WO2006082270A1 - Novel 3-d polymer scaffold for tissue regeneration and preparation method thereof - Google Patents

Novel 3-d polymer scaffold for tissue regeneration and preparation method thereof Download PDF

Info

Publication number
WO2006082270A1
WO2006082270A1 PCT/ES2006/000042 ES2006000042W WO2006082270A1 WO 2006082270 A1 WO2006082270 A1 WO 2006082270A1 ES 2006000042 W ES2006000042 W ES 2006000042W WO 2006082270 A1 WO2006082270 A1 WO 2006082270A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
porogen
scaffold
template
resulting
Prior art date
Application number
PCT/ES2006/000042
Other languages
Spanish (es)
French (fr)
Inventor
Laura Santos Esteve
Original Assignee
Laura Santos Esteve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36776995&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006082270(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Laura Santos Esteve filed Critical Laura Santos Esteve
Publication of WO2006082270A1 publication Critical patent/WO2006082270A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/146Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor

Definitions

  • the present invention relates to a new three-dimensional polymeric (3D) scaffold for tissue regeneration, with a high degree of porosity and structural regularity, as well as its preparation technique.
  • This new support for tissue engineering based on biocompatible polymers is characterized by a highly regular three-dimensional porous architecture with a high degree of porosity, manifested by an orthogonal network of pores and channels completely interconnected, free of residual porogen, resulting in chemical and chemical stability. mechanically for the purpose it is intended for.
  • the ideal structural characteristics of the developed scaffolds are achieved by a novel and cheap technique, based on the use of a three-dimensional or tempered porogen produced from sintered meshes of nylon fibers or another similar polymer, which makes the matrix resulting from the infiltration and polymerization of the crosslinking material is the inverse or negative structure of the template, hence the geometric regularity of interconnected pores and channels.
  • a three-dimensional or tempered porogen produced from sintered meshes of nylon fibers or another similar polymer which makes the matrix resulting from the infiltration and polymerization of the crosslinking material is the inverse or negative structure of the template, hence the geometric regularity of interconnected pores and channels.
  • the invention finds applications, both ex vivo and in vivo, serving as structures to support and increase the efficiency of in vitro cell cultures, or as supports where live cells and biological fibers can grow, improving bio-integration and anchoring. of the material in the host tissue.
  • Tissue Engineering or tissue engineering
  • tissue engineering is an interdisciplinary field that combines engineering and life sciences to develop techniques that allow the renewal, maintenance or improvement of living tissues and organs. Its fundamental objective is the creation of a natural tissue with the ability to restore the function of a lost organ or tissue, which the organism has not been able to regenerate under physiological conditions. This aims to solve the current limitations: low number of donors, rejections, etc.
  • Tissue engineering needs support structures (scaffolds in English) for cell growth and as a physical aid to direct the formation of new tissue.
  • Most of the techniques used use three-dimensional polymeric scaffold (3D) structures, composed of natural or synthetic polymers.
  • the polymeric scaffolds are presented in structures with a complex internal architecture, with channels and pores that provide a place for the settlement and proliferation of the cells, based on a biocompatible material, which serves as a biomolecular signal to promote the rejeneration of the tissue in the instead of the implant, and also biodegradable, so that the support degrades over time after implantation, being finally replaced by the newly formed tissue.
  • a polymeric scaffold for tissue engineering should have the following characteristics: 1) It must have adequate surface properties to allow cell anchoring, which facilitates cell adhesion, proliferation and differentiation, 2) it must be biocompatible, 3) highly porous , with a large area or area / volume ratio, forming a network of pores of uniform size and interconnected to facilitate both cell growth, allowing cells to develop throughout the network, as the entry and exit of nutrients and waste products, and 4) must possess sufficient mechanical strength to withstand any stress in vivo. This last requirement is difficult to combine with the high porosity in volume of the material, hence it is necessary to use polymeric matrices of special or reinforced properties, especially if the polymer is a hydrogel.
  • the design of the polymeric scaffolds depends on the applications considered, but in any case structures must be obtained with the indicated characteristics necessary for their correct function. Achieving it successfully is fundamentally conditioned by two factors: For the materials used, both for the porogen, which is the mold used, and for the cross-linking polymer, which is infiltrated into the porogen to constitute the scaffold; and, as a second factor, by the structural architecture, external and internal, of the shaped support material, manifested basically by the degree of porosity (surface / volume fraction) and by the geometry and size of the pores, always counting also with the scaffolds They must be easily processable in 3D 3D shapes.
  • the materials used in the porogenic or porogenic system may be poly (methyl methacrylate) and poly (ethyl methacrylate) grains, polyamide 6.6 and poly (acrylonitrile) fibers and meshes.
  • the scaffolds these can be based on hydrophilic, hydrophobic or hydrogel polymers, or a combination of them in the form of copolymers or interpenetrated polymer networks, which are elastomeric or rigid at body temperature, and which have a Porous structure of controllable characteristic size and topology.
  • Polymers based on polylactic acid (PLA), polyglycolic acid (PGA) and their copolymers (PLGA) are the most widely investigated biocompatible polymers for tissue engineering scaffolds and for bioimplants (Rothen-Weinhold et al. 1999; Stancari et al. 2000) and controlled and nutrient-free delivery devices (Putney, 1999). Combinations of these polymers with hydroxyapatila (FLA) are currently being investigated as bone fixation devices in orthopedic, craniofacial, maxillofacial and reconstructive surgery (Furukawa et al. 2000).
  • Polyanhydrides, polyorthoesters, polycaprolactones, polyfumarates, polycarbonates, and bioactive crystals (Stamboulis et al. 2002) between a multitude of other synthetic biomaterials are being investigated for tissue engineering scaffolds and also controlled nutrient distribution.
  • Acrylic and methacrylic monomers are also used as a constituent of the scaffolds.
  • porous structures can be easily obtained by adjusting thermodynamic and kinetic parameters, but, due to the complexity of the variables involved in the process, the porous structure cannot be easily controlled.
  • Gaseous foaming has the advantage of processing at room temperature, but produces a non-porous outer layer, and a mixture of open and closed pores in the center of the scaffold, leaving the interconnectivity incomplete.
  • the main disadvantage of the method is that it often results in a cellular structure not connected within the scaffold.
  • the fiber crosslinking technique provides a large area for cell adhesion and rapid diffusion of nutrients, in favor of cell growth and survival.
  • these scaffolds such as those formed by firm networks of polyglycolic acid (PGA) fibers, lack the necessary structural stability.
  • the technique does not lend itself to an easy and independent control of the porosity and pore size.
  • Photolithography photollthography
  • SFF scaffolds manufacturing methods provide excellent control over the external shape, geometry and internal interconnectivity of the pores, but offer a limited resolution at micrometric scale, in addition to the minimum size of the Global pores is 100 ⁇ m. It also requires a complicated correction of the scaffold design due to the anisotropic contraction during manufacturing, and somewhat expensive equipment.
  • the objective of the present invention is to present a new model of porous scaffolds of 3D architecture for tissue engineering, with structural features unmatched to fulfill its purpose, achieved by a technique, also claimed as of own invention, which is simple and cheap, and that overcomes the problems of the aforementioned techniques.
  • the new technique is based on using a three-dimensional or tempered porogen obtained from sintered meshes of nylon fibers, although it can also be created using sintered meshes of other polymeric materials of similar characteristics to nylon or polyamide, so that the scafold that results of the infiltration and polymerization of the constitution material in said tempera be
  • the new 3D polymeric scaffold for tissue regeneration developed is constituted by a biocompatible polymer of hydrophobic, rigid or flexible type, or of rigid hydrophilic type, or a combination of both types of polymers in the form of copolymers or interpenetrated polymer networks, plus a cross-linking agent, and is characterized by being the inverse or "negative" structure of a three-dimensional or “tempered” porogen, resulting from the sintering of superimposed meshes of synthetic polyamide or nylon fibers, or other similar polymeric material, and which is eliminated after the polymerization of the crosslinking material thereon, presenting a regular three-dimensional network of pores and orthogonal cylindrical channels of uniform size and clean of residual porogen, alienated and interconnected transversely through a succession of uniformly distributed parallel layers, practically superimposable, with a variable porosity above 75% (pore volume fraction), depending on the pressure and temperature conditions of the sintering process, and with a pore and channel diameter that can vary in order of magnitude ⁇ m for each matrix
  • the resulting support structure is quite stable, even during the leaching of the porogen, and can be obtained with different degrees of porosity and channel size, depending on the porogenic material used and the sintering conditions. of the same to get the temple.
  • the structure can be produced in different combinations of polymeric materials, thus adjusting the ratio of hydrophilic / hydrophobic behavior of the scaffold.
  • the structure has been obtained based on copolymers of various compositions (pEA-co-pHEMA) and IPN's.
  • the porogenic material of the three-dimensional tempera is nylon fabric 6,6, and the resulting cross-linking material of the resulting porous matrix is methyl methacrylate (MMA, 99%), together with ethylene glycol dimethacrylate (EGDMA, 98 %) as a crosslinking agent, Io leads to a scafold with 80% porosity and an average pore and channel diameter of 72 ⁇ 6 ⁇ m.
