WO2006067158A1 - Défibrillateur dont le circuit de décharge est sécurisé et comporte un pont en h - Google Patents

Défibrillateur dont le circuit de décharge est sécurisé et comporte un pont en h Download PDF

Info

Publication number
WO2006067158A1
WO2006067158A1 PCT/EP2005/056993 EP2005056993W WO2006067158A1 WO 2006067158 A1 WO2006067158 A1 WO 2006067158A1 EP 2005056993 W EP2005056993 W EP 2005056993W WO 2006067158 A1 WO2006067158 A1 WO 2006067158A1
Authority
WO
WIPO (PCT)
Prior art keywords
switches
phase
point
bridge
voltage
Prior art date
Application number
PCT/EP2005/056993
Other languages
English (en)
Inventor
Clement Foeller
Alfred Schiller
Albert Cansell
Original Assignee
Schiller Medical Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schiller Medical Sas filed Critical Schiller Medical Sas
Priority to EP05826411A priority Critical patent/EP1830922A1/fr
Priority to US11/722,677 priority patent/US20110106190A1/en
Publication of WO2006067158A1 publication Critical patent/WO2006067158A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3906Heart defibrillators characterised by the form of the shockwave
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3904External heart defibrillators [EHD]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3906Heart defibrillators characterised by the form of the shockwave
    • A61N1/3912Output circuitry therefor, e.g. switches

