WO2006085524A1 - Exposure equipment - Google Patents

Exposure equipment Download PDF

Info

Publication number
WO2006085524A1
WO2006085524A1 PCT/JP2006/302052 JP2006302052W WO2006085524A1 WO 2006085524 A1 WO2006085524 A1 WO 2006085524A1 JP 2006302052 W JP2006302052 W JP 2006302052W WO 2006085524 A1 WO2006085524 A1 WO 2006085524A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
reticle
exposure apparatus
projection optical
sensitive substrate
Prior art date
Application number
PCT/JP2006/302052
Other languages
French (fr)
Japanese (ja)
Inventor
Toshimasa Shimoda
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2006085524A1 publication Critical patent/WO2006085524A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70833Mounting of optical systems, e.g. mounting of illumination system, projection system or stage systems on base-plate or ground

Definitions

  • the present invention relates to an exposure apparatus used for lithography such as a semiconductor integrated circuit.
  • EUV exposure apparatuses using EUV light having a wavelength of about 13 nm have been developed in order to improve the resolving power of optical systems limited by the diffraction limit of light. Yes.
  • the illumination optical system using a mirror irradiates the reticle with illumination light, and the illumination light reflected by the reticle is projected onto the sensitive substrate by the projection optical system using the mirror. High accuracy is required due to the relative positional accuracy between the projector and the projection optical system.
  • Patent Document 1 Japanese Patent No. 3200282
  • the illumination optical system and the projection optical system are supported on separate platforms, and the illumination optical system and the projection optical system are independently displaced. It is difficult to maintain the relative position between the projector and the projection optical system with high accuracy!
  • the present invention has been made in order to solve the conventional problems, and it is an object of the present invention to provide an exposure apparatus capable of maintaining the relative position between the illumination optical system and the projection optical system with high accuracy. .
  • An exposure apparatus is an exposure apparatus comprising: an illumination optical system that irradiates illumination light onto a reticle; and a projection optical system that projects illumination light having the reticle power onto a sensitive substrate.
  • a part of the illumination optical system and the projection optical system are arranged in a space formed between the surface including the sensitive substrate surface and the surface including the sensitive substrate surface, and the illumination optical system and the projection optical system are the same. It is characterized by being supported by a gantry.
  • An exposure apparatus according to a second aspect is the exposure apparatus according to the first aspect, wherein the gantry is supported in a chamber via a vibration isolation device.
  • the exposure apparatus according to claim 3 is the exposure apparatus according to claim 1 or 2, wherein a reticle-side interferometer that measures the positions of the projection optical system and the reticle stage is fixed to the gantry. To do.
  • the exposure apparatus according to claim 4 is the exposure apparatus according to claim 1, wherein the position of the projection optical system and the sensitive substrate stage is measured on the gantry.
  • the sensitive substrate side interferometer is fixed.
  • the exposure apparatus according to claim 5 is the exposure apparatus according to claim 1, wherein the position of the sensitive substrate in the optical axis direction of the projection optical system is measured on the gantry. It is characterized by fixing an autofocus device.
  • An exposure apparatus is the exposure apparatus according to claim 1, wherein the reticle side reference microscope for measuring a planar position of the reticle is mounted on the gantry. It is characterized by being fixed.
  • the exposure apparatus according to claim 7 is the exposure apparatus according to claim 1, and the exposure apparatus according to claim 6, wherein a sensitive substrate side reference microscope for measuring a planar position of the sensitive substrate is provided on the mount. It is characterized by being fixed.
  • the relative position between the illumination optical system and the projection optical system can be maintained with high accuracy. wear.
  • FIG. 1 is an explanatory diagram viewed from the side of an embodiment of an exposure apparatus of the present invention.
  • FIG. 2 is an explanatory view of the exposure apparatus of FIG. 1 as viewed from the AA direction.
  • FIG. 3 is an explanatory view showing a measuring device arranged on the gantry of the exposure apparatus of FIG. 1.
  • FIG. 1 and 2 schematically show an embodiment of the exposure apparatus of the present invention.
  • This fruit In the embodiment, the present invention is applied to an EUV exposure apparatus using EUV light.
  • This exposure apparatus has a base plate 11 at the bottom.
  • the base plate 11 is held on the floor 15 via a vibration isolator 13.
  • a chamber 17 is disposed on the base plate 11.
  • the chamber 17 has a rectangular parallelepiped shape and has an upper surface portion 17a and a side surface portion 17b.
  • the inside of the chamber 17 is evacuated by a vacuum pump (not shown) and kept in a vacuum.
  • a gantry 19 is horizontally disposed in the chamber 17.
  • the gantry 19 is held in the chamber 17 via a vibration isolation device 21.
  • the vibration isolator 21 is arranged at three locations on the lower surface of the gantry 19.
  • Each vibration isolator 21 is disposed between the frame 19 and the beams 19 a, 23 b, 23 c in which the side surface 17 b force of the chamber 17 extends inward.
  • the member that supports the force stand 19 supported by the beams 23a, 23b, and 23c via the vibration isolator 21 is not limited to the beams 23a, 23b, and 23c.
  • three or four legs may be arranged on the base plate 11, and the mount 19 may be arranged on the legs via the vibration isolator 21.
  • the legs can penetrate the base plate 11 and be installed directly on the floor 15!
  • the illumination optical system 25 includes a fly-eye mirror (not shown) that equalizes the illuminance of the EUV light source and a condenser mirror (not shown) that collects the EUV light that is uniformed by the fly-eye mirror. ) Is included. These mirrors are arranged in the upper part 25b of the illumination optical system 25.
  • the illumination optical system 25 and the projection optical system 27 are arranged so as to penetrate the gantry 19 in the vertical direction and are fixed to the gantry 19.
  • a lower portion 25 a of the illumination optical system 25 extends through the side surface portion 17 b of the chamber 17 and extends outside the chamber 17.
  • a wafer stage 29 is disposed below the projection optical system 27.
  • the wafer stage 29 is arranged on the base plate 11 via the base member 31 !.
  • a reticle stage 33 is disposed above the projection optical system 27.
  • the reticle stage 33 is supported by a beam 35 projecting inward from the side surface portion 17b of the chamber 17.
  • Reticle side interferometer bases 37 and 39 are fixed on the upper surface of the gantry 19 so as to protrude toward the reticle stage 33.
  • Reticle side interferometer pedestal 37 has a reticle stay as shown in Fig. 2.
  • the interferometer base 39 on the reticle side is used for position measurement in the ⁇ direction.
  • wafer side interferometer bases 41 and 43 are fixed to the lower surface of the gantry 19 so as to protrude toward the wafer stage 29. As shown in FIG. 2, the wafer side interferometer base 41 is used for measuring the position of the wafer stage 29 in the vertical direction, and the wafer side interferometer base 43 is used for measuring the position in the X direction.
  • FIG. 3 schematically shows a measuring device arranged in the vicinity of the gantry 19 in this embodiment.
  • First and second reticle side interferometers 45 and 47 are arranged on a reticle side interferometer base 37 fixed to the upper surface of the gantry 19.
