WO2006064742A1 - Self-excited reactive power compensating apparatus - Google Patents

Self-excited reactive power compensating apparatus Download PDF

Info

Publication number
WO2006064742A1
WO2006064742A1 PCT/JP2005/022695 JP2005022695W WO2006064742A1 WO 2006064742 A1 WO2006064742 A1 WO 2006064742A1 JP 2005022695 W JP2005022695 W JP 2005022695W WO 2006064742 A1 WO2006064742 A1 WO 2006064742A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
self
power
excited
reactive power
Prior art date
Application number
PCT/JP2005/022695
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiko Hatano
Original Assignee
The Kansai Electric Power Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Kansai Electric Power Co., Inc. filed Critical The Kansai Electric Power Co., Inc.
Priority to JP2006548811A priority Critical patent/JPWO2006064742A1/en
Publication of WO2006064742A1 publication Critical patent/WO2006064742A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Definitions

  • the present invention relates to a reactive power compensator connected to an electric power system and supplying reactive power to the electric power system, and more particularly to a self-excited reactive power compensator using a self-excited inverter.
  • one capacitor is used as a DC power source, a DC voltage output from the capacitor is converted into an AC voltage by an inverter, and the AC Output the voltage to the power grid.
  • PWM control is used for inverter control of this self-excited reactive power compensator, and there is a trade-off relationship between performance and loss.
  • PWM control is used for inverter control of this self-excited reactive power compensator, and there is a trade-off relationship between performance and loss.
  • it is necessary to increase the number of switches in order to increase the number of pulses, but this makes it possible to ignore the power loss due to the semiconductor switch elements that make up the inverter. There is a problem that it is impossible to achieve high efficiency.
  • Patent Document 1 JP-A-8-137564
  • the main object of the present invention is to provide a self-excited reactive power compensator that solves the trade-off relationship between the performance and the loss at once and achieves both high performance and high efficiency. It is what. Means for solving the problem
  • the self-excited reactive power compensator according to the present invention is connected in parallel to the power system and supplies reactive power as an output voltage to the power system, thereby adjusting the voltage of the power system and the power of the load.
  • This is a self-excited reactive power compensator that improves the rate, and is connected to the DC power supply having a charge / discharge function, and converts the DC voltage output from the DC power supply into an AC voltage and outputs it to the power system.
  • a plurality of power supply circuits composed of self-excited inverters connected in series, and the voltages of the respective DC power supplies are made different from each other.
  • the voltage ratio of the DC voltage charged to each of the DC power sources is in a power-of-two relationship.
  • a capacitor may be considered as the DC power source.
  • the total sum of energy input and output from each capacitor is ideally zero, but in reality, an effective current that compensates for the loss of the inverter and a harmonic generated by the inverter. Since wave currents flow at the same time, it is necessary to control so that the sum of energy input and output from each capacitor, including these, becomes zero.
  • a control unit that controls a phase difference between the output voltage and the system voltage and adjusts energy input and output between the power system and the respective capacitors is provided. It is hoped that
  • the voltage ratio between the capacitors can be set to a predetermined value. It is desirable to determine the operation of each self-excited inverter so as to be as close as possible.
  • control unit is provided for each of the capacitors for each 1Z4 cycle of AC frequency, for each 1Z2 cycle, or for each integer cycle. It is preferable to adjust so that the total sum of input and output energy is almost zero! /.
  • the control unit is capable of withstanding voltage performance of components such as a semiconductor switch element, a capacitor, or a rear tuttle, and the like. Based on the current capacity, the upper and lower limits of the output voltage for outputting the reactive power are limited, and within that range, the sum of the voltages of the respective DC power supplies is made as substantially as possible as the output voltage. It is preferable to define the operation for each self-excited inverter.
  • the self-excited reactive power compensator according to the present invention is connected in parallel to the power system and supplies reactive power to the power system, thereby adjusting the voltage of the power system and the power factor of the load.
  • a self-excited reactive power compensator that performs improvement comprising a capacitor and a self-excited inverter that is connected to the capacitor and converts the voltage of the capacitor into an AC voltage and outputs the AC voltage to the power system. Three sets are connected in series, and the phase difference between the output voltage and the system voltage is controlled to adjust the total energy input and output between the power system and each capacitor.
  • Each of the capacitors has a voltage ratio of about 4: 2: 1
  • the control unit has a voltage resistance performance of a component such as a semiconductor switch element, a capacitor, or a rear tuttle.
  • the upper and lower limits of the output voltage for outputting the reactive power based on the current capacity, and within that range, the sum of the capacitor voltages is made approximately equal to the output voltage as much as possible.
  • the operation of each of the self-excited inverters is determined so that the voltage ratio of the capacitors of the capacitor maintains a relationship of approximately 4: 2: 1.
  • the magnitude of the capacitor voltage is approximately 4 according to the desired output voltage.
  • FIG. 1 is a schematic configuration diagram of a self-excited reactive power compensator according to a first embodiment of the present embodiment.
  • FIG. 2 is a device configuration diagram of the information processing apparatus in the embodiment.
  • FIG. 3 is a functional configuration diagram of the information processing apparatus in the embodiment.
  • FIG. 4 is a block diagram showing an inverter control method in the same embodiment.
  • FIG. 5 is a table showing combinations of output levels of the inverter control method and capacitor voltage conditions at that time in the same embodiment.
  • FIG. 6 is a view showing the operation timing of each power supply circuit in the same embodiment.
  • FIG. 7 is a diagram showing charging and discharging of the inverter when outputting an output level 1 voltage in the same embodiment.
  • FIG. 8 is a diagram showing the results of an operation simulation of a self-excited reactive power compensator using a conventional 3-pulse inverter.
  • FIG. 9 is a diagram showing the results of an operation simulation of a self-excited reactive power compensator using a conventional 16-pulse inverter.
  • FIG. 10 is a diagram showing condition settings for an operation simulation of the self-excited reactive power compensator according to the same embodiment.
  • FIG. 11 is a diagram showing the operation of each inverter in the simulation.
  • FIG. 12 is a graph showing changes in capacitor voltage in the simulation.
  • FIG. 13 is a diagram showing the transition of the phase adjustment amount of the output voltage in the same simulation.
  • FIG. 14 is a diagram showing system current and the like in the simulation.
  • FIG. 15 is a diagram showing the total value of the capacitor voltage and the operation timing of each power supply circuit at that time.
  • FIG. 16 is a block diagram showing an inverter control method of the self-excited reactive power compensator according to the second embodiment of the present invention.
  • FIG. 17 is a diagram showing condition settings for operation simulation of the self-excited reactive power compensator according to the embodiment.
  • FIG. 18 is a view showing a result of operation simulation of the self-excited reactive power compensator according to the embodiment. Explanation of symbols
  • the self-excited reactive power compensator 1 of the present embodiment includes an AC power source 2 and a load as shown in FIG.
  • (Consumer) 3 is connected in parallel to the load (Consumer) 3 and the reactive power is supplied to the power system to adjust the system voltage and load power factor of the power system. It is intended to improve.
  • the configuration of the self-excited reactive power compensator 1 includes an initial charge for charging initial power to the power supply circuits 41, 42, 43 and the DC power supplies Cl, C2, C3 of the power supply circuits 41, 42, 43. It consists of circuit 5.
  • the self-excited reactive power compensator 1 is configured by connecting the power supply circuits 41, 42, and 43 in series.
  • the power supply circuits 41, 42, and 43 are connected to the DC power supply Cl, C2, and C3 having a charge / discharge function and the DC power supply Cl, C2, and C3, and the voltage output from the DC power supply Cl, C2, and C3. It consists of self-excited inverters II, 12, 13 that convert Vh, Vm, VI to AC voltage and output to the power system.
  • the DC power sources Cl, C2, and C3 are capacitors, and the initial charge voltage Vh, Vm, and VI have a voltage power ratio of 2 respectively by the initial charge circuit 5 described later.
  • Electricity Specifically, AC based on the initial charging voltages Vh, Vm, and VI, respectively.
  • the peak value of voltage is 60 [%], 30 [%], and 15 [%].
  • Self-excited inverters II, 12, and 13 are semiconductor switch elements 111, 121, and 131 and anti-parallel to them. Connected to capacitors Cl, C2, and C3 and converts the DC voltages Vh, Vm, and VI of capacitors Cl, C2, and C3 into AC voltages. Output to the power system.
  • IGBTs Insulated Gate Bipolar Transistors
  • These self-excited inverters II, 12, and 13 are controlled to be turned on and off by a drive signal to the gate using a control unit 82 of the information processing apparatus 8 described later, so that an operation pattern (switch pattern) is controlled.
  • the initial charging circuit 5 charges capacitors Cl, C2, and C3 with DC voltages Vh, Vm, and VI.
  • a charging transformer 51 is included, and is connected in parallel to the capacitors Cl, C2, and C3. The charging operation is performed only when the apparatus is activated. When charging is completed, the capacitor Cl, C2, C3 is electrically disconnected by a switch (not shown), and the operation of the self-excited reactive power compensator 1 is not affected at all.
  • the phase measuring unit 6 for measuring the phase angle of the system voltage V the phase measuring unit 6 for measuring the phase angle of the system voltage V
  • Capacitor voltage measurement unit 7 for measuring capacitor voltage Vh, Vm, VI, system voltage V
  • the system voltage measurement unit 9 for measuring the crest value of the output voltage V and the information processing device 8 for adjusting the crest value and the phase of the output voltage V based on the measurement data from the system voltage measurement unit 9 should be provided.
  • the phase measurement unit 6 measures the phase angle of the system voltage V and displays the measurement result.
  • the phase angle measurement data is output to the information processing device 8.
  • the capacitor voltage measuring unit 7 is for measuring the voltages Vh, Vm, VI charged in the capacitors Cl, C2, and C3, and outputs the voltage measurement data to the information processing device 8. It is.
