WO2006078900A1 - Methods and devices for aerosolizing medicament - Google Patents

Methods and devices for aerosolizing medicament Download PDF

Info

Publication number
WO2006078900A1
WO2006078900A1 PCT/US2006/002035 US2006002035W WO2006078900A1 WO 2006078900 A1 WO2006078900 A1 WO 2006078900A1 US 2006002035 W US2006002035 W US 2006002035W WO 2006078900 A1 WO2006078900 A1 WO 2006078900A1
Authority
WO
WIPO (PCT)
Prior art keywords
medicament
flow passage
mouthpiece
aerosolizing
aerosolized
Prior art date
Application number
PCT/US2006/002035
Other languages
French (fr)
Inventor
Michael A. Klimowicz
James B. Fink
Original Assignee
Aerogen, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/039,709 external-priority patent/US20050205089A1/en
Application filed by Aerogen, Inc. filed Critical Aerogen, Inc.
Publication of WO2006078900A1 publication Critical patent/WO2006078900A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • A61M15/0068Indicating or counting the number of dispensed doses or of remaining doses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0085Inhalators using ultrasonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • A61M16/122Preparation of respiratory gases or vapours by mixing different gases with dilution
    • A61M16/125Diluting primary gas with ambient air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • A61M16/0841Joints or connectors for sampling
    • A61M16/0858Pressure sampling ports
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0021Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0024Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with an on-off output signal, e.g. from a switch

Definitions

  • This application relates to generally methods and devices for aerosolizing medicament, as well as to methods and devices for storing and delivering medicament to be aerosolized. More specifically, this application relates to a mouthpiece for an unpressurized inhalation device.
  • the inhalation flow rate that passes through the mouthpiece of an inhalation device may range between about 15 and 60 liters/minute. This rate may cause flow within internal passages of the inhalation device to be turbulent, resulting in collision among aerosol particles and with internal surfaces of the mouthpiece. Consequently, some medicament remains in the mouthpiece and does not reach the lungs of the patient.
  • Embodiments of the invention provide an aerosolizing device, which may be a hand-held aerosolizing device for inhalation of aerosolized medicament.
  • the device has a mouthpiece through which a user inhales the aerosolized medicament.
  • An aerosol generator may be provided as a vibrating element with holes through which the medicament is ejected, although other suitable aerosol generators may be used without departing from numerous aspects of the invention.
  • the medicament is held in a container that holds a number of doses of the medicament.
  • the container delivers the medicament to a reservoir, which is designed to minimize the residual volume in the reservoir.
  • An inner surface of the reservoir may be hydrophobic to encourage medicament to flow downward to the aerosol generator.
  • the reservoir is may also be tear-drop shaped and have a smooth inner surface that is free of seams and corners to further encourage downward flow.
  • the container and reservoir may be replaced independently or at the same time.
  • the reservoir and container may also be formed as a single unit or may be separate units mounted to the device by the user.
  • the reservoir may also have a collection area located adjacent to the vibrating element where a final volume of medicament accumulates. The final volume is drawn over the holes in the vibrating element when the vibrating element is vibrated, thereby reducing the residual volume.
  • the reservoir may also be designed so that the aerosol generator is positioned at a relatively low hydrostatic position when the device is positioned in a particular operating orientation. For example, the aerosol generator may be positioned so that less than 25%, and even less than 10%, of the volume of the reservoir is positioned below the aerosol generator.
  • the reservoir may also have one or more vent holes for smooth medicament delivery into the reservoir during filling and out of the reservoir when the medicament is being aerosolized.
  • the vent holes may be sized to prevent the medicament from escaping therethrough.
  • the medicament path between the container and reservoir may include a valve that prevents contamination of the container and medicament path.
  • the valve maintains the sterility of the container so that the container does not need to be pierced a number of times, as might otherwise be necessary.
  • the valve may be positioned at a wall of the reservoir so that the valve isolates the entire medicament path together with the container.
  • Various aspects of the present invention are also directed to a container.
  • the container is similar to a standard vial with the addition of a specialized connector.
  • the connector mates with the aerosolizing device and, in another aspect, may mate with the reservoir as well.
  • the connector has a protrusion that engages an L-shaped slot in the device for a bayonet-type connection.
  • the connector also has a number of tabs or hooks that engage the reservoir to lock the reservoir to the container.
  • the mouthpiece may define separate medicament and air flow passages, each such passage having an outlet into the user's mouth when the device is used.
  • the aerosol generator provides aerosolized medicament along the medicament flow passage, such as in response to inhalation by the user.
  • the air flow passage has an inlet in communication with an ambient atmosphere so that air flows along the air flow passage, such as may also be in response to user inhalation. Separation of the medicament and air flows causes the medicament to be mixed with the air in the user's mouth, providing improved effectiveness of the device in delivering medicament. Greater than 90% of medicament provided to the aerosol generator may be expelled through the outlet of the medicament flow passage.
  • the outlet of the air flow passage is disposed substantially below the outlet of the medicament flow passage when the mouthpiece is oriented for insertion into the user's mouth.
  • the mouthpiece may be separable from the rest of the housing.
  • the aerosol generator may also be contained within the mouthpiece so that the aerosol generator may be cleaned along with the mouthpiece.
  • the mouthpiece may also have a port that receives a pressure-sensing conduit.
  • the pressure-sensing conduit leads from the medicament flow passage to a pressure sensor. The pressure sensor is used for breath actuation of the device by sensing the drop in pressure when the user inhales on the mouthpiece.
  • Fig. 1 shows an aerosolizing device
  • Fig. 2 shows a medicament assembly formed by a reservoir and a container
  • FIG. 3 shows the aerosolizing device with a mouthpiece and medicament assembly removed
  • Fig. 4 shows the medicament assembly mounted to the aerosolizing device with the mouthpiece removed;
  • FIG. 5 shows the container
  • Fig. 6 is a perspective, cross-sectional view of the reservoir
  • Fig. 7 is the perspective view of the device with the mouthpiece removed;
  • Fig. 8 is a perspective view corresponding to the view of Fig. 7 with the mouthpiece attached to the housing;
  • Figs. 9A and 9B are respectively show perspective and cross-sectional views of a mouthpiece in another embodiment
  • Fig. 9C provides results of a simulation illustrating flows of medicament and air using the mouthpiece of Figs. 9 A and 9B;
  • Fig. 10 is a cross-sectional view of the aerosolizing device with the reservoir empty;
  • Fig. 11 is a cross-sectional view of the aerosolizing device with the reservoir filled with a volume of medicament.
  • Fig. 12 shows the aerosol generator delivering the aerosolized medicament through the mouthpiece.
  • an aerosolizing device 2 is shown.
  • the aerosolizing device 2 may be a hand-held inhalation device, although various aspects of the invention may be practiced with any other aerosolizing device or inhalation device.
  • the aerosolizing device 2 has a housing 4 that includes a mouthpiece 6 through which a user inhales an aerosolized medicament.
  • the medicament is aerosolized by an aerosol generator 8 and mixed in a patient's mouth with air drawn through a separate air-flow passage.
  • Embodiments of the invention are applicable both to liquid and powder medicaments, both of which may exhibit fluid behavior.
  • the aerosol generator 8 may comprise a nebulizing element.
  • the medicament to be aerosolized is stored in a container 12, such as a vial
  • the container 12 is removed and replaced as necessary.
  • the user selects a dose size or amount and delivers the dose from the container 12 to a reservoir 14, which holds the medicament.
  • the reservoir 14 may be removed and replaced together with or separate from the container 12 as explained below.
  • the container 12 has a piston 16, which is moved by a dosing mechanism 18 to dispense a volume of the medicament.
  • the dosing mechanism 18 may be any suitable dosing mechanism such as the dosing mechanisms for insulin pen mechanisms.
  • the dosing mechanism 18 is operated with a dosing control 20 that the user operates to select and deliver a quantity of medicament to the reservoir 14.
  • the housing 4 has a window to view the amount of medicament in the container 12.
  • the container 12 has a body 22 similar to a standard vial.
  • the container 12 does differ from a standard vial in that the container 12 has a connector 23, such as a collar 24, which mates with the reservoir 14 and the aerosolizing device 2.
  • the connector 23 has a bayonet-type connection with the aerosolizing device 2.
  • the connector 23 has three projections 26 .extending from a cylindrical body 28. The projections register and slide within L-shaped slots 30 in the aerosolizing device 2.
  • the container 12 is loaded into the device 2 by pushing downward and then rotating the collar 24 to secure the collar 24, and therefore container 12, to the device 2.
  • the slots 30 may have a raised portion or detent to lock the projection in the slot 30.
  • the position, size, spacing, and orientation of the projections 26 and corresponding slots 30 may be altered for different medicaments to prevent use of an improper medicament.
  • the device 2 may also have a sensor 32 that detects proper engagement of the projection 26 within the slot 30 before the device 2 will dispense medicament.
  • the container 12 may, of course, have any suitable connection with the aerosolizing device 2 that helps to prevent use of an improper medicament. [0031]
  • the container 12 also locks together with the reservoir 14 to provide a secure engagement with the reservoir 14. When the container 12 is mounted to the reservoir 14, a needle 40 pierces the container 12.
  • the container 12 also has three tabs or hooks 42 that lock together with mating connectors on the reservoir 14.
  • the tabs 42 are located about 120° apart and each have a recess 44 and a shoulder 46 that engages complementary features on a connector 43 on the reservoir 14.
  • the container 12 and reservoir 14 may, of course, mount to one another in any other suitable manner and the features may be altered for different medicaments.
  • the container 12 and reservoir 14 form a medicament assembly 48.
  • the container 12 is preferably mounted to the reservoir.14 by the user immediately before loading the container 12 and reservoir 14.
  • the container 12 and reservoir 14 may be loaded sequentially.
  • the container 12 could be mounted to the device 2 followed by mounting the reservoir 14 to the container 12.
  • the medicament assembly 48 may also be provided as a single unit that the user replaces all at once.
  • the reservoir 14 has an opening 50 that delivers the medicament to the aerosol generator 8.
  • the opening 50 is oriented to form a feed angle of about 5 - 30°, and may be about 15°, relative to the longitudinal axis L of the container 12 as defined by the container body.
  • the opening 50 also may have a diameter of about 0.05 - 0.25 inches and may be about 0.15 inches.
  • the opening size and feed angle provide smooth delivery of the medicament from the reservoir 14 to the aerosol generator 8 particularly when the aerosol generator is oriented somewhat upright.
  • the medicament travels along a medicament path 52 between the container 12 and reservoir 14.
  • the medicament path 52 includes the needle 40 and a channel leading from the needle 40 to the reservoir 14.
  • the medicament path 52 may, of course, be formed in any other manner, including as a simple lumen or tube extending between the container 12 and reservoir 14.
  • the medicament coupling between the container 12 and reservoir 14 may be any other suitable coupling other than the needle 40.
  • the medicament path 52 also includes a valve 54 that prevents contamination of the container 12.
  • the valve 54 eliminates the need to pierce the container 12 a number of times as may be necessary to maintain sterility if the valve were not provided.
  • the valve 54 may be a one-way valve such as a slit valve, ball valve, or duckbill valve.
  • the valve 54 may be positioned to protect the entire medicament path between the container 12 and reservoir 14. To this end, the valve 54 may be positioned at the end of the medicament path 52, such as at a wall 56 of the reservoir 14.
  • the valve 54 may also be positioned at a relatively low hydrostatic position relative to the reservoir 14 such that less than 25% of the reservoir 14, and perhaps less than 10%, is positioned hydrostatically below the valve 54.
  • the residual medicament volume in the reservoir 14 may be reduced since the valve 54 position can reduce the wetted surface of the reservoir 14 as compared to a valve positioned to dispense the medicament at a higher position in the reservoir.
  • the valve 54 may be positioned at an elevated position in the reservoir 14 without departing from the invention.
  • the valve 54 may also direct the medicament at the aerosol generator 8.
  • the valve 54 may direct a stream of medicament at the aerosol generator 8 so that air in the reservoir 14 near the aerosol generator 8 is actively removed.
  • a problem that can occur when delivering medicament to the aerosol generator is that air can be trapped near the aerosol generator, which can inhibit proper functioning of the device.
  • the orientation of the valve 54 and the ability of the valve 54 to deliver a stream of medicament together reduce the risk of trapping air around the aerosol generator 8.
  • the reservoir 14 has an inner wall 71 that has a tear-drop shape and is substantially free of corners, seams, and edges to encourage medicament drainage.
  • the reservoir 14 has a backwall 60 that forms an angle of about 20 - 70° with respect to horizontal when the device is held in a preferred operating orientation.
  • the inner wall 62 of the reservoir 14 is also preferably hydrophobic, but may be hydrophilic, depending upon the application and particular medicament, to further reduce the residual volume.
  • the reservoir 14 may also have a relatively small volume to minimize the surface area of the reservoir 14.
  • the tear-drop shape, smooth interior wall, angled backwall 60, and hydrophobic surface all encourage liquid in the reservoir 14 to flow downward toward the aerosol generator 8, thereby minimizing the residual medicament volume.
  • the aerosol generator 8 may be angled away from the reservoir 14 at an angle of about 0 - 45° relative to vertical and may be about 15° when the device is in the preferred operating orientation.
  • the reservoir 14 may be made in any suitable manner and with any suitable materials.
  • the reservoir 14 may be made out of polypropylene and formed by injection molding.
  • the aerosol generator 8 may be oriented in any other manner and may be any type of aerosol generator.
  • the mouthpiece 6 may be removable to load and remove the container 12 and/or reservoir 14. Removal of the mouthpiece 6 also permits cleaning of the mouthpiece 6 and aerosol generator 8.
  • the aerosol generator 8 may be cleaned or removed after each use or at any predetermined interval, such as, for example, after a predetermined number of containers 12 and/or reservoirs 14 have been used.
  • the mouthpiece 6 or aerosol generator 8 may even be removed and replaced with each container 12 or assembly 48.
  • the mouthpiece 6 may be mounted with a suitable connection, such as a snap-fit connection or latch with the rest of the housing.
  • the mouthpiece 6 includes separate medicament and air-flow passages so that the medicament particles are mixed with air in the user's mouth when the user inhales on the mouthpiece. This is described in further detail in connection with Figs. 9 A and 9B below.
  • the aerosol generator 8 may include a vibrating assembly 80.
  • the vibrating assembly 80 includes a piezoelectric element 82 mounted to a substrate 84.
  • the substrate 84 may be cup-shaped 86 or may have any other suitable shape, such as a flat ring or plate.
  • a vibrating element 88 with a number of holes 90 is mounted to the substrate 84.
  • the vibrating element 88 is preferably dome-shaped and the holes 90 may be tapered.
  • the vibrating element 88 and assembly 80 may, of course, be any other suitable element, such as a flat plate, thin mesh, or flexible membrane, without departing from the scope of the invention.
  • various aspects of the invention may be practiced independent of the particular aerosolizing method and device.
  • the substrate 84 is coupled to the mouthpiece directly or by a mounting element 92, which secures the vibrating assembly 80 to the housing 4 and specifically the mouthpiece 6.
  • the vibrating assembly 80 via the mounting element 92, is coupled to the housing 4 by a flexible connection 94, such as a resilient connection 95.
  • the connection 94 may be formed in part by a spring, foam, or elastomeric element disposed between the vibrating assembly 80 and housing 4.
  • an elastomeric element 96 having an oval cross section is shown, although a C-shaped, U-shaped, or other suitably shaped cross-section may be used.
  • the flexible or resilient connection 94 can reduce dampening of the vibrating assembly as compared to rigid connections with the mouthpiece or housing 6.
  • the resilient connection 95 also provides a modest closing force on a medicament seal 98 between the aerosol generator 8 and reservoir 14.
  • the closing force created by the resilient connection 95 helps to prevent medicament from leaking out of the seal 98 between the reservoir 14 and aerosol generator 8.
  • the seal 98 is formed by a sealing element 100, such as an O-ring, on the mounting element 92, and a complementary sealing element 102, such as a groove on the reservoir 14.
  • the connection 94 naturally biases the sealing elements 100 and 102 together in that the connection 94 is slightly compressed when the reservoir 14 is mounted. The proper alignment of the reservoir 14 is achieved when the mouthpiece 6 registers with the rest of the housing 4.
  • the mounting element 92 may also engage the vibrating assembly 80, such as the vibrating element 88, and direct medicament to the vibrating element 88.
  • the mounting element 92 may engage the vibrating element 88 with any suitable connection.
  • the mounting element may be glued to the vibrating element 88 or may have an O-ring that engages the vibrating element.
  • the vibrating element is generally oriented within 45° of vertical, and preferably about 15°, during operation, but may be oriented at any other angle without departing from the invention.
  • the device 2 is preferably breath-actuated in any suitable manner.
  • a pressure sensor 110 such as a pressure transducer 112 measures pressure in the mouthpiece chamber 114 so that when the user inhales on the mouthpiece 6, the sensor 110 detects the pressure drop and triggers the aerosol generator 8 at a trigger pressure.
  • the pressure sensor 110 may be mounted to the mouthpiece 6 or may be mounted to the body of the device 2.
  • a pressure-sensing conduit 116 extends to a rear chamber 118 of the device 2 where the pressure sensor 110 is mounted.
  • a pressure-sensing port 118 in the mouthpiece 6 receives the conduit 116 to provide pressure communication between the mouthpiece chamber 63 and pressure sensor 110 via the conduit 116.
  • FIG. 9A and 9B An embodiment for the mouthpiece is shown with the perspective and cross- sectional views of Figs. 9A and 9B.
  • the mouthpiece 6 is designed to cause mixture of medicament particles with air in the mouth and upper respiratory tract of the patient, rather than mixing them in the device and transferring the mixture to the patient's mouth. Mixture of particles and air in the mouth and upper respiratory tract of the patient in this way reduces the interaction of particles with internal surfaces of the device, and consequently reduces particle coalescence to increase the respirable fraction of particles delivered to the lungs.
  • This is accomplished in the illustrated embodiment by providing separate flow passages for the medicament and for mixing air. Referring collectively to Figs.
  • the mouthpiece 6 comprises a hollow body that defines a medicament-flow passage 152 and an air-flow passage 156.
  • the aerosol generator 8 is positioned such that medicament particles stream from the aerosol generator 8 through the medicament-flow passage 152 to a mouthpiece opening 154 in response to a pressure drop at the mouthpiece opening 154.
  • Such a pressure drop is typically provided by a patient inhaling at the end of the mouthpiece, thereby also providing a pressure drop at an outlet opening 160 of the air-flow passage 156.
  • An inlet opening 158 to the air-flow passage 156 is provided in communication with ambient atmosphere to provide a source of air for mixing with the medicament particles. While the aerosol generator 8 is shown comprised by the mouthpiece 6, it may in other embodiments be installed in other parts of the inhalation device as described above.
  • FIG. 9C provides results of simulations that show the flow of air and medicament using the mouthpiece shown in Figs. 9A and 9B.
  • the figure shows the mouthpiece 6 and portions of a user's oralpharyngeal tract broadly separated into mouth 180 and pharynx 182.
  • Flows of medicament and air from the mouthpiece 6 are shown with dots, with the dark dots corresponding to air and the lighter dots corresponding to medicament.
  • the air flow is provided from the air-flow passage of the mouthpiece, at the bottom of the mouthpiece. As is evident from the drawing, this position for the air flow causes the air to act as a chaser source that mixes with the medicament and improves efficient flow of the medicament from the mouth to the pharynx and into the lungs.
  • the initial flow of medicament from the medicament flow passage into the mouth may be provided by a propulsive mechanism of the aerosol generator as described above, causing the medicament to be ejected through the medicament flow passage. In this way, the absence of mixing air with medicament in the mouthpiece does not adversely affect delivery of the medicament.
  • Table Ia provides results for a hand-held inhalation device having a vented mouthpiece to provide mixing of aerosolized liquid particles with air in the mouthpiece.
  • Table Ib provides corresponding results for a hand-held inhalation device like the one shown in Figs. 9 A and 9B that causes such mixing in the patient's mouth.
  • the design of the inhalation device used in the tests was otherwise identical for both sets of trials.
  • the user detaches the mouthpiece and loads the medicament assembly into the device.
  • the medicament assembly may be formed by the container and reservoir, which are attached together by the user or mounted in sequence to the device. Once the container and reservoir are attached together, the interlocking feature may prevent disassembly and thus prevent improper usage of the device and parts thereof.
  • the device may be primed in any suitable manner. For example, a volume of medicament equal to or just larger than the medicament path may be delivered when the container is loaded or when the first dose is delivered from a particular container. Alternatively, medicament may simply by delivered from the container until medicament is sensed in the reservoir.
  • the user When the user is prepared to inhale the aerosolized medicament, the user operates the dosing controls to select and deliver a volume of medicament from the container to the reservoir.
  • the dosing mechanism moves the piston to move medicament through the medicament path, out the valve and into the reservoir as shown in Figs. 10 and 11, to produce a flow of aerosolized medicament as shown in Fig. 12.
  • the user then operates the device by simply inhaling on the mouthpiece.
  • the pressure sensor detects the drop in pressure until the trigger pressure is reached, at which time the aerosol generator is activated. Medicament and air are separately drawn into the user's mouth where they mix.
  • the device continues to aerosolize medicament while the user continues to inhale.
  • the device may also measure, detect, or calculate when all of the medicament in the reservoir has been aerosolized in any suitable manner. For example, the device may deactivate the aerosol generator by measuring the resonant frequency of the vibrating element before medicament is delivered and deactivating the aerosol generator just before the dry resonant frequency is reached again.