  • the first reticle-side interferometer 45 reflects the laser beam on the length measuring mirror 49 fixed to the reticle stage 33 and measures the distance to the reticle stage 33 by the interference of the laser beam. Find the position coordinates.
  • the second reticle-side interferometer 47 reflects the laser beam to the reference mirror 51 fixed to the projection optical system 27 and measures the distance to the projection optical system 27 by the interference of the laser beam.
  • the projection optical system 27 measured by the second reticle-side interferometer 47 with the distance to the reticle stage 33 measured by the first reticle-side interferometer 45, the projection optical system It is possible to know the position of the reticle stage 33 in the vertical direction with reference to 27.
  • the reticle side interferometer is also arranged on the reticle side interferometer base 39 for measuring the position in the X direction, and the measurement in the X direction is performed.
  • the configuration is the same, the detailed description is omitted.
  • First and second wafer side interferometers 53 and 55 are arranged on wafer side interferometer base 41 fixed to the lower surface of gantry 19.
  • the first wafer side interferometer 53 reflects the laser beam on the length measuring mirror 57 fixed to the wafer stage 29, measures the distance to the wafer stage 29 by the interference of the laser beam, and moves the wafer stage 29 in the vertical direction. Find position coordinates.
  • the second wafer side interferometer 55 reflects the laser beam to the reference mirror 59 fixed to the projection optical system 27 and measures the distance to the projection optical system 27 by the interference of the laser beam. Then, the distance to the projection optical system 27 measured by the second wafer side interferometer 55 is compared with the distance to the wafer stage 29 measured by the first wafer side interferometer 53.
  • the position of the wafer stage 29 with reference to the projection optical system 27 can be known.
  • X direction The wafer-side interferometer is also arranged on the wafer-side interferometer pedestal 43 for measuring the direction position, and measurement in the X direction is performed. However, since the configuration is the same, a detailed description is omitted.
  • the reticle-side reference microscope 61 of the offaxis system is fixed to the reticle-side interferometer base 37.
  • the reticle 65 is aligned by detecting the reference mark of the reticle 65 attracted to the lower surface of the electrostatic chuck 63 of the reticle stage 33 by the reticle side reference microscope 61.
  • an offaxis wafer-side reference microscope 67 is fixed to the wafer-side interferometer base 41.
  • the wafer is aligned by detecting the alignment mark of the wafer 71 adsorbed on the upper surface of the electrostatic chuck 69 of the wafer stage 29 by the wafer side reference microscope 67.
  • an autofocus (AF) device 73 for measuring the position of the upper surface of the wafer 71 in the optical axis direction is disposed on the lower surface of the gantry 19.
  • the autofocus device 73 has a projection optical system 75 and a light receiving optical system 77. Detection of the position of the wafer 71 in the optical axis direction is performed by projecting a slit image from the projection optical system 75 onto the upper surface of the wafer 71 from an oblique direction and monitoring the position of the reflected slit by the light receiving optical system 77.
  • the position of the slit incident on the light receiving optical system 77 varies due to the effect of oblique incidence. This variation is photoelectrically detected by the light receiving optical system 77 as a distance from the reference position.
  • EUV light is generated by converting the target material into plasma in a light source unit (not shown) arranged outside the chamber 17.
  • the generated EUV light is guided to the illumination optical system 25, reflected by a plurality of reflecting mirrors (not shown), and guided to the lower surface of a reticle (shown in FIG. 3) 65 disposed below the wafer stage 29.
  • the reticle 65 has a multilayer film that reflects EUV light and an absorber pattern layer for forming a pattern.
  • the EUV light is patterned by reflecting the EUV light on the reticle 65.
  • the patterned EUV light is sequentially reflected by a plurality of mirrors (not shown) of the projection optical system 27, so that the reticle pattern is reflected.
  • a reduced image of the turn is formed on Ueno 71 (shown in Figure 3).
  • EUV light is irradiated onto a predetermined area of the reticle 65, and the reticle 65 and wafer 71 are compared with the projection optical system 27 according to a reduction ratio of the projection optical system 27. Move at speed. In this way, the reticle pattern is exposed to a predetermined exposure range (with respect to the die) on the wafer 71.
  • the illumination optical system 25 and the projection optical system 27 are supported by the same mount 19, so that the relative positions of the illumination optical system 25 and the projection optical system 27 are maintained with high accuracy.
  • the relative position with the optical system 27 can be maintained with high accuracy.
  • the illumination optical system 25 and the projection optical system 27 are supported on the same base 19, the illumination optical system 25 and the projection optical system 27 are supported by the same base 19, compared with the case where the illumination optical system 25 and the projection optical system 27 are supported on separate bases 19.
  • the relative position adjustment between the optical system 25 and the projection optical system 27 becomes easy, and the illumination optical system 25 and the projection optical system 27 can be easily arranged with high accuracy.
  • the gantry 19 is supported by the chamber 17 via the vibration isolator 21, the floor 15, the wafer stage 29, and the vacuuming device (not shown) input via the chamber 17 It is possible to reliably block the vibration of the isotropic force, and the positional accuracy of the illumination optical system 25 and the projection optical system 27 can be stably maintained.
  • the measurement accuracy of measurement devices such as reticle-side interferometers 45 and 47, wafer-side interferometers 53 and 55, reticle-side reference microscope 61, wafer-side reference microscope 67, and auto-focus device 73 placed on the pedestal 19 is improved. It can be maintained stably.
  • first and second reticle side interferometers 45 and 47 are arranged on the reticle side interferometer base 37 on the upper surface of the gantry 19, and the first and second reticle side interferometer bases 41 on the lower surface of the gantry 19 are arranged. Since the second wafer side interferometers 53 and 55 are arranged, the positions of the reticle stage 33 and the wafer stage 29 relative to the projection optical system 27 can be measured with high accuracy.
  • the autofocus device 73 Since the autofocus device 73 is fixed to the gantry 19 to which the projection optical system 27 is fixed, the relative position between the projection optical system 27 and the autofocus device 73 can be maintained with high accuracy. Position of wafer 71 in 27 optical axis directions with high accuracy Can be determined.
  • the reticle side reference microscope 61 is fixed to the gantry 19 to which the projection optical system 27 is fixed, the relative position between the projection optical system 27 and the reticle side reference microscope 61 can be maintained with high accuracy.
  • the planar position of the reticle 65 with respect to the projection optical system 27 can be measured with high accuracy.
  • the wafer-side reference microscope 67 is fixed to the gantry 19 to which the projection optical system 27 is fixed, the relative positions of the projection optical system 27 and the wafer-side reference microscope 67 can be maintained with high accuracy, and projection can be performed.
  • the plane position of the wafer 71 with respect to the optical system 27 can be measured with high accuracy.
  • the present invention is widely applied to an exposure apparatus including an illumination optical system and a projection optical system. can do.