  • the system voltage measurement unit 9 measures the crest value of the system voltage V and indicates the measurement result.
  • the voltage measurement data is output to the information processing device 8.
  • the information processing apparatus 8 is a general-purpose or dedicated computer having a CPU 801, a memory 802, an input / output interface 803, etc., and is stored in a predetermined area of the memory 802.
  • the CPU 801, peripheral devices, etc. are generated as shown in FIG. Devour.
  • the receiving unit 81 receives the measurement data from each measurement unit described above, and outputs it to the control unit 82.
  • the control unit 82 is configured to output the output voltage V based on the measurement data received by the reception unit 81.
  • each capacitor voltage Vh, Vm, VI is monitored and active power is input / output to / from the power system according to the difference between the charging energy and the initial charging energy, and the capacitors Cl, C2, C3 Control is performed so that the total charge energy E is a constant value.
  • the p SVC phase difference ⁇ of the output voltage V with respect to the system voltage V is determined, and the target voltage V of the output voltage V of the self-excited reactive power compensator 1 is determined.
  • V is the peak value of the AC voltage of AC power supply 2
  • X is the impedance of the power system
  • P P s is impedance of self-excited reactive power compensator 1 rear tutor 10 Q is general SV
  • the constant K is used to correct the error between the sum E and the reference value E.
  • This constant is used to adjust the time required.
  • the constant K suppresses the temporal vibration of the sum E.
  • the constant K is used to correct the error between the sum E and the reference value E.
  • 3 c ref is regarded as positive power, and is converted into a phase difference ⁇ between the system voltage V and the output voltage V for exchange between the self-excited reactive illumination compensator 1 and the power system.
  • E ref C 3 .VI, 2 Respectively. Note that Cl is the capacitance of the capacitor CI, C2 is the capacitance of the capacitor C2, and C3 is the capacitance of the capacitor C3.
  • the minimum output level is level 1.
  • the operation patterns of the self-excited inverters II, 12, and 13 are normalized values of the initial charging voltages Vh, Vm, and VI of the capacitors Cl, C2, and C3 (Vh, 2Vm, 4V1) and the charging voltage at the output.
  • FIG. 5 shows the operation timing of each power supply circuit 41, 42, 43 that causes the power supply circuits 41, 42, 43 to perform a predetermined output operation and outputs the output voltage V and output current I of the device 1.
  • FIG. 7 shows an example in which the voltage V of level 1 is output.
  • the phase measurement unit 6 measures the phase of the system voltage V and measures the capacitor voltage.
  • the fixed unit 7 measures the capacitor voltages Vh, Vm, and VI, and outputs the measured data to the information processing device 8, respectively. Then, the information processing apparatus 8 receives the measurement data, and the control unit 82 starts to supply reactive power V to the power system.
  • the control unit 82 is shown in the control block diagram of FIG. 4 based on the phase measurement data and the capacitor voltage measurement data.
  • the phase of the output voltage V is adjusted according to the control method used. This allows the capacitor
  • the total charge energy E of Cl, C2, and C3 is adjusted.
  • control unit 82 determines, based on the capacitor voltage measurement data, which of the capacitor voltage conditions in FIG. 5 the capacitor voltages Vh, Vm, V1 apply, and the semiconductor switch elements of the inverters II, 12, 13 Select the operation pattern of 111, 121, 131 and drive with inverter The inverter drive signal is output to circuit 11.
  • the inverters II, 12, and 13 perform the desired operation to output the output voltage V and the voltage ratio of the capacitor voltages Vh, Vm, and VI.
  • FIG. 10 shows the result of the operation simulation of the self-excited reactive power compensator 1 under the specific condition setting shown in FIG. 10 .
  • a voltage drop of 20% occurred at time 2 [S] to 4 [S] after startup of device 1.
  • [%] of the voltage of the DC power supply used so far is read as [V].
  • Fig. 8 shows the operation simulation results when only the conventional 3-pulse (carrier frequency 180Hz) PWM inverter is used, and the operation simulation results when only the 16-pulse (carrier frequency 960Hz) PWM inverter is used.
  • Figure 9 shows.
  • inverters II, 12, and 13 are PWM-controlled by control unit 82, and output voltage V is adjusted. At this time, the number of switches of inverters II, 12, 13
  • Capacitor voltage Vh is 1 pulse
  • Capacitor voltage Vm is 3 pulses
  • Capacitor voltage VI is 7 pulses
  • the transition of the phase difference shown in FIG. 12 is the time when the system voltage V is normal (1 to 2 [S], 4 to 5 [S]).
  • FIG 13 shows the results of the successful adjustment of the capacitor voltages Vh, Vm, and VI. Capacitor voltages Vh, Vm, VI even though the system voltage V has abrupt fluctuations
  • the present apparatus 1 supplies a delayed current i to the power system
  • a plurality of power supply circuits 41, 42, and 43 having different output voltages Vh, Vm, and VI are connected in series.
  • the magnitude of the output voltage can be changed, and the number of equivalent switches of inverters II, 12, and 13 can be reduced, so that high performance and high efficiency can be realized.
  • a 15-level inverter with a maximum output voltage of 105V can be configured in total, and the total distortion of the output voltage V of this 15-level inverter is about 4% without using a harmonic filter.
  • control unit 82 controls the phase difference between the output voltage V and the system voltage V.
  • the self-excited reactive power compensator 1 differs from the first embodiment in the function of the control unit 82. That is, as shown in FIG. 15, the control unit 82 of the present embodiment uses the sum of the voltages Vh, Vm, and VI (Vh + Vm + Vl) of the capacitors Cl, C2, and C3 as the peak value of the output voltage V.
  • FIG. 15 shows, for example, the output voltage V when the output voltage changes from 105 [V] to 90 [V], and the operation timing of each of the power supply circuits 41, 42, and 43 at that time.
  • control unit 82 of the present embodiment sets the voltages Vh, Vm, and VI force S of the capacitors Cl, C2, and C3 to 51.44 [V], 25.72 [V], and 12.86 [V], respectively. Control self-excited innotators II, 12, and 13 so that
  • control unit 82 of the present embodiment limits the peak value of the output voltage V based on the withstand voltage performance and current capacity of the components of the device 1, and outputs 15 levels of voltage as described above.
  • The calculated provisional value
  • exceeds the withstand voltage performance of the device 1 and the output current determined by the provisional value I Vz
  • is determined as the peak value
  • V I in FIG. 16 is a target value of the peak value of interconnection point voltage V, and is a constant value in the time domain.
  • V is the instantaneous value of the connection point voltage in the time domain
  • E is the instantaneous value in the time domain of the sum of the charging energy of the capacitors Cl, C2, and C3, and the RMS block converts the instantaneous value to an effective value.
  • the first limiter section (S) is provided so that the output of the previous integration section does not diverge when an error of
  • is the peak value
  • I is determined via the third limiter unit (U).
  • the system voltage V to be exchanged with the power system and the t SVC ref phase difference ⁇ of the target voltage V of the output voltage V are determined. Then, the target voltage VV of the output voltage of the self-excited reactive power compensator 1 is calculated by the following formula to control the inverters II, 12, and 13.
  • is the fundamental frequency of the power system.
  • FIG. 18 shows the result of the operation simulation of the self-excited reactive power compensator 1 under the specific condition setting shown in FIG. In this simulation, it is assumed that a voltage drop of 30% occurred at time 2 [S] to 4 [S] after startup of device 1.
  • the capacitances of capacitors Cl, C2, and C3 are 100 [mF], 200 [mF], and 400 [mF], respectively.
  • the second limiter section (T) in FIG. 16 determines the output voltage range based on the withstand voltage performance and current capacity of the components of the apparatus 1, and the maximum limiter value is min ( IVI + 50 [V] ⁇ 140 [V]), that is, the peak value of the grid voltage IVI + 50 [V] and 140 [V], which is the smaller value, and the minimum limiter value is the peak value of the grid voltage IVI — 50 [V].
  • the third limiter part (U) is determined based on the withstand voltage performance of the components of the device 1, such as capacitors Cl, C2, and C3. Its maximum limiter value is 120 [V], and the minimum limiter value Is 0 [V].
  • the first limiter (S) has a maximum limiter value of 40 [V] and a minimum limiter value of 1 [V].
  • the voltage V that the self-excited reactive power compensator 1 should output to the power system is 140 [0079]
  • the voltage Vh of the capacitor C1 is increased from 56 [V] to 68 [V]
  • the voltage Vm of the capacitor C21 is changed from 28 [V] to 34 [V].
  • the voltage VI of capacitor C3 has risen from 14 [V] to 17 [V], and the total value of these is 119 [V].
  • the system voltage V drops by 30% from 100 [V] to 70 [V].
  • the interconnection voltage V can be maintained at about 90 [V], confirming the voltage stability effect of the original self-excited reactive power compensator. [0080] According to the self-excited reactive power compensator 1 configured as described above, the desired output voltage V
  • the capacitor voltages Vh, Vm, VI can be increased or decreased while maintaining the 4: 2: 1 relationship, and 15 levels of high-accuracy voltage output is always possible regardless of the output voltage V.
  • the maximum value of the output voltage V is calculated in consideration of the withstand voltage performance and current capacity of the components of the device 1.
  • a certain device operation can be ensured.
  • three power supply circuits are connected in series.
  • the present invention is not limited to this, and two power supply circuits may be connected in series, or four or more power supply circuits may be connected in series! / ⁇ .
  • a force that makes the voltage ratio of the capacitor voltage a power of 2 may be used.
  • the capacitor is used as the energy storage unit.
  • the present invention is not limited to this.
  • a battery may be used.
  • IGBT is used as the semiconductor switch element, it is not limited to this, and a self-extinguishing semiconductor switch element such as a gate turn-off thyristor may be used.
  • a switch in which those switch elements are connected in series may be used as one switch.
  • normalization is corrected so as to correct the most dissimilarity, but in addition to this, the initial charge voltage is compared with the actual voltage without normalization and the You may make it correct what has deviated.
  • the target voltage V in Equation 1 is measured by measuring the peak value and phase of the voltage V at the grid connection point of the device.
  • the present invention is not limited to single-phase applications.
  • the output voltage may be calculated without providing these limiter units.
  • the self-excited reactive power compensator according to the present invention is configured by connecting a plurality of power supply circuits having different output voltages in series, and the magnitude of the output voltage is changed by the combination thereof. It is possible to reduce the number of equivalent switches of the entire inverter, and thus high performance and high efficiency can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