Definitions

  • the present invention relates to the medical field and more particularly to emergency cardiac resuscitation in case of cardio - circulatory arrest as a result of ventricular fibrillation or ventricular tachycardia, and is obj and an external cardiac defibrillator.
  • Cardiac defibrillation is the only way to reduce cardiac access due to ventricular fibrillation or tachycardia that irreparably leads to death if they are not treated with a defibrillation shock within a few minutes.
  • DSA Semi-Automatic Defibrillator
  • these semi-automatic defibrillators have begun to be extended to a population of end users.
  • these DSAs are then commonly referred to as Public Access Defibrillator (PAD), that is, defibrillators that can be used by an audience with minimal first aid training.
  • PID Public Access Defibrillator
  • DSA or PAD of course, always assume the presence of a third person precisely present near the victim of cardio - circulatory arrest and having such a device.
  • Such an apparatus is for example described in document EP 1 064 963: the apparatus worn by the patient constantly monitors the rhythm of the subject and, in case of ventricular fibrillation, automatically triggers a defibrillation shock via electrodes. applied on the thorax.
  • defibrillators whether external and used by third - party medical doctors or first responders, inside the hospital or outside, or whether they are external and external. carried by the patient, or that they are implantable, as well as defibrillators with a pacing function which is frequently placed in the general category of defibrillators and which is only so called.
  • the invention consists of a cardiac defibrillator for treating a patient in cardiac arrest as a result of Ventricular fibrillation or tachycardia by means of at least one biphasic defibrillation shock consisting of a wave at at least two phases of opposite polarities, shock obtained by means of an H bridge comprising two pairs of high voltage switches characterized in that each of the opposite phases of the biphasic wave is controlled in two stages so that, for each pair of high voltage switches respectively concerned for a given phase, one of the switches of this pair is firstly switched on and remains passing during the whole phase and the second high voltage switch of this pair which is in series in the circuit including the patient, closes in a second time to establish during this phase the current through the patient.
  • the H bridge has four switches A, B, C, D, the shock being applicable to a load external to the apparatus through the H bridge.
  • the two switches A and B are each connected on one side to the high - voltage capacitor CHT at the Z point and are each connected on the other side respectively to a point X and Y to be connected to the external load of the apparatus.
  • the other two switches C and D are each connected on one side respectively to the point X and Y intended to be connected to the external load and on the other side to a point W, in particular connected to ground, having a greater potential. down as the Z point.
  • the pairs of switches A + D and B + C are used respectively for the first and the second phase of each defibrillation pulse.
  • a control circuit controls for each phase one of the switches A or B to individually switch it closed during the corresponding phase of the biphasic wave.
  • a control circuit controls the switches C and D by which they are switched from the open initial state, to the closed state during each of the successive phases of the biphasic wave but only after the closing of the corresponding A or B switch.
  • FIG. 1 is a block diagram of the H-bridge for generating a biphasic defibrillation pulse across a patient of the defibrillator according to the invention
  • FIG. 2 is a more detailed circuit diagram of the H-bridge circuit for generating a two-phase defibrillation pulse across a patient, of the defibrillator according to the invention
  • FIG. 3 is a chronogram of the control of the four switches of the H bridge in the particular case where the two phases to be obtained are cut or chopped,
  • FIG. 4 is a diagram of an exemplary embodiment which comprises a fifth switch, consisting of an IGBT, the purpose of which is to cut the high voltage arriving on the H bridge, before and after the shock,
  • FIG. 5 is a simplified diagram limited to the central part of the circuit without balancing resistors and having an electrical noise reduction branch originating from the charge of the high voltage capacitor as well as a divider bridge enabling control of the IGBTs,
  • Figure 6 is a chronographic representation of the image of the current flowing through the patient during a defibrillation shock with chopped pulses.
  • FIG. 1 The basic block diagram of the invention is illustrated in FIG. 1.
  • This figure shows a high-voltage capacitor CHT which supplies an H-bridge consisting of four switches A, B, C and D which can be controlled by four lines of respective command.
  • the high voltage from the capacitor CHT is applied to the upper point Z of the H-bridge relative to the ground connected to the point W at the bottom of the H-bridge.
  • the intermediate point Between switches A and C is called X
  • the intermediate point between switches B and D is called Y.
  • X and Y constitute the diagonal of the H-bridge that goes to the patient.
  • the four switches of the H bridge namely
  • A, B, C, and D consist of four signal-controlled or signal-triggered high-voltage semiconductor components, for example insulated gate bipolar transistors known in the art as IGBTs to be used. for the rest of the description.
  • High voltage resistors of high value RA, RB, RC and RD are for example connected in parallel between collector and emitter of each IGBT, respectively A,
  • resistors are shown diagrammatically unconnected in FIG. 4 because they are optional.
  • the process according to the invention for delivering a biphasic shock is as follows with reference to FIG. 1.
  • a command arriving on the control of the switch A puts the latter in conduction.
  • the control of the switch D which in turn becomes available, arrives.
  • the current from the high-voltage capacitor CHT is established through the patient through the switches A and D to ground for the duration controlled, for example about 4 ms, which constitutes the first phase of the shock.
  • the switch C is controlled with a delay with respect to B.
  • the switch-on command of switch C is turned on.
  • the current from the capacitor CHT then settles again through the patient by the switches B and C to the ground for the duration controlled, ie about 4 ms, which constitutes the second phase of the biphasic shock.
  • switches D and C All types of control and control modulation of switches D and C are possible from full conduction and continuous up to the control by cutting with variation of the form factor which allows to dose the energy applied according to a predetermined law or with pulse modulation or any other form of modulation.
  • a preferred mode of this process consists in cutting or chopping the two phases at a frequency higher than the frequency of said successive phases, for example a frequency of 5 kHz.
  • the process is the same as the one just described, except that the D switches (for the first phase) and C (for the second phase) are not continuous, that is, say are not applied during these phases for example at a permanent high level as in the example described above, but receive a cut or chopped signal even modulated between the high level and 0 Volt.
  • FIG. 3 shows the timing diagram of the control signals of the four switches:
  • Tl corresponds to the conduction of A
  • T2 corresponds to the conduction of D in a chopped manner
  • the shock thus delivered to the patient is a cut or chopped biphasic pulse.
  • the biphasic pulse obtained would include a positive phase and a negative phase with continuous decay, which corresponds to the classical biphasic pulse with exponentials truncated at continuous decay for each phase.
  • a transistor used in switching operates mainly in two states, either open or closed.
  • the transition from the open state to the closed state is effected by a transition which must usually be as short as possible to avoid damaging the transistor.
  • the transistor During the switching phase (transition from the open state to the closed state or vice versa), the transistor goes through a transient period during which the current increases gradually from zero to the maximum while the voltage goes from the maximum to a value of almost zero. In other words, the transistor goes through a phase where the power and therefore the energy dissipated can be very important. If this transient phase lasts too long, the transistor may be destroyed due to excessive heating.
  • the first is to minimize the duration of this transition phase.
  • the second is to switch the transistor in the absence of current. In the latter case, the switching time is no longer so critical.
  • the use of a galvanically isolated control to control the transistors A and B insofar as the latter must remain simple in order to minimize the number of components and to reduce the electrical consumption of the circuit, does not usually make it possible to obtain a commutation. fast transistors A or B.
  • This mode of switching and disposition also makes it possible not to have to isolate the control of IGBTs C and D at high voltage. These are controlled with respect to the mass, which allows them to be switched easily or continuously to obtain two phases consisting of conventional continuous truncated exponentials as in the first variant of the invention, or in two phases cut according to a switching law, any form factor or any pulse modulation as in the second variant of the invention or any other form of modulation.
  • control of C and D with respect to ground also allows the use of a simple control circuit providing a fast switching ensuring a minimum dissipation and an excellent reliability for these transistors which switch a strong current, contrary to A and B .
  • a fifth IGBT referenced E is provided in series between the high-voltage capacitor CHT and the H-bridge (FIG. 4).
  • This fifth IGBT referenced E is permanently open as the shock is not given, and is closed only during the shock. In this way, the H-bridge is completely cut off from the capacitor before the shock, which avoids any risk of current through the patient before or after the shock.
  • This IGBT referenced E is also provided with a parallel resistor RS of high value (for example 40 MOhm) between the collector and the emitter, in order to pass a weak current making it possible to check the correct operation of the H bridge.
  • the fifth IGBT referenced E is also controlled by a circuit arriving on the grid of E through a galvanically isolated mounting, this assembly being powered by a floating power supply as shown in Figure 4.
  • a safety circuit provided by the invention is to measure at any time the voltage at the point Z between the IGBT referenced E and the bridge in H. This voltage must have a value within well-defined limits. It depends on the resistances of the branches of the bridge in the off state and is measured by means of the divider bridge represented by the resistors RM and RN on the right side of FIG. 5 defining between them a measurement output called CTRL on the Figures 4 and 5.
  • resistors RA, RB, RC, and RD when they exist for example selected equal and high (for example 40 MOhm) placed in parallel on each of the five IGBTs. If for any reason, one of the IGBTs is shorted when it should be open, this voltage will drop significantly, which would be detected by the system and inhibit the operation of the device and prevent its use in order eliminate any risk to the patient.
  • Another method which can be used alternatively or in addition, consists (considering the example of FIG. 2) of measuring and monitoring continuously, apart from the shock, the potential difference between the points of the diagonal X and Y of the H bridge. Normally this potential difference is practically zero, given the symmetry of the circuit and the possible presence of the resistors of large equal values, connected in parallel with the IGBTs. If, on the other hand, one of the IGBTs had to be short-circuited for example, the bridge would be strongly unbalanced, which would result in a large voltage difference between X and Y.
  • This measurement can be done either by a differential measurement directly between the points X and Y, or by intercalating between the resistors of high value (for example 40 Mohm) RC and RD and the mass, resistances of lower value (for example 10 Kohm) and thus create two voltage dividers whose output relative to the mass will translate, in case of appearance of a strong tension, the deficiency of an IGBT.
  • An advantageous embodiment with regard to the IGBTs to be isolated from the ground (A, B and E) is that their control is carried out through an ISOGA galvanic isolation circuit according to various means, for example optoelectronic with photoelectric coupler. and photovoltaic, high - frequency controlled high - frequency pulse generator or other suitable insulation arrangement. Each of these is represented by a rectangle referenced ISOGA.
  • FIG. 5 Another variant of the circuit is shown in FIG. 5. It has an additional branch for reducing interference and electrical disturbances originating from the charge of the high-voltage capacitor CHT.
  • This branch extends from point Z to mass. It comprises a DP diode, a resistor RP and an insulated gate transistor F, for example of the IGBT type, which is turned on during the charging of the capacitor CHT.
  • the voltage divider bridge formed by the resistor RS and this ground connected branch makes it possible, thanks to the value of RP (for example 5 Kohm), to significantly reduce the amplitude of the electrical noise at the Z point originating from the charge of the capacitor CHT at through a voltage multiplier represented by the load circuit of Figure 5. The parasites arriving on the H bridge are thus sufficiently low.
  • This branch RP + DP has an additional function. It makes it possible, for security reasons, by simultaneously passing transistors E and F, to discharge the capacitor CHT.
  • the role of the DP diode is to keep the Z line at a low, but non - zero, potential in order to reduce the leakage currents in the IGBTs while allowing the ECG amplifier to function properly and to measure the impedance of the ECG. patient as indicated by amp. ECG and Z measurement in Figure 5.

Abstract

Le défibrillateur cardiaque destiné à traiter un patient en arrêt cardio-circulatoire par un choc provenant d'une décharge biphasique dosée d'un condensateur CHT à travers un pont en forme de H comportant un commutateur haute tension A, B, C ou D dans chacune de ses branches est caractérisé en ce que chacune des phases de polarités opposées du choc biphasique est commandée en deux temps de telle sorte que pour chaque couple de commutateurs concerné par une phase, le premier des commutateurs de ce couple est rendu passant et reste passant pendant toute cette phase alors que le deuxième commutateur de ce couple se ferme avec un retard par rapport au premier pendant une durée commandée pour établir durant cette phase le courant à travers le patient, la deuxième phase étant traitée de la même façon par l'intermédiaire de l'autre couple de commutateurs. Cette invention intéresse les constructeurs d'appareils de défibrillation.