Abstract

Methods and devices are provided for aerosolizing medicament to be inhaled by a user. A housing (4) is provided with an aerosol generator (8) contained within the housing. A medicament feed system (16, 18, 20) supplies medicament to the aerosol generator. A mouthpiece (6) has separate medicament and air flow passages. The medicament flow passage (152) provides aerosolized medicament from the aerosol generator to an outlet (154) of the medicament flow passage, and the air flow passage (156) has an inlet (158) in fluid communication with an ambient atmosphere . The outlets of the medicament and air flow passages are provided at an end of the mouthpiece to provide simultaneous flows of medicament (162) and air (164) that mix in the user's mouth upon inhalation by the user at the end of the mouthpiece .

Description

METHODS AND DEVICES FOR AEROSOLIZING MEDICAMENT
CROSS-REFERENCES TO RELATED APPLICATIONS
[0001] This application is a continuation-in-part of, and claims the benefit of the filing date of, U.S. Pat. Appl. No. 11,039,709, entitled "METHODS AND DEVICES FOR AEROSOLIZING MEDICAMENT, filed January 19, 2005, which is a continuation-in-part application of U.S. Pat. Appl. No. 10/043,075, entitled "METHODS AND DEVICES FOR NEBULIZING FLUIDS," filed January 7, 2002, the entire disclosure of which is incorporated herein by reference for all purposes.
BACKGROUND OF THE INVENTION
[0002] This application relates to generally methods and devices for aerosolizing medicament, as well as to methods and devices for storing and delivering medicament to be aerosolized. More specifically, this application relates to a mouthpiece for an unpressurized inhalation device.
[0003] One factor that influences the effectiveness of an inhalation device that has a mouthpiece and an aerosol generator is the percentage amount of aerosolized medicament emitted from the mouthpiece relative to the amount of medicament supplied to the aerosol generator. Typically, there is some loss of medicament caused by particle impaction, which results from the aerodynamic behavior of the particles carried by the inhalation medicament stream. In particular, the inhalation flow rate that passes through the mouthpiece of an inhalation device may range between about 15 and 60 liters/minute. This rate may cause flow within internal passages of the inhalation device to be turbulent, resulting in collision among aerosol particles and with internal surfaces of the mouthpiece. Consequently, some medicament remains in the mouthpiece and does not reach the lungs of the patient.
[0004] There is thus a general need in the art for methods and devices that improve the effectiveness of inhalation devices by reducing the amount of loss from such factors. BRIEF SUMMARY OF THE INVENTION
[0005] Embodiments of the invention provide an aerosolizing device, which may be a hand-held aerosolizing device for inhalation of aerosolized medicament. The device has a mouthpiece through which a user inhales the aerosolized medicament. An aerosol generator may be provided as a vibrating element with holes through which the medicament is ejected, although other suitable aerosol generators may be used without departing from numerous aspects of the invention.
[0006] The medicament is held in a container that holds a number of doses of the medicament. The container delivers the medicament to a reservoir, which is designed to minimize the residual volume in the reservoir. An inner surface of the reservoir may be hydrophobic to encourage medicament to flow downward to the aerosol generator. The reservoir is may also be tear-drop shaped and have a smooth inner surface that is free of seams and corners to further encourage downward flow. The container and reservoir may be replaced independently or at the same time. The reservoir and container may also be formed as a single unit or may be separate units mounted to the device by the user.
[0007] The reservoir may also have a collection area located adjacent to the vibrating element where a final volume of medicament accumulates. The final volume is drawn over the holes in the vibrating element when the vibrating element is vibrated, thereby reducing the residual volume. The reservoir may also be designed so that the aerosol generator is positioned at a relatively low hydrostatic position when the device is positioned in a particular operating orientation. For example, the aerosol generator may be positioned so that less than 25%, and even less than 10%, of the volume of the reservoir is positioned below the aerosol generator.
[0008] The reservoir may also have one or more vent holes for smooth medicament delivery into the reservoir during filling and out of the reservoir when the medicament is being aerosolized. The vent holes may be sized to prevent the medicament from escaping therethrough.
[0009] The medicament path between the container and reservoir may include a valve that prevents contamination of the container and medicament path. The valve maintains the sterility of the container so that the container does not need to be pierced a number of times, as might otherwise be necessary. The valve may be positioned at a wall of the reservoir so that the valve isolates the entire medicament path together with the container.
[0010] Various aspects of the present invention are also directed to a container. The container is similar to a standard vial with the addition of a specialized connector. The connector mates with the aerosolizing device and, in another aspect, may mate with the reservoir as well. The connector has a protrusion that engages an L-shaped slot in the device for a bayonet-type connection. The connector also has a number of tabs or hooks that engage the reservoir to lock the reservoir to the container.
[0011] The mouthpiece may define separate medicament and air flow passages, each such passage having an outlet into the user's mouth when the device is used. The aerosol generator provides aerosolized medicament along the medicament flow passage, such as in response to inhalation by the user. The air flow passage has an inlet in communication with an ambient atmosphere so that air flows along the air flow passage, such as may also be in response to user inhalation. Separation of the medicament and air flows causes the medicament to be mixed with the air in the user's mouth, providing improved effectiveness of the device in delivering medicament. Greater than 90% of medicament provided to the aerosol generator may be expelled through the outlet of the medicament flow passage. In one embodiment, the outlet of the air flow passage is disposed substantially below the outlet of the medicament flow passage when the mouthpiece is oriented for insertion into the user's mouth.
[0012] The mouthpiece may be separable from the rest of the housing. The aerosol generator may also be contained within the mouthpiece so that the aerosol generator may be cleaned along with the mouthpiece. The mouthpiece may also have a port that receives a pressure-sensing conduit. The pressure-sensing conduit leads from the medicament flow passage to a pressure sensor. The pressure sensor is used for breath actuation of the device by sensing the drop in pressure when the user inhales on the mouthpiece.
[0013] These and other aspects of the invention are disclosed and described in the following description, drawings, and claims. BREF DESCRIPTION OF THE DRAWINGS
[0014] Fig. 1 shows an aerosolizing device;
[0015] Fig. 2 shows a medicament assembly formed by a reservoir and a container;
[0016] Fig. 3 shows the aerosolizing device with a mouthpiece and medicament assembly removed;
[0017] Fig. 4 shows the medicament assembly mounted to the aerosolizing device with the mouthpiece removed;
[0018] Fig. 5 shows the container;
[0019] Fig. 6 is a perspective, cross-sectional view of the reservoir;
[0020] Fig. 7 is the perspective view of the device with the mouthpiece removed;
[0021] Fig. 8 is a perspective view corresponding to the view of Fig. 7 with the mouthpiece attached to the housing;
[0022] Figs. 9A and 9B are respectively show perspective and cross-sectional views of a mouthpiece in another embodiment;
[0023] Fig. 9C provides results of a simulation illustrating flows of medicament and air using the mouthpiece of Figs. 9 A and 9B;
[0024] Fig. 10 is a cross-sectional view of the aerosolizing device with the reservoir empty;
[0025] Fig. 11 is a cross-sectional view of the aerosolizing device with the reservoir filled with a volume of medicament; and
[0026] Fig. 12 shows the aerosol generator delivering the aerosolized medicament through the mouthpiece.
DETAILED DESCRIPTION OF THE INVENTION
[0027] Referring initially to Figs. 1 - 8, an aerosolizing device 2 is shown. The aerosolizing device 2 may be a hand-held inhalation device, although various aspects of the invention may be practiced with any other aerosolizing device or inhalation device. The aerosolizing device 2 has a housing 4 that includes a mouthpiece 6 through which a user inhales an aerosolized medicament. In one embodiment, described in more detail in connection with Figs. 9A and 9B below, the medicament is aerosolized by an aerosol generator 8 and mixed in a patient's mouth with air drawn through a separate air-flow passage. Embodiments of the invention are applicable both to liquid and powder medicaments, both of which may exhibit fluid behavior. In instances where the medicament comprises a liquid medicament, the aerosol generator 8 may comprise a nebulizing element.
[0028] The medicament to be aerosolized is stored in a container 12, such as a vial
15, which may hold a number of doses of the medicament. The container 12 is removed and replaced as necessary. The user selects a dose size or amount and delivers the dose from the container 12 to a reservoir 14, which holds the medicament. The reservoir 14 may be removed and replaced together with or separate from the container 12 as explained below.
[0029] The container 12 has a piston 16, which is moved by a dosing mechanism 18 to dispense a volume of the medicament. The dosing mechanism 18 may be any suitable dosing mechanism such as the dosing mechanisms for insulin pen mechanisms. The dosing mechanism 18 is operated with a dosing control 20 that the user operates to select and deliver a quantity of medicament to the reservoir 14. The housing 4 has a window to view the amount of medicament in the container 12.
[0030] The container 12 has a body 22 similar to a standard vial. The container 12 does differ from a standard vial in that the container 12 has a connector 23, such as a collar 24, which mates with the reservoir 14 and the aerosolizing device 2. To this end, the connector 23 has a bayonet-type connection with the aerosolizing device 2. The connector 23 has three projections 26 .extending from a cylindrical body 28. The projections register and slide within L-shaped slots 30 in the aerosolizing device 2. The container 12 is loaded into the device 2 by pushing downward and then rotating the collar 24 to secure the collar 24, and therefore container 12, to the device 2. The slots 30 may have a raised portion or detent to lock the projection in the slot 30. The position, size, spacing, and orientation of the projections 26 and corresponding slots 30 may be altered for different medicaments to prevent use of an improper medicament. The device 2 may also have a sensor 32 that detects proper engagement of the projection 26 within the slot 30 before the device 2 will dispense medicament. The container 12 may, of course, have any suitable connection with the aerosolizing device 2 that helps to prevent use of an improper medicament. [0031] The container 12 also locks together with the reservoir 14 to provide a secure engagement with the reservoir 14. When the container 12 is mounted to the reservoir 14, a needle 40 pierces the container 12. The container 12 also has three tabs or hooks 42 that lock together with mating connectors on the reservoir 14. The tabs 42 are located about 120° apart and each have a recess 44 and a shoulder 46 that engages complementary features on a connector 43 on the reservoir 14. The container 12 and reservoir 14 may, of course, mount to one another in any other suitable manner and the features may be altered for different medicaments.
[0032] The container 12 and reservoir 14 form a medicament assembly 48. The container 12 is preferably mounted to the reservoir.14 by the user immediately before loading the container 12 and reservoir 14. Alternatively, the container 12 and reservoir 14 may be loaded sequentially. For example, the container 12 could be mounted to the device 2 followed by mounting the reservoir 14 to the container 12. The medicament assembly 48 may also be provided as a single unit that the user replaces all at once.
[0033] The reservoir 14 has an opening 50 that delivers the medicament to the aerosol generator 8. The opening 50 is oriented to form a feed angle of about 5 - 30°, and may be about 15°, relative to the longitudinal axis L of the container 12 as defined by the container body. The opening 50 also may have a diameter of about 0.05 - 0.25 inches and may be about 0.15 inches. The opening size and feed angle provide smooth delivery of the medicament from the reservoir 14 to the aerosol generator 8 particularly when the aerosol generator is oriented somewhat upright.
[0034] The medicament travels along a medicament path 52 between the container 12 and reservoir 14. The medicament path 52 includes the needle 40 and a channel leading from the needle 40 to the reservoir 14. The medicament path 52 may, of course, be formed in any other manner, including as a simple lumen or tube extending between the container 12 and reservoir 14. Furthermore, the medicament coupling between the container 12 and reservoir 14 may be any other suitable coupling other than the needle 40.
[0035] The medicament path 52 also includes a valve 54 that prevents contamination of the container 12. The valve 54 eliminates the need to pierce the container 12 a number of times as may be necessary to maintain sterility if the valve were not provided. The valve 54 may be a one-way valve such as a slit valve, ball valve, or duckbill valve. The valve 54 may be positioned to protect the entire medicament path between the container 12 and reservoir 14. To this end, the valve 54 may be positioned at the end of the medicament path 52, such as at a wall 56 of the reservoir 14. The valve 54 may also be positioned at a relatively low hydrostatic position relative to the reservoir 14 such that less than 25% of the reservoir 14, and perhaps less than 10%, is positioned hydrostatically below the valve 54. In this manner, the residual medicament volume in the reservoir 14 may be reduced since the valve 54 position can reduce the wetted surface of the reservoir 14 as compared to a valve positioned to dispense the medicament at a higher position in the reservoir. Of course, the valve 54 may be positioned at an elevated position in the reservoir 14 without departing from the invention. The valve 54 may also direct the medicament at the aerosol generator 8. The valve 54 may direct a stream of medicament at the aerosol generator 8 so that air in the reservoir 14 near the aerosol generator 8 is actively removed. A problem that can occur when delivering medicament to the aerosol generator is that air can be trapped near the aerosol generator, which can inhibit proper functioning of the device. The orientation of the valve 54 and the ability of the valve 54 to deliver a stream of medicament together reduce the risk of trapping air around the aerosol generator 8.
[0036] The reservoir 14 has an inner wall 71 that has a tear-drop shape and is substantially free of corners, seams, and edges to encourage medicament drainage. The reservoir 14 has a backwall 60 that forms an angle of about 20 - 70° with respect to horizontal when the device is held in a preferred operating orientation. The inner wall 62 of the reservoir 14 is also preferably hydrophobic, but may be hydrophilic, depending upon the application and particular medicament, to further reduce the residual volume. The reservoir 14 may also have a relatively small volume to minimize the surface area of the reservoir 14. The tear-drop shape, smooth interior wall, angled backwall 60, and hydrophobic surface all encourage liquid in the reservoir 14 to flow downward toward the aerosol generator 8, thereby minimizing the residual medicament volume.
[0037] The aerosol generator 8 may be angled away from the reservoir 14 at an angle of about 0 - 45° relative to vertical and may be about 15° when the device is in the preferred operating orientation. The reservoir 14 may be made in any suitable manner and with any suitable materials. For example, the reservoir 14 may be made out of polypropylene and formed by injection molding. The aerosol generator 8 may be oriented in any other manner and may be any type of aerosol generator. [0038] The mouthpiece 6 may be removable to load and remove the container 12 and/or reservoir 14. Removal of the mouthpiece 6 also permits cleaning of the mouthpiece 6 and aerosol generator 8. The aerosol generator 8 may be cleaned or removed after each use or at any predetermined interval, such as, for example, after a predetermined number of containers 12 and/or reservoirs 14 have been used. The mouthpiece 6 or aerosol generator 8 may even be removed and replaced with each container 12 or assembly 48. The mouthpiece 6 may be mounted with a suitable connection, such as a snap-fit connection or latch with the rest of the housing. In one embodiment, the mouthpiece 6 includes separate medicament and air-flow passages so that the medicament particles are mixed with air in the user's mouth when the user inhales on the mouthpiece. This is described in further detail in connection with Figs. 9 A and 9B below.
[0039] The aerosol generator 8 may include a vibrating assembly 80. The vibrating assembly 80 includes a piezoelectric element 82 mounted to a substrate 84. The substrate 84 may be cup-shaped 86 or may have any other suitable shape, such as a flat ring or plate. A vibrating element 88 with a number of holes 90 is mounted to the substrate 84. The vibrating element 88 is preferably dome-shaped and the holes 90 may be tapered. The vibrating element 88 and assembly 80 may, of course, be any other suitable element, such as a flat plate, thin mesh, or flexible membrane, without departing from the scope of the invention. Furthermore, various aspects of the invention may be practiced independent of the particular aerosolizing method and device.
[0040] The substrate 84 is coupled to the mouthpiece directly or by a mounting element 92, which secures the vibrating assembly 80 to the housing 4 and specifically the mouthpiece 6. The vibrating assembly 80, via the mounting element 92, is coupled to the housing 4 by a flexible connection 94, such as a resilient connection 95. The connection 94 may be formed in part by a spring, foam, or elastomeric element disposed between the vibrating assembly 80 and housing 4. In the particular embodiment shown, an elastomeric element 96 having an oval cross section is shown, although a C-shaped, U-shaped, or other suitably shaped cross-section may be used. The flexible or resilient connection 94 can reduce dampening of the vibrating assembly as compared to rigid connections with the mouthpiece or housing 6.
[0041] The resilient connection 95 also provides a modest closing force on a medicament seal 98 between the aerosol generator 8 and reservoir 14. The closing force created by the resilient connection 95 helps to prevent medicament from leaking out of the seal 98 between the reservoir 14 and aerosol generator 8. The seal 98 is formed by a sealing element 100, such as an O-ring, on the mounting element 92, and a complementary sealing element 102, such as a groove on the reservoir 14. The connection 94 naturally biases the sealing elements 100 and 102 together in that the connection 94 is slightly compressed when the reservoir 14 is mounted. The proper alignment of the reservoir 14 is achieved when the mouthpiece 6 registers with the rest of the housing 4.
[0042] The mounting element 92 may also engage the vibrating assembly 80, such as the vibrating element 88, and direct medicament to the vibrating element 88. The mounting element 92 may engage the vibrating element 88 with any suitable connection. For example, the mounting element may be glued to the vibrating element 88 or may have an O-ring that engages the vibrating element. As mentioned above, the vibrating element is generally oriented within 45° of vertical, and preferably about 15°, during operation, but may be oriented at any other angle without departing from the invention.
[0043] The device 2 is preferably breath-actuated in any suitable manner. In one embodiment, a pressure sensor 110, such as a pressure transducer 112, measures pressure in the mouthpiece chamber 114 so that when the user inhales on the mouthpiece 6, the sensor 110 detects the pressure drop and triggers the aerosol generator 8 at a trigger pressure. The pressure sensor 110 may be mounted to the mouthpiece 6 or may be mounted to the body of the device 2. A pressure-sensing conduit 116 extends to a rear chamber 118 of the device 2 where the pressure sensor 110 is mounted. A pressure-sensing port 118 in the mouthpiece 6 receives the conduit 116 to provide pressure communication between the mouthpiece chamber 63 and pressure sensor 110 via the conduit 116.
[0044] An embodiment for the mouthpiece is shown with the perspective and cross- sectional views of Figs. 9A and 9B. In this embodiment, the mouthpiece 6 is designed to cause mixture of medicament particles with air in the mouth and upper respiratory tract of the patient, rather than mixing them in the device and transferring the mixture to the patient's mouth. Mixture of particles and air in the mouth and upper respiratory tract of the patient in this way reduces the interaction of particles with internal surfaces of the device, and consequently reduces particle coalescence to increase the respirable fraction of particles delivered to the lungs. [0045] This is accomplished in the illustrated embodiment by providing separate flow passages for the medicament and for mixing air. Referring collectively to Figs. 9A and 9B, the mouthpiece 6 comprises a hollow body that defines a medicament-flow passage 152 and an air-flow passage 156. The aerosol generator 8 is positioned such that medicament particles stream from the aerosol generator 8 through the medicament-flow passage 152 to a mouthpiece opening 154 in response to a pressure drop at the mouthpiece opening 154. Such a pressure drop is typically provided by a patient inhaling at the end of the mouthpiece, thereby also providing a pressure drop at an outlet opening 160 of the air-flow passage 156. An inlet opening 158 to the air-flow passage 156 is provided in communication with ambient atmosphere to provide a source of air for mixing with the medicament particles. While the aerosol generator 8 is shown comprised by the mouthpiece 6, it may in other embodiments be installed in other parts of the inhalation device as described above.
[0046] The flows of medicament and air are respectively shown with arrows 162 and
164. A number of tests have been performed to assess the effectiveness of the mouthpiece 6 shown in Figs. 9 A and 9B. One conclusion from these tests is that, while the emitted dose of medicament is generally improved with the design, distribution of the medicament in a patient's mouth may be further improved if the outlet opening 160 of the air-flow passage 156 is below the mouthpiece opening 154 for the medicament when inserted into a patient's mouth. While other orientations may be used in some embodiments, there is a tendency for the medicament to be driven against a patient's tongue if the relative position of the air-flow- passage outlet opening 160 is too high relative to the mouthpiece opening 154. Positioning the air-flow-passage outlet opening 160 below the mouthpiece opening 154 increases the path above the tongue. This minimizes oralpharyngeal deposition on the tongue, cheeks, and back of the patient's throat, thereby further improving delivery of medicament to the patient's lungs.
[0047] Fig. 9C provides results of simulations that show the flow of air and medicament using the mouthpiece shown in Figs. 9A and 9B. The figure shows the mouthpiece 6 and portions of a user's oralpharyngeal tract broadly separated into mouth 180 and pharynx 182. Flows of medicament and air from the mouthpiece 6 are shown with dots, with the dark dots corresponding to air and the lighter dots corresponding to medicament. The air flow is provided from the air-flow passage of the mouthpiece, at the bottom of the mouthpiece. As is evident from the drawing, this position for the air flow causes the air to act as a chaser source that mixes with the medicament and improves efficient flow of the medicament from the mouth to the pharynx and into the lungs. The initial flow of medicament from the medicament flow passage into the mouth may be provided by a propulsive mechanism of the aerosol generator as described above, causing the medicament to be ejected through the medicament flow passage. In this way, the absence of mixing air with medicament in the mouthpiece does not adversely affect delivery of the medicament.
[0048] Quantitative results of some of the tests are compared in Tables Ia and Ib.
Table Ia provides results for a hand-held inhalation device having a vented mouthpiece to provide mixing of aerosolized liquid particles with air in the mouthpiece. Table Ib provides corresponding results for a hand-held inhalation device like the one shown in Figs. 9 A and 9B that causes such mixing in the patient's mouth. The design of the inhalation device used in the tests was otherwise identical for both sets of trials.
Table Ia: Results Using Vented Mouthpiece
Figure imgf000012_0001
Table Ib: Results Using Mouthpiece with Separate Medicament and Air Flows
Figure imgf000013_0001
For each mouthpiece, trials were performed using flow rates of 28.3 L/min and 60 L/min, all with a medicament volume of 200 μL. The amount of medicament leaving the mouthpiece was measured, with the emitted dose being defined as the percentage of medicament leaving the mouthpiece to the total medicament volume of 200%. For the vented mouthpiece, the average emitted dose was 78.2% for the lower flow rate and 71.9% for the higher flow rate. At both flow rates, the average emitted dose was higher with the mouthpiece described in connection with Figs. 9A and 9B, being 96.1% at the lower flow rate and 94.3% at the higher flow rate. The standard deviations for the results are noted in the tables, from which it is generally evident that higher emitted doses are produced with less variability at lower flow rates for both mouthpieces.
[0049] Operation of the device is now fully described. The user detaches the mouthpiece and loads the medicament assembly into the device. The medicament assembly may be formed by the container and reservoir, which are attached together by the user or mounted in sequence to the device. Once the container and reservoir are attached together, the interlocking feature may prevent disassembly and thus prevent improper usage of the device and parts thereof. The device may be primed in any suitable manner. For example, a volume of medicament equal to or just larger than the medicament path may be delivered when the container is loaded or when the first dose is delivered from a particular container. Alternatively, medicament may simply by delivered from the container until medicament is sensed in the reservoir. [0050] When the user is prepared to inhale the aerosolized medicament, the user operates the dosing controls to select and deliver a volume of medicament from the container to the reservoir. The dosing mechanism moves the piston to move medicament through the medicament path, out the valve and into the reservoir as shown in Figs. 10 and 11, to produce a flow of aerosolized medicament as shown in Fig. 12. The user then operates the device by simply inhaling on the mouthpiece. When the user inhales, the pressure sensor detects the drop in pressure until the trigger pressure is reached, at which time the aerosol generator is activated. Medicament and air are separately drawn into the user's mouth where they mix. The device continues to aerosolize medicament while the user continues to inhale. This process is repeated until all of the solution has been aerosolized. The device may also measure, detect, or calculate when all of the medicament in the reservoir has been aerosolized in any suitable manner. For example, the device may deactivate the aerosol generator by measuring the resonant frequency of the vibrating element before medicament is delivered and deactivating the aerosol generator just before the dry resonant frequency is reached again.
[0051] The invention has been described with respect to various specific embodiments, but it can be appreciated that various modifications may be made without departing from the scope of the invention. For example, while the description above has focused on a specific implementation of an aerosolizing inhalation device, it will be appreciated that many components may be used in combination with a variety of alternative designs for inhalation devices. In particular, the mouthpiece described above with separate medicament and air flow passages may be used with numerous types of inhalation devices that include an aerosol generator for aerosolizing medicament. Advantages resulting from the separation of air and medicament flows so that mixing occurs in the user's mouth may be realized with any of a variety of alternative designs for inhalation devices.