A self-excited reactive power compensating apparatus capable of achieving both a high performance and a high efficiency at the same time. In this apparatus, a plurality of power supply circuits (41,42,43), each of which comprises a DC power supply source (C1,C2,C3), which has a charging/discharging function, and a self-excited inverter (I1,I2,I3) connected to the DC power supply source (C1,C2,C3) for converting the voltage of the DC power supply source (C1,C2,C3) to an AC voltage and outputting the AC voltage to the power system, are connected in series with one another, and the voltages of the DC power supply sources (C1,C2,C3) are caused to be different from one another.

Description

明 細 書  Specification
自励式無効電力補償装置  Self-excited reactive power compensator
技術分野  Technical field
[0001] この発明は、電力系統に接続されて、その電力系統に無効電力を供給する無効電 力補償装置に関し、特に自励式インバータを利用した自励式無効電力補償装置に 関するものである。  The present invention relates to a reactive power compensator connected to an electric power system and supplying reactive power to the electric power system, and more particularly to a self-excited reactive power compensator using a self-excited inverter.
背景技術  Background art
[0002] 従来、電力系統の安定度向上に必要な電圧補償、あるいは受電設備容量の削減 等に必要な力率改善を目的として自励式無効電力補償装置が設置されて!、る。  [0002] Conventionally, a self-excited reactive power compensator has been installed for the purpose of voltage compensation necessary for improving the stability of an electric power system or power factor improvement necessary for reducing the capacity of a power receiving facility.
[0003] この自励式無効電力補償装置は、例えば特許文献 1に示すように、 1つのコンデン サを直流電源とし、そのコンデンサから出力される直流電圧をインバータにより交流 電圧に変換して、その交流電圧を電力系統に出力するようにして 、る。  In this self-excited reactive power compensator, for example, as shown in Patent Document 1, one capacitor is used as a DC power source, a DC voltage output from the capacitor is converted into an AC voltage by an inverter, and the AC Output the voltage to the power grid.
[0004] ところが、この自励式無効電力補償装置のインバータ制御には、 PWM制御が用い られており、性能と損失との間にトレードオフの関係がある。つまり、自励式無効電力 補償装置の性能を向上させるためには、多パルス化するためにスィッチ回数を増や す必要があるが、これによりインバータを構成する半導体スィッチ素子による電力損 失が無視できなくなり高効率ィ匕を図ることができな 、と 、う問題がある。  However, PWM control is used for inverter control of this self-excited reactive power compensator, and there is a trade-off relationship between performance and loss. In other words, in order to improve the performance of the self-excited reactive power compensator, it is necessary to increase the number of switches in order to increase the number of pulses, but this makes it possible to ignore the power loss due to the semiconductor switch elements that make up the inverter. There is a problem that it is impossible to achieve high efficiency.
[0005] 一方で、半導体スィッチ素子による電力損失を無くし高効率ィ匕を図るためには、ス イッチ回数を可及的に少なくしなければならないが、そうすると出力電流を精度良く 調整できず,系統電圧の安定ィヒに支障が生じたり,系統へ高調波が流出するといつ た問題が生じてしまう。  [0005] On the other hand, in order to eliminate the power loss due to semiconductor switch elements and achieve high efficiency, the number of switches must be reduced as much as possible. If the voltage stability is disturbed or if harmonics flow into the system, problems will occur.
特許文献 1:特開平 8— 137564  Patent Document 1: JP-A-8-137564
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] そこで本発明は、上記性能と損失との間のトレードオフの関係を一挙に解決し、高 性能且つ高効率を両立した自励式無効電力補償装置を提供することをその主たる 所期課題とするものである。 課題を解決するための手段 [0006] Therefore, the main object of the present invention is to provide a self-excited reactive power compensator that solves the trade-off relationship between the performance and the loss at once and achieves both high performance and high efficiency. It is what. Means for solving the problem
[0007] すなわち本発明に係る自励式無効電力補償装置は、電力系統に並列に接続され 、その電力系統に出力電圧である無効電力を供給することにより、当該電力系統の 電圧調整や負荷の力率改善を行う自励式無効電力補償装置であって、充放電機能 を有する直流電源と、当該直流電源に接続され、その直流電源が出力する直流電 圧を交流電圧に変換して前記電力系統に出力する自励式インバータとからなる電源 回路を複数直列に接続して構成するとともに、前記それぞれの直流電源の電圧を互 Vヽに異ならせて 、ることを特徴とする。  That is, the self-excited reactive power compensator according to the present invention is connected in parallel to the power system and supplies reactive power as an output voltage to the power system, thereby adjusting the voltage of the power system and the power of the load. This is a self-excited reactive power compensator that improves the rate, and is connected to the DC power supply having a charge / discharge function, and converts the DC voltage output from the DC power supply into an AC voltage and outputs it to the power system. And a plurality of power supply circuits composed of self-excited inverters connected in series, and the voltages of the respective DC power supplies are made different from each other.
[0008] このようなものであれば、異なる出力電圧の電源回路を複数直列に接続して構成し ており、その組み合わせにより出力する電圧の大きさを変化させることが出来、インバ ータ全体の等価的なスィッチ回数を減らすことが出来るので高性能且つ高効率の自 励式無効電力補償装置を提供することができる。  [0008] In such a case, a plurality of power supply circuits having different output voltages are connected in series, and the magnitude of the output voltage can be changed by the combination thereof, so that the entire inverter can be changed. Since the number of equivalent switches can be reduced, a high-performance and high-efficiency self-excited reactive power compensator can be provided.
[0009] 具体的な実施の形態としては、前記それぞれの直流電源に充電させる直流電圧の 電圧比が略 2のべき乗の関係にあることが望ましい。  As a specific embodiment, it is desirable that the voltage ratio of the DC voltage charged to each of the DC power sources is in a power-of-two relationship.
[0010] 前記直流電源としては、コンデンサが考えられる。  [0010] A capacitor may be considered as the DC power source.
[0011] 例えばコンデンサを用いた場合には、それぞれのコンデンサより入出力するェネル ギの総和は理想的にはゼロであるが、現実にはインバータの損失を補填する有効電 流及びインバータにより生じる高調波電流が同時に流れるため、これらを含めてそれ ぞれのコンデンサより入出力するエネルギの総和がゼロになるように制御する必要が ある。その必要性を具備するためには、前記出力電圧と前記系統電圧との位相差を 制御して、前記電力系統と前記それぞれのコンデンサの間で入出力するエネルギを 調整する制御部を備えて 、ることが望ま 、。  [0011] For example, when capacitors are used, the total sum of energy input and output from each capacitor is ideally zero, but in reality, an effective current that compensates for the loss of the inverter and a harmonic generated by the inverter. Since wave currents flow at the same time, it is necessary to control so that the sum of energy input and output from each capacitor, including these, becomes zero. In order to have the necessity, a control unit that controls a phase difference between the output voltage and the system voltage and adjusts energy input and output between the power system and the respective capacitors is provided. It is hoped that
[0012] 各々のコンデンサの電圧を一定にして一層高性能化するためには、前記制御部が 、所望の出力電圧を出力する際に、前記それぞれのコンデンサ間の電圧比を所定の 値に可及的に近づけるように、前記自励式インバータ毎の動作を定めるものであるこ とが望ましい。  [0012] In order to achieve higher performance by keeping the voltage of each capacitor constant, when the controller outputs a desired output voltage, the voltage ratio between the capacitors can be set to a predetermined value. It is desirable to determine the operation of each self-excited inverter so as to be as close as possible.
[0013] 本発明の効果をより一層高めるためには、前記制御部が、交流周波数の 1Z4サイ クル毎又は 1 Z2サイクル毎又は整数サイクル毎に前記それぞれのコンデンサ毎に 入出力するエネルギの総和が平均が略ゼロとなるように調整することが好まし!/、。 [0013] In order to further enhance the effects of the present invention, the control unit is provided for each of the capacitors for each 1Z4 cycle of AC frequency, for each 1Z2 cycle, or for each integer cycle. It is preferable to adjust so that the total sum of input and output energy is almost zero! /.
[0014] さらに、出力電圧に関わらず、常に 15レベルの高精度な電圧出力を実現するため には、前記制御部が、例えば半導体スィッチ素子、コンデンサ又はリアタトル等の構 成部品の耐電圧性能および電流容量に基づいて、前記無効電力を出力するための 出力電圧の上下限を制限し、その範囲において、前記それぞれの直流電源の電圧 の和を前記出力電圧と可及的に略等しくなるように前記自励式インバータ毎の動作 を定めるものであることが好まし 、。  [0014] Further, in order to always achieve a high-precision voltage output of 15 levels regardless of the output voltage, the control unit is capable of withstanding voltage performance of components such as a semiconductor switch element, a capacitor, or a rear tuttle, and the like. Based on the current capacity, the upper and lower limits of the output voltage for outputting the reactive power are limited, and within that range, the sum of the voltages of the respective DC power supplies is made as substantially as possible as the output voltage. It is preferable to define the operation for each self-excited inverter.
[0015] さらに加えて、本発明に係る自励式無効電力補償装置は、電力系統に並列に接続 され、その電力系統に無効電力を供給することにより、当該電力系統の電圧調整や 負荷の力率改善を行う自励式無効電力補償装置であって、コンデンサと、当該コン デンサに接続され、そのコンデンサの電圧を交流電圧に変換して前記電力系統に出 力する自励式インバータとからなる電源回路を 3組直列に接続して構成するとともに 、前記出力電圧と前記系統電圧との位相差を制御して、前記電力系統と前記それぞ れのコンデンサの間で入出力するエネルギの総和を調整する制御部を備え、前記そ れぞれのコンデンサの電圧が略 4 : 2 : 1の関係であり、前記制御部が、例えば半導体 スィッチ素子、コンデンサ又はリアタトル等の構成部品の耐電圧性能および電流容量 に基づいて、前記無効電力を出力するための出力電圧の上下限を制限し、その範 囲において、前記コンデンサ電圧の和を前記出力電圧と可及的に略等しくし、かつ 前記それぞれのコンデンサの電圧の比が略 4 : 2 : 1の関係を維持するように、前記自 励式インバータ毎の動作を定めるものであることを特徴とする。  In addition, the self-excited reactive power compensator according to the present invention is connected in parallel to the power system and supplies reactive power to the power system, thereby adjusting the voltage of the power system and the power factor of the load. A self-excited reactive power compensator that performs improvement, comprising a capacitor and a self-excited inverter that is connected to the capacitor and converts the voltage of the capacitor into an AC voltage and outputs the AC voltage to the power system. Three sets are connected in series, and the phase difference between the output voltage and the system voltage is controlled to adjust the total energy input and output between the power system and each capacitor. Each of the capacitors has a voltage ratio of about 4: 2: 1, and the control unit has a voltage resistance performance of a component such as a semiconductor switch element, a capacitor, or a rear tuttle. And the upper and lower limits of the output voltage for outputting the reactive power based on the current capacity, and within that range, the sum of the capacitor voltages is made approximately equal to the output voltage as much as possible. The operation of each of the self-excited inverters is determined so that the voltage ratio of the capacitors of the capacitor maintains a relationship of approximately 4: 2: 1.
[0016] このようなものであれば、所望の出力電圧に応じて、コンデンサ電圧の大きさを略 4  [0016] In such a case, the magnitude of the capacitor voltage is approximately 4 according to the desired output voltage.
: 2 : 1の関係を維持しながら上下させることができ、出力電圧に関わらず常に 15レべ ルの高精度な電圧出力を可能にすることができる。  : 2: It can be moved up and down while maintaining the relationship of 1, and it is possible to always output a highly accurate voltage of 15 levels regardless of the output voltage.
発明の効果  The invention's effect