  • MMA methyl methacrylate
  • EGDMA ethylene glycol dimethacrylate
  • this new porous structure support for tissue engineering basically consists in creating a template using sintered meshes of nylon fibers or another equivalent polymer, such as a three-dimensional structure of porogenic material, which is removed after polymerization. of the matrix.
  • the resulting scaffold has the inverse structure of the template, which is a structure with orthogonal pores and cylindrical channels uniformly distributed and interconnected, with a level of porosity or surface / volume ratio around 80%.
  • the preparation technique of the new 3D polymeric scaffold comprises the following stages:
  • the first and fundamental is the preparation of the three-dimensional porogen mesh, by stacking and, if necessary, pressing, of rectangular layers of nylon fiber fabrics or other equivalent polymer, to be subjected to isothermal sintering and pressure in an electric oven , resulting in a stable three-dimensional mesh, with a reticular size that depends on the pressure, temperature and time used during the sintering process.
  • an ideal template is achieved by stacking eight layers of fiber fabrics of that polyamide and its isothermal sintering at 220 0 C 'for ten minutes, being necessary a final roughing for eliminate irregularities
  • the matter! used as a porogen are poly (acrylonitrile) fibers
  • the preparation of the three-dimensional mesh or template is not performed by thermal sintering, but the stacking of fiber fabrics of said material is subjected to pressure in the atmosphere of a suitable solvent, such as, for example, dimethylformamide.
  • the polymeric material constituting the structural matrix is infiltrated therein, using a glass mold of suitable size, after which the system is subjected to polymerization under a nitrogen atmosphere.
  • the polymeric material is methyl methacrylate (MMA)
  • ELDMA ethylene glycol dimethacrylate
  • AZBN azo-bis-isobutyronitrile
  • the removal of the porogen is carried out by leaching in nitric acid as an extracting agent, and subsequent washing in ethanol.
  • the resulting porous matrix is subjected to two-stage drying: first in air for 24 hours and then under vacuum at a suitable temperature for 48 hours, obtaining the 3D polymeric scaffold, with an inverse structure to that of the temple used as a porogen, which It is kept in a desiccator, being ready for characterization and use.
  • This new technique allows to obtain in an economic way scaffolds that, as it has been seen, present highly regular pore shapes and arrangements, with a complete interconnection, giving rise to mechanically stable structures without porogen residues.
  • Figure 1 is an SEM micrograph (scanning electron microscopy of the standard electron) of the three-dimensional temple or porogen formed by the sintered nylon fabrics, which serves as an architectural template for the formation of the polymeric scaffold, which is the key to its unique structure.
  • Figure 2 is a SEM micrograph of the front surface of the methyl methacrylate scaffold (PMMA) formed.
  • PMMA methyl methacrylate scaffold
  • Figure 3 is an enlargement of the same sample that shows in detail the parallel channels and the normal interconnecting pores.
  • Figures 4 and 5 correspond to SEM micrographs of the lateral surface (cross section) of the methyl methacrylate scaffold (PMMA), Ia 4 in a general view and Ia 5 in enlarged detail, where the absence of residual porogen in Ia network of pores and interconnected channels.
  • PMMA methyl methacrylate scaffold
  • the graph of Figure 6 represents the variation of the dynamic storage modulus E 'as a function of temperature at 1 Hz for methyl methacrylate, both' bulk, nonporous (line circles) and in the porous architecture of the scaffold formed (line of squares), while that of Figure 7 represents the tangent of dynamic-mechanical losses Tan ⁇ as a function of the temperature at 1 Hz for methyl methacrylate, both in bulk, not porous (line of circles), and in the porous architecture of the scaffold formed (line of squares).
  • polyamide 6.6 nylon 6.6 fabric is chosen, and as a crosslinking material for scaffold, methyl methacrylate (MMA, 99%) and ethylene glycol dimethacrylate (EGDMA, 98%), the latter as agent crosslinker, using azo-bis-isobutyronitrile (AZBN) as initiator.
  • MMA methyl methacrylate
  • EGDMA ethylene glycol dimethacrylate
  • AZBN azo-bis-isobutyronitrile
  • the three-dimensional sintered mesh is placed between two glass plates covered with a cellophane film and sealed with rubber spacers.
  • the appropriate amounts of MMA, crosslinker EGDMA (1% by weight) and AZBN as a free radical-thermal initiator (0.2% by weight) are mixed in a beaker.
  • the liquid and homogeneous mixture of monomer, initiator and crosslinking agent is poured into the glass mold where the nylon mesh is located.
  • the polymerization is conducted at 6'5 0 C in a thermostatic bath for 30 minutes under nitrogen. Then, the mold is placed in an oven at 65 ° C for four hours followed by an increase in temperature at 75 ° C for 24 hours.
  • the sample is extracted from the mold and sanded in a polishing machine.
  • the sample is immersed at room temperature for 5 days in nitric acid to dissolve the nylon mesh, then the material is washed in a Soxhlet extractor, using ethanol as solvent and for 48 hours, to extract substances from Low molecular weight and remove the remains of nitric acid.
  • the sample is dried at ambient conditions for one day, allowing it to shrink slowly, but prevent coiling and flexing at the beginning of drying, finally, dried at vacuum at 120 0 C for 48 hours.
  • the resulting scaffold is stored in a desiccator until it is characterized. After leaching with nitric acid from the porogen mesh, the scaffold already shows its characteristic porous structure, through an orthogonal network of interconnected pores and channels, but must be subjected to a final drying phase to extract low molecular weight substances and remove The remains of acid.
  • the final structure of the scaffold is clearly seen in Figures 2 to 4.
  • Figure 2 shows the outer surface of the scaffold, showing its highly regular structure, with an arrangement of identical pores in an orthogonal assembly of cylindrical channels.
  • Figure 3 is an enlargement of the same sample.
  • the darkest circular points are the transverse interconnections between the layers, which are uniformly distributed in the matrix, with a regular, almost superimposable shape.
  • the average diameter is 67 ⁇ 5 ⁇ m.
  • Figures 4 and 5 show side views of the scaffold.
  • the deep inspection inside the samples demonstrates the absence of the residual porogen.
  • Figure 4 the detail of the external surface can be observed, in the left part of the image, where again the high regularity is appreciated.
  • the diameters of the scaffold pore channels were measured in the enlarged view of the cross section of Figure 5. The average diameter is 72 ⁇ 6 ⁇ m.
  • the scaffolds resulting from the new procedure described were characterized by scanning electron microscopy (SEM); The mechanical characteristics and the porosity were also measured.
  • DSC Differential scanning calorimetry
  • the DSC measurements were taken on the samples of the nylon fabric in a Pyris 1 instrument (Perkin Elmer).
  • the melting and glass transition temperature, T 9 of commercial nylon was determined in explorations consisting of heating from 25 ° C to 280 0 C with a heating rate of 10 ° C / min.
  • the samples were by heating steps of 25 ° C to 220 0 C to 10 ° C / min, followed by an isothermal step 220 0 C for 10 minutes.
  • the next step was cooling from that temperature to 25 ° C to 10 ° C / min, followed For another step ⁇ sotherm of 25 ° C for one minute, and finally a heating of 25 ° C to 280 0 C at 10 ° C / min. All measurements were repeated three times.
  • the porosity was determined with the measure of the apparent density of the scaffold. For this, distilled water was used as filler of the porous structure. The dried sample was weighed and placed in a glass tube connected to a vacuum pump, and filled with distilled water before removing the vacuum. Then the matrix filled with water was weighed again and the porosity calculated as:
  • is the porosity
  • v p and v t are the volume occupied by the pores and the volume of the matrix, respectively
  • p is the density of the liquid
  • p m is the density of the filler material (PMMA in this case)
  • m is the liquid mass (wet) and the dry mass of the matrix respectively.
  • the density of the dry non-porous crosslinked mesh of PMMA was determined by weighing the samples in the air (m a ) and n-octane (m 0 ), and applying the following expression: r PMMA Pn-oc tanning tan om a + m 0
  • Samples of PMMA bulk and porous architectures are cut into bars and measured on an instrument DMS210 (Seiko) from 30 0 C to 25O 0 C at a heating rate of 2 degrees / min and a frequency of IHZ.
  • Figure 6 (Paper inventor) compares the dynamic module E 'of a scaffold with that of the thickness of PMMA, that is, with a non-porous matrix of this polymer, obtained by the same procedure but without infiltration into the template.
  • the effect of the porosity is a vertical change of the curve, which corresponds to a decrease in the rubber and vitreous modules of the scaffold by a factor of ten compared to the bulk modules. This is due to the decrease in the effective area of the cross section due to the porosity.
  • the porous structure retains the rest of the mechanical characteristics of the bulk material, which is not altered by the production process: the fall of the module in the region of the glass-rubber transition is practically the same as in the bulk material, as well as the glass transition temperature. This can be seen more clearly in Figure 7 (Paper inventor), where the loss tangent factor ⁇ is represented. There the coincidence in the temperature and the intensity of the main transition is evident for both materials.
  • the dispersion of the data of E 'and tan ⁇ after the vitreous transition are expected characteristics of Ia measurement in porous structures probably due to factors such as poorer adhesion in the clamps of the apparatus.
  • the scaffolds developed by means of the new described technique find perfect application in tissue engineering, in the manufacture of the support structures for the regeneration or repair of human or animal tissues.
  • the three-dimensional porous architectures object of the biotechnology industry and which are then formally claimed, are useful in medical applications such as physical supports for cell cultures, support ring for corneal prosthesis, nerve regeneration, chondrocyte culture and systems of controlled release of drugs, among others. They could also find use in other areas in which pore morphology can play an essential role, such as in membranes and filters.