Claims

WHAT IS CLAIMED IS:
1. An aerosolizing inhalation device for aerosolizing a medicament to be inhaled by a user, the aerosolizing inhalation device comprising: a housing; an aerosol generator contained within the housing; a medicament feed system to supply medicament to the aerosol generator; and a mouthpiece comprising: a medicament flow passage to provide aerosolized medicament from the aerosol generator to an outlet of the medicament flow passage; and an air flow passage separate from the medicament flow passage, the air flow passage having an inlet in fluid communication with an ambient atmosphere and an outlet, wherein the outlets of the medicament flow passage and air flow passage are provided at an end of the mouthpiece to provide simultaneous flows of medicament and air that mix in the user' s mouth upon inhalation by the user at the end of the mouthpiece.
2. The aerosolizing inhalation device recited in claim 1 wherein the outlet of the air flow passage is disposed substantially below the outlet of the medicament flow passage when the mouthpiece is oriented for insertion into the user's mouth.
3. The aerosolizing inhalation device recited in claim 1 wherein greater than 90% of medicament provided to the aerosol generator by the medicament feed system is expelled through the outlet of the medicament flow passage.
4. The aerosolizing inhalation device recited in claim 1 further comprising an electrical connector that couples the mouthpiece electrically to the aerosol generator.
5. The aerosolizing inhalation device recited in claim 1 further comprising a pressure-measurement port disposed to measure a pressure within the medicament flow passage.
6. The aerosolizing inhalation device recited in claim 1 wherein the aerosol generator is mounted to the housing with a resilient connection.
7. The aerosolizing inhalation device recited in claim 1 wherein the aerosol generator includes a vibrating element with holes, the aerosolized medicament being emitted through the holes in the vibrating element when the vibrating element is vibrated.
8. The aerosolizing inhalation device recited in claim 7 wherein the vibrating element comprises: a front side leading to the medicament flow passage such that aerosolized medicament passing through the holes enters the medicament flow passage; and a back side that receives the medicament to be aerosolized.
9. The aerosolizing inhalation device recited in claim 1 wherein the medicament feed system comprises: a removable container holding a number of doses of medicament to be aerosolized; and a reservoir coupled with the housing and holding a volume of the medicament in contact with the aerosol generator, the reservoir being in fluid communication with the removable container to allow the volume of medicament to be delivered from the removable container to the reservoir.
10. The aerosolizing inhalation device recited in claim 9 wherein the medicament feed system further comprises a one-way valve positioned to regulate flow between the removable container and the reservoir.
11. The aerosolizing inhalation device recited in claim 1 wherein the mouthpiece is removable.
12. The aerosolizing inhalation device recited in claim 1 wherein the aerosolized medicament comprises aerosolized liquid.
13. The aerosolizing inhalation device recited in claim 1 wherein the aerosolized medicament comprises aerosolized powder.
14. A method for providing aerosolized medicament to a patient, the method comprising: storing a volume of the medicament; aerosolizing the volume of the medicament and flowing the aerosolized medicament through a medicament flow passage into the patient's mouth; and simultaneously flowing air through an air flow passage separate from the medicament flow passage into the patient's mouth in response to inhalation by the patient, whereby the medicament and air mix do not mix prior to their entry into the patient's mouth.
15. The method recited in claim 14 wherein the air is flowed into the patient's mouth along a path substantially below a flow of the aerosolized medicament into the patient's mouth.
16. The method recited in claim 14 wherein greater than 90% of the volume of the medicament is expelled through the outlet of the medicament flow passage.
17. The method recited in claim 14 further comprising measuring a pressure within the medicament flow passage.
18. The method recited in claim 14 wherein aerosolizing the volume of the medicament comprises: supplying the volume of the medicament to a vibrating element with holes; and vibrating the vibrating element to emit the aerosolized medicament through the holes.
19. The method recited in claim 14 wherein the medicament comprises a liquid.
20. The method recited in claim 14 wherein the medicament comprises a powder.
PCT/US2006/002035 2005-01-19 2006-01-19 Methods and devices for aerosolizing medicament WO2006078900A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/039,709 US20050205089A1 (en) 2002-01-07 2005-01-19 Methods and devices for aerosolizing medicament
US11/039,709 2005-01-19
US11/111,492 US7677467B2 (en) 2002-01-07 2005-04-20 Methods and devices for aerosolizing medicament
US11/111,492 2005-04-20

Publications (1)

Publication Number Publication Date
WO2006078900A1 true WO2006078900A1 (en) 2006-07-27

Family

ID=36177297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/002035 WO2006078900A1 (en) 2005-01-19 2006-01-19 Methods and devices for aerosolizing medicament

Country Status (2)

Country Link
US (1) US7677467B2 (en)
WO (1) WO2006078900A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008058455A1 (en) * 2006-11-11 2008-05-22 Tafelberg International Limited Pulmonary medicament delivery device
WO2010066714A1 (en) * 2008-12-09 2010-06-17 Pari Pharma Gmbh Aerosol therapy device

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2439766C (en) * 2001-03-15 2008-12-09 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Nebulizer having cooling chamber
US8545463B2 (en) 2003-05-20 2013-10-01 Optimyst Systems Inc. Ophthalmic fluid reservoir assembly for use with an ophthalmic fluid delivery device
DE602004031829D1 (en) 2003-05-20 2011-04-28 Collins OPHTHALMIC DRUG DELIVERY SYSTEM
AU2005262940B2 (en) * 2004-04-02 2010-07-01 Creare Incorporated Aerosol delivery systems and methods
AU2005247410A1 (en) * 2004-05-20 2005-12-08 Discovery Laboratories, Inc. Methods , systems and devices for noninvasive pulmonary delivery
US8028697B2 (en) 2005-04-28 2011-10-04 Trudell Medical International Ventilator circuit and method for the use thereof
JP5064383B2 (en) 2005-05-25 2012-10-31 エアロジェン,インコーポレイテッド Vibration system and method
JP4765526B2 (en) * 2005-10-04 2011-09-07 オムロンヘルスケア株式会社 Inhaler and mouthpiece for inhaler
JP5241714B2 (en) 2006-07-07 2013-07-17 プロテウス デジタル ヘルス, インコーポレイテッド Smart parenteral delivery system
US20090301472A1 (en) * 2007-02-08 2009-12-10 Kim Matthew H J Aerosol delivery systems and methods
CN100593424C (en) * 2007-07-18 2010-03-10 北京万生药业有限责任公司 Apparatus for humidifying and conveying oxygen
EP2211974A4 (en) * 2007-10-25 2013-02-27 Proteus Digital Health Inc Fluid transfer port information system
US8419638B2 (en) 2007-11-19 2013-04-16 Proteus Digital Health, Inc. Body-associated fluid transport structure evaluation devices
JP5570996B2 (en) 2007-12-14 2014-08-13 エアロデザインズ インコーポレイテッド Delivery of aerosolizable foodstuffs
HUE028653T2 (en) * 2008-03-17 2016-12-28 Discovery Lab Inc Ventilation circuit adaptor and proximal aerosol delivery system
EP2179760B1 (en) 2008-10-22 2013-02-27 Trudell Medical International Modular Aerosol Delivery System
WO2011061479A1 (en) * 2009-11-18 2011-05-26 Reckitt Benckiser Llc Ultrasonic surface treatment device and method
US8332020B2 (en) 2010-02-01 2012-12-11 Proteus Digital Health, Inc. Two-wrist data gathering system
AU2011210648B2 (en) 2010-02-01 2014-10-16 Otsuka Pharmaceutical Co., Ltd. Data gathering system
MX2013000604A (en) 2010-07-15 2013-07-05 Corinthian Ophthalmic Inc Ophthalmic drug delivery.
US8733935B2 (en) 2010-07-15 2014-05-27 Corinthian Ophthalmic, Inc. Method and system for performing remote treatment and monitoring
US10154923B2 (en) 2010-07-15 2018-12-18 Eyenovia, Inc. Drop generating device
KR101545413B1 (en) 2010-07-15 2015-08-18 아이노비아 인코포레이티드 Drop generating device
US8689439B2 (en) 2010-08-06 2014-04-08 Abbott Laboratories Method for forming a tube for use with a pump delivery system
US8377001B2 (en) 2010-10-01 2013-02-19 Abbott Laboratories Feeding set for a peristaltic pump system
US8377000B2 (en) 2010-10-01 2013-02-19 Abbott Laboratories Enteral feeding apparatus having a feeding set
US20130150812A1 (en) 2011-12-12 2013-06-13 Corinthian Ophthalmic, Inc. High modulus polymeric ejector mechanism, ejector device, and methods of use
USD776254S1 (en) * 2014-06-17 2017-01-10 Koninklijke Phlips N.V. Handheld respiratory device
USD776255S1 (en) * 2014-06-17 2017-01-10 Koninklijke Philips N.V. Handheld respiratory device
USD771798S1 (en) * 2014-06-17 2016-11-15 Koninklijke Philips N.V. Handheld respiratory device
AR103016A1 (en) * 2014-12-15 2017-04-12 Philip Morris Products Sa AEROSOL GENERATOR SYSTEMS AND METHODS FOR DIRECTING AN AIR FLOW TOWARDS AN ELECTRIC HEATED AEROSOL GENERATOR SYSTEM
US20160367767A1 (en) * 2015-06-16 2016-12-22 Kathryn Cashman Inhalant device
DE202016100418U1 (en) * 2016-01-28 2017-05-02 Gerhard Seeberger Dispensing device for spraying a sprayable fluid
CN107626019A (en) * 2016-07-18 2018-01-26 卓效医疗有限公司 Hand-held atomizer
US11938056B2 (en) * 2017-06-10 2024-03-26 Eyenovia, Inc. Methods and devices for handling a fluid and delivering the fluid to the eye
US20190054260A1 (en) * 2017-08-17 2019-02-21 Monzano Group LLC Nebulizer devices and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301666A (en) * 1991-12-14 1994-04-12 Asta Medica Aktiengesellschaft Powder inhaler
US5435297A (en) * 1991-08-29 1995-07-25 Christoph Klein Medical device for inhaling metered aerosols
US6325062B1 (en) * 1998-06-18 2001-12-04 Clavius Devices, Inc. Breath-activated metered-dose inhaler
US20030127538A1 (en) * 2002-01-07 2003-07-10 Aerogen, Inc., A Delware Corporation Methods and devices for nebulizing fluids
US6779521B1 (en) * 1999-09-15 2004-08-24 Medic-Aid Limited Combination mouthpiece for inhalation therapy devices used by oxygen dependent patients