Abstract

Exposure equipment for lithography of a semiconductor integrated circuit and the like is provided for maintaining relative positions of a lighting optical system and a projection optical system at a high accuracy. The exposure equipment is provided with the lighting optical system for irradiating a reticle with illuminating light and the projection optical system for projecting the illuminating light from the reticle on a sensitive substrate. The exposure equipment is characterized in that a part of the lighting optical system and the projection optical system are arranged in a space formed between a plane including the reticle surface and a plane including the sensitive substrate surface, and the lighting optical system and the projection optical system are supported on a same mount. Furthermore, the equipment is characterized in that the mount is supported in a chamber through a vibration eliminating apparatus, and a reticle side interferometer for measuring the positions of the projection optical system and a reticle stage is firmly fixed on the mount.

Description

露光装置  Exposure equipment
技術分野  Technical field
[0001] 本発明は、半導体集積回路等のリソグラフィに用いられる露光装置に関する。  The present invention relates to an exposure apparatus used for lithography such as a semiconductor integrated circuit.
背景技術  Background art
[0002] 近年、半導体集積回路の微細化に伴い、光の回折限界によって制限される光学系 の解像力を向上させるために、 13nm程度の波長を有する EUV光を使用した EUV 露光装置が開発されている。このような EUV光露光装置では、ミラーを用いた照明 光学系によりレチクルに照明光を照射し、レチクルで反射した照明光をミラーを用い た投影光学系により感応基板に投影するため、照明光学系と投影光学系との相対位 置精度により高い精度が要望される。  In recent years, with the miniaturization of semiconductor integrated circuits, EUV exposure apparatuses using EUV light having a wavelength of about 13 nm have been developed in order to improve the resolving power of optical systems limited by the diffraction limit of light. Yes. In such an EUV light exposure apparatus, the illumination optical system using a mirror irradiates the reticle with illumination light, and the illumination light reflected by the reticle is projected onto the sensitive substrate by the projection optical system using the mirror. High accuracy is required due to the relative positional accuracy between the projector and the projection optical system.
特許文献 1:特許第 3200282号公報  Patent Document 1: Japanese Patent No. 3200282
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかしながら、従来の露光装置では、照明光学系と投影光学系とを別々の架台に 支持しており、照明光学系と投影光学系の架台がそれぞれ独立して変位するため、 照明光学系と投影光学系との相対位置を高 ヽ精度で維持することが困難であると!、 う問題があった。 [0003] However, in the conventional exposure apparatus, the illumination optical system and the projection optical system are supported on separate platforms, and the illumination optical system and the projection optical system are independently displaced. It is difficult to maintain the relative position between the projector and the projection optical system with high accuracy!
本発明は、カゝかる従来の問題を解決するためになされたもので、照明光学系と投影 光学系との相対位置を高い精度で維持することができる露光装置を提供することを 目的とする。  The present invention has been made in order to solve the conventional problems, and it is an object of the present invention to provide an exposure apparatus capable of maintaining the relative position between the illumination optical system and the projection optical system with high accuracy. .
課題を解決するための手段  Means for solving the problem
[0004] 請求項 1の露光装置は、レチクルに照明光を照射する照明光学系と、前記レチクル 力もの照明光を感応基板に投影する投影光学系とを備えた露光装置において、前 記レチクル表面を含む面と前記感応基板表面を含む面との間に形成される空間に、 前記照明光学系の一部および前記投影光学系を配置し、前記照明光学系および前 記投影光学系を同一の架台に支持してなることを特徴とする。 [0005] 請求項 2の露光装置は、請求項 1記載の露光装置において、前記架台は除振装置 を介してチャンバ内で支持されて ヽることを特徴とする。 An exposure apparatus according to claim 1 is an exposure apparatus comprising: an illumination optical system that irradiates illumination light onto a reticle; and a projection optical system that projects illumination light having the reticle power onto a sensitive substrate. A part of the illumination optical system and the projection optical system are arranged in a space formed between the surface including the sensitive substrate surface and the surface including the sensitive substrate surface, and the illumination optical system and the projection optical system are the same. It is characterized by being supported by a gantry. [0005] An exposure apparatus according to a second aspect is the exposure apparatus according to the first aspect, wherein the gantry is supported in a chamber via a vibration isolation device.
請求項 3の露光装置は、請求項 1または請求項 2記載の露光装置において、前記 架台に、前記投影光学系およびレチクルステージの位置を測定するレチクル側干渉 計を固定してなることを特徴とする。  The exposure apparatus according to claim 3 is the exposure apparatus according to claim 1 or 2, wherein a reticle-side interferometer that measures the positions of the projection optical system and the reticle stage is fixed to the gantry. To do.
[0006] 請求項 4の露光装置は、請求項 1な!、し請求項 3の 、ずれか 1項記載の露光装置 において、前記架台に、前記投影光学系および感応基板ステージの位置を測定す る感応基板側干渉計を固定してなることを特徴とする。 [0006] The exposure apparatus according to claim 4 is the exposure apparatus according to claim 1, wherein the position of the projection optical system and the sensitive substrate stage is measured on the gantry. The sensitive substrate side interferometer is fixed.