Description

Défibrillateur dont le circuit de décharge est sécurisé et comporte un pont en H
La présente invention concerne le domaine médical et plus particulièrement la réanimation cardiaque d' urgence en cas d' arrêt cardio-circulatoire par suite de fibrillation ventriculaire ou de tachycardie ventriculaire, et a pour obj et un défibrillateur cardiaque externe .
La défibrillation cardiaque d' urgence a connu ces dernières années un essor ainsi qu' un développement considérables .
La défibrillation cardiaque est le seul moyen de réduire des accès cardiaques dus à une fibrillation ou à une tachycardie ventriculaire qui conduisent irrémédiablement à la mort s ' ils ne sont pas traités par un choc de défibrillation en l' espace de quelques minutes .
A l' origine, jusqu' à il y a environ une dizaine d' années , l' utilisation d' un défibrillateur était limitée aux seuls médecins d' urgence, qui étaient seuls habilités à utiliser de tels appareils et qui étaient seuls à en disposer .
Cette situation étant largement insuffisante étant donnée la faible chance qu' un médecin urgentiste puisse être sur les lieux de l' incident dans un temps suffisamment court pour sauver le suj et, il a été mis en place, dans un premier temps , une utilisation de défibrillateurs par des secouristes professionnels tels que les sapeurs-pompiers professionnels , qui sont plus nombreux et ont une couverture beaucoup plus large que les médecins d' urgence . Les appareils à présent largement utilisés par ce personnel sont de type Défibrillateur Semi-Automatique (DSA) . Le principe de ce type d' appareil consiste en ce que l' appareil détecte automatiquement un trouble du rythme nécessitant une défibrillation et recommande au secouriste l' application d' un choc .
Dans un deuxième temps , ces défibrillateurs semi-automatiques ont commencé à être étendus à une population d' utilisateurs en- core beaucoup plus large allant jusqu' au public : ces DSA sont alors couramment appelés PAD (« Public Access Defibrillator ») , c' est-à-dire des défibrillateurs pouvant être utilisés par un public ayant reçu une formation minimale de secourisme .
Ces derniers types d' appareils : DSA ou PAD supposent bien entendu touj ours la présence d' un tiers justement présent à proximité de la victime de l' arrêt cardio-circulatoire et disposant d' un tel appareil .
Cette condition n' étant pas acceptable dans le cas de patients connus comme étant suj ets à des accès de fibrillation pouvant se produire à tout moment, il a été prévu l' implantation d' un défi- brillateur implantable automatique qui applique le choc en cas de nécessité . L' implantation d' un tel appareil étant cependant lourde et invasive pour le malade, il a été développé une alternative pour de tels patients suj ets à des fibrillations récidivantes , le cas échéant en attente de l' implantation d' un défi- brillateur implantable, qui consiste en un appareil externe automatique porté par le patient .
Un tel appareil est par exemple décrit dans le document EP 1 064 963 : l' appareil porté par le patient surveille en permanence le rythme du suj et, et en cas de fibrillation ventriculaire déclenche automatiquement un choc de défibrillation par l' intermédiaire d' électrodes appliquées sur le thorax .
Le champ d' application du présent brevet concerne ces différents types de défibrillateurs , qu' ils soient externes et utilisés par des tiers médecins ou secouristes , à l' intérieur de l' hôpital où à l' extérieur, ou qu' ils soient externes et portés par le patient, ou qu' ils soient implantables , ainsi que des défibrilla- teurs avec une fonction de stimulation que l ' on range fréquemment dans la catégorie générale des défibrillateurs et que l ' on dénomme uniquement ainsi .
L' invention consiste en un défibrillateur cardiaque destiné à traiter un patient en arrêt cardio-circulatoire par suite de fibrillation ou de tachycardie ventriculaire au moyen d' au moins un choc de défibrillation biphasique constitué par une onde à au moins deux phases de polarités opposées , choc obtenu au moyen d' un pont en H comprenant deux couples de commutateurs haute tension caractérisé en ce que chacune des phases opposées de l ' onde biphasique est commandée en deux temps de telle sorte que, pour chaque couple de commutateurs haute tension respectivement concerné pour une phase donnée, l' un des commutateurs de ce couple est dans un premier temps rendu passant et reste passant pendant toute la phase et que le deuxième commutateur haute tension de ce couple qui se trouve en série dans le circuit incluant le patient, se ferme dans un deuxième temps pour établir durant cette phase le courant à travers le patient .
Le pont en H comporte quatre commutateurs A, B, C, D, le choc étant applicable sur une charge extérieure à l' appareil au travers du pont en H . Les deux commutateurs A et B sont chacun connectés d' un côté au condensateur haute-tension CHT au point Z et sont chacun connectés de l' autre côté respectivement à un point X et Y destiné à être relié à la charge extérieure à l' appareil . Les deux autres commutateurs C et D sont chacun relié d' un côté respectivement au point X et Y destiné à être relié à la charge extérieure et de l ' autre côté à un point W, en particulier relié à la masse, ayant un potentiel plus bas que le point Z . Les couples de commutateurs A+D et B+C sont utilisés respectivement pour la première et la deuxième phase de chaque impulsion de défibrillation . Un circuit de commande commande pour chaque phase un des commutateurs A ou B pour le commuter individuellement en fermeture pendant la phase correspondante de l' onde biphasique . Un circuit de commande commande les commutateurs C et D par lequel ils sont commutés de l' état initial ouvert, à l' état fermé durant chacune des phases successives de l' onde biphasique mais seulement après la fermeture du commutateur A ou B correspondant .
L' invention sera mieux comprise grâce à la description ci-après , qui se rapporte à des modes de réalisation préférés , donnés à titre d' exemples non limitatifs , et expliqués en référence aux dessins schématiques annexés , dans lesquels :
. La figure 1 est un schéma de principe du pont en H destiné à générer une impulsion de défibrillation biphasique à travers un patient du défibrillateur selon l ' invention,
. la figure 2 est un schéma électrique plus détaillé du circuit utilisant un pont en H destiné à générer une impulsion de dé- fibrillation biphasique à travers un patient, du défibrilla- teur selon l' invention,
. la figure 3 est un chronogramme de la commande des quatre commutateurs du pont en H dans le cas particulier où les deux phases à obtenir sont découpées ou hachées ,
. la figure 4 est un schéma d' un exemple de réalisation qui comporte un cinquième commutateur, consistant en un IGBT, dont le but est de couper la haute tension arrivant sur le pont en H, avant et après le choc,
. la figure 5 est un schéma simplifié limité à la partie centrale du circuit sans résistances d' équilibrage et présentant une branche de réduction des parasites électriques provenant de la charge du condensateur haute tension ainsi qu ' un pont diviseur permettant le contrôle des IGBT,
. la figure 6 est une représentation chronographique de l ' image du courant traversant le patient lors d' un choc de défibrillation avec des impulsions hachées .