[0017] このように構成した本発明によれば、異なる出力電圧の電源回路を複数直列に接 続して構成しており、その組み合わせにより出力する電圧の大きさ変化させることが 出来、インバータ全体の等価的なスィッチ回数を減らすことが出来るので高性能且つ 高効率の自励式無効電力補償装置を提供することができる。 図面の簡単な説明 [0017] According to the present invention configured as described above, a plurality of power supply circuits having different output voltages are connected in series, and the magnitude of the output voltage can be changed by the combination of the power supply circuits. Therefore, a high-performance and high-efficiency self-excited reactive power compensator can be provided. Brief Description of Drawings
[図 1]本実施形態の第 1実施形態に係る自励式無効電力補償装置の概略構成図。 FIG. 1 is a schematic configuration diagram of a self-excited reactive power compensator according to a first embodiment of the present embodiment.
[図 2]同実施形態における情報処理装置の機器構成図。 FIG. 2 is a device configuration diagram of the information processing apparatus in the embodiment.
[図 3]同実施形態における情報処理装置の機能構成図。 FIG. 3 is a functional configuration diagram of the information processing apparatus in the embodiment.
[図 4]同実施形態におけるインバータの制御方法を示すブロック線図。 FIG. 4 is a block diagram showing an inverter control method in the same embodiment.
[図 5]同実施形態におけるインバータの制御方法の出力レベルの組み合わせ及びそ の時のコンデンサ電圧条件を示す表。 FIG. 5 is a table showing combinations of output levels of the inverter control method and capacitor voltage conditions at that time in the same embodiment.
[図 6]同実施形態における各電源回路の動作タイミングを示す図。  FIG. 6 is a view showing the operation timing of each power supply circuit in the same embodiment.
[図 7]同実施形態において出力レベル 1の電圧を出力する際のインバータの充電及 び放電を示す図。  FIG. 7 is a diagram showing charging and discharging of the inverter when outputting an output level 1 voltage in the same embodiment.
[図 8]従来の 3パルスインバータを用いた自励式無効電力補償装置の動作シミュレ一 シヨンの結果を示す図。  FIG. 8 is a diagram showing the results of an operation simulation of a self-excited reactive power compensator using a conventional 3-pulse inverter.
[図 9]従来の 16パルスインバータを用いた自励式無効電力補償装置の動作シミュレ ーシヨンの結果を示す図。  FIG. 9 is a diagram showing the results of an operation simulation of a self-excited reactive power compensator using a conventional 16-pulse inverter.
[図 10]同実施形態に係る自励式無効電力補償装置の動作シミュレーションの条件設 定を示す図。  FIG. 10 is a diagram showing condition settings for an operation simulation of the self-excited reactive power compensator according to the same embodiment.
[図 11]同シミュレーションにおける各インバータの動作を示す図。  FIG. 11 is a diagram showing the operation of each inverter in the simulation.
[図 12]同シミュレーションにおけるコンデンサ電圧の推移を示す図。  FIG. 12 is a graph showing changes in capacitor voltage in the simulation.
[図 13]同シミュレーションにおける出力電圧の位相調整量の推移を示す図。  FIG. 13 is a diagram showing the transition of the phase adjustment amount of the output voltage in the same simulation.
[図 14]同シミュレーションにおける系統電流等を示す図。  FIG. 14 is a diagram showing system current and the like in the simulation.
[図 15]コンデンサ電圧の合計値及びそのときの各電源回路の動作タイミングを示す 図。  FIG. 15 is a diagram showing the total value of the capacitor voltage and the operation timing of each power supply circuit at that time.
[図 16]本発明の第 2実施形態に係る自励式無効電力補償装置のインバータの制御 方法を示すブロック図。  FIG. 16 is a block diagram showing an inverter control method of the self-excited reactive power compensator according to the second embodiment of the present invention.
[図 17]同実施形態に係る自励式無効電力補償装置の動作シミュレーションの条件設 定を示す図。  FIG. 17 is a diagram showing condition settings for operation simulation of the self-excited reactive power compensator according to the embodiment.
[図 18]同実施形態に係る自励式無効電力補償装置の動作シミュレーションの結果を 示す図。 符号の説明 FIG. 18 is a view showing a result of operation simulation of the self-excited reactive power compensator according to the embodiment. Explanation of symbols
[0019] 1 · · ·自励式無効電力補償装置、 V · · ·系統電圧、 V · · ·出力電圧、 41、 42、 43 · p SVC  [0019] 1 · · · Self-excited reactive power compensator, V · · · System voltage, V · · · Output voltage, 41, 42, 43 · p SVC
• '電源回路、 Cl、 C2、 C3 ' · ·直流電源(コンデンサ)、 II、 12、 13 · · ·自励式インバ ータ、 82· · ·制御部  • 'Power circuit, Cl, C2, C3' · · DC power supply (capacitor), II, 12, 13 · · · Self-excited inverter, 82 · · · Control unit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] <第 1実施形態 > [0020] <First embodiment>
[0021] 以下に本発明に係る自励式無効電力補償装置の第 1実施形態について図面を参 照して説明する。  Hereinafter, a first embodiment of a self-excited reactive power compensator according to the present invention will be described with reference to the drawings.
[0022] 本実施形態の自励式無効電力補償装置 1は、図 1に示すように、交流電源 2と負荷  [0022] The self-excited reactive power compensator 1 of the present embodiment includes an AC power source 2 and a load as shown in FIG.
(需要家) 3とを含む電力系統において、負荷 (需要家) 3に対して並列に接続され、 その電力系統に無効電力を供給することにより、当該電力系統の系統電圧の調整や 負荷力率の改善を行うものである。  (Consumer) 3 is connected in parallel to the load (Consumer) 3 and the reactive power is supplied to the power system to adjust the system voltage and load power factor of the power system. It is intended to improve.
[0023] この自励式無効電力補償装置 1の構成は、電源回路 41、 42、 43及び当該電源回 路 41、 42、 43の直流電源 Cl、 C2、 C3に初期電力を充電するための初期充電用回 路 5からなる。ここで、電源回路 41、 42、 43を直列に接続することにより自励式無効 電力補償装置 1を構成している。  [0023] The configuration of the self-excited reactive power compensator 1 includes an initial charge for charging initial power to the power supply circuits 41, 42, 43 and the DC power supplies Cl, C2, C3 of the power supply circuits 41, 42, 43. It consists of circuit 5. Here, the self-excited reactive power compensator 1 is configured by connecting the power supply circuits 41, 42, and 43 in series.
[0024] 各部を詳述する。  [0024] Each part will be described in detail.
[0025] 電源回路 41、 42、 43は、充放電機能を有する直流電源 Cl、 C2、 C3と、当該直流 電源 Cl、 C2、 C3に接続され、その直流電源 Cl、 C2、 C3が出力する電圧 Vh、 Vm 、 VIを交流電圧に変換して前記電力系統に出力する自励式インバータ II、 12、 13と からなる。  [0025] The power supply circuits 41, 42, and 43 are connected to the DC power supply Cl, C2, and C3 having a charge / discharge function and the DC power supply Cl, C2, and C3, and the voltage output from the DC power supply Cl, C2, and C3. It consists of self-excited inverters II, 12, 13 that convert Vh, Vm, VI to AC voltage and output to the power system.
[0026] 直流電源 Cl、 C2、 C3は、コンデンサであり、後述する初期充電用回路 5によりそ れぞれの初期充電電圧 Vh、 Vm、 VIの電圧比がそれぞれ 2のべき乗の関係つまり  [0026] The DC power sources Cl, C2, and C3 are capacitors, and the initial charge voltage Vh, Vm, and VI have a voltage power ratio of 2 respectively by the initial charge circuit 5 described later.
0 0 0  0 0 0
、それぞれの充電電圧 Vh、 Vm、 VIを最小充電電圧 VIに対して略 2n倍 (n=0、 1 Each charging voltage Vh, Vm, VI is approximately 2 n times the minimum charging voltage VI (n = 0, 1
0 0 0 0  0 0 0 0
、 2)になるように充電する。即ち、 Vh = 2 XVm = 2 X 2 XV1の関係となるように充  Charge the battery so that it becomes 2). In other words, Vh = 2 XVm = 2 X 2 XV1
0 0 0  0 0 0
電している。具体的には、初期充電電圧 Vh、 Vm、 VIをそれぞれ基準とする交流  Electricity. Specifically, AC based on the initial charging voltages Vh, Vm, and VI, respectively.
0 0 0  0 0 0
電圧の波高値の 60[%]、 30[%]、 15 [%]としている。  The peak value of voltage is 60 [%], 30 [%], and 15 [%].
[0027] 自励式インバータ II、 12、 13は、半導体スィッチ素子 111、 121、 131とそれに逆並列 されたダイオード 112、 122、 132から構成したフルブリッジインバータであり、コンデン サ Cl、 C2、 C3に接続して、そのコンデンサ Cl、 C2、 C3の直流電圧 Vh、 Vm、 VIを 交流電圧に変換して電力系統に出力するものである。本実施形態では半導体スイツ チ素子 111、 121、 131として、オン時の飽和電圧が小さく電力損失が少ない IGBT (In sulated Gate Bipolar Transistor)を用いている。この自励式インバータ II、 12、 13は、 後述する情報処理装置 8の制御部 82を用いて、ゲートへの駆動信号によりオンオフ 制御され、動作パターン (スィッチパターン)が制御されるようにしている。 [0027] Self-excited inverters II, 12, and 13 are semiconductor switch elements 111, 121, and 131 and anti-parallel to them. Connected to capacitors Cl, C2, and C3 and converts the DC voltages Vh, Vm, and VI of capacitors Cl, C2, and C3 into AC voltages. Output to the power system. In the present embodiment, IGBTs (Insulated Gate Bipolar Transistors) are used as the semiconductor switch elements 111, 121, and 131, which have a small saturation voltage when turned on and low power loss. These self-excited inverters II, 12, and 13 are controlled to be turned on and off by a drive signal to the gate using a control unit 82 of the information processing apparatus 8 described later, so that an operation pattern (switch pattern) is controlled.
[0028] 初期充電用回路 5は、コンデンサ Cl、 C2、 C3に直流電圧 Vh、 Vm、 VIを充電 [0028] The initial charging circuit 5 charges capacitors Cl, C2, and C3 with DC voltages Vh, Vm, and VI.
0 0 0 するためのもので、充電用トランス 51を含み、前記コンデンサ Cl、 C2、 C3に対して 並列に接続している。なお、充電動作は装置起動時にのみ行われる。充電が完了す れば、図示しないスィッチにより前記コンデンサ Cl、 C2、 C3から電気的に切り離され 、自励式無効電力補償装置 1の動作には、なんら影響を与えない。  A charging transformer 51 is included, and is connected in parallel to the capacitors Cl, C2, and C3. The charging operation is performed only when the apparatus is activated. When charging is completed, the capacitor Cl, C2, C3 is electrically disconnected by a switch (not shown), and the operation of the self-excited reactive power compensator 1 is not affected at all.
[0029] しかして、本実施形態は、系統電圧 Vの位相角を測定するための位相測定部 6、コ [0029] Therefore, in the present embodiment, the phase measuring unit 6 for measuring the phase angle of the system voltage V,
P  P
ンデンサ電圧 Vh、 Vm、 VIを測定するためのコンデンサ電圧測定部 7、系統電圧 V  Capacitor voltage measurement unit 7 for measuring capacitor voltage Vh, Vm, VI, system voltage V
P  P
の波高値を測定するための系統電圧測定部 9及びそれらからの測定データに基づ いて出力電圧 V の波高値と位相を調整するための情報処理装置 8を備えるよう〖こ  The system voltage measurement unit 9 for measuring the crest value of the output voltage V and the information processing device 8 for adjusting the crest value and the phase of the output voltage V based on the measurement data from the system voltage measurement unit 9 should be provided.
SVC  SVC
している。  is doing.
[0030] 位相測定部 6は、系統電圧 Vの位相角を測定するものであり、その測定結果を示  [0030] The phase measurement unit 6 measures the phase angle of the system voltage V and displays the measurement result.
P  P
す位相角測定データを情報処理装置 8に出力するものである。  The phase angle measurement data is output to the information processing device 8.
[0031] コンデンサ電圧測定部 7は、コンデンサ Cl、 C2、 C3に充電されている電圧 Vh、 V m、 VIを測定するためのものであり、その電圧測定データを情報処理装置 8に出力 するものである。 [0031] The capacitor voltage measuring unit 7 is for measuring the voltages Vh, Vm, VI charged in the capacitors Cl, C2, and C3, and outputs the voltage measurement data to the information processing device 8. It is.
[0032] 系統電圧測定部 9は、系統電圧 Vの波高値を測定して、その測定結果を示す系統  [0032] The system voltage measurement unit 9 measures the crest value of the system voltage V and indicates the measurement result.
P  P
電圧測定データを情報処理装置 8に出力するものである。  The voltage measurement data is output to the information processing device 8.
[0033] 情報処理装置 8は、図 2に示すように、その機器構成は CPU801、メモリ 802、入出 力インターフェイス 803等を備えた汎用乃至専用のコンピュータであり、前記メモリ 80 2の所定領域に記憶させた所定プログラムにしたがって CPU801、周辺機器等を協 働させることにより、図 3に示すように、受付部 81及び制御部 82等としての機能を発 揮する。 As shown in FIG. 2, the information processing apparatus 8 is a general-purpose or dedicated computer having a CPU 801, a memory 802, an input / output interface 803, etc., and is stored in a predetermined area of the memory 802. By cooperating the CPU 801, peripheral devices, etc. according to the specified program, the functions as the reception unit 81, the control unit 82, etc. are generated as shown in FIG. Devour.
[0034] 受付部 81は、前述した各測定部からその測定データを受信して、制御部 82に出 力するものである。  The receiving unit 81 receives the measurement data from each measurement unit described above, and outputs it to the control unit 82.
[0035] 制御部 82は、受付部 81が受信した各測定データに基づいて、前記出力電圧 V  The control unit 82 is configured to output the output voltage V based on the measurement data received by the reception unit 81.
SVC  SVC
と前記系統電圧 Vとの位相差を制御して、交流周波数の 1サイクル毎に前記電力系  And the phase difference between the system voltage V and the power system every cycle of the AC frequency.
P  P
統と前記コンデンサ Cl、 C2、 C3の間で入出力するエネルギの総和の平均がゼロと なるよう〖こ調整するものである。つまり、各々のコンデンサ電圧 Vh、 Vm、 VIを監視し て充電エネルギと初期充電エネルギとの差に応じて電力系統との間で有効電力の出 し入れを行い、前記コンデンサ Cl、 C2、 C3の充電エネルギの総和 Eが一定値とな るように制御するものである。  This adjustment is made so that the average sum of energy input and output between the capacitor and the capacitors Cl, C2, and C3 is zero. In other words, each capacitor voltage Vh, Vm, VI is monitored and active power is input / output to / from the power system according to the difference between the charging energy and the initial charging energy, and the capacitors Cl, C2, C3 Control is performed so that the total charge energy E is a constant value.
[0036] 具体的には図 4のブロック線図に示すように系統電圧 Vに対する出力電圧 V の p SVC 位相差 Φを決定し、自励式無効電力補償装置 1の出力電圧 V の目標電圧 V を Specifically, as shown in the block diagram of FIG. 4, the p SVC phase difference Φ of the output voltage V with respect to the system voltage V is determined, and the target voltage V of the output voltage V of the self-excited reactive power compensator 1 is determined.
SVC ref 以下の式により計算して、インバータ II、 12、 13を制御するものである。  SVC ref Controls inverters II, 12, and 13 using the following formula.
[0037] [数 1] [0037] [Equation 1]
Figure imgf000009_0001
ここで、 Vは交流電源 2の交流電圧の波高値、 Xは電力系統のインピーダンス、 X
Figure imgf000009_0001
Where V is the peak value of the AC voltage of AC power supply 2, X is the impedance of the power system, X
P P s は自励式無効電力補償装置 1のリアタトル 10のインピーダンス、 Qは一般的な SV P P s is impedance of self-excited reactive power compensator 1 rear tutor 10 Q is general SV
VC VC
Cと同様に連系点電圧 Vの制御や、力率改善などの目的に応じて、情報処理装置 8 により演算される。  As with C, it is calculated by the information processing device 8 according to the purpose of controlling the interconnection point voltage V and improving the power factor.
[0038] なお、図 4のブロック線図においては、定数 Kは総和 Eと基準値 E の誤差是正に  [0038] In the block diagram of Fig. 4, the constant K is used to correct the error between the sum E and the reference value E.
1 c ref  1 c ref
要する時間を調整するための定数であり、定数 Kは総和 Eの時間的な振動を抑制  This constant is used to adjust the time required. The constant K suppresses the temporal vibration of the sum E.
2 c  2 c
するための定数である。また、定数 Kは、中間変数 Pを総和 Eと基準値 E の誤差是  It is a constant to do. The constant K is used to correct the error between the sum E and the reference value E.
3 c ref 正のための電力とみなし、それを自励式無効電飾補償装置 1と電力系統との間でや りとりするための系統電圧 Vと出力電圧 V の位相差 φに換算するための定数であ p SVC  3 c ref is regarded as positive power, and is converted into a phase difference φ between the system voltage V and the output voltage V for exchange between the self-excited reactive illumination compensator 1 and the power system. Constant p SVC
る。  The
[0039] ここで全コンデンサに蓄積されたエネルギの総和 E、基準値 E は、  [0039] Here, the sum E of energy stored in all capacitors and the reference value E are
c ref [0040] [数 2] c ref [0040] [Equation 2]
E c ニー (、 ' Vh2 + -CVm2 + U 2 E c knee (, 'Vh 2 + -CVm 2 + U 2
[数 3] [Equation 3]
Eref C3 . VI,2
Figure imgf000010_0001
とそれぞれ表される。なお、 Clは、コンデンサ CIの静電容量、 C2は、コンデンサ C2 の静電容量、 C3は、コンデンサ C3の静電容量である。
E ref C 3 .VI, 2
Figure imgf000010_0001
Respectively. Note that Cl is the capacitance of the capacitor CI, C2 is the capacitance of the capacitor C2, and C3 is the capacitance of the capacitor C3.
[0042] さらに、制御部 82は電圧 V を出力する際に、前記それぞれのコンデンサ Cl、 C  [0042] Further, when the control unit 82 outputs the voltage V, the respective capacitors Cl, C
SVC  SVC
2、 C3間の電圧比を所定の値 (Vh: Vm: Vl=4: 2: 1)に可及的に近づけるように、 前記自励式インバータ II、 12、 13毎の動作パターンを定めるものである。  2. The operation pattern for each of the self-excited inverters II, 12 and 13 is determined so that the voltage ratio between C3 and C3 is as close as possible to the predetermined value (Vh: Vm: Vl = 4: 2: 1). is there.
[0043] 具体的な自励式インバータ II、 12、 13の動作パターンについて以下に述べる。  [0043] Specific operation patterns of self-excited inverters II, 12, and 13 will be described below.
[0044] コンデンサ Cl、 C2、 C3には、初期充電状態では Vh = 2 XVm = 2 X 2 XV1の [0044] Capacitors Cl, C2, and C3 have Vh = 2 XVm = 2 X 2 XV1 in the initial charge state.
0 0 0 関係の電圧 Vh、 Vm、 VIを充電しているので、インバータ II、 12、 13の動作パター  0 0 0 Since the related voltages Vh, Vm, VI are charged, the operation patterns of inverters II, 12, 13
0 0 0  0 0 0
ンを選択の仕方により、 7段階のレベルの電圧 V を出力することができる。このとき  Depending on the selection method, 7 levels of voltage V can be output. At this time
SVC  SVC
最小出力レベルをレベル 1とする。また同一レベルの電圧 V を出力するにあたりィ  The minimum output level is level 1. When outputting the same level of voltage V
SVC  SVC
ンバータ II、 12、 13の動作パターンが複数通り選択可能な場合がある。  Multiple operation patterns of inverters II, 12, and 13 may be selectable.
[0045] 自励式インバータ II、 12、 13の動作パターンは、コンデンサ Cl、 C2、 C3の初期充 電電圧 Vh、 Vm、 VIを正規化した値 (Vh、 2Vm、 4V1 )と出力時の充電電圧を  [0045] The operation patterns of the self-excited inverters II, 12, and 13 are normalized values of the initial charging voltages Vh, Vm, and VI of the capacitors Cl, C2, and C3 (Vh, 2Vm, 4V1) and the charging voltage at the output. The
0 0 0 0 0 0  0 0 0 0 0 0
正規化した値 (Vh、 2Vm、 4V1)とを比較して、その値が乖離しているコンデンサ C1 、 C2、 C3の順番に優先的に補正するように決定している。  Compared with normalized values (Vh, 2Vm, 4V1), it is determined to preferentially correct in the order of capacitors C1, C2, and C3 where the values deviate.
[0046] つまり、図 5の表に示すように、コンデンサ Cl、 C2、 C3それぞれの電圧 Vh、 Vm、 VIの状態力 コンデンサ電圧条件のいずれの関係に当てはまるかにより、出カレべ ルに応じてその動作パターン、つまり放電及び充電を決定する。図 5の表において「 1」の場合にはそのコンデンサ Cl、 C2、 C3から放電し、「—1」の場合にはコンデンサ Cl、 C2、 C3へ充電する。但し、出力電流 I と出力電圧とが逆極性の場合は充放 電関係が逆になる。さらに、この場合にはコンデンサ電圧条件の不等号の向きも反対 になる。さらに、図 6には、電源回路 41、 42、 43に所定の出力動作をさせ、装置 1の 出力電圧 V 及び出力電流 I を出力する各電源回路 41、 42、 43の動作タイミン In other words, as shown in the table of FIG. 5, depending on the relationship between the state power of the capacitors Cl, C2, and C3, the voltage Vh, Vm, and VI of the capacitors, and the voltage conditions of the capacitors, it depends on the output level. The operation pattern, that is, discharging and charging is determined. In the table of Fig. 5, when it is “1”, the capacitor Cl, C2, C3 is discharged, and when it is “−1”, the capacitor Cl, C2, C3 is charged. However, when the output current I and the output voltage are opposite in polarity, they are charged / discharged. The electrical relationship is reversed. In this case, the direction of the inequality sign in the capacitor voltage condition is also reversed. Further, FIG. 6 shows the operation timing of each power supply circuit 41, 42, 43 that causes the power supply circuits 41, 42, 43 to perform a predetermined output operation and outputs the output voltage V and output current I of the device 1.
SVC SVC  SVC SVC
グを示している。  Is showing.
[0047] 次に、具体例として図 7にレベル 1の電圧 V を出力する場合の例を示す。レベル  Next, as a specific example, FIG. 7 shows an example in which the voltage V of level 1 is output. The level
SVC  SVC
1の電圧 V を出力するためのコンデンサ電圧 Vh、 Vm、 VIの組み合わせとしては、  The combination of capacitor voltages Vh, Vm, and VI to output 1 voltage V
SVC  SVC
[0048] (1)コンデンサ電圧 VIのみを放電する場合、  [0048] (1) When discharging only the capacitor voltage VI:
[0049] (2)コンデンサ電圧 Vmを放電し、コンデンサ電圧 VIを充電する場合、  [0049] (2) When discharging the capacitor voltage Vm and charging the capacitor voltage VI,
[0050] (3)コンデンサ電圧 Vhを放電し、コンデンサ電圧 Vm及びコンデンサ電圧 VIを充電 する場合、 [0050] (3) When discharging capacitor voltage Vh and charging capacitor voltage Vm and capacitor voltage VI,
[0051] の 3通りがある。これにより、コンデンサ電圧 Vm、 VIを充電することも放電することも 出力パターンの選択の仕方によって可能となる。つまり、それぞれの出力レベル毎に 、インバータ II、 12、 13の動作パターンを選択することで、各電源回路 41、 42、 43の コンデンサ電圧 Vh、 Vm、 VIが調整可能となる。  [0051] There are three ways. This makes it possible to charge and discharge the capacitor voltages Vm and VI, depending on how the output pattern is selected. In other words, the capacitor voltages Vh, Vm, VI of the power supply circuits 41, 42, 43 can be adjusted by selecting the operation pattern of the inverters II, 12, 13 for each output level.
[0052] 次に、このように構成した本実施形態に係る自励式無効電力補償装置 1の動作を 以下に述べる。  Next, the operation of the self-excited reactive power compensator 1 according to the present embodiment configured as described above will be described below.
[0053] まず、自励式無効電力補償装置 1を起動すると、系統電圧測定部 9が系統電圧 V  [0053] First, when the self-excited reactive power compensator 1 is activated, the system voltage measuring unit 9
P  P
の波高値を測定し、位相測定部 6が系統電圧 Vの位相を測定し、コンデンサ電圧測  The phase measurement unit 6 measures the phase of the system voltage V and measures the capacitor voltage.
P  P
定部 7がコンデンサ電圧 Vh、 Vm、 VIを測定して、それぞれ測定データを情報処理 装置 8に出力する。そして、その測定データを情報処理装置 8が受信して、制御部 82 により電力系統に無効電力 V を供給し始める。  The fixed unit 7 measures the capacitor voltages Vh, Vm, and VI, and outputs the measured data to the information processing device 8, respectively. Then, the information processing apparatus 8 receives the measurement data, and the control unit 82 starts to supply reactive power V to the power system.
SVC  SVC
[0054] その後に、コンデンサ電圧 Vh、 Vm、 VIに変動が生じた場合には、制御部 82が位 相測定データ及びコンデンサ電圧測定データに基づ 、て、図 4の制御ブロック線図 に示される制御手法により出力電圧 V の位相を調整する。これにより、コンデンサ  [0054] Thereafter, when the capacitor voltages Vh, Vm, and VI change, the control unit 82 is shown in the control block diagram of FIG. 4 based on the phase measurement data and the capacitor voltage measurement data. The phase of the output voltage V is adjusted according to the control method used. This allows the capacitor
SVC  SVC
Cl、 C2、 C3の充電エネルギの総和 Eが調整される。  The total charge energy E of Cl, C2, and C3 is adjusted.
[0055] さらに制御部 82は、コンデンサ電圧測定データにより、コンデンサ電圧 Vh、 Vm、 V 1が図 5のコンデンサ電圧条件のいずれに当てはまるかを判断し、各インバータ II、 12 、 13の半導体スィッチ素子 111、 121、 131の動作パターンを選択し、インバータ駆動 回路 11にインバータ駆動信号を出力する。これにより、インバータ II、 12、 13が所望 の動作をして出力電圧 V を出力すると共にコンデンサ電圧 Vh、 Vm、 VIの電圧比 [0055] Further, the control unit 82 determines, based on the capacitor voltage measurement data, which of the capacitor voltage conditions in FIG. 5 the capacitor voltages Vh, Vm, V1 apply, and the semiconductor switch elements of the inverters II, 12, 13 Select the operation pattern of 111, 121, 131 and drive with inverter The inverter drive signal is output to circuit 11. As a result, the inverters II, 12, and 13 perform the desired operation to output the output voltage V and the voltage ratio of the capacitor voltages Vh, Vm, and VI.
SVC  SVC
が Vh: Vm: VI = 4: 2: 1の関係に補正される。  Is corrected to the relationship of Vh: Vm: VI = 4: 2: 1.
[0056] 次に、図 10に示す具体的な条件設定による自励式無効電力補償装置 1の動作シ ミュレーシヨンの結果を示す。本シミュレーションにおいては、装置 1の起動後時刻 2 [ S]〜4[S]において 20%の電圧低下が発生したとしている。ここでは、今まで用いて きた直流電源の電圧の [%]を [V]と読み替える。なお、比較のため、従来の 3パルス (搬送波周波数 180Hz) PWMインバータのみを用いた場合の動作シミュレーション 結果を図 8に、 16パルス (搬送波周波数 960Hz) PWMインバータのみを用いた場 合の動作シミュレーション結果を図 9に示す。  Next, the result of the operation simulation of the self-excited reactive power compensator 1 under the specific condition setting shown in FIG. 10 is shown. In this simulation, it is assumed that a voltage drop of 20% occurred at time 2 [S] to 4 [S] after startup of device 1. Here, [%] of the voltage of the DC power supply used so far is read as [V]. For comparison, Fig. 8 shows the operation simulation results when only the conventional 3-pulse (carrier frequency 180Hz) PWM inverter is used, and the operation simulation results when only the 16-pulse (carrier frequency 960Hz) PWM inverter is used. Figure 9 shows.
[0057] 図 11に示すように、制御部 82によってインバータ II、 12、 13が PWM制御され、出 力電圧 V が調整される。このとき、インバータ II、 12、 13のスィッチ回数は、半周期  As shown in FIG. 11, inverters II, 12, and 13 are PWM-controlled by control unit 82, and output voltage V is adjusted. At this time, the number of switches of inverters II, 12, 13
SVC  SVC
毎にコンデンサ電圧 Vhは 1パルス、コンデンサ電圧 Vmは 3パルス、コンデンサ電圧 VIは 7パルスであり、等価的なスィッチ回数は 2. 4パルス(= (60 [V] X 1パルス + 3 0[V] X 3パルス + 15 [V] X 7パルス) Z105 [V])とみなすことができ、 3パルスイン バータ以下であることが確認できる。さらに、図 8、図 9の結果に比べて出力電圧 V  Capacitor voltage Vh is 1 pulse, Capacitor voltage Vm is 3 pulses, Capacitor voltage VI is 7 pulses, and the equivalent number of switches is 2.4 pulses (= (60 [V] X 1 pulse + 3 0 [V ] X 3 pulses + 15 [V] X 7 pulses) Z105 [V]), which can be confirmed to be 3 pulse inverter or less. In addition, compared to the results in Figs. 8 and 9, the output voltage V
SVC  SVC
の高調波成分がはるかに少ないことがわかる。  It can be seen that there are far fewer harmonic components.
[0058] また、図 11において例えば出力レベル 3 (45 [V])を出力するとき (A部分)には、コ ンデンサ Cl、 C3が充電され、コンデンサ C2が放電されている様子を確認することが できる。  [0058] In FIG. 11, for example, when output level 3 (45 [V]) is output (part A), confirm that capacitors Cl and C3 are charged and capacitor C2 is discharged. Is possible.
[0059] 図 12に示す位相差の推移は、系統電圧 Vが正常な時刻(1〜2[S]、 4〜5 [S])に  [0059] The transition of the phase difference shown in FIG. 12 is the time when the system voltage V is normal (1 to 2 [S], 4 to 5 [S]).
P  P
おいては 0. 23 [rad]程度に安定している。さらに、時刻 2[S]〜4[S]の電圧低下 の間には 0. 5 [rad]程度に安定して 、ることが分かる。  It is stable at about 0.23 [rad]. Furthermore, it can be seen that it stabilizes to about 0.5 [rad] during the voltage drop from time 2 [S] to 4 [S].
[0060] コンデンサ電圧 Vh、 Vm、 VIの調整機能が良好に動作した結果は,図 13に示され ている。系統電圧 Vに急激な変動があるにも関わらず、コンデンサ電圧 Vh、 Vm、 VI [0060] Figure 13 shows the results of the successful adjustment of the capacitor voltages Vh, Vm, and VI. Capacitor voltages Vh, Vm, VI even though the system voltage V has abrupt fluctuations
P  P
は全時間にわたり、ほぼ 60[V]、 30[V]、 15 [V]に安定している様子が分かる。  It can be seen that is stable at almost 60 [V], 30 [V], 15 [V] over the entire time.
[0061] また、系統電圧 V力 ¾0[V]に低下しているにも関わらず、連系点電圧 V «90 [V] [0061] Although the system voltage V force is reduced to ¾0 [V], the connection point voltage V «90 [V]
P t 程度に維持できており、本来の自励式無効電力補償装置 1としての電圧安定ィヒ効果 ち確認でさる。 Voltage stability effect as the original self-excited reactive power compensator 1 Check it.
[0062] また、図 14に示す結果において、本装置 1が電力系統に遅れ電流 i を供給し、  [0062] In the result shown in FIG. 14, the present apparatus 1 supplies a delayed current i to the power system,
SVC  SVC
系統側からみた負荷力率 (cos Z (V , i ) )を良好に改善できていることがわかる。  It can be seen that the load power factor (cos Z (V, i)) seen from the grid side can be improved satisfactorily.
P P  P P
[0063] このように構成した自励式無効電力補償装置 1によれば、異なる出力電圧 Vh、 Vm 、 VIの電源回路 41、 42、 43を複数直列に接続して構成しており、その組み合わせ により出力する電圧の大きさを変更することができ、インバータ II、 12、 13の等価的な スィッチ回数を減らすことが出来るので高性能化且つ高効率ィ匕を実現することができ る。  [0063] According to the self-excited reactive power compensator 1 configured as described above, a plurality of power supply circuits 41, 42, and 43 having different output voltages Vh, Vm, and VI are connected in series. The magnitude of the output voltage can be changed, and the number of equivalent switches of inverters II, 12, and 13 can be reduced, so that high performance and high efficiency can be realized.
[0064] つまり、トータルで最大出力電圧 105Vの 15レベルインバータが構成でき、この 15 レベルインバータの出力電圧 V の総合歪率は高調波フィルタを用いなくとも 4%程  [0064] In other words, a 15-level inverter with a maximum output voltage of 105V can be configured in total, and the total distortion of the output voltage V of this 15-level inverter is about 4% without using a harmonic filter.
SVC  SVC
度と、 16パルスインバータ (搬送波約 1kHzのインバータ)に比べて遙かに高性能で ある。さらに、等価的なスィッチ回数は 2. 4パルスと 3パルスインバータ以下で例えば 105 [V]の単器インバータで 1kHzの PWM制御を行った場合、すなわち 16パルスィ ンバータと比べて、スイッチング損失は 15%程度で済む。以上のように本実施形態 によれば高性能且つ高効率を両立することができる。  Compared with a 16-pulse inverter (inverter with a carrier wave of about 1 kHz), it is much higher performance. Furthermore, the equivalent number of switches is 2.4 and 3 pulse inverters or less. For example, when 1kHz PWM control is performed with a single inverter of 105 [V], that is, compared with a 16-pulse inverter, the switching loss is 15%. It only takes about. As described above, according to the present embodiment, both high performance and high efficiency can be achieved.
[0065] さらに、制御部 82が、前記出力電圧 V と前記系統電圧 Vとの位相差を制御して Further, the control unit 82 controls the phase difference between the output voltage V and the system voltage V.
SVC p  SVC p
、交流周波数の 1サイクル毎に前記電力系統と前記コンデンサ Cl、 C2、 C3の間で 入出力するエネルギの総和の平均がゼロとなるように調整し、電圧 V を出力する  , Adjust the average sum of energy input and output between the power system and the capacitors Cl, C2, and C3 every cycle of the AC frequency to output a voltage V
SVC  SVC
際に、前記それぞれのコンデンサ Cl、 C2、 C3間の電圧比を所定の値 (Vh:Vm:Vl =4 : 2 : 1)に可及的に近づけるように、前記自励式インバータ II、 12、 13毎の動作パ ターンを定めるものであるので、本実施形態の効果を一層顕著にすることができる。  The self-excited inverters II, 12, so that the voltage ratio between the respective capacitors Cl, C2, C3 is as close as possible to a predetermined value (Vh: Vm: Vl = 4: 2: 1). Since the operation pattern is determined every thirteen, the effect of the present embodiment can be made more remarkable.
[0066] <第 2実施形態 > [0066] <Second Embodiment>
[0067] 次に本発明に係る自励式無効電力補償装置 1の第 2実施形態について図面を参 照して説明する。  Next, a second embodiment of the self-excited reactive power compensator 1 according to the present invention will be described with reference to the drawings.
[0068] 本実施形態に係る自励式無効電力補償装置 1は、前記第 1実施形態と制御部 82 の機能が異なる。つまり、本実施形態の制御部 82は、図 15に示すように、コンデンサ Cl、 C2、 C3の電圧 Vh、 Vm、 VIの和 (Vh+Vm+Vl)を出力電圧 V の波高値と  [0068] The self-excited reactive power compensator 1 according to the present embodiment differs from the first embodiment in the function of the control unit 82. That is, as shown in FIG. 15, the control unit 82 of the present embodiment uses the sum of the voltages Vh, Vm, and VI (Vh + Vm + Vl) of the capacitors Cl, C2, and C3 as the peak value of the output voltage V.
SVC  SVC
可及的に同一とし、かつそれぞれのコンデンサ電圧 Vh、 Vm、 VIの比が、 Vh:Vm: Vl=4 : 2 : 1の関係を維持するように、自励式インバータ II、 12、 13毎の動作を定め、 出力電圧 V の波高値に関わらず常に 15レベルの電圧を出力できるようにする機 The ratio of the capacitor voltages Vh, Vm, VI is as follows as Vh: Vm: In order to maintain the relationship of Vl = 4: 2: 1, the operation of each of the self-excited inverters II, 12 and 13 is determined so that a voltage of 15 levels can always be output regardless of the peak value of the output voltage V.
SVC  SVC
能も有する。  It also has the ability.
[0069] なお、図 15においては、例えば出力電圧が、 105 [V]から 90 [V]に変化した時の 出力電圧 V 及び、そのときの各電源回路 41、 42、 43の動作タイミングを示してい  [0069] FIG. 15 shows, for example, the output voltage V when the output voltage changes from 105 [V] to 90 [V], and the operation timing of each of the power supply circuits 41, 42, and 43 at that time. Have
SVC  SVC
る。このとき、本実施形態の制御部 82は、各コンデンサ Cl、 C2、 C3の電圧 Vh、 Vm 、 VI力 Sそれぞれ 51. 44[V]、 25. 72[V]、 12. 86 [V]となるように自励式インノータ II、 12、 13を制御する。  The At this time, the control unit 82 of the present embodiment sets the voltages Vh, Vm, and VI force S of the capacitors Cl, C2, and C3 to 51.44 [V], 25.72 [V], and 12.86 [V], respectively. Control self-excited innotators II, 12, and 13 so that
[0070] さらに、本実施形態の制御部 82は、装置 1の構成部品の耐電圧性能および電流容 量に基づいて出力電圧 V の波高値を制限し、上記のように 15レベルの電圧を出  Further, the control unit 82 of the present embodiment limits the peak value of the output voltage V based on the withstand voltage performance and current capacity of the components of the device 1, and outputs 15 levels of voltage as described above.
SVC  SVC
力できるようにするものである。  It is something that can help you.
[0071] 具体的には、図 16のブロック線図に示すように、演算部 (R)を介して、出力電圧 V  Specifically, as shown in the block diagram of FIG. 16, the output voltage V
S  S
の波高値の暫定値 |Vz|を算出する。算出した暫定値 |Vz|を第 2リミッタ部 (T)を介し The provisional value | Vz | The calculated provisional value | Vz | is passed through the second limiter section (T).
VC VC
て判断し、その暫定値 |Vz|が装置 1の耐電圧性能を超えて 、な 、場合および暫定値 I Vz|より定まる出力電流が装置 1の電流容量を超えていない場合には、その暫定値 |v z|を、出力電圧 V の目標値 V の波高値 |v Iに決定する。一方、その暫定値 I Vz|  If the provisional value | Vz | exceeds the withstand voltage performance of the device 1 and the output current determined by the provisional value I Vz | does not exceed the current capacity of the device 1, the provisional value | Vz | The value | vz | is determined as the peak value | v I of the target value V of the output voltage V. Meanwhile, the provisional value I Vz |
SVC ref ref  SVC ref ref
が装置 lの耐電圧性能を超えている場合、又は暫定値 |Vz|より定まる出力電流が装 置 1の電流容量を超えている場合には、それらを満たす所定の波高値 |v Iに決定す ret る。  If the output voltage exceeds the withstand voltage performance of device l, or if the output current determined by the provisional value | Vz | exceeds the current capacity of device 1, the predetermined peak value | v I that satisfies them is determined. Ret.
[0072] ここで、図 16中の |V Iは連系点電圧 Vの波高値の目標値で、時間領域において一 定値である。 Vは、連系点電圧の時間領域における瞬時値、 Eは、コンデンサ Cl、 C2、 C3の充電エネルギの総和の時間領域における瞬時値、 RMSブロックは、瞬時 値を実効値に変換するものである。第 1リミッタ部(S)は、第 2リミッタ部 (T)により |V I と IV Iの誤差が生じた場合に、前段の積分部の出力が発散しないよう設けるものであ る。  Here, | V I in FIG. 16 is a target value of the peak value of interconnection point voltage V, and is a constant value in the time domain. V is the instantaneous value of the connection point voltage in the time domain, E is the instantaneous value in the time domain of the sum of the charging energy of the capacitors Cl, C2, and C3, and the RMS block converts the instantaneous value to an effective value. . The first limiter section (S) is provided so that the output of the previous integration section does not diverge when an error of | V I and IV I occurs due to the second limiter section (T).
[0073] 一方、コンデンサ電圧 Vh、 Vm、 VIの和 Vh+ Vm+ VIの目標値 |V |は、波高値 |V c re [0073] On the other hand, the target value of Vh + Vm + VI | V | is the peak value | V c re
Iを第 3リミッタ部 (U)を介して決定する。 I is determined via the third limiter unit (U).
f  f
[0074] 次に、コンデンサ Cl、 C2、 C3の充電エネルギ Eと目標値 E の差が定常状態に c ref おいてゼロとなるようにコンデンサ Cl、 C2、 C3に入出力する有効電力 Psを決定する 。そして、定数 Kによる換算により、有効電力 Psを自励式無効電力補償装置 1と電 [0074] Next, the difference between the charging energy E of the capacitors Cl, C2, and C3 and the target value E is in a steady state. C ref The active power Ps input / output to / from the capacitors Cl, C2, and C3 is determined so as to be zero. The active power Ps is converted to the self-excited reactive power compensator 1 and the power by conversion using the constant K.
4  Four
力系統との間でやりとりするための系統電圧 Vと、出力電圧 V の目標電圧 V の t SVC ref 位相差 Φが決定される。そして、自励式無効電力補償装置 1の出力電圧の目標電圧 VV をを以下の式により計算して、インバータ II、 12、 13を制御するものである。  The system voltage V to be exchanged with the power system and the t SVC ref phase difference Φ of the target voltage V of the output voltage V are determined. Then, the target voltage VV of the output voltage of the self-excited reactive power compensator 1 is calculated by the following formula to control the inverters II, 12, and 13.
ref  ref
[0075] [数 4]
Figure imgf000015_0001
[0075] [Equation 4]
Figure imgf000015_0001
[0076] ここで、 ωは電力系統の基本周波数である。  [0076] Here, ω is the fundamental frequency of the power system.
[0077] 次に、図 17に示す具体的な条件設定による自励式無効電力補償装置 1の動作シ ミュレーシヨンの結果を図 18に示す。本シミュレーションにおいては、装置 1の起動後 時刻 2 [S]〜4[S]において 30%の電圧低下が発生したとしている。また、コンデンサ Cl、 C2、 C3の静電容量はそれぞれ 100[mF]、 200[mF]、 400[mF]である。  Next, FIG. 18 shows the result of the operation simulation of the self-excited reactive power compensator 1 under the specific condition setting shown in FIG. In this simulation, it is assumed that a voltage drop of 30% occurred at time 2 [S] to 4 [S] after startup of device 1. The capacitances of capacitors Cl, C2, and C3 are 100 [mF], 200 [mF], and 400 [mF], respectively.
[0078] ここで、図 16における第 2リミッタ部 (T)は、装置 1の構成部品の耐電圧性能および 電流容量に基づいて出力電圧の範囲を定めるものであり、その最大リミッタ値は min ( I V I + 50[V]ゝ 140[V])、つまり、系統電圧の波高値 I V I + 50[V]と 140[V ]との小さい方の値であり、最小リミッタ値は、系統電圧の波高値 I V I — 50[V]で ある。第 3リミッタ部 (U)は、コンデンサ Cl、 C2、 C3などの装置 1の構成部品の耐電 圧性能に基づいて定められるものであり、その最大リミッタ値は 120[V]であり、最小 リミッタ値は 0[V]である。第 1リミッタ部(S)の、最大リミッタ値は 40 [V]で、最小リミツ タ値は一 40 [V]である。  Here, the second limiter section (T) in FIG. 16 determines the output voltage range based on the withstand voltage performance and current capacity of the components of the apparatus 1, and the maximum limiter value is min ( IVI + 50 [V] ゝ 140 [V]), that is, the peak value of the grid voltage IVI + 50 [V] and 140 [V], which is the smaller value, and the minimum limiter value is the peak value of the grid voltage IVI — 50 [V]. The third limiter part (U) is determined based on the withstand voltage performance of the components of the device 1, such as capacitors Cl, C2, and C3. Its maximum limiter value is 120 [V], and the minimum limiter value Is 0 [V]. The first limiter (S) has a maximum limiter value of 40 [V] and a minimum limiter value of 1 [V].
[0079] このとき、自励式無効電力補償装置 1が電力系統に出力すべき電圧 V は、 140 [  [0079] At this time, the voltage V that the self-excited reactive power compensator 1 should output to the power system is 140 [
SVC  SVC
V]となり、図 18に示すように、コンデンサ C1の電圧 Vhは、 56 [V]から 68 [V]に上昇 しており、コンデンサ C21の電圧 Vmは、 28 [V]から 34 [V]に上昇しており、コンデン サ C3の電圧 VIは、 14 [V]から 17 [V]に上昇しており、これらの合計値は 119 [V]と なっている。これにより、系統電圧 Vは、 100 [V]から 70 [V]まで 30%低下している  V], and as shown in FIG. 18, the voltage Vh of the capacitor C1 is increased from 56 [V] to 68 [V], and the voltage Vm of the capacitor C21 is changed from 28 [V] to 34 [V]. The voltage VI of capacitor C3 has risen from 14 [V] to 17 [V], and the total value of these is 119 [V]. As a result, the system voltage V drops by 30% from 100 [V] to 70 [V].
P  P
にも関わらず、連系点電圧 Vは 90[V]程度に維持できており、本来の自励式無効電 力補償装置としての電圧安定ィ匕効果を確認できる。 [0080] このように構成した自励式無効電力補償装置 1によれば、所望の出力電圧 V に Nevertheless, the interconnection voltage V can be maintained at about 90 [V], confirming the voltage stability effect of the original self-excited reactive power compensator. [0080] According to the self-excited reactive power compensator 1 configured as described above, the desired output voltage V
SVC  SVC
応じて、コンデンサ電圧 Vh、 Vm、 VIの大きさを 4 : 2 : 1の関係を維持しながら上下さ せることができ、出力電圧 V に関わらず常に 15レベルの高精度な電圧出力を可  Accordingly, the capacitor voltages Vh, Vm, VI can be increased or decreased while maintaining the 4: 2: 1 relationship, and 15 levels of high-accuracy voltage output is always possible regardless of the output voltage V.
SVC  SVC
能にすることができるので、低電圧出力時においても、電圧の出力レベル数を減らす ことなく高精度な電圧出力が可能となる。さらに、このとき、装置 1の構成部品の耐電 圧性能および電流容量を考慮して出力電圧 V の最大値を算出しているので、安  Therefore, even during low-voltage output, high-accuracy voltage output is possible without reducing the number of voltage output levels. At this time, the maximum value of the output voltage V is calculated in consideration of the withstand voltage performance and current capacity of the components of the device 1.
SVC  SVC
定な装置動作を確保することができる。  A certain device operation can be ensured.
[0081] なお、本発明は前記実施形態に限られるものではない。  Note that the present invention is not limited to the above-described embodiment.
[0082] 例えば、前記実施形態では電源回路を 3つ直列接続したがこれに限られず、 2つ 直列に接続しても良 ヽし、 4つ以上直列接続するように構成しても構わな!/ヽ。  [0082] For example, in the embodiment, three power supply circuits are connected in series. However, the present invention is not limited to this, and two power supply circuits may be connected in series, or four or more power supply circuits may be connected in series! / ヽ.
[0083] また、コンデンサ電圧の電圧比を 2のべき乗の関係にした力 この他の電圧比により 構成しても良い。  [0083] Further, a force that makes the voltage ratio of the capacitor voltage a power of 2 may be used.
[0084] 前記実施形態では、 1つの電源回路に 1つのコンデンサのみを用いて出力電圧を 異ならせている力 1つの電源回路に複数のコンデンサを直列接続して、異なる出力 電圧を出力するようにしても良!ヽ。  [0084] In the above-described embodiment, only one capacitor is used for one power supply circuit and the output voltage is different. A plurality of capacitors are connected in series to one power supply circuit to output different output voltages. OK!
[0085] さらに、前記実施形態ではエネルギ蓄積手段としてコンデンサを用いたがこれに限 られず、例えばバッテリーを用いても良い。 Furthermore, in the above-described embodiment, the capacitor is used as the energy storage unit. However, the present invention is not limited to this. For example, a battery may be used.
[0086] その上、半導体スィッチ素子には IGBTを用いたがこれに限られることなぐ例えば ゲートターンオフサイリスタのような自己消弧形半導体スィッチ素子であっても差支え ない。 In addition, although IGBT is used as the semiconductor switch element, it is not limited to this, and a self-extinguishing semiconductor switch element such as a gate turn-off thyristor may be used.
[0087] また、それらのスィッチ素子を直列接続したものを 1つのスィッチとして用いても良い  [0087] In addition, a switch in which those switch elements are connected in series may be used as one switch.
[0088] 前記実施形態では、正規化して最も乖離したものを補正するようにして!/ヽるが、この 他にも、正規ィ匕しないで初期充電電圧と実際の電圧とを比較して最も乖離しているも のを補正するようにしても良い。 [0088] In the above embodiment, normalization is corrected so as to correct the most dissimilarity, but in addition to this, the initial charge voltage is compared with the actual voltage without normalization and the You may make it correct what has deviated.
[0089] 上記にカ卩えて、前記実施形態ではコンデンサ全体のエネルギを調整する際に、全 てにコンデンサ電圧の総和を考慮して調整した力 一番大きい電圧を充電しているコ ンデンサ電圧のみを考慮して調整するようにしても良いし、 2つのコンデンサ電圧を 考慮して調整するようにしても良 ヽ。 In view of the above, in the above embodiment, when the energy of the entire capacitor is adjusted, only the capacitor voltage that is charged with the largest voltage is adjusted in consideration of the sum of the capacitor voltages. May be adjusted in consideration of the two capacitor voltages. It is okay to make adjustments in consideration.
[0090] 式 1の目標電圧 V は、装置の系統連系点の電圧 Vの波高値と位相を計測し、装  [0090] The target voltage V in Equation 1 is measured by measuring the peak value and phase of the voltage V at the grid connection point of the device.
ref t  ref t
置 1のリアクトル 10のインピーダンス X を用いて算出することもできる。  It can also be calculated using the impedance X of reactor 10 of device 1.
svc  svc
[0091] [数 5] ef (0 = Yt + Q/Xsvc ) x sin ( + ) [0091] [Equation 5] ef (0 = Y t + Q / X svc ) x sin (+)
[0092] 直流電圧の総和は、必ずしも 105 [%] ( = 60[%] + 30[%] + 15 [%])である必 要はなぐ一般的な SVC同様に、系統条件や要求性能力も設計すればよい。  [0092] The total DC voltage is not necessarily 105 [%] (= 60 [%] + 30 [%] + 15 [%]). Can also be designed.
[0093] 本発明は、単相用途に限られるものではなぐこれまでの説明の電圧'電流諸量を[0093] The present invention is not limited to single-phase applications.
3相交流における正相 ·逆相成分として取り扱えば、 3交流系統へも適用できる。 If it is treated as a normal / reverse phase component in a three-phase AC, it can also be applied to a three-AC system.
[0094] 更に加えて、前記第 2実施形態では、出力電圧を算出する際に、第 1リミッタ部、第In addition, in the second embodiment, when the output voltage is calculated, the first limiter unit, the first limiter unit,
2リミッタ部、第 3リミッタ部を設けて、出力電圧の最大値を制限していたが、これらリミ ッタ部を設けることなく出力電圧を算出するようにしても良 、。 Although the 2 limiter unit and the 3rd limiter unit are provided to limit the maximum value of the output voltage, the output voltage may be calculated without providing these limiter units.
[0095] この他、本発明の趣旨を逸脱しない範囲で種々の変形が可能であることは言うまで もない。 [0095] Needless to say, various modifications can be made without departing from the spirit of the present invention.
産業上の利用可能性  Industrial applicability
[0096] 以上のように、本発明に係る自励式無効電力補償装置は、異なる出力電圧の電源 回路を複数直列に接続して構成しており、その組み合わせにより出力する電圧の大 きさ変化させることができ、インバータ全体の等価的なスィッチ回数を減らすことが出 来るので高性能且つ高効率を実現することができる。 [0096] As described above, the self-excited reactive power compensator according to the present invention is configured by connecting a plurality of power supply circuits having different output voltages in series, and the magnitude of the output voltage is changed by the combination thereof. It is possible to reduce the number of equivalent switches of the entire inverter, and thus high performance and high efficiency can be realized.

Claims

請求の範囲 The scope of the claims
[1] 電力系統に並列に接続され、その電力系統に無効電力を供給することにより、当該 電力系統の電圧調整や負荷の力率改善を行う自励式無効電力補償装置であって、 充放電機能を有する直流電源と、当該直流電源に接続され、その直流電源の電圧 を交流電圧に変換して前記電力系統に出力する自励式インバータとからなる電源回 路を複数直列に接続して構成するとともに、前記それぞれの直流電源の電圧を互い に異ならせて!/ヽることを特徴とする自励式無効電力補償装置。  [1] A self-excited reactive power compensator that is connected in parallel to a power system and supplies reactive power to the power system to adjust the voltage of the power system and improve the power factor of the load. A plurality of power supply circuits connected in series and connected to the DC power supply, and a self-excited inverter that converts the voltage of the DC power supply into an AC voltage and outputs the AC voltage to the power system. A self-excited reactive power compensator characterized in that the voltages of the respective DC power supplies are different from each other!
[2] 前記それぞれの直流電源の電圧比が略 2のべき乗の関係にあることを特徴とする 請求項 1記載の自励式無効電力補償装置。  2. The self-excited reactive power compensator according to claim 1, wherein voltage ratios of the respective DC power supplies are in a power-of-two relationship.
[3] 前記直流電源がコンデンサであることを特徴とする請求項 1又は 2記載の自励式無 効電力補償装置。 3. The self-excited reactive power compensator according to claim 1 or 2, wherein the DC power supply is a capacitor.
[4] 前記出力電圧と前記系統電圧との位相差を制御して、前記電力系統と前記それぞ れの直流電源の間で入出力するエネルギの総和の平均が略ゼロとなるように調整す る制御部を備えていることを特徴とする請求項 1、 2又は 3記載の自励式無効電力補 償装置。  [4] The phase difference between the output voltage and the system voltage is controlled to adjust the average sum of energy input and output between the power system and each DC power supply to be substantially zero. The self-excited reactive power compensation device according to claim 1, 2 or 3, further comprising a control unit.
[5] 前記制御部が、所望の出力電圧を出力する際に、前記それぞれの直流電源間の 電圧比を所定の値に可及的に近づけるように、前記自励式インバータ毎の動作を定 めるものであることを特徴とする請求項 4記載の自励式無効電力補償装置。  [5] When the control unit outputs a desired output voltage, the operation of each self-excited inverter is defined so that the voltage ratio between the DC power sources is as close as possible to a predetermined value. 5. The self-excited reactive power compensator according to claim 4, wherein
[6] 前記制御部が、交流周波数の 1Z4サイクル毎又は 1Z2サイクル毎又は整数サイ クル毎に前記直流電源毎に通過する電荷量の平均がゼロとなるように調整することを 特徴とする請求項 5記載の自励式無効電力補償装置。  [6] The control unit may perform adjustment so that an average of the amount of charge passing for each DC power supply becomes zero every 1Z4 cycle, every 1Z2 cycle, or every integer cycle of an AC frequency. 5. The self-excited reactive power compensator according to 5.
[7] 前記制御部が、構成部品の耐電圧性能および電流容量に基づ!、て、前記無効電 力を出力するための出力電圧の上下限を制限し、その範囲において、前記それぞれ の直流電源の電圧の和を前記出力電圧と可及的に略等しくなるように前記自励式ィ ンバータ毎の動作を定めるものであることを特徴とする請求項 5又は 6記載の自励式 無効電力補償装置。  [7] The control unit restricts the upper and lower limits of the output voltage for outputting the reactive power based on the withstand voltage performance and current capacity of the component, and within the range, the respective DC 7. The self-excited reactive power compensator according to claim 5 or 6, wherein an operation for each of the self-excited inverters is determined so that a sum of the voltages of the power supplies becomes as close as possible to the output voltage. .
[8] 電力系統に並列に接続され、その電力系統に無効電力を供給することにより、当該 電力系統の電圧調整や負荷の力率改善を行う自励式無効電力補償装置であって、 コンデンサと、当該コンデンサに接続され、そのコンデンサの電圧を交流電圧に変 換して前記電力系統に出力する自励式インバータとからなる電源回路を 3組直列に 接続して構成するとともに、前記出力電圧と前記系統電圧との位相差を制御して、前 記電力系統と前記それぞれのコンデンサの間で入出力するエネルギの総和を調整 する制御部を備え、 [8] A self-excited reactive power compensator that is connected in parallel to a power system and supplies the reactive power to the power system, thereby adjusting the voltage of the power system and improving the power factor of the load. A power supply circuit comprising a capacitor and a self-excited inverter that is connected to the capacitor and converts the voltage of the capacitor into an AC voltage and outputs it to the power system is connected in series, and the output voltage And a control unit that controls the phase difference between the power system and the system voltage, and adjusts the sum of energy input and output between the power system and the respective capacitors,
前記それぞれのコンデンサの電圧が略 4: 2: 1の関係であり、  The voltage of each capacitor is approximately 4: 2: 1.
前記制御部が、構成部品の耐電圧性能および電流容量に基づいて、前記無効電 力を出力するための出力電圧の上下限を制限し、その範囲において、前記コンデン サ電圧の和を前記出力電圧と可及的に略等しくし、かつ前記それぞれのコンデンサ の電圧の比が略 4: 2: 1の関係を維持するように、前記自励式インバータ毎の動作を 定めるものであることを特徴とする自励式無効電力補償装置。  The control unit limits the upper and lower limits of the output voltage for outputting the reactive power based on the withstand voltage performance and current capacity of the component parts, and in that range, the sum of the capacitor voltages is added to the output voltage. And the operation of each self-excited inverter is defined so that the voltage ratio of the capacitors is approximately 4: 2: 1. Self-excited reactive power compensator.
PCT/JP2005/022695 2004-12-16 2005-12-09 Self-excited reactive power compensating apparatus WO2006064742A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006548811A JPWO2006064742A1 (en) 2004-12-16 2005-12-09 Self-excited reactive power compensator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-364420 2004-12-16
JP2004364420 2004-12-16

Publications (1)

Publication Number Publication Date
WO2006064742A1 true WO2006064742A1 (en) 2006-06-22

Family

ID=36587798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022695 WO2006064742A1 (en) 2004-12-16 2005-12-09 Self-excited reactive power compensating apparatus

Country Status (2)

Country Link
JP (1) JPWO2006064742A1 (en)
WO (1) WO2006064742A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048536A (en) * 2006-08-16 2008-02-28 Mitsubishi Electric Corp Reactive power compensating device
EP2113140A1 (en) * 2007-02-20 2009-11-04 ABB Limited Flux control system for active voltage conditioning
CN102835019A (en) * 2010-02-24 2012-12-19 雷纳·马奎特 Circuit arrangement for modular drive power converters
WO2014189097A1 (en) * 2013-05-24 2014-11-27 株式会社 東芝 Power conversion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359928A (en) * 2001-03-30 2002-12-13 Mitsubishi Electric Corp Voltage variation compensator
JP2003189475A (en) * 2001-12-20 2003-07-04 Fuji Electric Co Ltd System linked power converter
JP2003289672A (en) * 2002-03-28 2003-10-10 Toshiba Corp Power converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359928A (en) * 2001-03-30 2002-12-13 Mitsubishi Electric Corp Voltage variation compensator
JP2003189475A (en) * 2001-12-20 2003-07-04 Fuji Electric Co Ltd System linked power converter
JP2003289672A (en) * 2002-03-28 2003-10-10 Toshiba Corp Power converter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048536A (en) * 2006-08-16 2008-02-28 Mitsubishi Electric Corp Reactive power compensating device
EP2113140A1 (en) * 2007-02-20 2009-11-04 ABB Limited Flux control system for active voltage conditioning
EP2113140A4 (en) * 2007-02-20 2010-04-14 Abb Ltd Flux control system for active voltage conditioning
US8143747B2 (en) 2007-02-20 2012-03-27 Abb Limited Flux control system for active voltage conditioning
CN102835019A (en) * 2010-02-24 2012-12-19 雷纳·马奎特 Circuit arrangement for modular drive power converters
CN102835019B (en) * 2010-02-24 2015-04-15 Ecpe动力电子技术工程中心责任有限公司 Circuit arrangement for modular drive power converters
WO2014189097A1 (en) * 2013-05-24 2014-11-27 株式会社 東芝 Power conversion device

Also Published As

Publication number Publication date
JPWO2006064742A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
US8508957B2 (en) Power conversion device for converting DC power to AC power
US8994216B2 (en) Power conversion apparatus
US20180138823A1 (en) Power Factor Adjustment in Multi-Phase Power System
US7577007B2 (en) Power converting apparatus
US8400792B2 (en) Power conversion apparatus
US7230837B1 (en) Method and circuit for cascaded pulse width modulation
US10998830B2 (en) Power conversion device and three-phase power conversion device
US10079558B2 (en) Switching scheme for static synchronous compensators using cascaded H-bridge converters
US11228258B2 (en) Uninterruptible power supply apparatus
US20070223258A1 (en) Multilevel converters for intelligent high-voltage transformers
JP2005533473A (en) Inverter
EP1687892A2 (en) Multifunction hybrid intelligent universal transformer
JP6178433B2 (en) Power converter
WO2006064742A1 (en) Self-excited reactive power compensating apparatus
US20230074022A1 (en) Power converter topologies with power factor correction circuits controlled using adjustable deadtime
AU2017424982A1 (en) Switching scheme for static synchronous compensators using cascaded H-bridge converters
Tirupathi et al. A three‐phase inverter circuit using half‐bridge cells and T‐NPC for medium‐voltage applications
JP5043585B2 (en) Power converter
JPH07337036A (en) Ac power converter
JP2012239309A (en) Electric power conversion apparatus
JP2016063687A (en) Power conversion system
JP3259308B2 (en) Inverter device and uninterruptible power supply using the same
KR101836872B1 (en) Pulse-width modulation control method and device for achieving constant DC-side currents in three-level converter
US20230071003A1 (en) Power factor correction circuits controlled using adjustable deadtime
US20230076369A1 (en) Unidirectional power converters with power factor correction circuits controlled using adjustable deadtime

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006548811

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05814319

Country of ref document: EP

Kind code of ref document: A1