請求項 5の露光装置は、請求項 1な!、し請求項 4の 、ずれか 1項記載の露光装置 において、前記架台に、前記投影光学系の光軸方向における前記感応基板の位置 を測定するオートフォーカス装置を固定してなることを特徴とする。  The exposure apparatus according to claim 5 is the exposure apparatus according to claim 1, wherein the position of the sensitive substrate in the optical axis direction of the projection optical system is measured on the gantry. It is characterized by fixing an autofocus device.
[0007] 請求項 6の露光装置は、請求項 1な!、し請求項 5の 、ずれか 1項記載の露光装置 において、前記架台に、前記レチクルの平面位置を測定するレチクル側基準顕微鏡 を固定してなることを特徴とする。 [0007] An exposure apparatus according to claim 6 is the exposure apparatus according to claim 1, wherein the reticle side reference microscope for measuring a planar position of the reticle is mounted on the gantry. It is characterized by being fixed.
請求項 7の露光装置は、請求項 1な!、し請求項 6の 、ずれか 1項記載の露光装置 において、前記架台に、前記感応基板の平面位置を測定する感応基板側基準顕微 鏡を固定してなることを特徴とする。  The exposure apparatus according to claim 7 is the exposure apparatus according to claim 1, and the exposure apparatus according to claim 6, wherein a sensitive substrate side reference microscope for measuring a planar position of the sensitive substrate is provided on the mount. It is characterized by being fixed.
発明の効果  The invention's effect
[0008] 本発明の露光装置では、照明光学系と投影光学系とを同一の架台に支持するよう にしたので、照明光学系と投影光学系との相対位置を高い精度で維持することがで きる。  In the exposure apparatus of the present invention, since the illumination optical system and the projection optical system are supported on the same frame, the relative position between the illumination optical system and the projection optical system can be maintained with high accuracy. wear.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]本発明の露光装置の一実施形態を側面から見た説明図である。 FIG. 1 is an explanatory diagram viewed from the side of an embodiment of an exposure apparatus of the present invention.
[図 2]図 1の露光装置を AA方向から見た説明図である。  2 is an explanatory view of the exposure apparatus of FIG. 1 as viewed from the AA direction.
[図 3]図 1の露光装置の架台に配置される計測装置を示す説明図である。  FIG. 3 is an explanatory view showing a measuring device arranged on the gantry of the exposure apparatus of FIG. 1.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、本発明の実施形態を図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図 1および図 2は本発明の露光装置の一実施形態を模式的に示している。この実 施形態では、本発明が EUV光を使用した EUV露光装置に適用される。 この露光装置は、底部にベースプレート 11を有している。ベースプレート 11は、除 振装置 13を介して床 15上に保持されている。ベースプレート 11の上にはチャンバ 1 7が配置されて 、る。チャンバ 17は直方体状をしており上面部 17aと側面部 17bとを 有している。このチャンバ 17の内部は真空ポンプ (不図示)により真空引きされ真空に 保たれている。 1 and 2 schematically show an embodiment of the exposure apparatus of the present invention. This fruit In the embodiment, the present invention is applied to an EUV exposure apparatus using EUV light. This exposure apparatus has a base plate 11 at the bottom. The base plate 11 is held on the floor 15 via a vibration isolator 13. A chamber 17 is disposed on the base plate 11. The chamber 17 has a rectangular parallelepiped shape and has an upper surface portion 17a and a side surface portion 17b. The inside of the chamber 17 is evacuated by a vacuum pump (not shown) and kept in a vacuum.
[0011] チャンバ 17内には架台 19が水平に配置されている。この架台 19は除振装置 21を 介してチャンバ 17に保持されている。除振装置 21は、図 2に示すように架台 19の下 面の 3箇所に配置されて 、る。それぞれの除振装置 21はチャンバ 17の側面部 17b 力も内側に伸びた梁 23a, 23b, 23cと架台 19との間に配置されている。  A gantry 19 is horizontally disposed in the chamber 17. The gantry 19 is held in the chamber 17 via a vibration isolation device 21. As shown in FIG. 2, the vibration isolator 21 is arranged at three locations on the lower surface of the gantry 19. Each vibration isolator 21 is disposed between the frame 19 and the beams 19 a, 23 b, 23 c in which the side surface 17 b force of the chamber 17 extends inward.
本実施形態において、架台 19は除振装置 21を介して梁 23a, 23b, 23cにより支 持されている力 架台 19を支持する部材は梁 23a, 23b, 23cに限定されない。例え ば、 3本または 4本の脚 (図示せず)をベースプレート 11の上に配置し、脚の上に除振 装置 21を介して架台 19を配置するようにしても構わない。あるいは、脚は、ベースプ レート 11を突き抜けて、床 15に直接設置されるようにしても良!、。  In the present embodiment, the member that supports the force stand 19 supported by the beams 23a, 23b, and 23c via the vibration isolator 21 is not limited to the beams 23a, 23b, and 23c. For example, three or four legs (not shown) may be arranged on the base plate 11, and the mount 19 may be arranged on the legs via the vibration isolator 21. Alternatively, the legs can penetrate the base plate 11 and be installed directly on the floor 15!
[0012] 架台 19には照明光学系 25および投影光学系 27が配置されている。照明光学系 2 5には、 EUV光源力もの光束の照度を均一化するフライアイミラー (図示せず)および フライアイミラーで均一化された EUV光を集光するためのコンデンサーミラー (図示せ ず)を含んでいる。これらのミラーは照明光学系 25の上部 25bに配置されている。照 明光学系 25および投影光学系 27は架台 19を上下方向に貫通して配置され架台 19 に固定されている。照明光学系 25の下部 25aはチャンバ 17の側面部 17bを貫通し てチャンバ 17の外部に延存されて 、る。  An illumination optical system 25 and a projection optical system 27 are arranged on the gantry 19. The illumination optical system 25 includes a fly-eye mirror (not shown) that equalizes the illuminance of the EUV light source and a condenser mirror (not shown) that collects the EUV light that is uniformed by the fly-eye mirror. ) Is included. These mirrors are arranged in the upper part 25b of the illumination optical system 25. The illumination optical system 25 and the projection optical system 27 are arranged so as to penetrate the gantry 19 in the vertical direction and are fixed to the gantry 19. A lower portion 25 a of the illumination optical system 25 extends through the side surface portion 17 b of the chamber 17 and extends outside the chamber 17.