Family Cites Families (429)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US550315A (en) 1895-11-26 Frank napoleon allen
US2735427A (en) 1956-02-21 Hypodermic syringe
US809159A (en) 1905-09-30 1906-01-02 Richard M Willis Dispensing bottle or jar.
US1680616A (en) 1922-06-06 1928-08-14 Horst Friedrich Wilhelm Sealed package
US2022520A (en) 1934-07-07 1935-11-26 Parsons Ammonia Company Inc Bottle
US2101304A (en) 1936-06-05 1937-12-07 Sheaffer W A Pen Co Fountain pen
US2187528A (en) 1937-06-07 1940-01-16 Russell T Wing Fountain pen
US2158615A (en) 1937-07-26 1939-05-16 Sheaffer W A Pen Co Fountain pen
US2266706A (en) 1938-08-06 1941-12-16 Stanley L Fox Nasal atomizing inhaler and dropper
BE436027A (en) 1939-01-06
US2292381A (en) 1940-12-24 1942-08-11 Esterbrook Steel Pen Mfg Co Fountain pen feed
US2283333A (en) 1941-05-22 1942-05-19 Sheaffer W A Pen Co Fountain pen
US2383098A (en) 1942-07-21 1945-08-21 Jr Frank H Wheaton Double-mouthed bottle
US2375770A (en) 1943-11-19 1945-05-15 Arthur O Dahiberg Fountain pen
US2430023A (en) 1944-01-27 1947-11-04 Esterbrook Pen Co Writing implement
NL63900C (en) 1944-04-10
US2404063A (en) 1944-04-27 1946-07-16 Parker Pen Co Fountain pen
US2521657A (en) 1944-07-07 1950-09-05 Scripto Inc Fountain pen
US2512004A (en) 1945-03-05 1950-06-20 Russell T Wing Fountain pen
US2474996A (en) 1945-10-12 1949-07-05 Sheaffer W A Pen Co Fountain pen
NL68028C (en) 1946-06-08
US2705007A (en) 1951-09-10 1955-03-29 Louis P Gerber Inhaler
US2764979A (en) 1953-04-09 1956-10-02 Henderson Edward Medicament dispensing unit
US2764946A (en) 1954-04-05 1956-10-02 Scognamillo Frank Rotary pump
US2779623A (en) 1954-09-10 1957-01-29 Bernard J Eisenkraft Electromechanical atomizer
US2935970A (en) 1955-03-23 1960-05-10 Sapphire Products Inc Fountain pen ink reservoir
DE1103522B (en) 1957-10-24 1961-03-30 Transform Roentgen Matern Veb Exhalation device for aerosols generated by means of ultrasound
US3103310A (en) 1961-11-09 1963-09-10 Exxon Research Engineering Co Sonic atomizer for liquids
GB973458A (en) 1962-10-16 1964-10-28 Exxon Research Engineering Co Improvements in or relating to methods and apparatus for atomising liquids
FR1449600A (en) 1964-09-14 1966-05-06 Fr Des Laboratoires Labaz Soc Improvements to flexible material bottles, especially for medicinal products
US3680954A (en) 1965-04-30 1972-08-01 Eastman Kodak Co Electrography
DE1461628A1 (en) 1965-04-30 1969-03-27 Montblanc Simplo Gmbh Ink feed for fountain pen
US3550864A (en) 1967-12-11 1970-12-29 Borg Warner High efficiency flashing nozzle
DE1628720C3 (en) 1968-02-20 1974-06-27 Leifheit International Guenter Leifheit Gmbh, 5408 Nassau Device for cleaning, in particular floors
US3561444A (en) 1968-05-22 1971-02-09 Bio Logics Inc Ultrasonic drug nebulizer
US3515348A (en) 1968-07-22 1970-06-02 Lewbill Ind Inc Mist-producing device
US3558052A (en) 1968-10-31 1971-01-26 F I N D Inc Method and apparatus for spraying electrostatic dry powder
US3563415A (en) 1969-06-04 1971-02-16 Multi Drop Adapter Corp Multidrop adapter
US3719328A (en) 1970-10-22 1973-03-06 C Hindman Adjustable spray head
US3738574A (en) 1971-06-15 1973-06-12 Siemens Ag Apparatus for atomizing fluids with a piezoelectrically stimulated oscillator system
NO134730L (en) 1971-07-19 1900-01-01
US3838686A (en) 1971-10-14 1974-10-01 G Szekely Aerosol apparatus for inhalation therapy
US3983740A (en) 1971-12-07 1976-10-05 Societe Grenobloise D'etudes Et D'applications Hydrauliques (Sogreah) Method and apparatus for forming a stream of identical drops at very high speed
US3790079A (en) 1972-06-05 1974-02-05 Rnb Ass Inc Method and apparatus for generating monodisperse aerosol
US3778786A (en) 1972-06-28 1973-12-11 Nasa Data storage, image tube type
US3812854A (en) * 1972-10-20 1974-05-28 A Michaels Ultrasonic nebulizer
US3842833A (en) 1972-12-11 1974-10-22 Ims Ltd Neb-u-pack
FR2224175B1 (en) 1973-04-04 1978-04-14 Isf Spa
AT323114B (en) 1973-05-07 1975-06-25 Voest Ag PROCEDURE FOR PRILLING
US3804329A (en) 1973-07-27 1974-04-16 J Martner Ultrasonic generator and atomizer apparatus and method
US3903884A (en) 1973-08-15 1975-09-09 Becton Dickinson Co Manifold nebulizer system
DE2361781A1 (en) 1973-12-12 1975-06-19 Philips Patentverwaltung WRITING WORK FOR WRITING WITH LIQUID INK
US3865106A (en) 1974-03-18 1975-02-11 Bernard P Palush Positive pressure breathing circuit
US3951313A (en) 1974-06-05 1976-04-20 Becton, Dickinson And Company Reservoir with prepacked diluent
US3993223A (en) 1974-07-25 1976-11-23 American Home Products Corporation Dispensing container
US3908654A (en) 1974-08-02 1975-09-30 Rit Rech Ind Therapeut Dispensing package for a dry biological and a liquid diluent
DE2445791C2 (en) 1974-09-25 1984-04-19 Siemens AG, 1000 Berlin und 8000 München Ultrasonic liquid atomizer
AR205589A1 (en) 1974-10-09 1976-05-14 Reckitt & Colmann Prod Ltd INTRODUCING DEVICE OF AN AQUEOUS COMPOSITION INTO A BODY CAVITY
US3958249A (en) 1974-12-18 1976-05-18 International Business Machines Corporation Ink jet drop generator
US4059384A (en) 1975-01-20 1977-11-22 Misto2 Gen Equipment Co. Two-step injection molding
AT337345B (en) 1975-02-05 1977-06-27 Draegerwerk Ag BREATHING ASSISTANCE DEVICE AND / OR ARTIFICIAL VENTILATION DEVICE FOR HUMAN USE
US4005435A (en) 1975-05-15 1977-01-25 Burroughs Corporation Liquid jet droplet generator
AU67278S (en) 1975-06-04 1975-11-12 Warner Lambert Co Bottle
DE2537765B2 (en) 1975-08-25 1981-04-09 Siemens AG, 1000 Berlin und 8000 München Medical inhalation device for the treatment of diseases of the respiratory tract
GB1571304A (en) 1976-02-24 1980-07-16 Lucas Industries Ltd Drive circuit for a piezo electric crystal
US4094317A (en) 1976-06-11 1978-06-13 Wasnich Richard D Nebulization system
US4121583A (en) 1976-07-13 1978-10-24 Wen Yuan Chen Method and apparatus for alleviating asthma attacks
US4076021A (en) 1976-07-28 1978-02-28 Thompson Harris A Positive pressure respiratory apparatus
US4083368A (en) 1976-09-01 1978-04-11 Freezer Winthrop J Inhaler
USD249958S (en) 1977-01-10 1978-10-17 Warner-Lambert Company Dispensing container for pharmaceutical diluents
US4106503A (en) 1977-03-11 1978-08-15 Richard R. Rosenthal Metering system for stimulating bronchial spasm
US4159803A (en) 1977-03-31 1979-07-03 MistO2 Gen Equipment Company Chamber for ultrasonic aerosol generation
US4113809A (en) 1977-04-04 1978-09-12 Champion Spark Plug Company Hand held ultrasonic nebulizer
US4101041A (en) 1977-08-01 1978-07-18 Becton, Dickinson And Company Prefillable, hermetically sealed container adapted for use with a humidifier or nebulizer head
US4268460A (en) 1977-12-12 1981-05-19 Warner-Lambert Company Nebulizer
USD259213S (en) 1978-03-13 1981-05-12 Automatic Liquid Packaging, Inc. Vial suitable for pharmaceuticals
DE2811248C3 (en) 1978-03-15 1981-11-26 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Liquid atomizer
US4298045A (en) 1978-04-17 1981-11-03 Automatic Liquid Packaging, Inc. Dispensing container with plural removable closure means unitary therewith
US4338576A (en) 1978-07-26 1982-07-06 Tdk Electronics Co., Ltd. Ultrasonic atomizer unit utilizing shielded and grounded elements
US4210155A (en) 1978-08-03 1980-07-01 Jerry Grimes Inspirational inhalation spirometer apparatus
DE2843756B2 (en) 1978-10-06 1981-07-09 Hense GmbH & Co, 4930 Detmold Device for generating an aerosol
US4240081A (en) 1978-10-13 1980-12-16 Dennison Manufacturing Company Ink jet printing
DE2849493C2 (en) 1978-11-15 1982-01-14 Carl Heyer Gmbh, Inhalationstechnik, 5427 Bad Ems Hand-held aerosol dispenser
DE2854841C2 (en) 1978-12-19 1981-03-26 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Liquid atomizer, preferably inhalation device
JPS5848225B2 (en) 1979-01-09 1983-10-27 オムロン株式会社 Atomization amount control method of ultrasonic liquid atomization device
DE2907348A1 (en) 1979-02-24 1980-09-04 Boehringer Sohn Ingelheim IMPROVED INHALATION DEVICES
US4207990A (en) 1979-05-03 1980-06-17 Automatic Liquid Packaging, Inc. Hermetically sealed container with plural access ports
US4226236A (en) 1979-05-07 1980-10-07 Abbott Laboratories Prefilled, vented two-compartment syringe
US4248227A (en) 1979-05-14 1981-02-03 Bristol-Myers Company Fluid unit dispensing device
US4240417A (en) 1979-06-13 1980-12-23 Holever Bernard K Tracheal tube adapter for ventilating apparatus
DE7917568U1 (en) 1979-06-19 1979-09-20 Bosch-Siemens Hausgeraete Gmbh, 7000 Stuttgart INHALATION DEVICE
JPS5689569A (en) 1979-12-19 1981-07-20 Canon Inc Ink jet recording head
US4368850A (en) 1980-01-17 1983-01-18 George Szekely Dry aerosol generator
DE3010178C2 (en) 1980-03-17 1985-10-03 Kraftwerk Union AG, 4330 Mülheim Slotted nozzle equipped with a quick-acting valve to induce pulsed gas flows
NL189237C (en) 1980-04-12 1993-02-16 Battelle Institut E V DEVICE FOR SPRAYING LIQUIDS.
US4336544A (en) 1980-08-18 1982-06-22 Hewlett-Packard Company Method and apparatus for drop-on-demand ink jet printing
JPS5929118B2 (en) 1980-09-19 1984-07-18 セイコーエプソン株式会社 Palladium/nickel alloy plating liquid
US4465234A (en) 1980-10-06 1984-08-14 Matsushita Electric Industrial Co., Ltd. Liquid atomizer including vibrator
US4474251A (en) 1980-12-12 1984-10-02 Hydronautics, Incorporated Enhancing liquid jet erosion
US4389071A (en) 1980-12-12 1983-06-21 Hydronautics, Inc. Enhancing liquid jet erosion
US4374707A (en) 1981-03-19 1983-02-22 Xerox Corporation Orifice plate for ink jet printing machines
US5862802A (en) 1981-04-03 1999-01-26 Forrest M. Bird Ventilator having an oscillatory inspiratory phase and method
US4454877A (en) 1981-05-26 1984-06-19 Andrew Boettner Portable nebulizer or mist producing device
FR2507087B1 (en) 1981-06-06 1986-06-27 Rowenta Werke Gmbh ULTRASONIC INHALER
US4408719A (en) 1981-06-17 1983-10-11 Last Anthony J Sonic liquid atomizer
US4475113A (en) 1981-06-18 1984-10-02 International Business Machines Drop-on-demand method and apparatus using converging nozzles and high viscosity fluids
JPS5861857A (en) 1981-10-09 1983-04-13 Matsushita Electric Works Ltd Liquid atomizer
AU553251B2 (en) 1981-10-15 1986-07-10 Matsushita Electric Industrial Co., Ltd. Arrangement for ejecting liquid
US4474326A (en) 1981-11-24 1984-10-02 Tdk Electronics Co., Ltd. Ultrasonic atomizing device
CA1206996A (en) 1982-01-18 1986-07-02 Naoyoshi Maehara Ultrasonic liquid ejecting apparatus
US5073484A (en) 1982-03-09 1991-12-17 Bio-Metric Systems, Inc. Quantitative analysis apparatus and method
DE3311956A1 (en) 1982-03-31 1983-10-13 Ricoh Co., Ltd., Tokyo COLOR JET PRINTER HEAD
US4566452A (en) 1982-07-12 1986-01-28 American Hospital Supply Corporation Nebulizer
JPS5912775A (en) 1982-07-14 1984-01-23 Matsushita Electric Ind Co Ltd Atomizing pump unit
DE3229921A1 (en) 1982-08-11 1984-02-16 Linde Ag, 6200 Wiesbaden METHOD FOR THE SIMULTANEOUS FILLING OF SEVERAL ACETYLENE-FILLED BOTTLES OF SOLVENTS
US4973493A (en) 1982-09-29 1990-11-27 Bio-Metric Systems, Inc. Method of improving the biocompatibility of solid surfaces
US5002582A (en) 1982-09-29 1991-03-26 Bio-Metric Systems, Inc. Preparation of polymeric surfaces via covalently attaching polymers
US5512329A (en) 1982-09-29 1996-04-30 Bsi Corporation Substrate surface preparation