Le schéma de principe de base de l ' invention est illustré par la figure 1. Cette figure montre un condensateur haute-tension CHT qui alimente un pont en H constitué de quatre commutateurs A, B, C et D pouvant être commandés par quatre lignes de commande respectives . La haute-tension provenant du condensateur CHT est appliquée au point supérieur Z du pont en H, par rapport à la masse reliée au point W au bas du pont en H . Le point intermé- diaire entre les commutateurs A et C est appelé X, le point intermédiaire entre les commutateurs B et D est appelé Y . X et Y constituent la diagonale du pont en H qui va vers le patient . Dans le schéma électrique plus détaillé de la figure 2 donné à titre d' exemple, les quatre commutateurs du pont en H à savoir
A, B, C, et D, consistent en quatre composants semi-conducteurs haute tension de commutation à commande ou à déclenchement par un signal, par exemple des transistors bipolaires à grille isolée connus dans la technique sous le terme IGBT que l ' on utilisera pour la suite de la description .
Des résistances haute-tension de forte valeur RA, RB, RC et RD (par exemple 40 MOhm) sont par exemple branchées en parallèle entre collecteur et émetteur de chaque IGBT, respectivement A,
B, C, et D, afin d' avoir des potentiels bien définis entre les IGBT à l' état ouvert . Ceci permet, d' une part un fonctionnement plus fiable et plus sûr, et d' autre part, en mesurant les tensions apparaissant aux points des j onctions , de détecter d' éventuels défauts des IGBT, notamment un éventuel court- circuit .
Ces résistances sont représentées schématiquement non connectées sur la figure 4 car elles s ' avèrent optionnelles .
L ' utilisation de la résistance de fuite (résistance interne à l ' état bloqué) propre à chaque transistor IGBT en remplacement des résistances RA, RB, RC, RD utilisées pour l ' équilibrage du pont a été envisagée . Le principe de fonctionnement reste le même . Il suffit de tenir compte de la dispersion des valeurs des résistances de fuite des IGBT lors des mesures .
Cette variante est représentée sur la figure 5. Toutefois , cette résistance de fuite est difficile à maîtriser par les fabricants de semiconducteurs , et peut varier en fonction de la température et de la tension appliquée sur le transistor .
Pour cette raison, il a été prévu dans le montage des figures 4 et 5 en remplacement des résistances RA, RB, RC et RD, un pont diviseur externe RM-RN qui constitue une autre solution avantageuse permettant de détecter un défaut sur les IGBT .
Le processus selon l ' invention pour délivrer un choc biphasique est le suivant en référence à la figure 1. Une commande arrivant sur la commande du commutateur A met ce dernier en conduction . Après un intervalle de temps , par exemple d' environ 0 , 5 ms , arrive la commande du commutateur D qui devient à son tour passant . Le courant en provenance du condensateur haute-tension CHT s ' établit à travers le patient à travers les commutateurs A et D vers la masse pendant la durée commandée, par exemple d' environ 4 ms , ce qui constitue la première phase du choc . Une fois le courant coupé par A et D, débute la deuxième phase par le fait que le commutateur B est rendu passant par une commande correspondante arrivant à son entrée . De façon analogue à la première phase, le commutateur C est commandé avec un retard par rapport à B . Soit par exemple environ 0 , 5 ms après la mise en conduction de B, arrive la commande de mise en conduction du commutateur C qui devient à son tour passant . Le courant en provenance du condensateur CHT s ' établit alors à nouveau à travers le patient par les commutateurs B et C vers la masse pendant la durée commandée soit environ 4 ms , ce qui constitue la deuxième phase du choc biphasique .
Tous les types de commandes et de modulation de commande des commutateurs D et C sont possibles depuis la conduction totale et continue jusqu ' à la commande par découpage avec variation du facteur de forme qui permet de doser l ' énergie appliquée selon une loi prédéterminée ou avec modulation d' impulsion ou toute autre forme de modulation .
Un mode préférentiel de ce processus consiste à découper ou à hacher les deux phases à une fréquence plus élevée que la fréquence desdites phases successives , fréquence par exemple de 5 kHz . Le processus est le même que celui qui vient d' être décrit, sauf que les commandes de mise en conduction des commutateurs D (pour la première phase) et C (pour la deuxième phase) ne sont pas continues , c' est-à-dire ne sont pas appliquées pendant ces phases par exemple à un niveau haut permanent comme dans l' exemple décrit ci-dessus , mais reçoivent un signal découpé ou haché voire modulé entre le niveau haut et 0 Volt . Ce mode de fonctionnement, similaire au précédent mais plus général, est illustré par la figure 3 qui montre le chronogramme des signaux de commande des quatre commutateurs :
- Tl correspond à la mise en conduction de A
- T2 correspond à la mise en conduction de D de façon hachée
- T3 correspond à la fin de conduction de D
- T4 correspond à la fin de conduction de A
- T5 correspond à la mise en conduction de B
- T6 correspond à la mise en conduction de C de façon hachée
- T7 correspond à la fin de conduction de C
- T8 correspond à la fin de conduction de B .
Comme on peut le voir à l ' allure des courbes de la figure 6, obtenues à partir de signaux de commande analogues à ceux décrits et représentés sur la figure 3, le choc ainsi délivré au patient est une impulsion biphasique découpée ou hachée .
Si les commandes de mise en conduction de C et de D n' étaient pas hachées mais continues , l' impulsion biphasique obtenue comporterait une phase positive et une phase négative à décroissance continue, ce qui correspond à l' impulsion biphasique classique à exponentielles tronquées à décroissance continue pour chacune des phases .
Ce mode de commutation par mise en conduction en deux temps des commutateurs tels que des transistors à grille isolée IGBT (figure 2 ) pour chacune des deux phases , procure une excellente fiabilité .
Un transistor utilisé en commutation fonctionne principalement dans deux états , soit ouvert, soit fermé . Le passage de l ' état ouvert à l ' état fermé s ' effectue par une transition qui doit habituellement être la plus courte possible pour éviter d' endommager le transistor .
En effet, à l ' état ouvert, aucun courant (hors courants de fuite) ne traverse le transistor mais la tension à ses bornes (points Z et X pour le transistor A ou Z et Y pour le transistor B) est maximale . A l ' état fermé, le courant qui traverse le transistor est maximal, mais la tension à ses bornes est proche de zéro . La puissance et donc l ' énergie dissipée par le transistor est alors faible aussi bien dans l ' état ouvert que dans l ' état fermé .
Pendant la phase de commutation (passage de l ' état ouvert à l ' état fermé ou inversement) , le transistor passe par une période transitoire au cours de laquelle le courant augmente progressivement de zéro jusqu ' au maximum tandis que la tension passe du maximum à une valeur quasi nulle . En d' autres termes , le transistor passe par une phase où la puissance et donc l ' énergie dissipée peut être très importante . Si cette phase transitoire dure trop longtemps , le transistor peut être détruit pour cause d' échauffement excessif .
Pour garantir un bon fonctionnement, une fiabilité et une longévité optimales du transistor, il faut donc limiter la puissance et donc l ' énergie dissipée de ce dernier .
Cette limitation peut être obtenue de différentes façons .
La première consiste à minimiser la durée de cette phase de transition . La deuxième consiste à faire commuter le transistor en l ' absence de courant . Dans ce dernier cas , la durée de commutation n ' est plus aussi critique . L ' utilisation d' une commande isolée galvaniquement pour commander les transistors A et B, dans la mesure où celle-ci doit rester simple pour minimiser le nombre de composants et réduire la consommation électrique du circuit, ne permet habituellement pas d' obtenir une commutation rapide des transistors A ou B .