[0013] 投影光学系 27の下方にはウェハステージ 29が配置されている。ウェハステージ 29 はベース部材 31を介してベースプレート 11上に配置されて!、る。投影光学系 27の 上方にはレチクルステージ 33が配置されている。レチクルステージ 33はチャンバ 17 の側面部 17bから内側に向力つて張り出した梁 35によって支持されている。  A wafer stage 29 is disposed below the projection optical system 27. The wafer stage 29 is arranged on the base plate 11 via the base member 31 !. A reticle stage 33 is disposed above the projection optical system 27. The reticle stage 33 is supported by a beam 35 projecting inward from the side surface portion 17b of the chamber 17.
架台 19の上面には、レチクルステージ 33側に突出してレチクル側干渉計台座 37, 39が固定されている。レチクル側干渉計台座 37は、図 2に示すようにレチクルステー ジ 33の Y方向の位置測定に使用され、レチクル側干渉計台座 39は Υ方向の位置測 定に使用される。また、架台 19の下面には、ウェハステージ 29側に突出してウェハ 側干渉計台座 41, 43が固定されている。ウェハ側干渉計台座 41は、図 2に示すよう にウェハステージ 29の Υ方向の位置測定に使用され、ウェハ側干渉計台座 43は X 方向の位置測定に使用される。 Reticle side interferometer bases 37 and 39 are fixed on the upper surface of the gantry 19 so as to protrude toward the reticle stage 33. Reticle side interferometer pedestal 37 has a reticle stay as shown in Fig. 2. The interferometer base 39 on the reticle side is used for position measurement in the Υ direction. Further, wafer side interferometer bases 41 and 43 are fixed to the lower surface of the gantry 19 so as to protrude toward the wafer stage 29. As shown in FIG. 2, the wafer side interferometer base 41 is used for measuring the position of the wafer stage 29 in the vertical direction, and the wafer side interferometer base 43 is used for measuring the position in the X direction.
[0014] 図 3は、この実施形態において架台 19の近傍に配置される計測装置を模式的に示 している。 FIG. 3 schematically shows a measuring device arranged in the vicinity of the gantry 19 in this embodiment.
架台 19の上面に固定されるレチクル側干渉計台座 37には、第 1および第 2のレチ クル側干渉計 45, 47が配置されている。第 1のレチクル側干渉計 45は、レチクルス テージ 33に固定される測長用ミラー 49にレーザ光を反射させレーザ光の干渉により レチクルステージ 33までの距離を測定し、レチクルステージ 33の Υ方向の位置座標 を求める。また、第 2のレチクル側干渉計 47は、投影光学系 27に固定されるリファレ ンスミラー 51にレーザ光を反射させレーザ光の干渉により投影光学系 27までの距離 を測定する。そして、第 2のレチクル側干渉計 47で測定された投影光学系 27までの 距離と、第 1のレチクル側干渉計 45で測定されたレチクルステージ 33までの距離を 比較することにより、投影光学系 27を基準にしたレチクルステージ 33の Υ方向の位 置を知ることができる。なお、 X方向の位置を測定するレチクル側干渉計台座 39にも レチクル側干渉計が配置され X方向の測定が行われるが、同様な構成であるため詳 細な説明を省略する。  First and second reticle side interferometers 45 and 47 are arranged on a reticle side interferometer base 37 fixed to the upper surface of the gantry 19. The first reticle-side interferometer 45 reflects the laser beam on the length measuring mirror 49 fixed to the reticle stage 33 and measures the distance to the reticle stage 33 by the interference of the laser beam. Find the position coordinates. The second reticle-side interferometer 47 reflects the laser beam to the reference mirror 51 fixed to the projection optical system 27 and measures the distance to the projection optical system 27 by the interference of the laser beam. Then, by comparing the distance to the projection optical system 27 measured by the second reticle-side interferometer 47 with the distance to the reticle stage 33 measured by the first reticle-side interferometer 45, the projection optical system It is possible to know the position of the reticle stage 33 in the vertical direction with reference to 27. Note that the reticle side interferometer is also arranged on the reticle side interferometer base 39 for measuring the position in the X direction, and the measurement in the X direction is performed. However, since the configuration is the same, the detailed description is omitted.
[0015] 架台 19の下面に固定されるウェハ側干渉計台座 41には、第 1および第 2のウェハ 側干渉計 53, 55が配置されている。第 1のウェハ側干渉計 53は、ウェハステージ 29 に固定される測長用ミラー 57にレーザ光を反射させレーザ光の干渉によりウェハス テージ 29までの距離を測定し、ウェハステージ 29の Υ方向の位置座標を求める。ま た、第 2のウェハ側干渉計 55は、投影光学系 27に固定されるリファレンスミラー 59に レーザ光を反射させレーザ光の干渉により投影光学系 27までの距離を測定する。そ して、第 2のウェハ側干渉計 55で測定された投影光学系 27までの距離と、第 1のゥ ェハ側干渉計 53で測定されたウェハステージ 29までの距離を比較することにより、 投影光学系 27を基準にしたウェハステージ 29の位置を知ることができる。なお、 X方 向の位置を測定するウェハ側干渉計台座 43にもウェハ側干渉計が配置され X方向 の測定が行われるが、同様な構成であるため詳細な説明は省略する。 First and second wafer side interferometers 53 and 55 are arranged on wafer side interferometer base 41 fixed to the lower surface of gantry 19. The first wafer side interferometer 53 reflects the laser beam on the length measuring mirror 57 fixed to the wafer stage 29, measures the distance to the wafer stage 29 by the interference of the laser beam, and moves the wafer stage 29 in the vertical direction. Find position coordinates. The second wafer side interferometer 55 reflects the laser beam to the reference mirror 59 fixed to the projection optical system 27 and measures the distance to the projection optical system 27 by the interference of the laser beam. Then, the distance to the projection optical system 27 measured by the second wafer side interferometer 55 is compared with the distance to the wafer stage 29 measured by the first wafer side interferometer 53. The position of the wafer stage 29 with reference to the projection optical system 27 can be known. X direction The wafer-side interferometer is also arranged on the wafer-side interferometer pedestal 43 for measuring the direction position, and measurement in the X direction is performed. However, since the configuration is the same, a detailed description is omitted.