US5217492A (en) 1982-09-29 1993-06-08 Bio-Metric Systems, Inc. Biomolecule attachment to hydrophobic surfaces
US5258041A (en) 1982-09-29 1993-11-02 Bio-Metric Systems, Inc. Method of biomolecule attachment to hydrophobic surfaces
US4722906A (en) 1982-09-29 1988-02-02 Bio-Metric Systems, Inc. Binding reagents and methods
IT1156090B (en) 1982-10-26 1987-01-28 Olivetti & Co Spa INK JET PRINTING METHOD AND DEVICE
US4512341A (en) 1982-11-22 1985-04-23 Lester Victor E Nebulizer with capillary feed
US4632311A (en) 1982-12-20 1986-12-30 Matsushita Electric Industrial Co., Ltd. Atomizing apparatus employing a capacitive piezoelectric transducer
DE3320441A1 (en) 1983-06-06 1984-12-06 Siemens AG, 1000 Berlin und 8000 München WRITING DEVICE WORKING WITH LIQUID DROPLETS WITH ROD-SHAPED PIEZOELECTRIC TRANSFORMERS CONNECTED ON BOTH ENDS WITH A NOZZLE PLATE
DE3371745D1 (en) 1983-08-02 1987-07-02 Trutek Research Inc Inhalation valve
US4544933A (en) 1983-09-20 1985-10-01 Siemens Aktiengesellschaft Apparatus and method for ink droplet ejection for a printer
EP0156409A3 (en) 1984-02-23 1986-06-25 Jean Michel Anthony Device for moistening parts of the human body
US4593291A (en) 1984-04-16 1986-06-03 Exxon Research And Engineering Co. Method for operating an ink jet device to obtain high resolution printing
DE3574344D1 (en) 1984-08-29 1989-12-28 Omron Tateisi Electronics Co Ultrasonic atomizer
US4628890A (en) 1984-08-31 1986-12-16 Freeman Winifer W Fuel atomizer
EP0174033B1 (en) 1984-09-07 1991-03-27 OMRON Corporation Oscillating construction for an ultrasonic atomizing inhaler
US4826759A (en) 1984-10-04 1989-05-02 Bio-Metric Systems, Inc. Field assay for ligands
NZ209900A (en) 1984-10-16 1989-08-29 Univ Auckland Automatic inhaler
US4550325A (en) 1984-12-26 1985-10-29 Polaroid Corporation Drop dispensing device
DE3500985A1 (en) 1985-01-14 1986-07-17 Siemens AG, 1000 Berlin und 8000 München ARRANGEMENT FOR PRODUCING SINGLE DROPLES IN INK WRITING DEVICES
SE447318B (en) 1985-05-21 1986-11-03 Nils Goran Stemme INTEGRATED SEMICONDUCTOR CIRCUIT WITH JOINT OF THERMALLY INSULATING SUBJECT, SET TO MAKE CIRCUIT AND ITS USE IN A FLOOD METER
DE3523947A1 (en) 1985-07-04 1987-01-08 Draegerwerk Ag NARCOSIS EVAPORATOR WITH INTERCHANGEABLE EVAPORATOR CHAMBER
DE3524701A1 (en) 1985-07-11 1987-01-15 Bosch Gmbh Robert ULTRASONIC SPRAYER NOZZLE
US4613326A (en) 1985-07-12 1986-09-23 Becton, Dickinson And Company Two-component medication syringe assembly
US4659014A (en) 1985-09-05 1987-04-21 Delavan Corporation Ultrasonic spray nozzle and method
US4702418A (en) 1985-09-09 1987-10-27 Piezo Electric Products, Inc. Aerosol dispenser
EP0426205B1 (en) 1985-12-02 1993-07-21 Marco Alfredo Ganser Device for the control of electro-hydraulically actuated fuel injectors
US4753579A (en) 1986-01-22 1988-06-28 Piezo Electric Products, Inc. Ultrasonic resonant device
US4678680A (en) 1986-02-20 1987-07-07 Xerox Corporation Corrosion resistant aperture plate for ink jet printers
JPS62221352A (en) 1986-03-22 1987-09-29 株式会社新素材総合研究所 Liquid drug containing container preventing deterioratioan of liquid drug by oxygen and its production
SE8601351D0 (en) 1986-03-24 1986-03-24 Nilsson Sven Erik MANAGED ADMINISTRATION OF PHYSIOLOGICALLY ACTIVE SUBJECTS
US4658269A (en) 1986-06-02 1987-04-14 Xerox Corporation Ink jet printer with integral electrohydrodynamic electrodes and nozzle plate
US4849303A (en) 1986-07-01 1989-07-18 E. I. Du Pont De Nemours And Company Alloy coatings for electrical contacts
US4799622A (en) 1986-08-05 1989-01-24 Tao Nenryo Kogyo Kabushiki Kaisha Ultrasonic atomizing apparatus
DE3627222A1 (en) 1986-08-11 1988-02-18 Siemens Ag ULTRASONIC POCKET SPRAYER
US4819834A (en) 1986-09-09 1989-04-11 Minnesota Mining And Manufacturing Company Apparatus and methods for delivering a predetermined amount of a pressurized fluid
US4871489A (en) 1986-10-07 1989-10-03 Corning Incorporated Spherical particles having narrow size distribution made by ultrasonic vibration
US4979959A (en) 1986-10-17 1990-12-25 Bio-Metric Systems, Inc. Biocompatible coating for solid surfaces
US5263992A (en) 1986-10-17 1993-11-23 Bio-Metric Systems, Inc. Biocompatible device with covalently bonded biocompatible agent
DE3636669C2 (en) 1986-10-28 2001-08-16 Siemens Ag Arrangement for delivering aerosol to a patient's airways and / or lungs
DE3637631C1 (en) 1986-11-05 1987-08-20 Philips Patentverwaltung Process for applying small amounts of molten, drop-shaped solder from a nozzle to surfaces to be wetted and device for carrying out the process
US4976259A (en) 1986-12-22 1990-12-11 Mountain Medical Equipment, Inc. Ultrasonic nebulizer
ATE46836T1 (en) 1987-03-17 1989-10-15 Lechler Gmbh & Co Kg ULTRASONIC LIQUID ATOMIZER.
JPS63230957A (en) 1987-03-20 1988-09-27 Hitachi Ltd Liquid atomizing device
US4850534A (en) 1987-05-30 1989-07-25 Tdk Corporation Ultrasonic wave nebulizer
DE3775054D1 (en) 1987-06-16 1992-01-16 Akzo Nv TWO-CHAMBER SYRINGE AND MANUFACTURING METHOD.
US5522382A (en) 1987-06-26 1996-06-04 Rescare Limited Device and method for treating obstructed breathing having a delay/ramp feature
US5199424A (en) 1987-06-26 1993-04-06 Sullivan Colin E Device for monitoring breathing during sleep and control of CPAP treatment that is patient controlled
IL86799A (en) 1987-07-02 1993-03-15 Kabi Pharmacia Ab Method and device for injection
US5080093A (en) 1987-07-08 1992-01-14 Vortran Medical Technology, Inc. Intermittant signal actuated nebulizer
US5322057A (en) 1987-07-08 1994-06-21 Vortran Medical Technology, Inc. Intermittent signal actuated nebulizer synchronized to operate in the exhalation phase, and its method of use
US5388571A (en) 1987-07-17 1995-02-14 Roberts; Josephine A. Positive-pressure ventilator system with controlled access for nebulizer component servicing
US4805609A (en) 1987-07-17 1989-02-21 Josephine A. Roberts Pressurized ventilation system for patients
DE3724629A1 (en) 1987-07-22 1989-02-02 Siemens Ag PIEZOELECTRICALLY REQUIRED RESONANCE SYSTEM
US5139016A (en) 1987-08-07 1992-08-18 Sorin Biomedica S.P.A. Process and device for aerosol generation for pulmonary ventilation scintigraphy
FI82808C (en) 1987-12-31 1991-04-25 Etelae Haemeen Keuhkovammayhdi Ultraljudfinfördelningsanordning
DE3808308A1 (en) 1988-03-12 1989-09-21 Merck Patent Gmbh OPENING AID FOR AMPOULES
US5115971A (en) 1988-09-23 1992-05-26 Battelle Memorial Institute Nebulizer device
NL8801260A (en) 1988-05-16 1989-12-18 Mobacc Bv NOZZLE FOR A SPRAY CAN.
DE3818682A1 (en) 1988-06-01 1989-12-21 Deussen Stella Kg AMPOULE
US5201322A (en) * 1988-08-17 1993-04-13 Elf Atochem North America, Inc. Device for detecting air flow through a passageway
US4922901A (en) 1988-09-08 1990-05-08 R. J. Reynolds Tobacco Company Drug delivery articles utilizing electrical energy
DE3916840A1 (en) 1988-09-21 1990-03-29 Bernd Hansen Ampoule with specified shape of neck - for passage of air but not liq. when syringe neck is inserted for extn.
US5511726A (en) 1988-09-23 1996-04-30 Battelle Memorial Institute Nebulizer device
US5021701A (en) 1988-10-20 1991-06-04 Tdk Corporation Piezoelectric vibrator mounting system for a nebulizer
USD312209S (en) 1988-10-21 1990-11-20 Becton, Dickinson And Company Dispensing vial or the like
EP0373237A1 (en) 1988-12-13 1990-06-20 Siemens Aktiengesellschaft Pocket inhaler device
SE466684B (en) 1989-03-07 1992-03-23 Draco Ab DEVICE INHALATOR AND PROCEDURE TO REGISTER WITH THE DEVICE INHALATOR MEDICATION
JPH02269058A (en) 1989-03-14 1990-11-02 Seiko Epson Corp Liquid drop jet device by use of rayleigh mode surface acoustic wave
JPH03505424A (en) 1989-04-14 1991-11-28 アゼルバイジャンスキ ポリテフニチェスキ インスティテュト イメニ チェー.イルドリマ Ultrasonic atomization device for liquid media
US5022587A (en) 1989-06-07 1991-06-11 Hochstein Peter A Battery powered nebulizer
US5086785A (en) 1989-08-10 1992-02-11 Abrams/Gentille Entertainment Inc. Angular displacement sensors
US5562608A (en) 1989-08-28 1996-10-08 Biopulmonics, Inc. Apparatus for pulmonary delivery of drugs with simultaneous liquid lavage and ventilation
US5024733A (en) 1989-08-29 1991-06-18 At&T Bell Laboratories Palladium alloy electroplating process
US5007419A (en) 1989-09-25 1991-04-16 Allan Weinstein Inhaler device
US5227168A (en) 1989-11-21 1993-07-13 Bruce Barber Method of treating a wound
US5152456A (en) 1989-12-12 1992-10-06 Bespak, Plc Dispensing apparatus having a perforate outlet member and a vibrating device
US5002048A (en) 1989-12-12 1991-03-26 Makiej Jr Walter J Inhalation device utilizing two or more aerosol containers
CH680546A5 (en) 1989-12-15 1992-09-15 Klaus Weigelt Dr Ing
US4971665A (en) 1989-12-18 1990-11-20 Eastman Kodak Company Method of fabricating orifice plates with reusable mandrel
US5016024A (en) 1990-01-09 1991-05-14 Hewlett-Packard Company Integral ink jet print head
US4954225A (en) 1990-01-10 1990-09-04 Dynamics Research Corporation Method for making nozzle plates
ES2042093T3 (en) 1990-02-07 1993-12-01 Arzneimittel Gmbh Apotheker Vetter & Co. Ravensburg DOUBLE CHAMBER SYRINGE AND EMPLOYMENT PROCEDURE.
SG45171A1 (en) 1990-03-21 1998-01-16 Boehringer Ingelheim Int Atomising devices and methods
US5122116A (en) 1990-04-24 1992-06-16 Science Incorporated Closed drug delivery system
FR2662672B1 (en) 1990-05-31 1992-08-21 Aerosols & Bouchage MIXTURE DISPENSER.
GB9015077D0 (en) 1990-07-09 1990-08-29 Riker Laboratories Inc Inhaler
US5157372A (en) 1990-07-13 1992-10-20 Langford Gordon B Flexible potentiometer
US5309135A (en) 1990-07-13 1994-05-03 Langford Gordon B Flexible potentiometer in a horn control system
FR2665849B1 (en) 1990-08-20 1995-03-24 Dynamad ULTRASONIC DEVICE FOR THE CONTINUOUS PRODUCTION OF PARTICLES.
US5086765A (en) 1990-08-29 1992-02-11 Walter Levine Nebulizer
USD327008S (en) 1990-08-29 1992-06-16 True Products Sampling, Inc. Cosmetic sample container
US5115803A (en) 1990-08-31 1992-05-26 Minnesota Mining And Manufacturing Company Aerosol actuator providing increased respirable fraction
GB9020555D0 (en) 1990-09-20 1990-10-31 Bespak Plc Dispensing apparatus
EP0480615B1 (en) 1990-10-11 1996-02-14 Kohji Toda Ultrasonic atomizing device
CA2027690A1 (en) 1990-10-18 1992-04-19 Christian Laing Plastic ampul
GB9023281D0 (en) 1990-10-25 1990-12-05 Riker Laboratories Inc Inhaler
US5129579A (en) 1990-10-25 1992-07-14 Sun Microsystems, Inc. Vacuum attachment for electronic flux nozzle
NZ241034A (en) 1990-12-17 1995-03-28 Minnesota Mining & Mfg Inhaler device with a dosage control that deactivates an aerosol generator after predetermined time or dosage
US5062419A (en) 1991-01-07 1991-11-05 Rider Donald L Nebulizer with valved "T" assembly
US5147073A (en) 1991-02-11 1992-09-15 Spruhventile Gmbh Fluid pump dispenser for pharmaceutical use
US5217148A (en) 1991-02-11 1993-06-08 Spruhventile Gmbh Pharmaceutical pump dispenser
ES2179068T3 (en) 1991-03-05 2003-01-16 Aradigm Corp METHOD AND DEVICE FOR CORRECTING THE DERIVATIVE DISPLACEMENT OF A FLOW PRESSURE DETECTOR.
US5392768A (en) 1991-03-05 1995-02-28 Aradigm Method and apparatus for releasing a controlled amount of aerosol medication over a selectable time interval
US5404871A (en) 1991-03-05 1995-04-11 Aradigm Delivery of aerosol medications for inspiration