Abstract

The invention relates to a novel 3-D polymer scaffold for tissue regeneration, having a porous structure which is the inverse or negative of a three-dimensional porogen or template (figure 1) resulting from the sintering of stacked meshes of nylon fibres. The invention is characterised by a regular orthogonal network (figures 2 to 5) comprising aligned and interconnected pores and cylindrical channels of uniform size and free of residual porogen, with a variable porosity of more than 75 % and a variable channel and pore diameter of the µm order of magnitude. The novel polymer scaffold is obtained by: infiltration and polymerisation of the cross-linking material in the template, elimination of the porogen by means of leaching, and drying of the resulting porous matrix. Said scaffold is chemically and mechanically stable and is particularly suitable for use in the regeneration or repair of human or animal tissues.

Description

NUEVO SCAFFOLD POLIMÉRICO 3D PARA LA REGENERACIÓN DE TEJIDOS YNEW 3D POLYMER SCAFFOLD FOR THE REGENERATION OF FABRICS AND
SU TÉCNICA DE PREPARACIÓNYOUR PREPARATION TECHNIQUE
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
La presente invención se refiere a un nuevo ' scaffold polimérico tridimensional (3D) para Ia regeneración de tejidos, con alto grado de porosidad y regularidad estructural, así como su técnica de preparación.The present invention relates to a new three-dimensional polymeric (3D) scaffold for tissue regeneration, with a high degree of porosity and structural regularity, as well as its preparation technique.
Este nuevo soporte para ingeniería tisular fabricado en base a polímeros biocompatibles se caracteriza por presentar una arquitectura porosa tridimensional altamente regular y con alto grado de porosidad, manifestada por una red ortogonal de poros y canales completamente interconectados, libres de porógeno residual, resultando estable química y mecánicamente para el fin a que se destina.This new support for tissue engineering based on biocompatible polymers is characterized by a highly regular three-dimensional porous architecture with a high degree of porosity, manifested by an orthogonal network of pores and channels completely interconnected, free of residual porogen, resulting in chemical and chemical stability. mechanically for the purpose it is intended for.
Las idóneas características estructurales de los scaffolds desarrollados se consiguen por una novedosa y barata técnica, fundamentada en Ia utilización de un porógeno tridimensional o témplate producido a partir de mallas sinterizadas de fibras de nylon u otro polímero similar, que hace que Ia matriz resultante de Ia infiltración y polimerización del material de reticulación sea Ia estructura inversa o negativo del témplate, de ahí Ia regularidad geométrica de poros y canales interconectados. Como ejemplo representativo de cómo este método puede ser aplicado, se va a describir Ia fabricación de un scaffold hecho de metacrilato de metilo MMA. iThe ideal structural characteristics of the developed scaffolds are achieved by a novel and cheap technique, based on the use of a three-dimensional or tempered porogen produced from sintered meshes of nylon fibers or another similar polymer, which makes the matrix resulting from the infiltration and polymerization of the crosslinking material is the inverse or negative structure of the template, hence the geometric regularity of interconnected pores and channels. As a representative example of how this method can be applied, the manufacture of a scaffold made of MMA methyl methacrylate will be described. i
Estas arquitecturas se han caracterizado mediante microscopía electrónica de barrido, porosimetría y propiedades dinámico-mecánicas.These architectures have been characterized by scanning electron microscopy, porosimetry and dynamic-mechanical properties.
Los resultados han demostrado Ia viabilidad de Ia técnica para preparar estructuras macroporosas y microporosas, idóneas para ser utilizadas en ingeniería tisular o de tejidos, dentro de Io que es el campo técnico de Ia biotecnología, dondeThe results have demonstrated the feasibility of the technique to prepare macroporous and microporous structures, suitable for use in tissue or tissue engineering, within what is the technical field of biotechnology, where
Ia invención encuentra aplicaciones, tanto ex vivo como ¡n vivo, sirviendo de estructuras para apoyar y aumentar Ia eficacia de los cultivos de células in vitro, o como soportes donde pueden crecer células vivas y fibras biológicas, mejorando Ia bio-integración y el anclaje del material en el tejido fino del anfitrión. ESTADO DE LA TÉCNICA ANTERIORThe invention finds applications, both ex vivo and in vivo, serving as structures to support and increase the efficiency of in vitro cell cultures, or as supports where live cells and biological fibers can grow, improving bio-integration and anchoring. of the material in the host tissue. STATE OF THE PREVIOUS TECHNIQUE
La Ingeniería de Tejidos, o ingeniería tisular, es un campo interdisciplinario que combina ciencias de Ia ingeniería y de Ia vida para desarrollar las técnicas que permiten Ia renovación, el mantenimiento o Ia mejora de los tejidos y órganos vivos. Su objetivo fundamental es Ia creación de un tejido natural con Ia capacidad de restablecer Ia función de un órgano o tejido perdido, que el organismo no ha podido regenerar en condiciones fisiológicas. Con ello se aspira a poder dar solución a las limitaciones actuales: baja cantidad de donantes, rechazos, etc.Tissue Engineering, or tissue engineering, is an interdisciplinary field that combines engineering and life sciences to develop techniques that allow the renewal, maintenance or improvement of living tissues and organs. Its fundamental objective is the creation of a natural tissue with the ability to restore the function of a lost organ or tissue, which the organism has not been able to regenerate under physiological conditions. This aims to solve the current limitations: low number of donors, rejections, etc.
La ingeniería tisular necesita de estructuras de soporte {scaffolds en inglés) para el crecimiento celular y como ayuda física para dirigir Ia formación del nuevo tejido. La mayoría de las técnicas empleadas utilizan las estructuras de scaffold poliméricos tridimensionales (3D), compuestas por polímeros naturales o sintéticos.Tissue engineering needs support structures (scaffolds in English) for cell growth and as a physical aid to direct the formation of new tissue. Most of the techniques used use three-dimensional polymeric scaffold (3D) structures, composed of natural or synthetic polymers.
Los scaffolds poliméricos se presentan en estructuras con una arquitectura interna compleja, con canales y poros que proporcionan lugar para el asentamiento y proliferación de las células, en base a un material biocompatible, que sirva de señal biomolecular para promover Ia rejeneración del tejido fino en el lugar del implante, y también biodegradable, para que el soporte se degrade en un cierto plazo después del implante, siendo finalmente sustituido por el tejido fino nuevamente formado.The polymeric scaffolds are presented in structures with a complex internal architecture, with channels and pores that provide a place for the settlement and proliferation of the cells, based on a biocompatible material, which serves as a biomolecular signal to promote the rejeneration of the tissue in the instead of the implant, and also biodegradable, so that the support degrades over time after implantation, being finally replaced by the newly formed tissue.
Idealmente, un scaffold polimérico para ingeniería tisular debe tener las siguientes características: 1) Debe presentar unas propiedades superficiales adecuadas para permitir el anclaje celular, que facilite Ia adhesión, proliferación y diferenciación de las células, 2) debe ser biocompatible, 3) altamente poroso, con una gran superficie o relación área/volumen, formando una red de poros de tamaño uniforme e interconectados para facilitar tanto el crecimiento celular, al permitir que se desarrollen las células a través de toda Ia red, como Ia entrada y salida de nutrientes y productos de deshecho, y 4) debe poseer suficiente resistencia mecánica para soportar cualquier tensión In vivo. Este último requisito es difícil de conjugar con Ia elevada porosidad en volumen del material, de ahí que sea necesario emplear matrices poliméricas de propiedades especiales o reforzadas, especialmente si el polímero es un hidrogel.Ideally, a polymeric scaffold for tissue engineering should have the following characteristics: 1) It must have adequate surface properties to allow cell anchoring, which facilitates cell adhesion, proliferation and differentiation, 2) it must be biocompatible, 3) highly porous , with a large area or area / volume ratio, forming a network of pores of uniform size and interconnected to facilitate both cell growth, allowing cells to develop throughout the network, as the entry and exit of nutrients and waste products, and 4) must possess sufficient mechanical strength to withstand any stress in vivo. This last requirement is difficult to combine with the high porosity in volume of the material, hence it is necessary to use polymeric matrices of special or reinforced properties, especially if the polymer is a hydrogel.
El diseño de los scaffolds poliméricos depende de las aplicaciones consideradas, pero en todo caso deben conseguirse estructuras dotadas de las señaladas característica necesarias para su correcta función. El conseguirlo con éxito está condicionado fundamentalmente por dos factores: Por los materiales empleados, tanto para el porógeno, que es el molde utilizado, como para el polímero de reticulación, que es infiltrado en el porógeno para constituir el scaffold; y, como segundo factor, por Ia arquitectura estructural, externa e interna, del material soporte conformado, manifestada básicamente por el grado de porosidad (fracción superficie/volumen) y por Ia geometría y tamaño de los poros, contando siempre además con que los scaffolds deben ser fácilmente procesables en formas tridimensionales 3D.The design of the polymeric scaffolds depends on the applications considered, but in any case structures must be obtained with the indicated characteristics necessary for their correct function. Achieving it successfully is fundamentally conditioned by two factors: For the materials used, both for the porogen, which is the mold used, and for the cross-linking polymer, which is infiltrated into the porogen to constitute the scaffold; and, as a second factor, by the structural architecture, external and internal, of the shaped support material, manifested basically by the degree of porosity (surface / volume fraction) and by the geometry and size of the pores, always counting also with the scaffolds They must be easily processable in 3D 3D shapes.
Los materiales utilizados en el sistema porogéncico o porógeno, pueden ser granos de poli(metil metacrilato) y poly(etil metacrilato), poliamida 6,6 y las fibras y mallas del poli(acrilonitrilo). i En cuanto a los scaffolds, estos pueden basarse en polímeros hidrofílicos, hidrofóbicos o hidrogeles, o una combinación de ellos en Ia forma de copolímeros o de redes interpenetradas de polímero, que son elastómeros o rígidas a Ia temperatura del cuerpo, y que poseen una estructura porosa de tamaño y topología característicos controlables.The materials used in the porogenic or porogenic system may be poly (methyl methacrylate) and poly (ethyl methacrylate) grains, polyamide 6.6 and poly (acrylonitrile) fibers and meshes. As for the scaffolds, these can be based on hydrophilic, hydrophobic or hydrogel polymers, or a combination of them in the form of copolymers or interpenetrated polymer networks, which are elastomeric or rigid at body temperature, and which have a Porous structure of controllable characteristic size and topology.
Los polímeros basados en el ácido poliláctico (PLA), ácido poliglicólico (PGA) y sus copolímeros (PLGA) son los polímeros biocompatibles más ampliamente investigados para los scaffolds de Ia ingeniería tisular y para los bioimplantes (Rothen-Weinhold et al. 1999; Stancari et al. 2000) y dispositivos de reparto controlado y libre de nutrientes (Putney, 1999). Actualmente se están investigando combinaciones de estos polímeros con hidroxiapatila (FLA) como dispositivos de fijación al hueso en cirugía ortopédica, craneofacial, maxilofacial y reconstructiva (Furukawa et al. 2000). Polianhídridos, poliortoésteres, policaprolactonas, polifumaratos, policarbonatos, y cristales bioactivos (Stamboulis et al. 2002) entre una multitud de otros biomateriales sintéticos están siendo investigados para los scaffolds de Ia ingeniería tisular y también el reparto controlado de nutrientes.Polymers based on polylactic acid (PLA), polyglycolic acid (PGA) and their copolymers (PLGA) are the most widely investigated biocompatible polymers for tissue engineering scaffolds and for bioimplants (Rothen-Weinhold et al. 1999; Stancari et al. 2000) and controlled and nutrient-free delivery devices (Putney, 1999). Combinations of these polymers with hydroxyapatila (FLA) are currently being investigated as bone fixation devices in orthopedic, craniofacial, maxillofacial and reconstructive surgery (Furukawa et al. 2000). Polyanhydrides, polyorthoesters, polycaprolactones, polyfumarates, polycarbonates, and bioactive crystals (Stamboulis et al. 2002) between a multitude of other synthetic biomaterials are being investigated for tissue engineering scaffolds and also controlled nutrient distribution.
Monómeros de acrílico y metacrílico también son utilizados como material constitutivo de los scaffolds.Acrylic and methacrylic monomers are also used as a constituent of the scaffolds.
En base a esta amplia gama de materiales poliméricos, se han desarrollado diversas técnicas para el diseño estructural de los scaffolds 3D para Ia ingeniería de implantación de tejidos, entre las que cabe destacar: a) Phase separation, b) Gas foaming, c) Fiber bonding, d) Photolithography, e) Solid free form (SFF), f) Solvent castíng in combination with partióle leaching, entre otras.Based on this wide range of polymeric materials, various techniques have been developed for the structural design of 3D scaffolds for tissue implantation engineering, among which are: a) Phase separation, b) Foaming gas, c) Fiber bonding, d) Photolithography, e) Solid free form (SFF), f) Solvent cast in combination with partióle leaching, among others.
Sin embargo, ninguna de estas técnicas ha logrado conseguir un modelo de arquitectura tridimensional idóneo para que los scaffold puedan cumplir con su fin de Ia forma deseada, incluso utilizando equipos de alto coste, por las razones que a continuación se comentan.However, none of these techniques has managed to achieve an ideal three-dimensional architecture model so that the scaffold can fulfill its purpose in the desired way, even using high-cost equipment, for the reasons discussed below.
Así, mediante Ia conocida técnica de separación de fases (phase separation) se pueden obtener estructuras porosas fácilmente ajustando parámetros termodinámicos y cinéticos, pero, debido a Ia complejidad de las variables implicadas en el proceso, Ia estructura porosa no puede ser controlada fácilmente.Thus, by means of the known phase separation technique, porous structures can be easily obtained by adjusting thermodynamic and kinetic parameters, but, due to the complexity of the variables involved in the process, the porous structure cannot be easily controlled.
Además es difícil obtener grandes poros y pueden exhibir falta de interconexión.It is also difficult to obtain large pores and may exhibit lack of interconnection.
El espumado gaseoso (gas foaming) tiene Ia ventaja del procesado a temperatura ambiente, pero produce una capa externa no porosa, y una mezcla de poros abiertos y cerrados en el centro del scaffold, dejando incompleta Ia interconectividad. La desventaja principal del método es que da lugar a menudo a una estructura celular no conectada dentro del scaffold.Gaseous foaming (gas foaming) has the advantage of processing at room temperature, but produces a non-porous outer layer, and a mixture of open and closed pores in the center of the scaffold, leaving the interconnectivity incomplete. The main disadvantage of the method is that it often results in a cellular structure not connected within the scaffold.
La técnica del entrecruzamiento de fibras (fiber bonding) proporciona una gran superficie para Ia adhesión de células y Ia rápida difusión de nutrientes, a favor del crecimiento y supervivencia celular. Sin embargo a estos scaffolds, como los formados por firmes redes de fibras de ácido poliglicólico (PGA), carecen de Ia estabilidad estructural necesaria. Además, Ia técnica no se presta a un fácil e independiente control de Ia porosidad y del tamaño del poro. La fotolitografía (photollthography) también se ha empleado para el diseño de scaffolds, permitiendo obtener disposiciones estructurales con gran precisión, aunque no siempre es requerida. En cualquier caso, el inconveniente de esta técnica estriba en el alto coste del equipo necesario para aplicarla.The fiber crosslinking technique (fiber bonding) provides a large area for cell adhesion and rapid diffusion of nutrients, in favor of cell growth and survival. However, these scaffolds, such as those formed by firm networks of polyglycolic acid (PGA) fibers, lack the necessary structural stability. In addition, the technique does not lend itself to an easy and independent control of the porosity and pore size. Photolithography (photollthography) has also been used for the design of scaffolds, allowing to obtain structural arrangements with great precision, although it is not always required. In any case, the drawback of this technique lies in the high cost of the equipment necessary to apply it.
Los métodos de fabricación de scaffolds de SFF (sólidos de forma libre o Solid free form) proporcionan un control excelente sobre Ia forma externa, geometría e interconectividad interna de los poros, pero ofrecen una resolución limitada a escala micrométrica, además el tamaño mínimo de los poros globales es de 100 μm. Asimismo, requiere una complicada corrección del diseño del scaffold debido a Ia contracción anisótropa durante Ia fabricación, y un equipamiento algo costoso.SFF scaffolds manufacturing methods (solid free form or Solid free form) provide excellent control over the external shape, geometry and internal interconnectivity of the pores, but offer a limited resolution at micrometric scale, in addition to the minimum size of the Global pores is 100 μm. It also requires a complicated correction of the scaffold design due to the anisotropic contraction during manufacturing, and somewhat expensive equipment.
Por último, el colado de sólidos en combinación de lixiviado (solvent casting in combination with partícle leaching) , que implica Ia fundición/vaciado de una mezcla de monómeros y de Ia solución del iniciador y de un porógeno en un molde, Ia polimerización, seguida del lixiviado para extraer el porógeno con el disolvente apropiado para generar los poros, es un método barato, pero todavía tiene que superar algunas desventajas para encontrar aplicaciones en ingeniería, principalmente el problema de los restos de porógeno, formas de poro irregulares y una insuficiente interconectividad, entre otros.Finally, the casting of solids in combination of leachate (solvent casting in combination with particulate leaching), which involves the smelting / emptying of a mixture of monomers and the solution of the initiator and a porogen in a mold, the polymerization, followed of leachate to extract the porogen with the appropriate solvent to generate the pores, it is a cheap method, but it still has to overcome some disadvantages to find engineering applications, mainly the problem of porogen remains, irregular pore shapes and insufficient interconnectivity , among others.
A Ia vista de todas estas dificultades, el objetivo de Ia presente invención es presentar un nuevo modelo de scaffolds poroso de arquitectura 3D para Ia ingeniería de tejidos, con unas características estructurales sin parangón para cumplir con su finalidad, conseguido por una técnica, también reivindicada como de propia invención, que es sencilla y barata, y que supera los problemas de las técnicas antes mencionadas.In view of all these difficulties, the objective of the present invention is to present a new model of porous scaffolds of 3D architecture for tissue engineering, with structural features unmatched to fulfill its purpose, achieved by a technique, also claimed as of own invention, which is simple and cheap, and that overcomes the problems of the aforementioned techniques.
La nueva técnica se basa en utilizar un porógeno tridimensional o témplate obtenido a partir de mallas sinterizadas de fibras de nylon, aunque también puede ser creado utilizando mallas sinterizadas de otros materiales poiiméricos de características similares al nylon o poliamiadas, de modo que el scafold que resulte de Ia infiltración y polimerización del material de constitución en dicho témplate seaThe new technique is based on using a three-dimensional or tempered porogen obtained from sintered meshes of nylon fibers, although it can also be created using sintered meshes of other polymeric materials of similar characteristics to nylon or polyamide, so that the scafold that results of the infiltration and polymerization of the constitution material in said tempera be
Ia estructura inversa o negativo del mismo, Ia cual presenta una regularidad geométrica de poros y canales interconectados hasta ahora no conseguida. Scaffols 3D para ingeniería de tejidos utilizando nylon se encuentran divulgados en patentes anteriores, caso, por ejemplo de las patentes norteamericanas con números de publicación US5736372, US6596296, US5266480 o US6471993, entre otras, que obtienen el producto por algunas de las técnicas arriba comentadas, pero Ia diferencia es que en todas ellas se utiliza el nylon como scaffold, cuando el material que a continuación se reivindica es un negativo que no tiene porqué estar constituido de nylon, porque Io que realmente es de invención es su estructura tridimensional, de geometría idónea, creada a partir de una técnica distinta.The inverse or negative structure thereof, which presents a geometric regularity of interconnected pores and channels so far not achieved. Scaffols 3D for engineering of fabrics using nylon are disclosed in previous patents, for example, for US patents with publication numbers US5736372, US6596296, US5266480 or US6471993, among others, which obtain the product by some of the techniques mentioned above, but the difference is that in all of them nylon is used as a scaffold, when the material that is claimed below is a negative that does not have to be made of nylon, because what really is of invention is its three-dimensional structure, of suitable geometry , created from a different technique.
DECRIPCION DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