[0016] そして、上述したように投影光学系 27を基準にしたレチクルステージ 33の位置を知 ることが可能であるため、投影光学系 27を基準にしたレチクルステージ 33とウェハス テージ 29の位置を知ることができる。  [0016] Since the position of the reticle stage 33 relative to the projection optical system 27 can be known as described above, the positions of the reticle stage 33 and the wafer stage 29 relative to the projection optical system 27 are determined. I can know.
この実施形態では、レチクル側干渉計台座 37には、オファクシス方式のレチクル側 基準顕微鏡 61が固定されて 、る。このレチクル側基準顕微鏡 61によりレチクルステ ージ 33の静電チャック 63の下面に吸着されているレチクル 65の基準マークを検出 することによりレチクル 65のァライメントが行われる。  In this embodiment, the reticle-side reference microscope 61 of the offaxis system is fixed to the reticle-side interferometer base 37. The reticle 65 is aligned by detecting the reference mark of the reticle 65 attracted to the lower surface of the electrostatic chuck 63 of the reticle stage 33 by the reticle side reference microscope 61.
[0017] また、ウェハ側干渉計台座 41には、オファクシス方式のウェハ側基準顕微鏡 67が 固定されている。このウェハ側基準顕微鏡 67によりウェハステージ 29の静電チャック 69の上面に吸着されているウェハ 71のァライメントマークを検出することによりウェハ のァライメントが行われる。  [0017] Further, an offaxis wafer-side reference microscope 67 is fixed to the wafer-side interferometer base 41. The wafer is aligned by detecting the alignment mark of the wafer 71 adsorbed on the upper surface of the electrostatic chuck 69 of the wafer stage 29 by the wafer side reference microscope 67.
さらに、架台 19の下面には、ウェハ 71の上面の光軸方向の位置を測定するための オートフォーカス (AF)装置 73が配置されて!、る。このオートフォーカス装置 73は投 射光学系 75と受光光学系 77を有している。ウェハ 71の光軸方向の位置の検出は、 投射光学系 75からウェハ 71の上面に斜め方向からスリット像を投射し、反射したスリ ットの位置を受光光学系 77でモニタすることにより行われる。すなわち、ウェハ 71が 投影光学系 27の光軸方向に動くと、斜め入射の効果で受光光学系 77に入射するス リットの位置が変動する。この変動が受光光学系 77で基準位置に対する距離として 光電検出される。  Further, an autofocus (AF) device 73 for measuring the position of the upper surface of the wafer 71 in the optical axis direction is disposed on the lower surface of the gantry 19. The autofocus device 73 has a projection optical system 75 and a light receiving optical system 77. Detection of the position of the wafer 71 in the optical axis direction is performed by projecting a slit image from the projection optical system 75 onto the upper surface of the wafer 71 from an oblique direction and monitoring the position of the reflected slit by the light receiving optical system 77. . That is, when the wafer 71 moves in the optical axis direction of the projection optical system 27, the position of the slit incident on the light receiving optical system 77 varies due to the effect of oblique incidence. This variation is photoelectrically detected by the light receiving optical system 77 as a distance from the reference position.
[0018] 上述した露光装置では、チャンバ 17の外側に配置される図示しない光源部におい てターゲット材料をプラズマ化して EUV光を発生させる。発生した EUV光は照明光 学系 25に導かれ、複数の反射鏡 (不図示)により反射されウェハステージ 29の下側に 配置されるレチクル (図 3に示す) 65の下面に導かれる。レチクル 65は、 EUV光を反 射する多層膜とパターンを形成するための吸収体パターン層を有しており、レチクル 65で EUV光が反射されることにより EUV光はパターン化される。パターン化された E UV光は、投影光学系 27の複数のミラー (不図示)により順次反射されて、レチクルパ ターンの縮小された像をウエノ、 (図 3に示す) 71上に形成する。ウェハ 71上のダイを 露光するときには、 EUV光がレチクル 65の所定の領域に照射され、レチクル 65とゥ ェハ 71は投影光学系 27に対して投影光学系 27の縮小率に従った所定の速度で動 く。このようにして、レチクルパターンはウェハ 71上の所定の露光範囲(ダイに対して )に露光される。 In the above-described exposure apparatus, EUV light is generated by converting the target material into plasma in a light source unit (not shown) arranged outside the chamber 17. The generated EUV light is guided to the illumination optical system 25, reflected by a plurality of reflecting mirrors (not shown), and guided to the lower surface of a reticle (shown in FIG. 3) 65 disposed below the wafer stage 29. The reticle 65 has a multilayer film that reflects EUV light and an absorber pattern layer for forming a pattern. The EUV light is patterned by reflecting the EUV light on the reticle 65. The patterned EUV light is sequentially reflected by a plurality of mirrors (not shown) of the projection optical system 27, so that the reticle pattern is reflected. A reduced image of the turn is formed on Ueno 71 (shown in Figure 3). When exposing the die on the wafer 71, EUV light is irradiated onto a predetermined area of the reticle 65, and the reticle 65 and wafer 71 are compared with the projection optical system 27 according to a reduction ratio of the projection optical system 27. Move at speed. In this way, the reticle pattern is exposed to a predetermined exposure range (with respect to the die) on the wafer 71.