La fermeture des transistors A ou B avant le passage du courant, qui ne circule qu ' à la fermeture de D ou de C permet donc d' éviter la dissipation dangereuse d' énergie dans les transistors A et B et assure donc un fonctionnement fiable .
Ce mode de commutation et de disposition permet d' autre part de ne pas être obligé d' isoler en haute tension la commande des IGBT C et D . Ceux-ci sont commandés par rapport à la masse, ce qui permet de les faire commuter aisément soit en continu pour obtenir deux phases consistant en des exponentielles tronquées continues classiques comme dans la première variante de l' invention, soit en deux phases découpées selon une loi de découpage, un facteur de forme ou une modulation d' impulsion quelconques comme dans la deuxième variante de l' invention ou toute autre forme de modulation .
La commande de C et D par rapport à la masse permet aussi l ' utilisation d' un circuit de commande simple procurant une commutation rapide assurant un minimum de dissipation et une excellente fiabilité pour ces transistors qui commutent un fort courant, contrairement à A et B .
Une considération particulière pour ce genre de circuit de défi- brillation à IGBT concerne la sécurité du patient .
En effet, en cas de destruction d' un des IGBT, un courant risque d' atteindre le patient avant l' application du choc . Ce courant serait dangereux .
L' état de la technique pour assurer une sécurité suffisante par rapport au patient lorsqu' on utilise des circuits à semiconducteurs pour générer un choc de défibrillation à travers un patient est donné par exemple par le document US 5, 824 , 017. Dans ce document, qui décrit également l' utilisation d' un pont en H à semi-conducteurs , on voit que le patient est séparé du pont en H par un relais électromécanique à deux contacts . Les contacts de ce relais sont en permanence ouverts et ne se ferment qu' au moment précis où le choc doit être donné . De cette manière, on dispose de la garantie selon laquelle aucun courant dangereux ne peut arriver au patient en-dehors du moment où le choc est appliqué .
Or, un tel relais électromécanique étant relativement encombrant et consommant un courant appréciable, les inventeurs ont essayé de mettre au point des dispositifs de sécurité suffisamment sûrs pour pouvoir éviter l' utilisation de relais électromécaniques moins fiables que la solution retenue .
Les dispositifs de sécurité particulièrement avantageux ainsi prévus dans le cadre de cette invention sont les suivants :
- un cinquième IGBT référencé E est prévu en série entre le condensateur haute-tension CHT et le pont en H ( figure 4 ) . Ce cinquième IGBT référencé E est en permanence ouvert tant que le choc n' est pas donné, et n' est fermé que durant le choc . De cette manière, le pont en H est totalement coupé du condensateur avant le choc, ce qui évite tout risque de courant à travers le patient avant ou après le choc . Cet IGBT référencé E est également pourvu d' une résistance parallèle RS de forte valeur (par exemple 40 MOhm) entre le collecteur et l' émetteur, afin de faire passer un faible courant permettant de vérifier le bon fonctionnement du pont en H .
- Le cinquième IGBT référencé E est commandé également par un circuit arrivant sur la grille de E à travers un montage à isolation galvanique, ce montage étant alimenté par une alimentation flottante comme représenté sur la figure 4.
- Afin de contrôler en permanence si les IGBT du pont en H sont en bon état avant l' application du choc et de détecter tout défaut de l' un d' eux comme par exemple un court-circuit, un circuit de sécurité prévu par l' invention consiste à mesurer à tout moment la tension au point Z entre l' IGBT référencé E et le pont en H . Cette tension doit avoir une valeur comprise dans des limites bien définies . Elle dépend des résistances des branches du pont à l ' état non passant et se mesure à l ' aide du pont diviseur représenté par les résistances RM et RN sur la partie droite de la figure 5 définissant entre elles une sortie de mesure nommée CTRL sur les figures 4 et 5. Elle dépend aussi des valeurs des résistances RA, RB, RC, et RD lorsqu ' elles existent par exemple choisies égales et élevées (par exemple 40 MOhm) placées en parallèle sur chacun des cinq IGBT . Si pour une raison quelconque, un des IGBT était en court-circuit alors qu' il devrait être ouvert, cette tension baisserait de façon conséquente, ce qui serait détecté par le système et inhiberait le fonctionnement de l' appareil et empêcherait son utilisation afin d' éliminer tout risque pour le patient .
Un autre procédé pouvant être utilisé alternativement ou en plus , consiste (si l' on considère l' exemple de la figure 2 ) à mesurer et à surveiller en permanence, en-dehors du choc, la différence de potentiel entre les points de la diagonale X et Y du pont en H . Normalement cette différence de potentiel est pratiquement nulle, étant donné la symétrie du circuit et la présence éventuelle des résistances de fortes valeurs égales , montées en parallèle aux IGBT . Si par contre, un des IGBT devait être par exemple en court-circuit, le pont serait fortement déséquilibré, ce qui se traduirait par une forte différence de tension entre X et Y . Cette mesure peut se faire soit par une mesure différentielle directement entre les points X et Y, soit en intercalant entre les résistances de forte valeur (par exemple 40 Mohm) RC et RD et la masse, des résistances de plus faible valeur (par exemple 10 Kohm) et créer ainsi deux diviseurs de tension dont les sorties par rapport à la masse traduiront, en cas d' apparition d' une forte tension, la déficience d' un IGBT . Un mode de réalisation avantageux en ce qui concerne les IGBT devant être isolés de la masse (A, B et E) consiste en ce que leur commande est réalisée à travers un montage à isolation galvanique ISOGA selon divers moyens , par exemple optoélectronique à coupleur photoélectrique et photovoltaïque, à transformateur haute fréquence commandé en impulsions de haute fréquence ou tout autre montage approprié d' isolation . Chacun de ceux-ci est représenté par un rectangle référencé ISOGA.
Une autre variante du circuit est représentée sur la figure 5. Elle présente une branche supplémentaire de réduction des parasites et perturbations électriques provenant de la charge du condensateur de haute tension CHT . Cette branche s ' étend du point Z à la masse . Elle comporte une diode DP, une résistance RP et un transistor F à grille isolée par exemple du type IGBT qui est rendu passant lors de la charge du condensateur CHT . Le pont diviseur de tension formé par la résistance RS et cette branche reliée à la masse permet grâce à la valeur de RP (par exemple 5 Kohm) de réduire notablement l ' amplitude des parasites électriques au point Z provenant de la charge du condensateur CHT à travers un multiplicateur de tension représenté par le circuit de charge de la figure 5. Les parasites arrivant sur le pont en H sont ainsi suffisamment faibles .
Cette branche RP + DP présente une fonction supplémentaire . Elle permet, pour des raisons de sécurité, en rendant simultanément passants les transistors E et F, de décharger le condensateur CHT .
Le rôle de la diode DP consiste à maintenir la ligne Z à un potentiel bas , mais non nul, afin de diminuer les courants de fuite dans les IGBT tout en permettant un fonctionnement correct de l ' amplificateur ECG et la mesure de l ' impédance du patient comme indiqué par ampli . ECG et mesure Z sur la figure 5.
Ceci permet de garantir des valeurs moindres pour les éventuelles fuites vers le patient .

Claims

REVENDICATIONS
Défibrillateur cardiaque destiné à traiter un patient en arrêt cardio-circulatoire par suite de fibrillation ou de tachycardie ventriculaire au moyen d' au moins un choc de défibrillation constitué par une impulsion de défibrillation formant une onde biphasique ayant au moins une première phase et une deuxième phase de polarités opposées , le défibrillateur comportant
un condensateur haute-tension CHT pour générer un choc, le choc étant obtenu par la décharge d' un condensateur haute- tension CHT à partir d' un point Z
et un pont en H comportant quatre commutateurs A, B, C, D, le choc étant applicable sur une charge extérieure à l' appareil au travers du pont en H,
les deux commutateurs A et B étant chacun connectés d' un côté au condensateur haute-tension CHT au point Z et étant chacun connectés de l' autre côté respectivement à un point X et Y destiné à être relié à la charge extérieure à l' appareil ,
les deux autres commutateurs C et D étant chacun relié d' un côté respectivement au point X et Y destiné à être relié à la charge extérieure et de l' autre côté à un point W, en particulier relié à la masse, ayant un potentiel plus bas que le point Z
et les couples de commutateurs A+D et B+C étant utilisés respectivement pour la première et la deuxième phase de chaque impulsion de défibrillation,
caractérisé par un circuit de commande qui commande pour chaque phase un des commutateurs A ou B pour le commuter individuellement en fermeture pendant la phase correspondante de l' onde biphasique, et par un circuit de commande, qui commande les commutateurs C et D par lequel ils sont commutés de l' état initial ouvert, à l' état fermé durant chacune des phases successives de l' onde biphasique mais seulement après la fermeture du commutateur A ou B correspondant .
2. Défibrillateur selon la revendication 1 caractérisé en ce que les commutateurs A et B connectés au condensateur haute- tension CHT restent fermés pendant toute la durée des phases respectives .
3. Défibrillateur selon l' une quelconque des revendication précédentes caractérisé en ce que les commutateurs D et C restent fermés respectivement durant les phases 1 et 2 , ce qui crée la génération d' une impulsion de défibrillation de type exponentielle tronquée biphasique classique .
4. Défibrillateur cardiaque selon la revendication 1 ou 2 , caractérisé en ce que le deuxième commutateur de chaque couple (D pour la lere phase et C pour la 2eme phase) , qui est destiné à être relié en série avec la charge extérieure à l' appareil après être resté ouvert pendant une durée donnée au début de la phase respective est commandé en fermeture par rapport au point W, en particulier à la masse, pour se fermer et s ' ouvrir successivement durant tout le restant de cette même phase afin d' établir à travers cette charge extérieure un courant découpé ou haché .
5. Défibrillateur cardiaque selon la revendication 4 , caractérisé en ce que les deux phases successives de polarités opposées sont découpées ou hachées à une fréquence plus élevée que la fréquence desdites phases successives .
6. Défibrillateur selon la revendication 4 ou 5, caractérisé en ce que les commutateurs D et C sont commandés respectivement pour les premières et deuxième phases par un signal découpé ou haché, pendant que les commutateurs A et B sont respectivement fermés pour les phases respectives , ce qui crée la génération d' une impulsion de défibrillation de type découpé ou haché constituée pour chaque phase par un train d' impulsions séparées par des pauses et présentant un facteur de forme quelconque ou une modulation quelconque d' impulsion .
7. Défibrillateur selon l' une quelconque des revendications précédentes caractérisé en ce qu' un cinquième commutateur E de sécurité est intercalé dans la liaison venant du condensateur haute-tension CHT afin de couper toute tension arrivant sur le pont en H avant et après le choc .
8. Défibrillateur selon l' une quelconque des revendications précédentes caractérisé en ce que les cinq commutateurs sont des IGBT et qu' ils présentent chacun une résistance de forte valeur entre leur collecteur et leur émetteur respectifs .
9. Défibrillateur selon l' une des revendications 7 ou 8 , caractérisé en ce que il comprend des moyens de mesure ou de surveillance de la tension présente aux niveau du commutateur de sécurité E au point Z qui est le haut du pont en H pendant la charge du condensateur CHT et avant la délivrance du choc, afin de détecter si cette tension baisse en-dessous d' une certaine valeur, ce qui traduirait la présence d' un éventuel composant défectueux parmi les commutateurs du pont en H .
10. Défibrillateur selon la revendication précédente caractérisé en ce qu' il comprend des moyens de détection pour détecter l ' éventuelle baisse de tension en Z en mesurant la tension par un pont diviseur, c ' est-à-dire entre deux résistances en série qui relient le point Z à la masse .
11. Défibrillateur selon l' une quelconque des revendications précédentes, caractérisé en ce que chacun des trois commutateurs A, B, et E branchés sur la haute tension est commandé sur sa grille isolée au moyen d' un montage à isolation galvanique .
12. Défibrillateur selon la revendication précédente caractérisé en ce que le montage à isolation galvanique est un système à optocoupleur assurant l' isolement .
13. Défibrillateur selon la revendication 11 caractérisé en ce que le montage à isolation galvanique est un système à transformateur haute fréquence assurant l' isolement .
14. Défibrillateur selon l ' une quelconque des revendications précédentes caractérisé en ce qu ' il comporte entre le point Z et le point W, une branche qui se compose en série d' une diode DP, d' une résistance RP et d' un transistor F à grille isolée par exemple du type IGBT qui est rendu passant lors de la charge du condensateur CHT et en ce que le pont diviseur de tension par cette branche entre le point Z et le point W permet grâce à la valeur des résistances , celle aux bornes de E et RP, de réduire notablement l ' amplitude des parasites électriques au point Z provenant de la charge du condensateur CHT à travers un multiplicateur de tension et en ce que cette branche permet en rendant passant les transistors E et F, de décharger le condensateur CHT de son énergie électrique .
15. Défibrillateur selon la revendication précédente caractérisé par une diode DP qui est destinée à maintenir un potentiel bas en Z .
16. Procédé d' opération d' un défibrillateur, en particulier selon l' une des revendications précédentes , pour générer une onde de défibrillation biphasique comportant deux phases de polarité opposées au moyen d' un condensateur CHT et d' un pont en H comprenant quatre commutateurs de haute tension A, B, C, D, un commutateur dans chacune de ses branches verticales
caractérisé en ce que l ' on commande chacune des phases de défibrillation biphasique en deux temps en rendant passant pendant une phase donnée pour chaque couple de commutateurs A-D et B-C l ' un des commutateurs , l ' autre commutateur de ce couple qui se trouve en série dans le circuit incluant une charge extérieure à l' appareil étant fermé après un retard pour être commandé de la façon souhaitée pendant toute la phase concernée .
17. Procédé selon la revendication précédente caractérisé en ce que la commande de l ' autre commutateur est une commande en découpage selon un certain facteur de forme .
18. Procédé selon la revendication 16 caractérisé en ce que la commande de l ' autre commutateur est une commande de modulation d' impulsion .
PCT/EP2005/056993 2004-12-23 2005-12-21 Défibrillateur dont le circuit de décharge est sécurisé et comporte un pont en h WO2006067158A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05826411A EP1830922A1 (fr) 2004-12-23 2005-12-21 Defibrilllateur dont le circuit de decharge est securise et comporte un pont en h
US11/722,677 US20110106190A1 (en) 2004-12-23 2005-12-21 Defibrillator Having a Secure Discharging Circuit Comprising an H-Bridge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0413869A FR2879937B1 (fr) 2004-12-23 2004-12-23 Defibrillateur dont le circuit de decharge est securise et comporte un pont en h
FR413869 2004-12-23

Publications (1)

Publication Number Publication Date
WO2006067158A1 true WO2006067158A1 (fr) 2006-06-29

Family

ID=34954707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/056993 WO2006067158A1 (fr) 2004-12-23 2005-12-21 Défibrillateur dont le circuit de décharge est sécurisé et comporte un pont en h

Country Status (6)

Country Link
US (1) US20110106190A1 (fr)
EP (1) EP1830922A1 (fr)
KR (1) KR101090591B1 (fr)
FR (1) FR2879937B1 (fr)
RU (1) RU2365389C2 (fr)
WO (1) WO2006067158A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2229978A1 (fr) * 2009-02-25 2010-09-22 Gustavo Ernesto Carranza Système de contrôle pour générer des ondes de défibrillation à charge automatiquement compensée sans mesure de l'impédance du patient
EP2446927A1 (fr) * 2010-10-28 2012-05-02 Schiller Medical S.A.S. Impulsions ultra courtes de défibrillation haute tension électrique
US10946207B2 (en) 2017-05-27 2021-03-16 West Affum Holdings Corp. Defibrillation waveforms for a wearable cardiac defibrillator

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101049172B1 (ko) * 2011-05-06 2011-07-14 주식회사 씨유메디칼시스템 제세동기의 자동 위상변환 제어장치
JP6664963B2 (ja) * 2013-03-13 2020-03-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 心肺蘇生中にショック勧告の信頼性をスコアリングするための方法及び装置
KR101755657B1 (ko) * 2013-07-26 2017-07-10 부산대학교 산학협력단 강한 자기장을 이용한 저주파 전기자극시 발생되는 피부의 통증을 완화시키는 자기장 인가장치
KR101516519B1 (ko) * 2014-02-24 2015-05-04 강원대학교산학협력단 제세동기의 충격파 검출 장치
GB2539634A (en) * 2015-05-05 2016-12-28 Laerdal Medical As Defibrillation training system
KR101690603B1 (ko) 2015-08-27 2017-01-13 (주)라디안 래더 브릿지 회로를 포함하는 제세동기
RU2645244C2 (ru) * 2016-06-15 2018-02-19 Общество с ограниченной ответственностью Концерн "Аксион" (ООО Концерн "Аксион") Дефибриллятор
RU2648868C2 (ru) * 2016-07-06 2018-03-28 Евгений Эдуардович Горохов-Мирошников Способ и устройство для формирования импульса дефибрилляции
EP3615139B1 (fr) * 2017-04-27 2021-06-02 WEINMANN Emergency Medical Technology GmbH + Co. KG Dispositif de défribillation
US11260237B1 (en) * 2017-11-09 2022-03-01 West Affum Holdings Corp. Wearable defibrillator with output stage having diverting resistance
US11065463B2 (en) 2017-11-10 2021-07-20 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system having WCD mode and also AED mode
KR101966775B1 (ko) * 2018-04-23 2019-04-08 건국대학교 글로컬산학협력단 제세동기의 오작동 제어 장치 및 방법
CN112426627B (zh) * 2020-12-08 2023-05-16 上海健康医学院 一种双相恒流型心脏除颤器
CN112439128B (zh) * 2020-12-08 2021-09-21 上海健康医学院 超低压储能型心脏除颤器
KR102556406B1 (ko) * 2021-04-27 2023-07-17 (주)나눔테크 저전력 자가진단이 가능한 자동심장충격기
CN115025396B (zh) * 2022-06-24 2023-02-10 深圳邦健生物医疗设备股份有限公司 一种电流控制双相波除颤装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083562A (en) * 1988-01-19 1992-01-28 Telectronics Pacing Systems, Inc. Method and apparatus for applying asymmetric biphasic truncated exponential countershocks
FR2710848A1 (fr) * 1993-10-08 1995-04-14 Ela Medical Sa Défibrillateur implantable à générateur de chocs isolé optiquement.
US5607454A (en) * 1993-08-06 1997-03-04 Heartstream, Inc. Electrotherapy method and apparatus
WO1998026841A1 (fr) * 1996-12-18 1998-06-25 Zmd Corporation Forme de courant pour electrotherapie
EP1023920A1 (fr) * 1999-01-27 2000-08-02 Bruker Medical SA Impulsions ou série d'impulsions de défibrillation et dispositif pour les générer
EP1064963A1 (fr) * 1999-06-28 2001-01-03 Lifecor, Inc. Dispositif de délivrance d'énergie porté par un patient
FR2798859A1 (fr) * 1999-09-29 2001-03-30 Agilent Technologies Inc Appareil et procede d'application d'une impulsion therapeutique a faible energie a un patient
US6230054B1 (en) * 1999-04-23 2001-05-08 Agilent Technologies, Inc. Apparatus for controlling delivery of defibrillation energy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4768512A (en) * 1986-05-13 1988-09-06 Mieczyslaw Mirowski Cardioverting system and method with high-frequency pulse delivery
US5391186A (en) * 1993-12-13 1995-02-21 Angeion Corporation Method and apparatus for utilizing short tau capacitors in an implantable cardioverter defibrillator
US5824017A (en) 1997-03-05 1998-10-20 Physio-Control Corporation H-bridge circuit for generating a high-energy biphasic waveform in an external defibrillator
FR2834218A1 (fr) * 2001-12-28 2003-07-04 Schiller Medical Procede et dispositif d'ajustage de l'energie de defibrillation par rapport a la resistance transthoracique d'un patient

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083562A (en) * 1988-01-19 1992-01-28 Telectronics Pacing Systems, Inc. Method and apparatus for applying asymmetric biphasic truncated exponential countershocks
US5607454A (en) * 1993-08-06 1997-03-04 Heartstream, Inc. Electrotherapy method and apparatus
FR2710848A1 (fr) * 1993-10-08 1995-04-14 Ela Medical Sa Défibrillateur implantable à générateur de chocs isolé optiquement.
WO1998026841A1 (fr) * 1996-12-18 1998-06-25 Zmd Corporation Forme de courant pour electrotherapie
EP1023920A1 (fr) * 1999-01-27 2000-08-02 Bruker Medical SA Impulsions ou série d'impulsions de défibrillation et dispositif pour les générer
US6230054B1 (en) * 1999-04-23 2001-05-08 Agilent Technologies, Inc. Apparatus for controlling delivery of defibrillation energy
EP1064963A1 (fr) * 1999-06-28 2001-01-03 Lifecor, Inc. Dispositif de délivrance d'énergie porté par un patient
FR2798859A1 (fr) * 1999-09-29 2001-03-30 Agilent Technologies Inc Appareil et procede d'application d'une impulsion therapeutique a faible energie a un patient

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2229978A1 (fr) * 2009-02-25 2010-09-22 Gustavo Ernesto Carranza Système de contrôle pour générer des ondes de défibrillation à charge automatiquement compensée sans mesure de l'impédance du patient
EP2446927A1 (fr) * 2010-10-28 2012-05-02 Schiller Medical S.A.S. Impulsions ultra courtes de défibrillation haute tension électrique
US10946207B2 (en) 2017-05-27 2021-03-16 West Affum Holdings Corp. Defibrillation waveforms for a wearable cardiac defibrillator
US11648411B2 (en) 2017-05-27 2023-05-16 West Affum Holdings Dac Defibrillation waveforms for a wearable cardiac defibrillator

Also Published As

Publication number Publication date
US20110106190A1 (en) 2011-05-05
KR20070114116A (ko) 2007-11-29
RU2365389C2 (ru) 2009-08-27
RU2007127844A (ru) 2009-01-27
FR2879937B1 (fr) 2008-01-11
FR2879937A1 (fr) 2006-06-30
KR101090591B1 (ko) 2011-12-08
EP1830922A1 (fr) 2007-09-12

Similar Documents

Publication Publication Date Title
EP1830922A1 (fr) Defibrilllateur dont le circuit de decharge est securise et comporte un pont en h
EP0641572B1 (fr) Circuit de protection pour dispositif électronique implantable
EP2433675B1 (fr) Dispositif médical implantable actif comprenant des moyens de communication sans fil via des impulsions électriques conduites par les tissus interstitiels du corps
FR2602146A1 (fr) Circuit generateur d'impulsions de stimulation pour stimulateur cardiaque
EP0647456B1 (fr) Défibrillateur implantable à générateur de chocs isolé optiquement
FR2481603A1 (fr) Circuit de couplage de declenchement d'un stimulateur
FR2850029A1 (fr) Dispositif medical implantable actif, notamment stimulateur cardiaque, comprenant des moyens de determination de la presence et du type de sonde qui lui est associee
FR2606645A1 (fr) Systeme de cardioversion automatique implantable a delivrance d'impulsions de haute frequence, et procede pour la mise en oeuvre de ce systeme
FR2731157A1 (fr) Stimulateur magnetique pour tissu neuromusculaire
EP1100226A1 (fr) Procédé de téléalimentation d'un terminal dans un réseau local
FR2740978A1 (fr) Dispositif medical actif du type defibrillateur/cardioverteur implantable
EP1330980B1 (fr) Enregistreur de signaux physiologiques, notamment de type Holter, avec un dispositif de contrôle de la continuité d'un cable
FR2711064A1 (fr) Défibrillateur/stimulateur cardiaque implantable à générateur de chocs multiphasiques.
FR2477021A1 (fr) Appareil de defibrillation du coeur
EP1602340B1 (fr) Dispositif de traitement par émission de flashs lumineux
EP1461121B1 (fr) Dispositif d'ajustage de l'énergie de défibrillation par rapport à la résistance transthoracique d'un patient
FR2520165A1 (fr) Interrupteur differentiel a usage domestique
FR2636525A1 (fr) Dispositif electronique assurant automatiquement la detection des points d'acupuncture, de mesotherapie, de reflexotherapie, le diagnostic des desequilibres energetiques et l'application des traitements appropries
EP1230947A1 (fr) Dispositif médical implantable actif, notamment stimulateur cardiaque, défibrillateur et/ou cardioverteur ou dispositif multisite, avec test de capture cycle à cycle
FR2534812A1 (fr) Etage de sortie a couplage en continu pour stimulateur biologique a signal rapide
FR2633837A1 (fr) Circuit de charge-decharge pour le condensateur d'un defibrillateur cardiaque
FR2921249A1 (fr) Dispositif de traitement par emission de flashs lumineux
FR2860704A1 (fr) Dispositif de traitement par emission de flashs lumineux.
FR2973709A1 (fr) Dispositif electro-stimulateur optimise
WO1991016104A1 (fr) Dispositif d'implantation cardiaque

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005826411

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: KR

Ref document number: 1020077016316

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007127844

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005826411

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11722677

Country of ref document: US