US5186164A (en) 1991-03-15 1993-02-16 Puthalath Raghuprasad Mist inhaler
WO1992017231A1 (en) 1991-03-28 1992-10-15 Innomed, Inc. Microelectronic inhaler having a counter and timer
US5993805A (en) 1991-04-10 1999-11-30 Quadrant Healthcare (Uk) Limited Spray-dried microparticles and their use as therapeutic vehicles
US5348189A (en) 1991-04-10 1994-09-20 Bespak Plc Air purge pump dispenser
US5164740A (en) 1991-04-24 1992-11-17 Yehuda Ivri High frequency printing mechanism
US5938117A (en) 1991-04-24 1999-08-17 Aerogen, Inc. Methods and apparatus for dispensing liquids as an atomized spray
US6540154B1 (en) 1991-04-24 2003-04-01 Aerogen, Inc. Systems and methods for controlling fluid feed to an aerosol generator
US6629646B1 (en) 1991-04-24 2003-10-07 Aerogen, Inc. Droplet ejector with oscillating tapered aperture
DE69210096T2 (en) 1991-05-27 1996-09-19 Tdk Corp Ultrasonic atomizer
JPH0614756Y2 (en) 1991-06-26 1994-04-20 株式会社アルテ Assembled dual chamber syringe
CA2112674C (en) 1991-07-02 2005-10-04 John S. Patton Method and device for delivering aerosolized medicaments
WO1993001404A1 (en) 1991-07-08 1993-01-21 Yehuda Ivri Ultrasonic fluid ejector
DE4124032A1 (en) 1991-07-19 1993-01-21 Bosch Gmbh Robert MEASURING ELEMENT
US5180482A (en) 1991-07-22 1993-01-19 At&T Bell Laboratories Thermal annealing of palladium alloys
US5230496A (en) 1991-08-06 1993-07-27 Med-Safe Systems, Inc. Pole mounting clamp
US5601077A (en) 1991-08-07 1997-02-11 Becton, Dickinson And Company Nasal syringe sprayer with removable dose limiting structure
DE4127650C1 (en) 1991-08-21 1993-02-25 Arzneimittel Gmbh Apotheker Vetter & Co Ravensburg, 7980 Ravensburg, De
US5170782A (en) 1991-09-12 1992-12-15 Devilbiss Health Care, Inc. Medicament nebulizer with improved aerosol chamber
ATE155695T1 (en) 1991-11-07 1997-08-15 Ritzau Pari Werk Gmbh Paul NEBULISER, PARTICULARLY FOR USE IN DEVICES FOR INHALATION THERAPY
JP2849647B2 (en) 1991-12-04 1999-01-20 ザ テクノロジー パートナーシップ ピーエルシー Apparatus and method for producing small droplets of fluid
EP0546964B1 (en) 1991-12-10 1997-04-09 TDK Corporation An ultrasonic wave nebulizer
JP3455217B2 (en) 1992-02-13 2003-10-14 バイオ−メトリック システムズ インコーポレイテッド Immobilization of chemical species in crosslinked matrix
US5186166A (en) 1992-03-04 1993-02-16 Riggs John H Powder nebulizer apparatus and method of nebulization
US5355872B1 (en) 1992-03-04 1998-10-20 John H Riggs Low flow rate nebulizer apparatus and method of nebulization
JPH05271980A (en) 1992-03-30 1993-10-19 Yazaki Corp Palladium-nickel alloy plating liquid
EP0933138B1 (en) 1992-04-09 2004-03-03 Omron Healthcare Co., Ltd. Ultrasonic atomizer
WO1993020949A1 (en) 1992-04-09 1993-10-28 Omron Corporation Ultrasonic atomizer, ultrasonic inhalator and method of controlling same
GB9207940D0 (en) 1992-04-10 1992-05-27 Alcan Int Ltd Motors
US5248087A (en) 1992-05-08 1993-09-28 Dressler John L Liquid droplet generator
US5512474A (en) 1992-05-29 1996-04-30 Bsi Corporation Cell culture support containing a cell adhesion factor and a positively-charged molecule
US5431155A (en) 1992-06-03 1995-07-11 Elettro Plastica S.P.A. Single-dose nasal dispenser for atomized liquid drugs
JP3178945B2 (en) 1992-08-25 2001-06-25 日本碍子株式会社 Inkjet print head
US5239993A (en) * 1992-08-26 1993-08-31 Glaxo Inc. Dosage inhalator providing optimized compound inhalation trajectory
DE4230645C2 (en) 1992-09-12 1996-03-07 Bernd Hansen ampoule
US5372126A (en) 1992-09-14 1994-12-13 Blau; Anthony D. Pulmonary sampling chamber
US5392769A (en) * 1992-10-06 1995-02-28 Vinatroics Division One-way valve
US5445141A (en) 1992-10-19 1995-08-29 Sherwood Medical Company Respiratory support system
US5357946A (en) 1992-10-19 1994-10-25 Sherwood Medical Company Ventilator manifold with accessory access port and adaptors therefore
ATE156312T1 (en) 1992-10-27 1997-08-15 Canon Kk METHOD FOR PUMPING LIQUIDS
US5313955A (en) 1992-10-30 1994-05-24 Rodder Jerome A Pulmonary flow head
GB2272389B (en) 1992-11-04 1996-07-24 Bespak Plc Dispensing apparatus
US5414075A (en) 1992-11-06 1995-05-09 Bsi Corporation Restrained multifunctional reagent for surface modification
US5346132A (en) 1992-11-12 1994-09-13 Gary S. Hahn Mist generator
GB9225098D0 (en) 1992-12-01 1993-01-20 Coffee Ronald A Charged droplet spray mixer
US5452711A (en) 1992-12-24 1995-09-26 Exar Corporation Small form factor atomizer
US5449502A (en) 1992-12-30 1995-09-12 Sanden Corp. Sterilizing apparatus utilizing ultrasonic vibration
US5342011A (en) 1993-01-19 1994-08-30 Sherwood Medical Company Fluid container attachment adaptor for an ambulatory fluid delivery system
US5558085A (en) 1993-01-29 1996-09-24 Aradigm Corporation Intrapulmonary delivery of peptide drugs
ES2154673T3 (en) 1993-01-29 2001-04-16 Aradigm Corp INTRAPULMONARY SUPPLY OF HORMONES.
US5724957A (en) 1993-01-29 1998-03-10 Aradigm Corporation Intrapulmonary delivery of narcotics
US6012450A (en) 1993-01-29 2000-01-11 Aradigm Corporation Intrapulmonary delivery of hematopoietic drug
US5350116A (en) 1993-03-01 1994-09-27 Bespak Plc Dispensing apparatus
US5458289A (en) 1993-03-01 1995-10-17 Bespak Plc Liquid dispensing apparatus with reduced clogging
US5303854A (en) 1993-03-08 1994-04-19 Spruhventile Gmbh Pharmaceutical pump dispenser having hydraulically closed outlet port
US5279568A (en) 1993-04-30 1994-01-18 Spruhventile Gmbh Pharmaceutical pump dispenser for fluid suspensions and fluid mixtures
GB9305975D0 (en) 1993-03-23 1993-05-12 Minnesota Mining & Mfg Metered-dose aerosol valves
US5383906A (en) 1993-05-12 1995-01-24 Burchett; Mark T. Nursing bottle with medication dispenser
US5396883A (en) 1993-05-18 1995-03-14 Knupp; Jacob E. Nebulizer valve assembly for use in a ventilation circuit
US5497763A (en) 1993-05-21 1996-03-12 Aradigm Corporation Disposable package for intrapulmonary delivery of aerosolized formulations
US5709202A (en) 1993-05-21 1998-01-20 Aradigm Corporation Intrapulmonary delivery of aerosolized formulations
FR2705911B1 (en) 1993-06-02 1995-08-11 Oreal Piezoelectric nebulization device.
US5819730A (en) 1993-06-09 1998-10-13 Glaxo Wellcome Australia Ltd. Device for administering pharmaceutical substances
GB9312984D0 (en) 1993-06-23 1993-08-04 Bespak Plc Atomising dispenser
EP0706352B1 (en) 1993-06-29 2002-03-20 Ponwell Enterprises Limited Dispenser
US5437267A (en) 1993-08-03 1995-08-01 Weinstein; Allan Device for delivering aerosol to the nasal membranes and method of use
US5426458A (en) 1993-08-09 1995-06-20 Hewlett-Packard Corporation Poly-p-xylylene films as an orifice plate coating
CH686872A5 (en) 1993-08-09 1996-07-31 Disetronic Ag Medical Inhalationsgeraet.
US5918637A (en) 1993-08-16 1999-07-06 Fleischman; William H. Plates perforated with venturi-like orifices
US5415161A (en) 1993-09-15 1995-05-16 Ryder; Steven L. Intermittant demand aerosol control device
GB9324250D0 (en) 1993-11-25 1994-01-12 Minnesota Mining & Mfg Inhaler
GB9412669D0 (en) 1994-06-23 1994-08-10 The Technology Partnership Plc Liquid spray apparatus
US5752502A (en) 1993-12-16 1998-05-19 King; Russell Wayne General purpose aerosol inhalation apparatus
US5489266A (en) 1994-01-25 1996-02-06 Becton, Dickinson And Company Syringe assembly and method for lyophilizing and reconstituting injectable medication
US5632878A (en) 1994-02-01 1997-05-27 Fet Engineering, Inc. Method for manufacturing an electroforming mold
US5579757A (en) 1994-02-02 1996-12-03 Baxter International, Inc. Anti-siphon flow restricter for a nebulizer
US5479920A (en) 1994-03-01 1996-01-02 Vortran Medical Technology, Inc. Breath actuated medicinal aerosol delivery apparatus
US5664557A (en) 1994-03-10 1997-09-09 Respiratory Delivery Systems, Inc. Releasably engageable coupling for an inhaler
USD375352S (en) 1994-03-14 1996-11-05 Columbia Laboratories, Inc. Dispensing vial for feminine hygiene products
US5435282A (en) * 1994-05-19 1995-07-25 Habley Medical Technology Corporation Nebulizer
GB9410658D0 (en) 1994-05-27 1994-07-13 Electrosols Ltd Dispensing device
USD362390S (en) 1994-06-02 1995-09-19 Automatic Liquid Packaging, Inc. Hermetically sealed vial
US5516043A (en) 1994-06-30 1996-05-14 Misonix Inc. Ultrasonic atomizing device
US5666946A (en) 1994-07-13 1997-09-16 Respirogenics Corporation Apparatus for delivering drugs to the lungs
FR2722765B1 (en) 1994-07-25 1996-08-23 Oreal CONTAINER ALLOWING THE STORAGE OF AT LEAST TWO PRODUCTS, THE MIXTURE OF THESE PRODUCTS AND THE DISTRIBUTION OF THE MIXTURE THUS OBTAINED
US5664706A (en) 1994-10-13 1997-09-09 Bespak Plc Apparatus for dispensing liquid in aerosol spray form
AU128844S (en) 1994-10-21 1996-12-05 Glaxo Wellcome Australia Ltd Ampoule
GB9421687D0 (en) 1994-10-27 1994-12-14 Aid Medic Ltd Dosimetric spacer
US5560837A (en) 1994-11-08 1996-10-01 Hewlett-Packard Company Method of making ink-jet component
US5707818A (en) 1994-12-13 1998-01-13 Bsi Corporation Device and method for simultaneously performing multiple competitive immunoassays
US5582330A (en) 1994-12-28 1996-12-10 Allergan, Inc. Specific volume dispenser
US5588166A (en) 1995-01-04 1996-12-31 Burnett; John Medical attachment device
US5685491A (en) 1995-01-11 1997-11-11 Amtx, Inc. Electroformed multilayer spray director and a process for the preparation thereof
GB2298406B (en) 1995-02-21 1998-05-06 Bespak Plc Dual component dispensing apparatus
NO950760L (en) 1995-02-28 1996-08-29 Elkem Materials Process for the preparation of alkyl halosilanes
DE59505300D1 (en) 1995-03-09 1999-04-15 Hansen Bernd Plastic bottle and process for its manufacture
AU701843B2 (en) 1995-03-14 1999-02-04 Siemens Aktiengesellschaft Removable precision dosating unit for ultrasonic atomizer device
NZ304009A (en) 1995-03-14 1999-02-25 Siemens Ag Ultrasonic atomizer device with a removable precision dosating unit
US5503628A (en) 1995-03-15 1996-04-02 Jettek, Inc. Patient-fillable hypodermic jet injector
US5533497A (en) 1995-03-27 1996-07-09 Ryder; Steven L. Sidestream aerosol generator and method in variable positions
US6427682B1 (en) 1995-04-05 2002-08-06 Aerogen, Inc. Methods and apparatus for aerosolizing a substance
US5758637A (en) 1995-08-31 1998-06-02 Aerogen, Inc. Liquid dispensing apparatus and methods
US5586550A (en) 1995-08-31 1996-12-24 Fluid Propulsion Technologies, Inc. Apparatus and methods for the delivery of therapeutic liquids to the respiratory system
US20020121274A1 (en) 1995-04-05 2002-09-05 Aerogen, Inc. Laminated electroformed aperture plate
US6085740A (en) 1996-02-21 2000-07-11 Aerogen, Inc. Liquid dispensing apparatus and methods
US6205999B1 (en) 1995-04-05 2001-03-27 Aerogen, Inc. Methods and apparatus for storing chemical compounds in a portable inhaler
US6014970A (en) 1998-06-11 2000-01-18 Aerogen, Inc. Methods and apparatus for storing chemical compounds in a portable inhaler
US6782886B2 (en) 1995-04-05 2004-08-31 Aerogen, Inc. Metering pumps for an aerosolizer
US5474059A (en) 1995-04-08 1995-12-12 Cooper; Guy F. Aerosol dispensing apparatus for dispensing a medicated vapor into the lungs of a patient
US5657926A (en) 1995-04-13 1997-08-19 Toda; Kohji Ultrasonic atomizing device
DE59603985D1 (en) 1995-05-02 2000-01-27 Alexander Aloy DEVICE FOR DELIVERING A VENTILATION GAS
WO1996037165A1 (en) 1995-05-26 1996-11-28 Bsi Corporation Method and implantable article for promoting endothelialization
JP3320261B2 (en) 1995-06-01 2002-09-03 株式会社ユニシアジェックス Inhaler type dispenser
US5609798A (en) 1995-06-07 1997-03-11 Msp Corporation High output PSL aerosol generator
US5584285A (en) 1995-06-07 1996-12-17 Salter Labs Breathing circuit apparatus for a nebulizer
US5654007A (en) 1995-06-07 1997-08-05 Inhale Therapeutic Systems Methods and system for processing dispersible fine powders
US5829723A (en) 1995-06-28 1998-11-03 Medex, Inc. Medical device mounting structure
US5758638A (en) * 1995-07-24 1998-06-02 Kreamer; Jeffry W. Indicator for a medicament inhaler
US5904773A (en) 1995-08-11 1999-05-18 Atotech Usa, Inc. Fluid delivery apparatus
US6000396A (en) 1995-08-17 1999-12-14 University Of Florida Hybrid microprocessor controlled ventilator unit
SE9502957D0 (en) 1995-08-28 1995-08-28 Pharmacia Ab Device for displacing a member in a container
US5639851A (en) 1995-10-02 1997-06-17 Ethicon, Inc. High strength, melt processable, lactide-rich, poly(lactide-CO-P-dioxanone) copolymers
JP3317827B2 (en) 1995-10-09 2002-08-26 株式会社ユニシアジェックス Dosing device
US6254219B1 (en) 1995-10-25 2001-07-03 Hewlett-Packard Company Inkjet printhead orifice plate having related orifices
US6123413A (en) 1995-10-25 2000-09-26 Hewlett-Packard Company Reduced spray inkjet printhead orifice
US5714360A (en) 1995-11-03 1998-02-03 Bsi Corporation Photoactivatable water soluble cross-linking agents containing an onium group
US5807335A (en) 1995-12-22 1998-09-15 Science Incorporated Fluid delivery device with conformable ullage and fill assembly
FR2743313B1 (en) 1996-01-04 1998-02-06 Imra Europe Sa HIGH-YIELD SPRAYING DEVICE, ESPECIALLY MICRO-DROPLET WATER
US6026809A (en) 1996-01-25 2000-02-22 Microdose Technologies, Inc. Inhalation device
US5823179A (en) 1996-02-13 1998-10-20 1263152 Ontario Inc. Nebulizer apparatus and method
USD392184S (en) 1996-02-21 1998-03-17 Automatic Liquid Packaging, Inc. Vial with a frangible closure
FR2746656B1 (en) 1996-03-26 1999-05-28 System Assistance Medical PRESSURE SENSOR NEBULIZER
US5790151A (en) 1996-03-27 1998-08-04 Imaging Technology International Corp. Ink jet printhead and method of making
SE9601719D0 (en) 1996-05-06 1996-05-06 Siemens Elema Ab Dosage for supply of additive gas or liquid to respiratory gas in anesthesia or ventilator
AUPN976496A0 (en) 1996-05-10 1996-05-30 Glaxo Wellcome Australia Ltd Unit dose dispensing device
US5976344A (en) 1996-05-10 1999-11-02 Lucent Technologies Inc. Composition for electroplating palladium alloys and electroplating process using that composition
KR980004919A (en) * 1996-06-21 1998-03-30 배순훈 Front panel loading device for car audio
JP3418507B2 (en) 1996-08-07 2003-06-23 ワイケイケイ株式会社 Piezoelectric vibration control method
AUPO247496A0 (en) 1996-09-23 1996-10-17 Resmed Limited Assisted ventilation to match patient respiratory need
US5775506A (en) 1996-09-25 1998-07-07 Abbott Laboratories Pharmaceutical ampul
DE19647947A1 (en) 1996-11-20 1998-05-28 Pfeiffer Erich Gmbh & Co Kg Discharge device for media
AUPP855099A0 (en) 1999-02-09 1999-03-04 Resmed Limited Gas delivery connection assembly
US5954268A (en) 1997-03-03 1999-09-21 Joshi; Ashok V. Fluid delivery system
US5948483A (en) 1997-03-25 1999-09-07 The Board Of Trustees Of The University Of Illinois Method and apparatus for producing thin film and nanoparticle deposits
EP1009464A4 (en) 1997-05-16 2006-08-02 Peter Craig Farrell Nasal ventilation as a treatment for stroke
US6055869A (en) 1997-06-12 2000-05-02 Stemme; Erik Lift force fluid flow sensor for measuring fluid flow velocities
US5839617A (en) 1997-07-29 1998-11-24 Owens-Illinois Closure Inc. Pump dispenser
US6045215A (en) 1997-08-28 2000-04-04 Hewlett-Packard Company High durability ink cartridge printhead and method for making the same
US6145963A (en) 1997-08-29 2000-11-14 Hewlett-Packard Company Reduced size printhead for an inkjet printer
US6139674A (en) 1997-09-10 2000-10-31 Xerox Corporation Method of making an ink jet printhead filter by laser ablation
KR100341538B1 (en) 1997-10-06 2002-06-24 타테이시 요시오 Spray
ATE215820T1 (en) 1997-10-08 2002-04-15 Sepracor Inc DOSAGE FORM FOR ADMINISTRATION OF AEROSOLS
US6155676A (en) 1997-10-16 2000-12-05 Hewlett-Packard Company High-durability rhodium-containing ink cartridge printhead and method for making the same
US6037587A (en) 1997-10-17 2000-03-14 Hewlett-Packard Company Chemical ionization source for mass spectrometry
US6039696A (en) 1997-10-31 2000-03-21 Medcare Medical Group, Inc. Method and apparatus for sensing humidity in a patient with an artificial airway
AUPP026997A0 (en) 1997-11-07 1997-12-04 Resmed Limited Administration of cpap treatment pressure in presence of apnea
EP1129741B1 (en) 1997-11-19 2006-04-12 Microflow Engineering SA Spray device for an inhaler
US6096011A (en) 1998-01-29 2000-08-01 Medrad, Inc. Aseptic connector and fluid delivery system using such an aseptic connector
US6358058B1 (en) 1998-01-30 2002-03-19 1263152 Ontario Inc. Aerosol dispensing inhaler training device
US6223746B1 (en) 1998-02-12 2001-05-01 Iep Pharmaceutical Devices Inc. Metered dose inhaler pump
US6158431A (en) 1998-02-13 2000-12-12 Tsi Incorporated Portable systems and methods for delivery of therapeutic material to the pulmonary system
US6204182B1 (en) 1998-03-02 2001-03-20 Hewlett-Packard Company In-situ fluid jet orifice
ES2248985T3 (en) 1998-03-05 2006-03-16 Zivena, Inc. PULMONARY DOSAGE SYSTEM.
GB9808182D0 (en) 1998-04-17 1998-06-17 The Technology Partnership Plc Liquid projection apparatus
US6068148A (en) 1998-05-26 2000-05-30 Automatic Liquid Packaging, Inc. Hermetically sealed container including a nozzle with a sealing bead
US20020104530A1 (en) 1998-06-11 2002-08-08 Aerogen, Inc. Piezoelectric polymer flow sensor and methods
US6152130A (en) 1998-06-12 2000-11-28 Microdose Technologies, Inc. Inhalation device with acoustic control
US6142146A (en) 1998-06-12 2000-11-07 Microdose Technologies, Inc. Inhalation device
US6106504A (en) 1998-07-15 2000-08-22 Urrutia; Hector Drip chamber for medical fluid delivery system
US6182662B1 (en) 1998-07-23 2001-02-06 Mcghee Chad J. Intravenous transport/support device
AUPP496198A0 (en) 1998-07-31 1998-08-20 Resmed Limited Switches with graphical display
AUPP693398A0 (en) 1998-11-05 1998-12-03 Resmed Limited Fault diagnosis in CPAP and NIPPV devices
ES2149748T3 (en) 1998-12-01 2007-06-16 Microflow Engineering Sa INHALER WITH ULTRASONIC WAVE NEBULIZER THAT PRESENTS OVERLOADED NOZZLE OPENINGS ON THE CRESTAS OF A STATIONARY WAVE PATTERN.
JP3312216B2 (en) 1998-12-18 2002-08-05 オムロン株式会社 Spraying equipment
US6163588A (en) 1998-12-23 2000-12-19 General Electric Company Core plate and reactor internal pump differential pressure lines for a boiling water reactor
US6116234A (en) 1999-02-01 2000-09-12 Iep Pharmaceutical Devices Inc. Metered dose inhaler agitator
US6196218B1 (en) 1999-02-24 2001-03-06 Ponwell Enterprises Ltd Piezo inhaler
US6328030B1 (en) 1999-03-12 2001-12-11 Daniel E. Kidwell Nebulizer for ventilation system
AUPQ019899A0 (en) 1999-05-06 1999-06-03 Resmed Limited Control of supplied pressure in assisted ventilation
US6328033B1 (en) 1999-06-04 2001-12-11 Zohar Avrahami Powder inhaler
US6235177B1 (en) 1999-09-09 2001-05-22 Aerogen, Inc. Method for the construction of an aperture plate for dispensing liquid droplets
US6216916B1 (en) 1999-09-16 2001-04-17 Joseph S. Kanfer Compact fluid pump
US6530370B1 (en) 1999-09-16 2003-03-11 Instrumentation Corp. Nebulizer apparatus
JP3673893B2 (en) 1999-10-15 2005-07-20 日本碍子株式会社 Droplet discharge device
DE19962280A1 (en) 1999-12-23 2001-07-12 Draeger Medizintech Gmbh Ultrasonic evaporator for liquids has exciter circuit to operate transducer at optimum vibration range
MXPA02010884A (en) 2000-05-05 2003-03-27 Aerogen Ireland Ltd Apparatus and methods for the delivery of medicaments to the respiratory system.
US7600511B2 (en) 2001-11-01 2009-10-13 Novartis Pharma Ag Apparatus and methods for delivery of medicament to a respiratory system
US6948491B2 (en) 2001-03-20 2005-09-27 Aerogen, Inc. Convertible fluid feed system with comformable reservoir and methods
US7100600B2 (en) 2001-03-20 2006-09-05 Aerogen, Inc. Fluid filled ampoules and methods for their use in aerosolizers
US6341732B1 (en) 2000-06-19 2002-01-29 S. C. Johnson & Son, Inc. Method and apparatus for maintaining control of liquid flow in a vibratory atomizing device
US6543443B1 (en) 2000-07-12 2003-04-08 Aerogen, Inc. Methods and devices for nebulizing fluids
US6769626B1 (en) 2000-10-30 2004-08-03 Instrumentarium Corp. Device and method for detecting and controlling liquid supply to an apparatus discharging liquids
US6581595B1 (en) 2000-11-14 2003-06-24 Sensormedics Corporation Positive airway pressure device with indirect calorimetry system
US20020078958A1 (en) 2000-12-21 2002-06-27 Sensormedics Corporation Infant CPAP system with airway pressure control
US6546927B2 (en) 2001-03-13 2003-04-15 Aerogen, Inc. Methods and apparatus for controlling piezoelectric vibration
US6550472B2 (en) 2001-03-16 2003-04-22 Aerogen, Inc. Devices and methods for nebulizing fluids using flow directors
US6732944B2 (en) 2001-05-02 2004-05-11 Aerogen, Inc. Base isolated nebulizing device and methods
US20020162551A1 (en) 2001-05-02 2002-11-07 Litherland Craig M. Cymbal-shaped actuator for a nebulizing element
US6554201B2 (en) 2001-05-02 2003-04-29 Aerogen, Inc. Insert molded aerosol generator and methods
CA2472644C (en) 2002-01-07 2013-11-05 Aerogen, Inc. Devices and methods for nebulizing fluids for inhalation
US6745770B2 (en) 2002-01-08 2004-06-08 Resmed Limited Flow diverter for controlling the pressure and flow rate in a CPAP device
ES2603067T3 (en) 2002-01-15 2017-02-23 Novartis Ag Methods and systems for operating an aerosol generator
EP1474198B1 (en) 2002-01-15 2015-12-30 Novartis AG System for clearing aerosols from the effective anatomic dead space
US6860268B2 (en) 2002-02-06 2005-03-01 Shelly Bohn Pediatric ventilation mask and headgear system
US7334580B2 (en) 2002-05-07 2008-02-26 Smaldone Gerald C Methods, devices and formulations for targeted endobronchial therapy
EP1509259B1 (en) 2002-05-20 2016-04-20 Novartis AG Apparatus for providing aerosol for medical treatment and methods
EP1603619B1 (en) 2003-02-21 2019-04-10 ResMed Limited Nasal assembly
US8616195B2 (en) 2003-07-18 2013-12-31 Novartis Ag Nebuliser for the production of aerosolized medication
US20050284469A1 (en) 2004-06-25 2005-12-29 Tobia Ronald L Integrated control of ventilator and nebulizer operation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435297A (en) * 1991-08-29 1995-07-25 Christoph Klein Medical device for inhaling metered aerosols
US5301666A (en) * 1991-12-14 1994-04-12 Asta Medica Aktiengesellschaft Powder inhaler
US6325062B1 (en) * 1998-06-18 2001-12-04 Clavius Devices, Inc. Breath-activated metered-dose inhaler
US6779521B1 (en) * 1999-09-15 2004-08-24 Medic-Aid Limited Combination mouthpiece for inhalation therapy devices used by oxygen dependent patients
US20030127538A1 (en) * 2002-01-07 2003-07-10 Aerogen, Inc., A Delware Corporation Methods and devices for nebulizing fluids