[0019] 上述した露光装置では、照明光学系 25と投影光学系 27とを同一の架台 19に支持 するようにしたので、照明光学系 25と投影光学系 27との相対位置を高い精度で維 持することができる。すなわち、例えばチャンバ 17内を真空引きすることにより架台 1 9が変形した場合に、照明光学系 25と投影光学系 27とがそれぞれ独立して変位す ることが少なくなり、照明光学系 25と投影光学系 27との相対位置を高い精度で維持 することができる。また、照明光学系 25と投影光学系 27とを同一の架台 19に支持す るようにしたので、照明光学系 25と投影光学系 27を別々の架台 19に支持する場合 に比較して、照明光学系 25と投影光学系 27との相対位置調整が容易になり、照明 光学系 25と投影光学系 27とを高 、精度で容易に配置することができる。  In the above-described exposure apparatus, the illumination optical system 25 and the projection optical system 27 are supported by the same mount 19, so that the relative positions of the illumination optical system 25 and the projection optical system 27 are maintained with high accuracy. Can have. That is, for example, when the gantry 19 is deformed by evacuating the chamber 17, the illumination optical system 25 and the projection optical system 27 are less likely to be independently displaced, and the illumination optical system 25 and the projection optical system 25 are projected. The relative position with the optical system 27 can be maintained with high accuracy. In addition, since the illumination optical system 25 and the projection optical system 27 are supported on the same base 19, the illumination optical system 25 and the projection optical system 27 are supported by the same base 19, compared with the case where the illumination optical system 25 and the projection optical system 27 are supported on separate bases 19. The relative position adjustment between the optical system 25 and the projection optical system 27 becomes easy, and the illumination optical system 25 and the projection optical system 27 can be easily arranged with high accuracy.
[0020] そして、上述した露光装置では、架台 19を除振装置 21を介してチャンバ 17に支持 したので、チャンバ 17を介して入力される床 15,ウェハステージ 29,真空引き装置( 不図示)等力 の振動を確実に遮断することが可能になり、照明光学系 25および投 影光学系 27の位置精度を安定して維持することができる。また、架台 19に配置され るレチクル側干渉計 45, 47,ウェハ側干渉計 53, 55,レチクル側基準顕微鏡 61,ゥ ェハ側基準顕微鏡 67,オートフォーカス装置 73等の計測装置の計測精度を安定し て維持することができる。  [0020] In the exposure apparatus described above, since the gantry 19 is supported by the chamber 17 via the vibration isolator 21, the floor 15, the wafer stage 29, and the vacuuming device (not shown) input via the chamber 17 It is possible to reliably block the vibration of the isotropic force, and the positional accuracy of the illumination optical system 25 and the projection optical system 27 can be stably maintained. In addition, the measurement accuracy of measurement devices such as reticle-side interferometers 45 and 47, wafer-side interferometers 53 and 55, reticle-side reference microscope 61, wafer-side reference microscope 67, and auto-focus device 73 placed on the pedestal 19 is improved. It can be maintained stably.
[0021] さらに、架台 19の上面のレチクル側干渉計台座 37に第 1および第 2のレチクル側 干渉計 45, 47を配置し、架台 19の下面のウェハ側干渉計台座 41に第 1および第 2 のウェハ側干渉計 53, 55を配置したので、投影光学系 27に対するレチクルステー ジ 33とウェハステージ 29の位置を高い精度で測定することができる。  Furthermore, the first and second reticle side interferometers 45 and 47 are arranged on the reticle side interferometer base 37 on the upper surface of the gantry 19, and the first and second reticle side interferometer bases 41 on the lower surface of the gantry 19 are arranged. Since the second wafer side interferometers 53 and 55 are arranged, the positions of the reticle stage 33 and the wafer stage 29 relative to the projection optical system 27 can be measured with high accuracy.
そして、投影光学系 27が固定される架台 19にオートフォーカス装置 73を固定した ので、投影光学系 27とオートフォーカス装置 73の相対位置を高い精度で維持するこ とが可能になり、投影光学系 27の光軸方向におけるウェハ 71の位置を高い精度で 定することができる。 Since the autofocus device 73 is fixed to the gantry 19 to which the projection optical system 27 is fixed, the relative position between the projection optical system 27 and the autofocus device 73 can be maintained with high accuracy. Position of wafer 71 in 27 optical axis directions with high accuracy Can be determined.
[0022] また、投影光学系 27が固定される架台 19にレチクル側基準顕微鏡 61を固定した ので、投影光学系 27とレチクル側基準顕微鏡 61の相対位置を高い精度で維持する ことが可能になり、投影光学系 27に対するレチクル 65の平面位置を高い精度で測 定することができる。  In addition, since the reticle side reference microscope 61 is fixed to the gantry 19 to which the projection optical system 27 is fixed, the relative position between the projection optical system 27 and the reticle side reference microscope 61 can be maintained with high accuracy. Thus, the planar position of the reticle 65 with respect to the projection optical system 27 can be measured with high accuracy.
さらに、投影光学系 27が固定される架台 19にウェハ側基準顕微鏡 67を固定した ので、投影光学系 27とウェハ側基準顕微鏡 67の相対位置を高い精度で維持するこ とが可能になり、投影光学系 27に対するウェハ 71の平面位置を高い精度で測定す ることがでさる。  Furthermore, since the wafer-side reference microscope 67 is fixed to the gantry 19 to which the projection optical system 27 is fixed, the relative positions of the projection optical system 27 and the wafer-side reference microscope 67 can be maintained with high accuracy, and projection can be performed. The plane position of the wafer 71 with respect to the optical system 27 can be measured with high accuracy.
(実施形態の補足事項)  (Supplementary items of the embodiment)
以上、本発明を上述した実施形態によって説明してきた力 本発明の技術的範囲 は上述した実施形態に限定されるものではない。  As mentioned above, the force which demonstrated this invention by embodiment mentioned above The technical scope of this invention is not limited to embodiment mentioned above.
[0023] 例えば、上述した実施形態では、 EUV光を用いた露光装置に本発明を適用した 例について説明したが、本発明は、照明光学系および投影光学系を備えた露光装 置に広く適用することができる。 For example, in the above-described embodiment, an example in which the present invention is applied to an exposure apparatus using EUV light has been described, but the present invention is widely applied to an exposure apparatus including an illumination optical system and a projection optical system. can do.