El nuevo scaffold polimérico 3D para Ia regeneración de tejidos desarrollado está constituido por un polímero biocompatible de tipo hidrófobo, rígido o flexible, o de tipo hidrófilo rígido, o una combinación de ambos tipos de polímeros en Ia forma de copolímeros o redes interpenetradas de polímero, más un agente entrecuzador, y está caracterizado por ser Ia estructura inversa o "negativo" de un porógeno tridimensional o "témplate", resultante de Ia sinterización de mallas superpuestas de fibras poliamidas sintéticas o nylon, u otro material polimérico similar, y que es eliminado tras Ia polimerización del material de reticulación sobre el mismo, presentando una red tridimensional regular de poros y canales cilindricos ortogonales de tamaño uniforme y limpios de porógeno residual, alienados e interconectados transversalmente a través de una sucesión de capas paralelas uniformemente distribuidas, prácticamente superponibles, con una porosidad variable por encima del 75% (fracción de volumen de poros), dependiendo de las condiciones de presión y temperatura del proceso de sinterización, y con un diámetro de poro y canal que puede variar en orden de magnitud μm para cada matriz obtenida, según sea el material polimérico utilizado en Ia obtención del porógeno tridimensional.The new 3D polymeric scaffold for tissue regeneration developed is constituted by a biocompatible polymer of hydrophobic, rigid or flexible type, or of rigid hydrophilic type, or a combination of both types of polymers in the form of copolymers or interpenetrated polymer networks, plus a cross-linking agent, and is characterized by being the inverse or "negative" structure of a three-dimensional or "tempered" porogen, resulting from the sintering of superimposed meshes of synthetic polyamide or nylon fibers, or other similar polymeric material, and which is eliminated after the polymerization of the crosslinking material thereon, presenting a regular three-dimensional network of pores and orthogonal cylindrical channels of uniform size and clean of residual porogen, alienated and interconnected transversely through a succession of uniformly distributed parallel layers, practically superimposable, with a variable porosity above 75% (pore volume fraction), depending on the pressure and temperature conditions of the sintering process, and with a pore and channel diameter that can vary in order of magnitude μm for each matrix obtained, depending on the polymeric material used in obtaining the three-dimensional porogen.
La estructura soporte resultante es bastante estable, incluso durante el lixiviado del porógeno, y puede obtenerse con diferentes grados de porosidad y de tamaño de canales, dependiendo del material porogénico utilizado y de las condiciones de sinterización. del mismo para obtener el témplate. Además, Ia estructura puede producirse en diferentes combinaciones de materiales poliméricos, ajustando así Ia relación de comportamiento hidrófilo/hidrófobo del scaffold. De hecho, Ia estructura se ha obtenido en base a copόlímeros de diversas composiciones (pEA-co-pHEMA)e IPN's.The resulting support structure is quite stable, even during the leaching of the porogen, and can be obtained with different degrees of porosity and channel size, depending on the porogenic material used and the sintering conditions. of the same to get the temple. In addition, the structure can be produced in different combinations of polymeric materials, thus adjusting the ratio of hydrophilic / hydrophobic behavior of the scaffold. In fact, the structure has been obtained based on copolymers of various compositions (pEA-co-pHEMA) and IPN's.
En una realización preferida, el material porogénico del témplate tridimensional es tejido de nylon 6,6, y el material de reticulación constitutivo de Ia matriz porosa resultante es metacrilato de metilo (MMA, 99%), junto con dimetacrilato de etilenglicol (EGDMA, 98%) como agente entrecruzador, Io conduce a un scafold con 80% de porosidad y un diámetro medio de poro y canal de 72 ± 6 μm.In a preferred embodiment, the porogenic material of the three-dimensional tempera is nylon fabric 6,6, and the resulting cross-linking material of the resulting porous matrix is methyl methacrylate (MMA, 99%), together with ethylene glycol dimethacrylate (EGDMA, 98 %) as a crosslinking agent, Io leads to a scafold with 80% porosity and an average pore and channel diameter of 72 ± 6 μm.
El método por el cual se obtiene este nuevo soporte de estructura porosa para Ia ingeniería tisular, consiste básicamente en crear un témplate utilizando mallas sinterizadas de fibras de nylon u otro polímero equivalente, como estructura tridimensional de material porogénico, témplate que es eliminado tras Ia polimerización de Ia matriz. De esta manera el scaffold resultante posee Ia estructura inversa del témplate, que es una estructura con poros y canales cilindricos ortogonales uniformemente distribuidos e interconectados, con un nivel de porosidad o relación superficie/volumen entorno al 80%.The method by which this new porous structure support for tissue engineering is obtained, basically consists in creating a template using sintered meshes of nylon fibers or another equivalent polymer, such as a three-dimensional structure of porogenic material, which is removed after polymerization. of the matrix. In this way, the resulting scaffold has the inverse structure of the template, which is a structure with orthogonal pores and cylindrical channels uniformly distributed and interconnected, with a level of porosity or surface / volume ratio around 80%.
En concreto, Ia técnica de preparación del nuevo scaffold polimérico 3D, comprende las siguientes etapas:Specifically, the preparation technique of the new 3D polymeric scaffold comprises the following stages:
La primera y fundamental es Ia preparación de Ia malla de porógeno tridimensional, mediante el apilado y, en su caso, prensado, de capas rectangulares de telas de fibra de nylon u otro polímero equivalente, para ser sometidas a sinterización isoterma y a presión en horno eléctrico, resultando una malla tridimensional estable, con un tamaño reticular que depende de Ia presión, temperatura y tiempo empleado durante el proceso de sinterización. Así, para el nylon 6,6 utilizado como material porogénico, un témplate ideal se consigue mediante el apilado de ocho capas de telas de fibra de esa poliamida y su sinterización isoterma a 2200C ' durante diez minutos, siendo necesario un desbastado final para eliminar irregularidades.The first and fundamental is the preparation of the three-dimensional porogen mesh, by stacking and, if necessary, pressing, of rectangular layers of nylon fiber fabrics or other equivalent polymer, to be subjected to isothermal sintering and pressure in an electric oven , resulting in a stable three-dimensional mesh, with a reticular size that depends on the pressure, temperature and time used during the sintering process. Thus, for nylon 6,6 used as a porogenic material, an ideal template is achieved by stacking eight layers of fiber fabrics of that polyamide and its isothermal sintering at 220 0 C 'for ten minutes, being necessary a final roughing for eliminate irregularities
No obstante, cuando el materia! utilizado como porógeno son fibras de poli(acrilonitrilo), Ia preparación de Ia malla tridimensional o témplate no se realiza por sinterización térmica, sino que el apilado de telas de fibra de dicho material se somete a presión en atmósfera de un disolvente adecuado, como, por ejemplo, dimetilformamida.However, when the matter! used as a porogen are poly (acrylonitrile) fibers, the preparation of the three-dimensional mesh or template is not performed by thermal sintering, but the stacking of fiber fabrics of said material is subjected to pressure in the atmosphere of a suitable solvent, such as, for example, dimethylformamide.
Obtenido el sistema porogénico tridimensional o témplate, se procede a Ia infiltración en el mismo del material polimérico constitutivo de Ia matriz estructural, utilizando un molde de cristal de tamaño adecuado, tras Io cual se somete al sistema a polimerización en atmósfera de nitrógeno. Cuando el material polimérico es metacrilato de metilo (MMA), junto con dimetacrilato de etilenglicol (EGDMA) como agente entrecruzador y azo-bis-isobutironitrilo (AZBN) como iniciador, se realiza polimerización a 65°C en baño termostático y atmósfera de nitrógeno durante 30 minutos, y después a 65°C en horno durante 4 horas y a 75°C durante las 24 horas siguientes.Obtained the three-dimensional porogenic system or template, the polymeric material constituting the structural matrix is infiltrated therein, using a glass mold of suitable size, after which the system is subjected to polymerization under a nitrogen atmosphere. When the polymeric material is methyl methacrylate (MMA), together with ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent and azo-bis-isobutyronitrile (AZBN) as initiator, polymerization is carried out at 65 ° C in a thermostatic bath and nitrogen atmosphere during 30 minutes, and then at 65 ° C in the oven for 4 hours and at 75 ° C for the next 24 hours.
Tras Ia polimerización, se procede a Ia eliminación del porógeno por lixiviación en ácido nítrico como agente extractor, y posterior lavado en etanol.After the polymerization, the removal of the porogen is carried out by leaching in nitric acid as an extracting agent, and subsequent washing in ethanol.
Finalmente, Ia matriz porosa resultante es sometida a un secado en dos etapas: primero al aire durante 24 horas y después a vacío a temperatura adecuada durante 48 horas, obteniéndose el scaffold polimérico 3D, de estructura inversa a Ia del templete utilizado como porógeno, que es conservado en un desecador, quedando listo para su caracterización y utilización.Finally, the resulting porous matrix is subjected to two-stage drying: first in air for 24 hours and then under vacuum at a suitable temperature for 48 hours, obtaining the 3D polymeric scaffold, with an inverse structure to that of the temple used as a porogen, which It is kept in a desiccator, being ready for characterization and use.
Esta nueva técnica permite obtener de forma económica scaffolds que, como se ha visto, presentan formas y ordenamientos de poro altamente regulares, con una interconexión completa, dando lugar a estructuras mecánicamente estables sin residuos del porógeno.This new technique allows to obtain in an economic way scaffolds that, as it has been seen, present highly regular pore shapes and arrangements, with a complete interconnection, giving rise to mechanically stable structures without porogen residues.
Se resuelve así un problema que estaba pendiente, ya que si bien se tenían caracterizados materiales poliméricos más o menos idóneos para los scaffolds, con propiedades superficiales adecuadas, biocompatibles y biodegradables, el factor más importante para que estos soportes estructurales puedan cumplir con su finalidad en ingeniería tisular, que es Ia alta porosidad requerida, con redes de poros y canales interconectados de forma regular, no estaba del todo resuelto, habiendo quedado ahora plenamente satisfecho por las características estructurales del nuevo soporte conseguido. Además, los costes del procedimiento son muchos más baratos que los de las técnicas que permiten obtener estructuras aceptables, como Ia photolithography o el Solid free form (SFF), ya comentadas.This solves a problem that was pending, since although there were characterized polymeric materials more or less suitable for scaffolds, with adequate, biocompatible and biodegradable surface properties, the most important factor so that these structural supports can fulfill their purpose in Tissue engineering, which is the high porosity required, with regularly interconnected pore networks and channels, was not completely resolved, having now been fully satisfied by the structural characteristics of the new support achieved. In addition, the costs of the procedure are many cheaper than those of the techniques that allow obtaining acceptable structures, such as the photolithography or the Solid free form (SFF), already mentioned.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
Haciendo una breve referencia a los dibujos se pueden apreciar tales características estructurales idóneas de los scaffold presentados.By making a brief reference to the drawings, such structural characteristics suitable for the scaffold presented can be seen.
La figura 1 es una micrografía SEM (microscopía de barrido del electrón estándar) del templete o porógeno tridimensional formado por los tejidos de nylon sinterizados, que sirve como plantilla de arquitectura para formación del scaffold polimérico, que es Ia clave de su estructura singular. La figura 2 es una micrografía SEM de Ia superficie frontal del scaffold de metacrilato de metilo (PMMA) formado.Figure 1 is an SEM micrograph (scanning electron microscopy of the standard electron) of the three-dimensional temple or porogen formed by the sintered nylon fabrics, which serves as an architectural template for the formation of the polymeric scaffold, which is the key to its unique structure. Figure 2 is a SEM micrograph of the front surface of the methyl methacrylate scaffold (PMMA) formed.
La figura 3 es una ampliación de Ia misma muestra que muestra en detalle los canales paralelos y los poros de interconexión normales.Figure 3 is an enlargement of the same sample that shows in detail the parallel channels and the normal interconnecting pores.
Las figuras 4 y 5 corresponden a micrografías SEM de Ia superficie lateral (sección transversal) del scaffold de metacrilato de metilo (PMMA), Ia 4 en una vista general y Ia 5 en detalle ampliado, donde se demuestra Ia ausencia del porógeno residual en Ia red de poros y canales interconectados.Figures 4 and 5 correspond to SEM micrographs of the lateral surface (cross section) of the methyl methacrylate scaffold (PMMA), Ia 4 in a general view and Ia 5 in enlarged detail, where the absence of residual porogen in Ia network of pores and interconnected channels.
En todas estas micrografías se observa que Ia regularidad del nuevo soporte es absoluta, dentro de un sistema tridimensional ortogonal. Además, las propiedades mecánicas no se quedan atrás, como demuestran los gráficos de las figuras 6 y 7, que son una comparativa de propiedades mecánicas del soporte poroso obtenido de metacrilato de metilo frente al grueso del mismo, sin tratamiento.In all these micrographs it is observed that the regularity of the new support is absolute, within an orthogonal three-dimensional system. In addition, the mechanical properties are not left behind, as shown in the graphs of Figures 6 and 7, which are a comparison of the mechanical properties of the porous support obtained from methyl methacrylate against the bulk thereof, without treatment.
El gráfico de Ia figura 6 representa Ia variación del módulo de almacenamiento dinámico E' en función de Ia temperatura a 1 Hz para el metacrilato de metilo, tanto' a granel, no poroso (línea de círculos), como en Ia arquitectura porosa del scaffold formado (línea de cuadrados), mientras que el de Ia figura 7 representa Ia tangente de pérdidas dinámico-mecánicas Tan δ como una función de Ia temperatura a 1 Hz para el metacrilato de metilo, tanto a granel, no poroso (línea de círculos), como en Ia arquitectura porosa del scaffold formado (línea de cuadrados).The graph of Figure 6 represents the variation of the dynamic storage modulus E 'as a function of temperature at 1 Hz for methyl methacrylate, both' bulk, nonporous (line circles) and in the porous architecture of the scaffold formed (line of squares), while that of Figure 7 represents the tangent of dynamic-mechanical losses Tan δ as a function of the temperature at 1 Hz for methyl methacrylate, both in bulk, not porous (line of circles), and in the porous architecture of the scaffold formed (line of squares).
REALIZACIÓN PREFERENTE DE LA INVENCIÓNPREFERRED EMBODIMENT OF THE INVENTION
Un ejemplo de Ia técnica de preparación del nuevo scaffold polimérico 3D objeto de esta invención, no limitativo de Ia misma, en tanto que, como arriba se ha señalado, puede jugarse con diferentes tipos de materiales poliméricos de partida y bajo diferentes condiciones de sinterización del porógeno, se expone a continuación.An example of the technique for preparing the new 3D polymeric scaffold object of this invention, not limiting thereof, while, as noted above, it can be played with different types of starting polymeric materials and under different sintering conditions of the Porogen, set out below.
Como material porogénico se elige tejido de poliamida 6,6 (nylon 6,6), y como material de reticulación del scaffold, metacrilato de metilo (MMA, 99%) y dimetacrilato de etilenglicol (EGDMA, 98%), este último como agente entrecruzador, empleando azo-bis-isobutironitrilo (AZBN) como iniciador.As a porogenic material, polyamide 6.6 (nylon 6.6) fabric is chosen, and as a crosslinking material for scaffold, methyl methacrylate (MMA, 99%) and ethylene glycol dimethacrylate (EGDMA, 98%), the latter as agent crosslinker, using azo-bis-isobutyronitrile (AZBN) as initiator.
Ácido nítrico del 60% (para análisis), etanol del 99,7% (calidad/grado de síntesis), agua destilada, n-octano del 99% de pureza (pn-Octano = 0,7 g/cm3), también son necesarioa.60% nitric acid (for analysis), 99.7% ethanol (quality / degree of synthesis), distilled water, 99% purity n-octane (p n - O c t a n o = 0.7 g / cm 3 ), are also necessary.
Con estos materiales y productos de partida, las etapas son las siguientes:With these starting materials and products, the stages are as follows:
1. Preparación de Ia malla de porógeno tridimensional. -1. Preparation of the three-dimensional porogen mesh. -
Se apilan ocho capas rectangulares de telas de fibra de nylon y se sinterizan mediante un proceso isotermo a 22O0C durante diez minutos en un horno eléctrico.Eight rectangular layers of nylon fiber fabrics are stacked and sintered by an isothermal process at 22O 0 C for ten minutes in an electric oven.
Para sinterizar las telas de dos dimensiones a una malla tridimensional se probaron programas a diversas temperaturas. Por debajo de 2000C las muestras de nylon no fueron sinterizadas y por encima de 2350C las muestras se fundían, debido a Ia temperatura a Ia que se funde el nylon.To sinter the two-dimensional fabrics to a three-dimensional mesh, programs at various temperatures were tested. Below 200 0 C samples were not sintered nylon and above 235 0 C samples melted because the temperature at which the nylon melts.
El tratamiento de calor a 2200C del programa de sinterización describió una consistente fijación entre las láminas de tela apiladas, probablemente debido a un proceso que implicaba Ia fusión de pequeños cristales y Ia recristalización de fibras individuales en contacto unas con otras. Esto se aprecia en el pequeño pico de fusión endotérmico entre 230 y 2400C, previo a Ia zona de fusión del material (máximo de Ia endoterma de fusión 2600C) que es característico de una fracción de pequeños cristales, creada probablemente en el paso isotermo del tratamiento, puesto que el endotherm está ausente en el termograma de Ia tela natural. Así se obtiene una malla tridimensional de material porogénico estable, con una red de canales y poros verdaderamente conectada, tal y como se aprecia en Ia micrografía SEM de Ia figura 1.The heat treatment at 220 0 C of the sintering program described a consistent attachment between the sheets of stacked material, probably due to a process that involved the fusion of small crystals and the recrystallization of individual fibers in contact with each other. This is seen in the small peak of endothermic fusion between 230 and 240 0 C, prior to the melting zone of the material (maximum of the melting endotherm 260 0 C) that is characteristic of a fraction of small crystals, probably created in the isothermal step of the treatment, since the endotherm is absent in the thermogram of the natural fabric. Thus, a three-dimensional mesh of stable porogenic material is obtained, with a network of truly connected channels and pores, as can be seen in the SEM micrograph of Figure 1.
2. Fabricación del scaffold,-2. Manufacture of scaffold, -
La malla tridimensional sinterizada se coloca entre dos placas de cristal cubiertas con una película del celofán y selladas con espaciadores de goma. Se mezclan en un cubilete las cantidades apropiadas de MMA, agente entrecruzador EGDMA (1% en peso) y AZBN como iniciador libre-radical termal (0,2% en peso). La mezcla líquida y homogénea de monómero, iniciador y agente entrecruzador se vierte en el molde de cristal donde se encuentra Ia malla de nylon. La polimerización se realiza a 6'50C en un baño termostático durante 30 minutos, en atmósfera de nitrógeno. Entonces, se coloca el molde en un horno a 65°C durante cuatro horas seguidas de un aumento de Ia temperatura a 75°C durante 24 horas.The three-dimensional sintered mesh is placed between two glass plates covered with a cellophane film and sealed with rubber spacers. The appropriate amounts of MMA, crosslinker EGDMA (1% by weight) and AZBN as a free radical-thermal initiator (0.2% by weight) are mixed in a beaker. The liquid and homogeneous mixture of monomer, initiator and crosslinking agent is poured into the glass mold where the nylon mesh is located. The polymerization is conducted at 6'5 0 C in a thermostatic bath for 30 minutes under nitrogen. Then, the mold is placed in an oven at 65 ° C for four hours followed by an increase in temperature at 75 ° C for 24 hours.
Una vez concluido el proceso de polimerización, Ia muestra se extrae del molde y se enarena en una máquina pulidora.Once the polymerization process is completed, the sample is extracted from the mold and sanded in a polishing machine.
Para eliminar el porógeno, Ia muestra es sumergida a temperatura ambiente durante 5 días en ácido nítrico para disolver Ia malla de nylon, lavándose a continuación el material en un extractor de Soxhlet, usando el etanol como solvente i durante 48 horas, para extraer sustancias de bajo peso molecular y quitar los restos de ácido nítrico.To remove the porogen, the sample is immersed at room temperature for 5 days in nitric acid to dissolve the nylon mesh, then the material is washed in a Soxhlet extractor, using ethanol as solvent and for 48 hours, to extract substances from Low molecular weight and remove the remains of nitric acid.
Por último, Ia muestra es secada en condiciones ambientales durante un día, permitiendo que se encoja lentamente, pero evitando que se enrolle o flexione al principio del secado, para finalmente, secar al vacío a 1200C durante 48 horas. El scaffold resultante es almacenados en un desecador hasta su caracterización. Después del lixiviado con ácido nítrico de Ia malla de porógeno, el scaffold muestra ya su estructura porosa característica, mediante una red ortogonal de poros y canales interconectados, pero debe ser sometido a una última fase de secado para extraer sustancias de bajo peso molecular y quitar los restos de ácido. La estructura final del scaffold se ve claramente en las figuras 2 a 4.Finally, the sample is dried at ambient conditions for one day, allowing it to shrink slowly, but prevent coiling and flexing at the beginning of drying, finally, dried at vacuum at 120 0 C for 48 hours. The resulting scaffold is stored in a desiccator until it is characterized. After leaching with nitric acid from the porogen mesh, the scaffold already shows its characteristic porous structure, through an orthogonal network of interconnected pores and channels, but must be subjected to a final drying phase to extract low molecular weight substances and remove The remains of acid. The final structure of the scaffold is clearly seen in Figures 2 to 4.
La figura 2 muestra Ia superficie exterior del scaffold, apreciándose su estructura altamente regular, con una ordenación de poros idénticos en un montaje ortogonal de canales cilindricos. La Figura 3 es una ampliación de Ia misma muestra. Los puntos circulares más oscuros son las interconexiones transversales entre las capas, las cuales están uniformemente distribuidas en Ia matriz, con una forma regular, casi superponibles. El diámetro medio es de 67 ± 5 μm.Figure 2 shows the outer surface of the scaffold, showing its highly regular structure, with an arrangement of identical pores in an orthogonal assembly of cylindrical channels. Figure 3 is an enlargement of the same sample. The darkest circular points are the transverse interconnections between the layers, which are uniformly distributed in the matrix, with a regular, almost superimposable shape. The average diameter is 67 ± 5 μm.
Las figuras 4 y 5 muestran vistas laterales del scaffold. La inspección profunda dentro de las muestras demuestra Ia ausencia del porógeno residual. En Ia figura 4 se puede observar el detalle de Ia superficie externa, en Ia parte izquierda de Ia imagen, donde de nuevo se aprecia Ia alta regularidad. Los diámetros de los canales del poro del scaffold fueron medidos en Ia vista ampliada de Ia sección transversal de Ia figura 5. El diámetro medio es de 72 ± 6 μm.Figures 4 and 5 show side views of the scaffold. The deep inspection inside the samples demonstrates the absence of the residual porogen. In Figure 4 the detail of the external surface can be observed, in the left part of the image, where again the high regularity is appreciated. The diameters of the scaffold pore channels were measured in the enlarged view of the cross section of Figure 5. The average diameter is 72 ± 6 μm.
3. Caracterización de los scaffolds.-3. Characterization of scaffolds.-
Los scaffolds resultantes del nuevo procedimiento descrito fueron caracterizados mediante microscopía electrónica de barrido (SEM); también fueron medidas las características mecánicas y Ia porosidad.The scaffolds resulting from the new procedure described were characterized by scanning electron microscopy (SEM); The mechanical characteristics and the porosity were also measured.
Calorimetría diferencial de barrido (DSC),-Differential scanning calorimetry (DSC), -
Las medidas de DSC fueron llevadas sobre las muestras de Ia tela de nylon en un instrumento Pyris 1 (Perkin Elmer). La temperatura de fusión y de transición vitrea, T9, del nylon comercial fue determinada en exploraciones que consistían en el calentamiento de 25°C a 2800C con un índice calentamiento de 10°C/min. Para determinar cambios posibles en el nylon inicial durante el proceso de Ia fabricación del témplate, las muestras fueron medidas calentándolas de 25°C a 2200C a 10°C/min, seguido por un paso isotermo de 2200C durante 10 minutos. El paso siguiente fue el enfriamiento desde esa temperatura a 25°C a 10°C/min, seguido por otro paso ¡sotermo de 25°C durante un minuto, y finalmente un calentamiento de 25°C a 2800C a 10°C/min. Todas las medidas fueron repetidas tres veces.The DSC measurements were taken on the samples of the nylon fabric in a Pyris 1 instrument (Perkin Elmer). The melting and glass transition temperature, T 9 , of commercial nylon was determined in explorations consisting of heating from 25 ° C to 280 0 C with a heating rate of 10 ° C / min. To determine possible changes in the initial nylon during the manufacture of the template, the samples were by heating steps of 25 ° C to 220 0 C to 10 ° C / min, followed by an isothermal step 220 0 C for 10 minutes. The next step was cooling from that temperature to 25 ° C to 10 ° C / min, followed For another step ¡sotherm of 25 ° C for one minute, and finally a heating of 25 ° C to 280 0 C at 10 ° C / min. All measurements were repeated three times.
Análisis mediante microscopía electrónica de barrido (SEM).-Scanning electron microscopy (SEM) analysis .-
La microscopia electrónica de barrido (JEOL JSM6300) fue utilizada a 10 KV para estudiar Ia morfología de las muestras. Para este propósito las muestras fueron cortadas transversalmente con una hoja de afeitar caliente. Las muestras fueron recubiertas previamente con oro usando un sputter coater (Baltec Sed 005).Scanning electron microscopy (JEOL JSM6300) was used at 10 KV to study the morphology of the samples. For this purpose the samples were cut transversely with a hot razor blade. The samples were previously coated with gold using a sputter coater (Baltec Sed 005).
Todas las dimensiones fueron medidas con respecto a Ia barra de Ia escala en cada micrográfo de SEM, usando las herramientas de imagen del programa.All dimensions were measured with respect to the bar of the scale in each SEM micrograph, using the image tools of the program.
Determinación de Ia porosidad. -Determination of the porosity. -
La porosidad fue determinada con Ia medida de Ia densidad aparente del scaffold. Para ello, se utilizó agua destilada como relleno de Ia estructura porosa. La muestra seca fue pesada y colocada en un tubo de cristal conectado a una bomba de vacío, y llenado de agua destilada antes de quitar el vacío. Entonces Ia matriz llenada de agua fue pesada otra vez y Ia porosidad calculada como:The porosity was determined with the measure of the apparent density of the scaffold. For this, distilled water was used as filler of the porous structure. The dried sample was weighed and placed in a glass tube connected to a vacuum pump, and filled with distilled water before removing the vacuum. Then the matrix filled with water was weighed again and the porosity calculated as:
In1 / π(%) = ^--100 = ' -100
Figure imgf000015_0001
In 1 / π (%) = ^ - 100 = ' -100
Figure imgf000015_0001
donde π es Ia porosidad, vp y vt son el volumen ocupado por los poros y el volumen de Ia matriz, respectivamente, p¡ es Ia densidad del líquido, pm es Ia densidad del material de relleno (PMMA en este caso), m, y mm son Ia masa líquida (mojada) y Ia masa seca de Ia matriz respectivamente.where π is the porosity, v p and v t are the volume occupied by the pores and the volume of the matrix, respectively, p is the density of the liquid, p m is the density of the filler material (PMMA in this case), m, and m m are the liquid mass (wet) and the dry mass of the matrix respectively.
La densidad de Ia malla entrecruzada no porosa seca de PMMA fue determinada pesando las muestras en el aire (ma) y en n-octano (m0), y aplicando Ia expresión siguiente: r PMMAentncnaado P n-oc tan o ma + m0 The density of the dry non-porous crosslinked mesh of PMMA was determined by weighing the samples in the air (m a ) and n-octane (m 0 ), and applying the following expression: r PMMA Pn-oc tanning tan om a + m 0
Se utilizaron para las medidas una balanza Mettler Toledo AX205 con sensibilidad de 0,00001 g y un kit para Ia determinación de densidad para los balances de AT/ AX.A Mettler Toledo AX205 balance with a sensitivity of 0.00001 g and a kit for density determination for AT / AX balances were used for the measurements.
La porosidad del scaffold fue determinada según Io descrito arriba, Ia ecuación (1), con un valor de ppMMAentreα-uzado = 1/18 g/cm3 determinado mediante Ia ecuación (2). Se obtuvo así una porosidad media del scaffold del 80%.The porosity of the scaffold was determined according Io described above, equation (1), with a value of Ea-u pp MMAentr ado z = 1/18 g / cm 3 determined by equation (2). An average scaffold porosity of 80% was thus obtained.
Todas las muestras eran fáciles de manipular y físicamente estables.All samples were easy to handle and physically stable.
Propiedades dinámico-mecánicas.-Dynamic-mechanical properties.-
Las muestras de PMMA a granel y de las arquitecturas porosas se cortan en barras y se miden en un instrumento DMS210 (Seiko) desde 300C hasta 25O0C, a una velocidad de calentamiento de 2 grados/min y una frecuencia de IHz.Samples of PMMA bulk and porous architectures are cut into bars and measured on an instrument DMS210 (Seiko) from 30 0 C to 25O 0 C at a heating rate of 2 degrees / min and a frequency of IHZ.
Las características mecánicas de los scaffolds dependen de Ia porosidad. La Figura 6 (Paper inventor) compara el módulo dinámico E' de un scaffold con el del grueso de PMMA, es decir, con una matriz no porosa de este polímero, obtenida por el mismo procedimiento pero sin infiltración en témplate. El efecto de Ia porosidad es un cambio vertical de Ia curva, que corresponde a una disminución de los módulos de goma y vitreo del scaffold por un factor de diez en comparación con los módulos a granel. Esto es debido a Ia disminución del área eficaz de Ia sección transversal debido a Ia porosidad. Es notable, sin embargo, que Ia estructura porosa conserva el resto de las características mecánicas del material a granel, que no es alterada por el proceso de producción: Ia caída del módulo en Ia región de Ia transición vidrio-goma está prácticamente igual que en el material a granel, al igual que también Ia temperatura de Ia transición vitrea. Esto se puede ver más claramente en Ia Figura 7 (Paper inventor), donde se representa el factor de Ia tangente de pérdida δ. Allí Ia coincidencia en Ia temperatura y Ia intensidad de Ia transición principal es evidente para ambos materiales. La dispersión de los datos de E' y tan δ después de Ia transición vitrea son unas características previstas de Ia medida en las estructuras porosas debidas probablemente a los factores tales como adhesión más pobre en las abrazaderas del aparato.The mechanical characteristics of the scaffolds depend on the porosity. Figure 6 (Paper inventor) compares the dynamic module E 'of a scaffold with that of the thickness of PMMA, that is, with a non-porous matrix of this polymer, obtained by the same procedure but without infiltration into the template. The effect of the porosity is a vertical change of the curve, which corresponds to a decrease in the rubber and vitreous modules of the scaffold by a factor of ten compared to the bulk modules. This is due to the decrease in the effective area of the cross section due to the porosity. It is notable, however, that the porous structure retains the rest of the mechanical characteristics of the bulk material, which is not altered by the production process: the fall of the module in the region of the glass-rubber transition is practically the same as in the bulk material, as well as the glass transition temperature. This can be seen more clearly in Figure 7 (Paper inventor), where the loss tangent factor δ is represented. There the coincidence in the temperature and the intensity of the main transition is evident for both materials. The dispersion of the data of E 'and tan δ after the vitreous transition are expected characteristics of Ia measurement in porous structures probably due to factors such as poorer adhesion in the clamps of the apparatus.
APLICACIÓN IN DUSTRIAL-IN DUSTRIAL APPLICATION-
Los scaffolds desarrollados mediante Ia nueva técnica descrita, con características estructurales notablemente mejoradas, encuentran perfecta aplicación en ingeniería tisular, en Ia fabricación de las estructuras soporte para Ia regeneración o reparación de tejidos humanos o de animales.The scaffolds developed by means of the new described technique, with notably improved structural characteristics, find perfect application in tissue engineering, in the manufacture of the support structures for the regeneration or repair of human or animal tissues.
Las arquitecturas porosas tridimensionales objeto de Ia industria biotecnológica y que a continuación se pasan a reivindicar formalmente, son de utilidad en aplicaciones médicas tales como soportes físicos para cultivos celulares, anillo soporte para prótesis de cornea, regeneración de nervios, cultivo de condrocitos y sistemas de liberación controlada de fármacos, entre otras. También podrían encontrar uso en otras áreas en las cuales Ia morfología del poro puede desempeñar un papel esencial, tal como en membranas y filtros. The three-dimensional porous architectures object of the biotechnology industry and which are then formally claimed, are useful in medical applications such as physical supports for cell cultures, support ring for corneal prosthesis, nerve regeneration, chondrocyte culture and systems of controlled release of drugs, among others. They could also find use in other areas in which pore morphology can play an essential role, such as in membranes and filters.

Claims

REIVINDICACIONES
1. Nuevo scaffold polimérico 3D para Ia regeneración de tejidos, constituido por un polímero biocompatible de tipo hidrófobo, rígido o flexible, o de tipo hidrófilo rígido, o un hidrogel, o una combinación de estos tipos de polímeros en Ia forma de copolímeros o redes interpenetradas de polímero, más un agente entrecuzador, caracterizado esencialmente por ser Ia estructura inversa o "negativo" de un porógeno tridimensional o "témplate" (figura 1) resultante de Ia sinterización de mallas superpuestas de fibras poliamidas sintéticas o nylon, u otro material polimérico similar, y que es eliminado tras Ia polimerización del material de reticulación sobre el mismo, presentando esta nueva estructura soporte una red tridimensional regular (figuras 2 a 5) de poros y canales cilindricos ortogonales de tamaño uniforme y limpios de porógeno residual, alienados e interconectados transversalmente a través de una sucesión de capas paralelas uniformemente distribuidas (figuras 4 y 5), prácticamente superponibles, con una porosidad variable por encima del 75% (fracción de volumen de poros), dependiendo de las condiciones de presión y temperatura del proceso de sinterización, y con un diámetro de poro y canal que puede variar en orden de magnitud μm para cada matriz obtenida, según sea el material polimérico utilizado en Ia obtención del porógeno tridimensional.1. New 3D polymeric scaffold for tissue regeneration, consisting of a biocompatible polymer of the hydrophobic, rigid or flexible type, or of the rigid hydrophilic type, or a hydrogel, or a combination of these types of polymers in the form of copolymers or networks interpenetrated with polymer, plus a cross-linking agent, essentially characterized by being the inverse or "negative" structure of a three-dimensional or "templated" porogen (figure 1) resulting from the sintering of superimposed meshes of synthetic polyamide or nylon fibers, or other polymeric material similar, and that is eliminated after the polymerization of the crosslinking material thereon, this new structure presenting a regular three-dimensional network (figures 2 to 5) of orthogonal cylindrical channels and channels of uniform size and clean of residual porogen, alienated and interconnected transversely through a succession of uniformly distributed parallel layers (figures 4 and 5), practically superimposable, with a variable porosity above 75% (fraction of pore volume), depending on the pressure and temperature conditions of the sintering process, and with a pore and channel diameter that can vary in order of magnitude μm for each matrix obtained, according to the polymeric material used in obtaining the three-dimensional porogen.
2. Nuevo scaffold polimérico 3D para Ia regeneración de tejidos, según reivindicación 1, en el que el material porogénico del témplate tridimensional es tejido de nylon 6,6, y el material de reticulación es metacrilato de metilo (MMA, 99%), junto con dimetacrilato de etilenglicol (EGDMA, 98%) como agente entrecruzador, presentando Ia estructura un grado de porosidad del 80% y un diámetro medio de poro y canal de 72 ± 6 μm.2. New 3D polymeric scaffold for tissue regeneration, according to claim 1, wherein the porogenic material of the three-dimensional tempera is nylon fabric 6.6, and the cross-linking material is methyl methacrylate (MMA, 99%), together with ethylene glycol dimethacrylate (EGDMA, 98%) as a crosslinking agent, the structure having a porosity degree of 80% and an average pore and channel diameter of 72 ± 6 μm.
3. Técnica de preparación .del nuevo scaffold polimérico tridimensional de Ia primera reivindicación, caracterizada porque comprende las siguientes etapas: i) Preparación de Ia malla de porógeno tridimensional, mediante apilado de capas de telas de fibras de nylon u material polimérico equivalente, y sinterización isoterma y a presión de las mismas en horno eléctrico, resultando una malla tridimensional o témplate estable, con un tamaño reticular que depende de Ia presión, temperatura y tiempo empleado durante e! proceso de sinterización, ii) infiltración en el témplate obtenido del material polimérico constitutivo de Ia matriz estructura, y posterior polimerización en atmósfera de nitrógeno, iii) eliminación del porógeno por lixiviación como agente extractor y posterior lavado en etanol, y iv) secado de Ia matriz porosa resultante al aire durante 24 horas y después a vacío a temperatura adecuada durante 48 horas.3. Preparation technique of the new three-dimensional polymeric scaffold of the first claim, characterized in that it comprises the following steps: i) Preparation of the three-dimensional porogen mesh, by stacking layers of nylon fiber fabrics or equivalent polymeric material, and sintering Isotherm and pressure thereof in an electric oven, resulting in a stable three-dimensional mesh or template, with a reticular size that depends on the pressure, temperature and time used during e! sintering process, ii) infiltration in the template obtained from the polymeric material constituting the matrix structure, and subsequent polymerization in a nitrogen atmosphere, iii) removal of the porogen by leaching as an extracting agent and subsequent washing in ethanol, and iv) drying of the resulting porous matrix in air for 24 hours and then under vacuum at a suitable temperature for 48 hours.
4. Técnica de preparación del nuevo scaffold polimérico tridimensional de Ia primera reivindicación, según reivindicación anterior, caracterizada porque cuando el material utilizado como porógeno son fibras de poli(acπlonitπlo), Ia preparación de Ia malla tridimensional o témplate se realiza a presión en atmósfera de un disolvente adecuado, como, por ejemplo, dimetilformamida.4. Preparation technique of the new three-dimensional polymeric scaffold of the first claim, according to the preceding claim, characterized in that when the material used as a porogen is poly (acπlonitπlo) fibers, the preparation of the three-dimensional mesh or template is carried out under pressure in an atmosphere of a suitable solvent, such as dimethylformamide.
5. Técnica de preparación del nuevo scaffold polimérico tridimensional de Ia segunda reivindicación, constituido por una matriz porosa de metacrilato de metilo MMA y dimetacrilato de etilenglicol EGDA, como negativo de un porógeno tridimensional en base a nylon 6,6, caracterizada porque comprende las siguientes etapas: i) Preparación de Ia malla de porógeno tridimensional, mediante apilado de ocho capas rectangulares de telas de fibras de nylon 6,6, y sinterización isoterma a 2200C y a presión durante diez minutos en horno eléctrico, con debastado del témplate resultante para eliminar las irregularidades, ii) infiltración en el témplate de una mezcla de metacrilato de metilo MMA, dimetacrilato de etilenglicol EGDMA (1% en peso) como agente entrecruzador, y azo-bis-isobutironitrilo AZBN (0,2% en peso) como iniciador, y posterior polimerización a 650C en baño termostático y atmósfera de nitrógeno durante 30 minutos, y después a 65°C en horno durante 4 horas y a 75°C durante las 24 horas siguientes, . iii) eliminación del porógeno por lixiviación en ácido nítrico como agente extractor y posterior lavado en etanol, y iv) secado de Ia matriz porosa resultante al aire durante 24 horas y después a vacío a temperatura de 12O0C durante 48 horas. 5. Preparation technique of the new three-dimensional polymeric scaffold of the second claim, consisting of a porous matrix of methyl methacrylate MMA and ethylene glycol dimethacrylate, as negative of a three-dimensional porogen based on nylon 6,6, characterized in that it comprises the following stages: i) Preparation of the three-dimensional porogen mesh, by stacking eight rectangular layers of 6,6 nylon fiber fabrics, and isothermal sintering at 220 0 C and under pressure for ten minutes in an electric oven, with the resulting tempering of the resulting template eliminate irregularities, ii) infiltration in the template of a mixture of methyl methacrylate MMA, ethylene glycol dimethacrylate EGDMA (1% by weight) as crosslinking agent, and azo-bis-isobutyronitrile AZBN (0.2% by weight) as initiator and subsequent polymerization at 65 0 C in water bath and nitrogen atmosphere for 30 minutes, then at 65 ° C oven for 4 hours and 75 ° C for the next 24 hours,. iii) elimination of the porogen leaching in nitric acid as an extracting agent and subsequent washing in ethanol, and iv) drying the resulting porous matrix to air for 24 hours and then under vacuum at 12O 0 C temperature for 48 hours.
PCT/ES2006/000042 2005-02-01 2006-02-01 Novel 3-d polymer scaffold for tissue regeneration and preparation method thereof WO2006082270A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200500179 2005-02-01
ES200500179A ES2258396B1 (en) 2005-02-01 2005-02-01 NEW 3D POLYMER SUPPORT STRUCTURE FOR THE REGENERATION OF FABRICS AND ITS PREPARATION TECHNIQUE.

Publications (1)

Publication Number Publication Date
WO2006082270A1 true WO2006082270A1 (en) 2006-08-10

Family

ID=36776995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000042 WO2006082270A1 (en) 2005-02-01 2006-02-01 Novel 3-d polymer scaffold for tissue regeneration and preparation method thereof

Country Status (2)

Country Link
ES (1) ES2258396B1 (en)
WO (1) WO2006082270A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006058730A1 (en) * 2006-12-13 2008-06-19 Dot Gmbh Modular three-dimensional cell culture carrier useful in biological and medical applications, comprises a compound of stacked material layers, which are perforated as non-planar single layers
WO2009010194A1 (en) * 2007-07-13 2009-01-22 Institut für Oberflächenmodifizierung e.V. Polymer scaffold material for cultivating cells
CN102198022A (en) * 2011-05-23 2011-09-28 西安交通大学 Solid forming method of active cell-hydrogel organ structure
CN108525018A (en) * 2018-05-14 2018-09-14 四川大学 A kind of high intensity hydrogel and preparation method thereof based on three-dimensional network holder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2291094A1 (en) * 2005-11-08 2008-02-16 Universidad Politecnica De Valencia Three-dimensional porous polymeric structure for medical applications, is made of biocompatible polymers used as template consisting of nylon fabrics, where biocompatible polymers are sintered by heat treatment under pressure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514378A (en) * 1993-02-01 1996-05-07 Massachusetts Institute Of Technology Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures
US20040077739A1 (en) * 2000-12-27 2004-04-22 Per Flodin Method for preparing an open porous polymer material and an open porous polymer material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514378A (en) * 1993-02-01 1996-05-07 Massachusetts Institute Of Technology Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures
US20040077739A1 (en) * 2000-12-27 2004-04-22 Per Flodin Method for preparing an open porous polymer material and an open porous polymer material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEONG ET AL.: "Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs", BIOMATERIALS, vol. 24, 2003, pages 2363 - 2378 *
ZHENHUA ET AL.: "Macroporous poly (L-lactide) of controlled pore size derived from the annealing of co-continuos polystyrene/poly (L-lactide) blends", BIOMATERIALS, vol. 25, 2004, pages 2161 - 2170, XP004485134, DOI: doi:10.1016/j.biomaterials.2003.08.060 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006058730A1 (en) * 2006-12-13 2008-06-19 Dot Gmbh Modular three-dimensional cell culture carrier useful in biological and medical applications, comprises a compound of stacked material layers, which are perforated as non-planar single layers
WO2009010194A1 (en) * 2007-07-13 2009-01-22 Institut für Oberflächenmodifizierung e.V. Polymer scaffold material for cultivating cells
CN102198022A (en) * 2011-05-23 2011-09-28 西安交通大学 Solid forming method of active cell-hydrogel organ structure
CN108525018A (en) * 2018-05-14 2018-09-14 四川大学 A kind of high intensity hydrogel and preparation method thereof based on three-dimensional network holder

Also Published As

Publication number Publication date
ES2258396B1 (en) 2007-12-16
ES2258396A1 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
Sheikh et al. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin
US6673285B2 (en) Reverse fabrication of porous materials
EP2701753B1 (en) Cell-friendly inverse opal hydrogels for cell encapsulation, drug and protein delivery, and functional nanoparticle encapsulation
KR101196365B1 (en) Interpenetrating Polymer Network Hydrogel and preparation method thereof
Diego et al. Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering
ES2577883B2 (en) Biohybrid for use in the regeneration of neural tracts
Hixon et al. A comparison of cryogel scaffolds to identify an appropriate structure for promoting bone regeneration
Neves et al. Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity
ES2258396B1 (en) NEW 3D POLYMER SUPPORT STRUCTURE FOR THE REGENERATION OF FABRICS AND ITS PREPARATION TECHNIQUE.
US20020150753A1 (en) Micro-tubular materials and material/cell constructs
CN207785546U (en) A kind of tissue engineering bone/cartilage compound rest
Tan et al. Design and fabrication of a non-clogging scaffold composed of semi-permeable membrane
JP2004501700A (en) Biocompatible polymer having three-dimensional structure using communicating cells, method for preparing the same, and application in medicine and surgery
KR20160032569A (en) Two-step phase separation-based 3D bioplotting for macro/nanoporous collagen scaffolds comprised of nanofibrous collagen filaments
Kim et al. Thermoresponsive terpolymeric films applicable for osteoblastic cell growth and noninvasive cell sheet harvesting
Jiang et al. Chitosan-based asymmetric topological membranes with cell-like features for healthcare applications
Wang et al. Polylactic acid scaffold with directional porous structure for large-segment bone repair
Lombello et al. Adhesion and morphology of fibroblastic cells cultured on different polymeric biomaterials
CN106474541B (en) A kind of tissue engineering bracket of 3D and preparation method thereof
CN109432494A (en) A kind of surface has the PEEK microballoon and its preparation method and application of special topology
Ke et al. PHBV/PAM scaffolds with local oriented structure through UV polymerization for tissue engineering
Şaşmazel et al. Comparison of cellular proliferation on dense and porous PCL scaffolds
Baker et al. The preparation of poly (2-hydroxyethyl methacrylate) and poly {(2-hydroxyethyl methacrylate)-co-[poly (ethylene glycol) methyl ether methacrylate]} by photoinitiated polymerisation-induced phase separation in water
Wang et al. Fabrication and properties of porous scaffolds of PLA-PEG biocomposite for bone tissue engineering
Antolinos-Turpín et al. Macroporous thin membranes for cell transplant in regenerative medicine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06708861

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6708861

Country of ref document: EP