技術分野
[0001] 本発明は、低起泡性界面活性剤を含む、疎水性多孔質膜用親水化剤に関する。
特に本発明は、精密ろ過膜、限外ろ過膜等の疎水性多孔質膜の親水化処理におけ る上記疎水性多孔質膜の使用に関する。
背景技術
[0002] 精密ろ過膜及び限外ろ過膜などの多孔質膜は、工業廃水等の汚濁物質処理、医 薬品用水等の無菌化などの目的で、幅広い分野において使用されてきている。使用 される膜としては、大別して疎水性多孔質膜と親水性多孔質膜が挙げられるが、固 一液分離の分野では、耐薬品性、耐汚染性、耐候性及び耐酸化劣化性等の面から 、疎水性多孔質膜が好ましく使用されている。しかし、疎水性多孔質膜は、膜の疎水 性ゆえ、そのままでは水又は水溶液が疎水性多孔質膜の細孔を通過することができ ないか、通過できるとしてもかなりの圧力をかける必要がある。従って、疎水性多孔質 膜をあらかじめ親水化処理して水や水溶液を通過しやすくすることが行われている。 この親水化処理は、疎水性多孔質膜を製造後、膜を最初に使用する場合の他、疎 水性多孔質膜の点検、清掃、長期運転停止の際に疎水性多孔質膜の一部又は全 部が空気に触れて乾燥した場合にも必要となる。特に、フッ素樹脂のように疎水性が 高いポリマーからなる疎水性多孔質膜は、一旦乾燥させると著しく透液性能が低下 するので、疎水性多孔質膜の適切な親水化が必要となる。
このような疎水性多孔質膜の親水化方法としては、例えば、膜自体に親水基を導 入する方法 (特許文献 1)や、膜を脱気水 (特許文献 2)、アルコール (特許文献 3)、ダリ セリン (特許文献 4)及び無機塩 (特許文献 5)で処理する方法が知られてレ、る。
しかし、膜自体に親水基を導入する方法 (特許文献 1)では、未反応で膜に残存する 親水基を構成するモノマーを除去するため、膜を多量の水などの洗浄液で十分洗浄 する必要があった。膜を脱気水で処理する方法 (特許文献 2)では、実質的には脱気 水を加圧して膜に通すことが必要であり、処理方法が煩雑であった。さらに、親水化 した膜は常に湿潤状態にしておく必要があるため、親水化した膜を含むモジュール は湿潤液等を満たした状態で運搬、輸送、販売等しなければならず、取り扱いが不 便であった。また、膜をアルコール等で処理する方法 (特許文献 3〜5)においても、処 理に使用したアルコール等が疎水性多孔質膜中に残存するため、膜の使用に際し ては多量の洗浄液で十分洗浄する必要があった。
また、他の疎水性多孔質膜の親水化処理方法として、特定の方法を利用して膜を 界面活性剤で処理する方法も開示されている (特許文献 6)。
しかし、特許文献 6は、界面活性剤で膜を処理する場合は、界面活性剤が残存す るため処理された水の中にこれが徐々に溶出するという欠点を有するとしたうえで、 膜を界面活性剤で処理するために、特許文献 6の特定の方法を使用して界面活性 剤の使用量を少なくしてこの溶出の欠点を抑えている。つまり、特許文献 6は、単に 界面活性剤の使用量を減らして界面活性剤の溶出量を少なくするだけで、界面活性 剤の溶出という根本的な問題を解決するものではない。
[0003] 特許文献 1 :特開平 6— 296686号公報
特許文献 2 :特開平 5— 208121号公報
特許文献 3 :特開昭 58— 96633号公報
特許文献 4 :特開 2002— 95939号公報
特許文献 5:特開平 6— 277470号公報
特許文献 6 :特開平 1 119310号公報
発明の開示
発明が解決しょうとする課題
[0004] 本発明の第一の目的は、疎水性多孔質膜を親水化処理するために適した親水化 剤及びこの親水化剤を使用した親水化方法を提供することにある。
本発明の第二の目的は、疎水性多孔質膜を親水化処理するための親水化剤であ つて、疎水性多孔質膜を処理した後に残存する親水化剤の量を極力低減し、かつ、 残存した親水化剤が容易に除去できる親水化剤及びこの親水化剤を使用した親水 化方法を提供することにある。 本発明の第三の目的は、疎水性多孔質膜を含む膜モジュールのリーク、欠品、 目 詰まり等の検査において膜モジュールを浸漬する親水化剤であって、当該検査にお いて親水化剤中に発生する気泡を好適に抑制することができる、膜モジュールの検 查方法を提供することにある。
本発明の第四の目的は、曝気装置を備えた処理されるべき溶液 (被処理液)を含む 膜分離槽中に配置された疎水性多孔質膜を含む膜モジュールを、被処理液に浸漬 したまま親水化処理するための好適な方法を提供することにある。
課題を解決するための手段
本発明者らは、前記課題を解決するため鋭意検討を行った結果、消泡性と低い表 面張力を有する特定の低起泡性界面活性剤を使用することにより、上記課題を解決 できることを見出し、本発明に至った。
即ち、本発明は、
1.界面活性剤を含み、該界面活性剤力、ロス—マイルス法 CJIS K 3362)に従つ て、 25°Cにおける 0. 1質量%前記界面活性剤水溶液を用いて測定した起泡直後の 泡高さが 40mm以下である起泡性を有することを特徴とする、疎水性多孔質膜用親 水化剤に関する。
2.前記界面活性剤力 ロス一マイルス法 (JIS K 3362)に従って、 25。Cにおける 0 . 1質量%該界面活性剤水溶液を用いて測定した起泡から 5分経過後の泡高さが 20 mm以下である起泡性を有する、上記 1に記載の疎水性多孔質膜用親水化剤に関 する。
3.前記界面活性剤が、 0. 1質量%の前記界面活性剤水溶液を用いた場合、 30m NZm以下の静的表面張力を有する、上記 1又は 2に記載の疎水性多孔質膜用親 水化剤に関する。
4.前記界面活性剤が、アセチレングリコール、該アセチレングリコールのエトキシル 化物又はこれらの混合物である、上記 1〜3のいずれか 1つに記載の疎水性多孔質 膜用親水化剤に関する。
5.疎水性多孔質膜と、上記 1〜4のいずれ力 1つに記載の疎水性多孔質膜用親水 化剤とを接触させることを含む、疎水性多孔質膜の親水化方法に関する。 6.更に、上記:!〜 4のいずれか 1つに記載の疎水性多孔質膜用親水化剤と接触した 前記疎水性多孔質膜を乾燥することを含む、上記 5に記載の疎水性多孔質膜の親 水化方法に関する。
7.本体と、該本体に設けられた入口及び出口と、前記本体内に設けられた疎水性 多孔質膜とを有する膜モジュールの検查方法であって、以下の工程:
(1)前記膜モジュールを、上記 1〜4のいずれ力 4つに記載の疎水性多孔質膜用親水 化剤に浸漬する工程;
(2)検査用気体を前記入口から導入し、前記疎水性多孔質膜を通して前記出口から 排出する工程;及び
(3)前記膜モジュール力 排出される気泡を観察する工程、
を含む、膜モジュールの検查方法。
8.本体と、該本体に設けられた入口及び出口と、前記本体内に設けられた疎水性 多孔質膜とを有する膜モジュールの検査.親水化方法であって、以下の工程:
(1)前記膜モジュールを、上記 1〜4のいずれ力 1つに記載の疎水性多孔質膜用親水 化剤に浸漬する工程;
(2)検査用気体を前記入口から導入し、前記疎水性多孔質膜を通して前記出口から 排出する工程;
(3)前記膜モジュール力 排出される気泡を観察する工程;及び
(4)前記膜モジュールを乾燥する工程、
を含む、前記膜モジュールの検査 ·親水化方法に関する。
発明の効果
フッ素系分離膜などの疎水性の強い膜を本発明の起泡性の低い界面活性剤液に 所定時間浸漬 '乾燥することにより、当該分離膜を長期間にわたって腐敗等すること なく安定的に乾燥状態で保存することができ、当該分離膜の使用時には水によって 自発的且つ完全に湿潤し得るという乾燥保存がしゃすぐかつ、使用時に前処理が 不要な優れた疎水性多孔質膜を提供することができる。
また、本発明の疎水性多孔質膜の親水化方法によれば、一旦乾燥して疎水性とな つた多孔質膜を、少ない薬剤使用量、労量、時間にて、容易かつ円滑に低コストにて 透液性能を良好に回復させることができ、工業的に極めて有利である。 図面の簡単な説明
[0007] [図 1]本発明の膜の親水化処理方法を実施するのに好適な例の模式構成図である。
符号の説明
[0008] 1 膜分離槽
2 膜モジユーノレ
3 被処理液
4 散気管
5 配管
発明を実施するための最良の形態
[0009] (1)疎水性多孔質膜用親水化剤
本発明の疎水性多孔質膜用親水化剤は、低起泡性の界面活性剤、任意の溶媒、 及び任意の添加剤を含む。
(1-1)界面活性剤
本発明の界面活性剤は、低起泡性を有する。起泡性は、ロス マイルス法 Ciis κ
3362)に従って測定することができる。例えば、 0. 1質量%の界面活性剤水溶液 を用い、 25°Cにおいて JIS K 3362記載の起泡力測定装置に準拠した装置を用い て起泡させた場合の起泡直後の泡高さ、及び起泡から 5分経過後の泡高さをロス マイルス法 JIS K 3362)に従って測定する。ここで、ロス—マイルス法は、内径 50 mmのガラス円筒に入れた 50mlの界面活性剤水溶液上に 90cmの高さから 200ml の界面活性剤水溶液を 30秒間滴下し、滴下直後及び一定時間後の泡の高さ(mm) を測定するものである。本発明の界面活性剤は、上記ロス—マイルス法による起泡直 後の泡高さ力 Omm以下、好ましくは、 30mm以下、より好ましくは、 20mm以下であ ることが適当である。 40mm以下であれば、界面活性剤による発泡を低く押さえること ができるので好ましい。
[0010] また、本発明の界面活性剤は、上記ロス—マイルス法 (JIS K 3362)において、 起泡から 5分経過後の泡高さが、 20mm以下、好ましくは、 15mm以下、より好ましく は、 0〜: 10mmであることが適当である。 20mm以下であれば、界面活性剤による発 泡を低く押さえることができるので好ましい。
本発明で用いる界面活性剤は、その 0. 1質量%水溶液の静的表面張力(室温)が 、 29mN/m以下であるのが好ましレ、。より好ましくは、 28mN/m以下であり、さらに 好ましくは、 20〜28mNZmの範囲である。ここで、静的表面張力は、 JIS ウィルへ ノレミ (プレート)法 自動表面張力計 CBVP— Z (協和界面科学社 (製))によって測 定すること力 Sできる。静的表面張力が 30mN/m以下であれば、比較的短時間で疎 水性膜を親水化することができる傾向にあり好ましい。
また、本発明で用いる界面活性剤は、その 0. 1質量%水溶液の動的表面張力(室 温)が 50mN/m以下であるのが好ましレ、。より好ましくは 10〜50mN/m、さらに好 ましくは 25〜40mN/mの範囲である。動的表面張力は、例えば、バブルプレツシャ 一型動的表面張力計クルス BP— 2 (KRUSS社製)を用いて、 0. 1質量%水溶液に おける 1Hz及び 10Hzの時の値力も測定することができる。
[0011] 本発明において使用し得る界面活性剤としてはァニオン性界面活性剤、カチオン 性界面活性剤、両性界面活性剤およびノニオン性界面活性剤から選択できる。発泡 •起泡の少ないという観点からは、ノニオン性界面活性剤が特に好ましい。
ノニオン性界面活性剤の具体例として、アセチレングリコール系界面活性剤、ァセ チレンアルコール系界面活性剤、ポリオキシエチレンノニルフエニルエーテル、ポリオ キシエチレンォクチルフエニルエーテル、ポリオキシエチレンドデシルフェニルエーテ ノレ、ポリオキシエチレンアルキルァリルエーテル、ポリオキシエチレンォレイルエーテ ノレ、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンアルキルエーテル、ポリ ォキシアルキレンアルキルエーテルなどのエーテル系、ポリオキシエチレンォレイン 酸、ポリオキシエチレンォレイン酸エステル、ポリオキシエチレンジステアリン酸エステ ノレ、ソノレビタンラウレート、ソノレビタンモノステアレート、ソノレビタンモノォレエート、ソノレ ビタンセスキォレート、ポリオキシエチレンモノォレエート、ポリオキシエチレンステアレ ート等のエステル系、ジメチルポリシロキサン等のシリコン系界面活性剤、その他フッ 素アルキルエステル、パーフルォロアルキルカルボン酸塩等の含フッ素系界面活性 剤等が挙げられる。
[0012] 上記ノニオン性界面活性剤の中でも特にアセチレングリコール系界面活性剤が、 優れた濡れ性、浸透性、消泡性を有するので好ましい。力 Pえてアセチレングリコール 系界面活性剤は、比較的安定な物質であり長期にわたる膜保管時においても生物 による腐敗を受けないなどの特徴を有する。アセチレングリコール系界面活性剤は、 特に動的表面張力が低いなど浸透性が高いなどの特徴を有している。そのため、比 較的膜厚の厚い中空糸膜の親水化処理に好適に用レ、ることが可能で処理時間を短 くするなどの効果を有する。
アセチレンアルコール系界面活性剤の具体例としては、 2, 4, 7, 9—テトラメチル _ 5—デシン一 4, 7—ジオール、 3, 6—ジメチル _4—ォクチン一 3, 6—ジオール、 3, 5—ジメチル _ 1—へキシン _ 3オール、 2, 5, 8, 11—テトラメチル _6—ドデシ ン一 5, 8—ジオール、及び、それらのエトキシル化体等を挙げることができる。
これらは必要に応じて 1種以上を適宜選択して使用することができる力 中でも、上記 エトキシル化体において、エチレンオキサイド付加モル総数が 2〜30モルの範囲で あるものが好ましい。より好ましくは、 4〜: 12モルの範囲である。エチレンオキサイドの 付加モル総数を 30モル以下とすることによって、静的及び動的表面張力が低下し、 親水化剤として好適に使用することができる。
アセチレングリコール系界面活性剤及びそのエトキシルイ匕体は、市販品で入手も可 能であり、例えば、エアープロダクツ社のサーフィノール 104、 82、 465、 485、 TGや 日信化学社製のオルフイン STG、オルフイン E1010、オルフイン EXP4036、オルフ イン PD— 001等が挙げられる。
例えば、アセチレングリコール系界面活性剤の 1種 オノレフイン EXP4036 (日信化 学工業 (株)製 )は、0. lwt%で静的表面張力 30mN/m以下を示す。オルフイン PD— ΟΟΙ ·オルフイン STG (共に日信化学工業 (株)製)も同様に 0. lwt%で静的 表面張力 30mNZm以下を示す。このようにアセチレングリコール系界面活性剤は、 極めて低濃度で良好な親水性を発現させることが可能である。
(ト 2)溶媒
本発明の界面活性剤を溶解する溶媒としては、水、生理食塩水のような電解質を 含む水溶液、エタノール、メタノールなどの炭素数 1〜4、好ましくは、炭素数:!〜 2の 低級アルコール類、ピリジン、クロ口ホルム、シクロへキサン、ェチルアセテートもしく は、トルエン、またはこれらの混合溶媒を用いることができる。特に親水化処理を行う 素材への影響や、溶媒の後処理、安全性、またはコストなどの面から水を用いること 力 り好ましい。特に、使用される水は、通常の水道水やイオン交換水を孔径 0. 01 〜1 μ mの中空糸膜で濾過したものが好ましい。
[0014] (1-3)添加剤
本発明の疎水性多孔質膜用親水化剤には、更に任意の添加剤を加えることができ る。使用し得る添加剤としては、上記以外の界面活性剤、グリセリン、などが挙げられ る。
例えば、本発明で使用する界面活性剤の水への溶解性の向上を目的として、ェチ レンオキサイドあるいはプロピレンオキサイド或いはその混合物、またはそのブロック 共重合体からなるポリマー (例:エバン 750、第一工業製薬社製)を使用することがで きる。
これらは、本発明の親水化剤の特性を損なわない範囲で使用することができ、例え ば、親水化剤全体に対して、 5〜90質量%、より好ましくは、 5〜50質量%の範囲で 使用すること力 Sできる。さらに、本発明の親水化剤の特性を損なわない範囲で、純水 や水溶性有機溶剤を使用することができ、例えば、親水化剤全体に対して、 25質量 %以下、より好ましくは、 10〜20質量%の範囲で使用することができる。
[0015] (1-4)疎水性多孔質膜親水化剤の調製
本発明の疎水性多孔質膜親水化剤は、上記界面活性剤そのまま、あるいは、上記 界面活性剤及び任意の添加剤を溶媒に溶解することによって調製される。界面活性 剤の溶解方法としては、プロペラ式攪拌機などの公知の混合調製方法によって混合 する方法が挙げられる。また、常温にて固体の成分については、必要により加温して 混合することが可能である。
本発明の疎水性多孔質膜親水化剤は、上記の界面活性剤を疎水性多孔質膜親 水化剤全体に対して、 0. 05〜5質量%、好ましくは、 0. 05〜:!質量%の範囲で含 有するのが好ましい。界面活性剤を 0. 05質量%以上とすることによって、親水化剤 として優れた特性を付与できる傾向にある。また、界面活性剤を 5質量%以下とする ことによって、膜からの溶出量が減少し、 CODを低減させることができる傾向にある。 [0016] (2)膜モジュール
本発明の疎水性多孔質膜用親水化剤は、膜モジュール中の疎水性多孔質膜を親 水化するために使用される。膜モジュールは、平膜型、円筒型、プリーツ型、中空糸 型など、種々のモジュールを使用することができる。
(2-1)膜モジュールの構造
膜モジュールは、本体、入口、出口及び多孔質膜を有する。具体的には、膜モジュ ール本体に入口と出口が設けられ、本体の内部に多孔質膜が設けられている。入口 と出口は、本体の両端部に設けられていてもよく (直線状両端口型)、また、入口と出 口のいずれか一方が、大きく開口していてもよい (直線状片側開口型)。多孔質膜は、 本体を、入口を有する第 1室と、出口を有する第 2室とに分割するように本体内部に 連結されている。連結は、多孔質膜の端部を本体内壁に接着あるいは封着するか、 多孔質膜の端部を本体内壁に脱着可能に接続しているものを含む。従って、本発明 の膜モジュールは、入口から導入された液体及び気体が、本体に入り、多孔質膜を 常に通過して、出口から排出される構造を有している。
なお、本発明の膜モジュールの入口、出口及び本体は、ステンレス、鋼などの金属 、フッ素樹脂、 ABS樹脂、ポリオレフイン樹脂、塩ィヒビニール樹脂等の樹脂から作ら れていてもよい。
[0017] (2-2)疎水性多孔質膜
本発明の疎水性多孔質膜は、疎水性を有する多孔質膜であれば、いかなる多孔質 膜も使用することができる。本発明の疎水性多孔質膜の形状としては、例えば、平膜 、中空紫膜、チューブラー膜、スパイラル膜が挙げられる。また、本発明の疎水性多 孔質膜は、精密ろ過膜 (MF)、限外濾過膜 (UF)、及びナノろ過膜 (NF)等の分離 膜であってもよい。
本発明の疎水性多孔質膜は、例えばセルロース系'ポリオレフイン系'ポリビニール アルコール系.ポリスルフォン系.ポリアクリロニトリル系、フッ素系樹脂など分離膜の 形状に成形可能なものであれば各種材料から形成することが使用できる。例えば、ポ リエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ四フッ化工チレン、及びポリス ルホン等が挙げられる。特に疎水性多孔質膜の表面特性として、疎水性の強い樹脂 を用いることが好適であり、特に好ましくは、フッ素系樹脂である。フッ素系樹脂の中 でも、膜への賦形性と耐薬品性などからフッ化ビニリデリン樹脂を用いることがより好 ましレ、。ここでフッ化ビニリデリン樹脂としては、フッ化ビニリデリンのホモポリマーの他 、フッ化ビニリデリンと、フッ化ビニリデリンと共重合可能な単量体との共重合体が挙 げられる。上記共重合可能な単量体としては、例えばフッ化ビュル、四フッ化工チレ ン、三フッ化工チレン、へキサフルォロプロピレンなどがある。
[0018] 本発明の疎水性多孔質膜は、複数の細孔を有する。細孔は、疎水性多孔質膜の 表面及び裏面を貫通する連続孔であることが好ましい。細孔の孔径は、 目的によって 任意に選択できる力 例えば、 0. 01〜5 x m、好ましくは、 0. 1〜: L mであること力 S 適当である。また、本発明の疎水性多孔質膜は、疎水性多孔質膜の一方の表面の 孔径が小さぐ他方の表面の孔径が大きい、非対称構造であることが好ましい。非対 称構造の場合、一方の表面の孔径が、他方の表面の孔径の 1倍より大きく 100倍以 下、好ましくは、 2倍〜 10倍であることが適当である。
また、疎水性多孔質膜が中空糸膜である場合、中空糸の外径は、例えば、 0. 1〜: 10 mm、好ましくは、 0. 5〜5mmであることが適当である。 本発明の疎水性多孔質膜 は、純水に対する透液性能を示す純水透過係数が、 10〜250m3/m2/hr/MPa 、好ましくは、 20〜: 150m3/m2/hr/MPaであることが適当である。なお、純水透 過係数は、以下の式より求めることができる。
純水透過係数 = [純水透過量 (m3) ] / [多孔質膜の表面積 (m2) ] / [透過時間 (hr) ]/ [純水の圧力(MPa) ]
[0019] (3)疎水性多孔質膜の親水化方法
通常、疎水性多孔質膜は、初めてこの多孔質膜を使用する場合、膜交換をする場 合、膜を薬品で洗浄する場合、膜を長期間使用しない場合等、膜表面が空気に触れ て乾燥した状態となる場合がある。この場合、再び処理されるべき液体 (被処理液)等 に浸漬して被処理液をろ過しょうとしても、透液性能が悪化し、本来の分離膜として の機能を発揮することができなくなる。従って、疎水性多孔質膜の細孔を一旦親水化 した上で被処理液を通すことによって、向上した透液性能と、良好な膜の耐汚染性を 両立することができる。なお、親水化剤は、疎水性多孔質膜に液体を通すことによつ て速やかに除去されることが、処理された液体を廃液として回収する非効率性を排除 する点、早期に疎水性多孔質膜を使用できる点などから好ましい。
[0020] ここで、疎水性多孔質膜の親水化は、疎水性多孔質膜と、上記疎水性多孔質膜用 親水化剤とを接触させることを含む。以下、膜モジュール内の疎水性多孔質膜の親 水化を例にとって説明する。
膜モジュールにおける本発明の疎水性多孔質膜を用いた親水化処理は、疎水性 多孔質膜の出口を有する第 2室に面する側から上記疎水性多孔質膜用親水化剤を 注入することによって行われる。出口が 2力所以上ある場合は、(a)すべての出口か ら疎水性多孔質膜用親水化剤を注入してもよぐまた、(b)少なくとも 1つ以上の出口 力 疎水性多孔質膜用親水化剤を注入し、残りの出口から残余の疎水性多孔質膜 用親水化剤を排出してもよい。
(a)すべての出口から疎水性多孔質膜用親水化剤を注入する場合、出口及び出口 を有する第 2室内に滞留している気体を疎水性多孔質膜用親水化剤によって入口を 有する第 1室に押し出す。これにより、疎水性多孔質膜は第 2室側から第 1室側に向 かって序々に親水化される。
(b) 少なくとも 1つ以上の出口から疎水性多孔質膜用親水化剤を注入し、残りの出 口から残余の疎水性多孔質膜用親水化剤を排出する場合、出口及び出口を有する 第 2室内に滞留している気体を一方の出口から他方の出口へ、疎水性多孔質膜用 親水化剤によって押し出すことができる。
[0021] 特に中空糸膜モジュールでは、構造が複雑で気泡の滞留が生じやすい。
処理水槽内に設置した膜モジュールの入口及び出口のすべてが、当該水槽の水 面より上部にあって空気などの対流部を生じにくいような構造を有する場合には、出 口力、ら親水化剤をポンプなどで所定圧力'所定流量で押し込むことで膜モジュール 内部の気泡が抜け、膜モジュール全体を親水化剤で満たすことが出来る。
しかし、処理水槽及内に設置している膜モジュールの集水部の少なくとも一箇所が 膜モジュールの下部にある場合には、膜モジュールの当該下部にある集水部からポ ンプなどにより親水化液を押し込み、膜モジュールの上部に存在する集水部から配 管内および膜モジュール内に残留している気体を押し出し、気泡を親水化剤で置き 換えて膜モジュール全体を親水化剤で満たす手法を取ることが、好ましレ、。
[0022] なお、上記(a)及び (b)のいずれによっても良好な親水化処理を施すことが可能で あるが、親水化を実施する際の膜モジュール出口に設けられる配管を簡易的な構造 にできるという観点から、 (a)のすベての出口から疎水性多孔質膜用親水化剤を注 入するのが好ましい。
このとき、本発明の疎水性多孔質膜用親水化剤の通液量は、界面活性剤の濃度が 0. 3質量%である場合、例えば、膜面積 lm2当り 0. 5〜5リットル、好ましくは、 2〜3 リットルの範囲が適当である。通液量が膜面積 lm2当り 0. 5リットル以上であれば、膜 の親水化の効果が十分に期待できる。また、膜面積 lm2当り通液量が 5リットル以下 であれば、膜分離槽内に余計な負荷を与えることもない。
疎水性多孔質膜用親水化剤の注入速度は、例えば、単位膜面積当り 0. 005〜3 m3/m2'D、好ましくは、 0. 01〜0. 3m3Zm2'Dの範囲である。注入速度が 3m3/ m2' D以下であれば、膜面全体が均一に親水化でき、 0. 005m3/m2'D以上であ れば、親水化処理を速やかに行うことができる。
[0023] 疎水性多孔質膜への疎水性多孔質膜用親水化剤の付着率は、例えば、 0. 01〜1 . 0質量%、好ましくは、 0. 05-0. 5質量%であることが適当である。ここで付着率と は、親水化処理する前の疎水性多孔質膜の質量 (W ) (g)と、親水化処理を施し、さ
0
らに乾燥した後の疎水性多孔質膜の質量 (w ) (g)とを測定し、以下の式;
1
付着率(%) = [ ^ (g) -W (g) ) /W (g) ] X 100
1 0 0
によって求めることができる。付着率が 0. 01質量%以上であれば、良好な親水性発 現し、 1. 0質量%以下であれば、余分な疎水性多孔質膜用親水化剤を膜モジユー ル内に内包することもないので好ましい。
親水化の際の本発明の疎水性多孔質膜用親水化剤の温度は、例えば、 10〜50 °C、好ましくは 20〜30°Cであることが適当である。 10°C以上であれば、親水化速度 が低下することもなぐ十分に親水化処理が行われて透液性能を向上させることがで きる。また、 50°C以下であれば、熱収縮及び親水化剤の熱劣化によって透液性能が 低下したりすることもない。また、疎水性多孔質膜用親水化剤の浸漬時間は、疎水性 多孔質膜用親水化剤を注入した後すぐに親水化剤を回収してもよいが、少なくとも 3 0秒以上、 10〜120分、好ましくは、 30〜90分間、疎水性多孔質膜用親水化剤を疎 水性多孔質膜に静置して浸漬することが、親水化を完全ならしめ、透液性能を向上 するためにも好ましい。
[0024] 膜モジュール内に滞留している本発明の疎水性多孔質膜用親水化剤は、親水化 処理後、膜モジュールを傾けるなどしてモジュール内に滞留した余分な親水化剤を 排出することによって、適宜回収することもできる。また、処理すべき液体や水を、入 口を有する第 1室側から出口を有する第 2室側へ通すことによって疎水性多孔質膜 用親水化剤を押し出すこともできる。これにより膜の親水化効率がより向上し、且つ、 回収のための労力を削減できるため好ましい。ここで使用する水は、純水や精製水 など、出口を有する第 2室側を汚染しない程度の清浄な水を使用することが好ましい 。より好ましくは、次亜塩素酸ナトリウム水溶液のような殺菌性のある液体であってもよ レ、。また、通常の水道水やイオン交換水を孔径 0. 0:!〜 l z mの中空糸膜で濾過し た水であってもよい。
[0025] さらに、図 1を参照しながら、本発明の疎水性多孔質膜の親水化方法をより詳細に 説明する。
図 1は、本発明の膜モジュールを含む膜分離装置の概略図である。ここでは、例え ば有機物を含む処理されるべき液体 (被処理液)の微生物及び分離膜処理のための 膜分離装置を例にとる。被処理液 (3)は、まず膜分離槽 (1)中に導入され、膜分離槽( 1)中で微生物処理される。ここで、有機物としては、タンパク質 ·アミノ酸 ·糖類 '脂質 あるいは、その他の生分解性を有する物質を含むことが通常であり、これらの有機物 であれば、微生物及び本発明の膜モジュールで有意に除去することができる。微生 物としては、活性汚泥などに含まれるもの或いは、有用物質を生産するためのバイオ リアクター用のものを含めて用いることができる。また、微生物処理に際しては、散気 管 (4)から膜分離槽 (1)内に空気を送り込む。微生物処理された液体は、膜モジユー ル (2)内の疎水性多孔質膜 (図示せず)を通して処理され (処理済液)、配管 (5)を通り、 排出される。
[0026] 本発明の疎水性多孔質膜を親水化処理する場合、まず配管 (5)側から疎水性多孔 質膜用親水化剤を膜モジュール (2)内の疎水性多孔質膜 (図示せず)に導入する。膜 モジュール (2)に複数の出口がある場合、 1つの出口から余剰の疎水性多孔質膜用 親水化剤を膜分離槽 (1)に排出してもよい。その後、所定時間疎水性多孔質膜用親 水化剤を疎水性多孔質膜中に保持する。所定時間経過後、清澄な水を配管 (5)側か ら膜モジュール (2)内の疎水性多孔質膜 (図示せず)に導入して、水と疎水性多孔質 膜用親水化剤とを置換する。置換の際、散気装置 (4)から膜分離槽 (1)内に空気を送 り込んでもよレ、。これにより、親水化が行われ、かつ、親水化処理後の処理液の初流 中に含まれる疎水性多孔質膜用親水化剤の濃度を適宜下げることができる。
[0027] このように、処理済液側から起泡性の低レ、界面活性剤の水溶液である疎水性多孔 質膜用親水化剤を注入する本発明の親水化方法により、疎水性多孔質膜の少なくと も一部が乾燥して膜の透液性能 (膜フラックス)が低下した場合であっても、少ない親 水化剤使用量、労量、時間、費用で膜フラックスを回復させることができる。また、起 泡性の低い界面活性剤を使用するので、親水化処理の結果、膜分離槽 (1)内に界面 活性剤の一部が流入しても、その後散気管 (4)から気体をパブリングしても、界面活 性剤による発泡を最小限に抑えることができ、膜分離槽 (1)から泡や被処理液 (3)が漏 れ出すということもない。さらに、親水化処理後、少量の水を流せば疎水性多孔質膜 用親水化剤を置換することができるので、処理済液への疎水性多孔質膜用親水化 剤の混入を抑制して、円滑に膜分離装置を立ち上げることが可能である。カロえて、従 来のエタノールなどを使用する親水化法では、膜分離槽 (1)内にエタノールが流入し
、膜分離槽 (1)内の溶解性 CODを上昇する原因となり、円滑に膜分離装置を立ち上 げることが困難となっていたが、本発明の疎水性多孔質膜用親水化剤では、膜分離 槽 (1)内の溶解性 CODの上昇を抑えることができる。 CODの測定は、公知の方法を 使用することができるが、例えば、 JIS K0102に準拠した吸光度を測定することによ つて測定することができる。例えば、多孔質膜に単位面積当たり 0. 01m3/m2' Dの 注入速度となるように水を通した場合、 5日以内、好ましくは 4日以内に C〇Dの値が 親水化処理前の値となることが適当である。
[0028] (4)膜モジュールの検查'親水化方法
(4-1)膜モジュールの検查方法
通常、膜モジュールは、上述したように本体、入口、出口及び多孔質膜を有し、多 孔質膜は、本体を、入口を有する第 1室と、出口を有する第 2室とに分割するように本 体内部に連結されている。しかし、本体、入口、出口及び多孔質膜等の各部材自体 や、多孔質膜と本体内部との連結部分に欠陥 (例えば、穴、亀裂、不完全な連結、多 孔質膜の目詰まりなど)が存在すると、良好な膜モジュールとして機能しなくなる。従 つて、これらの欠陥を検查することが必要となる。
製品検査の代表的な方法の一つとして「バブルポイント法」という方法があげられる この方法は、もともと、孔径評価を目的に開発された方法であるが、その方法の簡便 さから、現在、精密濾過膜や限外濾過膜の完全性試験で多く用いられ、 JIS K383 2「精密濾過膜エレメントおよびモジュールのバブルポイント試験方法」にその方法が 規定されている。
本発明の膜モジュールの検查方法は、具体的には、
(1)膜モジュールを、本発明の疎水性多孔質膜用親水化剤に浸漬する工程、
(2)検査用気体を前記入口から導入し、前記疎水性多孔質膜を通して前記出口から 排出する工程;及び
(3)膜モジュールから排出される気泡を観察する工程、
力 構成される。
好ましくは、(2)工程は、
(i)出口の先を閉じた状態で、検査用気体を膜モジュールの入口から導入し、
(ii)検査用気体を徐々に加圧していき、
(m)加圧された検査用気体によって水が疎水性多孔質膜の細孔から押し出され、 (iv)検査用気体が、疎水性多孔質膜を通して当該膜力 排出される、
ことによって行われる。
もし、膜に損傷や大きな孔があいていたりすると、期待値よりもきわめて低い圧力に おいて空気が透過し始め、膜に欠陥があることを検知することができる。
ここで、膜モジュールを浸漬する疎水性多孔質膜用親水化剤は、上述した本発明 の低起泡性の界面活性剤及び任意の溶媒等を含むものである。膜モジュールは浸 漬後すぐに検査用気体を導入してもよいが、所定時間膜モジュールを浸漬したままと することが親水化を完全ならしめるためにも好ましい。膜モジュールの浸漬時間は、 例えば 30秒〜 30分、好ましくは 5〜20分とすることが適当である。
検査用気体としては、空気、窒素、アルゴン等の不活性気体等を使用することがで きる。検查用気体は、 JIS K3832「精密濾過膜エレメントおよびモジュールのバブル ポイント試験方法」に従うと 5kPa以上 IMPa以下の範囲で目標とする圧力まで徐々 にかけて検查を行う。特にポッティング部分の欠陥などの工程上の大きな部位を見つ ける場合などは比較的低圧で見出すことが出来るので、 10〜100KPa程度の範囲 で加圧してもよい。
膜モジュールに導入された検查用気体は、出口から排出されるが、出口の端部を 閉じて、入口、出口、本体等の接続部分の欠陥検查を行ってもよい。膜モジュールに 検査用気体を導入し、膜モジュール全体、入口、出口、本体から放出され得る気泡、 各部材の接続部分から放出され得る気泡、疎水性多孔質膜及びこれと本体との接続 部分から放出され得る気泡を、 目視にて観察する。
また表面張力の低い液体を用いると、純水での測定圧力よりも低い値で同様な欠 陥部位の検出が可能となるので膜モジュールへの圧力負荷履歴を残さない形での 検査が可能となるなどの付帯的な効果も上げられる。
[0030] このように、本発明の疎水性多孔質膜用親水化剤中で欠陥検査を行うことにより、 検査用気体の通気による疎水性多孔質膜の乾燥 ·疎水化、及び疎水化に伴う透液 性能の低下を抑制することができる。検査用気体を通気させても、本発明の疎水性 多孔質膜用親水化剤と接触することよって疎水性多孔質膜は自発的に水に濡れるよ うになるからである。また、本発明のような低起泡性の界面活性剤を使用することによ り、欠陥部分力 生じた泡が水面に滞留し欠陥箇所を見つけることが困難になること もなレ、。つまり低起泡性の界面活性剤を用いることで膜モジュール内部から検查用 加圧気体を導入しても膜モジュールを浸漬した溶液が発泡することはなぐまたわず 力、に発泡してもすぐに消泡するので連続的に検查を実施することが可能となる。 さらにグリセリン 'ポリエチレングリコール 'アルコールなどの親水化剤を用いた場合 に生ずる溶剤保管等の問題も回避できる。
[0031] (4-2)膜モジュールの検查 '親水化方法 上記気泡を観察して欠陥検査を行つた後、さらに以下の工程;
(4)前記膜モジュールを乾燥する工程、
を行って、膜モジュールの親水化処理を行ってもよい。親水化処理は、主に、上記 (1 )工程の膜モジュールを本発明の疎水性多孔質膜用親水化剤に浸漬することによつ て行われる力 その後に上記 (4)工程において乾燥することによって、疎水性多孔質 膜の表面が親水化された、乾燥状態のまま製品として流通させることができ、使用時 には更に親水化処理を行うことなく高い透液性能を持って被処理液を通過さることが でき、かつ、廃液として回収される処理済液の初流をできる限り少なくした膜モジユー ル製品を提供することができる。また、本発明の疎水性多孔質膜用親水化剤は、低 起泡性を有するので、このように上記欠陥検査と親水化処理を同時に行うことができ る。
この、欠陥検查後の乾燥温度は、例えば、 20〜: 120°C、好ましくは 30〜60°Cの範 囲内である。乾燥温度が 20°C以上であれば十分に高い透液性能を付与することが でき、また、 120°C以下であれば、疎水性多孔質膜の熱収縮及び本発明の疎水性 多孔質膜用親水化剤の熱劣化による透液性能の低下も抑えることができる。
実施例
[実施例 1]
本発明の疎水性多孔質膜用親水化剤として、アセチレングリコール系界面活性剤 ( オノレフイン EXP4036 (日信化学工業 (株)製) 0. 3質量%を含む水溶液 (静的表面 張力 25. 8mNZm、 0. 1質量%水溶液の静的表面張力に換算すると 27. lmN/ m)を使用した。
[比較例 1]
親水化剤として、 40質量%グリセリン水溶液 (EtOHを 15質量%含む)を使用した [比較例 2]
親水化剤として、高級アルコール系エーテル型非イオン性界面活性剤 エマルゲ ン LS— 106 1. 0質量%水溶液(花王 (株)製 :表面張力 29. 5mN/m)を使用し [比較例 3]
親水化剤として、エタノール (和光純薬 1級試薬 99. 5%)の 30%水溶液を使用した
[0033] [多孔質膜 1]
純水透過係数が、 1 OOmVmVhr/MPa,外径 2. 4mm、孔径 0. のフッ 化ビニリデリン樹脂製の中空糸膜 (三菱レイヨン (株)製)からなる膜を疎水性多孔質 膜として準備した。
[多孔質膜 2]
純水透過係数が、 30m3Zm2Zhr/MPa、外径 0. 54mm,孔径 0. のポリ エチレン樹脂製の中空糸膜 (三菱レイヨン (株)製)からなる膜を疎水性多孔質膜とし て準備した。
[膜モジュール]
上記多孔質膜 1を複数本束ね、膜面積 4. 4m2を有する膜モジュールを作製した。
[0034] (1)起泡性試験
実施例 1の疎水性多孔質膜用親水化剤をロス マイルス法により起泡性の試験を 行った。試験は、 JIS K 3362に沿って行った。実施例 1の疎水性多孔質膜用親水 化剤の水溶液に更に水を加えて 0. 1質量%水溶液とした。その後、 25°Cにおいて、 起泡直後及び起泡から 5分後の泡高さを測定した。
また、比較例 2の界面活性剤を、上記と同様にロス マイルス法により起泡性の試 験を行った。
結果を以下の表 1に示す。
[表 1]
Figure imgf000020_0001
[0035] (2)欠陥検查
[検査 1] 多孔質膜 1を実施例 1の疎水性多孔質膜用親水化剤に 10分間浸漬し、そ の後膜モジュールの入口力 加圧空気 (50kPa)を導入し、出口及び入口を塞レ、で密 封した。膜モジュールの欠陥部分から起泡が発生したが、生じた泡はすぐに消失した ため、欠陥点を見つける上で障害とならず、欠品検査の継続が容易だった。
[検査 2] 多孔質膜 1の代わりに多孔質膜 2を使用する以外は、検査 1と同様に膜モ ジュールを検査した。膜モジュールの欠陥部分から起泡が発生した力 生じた泡は すぐに消失したため、欠陥点を見つける上で障害とならず、欠品検査の継続が容易 にった。
[比較検査 1]実施例 1の疎水性多孔質膜用親水化剤に 10分間浸漬するかわりに、 比較例 2の界面活性剤に 30分間浸漬する以外は、検查 1と同様に膜モジュールを検 查した。膜モジュールの欠陥部分から発生した泡は、水面で発泡し、この泡は水面 上に残存してなかなか消えなかった。従って、欠陥検查は困難であった。
[0036] (3)親水性及び COD試験
[試験 1] 欠陥のない多孔質膜 1を実施例 1の疎水性多孔質膜用親水化剤に 10分 間浸漬し、親水化処理を施した。その後、多孔質膜 1を 50°Cで 4時間乾燥し、水中に おいて純水透過係数を測定した。なお、純水透過係数は、下式;
純水透過係数 = [純水透過量 (m3)]/ [多孔質膜の表面積 (m2)]/ [透過時間 (hr)]/[ 純水の圧力 (MPa)]
から求めた。
また、疎水性多孔質膜からの疎水性多孔質膜用親水化剤の溶出量を測定するた めに、膜モジュールに通水圧力 0. IMPaで通水し、通水開始 30分後に膜濾過水中 の COD 値を求めた。本発明における COD の測定には、 JIS法 CJIS K0102)に
Mn Mn
準拠した吸光度式の C〇D 測定セット(セントラル科学 (株)製)を使用した。
Mn
[0037] [試験 2] 欠陥のない多孔質膜 2を実施例 1の疎水性多孔質膜用親水化剤に 10分 間浸漬し、親水化処理を施した。その後、多孔質膜 1を試験 1と同様に 50°Cで 4時間 乾燥し、水中におレ、て純水透過係数を測定した。
[比較試験 1] 親水化処理を行っていない、欠陥のない多孔質膜 1を 50°Cで 4時間 乾燥した。その後、水中において純水透過係数を測定した。
[比較試験 2] 欠陥のない多孔質膜 1を比較例 1の 40質量%グリセリン水溶液に 10 秒間浸潰し、親水化処理を施した。その後、多孔質膜 1を試験 1と同様に 50°Cで 4時 間乾燥し、水中において純水透過係数を測定した。また、膜モジュールへの通水圧 力 0. IMPa '通水開始 30分後の COD 値を測定した。
Mn
[比較試験 3] 欠陥のない多孔質膜 1を比較例 2の界面活性剤水溶液に 10分間浸 漬し、親水化処理を施した。その後、多孔質膜 1を試験 1と同様に 50°Cで 4時間乾燥 し、水中におレ、て純水透過係数を測定した。
[0038] これらの結果を以下の表 2に示す。
[表 2]
Figure imgf000022_0001
試験 1及び比較試験 2は、エタノール (30%水溶液)によって同様に親水化 '水置換し た場合と同程度の純水透過係数を示していた。しかし、比較試験 2は、グリセリンの溶 出量が多い結果となった。
[0039] (4)膜分離装置における疎水性多孔質膜の親水化試験
[試験 3]
0. 7m3の膜分離槽 (1)を持つ膜分離装置の膜分離槽 (1)内に被処理液 (3)として、 凝集沈殿などの前処理後の一般生活排水を満たした。膜分離槽 (1)内に微生物とし て、活性汚泥を加えた。
膜分離槽(1)内に膜モジュール (2)を浸漬 '設置し、配管(5)から膜モジュール (2) に実施例 1の疎水性多孔質膜用親水化剤を、膜面積 lm2あたり 2リットルの量で、単 位膜面積あたり 0. 01m3/m2 ' Dの注入速度となるように注入した。注入終了後、 60 分間静置し親水化処理を行った。配管(5)から膜モジュール(2)に、中空糸膜 (孔径 : 0. l z m)でろ過した水を、膜面積 lm2あたり 2リットルの量で、単位膜面積あたり 0. 01m3/m2' Dの注入速度となるように注入して実施例 1の疎水性多孔質膜用親水 化剤を膜分離槽(1)内に押し出した。親水化処理後、ただちに散気管 (4)から空気 を曝気するとともに配管(5)から処理済液を排出して膜分離装置の運転を開始した。 その後 1週間、疎水性多孔質膜の純水透過係数と処理済液の COD 値の測定を行
Mn
つた。
結果を以下の表 3に示す。
[表 3]
Figure imgf000023_0001
親水化処理後の 1週間に亘つて、純水透過係数が急激に減少することはなぐ親水 化処理が十分に施されていることを確認した。また、散気管(4)からの空気の曝気に より、被処理液(3)が発泡し、泡及び被処理液(3)が膜分離槽(1)から溢れることもな ぐ親水化処理直後から円滑に運転をおこなうことが可能であった。
処理済液の C〇D 値は、親水化処理前と比較して 15分後の初流において 4mg
Mn
/リットル程度の上昇がみられた力 運転開始から 24時間経過後には親水化処理前 と同レベルまで COD 値は低下した。
Mn
[比較試験 4]
配管 (5)から膜モジュール (2)に比較例 1の 40質量%グリセリン水溶液を使用した以 外は、試験 3と同様にして、疎水性多孔質膜の純水透過係数と処理済液の COD
Mn 値の測定を行った。
結果を以下の表 4に示す。
[表 4] 比較試験 4 純水透過係数 C O D^値(mg/リットル)
(mViiiVhr/ Pa) )
親水化処理前 1 0 0 1 1
0分後 9 8 1 5 7 0 0
1時間 1 0 0 2 2 0 0
2 4時間後 9 9 4 5 0
2曰後 1 0 0 1 2 0
3日後 9 7 7 0
4日後 1 0 0 3 5
5日後 1 0 0 1 8
6日後 1 0 0 1 2 . 5
7日後 9 7 1 1 . 0 処理済液の COD 値は、親水化処理前と比較して 1時間後の初流において 2189
Mn
mg/リットル程度の上昇がみられた。初流を含めて運転開始時の処理済液は廃液と せざるを得なかった。運転開始から 24時間経過後においても親水化処理前よりも高 濃度を示し、およそ 5日後に投入以前のレベルまで COD 値は低下した。
Mn
[比較試験 5]
配管(5)から膜モジュール(2)に比較例 3のエタノール水溶液を使用した以外は、 試験 3と同様にして、疎水性多孔質膜の純水透過係数と処理済液の C〇D 値の測
Mn 定を行った。
結果を以下の表 5に示す。
[表 5]
Figure imgf000024_0001
親水化処理後の 1週間において、純水透過係数が急激に減少することはなぐ親 水化処理が十分に施されていることを確認した。また、散気管 (4)からの空気の曝気 により、被処理液 (3)がわずかに発泡したが、泡及び被処理液 (3)が膜分離槽 (1)から 溢れることもなぐ親水化処理直後から円滑に運転をおこなうことが可能であった。 処理済液の COD 値は、親水化処理前と比較して 0分後の初流において 1830m
Mn
g/リットル程度の上昇がみられたため、処理済液は廃液とせざるを得なかった。エタ ノールが生分解されるまで約 1日を要し、親水化処理後すみやかに装置を立ち上げ ることができな力 た。

Claims

請求の範囲
[1] 界面活性剤を含み、該界面活性剤が、ロス—マイルス法 tilS K 3362)に従って 、 25°Cにおける 0. 1質量%の前記界面活性剤水溶液を用いて測定した起泡直後の 泡高さが 40mm以下である起泡性を有することを特徴とする、疎水性多孔質膜用親 水化剤。
[2] 前記界面活性剤力 ロス—マイルス法 CFIS K 3362)に従って、 25°Cにおける 0 . 1質量%の前記界面活性剤水溶液を用いて測定した起泡から 5分経過後の泡高さ が 20mm以下である起泡性を有する、請求項 1に記載の疎水性多孔質膜用親水化 剤。
[3] 前記界面活性剤が、 0. 1質量%の前記界面活性剤水溶液を用いた場合、 30mN /m以下の静的表面張力を有する、請求項 1又は 2に記載の疎水性多孔質膜用親 水化剤。
[4] 前記界面活性剤が、アセチレングリコール、該アセチレングリコールのエトキシル化 物又はこれらの混合物である、請求項:!〜 3のいずれか 1項に記載の疎水性多孔質 膜用親水化剤。
[5] 疎水性多孔質膜と、請求項:!〜 4のいずれか 1項に記載の疎水性多孔質膜用親水 化剤とを接触させることを含む、疎水性多孔質膜の親水化方法。
[6] 更に、請求項:!〜 4のいずれか 1項に記載の疎水性多孔質膜用親水化剤と接触し た前記疎水性多孔質膜を乾燥することを含む、請求項 5に記載の疎水性多孔質膜 の親水化方法。
[7] 本体と、該本体に設けられた入口及び出口と、前記本体内に設けられた疎水性多 孔質膜とを有する膜モジュールの検查方法であって、以下の工程:
(1)前記膜モジュールを、請求項 1〜4のいずれ力、 1項に記載の疎水性多孔質膜用 親水化剤に浸漬する工程;
(2)検査用気体を前記入口から導入し、前記疎水性多孔質膜を通して前記出口から 排出する工程;及び
(3)前記膜モジュールから排出される気泡を観察する工程、
を含む、膜モジュールの検査方法。 本体と、該本体に設けられた入口及び出口と、前記本体内に設けられた疎水性多 孔質膜とを有する膜モジュールの検査 ·親水化方法であって、以下の工程:
(1)前記膜モジュールを、請求項 1〜4のいずれ力 1項に記載の疎水性多孔質膜用 親水化剤に浸漬する工程;
(2)検査用気体を前記入口から導入し、前記疎水性多孔質膜を通して前記出口力 排出する工程;
(3)前記膜モジュールから排出される気泡を観察する工程;及び
(4)前記膜モジュールを乾燥する工程、
を含む、前記膜モジュールの検查 '親水化方法。
PCT/JP2005/020518 2004-11-10 2005-11-09 疎水性多孔質膜用親水化剤、これを用いた疎水性多孔質膜の親水化方法及び検査方法 WO2006051807A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP05806224.1A EP1839729B8 (en) 2004-11-10 2005-11-09 Use of a hydrophilizing agent for hydrophobic porous film and methods of hydrophilizing and inspecting hydrophobic porous film with the same
AT05806224T ATE548106T1 (de) 2004-11-10 2005-11-09 Verwendung eines hydrophilisierungsmittels für hydrophoben porösen film und verfahren zur hydrophilisierung und inspektion eines hydrophoben porösen films damit
CN2005800384123A CN101056694B (zh) 2004-11-10 2005-11-09 疏水性多孔膜用亲水化剂、使用该亲水化剂的疏水性多孔膜的亲水化方法及检测方法
US11/798,004 US7882962B2 (en) 2004-11-10 2007-05-09 Hydrophilizing agent for hydrophobic porous membrane, and method for hydrophilizing hydrophobic porous membrane and test method using this agent
HK08101963.3A HK1108135A1 (en) 2004-11-10 2008-02-22 Hydrophilizing agent for hydrophobic porous membrane, and method for hydrophilizing hydrophobic porous membrane and test method using this agent
US12/982,246 US20110095223A1 (en) 2004-11-10 2010-12-30 Hydrophilizing agent for hydrophobic porous membrane, and method for hydrophilizing hydrophobic porous membrane and test method using this agent
US13/412,756 US20120160765A1 (en) 2004-11-10 2012-03-06 Hydrophilizing agent for hydrophobic porous membrane, and method for hydrophilizing hydrophobic porous membrane and test method using this agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004326725A JP4739730B2 (ja) 2004-11-10 2004-11-10 疎水性多孔質膜用親水化剤、これを用いた疎水性多孔質膜の親水化方法及び検査方法
JP2004-326725 2004-11-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/798,004 Continuation US7882962B2 (en) 2004-11-10 2007-05-09 Hydrophilizing agent for hydrophobic porous membrane, and method for hydrophilizing hydrophobic porous membrane and test method using this agent

Publications (1)

Publication Number Publication Date
WO2006051807A1 true WO2006051807A1 (ja) 2006-05-18

Family

ID=36336484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020518 WO2006051807A1 (ja) 2004-11-10 2005-11-09 疎水性多孔質膜用親水化剤、これを用いた疎水性多孔質膜の親水化方法及び検査方法

Country Status (9)

Country Link
US (3) US7882962B2 (ja)
EP (1) EP1839729B8 (ja)
JP (1) JP4739730B2 (ja)
KR (1) KR100926612B1 (ja)
CN (1) CN101056694B (ja)
AT (1) ATE548106T1 (ja)
HK (1) HK1108135A1 (ja)
TW (2) TWI367911B (ja)
WO (1) WO2006051807A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8079574B2 (en) * 2007-05-16 2011-12-20 ZenPure Corp. Membrane based contactor module for mass and heat transfer
JP5526489B2 (ja) * 2008-03-31 2014-06-18 三菱レイヨン株式会社 脱気モジュール内の気泡除去方法
KR20090133100A (ko) * 2008-06-23 2009-12-31 (주)엘지하우시스 수처리막의 친수화 방법 및 수처리막
FR2935800B1 (fr) * 2008-09-09 2010-11-19 R & I Alliance Procede et dispositif de detection de fuites dans une conduite de liquide souterraine, notamment une conduite d'eau
JP2011110470A (ja) * 2009-11-25 2011-06-09 Fujifilm Corp 結晶性ポリマー微孔性膜及びその製造方法、並びに濾過用フィルタ
CN101858816B (zh) * 2010-05-20 2012-12-05 株洲湘火炬火花塞有限责任公司 一种12工位汽车水封气密性检测方法
JP5417279B2 (ja) * 2010-07-30 2014-02-12 株式会社東芝 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子用溶液
CN102935334B (zh) * 2012-11-02 2015-03-25 北京碧水源膜科技有限公司 一种用于mbr 膜材料耐污染性检测的测试液及其测试装置
US10285860B2 (en) 2012-11-02 2019-05-14 Optimedica Corporation Vacuum loss detection during laser eye surgery
US9987165B2 (en) * 2012-11-02 2018-06-05 Optimedica Corporation Liquid optical interface for laser eye surgery system
US20140263053A1 (en) * 2013-03-12 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. Filter System and Method
US9360758B2 (en) 2013-12-06 2016-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device process filter and method
US10807046B2 (en) * 2014-06-30 2020-10-20 3M Innovative Properties Company Asymmetric articles with a porous substrate and a polymeric coating extending into the substrate and methods of making the same
CN105983341B (zh) * 2015-02-12 2018-09-28 昆山精诚膜技术有限公司 超滤滤芯封胶工艺及采用该封胶工艺的超滤滤芯制造工艺
KR20170139677A (ko) * 2015-06-19 2017-12-19 미쯔비시 케미컬 주식회사 수 처리막, 수 처리막 엘리먼트와 그의 제조 방법, 및 지지층
JP6699302B2 (ja) * 2015-12-18 2020-05-27 三菱ケミカル株式会社 膜モジュールの洗浄方法
WO2018180211A1 (ja) * 2017-03-30 2018-10-04 日本碍子株式会社 ゼオライト膜構造体の製造方法
DE102018123023A1 (de) * 2018-09-19 2020-03-19 Tdk Electronics Ag Membran, Drucksensorsystem und Verfahren zur Herstellung des Drucksensorsystems
CN111394735A (zh) * 2020-04-10 2020-07-10 高瑞安 一种铝型材喷涂前处理液及喷涂前处理方法
CN112774455A (zh) * 2020-12-18 2021-05-11 武汉艾科滤膜技术有限公司 一种柱式中空纤维超滤膜组件干态检漏方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896633A (ja) 1981-12-04 1983-06-08 Mitsubishi Rayon Co Ltd 疎水性膜の親水化方法
JPS63277251A (ja) * 1987-05-08 1988-11-15 Fuji Photo Film Co Ltd 微孔性膜の製造方法
JPH01119310A (ja) 1987-11-02 1989-05-11 Mitsubishi Rayon Co Ltd 疎水性多孔質中空糸膜の親水化法
JPH04118033A (ja) * 1990-05-15 1992-04-20 Material Eng Tech Lab Inc 親水性膜とその製造方法並びにこの膜を用いた濾過装置
JPH0820663A (ja) * 1994-07-05 1996-01-23 Ube Ind Ltd 親水性ポリオレフィン多孔質フイルム及びその製法
US20030226473A1 (en) 2002-02-18 2003-12-11 Seiko Epson Corporation Ink set having broad-range dark part color reproduction ability, and recording method and recorded article

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2997447A (en) * 1954-02-08 1961-08-22 Air Reduction Aqueous acetylenic glycol compositions
US4153545A (en) * 1977-08-18 1979-05-08 Ppg Industries, Inc. Method for cleaning membrane filter
JPS5656202A (en) * 1979-10-15 1981-05-18 Asahi Chem Ind Co Ltd Hollow porous membrane yarn made of polyvinylidene fluoride type resin
US4525374A (en) * 1984-02-27 1985-06-25 Manresa, Inc. Treating hydrophobic filters to render them hydrophilic
EP0175322B1 (en) * 1984-09-17 1989-12-27 Mitsubishi Rayon Co., Ltd. Hydrophilized membrane of porous hydrophobic material and process for preparing the same
JP3072163B2 (ja) * 1991-10-03 2000-07-31 東燃株式会社 ポリオレフィン微多孔膜、その製造方法及びそれを用いた電池用セパレータ
US5209850A (en) * 1992-06-19 1993-05-11 W. L. Gore & Associates, Inc. Hydrophilic membranes
JP3225670B2 (ja) * 1993-03-09 2001-11-05 セイコーエプソン株式会社 水溶性インク及びインクジェットプリンタ
CA2136373A1 (en) * 1993-11-29 1995-05-30 Steven W. Medina Ethoxylated acetylenic glycols having low dynamic surface tension
CN1126716A (zh) * 1995-01-11 1996-07-17 气体产品与化学公司 具有低动态表面张力的乙氧基化炔二醇
US20040026314A1 (en) * 2000-10-24 2004-02-12 Akira Kobayashi Hydrophilized membrane and method of hydrophilization therefor
US6688477B2 (en) * 2001-05-03 2004-02-10 Air Products And Chemicals, Inc. Composite membranes
JP4746772B2 (ja) * 2001-06-19 2011-08-10 東レ東燃機能膜合同会社 ポリオレフィン微多孔膜の製造方法
US6635103B2 (en) 2001-07-20 2003-10-21 New Jersey Institute Of Technology Membrane separation of carbon dioxide
JP4143802B2 (ja) * 2001-11-26 2008-09-03 日信化学工業株式会社 分散剤組成物
JP2003200026A (ja) * 2002-01-08 2003-07-15 Toray Ind Inc 複合半透膜およびその製造方法
US6890435B2 (en) * 2002-01-28 2005-05-10 Koch Membrane Systems Hollow fiber microfiltration membranes and a method of making these membranes
TW589352B (en) * 2002-03-15 2004-06-01 Everlight Chem Ind Corp Ink compositions for ink-jet textile printing
JP2004301967A (ja) * 2003-03-28 2004-10-28 Mitsui Chemicals Inc 反射体、それを用いた照明装置および表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896633A (ja) 1981-12-04 1983-06-08 Mitsubishi Rayon Co Ltd 疎水性膜の親水化方法
JPS63277251A (ja) * 1987-05-08 1988-11-15 Fuji Photo Film Co Ltd 微孔性膜の製造方法
JPH01119310A (ja) 1987-11-02 1989-05-11 Mitsubishi Rayon Co Ltd 疎水性多孔質中空糸膜の親水化法
JPH04118033A (ja) * 1990-05-15 1992-04-20 Material Eng Tech Lab Inc 親水性膜とその製造方法並びにこの膜を用いた濾過装置
JPH0820663A (ja) * 1994-07-05 1996-01-23 Ube Ind Ltd 親水性ポリオレフィン多孔質フイルム及びその製法
US20030226473A1 (en) 2002-02-18 2003-12-11 Seiko Epson Corporation Ink set having broad-range dark part color reproduction ability, and recording method and recorded article

Also Published As

Publication number Publication date
CN101056694B (zh) 2010-05-26
US20120160765A1 (en) 2012-06-28
HK1108135A1 (en) 2008-05-02
TW200617076A (en) 2006-06-01
EP1839729A4 (en) 2008-07-30
JP2006136768A (ja) 2006-06-01
JP4739730B2 (ja) 2011-08-03
US20070209425A1 (en) 2007-09-13
KR100926612B1 (ko) 2009-11-11
EP1839729B1 (en) 2012-03-07
CN101056694A (zh) 2007-10-17
EP1839729B8 (en) 2013-08-07
KR20070085929A (ko) 2007-08-27
EP1839729A1 (en) 2007-10-03
TWI367911B (en) 2012-07-11
US20110095223A1 (en) 2011-04-28
TW201224024A (en) 2012-06-16
ATE548106T1 (de) 2012-03-15
TWI447153B (zh) 2014-08-01
US7882962B2 (en) 2011-02-08

Similar Documents

Publication Publication Date Title
WO2006051807A1 (ja) 疎水性多孔質膜用親水化剤、これを用いた疎水性多孔質膜の親水化方法及び検査方法
TWI712448B (zh) 膜蒸餾用多孔質膜及膜蒸餾用模組之運轉方法
JPWO2012147715A1 (ja) 膜モジュールの洗浄方法
JP2512937B2 (ja) 膜型気液接触装置
JP6624081B2 (ja) 水処理システム及び水処理方法
JP4784522B2 (ja) ポリフッ化ビニリデン系多孔質分離膜
JP2010082597A (ja) 浸漬型膜分離装置
KR101743423B1 (ko) 다공질막용 보존액
CN108884433B (zh) 利用膜组件进行的微生物培养液的过滤方法
JP2009214062A (ja) 浸漬型膜モジュールの運転方法
JP5119989B2 (ja) 固液分離膜の保管方法
JP5251472B2 (ja) 膜モジュールの洗浄方法
TWI480231B (zh) 含油排水處理方法
WO2014192416A1 (ja) 濾過装置及びこれを用いた濾過方法
JP2008012468A (ja) 固液分離用分離膜、膜エレメント、膜ろ過装置、及び固形分含有液の固液分離方法
JP6699302B2 (ja) 膜モジュールの洗浄方法
EP3680319A1 (en) Method for manufacturing brewed alcoholic beverage using porous membrane
JP2010110693A (ja) 複合多孔質分離膜の製造方法
JP2004195381A (ja) 液体分離装置及び液体分離膜モジュールの運転方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005806224

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11798004

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580038412.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077012960

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11798004

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005806224

Country of ref document: EP