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008058455A1 (en) * 2006-11-11 2008-05-22 Tafelberg International Limited Pulmonary medicament delivery device
WO2010066714A1 (en) * 2008-12-09 2010-06-17 Pari Pharma Gmbh Aerosol therapy device
AU2009326049B2 (en) * 2008-12-09 2014-06-05 Pari Pharma Gmbh Aerosol therapy device
US9604018B2 (en) 2008-12-09 2017-03-28 Pari Pharma Gmbh Aerosol therapy device

Also Published As

Publication number Publication date
US20050199236A1 (en) 2005-09-15
US7677467B2 (en) 2010-03-16

Similar Documents

Publication Publication Date Title
US7677467B2 (en) Methods and devices for aerosolizing medicament
US20050205089A1 (en) Methods and devices for aerosolizing medicament
US11426536B2 (en) Liquid drug cartridges and associated dispenser
US6851626B2 (en) Methods and devices for nebulizing fluids
US7571722B2 (en) Nebulizer
EP1595564B1 (en) Breathing device incorporating a nebulizer
KR100399844B1 (en) Apparatus and methods for dispersing dry powder medicaments
US6779520B2 (en) Breath actuated dry powder inhaler
US7726306B2 (en) Intra-oral nebulizer with rainfall chamber
EP0846009B1 (en) Apparatus and method for dispersing dry powder medicaments
FI105998B (en) Dosage device for drug powder
EP1924310B1 (en) Self-sealing T-piece and valved T-piece
EP0232235A2 (en) Medical dosing device for discharge of atomized medicament for inhalation air
US20070163572A1 (en) Intra-oral nebulizer
US20070074718A1 (en) Metered dose inhaler having spacing device
JP2002034547A (en) Sucking utensil for sprayable matter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: COMMUNICATION PURSUANT TO R112(1) EPC (EPOFORM 1205A) SENT 30.11.2007

122 Ep: pct application non-entry in european phase

Ref document number: 06719013

Country of ref document: EP

Kind code of ref document: A1