Claims

請求の範囲 The scope of the claims
[1] レチクルに照明光を照射する照明光学系と、前記レチクルカ の照明光を感応基 板に投影する投影光学系とを備えた露光装置において、  [1] An exposure apparatus comprising: an illumination optical system that irradiates illumination light onto a reticle; and a projection optical system that projects illumination light from the reticle onto a sensitive substrate.
前記レチクル表面を含む面と前記感応基板表面を含む面との間に形成される空間 に、前記照明光学系の一部および前記投影光学系を配置し、  Arranging a part of the illumination optical system and the projection optical system in a space formed between the surface including the reticle surface and the surface including the sensitive substrate surface,
前記照明光学系および前記投影光学系を同一の架台に支持してなることを特徴と する露光装置。  An exposure apparatus characterized in that the illumination optical system and the projection optical system are supported on the same frame.
[2] 請求項 1記載の露光装置において、  [2] In the exposure apparatus according to claim 1,
前記架台は除振装置を介してチャンバ内で支持されていることを特徴とする露光装 置。  An exposure apparatus, wherein the gantry is supported in the chamber via a vibration isolation device.
[3] 請求項 1または請求項 2記載の露光装置にお 、て、  [3] In the exposure apparatus according to claim 1 or claim 2,
前記架台に、前記投影光学系およびレチクルステージの位置を測定するレチクル 側干渉計を固定してなることを特徴とする露光装置。  An exposure apparatus, wherein a reticle-side interferometer for measuring positions of the projection optical system and a reticle stage is fixed to the gantry.
[4] 請求項 1な!、し請求項 3の 、ずれか 1項記載の露光装置にお!、て、 [4] In the exposure apparatus according to claim 1, the claim 1! And the claim 3 according to claim 1!
前記架台に、前記投影光学系および感応基板ステージの位置を測定する感応基 板側干渉計を固定してなることを特徴とする露光装置。  An exposure apparatus, wherein a sensitive substrate side interferometer for measuring the positions of the projection optical system and the sensitive substrate stage is fixed to the frame.
[5] 請求項 1な!、し請求項 4の 、ずれか 1項記載の露光装置にお!、て、 [5] In the exposure apparatus according to claim 1, the claim 1 !, and the claim 4 according to claim 1!
前記架台に、前記投影光学系の光軸方向における前記感応基板の位置を測定す るオートフォーカス装置を固定してなることを特徴とする露光装置。  An exposure apparatus, wherein an autofocus device for measuring the position of the sensitive substrate in the optical axis direction of the projection optical system is fixed to the gantry.
[6] 請求項 1な!、し請求項 5の 、ずれか 1項記載の露光装置にお!、て、 [6] In the exposure apparatus according to claim 1, the claim 1 is!
前記架台に、前記レチクルの平面位置を測定するレチクル側基準顕微鏡を固定し てなることを特徴とする露光装置。  An exposure apparatus, wherein a reticle-side reference microscope for measuring a planar position of the reticle is fixed to the frame.
[7] 請求項 1な!、し請求項 6の 、ずれか 1項記載の露光装置にお!、て、 [7] In the exposure apparatus according to claim 1, the claim 1 !, and the claim 6 according to claim 1!
前記架台に、前記感応基板の平面位置を測定する感応基板側基準顕微鏡を固定 してなることを特徴とする露光装置。  An exposure apparatus, wherein a sensitive substrate side reference microscope for measuring a planar position of the sensitive substrate is fixed to the frame.
PCT/JP2006/302052 2005-02-14 2006-02-07 Exposure equipment WO2006085524A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005036255 2005-02-14
JP2005-036255 2005-02-14

Publications (1)

Publication Number Publication Date
WO2006085524A1 true WO2006085524A1 (en) 2006-08-17

Family

ID=36793096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302052 WO2006085524A1 (en) 2005-02-14 2006-02-07 Exposure equipment

Country Status (2)

Country Link
TW (1) TW200633011A (en)
WO (1) WO2006085524A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093757A1 (en) * 2008-01-24 2009-07-30 Nikon Corporation Exposure apparatus, and manufacturing method and supporting method thereof
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148341A (en) * 1999-11-19 2001-05-29 Nikon Corp Aligner
US20040207826A1 (en) * 2003-04-15 2004-10-21 Yoshikazu Miyajima Exposure apparatus and device fabrication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148341A (en) * 1999-11-19 2001-05-29 Nikon Corp Aligner
US20040207826A1 (en) * 2003-04-15 2004-10-21 Yoshikazu Miyajima Exposure apparatus and device fabrication method

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
WO2009093757A1 (en) * 2008-01-24 2009-07-30 Nikon Corporation Exposure apparatus, and manufacturing method and supporting method thereof
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
TW200633011A (en) 2006-09-16

Similar Documents

Publication Publication Date Title
WO2006085524A1 (en) Exposure equipment
TWI548953B (en) A moving body system and a moving body driving method, a pattern forming apparatus and a pattern forming method, an exposure apparatus and an exposure method, and an element manufacturing method
US6597434B2 (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
US20040218158A1 (en) Exposure method and device
KR100922397B1 (en) Lithographic apparatus and method
US11327412B2 (en) Topography measurement system
CN110088688B (en) Metrology sensor, lithographic apparatus and method for manufacturing a device
JP2008185581A (en) Scatterometer, lithography device, and focus analysis method
US20230034966A1 (en) Control method of movable body, exposure method, device manufacturing method, movable body apparatus, and exposure apparatus
KR100695555B1 (en) Lithographic apparatus and device manufacturing method
US7602473B2 (en) Exposure apparatus and device manufacturing method using the same
KR101157507B1 (en) Illumination system for illuminating a patterning device and method for manufacturing an illumination system
JP2004014876A (en) Adjustment method, method for measuring spatial image, method for measuring image surface, and exposure device
JP2001257157A (en) Device and method for alignment and device and method for exposure
US20090153830A1 (en) Device for Transmission Image Detection for Use in a Lithographic Projection Apparatus and a Method for Determining Third Order Distortions of a Patterning Device and/or a Projection System of Such a Lithographic Apparatus
JP2002170757A (en) Method and instrument for measuring position, method and device for exposure, and method of manufacturing device
US20140022377A1 (en) Mark detection method, exposure method and exposure apparatus, and device manufacturing method
EP1139176B1 (en) Lithographic apparatus and mask table
JP2013045815A (en) Exposure method, and method of manufacturing device
WO2002047132A1 (en) X-ray projection exposure device, x-ray projection exposure method, and semiconductor device
TW505975B (en) Aligner
JP2002246302A (en) Position detector and exposure system
JP4120361B2 (en) Measuring device, stage device, and measuring method
JP2001267196A (en) Position detecting apparatus, position detecting method, aligner and exposing method
JP6754002B2 (en) Insulation of alignment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713195

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713195

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP