WO2006088671A2 - Improved filter with positioning and retrieval devices and methods - Google Patents

Improved filter with positioning and retrieval devices and methods Download PDF

Info

Publication number
WO2006088671A2
WO2006088671A2 PCT/US2006/003939 US2006003939W WO2006088671A2 WO 2006088671 A2 WO2006088671 A2 WO 2006088671A2 US 2006003939 W US2006003939 W US 2006003939W WO 2006088671 A2 WO2006088671 A2 WO 2006088671A2
Authority
WO
WIPO (PCT)
Prior art keywords
filter
distal end
legs
manipulation device
intravascular
Prior art date
Application number
PCT/US2006/003939
Other languages
French (fr)
Other versions
WO2006088671A3 (en
Inventor
Brian J. Lowe
James A. Teague
Mark L. Jenson
Eric Welch
Raed N. Rizq
Original Assignee
Boston Scientific Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Limited filed Critical Boston Scientific Limited
Priority to JP2007556168A priority Critical patent/JP4870692B2/en
Priority to EP06720259.8A priority patent/EP1850788B1/en
Priority to ES06720259T priority patent/ES2410595T3/en
Priority to CA002597911A priority patent/CA2597911A1/en
Priority to DK06720259.8T priority patent/DK1850788T3/en
Publication of WO2006088671A2 publication Critical patent/WO2006088671A2/en
Publication of WO2006088671A3 publication Critical patent/WO2006088671A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/0103With centering means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/0105Open ended, i.e. legs gathered only at one side
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/011Instruments for their placement or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2002/016Filters implantable into blood vessels made from wire-like elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9528Instruments specially adapted for placement or removal of stents or stent-grafts for retrieval of stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/005Rosette-shaped, e.g. star-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0058X-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/006Y-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0086Pyramidal, tetrahedral, or wedge-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0086Pyramidal, tetrahedral, or wedge-shaped
    • A61F2230/0089Pyramidal, tetrahedral, or wedge-shaped tetrahedral, i.e. having a triangular basis

Definitions

  • the invention generally relates to filter devices for trapping blood clots and controlling embolization and thrombosis in blood vessels. More specifically, the present invention is directed to an improved filter and methods and devices for positioning and retrieving the same.
  • Intravenous filters are commonly used to trap blood clots (emboli) carried in the vasculature. Such emboli may cause serious health risks including embolization and thrombosis, and may ultimately lead to death. Such emboli, if left unrestrained, may travel to the lungs through the vasculature, resulting in pulmonary embolism.
  • a filtering device may be positioned in a blood vessel, such as the vena cava, in order to capture emboli and prevent emboli from reaching the lungs.
  • the filter can be deployed in a tilted position, i.e., not centered within the vessel. Filters positioned in such an orientation may not function as well as well-centered filters. There is a continuing need to more accurately control the deployment of an intravenous filter within a blood vessel, such that the filter is centered in the vessel.
  • the invention pertains to an intravenous filter that can be more accurately centered within a vessel.
  • the invention is also directed to a deployment and/or retrieval device for positioning a filter in a vessel.
  • one embodiment includes an expandable filter having multiple sets of centering legs.
  • the orientation of the centering legs provides an elongated cylindrical area for more accurately centering the filter within a vessel.
  • the filter may have elongated feet attached to the filter legs to more accurately center and stabilize the filter within a vessel.
  • the placement device includes an inner elongate member and an outer sheath disposed about the inner elongate member.
  • the inner elongate member is connected to a grasping member extending distal of the inner elongate member.
  • the grasping member may be biased in an expanded configuration, but may be collapsed to engage a filter when the outer sheath is extending distally.
  • Such a device may be used to deploy a filter within a vessel, reposition a filter within a vessel, or it may be used to extract a filter from a vessel.
  • manipulating a filter in a vessel includes deploying, repositioning, extracting, or the like.
  • Figure 1 is a plan view of an intravascular filter within the scope of the invention.
  • Figures 2A and 2B are plan views of exemplary intravascular filters within the scope of the invention.
  • FIGS 2C-2F are plan views of a filter in accordance with the invention and means for deploying a filter within a vessel.
  • Figures 3A-3B are partial cross-sectional views of a filter deployment device and method within the scope of the invention.
  • Figure 4 is a cross-sectional view of a filter manipulation device in accordance with the invention.
  • Figure 5 is a cross-sectional view of a filter manipulation device in accordance with the invention.
  • Figure 6 is cross-sectional view of a filter manipulation device in accordance with the invention.
  • Figure 6A is a cross-sectional view of the filter manipulation device in Fig. 6 taken along line 6A-6A.
  • Figure 7 is a cross-sectional view of a filter manipulation device in accordance with the invention.
  • Figure 7A is a cross-sectional view of the filter manipulation device in Fig. 7 taken along line IA-I A.
  • Figure 8 is a cross-sectional view of a filter and filter retrieval device within the scope of the invention.
  • Figures 9A-9C are cross-sectional views of a filter retrieval device within the scope of the invention.
  • Figures 10A- 1OC are plan views of illustrative embodiments of a filter retrieval device within the scope of the invention.
  • FIGS. 1 IA-I IB are cross-sectional views of a filter and filter retrieval device in accordance with the invention.
  • Figures 12-12A are plan views of a filter within the scope of the invention.
  • Figures 13-13A are cross-sectional views of a method for retrieving a filter in accordance with the invention.
  • Figures 14-14A are cross-sectional views of a method for retrieving a filter in accordance with the invention.
  • FIG 1 shows one embodiment of an intravenous filter according to the invention.
  • Filter 10 includes a tip 20 and multiple sets of legs 30, 40 extending from tip 20.
  • Figure 1 depicts a filter having two sets of legs, but a filter having additional sets of legs is contemplated as being within the scope of the invention.
  • Legs 40 are longer than legs 30, thereby creating a landing distance 50 between distal end 35 of legs 30 and distal end 45 of legs 40.
  • the landing distance 50 may resemble a cylindrical wall between distal ends 35, 45 of legs 30, 40.
  • the landing distance 50 provides an elongated planar surface for the filter 10 to engage the wall 60 of a vessel. By engaging the wall 60 at multiple distances from the filter tip 20, the filter 10 may be more accurately centered in a vessel.
  • One set of legs may include securing hooks 55 at the distal end 35, 45 of legs 30, 40. Securing hooks 55 prevent the filter 10 from migrating downstream or tilting after deployment.
  • Hooks 55 may comprise thermally reactive metals, such as shape memory alloys. Preferably, hooks may comprise a nickel-titanium alloy such as nitinol.
  • Hooks 55 comprising a thermally reactive metal may be subjected to thermal energy, such as an electrical charge, non-invasive RF energy, or the like. Hooks 55 subjected to thermal energy may tend to straighten to facilitate disengagement from the vessel wall 60 during a filter retrieval process. As hooks 55 straighten as a result of subjecting them to a thermal energy source, hooks 55 lose their anchoring ability, therefore, allowing the filter 10 to be disengaged from the vessel.
  • FIG. 2A shows another embodiment of the invention.
  • Filter 90 includes a plurality of legs 92 extending from the tip 94.
  • a longitudinal landing foot 95 is connected to each leg 92 at distal end 96.
  • Landing feet 95 provide an elongated planar surface for the filter 90 to engage the wall 60 of a vessel. The elongated planar surface formed by the landing feet 95 may more accurately center the filter 90 in a vessel.
  • a securing hook 55 may be disposed at the proximal end of each landing foot 95 in order to engage the vessel wall 60. Alternatively, securing hooks 55 may be disposed at the distal end of each landing foot 95 as shown in Figure 2B. The location of securing hooks 55 may be determined by the method of deployment or retrieval of the filter 90 from a vessel.
  • FIG. 2C shows an alternate embodiment of the filter 90 of Figs. 2A, 2B.
  • Filter 90 has centering feet 98 attached at distal ends 96 of legs 92. Centering feet 98 extend both proximally and distally from distal end 96 of legs 92. Centering feet 98 may provide a longer longitudinal distance for centering the filter 90 than feet 95. Centering feet 98 provide greater control for anchoring and centering the filter 90 within a vessel. Greater control is accomplished because centering feet 98 exit deployment sheath first, allowing for a gradual expansion of filter 90, as opposed to a sudden "jump" in expansion as is common with prior art filters. As shown in Figure 2D, prior to deployment centering feet 98 are substantially longitudinal with deployment sheath 99.
  • FIG. 3 A shows a delivery device 100 for delivering a filter such as filter 10.
  • Delivery device 100 includes an elongated shaft 110.
  • Elongated shaft 110 has a distal segment 115 having an enlarged diameter relative to the portion of elongated shaft 110 proximate the distal segment 115.
  • Distal segment 115 may include a shape memory polymer (SMP), such that when the SMP is subjected to a thermal energy source increasing its temperature above its glass transition temperature (Tg), the distal segment 115 may transform to a preformed shape. Such a preformed shape may have an expanded diameter.
  • Filter 10 may be disposed within distal segment 115 prior to deployment.
  • Push wire 118 may extend through elongated shaft 110 to filter 10.
  • SMP shape memory polymer
  • Push wire may abut filter 10 or may be releasably attached to filter 10.
  • the enlarged distal segment 115 may be subjected to a thermal energy source, allowing the distal segment 115 to be expanded to abut the wall 60 of a vessel prior to deployment of the filter 10.
  • the expanded state of enlarged distal segment 115 allows the filter 10 to be partially expanded within the distal segment 115 prior to deployment within the vessel. Partially expanding the filter 10 in the distal segment 115 prior to deployment minimizes the additional amount (“jump") the filter 10 must expand after deploying the filter distal of the distal segment 115. By minimizing the jump the filter must undergo in order to engage the vessel wall 60, the filter 10 may be more precisely centered in the vessel.
  • FIG. 4 shows a filter manipulation device 200 in accordance with the invention.
  • Filter manipulation device 200 may be used as a delivery device, a repositioning device, or a retrieval device.
  • Filter manipulation device 200 includes an outer sheath 210 and a push/pull wire 220 disposed within outer sheath 210.
  • a first braided member 230 may be disposed about a portion of distal end of push/pull wire 220 and extend distally therefrom.
  • first braided member 230 may be disposed adjacent to clip 240 and extend distally therefrom.
  • the first braided member 230 may comprise a polymer, a metal, such as a stainless steel alloy, or the like.
  • first braided member 230 may include a nickel-titanium alloy.
  • the first braided member 230 may be braided in a one-over-one configuration, a two-over-one configuration, or the like.
  • First braided member 230 may substantially comprise a conical shape. A proximal portion of first braided member 230 may extend over distal end of push/pull wire 220, or may be secured to distal end of push/pull wire 220. First braided member 230 may be secured to the distal portion of push/pull wire 220 with a tubular sleeve. Tubular sleeve, may be heat shrink tubing, a polymer jacket, a metallic band, or the like. Preferably, first braided member 230 may be secured to push/pull wire 220 with a hypotube 245. Hypotube 245 may be an elongated metallic tube including a stainless steel or nickel-titanium alloy. Hypotube 245 may include a helical cut or a plurality of apertures formed in at least a portion of the hypotube 245.
  • First braided member 230 may be formed to be biased in an expanded configuration as shown in Figure 4, but may be contracted within outer sheath 210 by moving outer sheath 210 in the distal direction during a delivery or removal process.
  • the first braided member 230 may abut filter 10 in an expanded configuration.
  • the first braided member 230 may act as a wedge to capture the filter 10. Frictional forces between the first braided member 230 and the filter 10 hold the filter 10 adjacent the first braided member 230 and provide purchase during manipulation of the filter 10.
  • Moving outer sheath 210 in the distal direction allows the distal end 212 of outer sheath 210 to contact the first braided member 230, such that braided member 230 is compressed at least partially within outer sheath 210.
  • Braided member 230 provides sufficient purchase of the filter 10 due to the frictional contact between the interface of the first braided member 230 and filter 10. The purchase created by the frictional contact is sufficient to allow the manipulation device 200 to maneuver and position the filter 10. As outer sheath 210 is moved in the distal direction, first braided member 230 collapses filter 10 to a collapsed state sufficient to retain filter 10 within outer sheath 210.
  • the distal end of push/pull wire 220 may include a clip 240, preferably comprising a nickel-titanium alloy, such as nitinol.
  • Clip 240 may be formed such as by heat setting with a curved shape so as to open as the outer sheath 210 is retracted proximally.
  • Clip 240 may be a substantially conical shaped.
  • Clip 240 may be formed to extend over and grasp the tip 20 of a filter 10.
  • Clip 240 may be secured to push/pull wire 220 by a sleeve, heat shrink member, adhesive, welding, or any other ways known in the art.
  • clip 240 is secured to push/pull wire 220 with a tubular member comprising a polymer or metallic alloy.
  • clip 240 is secured to push/pull wire 220 with hypotube 245.
  • Clip 240 may contact the tip 20 of filter 10 as outer sheath 210 is extended distally.
  • Clip 240 may collapse and securely encompass tip 20 once outer sheath 210 is extended distally. Frictional contact with filter 10 created by clip 240 and/or first braided member 230 may allow manipulation of filter 10 within a vessel.
  • Outer sheath 210 may be partially retracted proximally, allowing first braided member 230 to expand partially. Partially expanded first braided member 230 is thus disengaged from the filter 10, while clip 240 remains secured about tip 20 of filter 10 due to the continued engagement of outer sheath 210 about clip 240. Thus, the operator may continue to control the position of the filter 10 prior to retracting outer sheath 210 fully. Once filter 10 has been positioned in a vessel, outer sheath 210 may then be retracted fully, disengaging manipulation device 200 from filter 10.
  • Figure 5 shows an alternate embodiment of manipulation device 200.
  • Manipulation device 200 may optionally include second braided member 250 disposed about push/pull wire 220 and extending distally therefrom.
  • Second braided member 250 may be included instead of or in addition to clip 240. Similar to clip 240, second braided member 250 may engage filter tip 20 as outer sheath 210 is extended distally. Frictional forces between second braided member 250 and filter tip 20 may hold filter 10 adjacent to manipulation device 200.
  • Second braided member 250 may extend substantially the length of hypotube 245, or second braided member 250 may extend a portion thereof.
  • First braided member 230 may be disposed adjacent to second braided member 250 and may also extend substantially the length of hypotube 245, or a portion thereof.
  • manipulation device 200 may include an inflatable balloon 260 disposed about a distal portion of outer sheath 210.
  • Inflatable balloon 260 may be a single balloon disposed concentrically about outer sheath 210 or may comprise a plurality of lobes 265.
  • balloon 260 may comprise four inflatable lobes 265 spaced equidistantly about outer sheath 210, i.e., at 90 degree intervals.
  • Inflatable balloon 260 may be inflated through catheter inflation port (not shown) to center the manipulation device 200 within a body vessel. Centering the manipulation device 200 within a body vessel may facilitate centering the filter 10 during a delivery process or capturing the filter 10 during a retrieval process.
  • the use of balloon 260 having a plurality of lobes 265 allows for continued blood flow through the vessel while the balloon 260 is inflated.
  • manipulation device 200 may include a plurality of wires 270.
  • manipulation device 200 may include a plurality of wires 270 spaced about outer sheath 210.
  • manipulation device 200 includes four wires 270 spaced equidistantly about outer sheath 210, i.e., at 90 degree intervals.
  • Wires 270 may have a circular cross-section or may be substantially flat.
  • Wires 270 may comprise a polymer, a metal, or the like.
  • wires 270 comprise a nickel-titanium alloy, such as nitinol.
  • Wires 270 preferably are heat set in a curved shape such that wires 270 abut the vessel wall 60 when in an open position.
  • An actuation rod (not shown) extending through the catheter may be used to direct the wires 270 between an open and a closed position.
  • wires 270 may be actuated to an opened position by exposing wires to a thermal energy source, such as an electrical charge, RF heating, or the like.
  • Wires 270 similar to balloon 260, may facilitate centering the manipulation device 200 within the vessel wall 60 during a filter manipulation process. Wires 270 allow for continued blood flow through the vessel while the wires 270 are in an open position.
  • FIG 8 shows an alternate embodiment of a filter retrieval device in accordance with the invention.
  • Filter 300 includes a tip 320 having a lumen 310 extending therethrough.
  • lumen 310 may include a step-wise transition in diameter within the tip 320.
  • An elongate shaft 330 having an expandable member 340 disposed at the distal end thereof may be extended through the lumen 310.
  • a stop 315 may be disposed about elongate shaft 330 at a predetermined distance from expandable member 340. Stop 315 may be positioned such that stop 315 abuts the tip 320 just as expandable member 340 extends past the step-wise transition of lumen 310. Therefore, an operator may know the expandable member 340 is correctly positioned relative to the filter 300 during a retrieval process when the operator feels the stop 315 abut the tip 320 of filter 300.
  • the expandable member 340 may be an inflatable balloon.
  • Expandable member 340 may include a protective material 345 at the proximal end of expandable member 340.
  • the protective material 345 may create a barrier between the expandable member 340 and the filter tip 320, thus protective material 345 may enhance the durability of expandable member 340.
  • the protective material 345 may be conical shaped, pedal shaped, or the like, and may comprise a metal or polymer.
  • the expandable member may be expanded. Once in an expanded state, the elongate shaft may be pulled proximally, thereby shifting the filter in the proximal direction during a filter retrieval process.
  • Retrieval device 400 may include an elongate shaft 405 and an outer sheath 410.
  • Elongate shaft 405 may be disposed in outer sheath 410.
  • Distal portion 415 of elongate shaft 405 may include grasping tongs 420, such as forceps or pincers.
  • tongs 420 may be an integral portion of elongate shaft 405.
  • tongs 420 may be laser cut in the distal portion 415 of elongate shaft 405.
  • Tongs 420 may include a plurality of appendages 425.
  • tongs 420 may include three equidistantly spaced appendages 425.
  • Tongs 420 may comprise a polymer, a metal, or the like.
  • Appendages 425 preferably are biased in an open position as shown in Figure 9B.
  • Appendages 425 may be biased in an open position during a heat set process, such as steam setting.
  • Appendages 425 may have an abrasive surface such as ridges 427 and grooves 428 to facilitate griping a filter such as filter 10.
  • tongs 420 are collapsed in outer sheath 410 and delivered near the filter 10. Outer sheath 410 is then retracted proximally, thereby allowing tongs 420 to extend distal of the outer sheath 410. Once appendages 425 are exposed from outer sheath 410, appendages 425 expand to their biased open position. Tongs 420 are then moved over filter 10. Outer sheath 410 is then extended distally over tongs 420 forcing tongs 420 to collapse around filter 10. Preferably, tongs 420 collapse around tip 20. Outer sheath 410 prevents tongs 420 from expanding, therefore retaining the filter 10. The elongate shaft 400 and outer sheath 410 may then be retracted from the vessel, wherein tongs 420 retain filter 10.
  • FIGS 10A- 1OC illustrate another retrieval device 500 in accordance with the invention.
  • retrieval device 500 may include an elongate shaft 505 having a grasping member such as loop 515, shepherd's hook 525 or atraumatic hook 535 for grasping a filter.
  • a filter such as filter 550 may include a tip 555 having mating geometry adapted to receive the grasping member of retrieval device 500. Such mating geometry may include a hook 560, 565.
  • Elongate shaft 505 may be extended through a vessel to filter 550.
  • Grasping member, such as loop 515 is positioned to mate with and grasp filter 550 by hook 560, 565. Elongate shaft 505 may then be retracted, withdrawing filter 550 from the vessel.
  • Grasping members such as shown in Figures 10A- 1OC provide an operator with a greater margin of error in directing a retrieval device to a filter.
  • Retrieval device 600 may include an outer sheath 610 and an elongate shaft 620.
  • Elongate shaft 620 may include a clasp 630 disposed at the distal end of elongate shaft 620.
  • clasp 630 may be formed as an integral portion of elongate shaft 620.
  • Clasp may include a plurality of appendages 635 laser cut about the circumference of elongate shaft 620.
  • Appendages 635 include locking geometry such as barbs 640.
  • Barbs 640 include a ramp 642 and a shelf 644.
  • Filter 650 may include a tip 660 having complimentary interlocking geometry.
  • Tip 660 may include a lumen 665 having a beveled surface 668. Lumen 665 may have an enlarged diameter portion creating a lip 667.
  • retrieval device 600 may be advanced through a vessel to a position proximate the filter 650.
  • Elongate shaft 620 may then be advanced distally to encounter filter 650.
  • Ramps 642 of barbs 640 may contact bevel 668.
  • Continued distal advancement of the elongate shaft 620 causes the appendages 635 to compress inwardly due to the sloping geometry of the bevel 668 and ramps 642.
  • the shelf 644 of barbs 640 mate with lip 667, thereby locking the filter 650 to elongate shaft 620 as shown in Figure 1 IB.
  • the interlocking geometry prevents filter 650 from disengaging with elongate shaft 620. Therefore, filter 650 may be withdrawn from a vessel by retracting the retrieval device 600 proximally.
  • FIG 12 illustrates a filter 700 having geometry to facilitate removal from a vessel.
  • Filter 700 includes a plurality of legs 710 extending from a tip 720. Legs 710 have a protrusion 715 disposed at their distal end. As is more clearly shown in Figure 12A, protrusion 715 may resemble a ramp 717 having a tapered angle and an apex 718. Protrusion 715 securely anchors filter to a vessel wall upon deployment within a vessel, while protrusion 715 subsequently may facilitate removal or repositioning filter 700. The protrusion 715 causes minimal amounts of trauma to the vessel wall due to its ramp shape.
  • an elongate sheath 730 may be advanced within the vessel to the filter 700 as shown in Figure 13.
  • the distal end 731 of elongate sheath 730 abuts the ramp 717 of protrusion 715.
  • the distal end 731 of elongate sheath 730 urges the protrusion 715 inward to disengage the protrusion 715 from the wall 60 as shown in Figure 13 A. Because the protrusion 715 does not include a hook or barb, the legs 710 may be disengaged from the wall 60 with minimal injury to the vessel wall 60.
  • Filter 800 includes a plurality of legs 810 extending distally from tip 820.
  • Legs 810 include a longitudinal base portion 830 extending from the distal end 815 of legs 810.
  • Longitudinal base portion 830 may extend either proximal or distal of distal end 815 of legs 810 or may extend in both the proximal and distal directions.
  • Longitudinal base portion 830 helps center filter 800 within vessel wall 60, and also helps urge distal end 815 of legs 810 away from vessel wall 60 during a retrieval process.
  • Securing hooks 825 may be attached to legs 810 at apex 835 where legs 810 adjoin longitudinal base portion 830. Securing hooks 825 may help anchor filter 800 to vessel wall 60 after deployment of filter 800.
  • Figure 14B shows how longitudinal base portion 830 facilitates removal of filter 800 from a vessel.
  • An elongate shaft 850 may be extended distally to filter 800.
  • the distal end 855 of elongate shaft 850 may be positioned over filter tip 820 and then moved distally.
  • Distal end 855 engages legs 810, forcing legs 810 inward.
  • longitudinal base portion 830 acts as a lever pivoting at fulcrum point 860 to facilitate disengagement of hooks 825 from vessel wall 60.
  • the dual action of longitudinal base portion 830 and inward movement of legs 810 disengages hooks 825 from the vessel wall 60.
  • Filter 800 may then be safely removed from or repositioned in the vessel.

Abstract

An intravascular filter (20) having centering capabilities and a device for manipulation of the filter (200) within a vessel. The manipulation device includes a grasping member (230) disposed at the distal end of an elongate shaft (220), wherein the grasping member may be used to engage a portion of the filter (20) .

Description

IMPROVED FILTER WITH POSITIONING AND RETRIEVAL DEVICES AND METHODS
Field of the Invention
The invention generally relates to filter devices for trapping blood clots and controlling embolization and thrombosis in blood vessels. More specifically, the present invention is directed to an improved filter and methods and devices for positioning and retrieving the same.
Background of the Invention
Intravenous filters are commonly used to trap blood clots (emboli) carried in the vasculature. Such emboli may cause serious health risks including embolization and thrombosis, and may ultimately lead to death. Such emboli, if left unrestrained, may travel to the lungs through the vasculature, resulting in pulmonary embolism. A filtering device may be positioned in a blood vessel, such as the vena cava, in order to capture emboli and prevent emboli from reaching the lungs.
It is difficult to precisely and accurately deploy a filter in a blood vessel. The filter can be deployed in a tilted position, i.e., not centered within the vessel. Filters positioned in such an orientation may not function as well as well-centered filters. There is a continuing need to more accurately control the deployment of an intravenous filter within a blood vessel, such that the filter is centered in the vessel.
Additionally, it may be necessary to remove a filter from the vessel once the health threat has been removed. There is a continuing need to provide an easily retrievable filter and/or retrieval device that can remove a filter without subjecting the walls of the vessel to unnecessary trauma. Current filters may damage the vessel wall during a removal process.
Summary of the Invention
The invention pertains to an intravenous filter that can be more accurately centered within a vessel. The invention is also directed to a deployment and/or retrieval device for positioning a filter in a vessel.
Accordingly, one embodiment includes an expandable filter having multiple sets of centering legs. The orientation of the centering legs provides an elongated cylindrical area for more accurately centering the filter within a vessel. Alternatively, the filter may have elongated feet attached to the filter legs to more accurately center and stabilize the filter within a vessel.
Another embodiment includes a placement device for deploying, repositioning, or withdrawing a filter within a vessel. The placement device includes an inner elongate member and an outer sheath disposed about the inner elongate member. The inner elongate member is connected to a grasping member extending distal of the inner elongate member. The grasping member may be biased in an expanded configuration, but may be collapsed to engage a filter when the outer sheath is extending distally. Such a device may be used to deploy a filter within a vessel, reposition a filter within a vessel, or it may be used to extract a filter from a vessel. As used herein, manipulating a filter in a vessel includes deploying, repositioning, extracting, or the like.
Additional embodiments are contemplated as discussed in the detailed description of preferred embodiments. The enclosed embodiments are only illustrative, and are not intended to be exhaustive embodiments of the invention.
Brief Description of the Drawings
The invention may be more completely understood in consideration of the following detail description of various embodiments of the invention in connection with the accompanying drawings, in which:
Figure 1 is a plan view of an intravascular filter within the scope of the invention.
Figures 2A and 2B are plan views of exemplary intravascular filters within the scope of the invention.
Figures 2C-2F are plan views of a filter in accordance with the invention and means for deploying a filter within a vessel.
Figures 3A-3B are partial cross-sectional views of a filter deployment device and method within the scope of the invention.
Figure 4 is a cross-sectional view of a filter manipulation device in accordance with the invention.
Figure 5 is a cross-sectional view of a filter manipulation device in accordance with the invention.
Figure 6 is cross-sectional view of a filter manipulation device in accordance with the invention. Figure 6A is a cross-sectional view of the filter manipulation device in Fig. 6 taken along line 6A-6A.
Figure 7 is a cross-sectional view of a filter manipulation device in accordance with the invention.
Figure 7A is a cross-sectional view of the filter manipulation device in Fig. 7 taken along line IA-I A.
Figure 8 is a cross-sectional view of a filter and filter retrieval device within the scope of the invention.
Figures 9A-9C are cross-sectional views of a filter retrieval device within the scope of the invention.
Figures 10A- 1OC are plan views of illustrative embodiments of a filter retrieval device within the scope of the invention.
Figures 1 IA-I IB are cross-sectional views of a filter and filter retrieval device in accordance with the invention.
Figures 12-12A are plan views of a filter within the scope of the invention.
Figures 13-13A are cross-sectional views of a method for retrieving a filter in accordance with the invention.
Figures 14-14A are cross-sectional views of a method for retrieving a filter in accordance with the invention.
Detailed Description of Preferred Embodiments
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The detailed description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
Figure 1 shows one embodiment of an intravenous filter according to the invention. Filter 10 includes a tip 20 and multiple sets of legs 30, 40 extending from tip 20. Figure 1 depicts a filter having two sets of legs, but a filter having additional sets of legs is contemplated as being within the scope of the invention. Legs 40 are longer than legs 30, thereby creating a landing distance 50 between distal end 35 of legs 30 and distal end 45 of legs 40. The landing distance 50 may resemble a cylindrical wall between distal ends 35, 45 of legs 30, 40. The landing distance 50 provides an elongated planar surface for the filter 10 to engage the wall 60 of a vessel. By engaging the wall 60 at multiple distances from the filter tip 20, the filter 10 may be more accurately centered in a vessel. One set of legs may include securing hooks 55 at the distal end 35, 45 of legs 30, 40. Securing hooks 55 prevent the filter 10 from migrating downstream or tilting after deployment. Hooks 55 may comprise thermally reactive metals, such as shape memory alloys. Preferably, hooks may comprise a nickel-titanium alloy such as nitinol. Hooks 55 comprising a thermally reactive metal may be subjected to thermal energy, such as an electrical charge, non-invasive RF energy, or the like. Hooks 55 subjected to thermal energy may tend to straighten to facilitate disengagement from the vessel wall 60 during a filter retrieval process. As hooks 55 straighten as a result of subjecting them to a thermal energy source, hooks 55 lose their anchoring ability, therefore, allowing the filter 10 to be disengaged from the vessel.
Figure 2A shows another embodiment of the invention. Filter 90 includes a plurality of legs 92 extending from the tip 94. A longitudinal landing foot 95 is connected to each leg 92 at distal end 96. Landing feet 95 provide an elongated planar surface for the filter 90 to engage the wall 60 of a vessel. The elongated planar surface formed by the landing feet 95 may more accurately center the filter 90 in a vessel. A securing hook 55 may be disposed at the proximal end of each landing foot 95 in order to engage the vessel wall 60. Alternatively, securing hooks 55 may be disposed at the distal end of each landing foot 95 as shown in Figure 2B. The location of securing hooks 55 may be determined by the method of deployment or retrieval of the filter 90 from a vessel.
Figure 2C shows an alternate embodiment of the filter 90 of Figs. 2A, 2B. Filter 90 has centering feet 98 attached at distal ends 96 of legs 92. Centering feet 98 extend both proximally and distally from distal end 96 of legs 92. Centering feet 98 may provide a longer longitudinal distance for centering the filter 90 than feet 95. Centering feet 98 provide greater control for anchoring and centering the filter 90 within a vessel. Greater control is accomplished because centering feet 98 exit deployment sheath first, allowing for a gradual expansion of filter 90, as opposed to a sudden "jump" in expansion as is common with prior art filters. As shown in Figure 2D, prior to deployment centering feet 98 are substantially longitudinal with deployment sheath 99. As deployment sheath 99 is retracted proximally, feet 99 are moved distal of deployment sheath 99 and begin to tilt radially outward. As shown in Figure 2E, distal ends 97 of centering feet 98 engage vessel wall 60 initially. Because a portion of centering feet 98 remain contained within deployment sheath 99, the filter 90 does not rapidly expand, prior to engagement of centering feet 98 with the vessel wall 60. Deployment sheath 99 may then be further retracted proximally to release filter 90 within the vessel as shown in Figure 2F. Centering feet 98, thereafter, facilitate centering of filter 90 within the vessel as the filter 90 expands.
Figure 3 A shows a delivery device 100 for delivering a filter such as filter 10. Delivery device 100 includes an elongated shaft 110. Elongated shaft 110 has a distal segment 115 having an enlarged diameter relative to the portion of elongated shaft 110 proximate the distal segment 115. Distal segment 115 may include a shape memory polymer (SMP), such that when the SMP is subjected to a thermal energy source increasing its temperature above its glass transition temperature (Tg), the distal segment 115 may transform to a preformed shape. Such a preformed shape may have an expanded diameter. Filter 10 may be disposed within distal segment 115 prior to deployment. Push wire 118 may extend through elongated shaft 110 to filter 10. Push wire may abut filter 10 or may be releasably attached to filter 10. As shown in Figure 3B, the enlarged distal segment 115 may be subjected to a thermal energy source, allowing the distal segment 115 to be expanded to abut the wall 60 of a vessel prior to deployment of the filter 10. The expanded state of enlarged distal segment 115 allows the filter 10 to be partially expanded within the distal segment 115 prior to deployment within the vessel. Partially expanding the filter 10 in the distal segment 115 prior to deployment minimizes the additional amount ("jump") the filter 10 must expand after deploying the filter distal of the distal segment 115. By minimizing the jump the filter must undergo in order to engage the vessel wall 60, the filter 10 may be more precisely centered in the vessel.
Figure 4 shows a filter manipulation device 200 in accordance with the invention. Filter manipulation device 200 may be used as a delivery device, a repositioning device, or a retrieval device. Filter manipulation device 200 includes an outer sheath 210 and a push/pull wire 220 disposed within outer sheath 210. A first braided member 230 may be disposed about a portion of distal end of push/pull wire 220 and extend distally therefrom. Alternatively, first braided member 230 may be disposed adjacent to clip 240 and extend distally therefrom. The first braided member 230 may comprise a polymer, a metal, such as a stainless steel alloy, or the like. Some suitable materials may include stainless steels (e.g., 304v stainless steel), nickel-titanium alloys (e.g., nitinol, such as super elastic or linear elastic nitinol), nickel-chromium alloys, nickel-chromium-iron alloys (e.g., Inconel®), cobalt alloys, nickel, titanium, platinum, or alternatively, a polymer material such as a high performance polymer, or other suitable materials, and the like. Preferably, first braided member 230 may include a nickel-titanium alloy. The first braided member 230 may be braided in a one-over-one configuration, a two-over-one configuration, or the like.
First braided member 230 may substantially comprise a conical shape. A proximal portion of first braided member 230 may extend over distal end of push/pull wire 220, or may be secured to distal end of push/pull wire 220. First braided member 230 may be secured to the distal portion of push/pull wire 220 with a tubular sleeve. Tubular sleeve, may be heat shrink tubing, a polymer jacket, a metallic band, or the like. Preferably, first braided member 230 may be secured to push/pull wire 220 with a hypotube 245. Hypotube 245 may be an elongated metallic tube including a stainless steel or nickel-titanium alloy. Hypotube 245 may include a helical cut or a plurality of apertures formed in at least a portion of the hypotube 245.
First braided member 230 may be formed to be biased in an expanded configuration as shown in Figure 4, but may be contracted within outer sheath 210 by moving outer sheath 210 in the distal direction during a delivery or removal process. The first braided member 230 may abut filter 10 in an expanded configuration. The first braided member 230 may act as a wedge to capture the filter 10. Frictional forces between the first braided member 230 and the filter 10 hold the filter 10 adjacent the first braided member 230 and provide purchase during manipulation of the filter 10. Moving outer sheath 210 in the distal direction allows the distal end 212 of outer sheath 210 to contact the first braided member 230, such that braided member 230 is compressed at least partially within outer sheath 210. Braided member 230 provides sufficient purchase of the filter 10 due to the frictional contact between the interface of the first braided member 230 and filter 10. The purchase created by the frictional contact is sufficient to allow the manipulation device 200 to maneuver and position the filter 10. As outer sheath 210 is moved in the distal direction, first braided member 230 collapses filter 10 to a collapsed state sufficient to retain filter 10 within outer sheath 210.
The distal end of push/pull wire 220 may include a clip 240, preferably comprising a nickel-titanium alloy, such as nitinol. Clip 240 may be formed such as by heat setting with a curved shape so as to open as the outer sheath 210 is retracted proximally. Clip 240 may be a substantially conical shaped. Clip 240 may be formed to extend over and grasp the tip 20 of a filter 10. Clip 240 may be secured to push/pull wire 220 by a sleeve, heat shrink member, adhesive, welding, or any other ways known in the art. Preferably, clip 240 is secured to push/pull wire 220 with a tubular member comprising a polymer or metallic alloy. Preferably clip 240 is secured to push/pull wire 220 with hypotube 245. Clip 240 may contact the tip 20 of filter 10 as outer sheath 210 is extended distally. Clip 240 may collapse and securely encompass tip 20 once outer sheath 210 is extended distally. Frictional contact with filter 10 created by clip 240 and/or first braided member 230 may allow manipulation of filter 10 within a vessel.
Outer sheath 210 may be partially retracted proximally, allowing first braided member 230 to expand partially. Partially expanded first braided member 230 is thus disengaged from the filter 10, while clip 240 remains secured about tip 20 of filter 10 due to the continued engagement of outer sheath 210 about clip 240. Thus, the operator may continue to control the position of the filter 10 prior to retracting outer sheath 210 fully. Once filter 10 has been positioned in a vessel, outer sheath 210 may then be retracted fully, disengaging manipulation device 200 from filter 10.
Figure 5 shows an alternate embodiment of manipulation device 200. Manipulation device 200 may optionally include second braided member 250 disposed about push/pull wire 220 and extending distally therefrom. Second braided member 250 may be included instead of or in addition to clip 240. Similar to clip 240, second braided member 250 may engage filter tip 20 as outer sheath 210 is extended distally. Frictional forces between second braided member 250 and filter tip 20 may hold filter 10 adjacent to manipulation device 200. Second braided member 250 may extend substantially the length of hypotube 245, or second braided member 250 may extend a portion thereof. First braided member 230 may be disposed adjacent to second braided member 250 and may also extend substantially the length of hypotube 245, or a portion thereof.
As shown in Figure 6, manipulation device 200 may include an inflatable balloon 260 disposed about a distal portion of outer sheath 210. Inflatable balloon 260 may be a single balloon disposed concentrically about outer sheath 210 or may comprise a plurality of lobes 265. As shown in Figure 6A, balloon 260 may comprise four inflatable lobes 265 spaced equidistantly about outer sheath 210, i.e., at 90 degree intervals. Inflatable balloon 260 may be inflated through catheter inflation port (not shown) to center the manipulation device 200 within a body vessel. Centering the manipulation device 200 within a body vessel may facilitate centering the filter 10 during a delivery process or capturing the filter 10 during a retrieval process. The use of balloon 260 having a plurality of lobes 265 allows for continued blood flow through the vessel while the balloon 260 is inflated.
Alternatively, as shown in Figure 7, manipulation device 200 may include a plurality of wires 270. As shown in Figure 7A, manipulation device 200 may include a plurality of wires 270 spaced about outer sheath 210. Preferably, manipulation device 200 includes four wires 270 spaced equidistantly about outer sheath 210, i.e., at 90 degree intervals. Wires 270 may have a circular cross-section or may be substantially flat. Wires 270 may comprise a polymer, a metal, or the like. Preferably, wires 270 comprise a nickel-titanium alloy, such as nitinol. Wires 270 preferably are heat set in a curved shape such that wires 270 abut the vessel wall 60 when in an open position. An actuation rod (not shown) extending through the catheter may be used to direct the wires 270 between an open and a closed position. Alternatively, wires 270 may be actuated to an opened position by exposing wires to a thermal energy source, such as an electrical charge, RF heating, or the like. Wires 270, similar to balloon 260, may facilitate centering the manipulation device 200 within the vessel wall 60 during a filter manipulation process. Wires 270 allow for continued blood flow through the vessel while the wires 270 are in an open position.
Figure 8 shows an alternate embodiment of a filter retrieval device in accordance with the invention. Filter 300 includes a tip 320 having a lumen 310 extending therethrough. As shown in Figure 8, lumen 310 may include a step-wise transition in diameter within the tip 320. An elongate shaft 330 having an expandable member 340 disposed at the distal end thereof may be extended through the lumen 310. A stop 315 may be disposed about elongate shaft 330 at a predetermined distance from expandable member 340. Stop 315 may be positioned such that stop 315 abuts the tip 320 just as expandable member 340 extends past the step-wise transition of lumen 310. Therefore, an operator may know the expandable member 340 is correctly positioned relative to the filter 300 during a retrieval process when the operator feels the stop 315 abut the tip 320 of filter 300.
As shown in Figure 8, the expandable member 340 may be an inflatable balloon. Expandable member 340 may include a protective material 345 at the proximal end of expandable member 340. The protective material 345 may create a barrier between the expandable member 340 and the filter tip 320, thus protective material 345 may enhance the durability of expandable member 340. The protective material 345 may be conical shaped, pedal shaped, or the like, and may comprise a metal or polymer.
After the elongate shaft 330 and expandable member 340 are extended through the lumen 310, the expandable member may be expanded. Once in an expanded state, the elongate shaft may be pulled proximally, thereby shifting the filter in the proximal direction during a filter retrieval process.
An alternate embodiment of a retrieval device within the scope of the current invention is shown in Figures 9A, 9B and 9C. Retrieval device 400 may include an elongate shaft 405 and an outer sheath 410. Elongate shaft 405 may be disposed in outer sheath 410. Distal portion 415 of elongate shaft 405 may include grasping tongs 420, such as forceps or pincers. Preferably, tongs 420 may be an integral portion of elongate shaft 405. Preferably, tongs 420 may be laser cut in the distal portion 415 of elongate shaft 405. Tongs 420 may include a plurality of appendages 425. As shown more clearly in Figure 9C, tongs 420 may include three equidistantly spaced appendages 425. Tongs 420 may comprise a polymer, a metal, or the like. Appendages 425 preferably are biased in an open position as shown in Figure 9B. Appendages 425 may be biased in an open position during a heat set process, such as steam setting. Appendages 425 may have an abrasive surface such as ridges 427 and grooves 428 to facilitate griping a filter such as filter 10.
During a filter retrieval process, tongs 420 are collapsed in outer sheath 410 and delivered near the filter 10. Outer sheath 410 is then retracted proximally, thereby allowing tongs 420 to extend distal of the outer sheath 410. Once appendages 425 are exposed from outer sheath 410, appendages 425 expand to their biased open position. Tongs 420 are then moved over filter 10. Outer sheath 410 is then extended distally over tongs 420 forcing tongs 420 to collapse around filter 10. Preferably, tongs 420 collapse around tip 20. Outer sheath 410 prevents tongs 420 from expanding, therefore retaining the filter 10. The elongate shaft 400 and outer sheath 410 may then be retracted from the vessel, wherein tongs 420 retain filter 10.
Figures 10A- 1OC illustrate another retrieval device 500 in accordance with the invention. Instead of tongs, retrieval device 500 may include an elongate shaft 505 having a grasping member such as loop 515, shepherd's hook 525 or atraumatic hook 535 for grasping a filter. A filter such as filter 550 may include a tip 555 having mating geometry adapted to receive the grasping member of retrieval device 500. Such mating geometry may include a hook 560, 565. Elongate shaft 505 may be extended through a vessel to filter 550. Grasping member, such as loop 515, is positioned to mate with and grasp filter 550 by hook 560, 565. Elongate shaft 505 may then be retracted, withdrawing filter 550 from the vessel. Grasping members such as shown in Figures 10A- 1OC provide an operator with a greater margin of error in directing a retrieval device to a filter.
Another illustrative retrieval device is shown in Figures 1 IA-I IB. Retrieval device 600 may include an outer sheath 610 and an elongate shaft 620. Elongate shaft 620 may include a clasp 630 disposed at the distal end of elongate shaft 620. Preferably, clasp 630 may be formed as an integral portion of elongate shaft 620. Clasp may include a plurality of appendages 635 laser cut about the circumference of elongate shaft 620. Appendages 635 include locking geometry such as barbs 640. Barbs 640 include a ramp 642 and a shelf 644. Filter 650 may include a tip 660 having complimentary interlocking geometry. Tip 660 may include a lumen 665 having a beveled surface 668. Lumen 665 may have an enlarged diameter portion creating a lip 667.
During a filter retrieval process, retrieval device 600 may be advanced through a vessel to a position proximate the filter 650. Elongate shaft 620 may then be advanced distally to encounter filter 650. Ramps 642 of barbs 640 may contact bevel 668. Continued distal advancement of the elongate shaft 620 causes the appendages 635 to compress inwardly due to the sloping geometry of the bevel 668 and ramps 642. As the barbs 640 advance distal of lip 667, appendages 635 expand outwardly. The shelf 644 of barbs 640 mate with lip 667, thereby locking the filter 650 to elongate shaft 620 as shown in Figure 1 IB. The interlocking geometry prevents filter 650 from disengaging with elongate shaft 620. Therefore, filter 650 may be withdrawn from a vessel by retracting the retrieval device 600 proximally.
Figure 12 illustrates a filter 700 having geometry to facilitate removal from a vessel. Filter 700 includes a plurality of legs 710 extending from a tip 720. Legs 710 have a protrusion 715 disposed at their distal end. As is more clearly shown in Figure 12A, protrusion 715 may resemble a ramp 717 having a tapered angle and an apex 718. Protrusion 715 securely anchors filter to a vessel wall upon deployment within a vessel, while protrusion 715 subsequently may facilitate removal or repositioning filter 700. The protrusion 715 causes minimal amounts of trauma to the vessel wall due to its ramp shape. During a removal or repositioning process, an elongate sheath 730 may be advanced within the vessel to the filter 700 as shown in Figure 13. The distal end 731 of elongate sheath 730 abuts the ramp 717 of protrusion 715. As the elongate sheath 730 is advanced distally, the distal end 731 of elongate sheath 730 urges the protrusion 715 inward to disengage the protrusion 715 from the wall 60 as shown in Figure 13 A. Because the protrusion 715 does not include a hook or barb, the legs 710 may be disengaged from the wall 60 with minimal injury to the vessel wall 60.
Another embodiment of a filter designed for easy removal is shown in Figure 14A. Filter 800 includes a plurality of legs 810 extending distally from tip 820. Legs 810 include a longitudinal base portion 830 extending from the distal end 815 of legs 810. Longitudinal base portion 830 may extend either proximal or distal of distal end 815 of legs 810 or may extend in both the proximal and distal directions. Longitudinal base portion 830 helps center filter 800 within vessel wall 60, and also helps urge distal end 815 of legs 810 away from vessel wall 60 during a retrieval process. Securing hooks 825 may be attached to legs 810 at apex 835 where legs 810 adjoin longitudinal base portion 830. Securing hooks 825 may help anchor filter 800 to vessel wall 60 after deployment of filter 800.
Figure 14B shows how longitudinal base portion 830 facilitates removal of filter 800 from a vessel. An elongate shaft 850 may be extended distally to filter 800. The distal end 855 of elongate shaft 850 may be positioned over filter tip 820 and then moved distally. Distal end 855 engages legs 810, forcing legs 810 inward. Meanwhile, longitudinal base portion 830 acts as a lever pivoting at fulcrum point 860 to facilitate disengagement of hooks 825 from vessel wall 60. The dual action of longitudinal base portion 830 and inward movement of legs 810 disengages hooks 825 from the vessel wall 60. Filter 800 may then be safely removed from or repositioned in the vessel.
Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present invention as described in the appended claims.

Claims

What we claim is:
1. An intravascular filter placement system comprising: a filter having a tip and a plurality of legs extending radially outward from the tip, and a filter manipulation device including an outer elongate member having a proximal end, a distal end and a lumen extending therethrough and an inner elongate member disposed in at least a portion of the lumen having a proximal end and a distal end, wherein the inner elongate member includes an expandable generally tubular grasping portion for grasping the filter during a filter manipulation process.
2. The intravascular filter placement system of claim 1 , wherein the expandable member is biased in an expanded position.
3. The intravascular filter placement system of claim 2, wherein the expandable member is a braided member.
4. The intravascular filter placement system of claim 3, wherein the braided member is conical shaped.
5. The intravascular filter placement system of claim 2, wherein the expandable member is a plurality of gripping members integrally formed in the distal end of the inner elongate member.
6. The intravascular filter placement system of claim 5, wherein the inner elongate member is a polymer, wherein the plurality of gripping members are heat set in the expanded position.
7. The intravascular filter placement system of claim 1 , wherein the expandable member is an enlarged diameter portion of the inner elongate member.
8. The intravascular filter placement system of claim 1 , wherein the outer elongate member includes a means for centering the outer elongate member in a vessel.
9. The intravascular filter placement system of claim 8 wherein the means for centering the outer elongate member is an inflatable balloon.
10. The intravascular filter placement system of claim 9, wherein the inflatable balloon includes a plurality of lobes.
11. The intravascular filter placement system of claim 8, wherein the means for centering the outer elongate member includes a plurality of wires including a shape memory alloy.
12. A filter manipulation device comprising: an elongate shaft having a proximal end, a distal end and a lumen extending therethrough, a core wire having a proximal end and a distal end disposed within at least a portion of the lumen of the elongate shaft, and a braided member disposed about the distal end of the core wire and extending distally therefrom.
13. The filter manipulation device of claim 12, wherein the braided member has a conical shape.
14. The filter manipulation device of claim 13 , wherein the braided member is biased in an expanded position.
15. The filter manipulation device of claim 12, further comprising a sleeve disposed at the distal end of the core wire, the sleeve securing the braided member to the core wire.
16. The filter manipulation device of claim 15, wherein the sleeve is a hypotube.
17. The filter manipulation device of claim 12, further comprising a clip disposed within a portion of the braided member and secured to the core wire.
18. The filter manipulation device of claim 12, further comprising a means for centering the elongate shaft within a vessel.
19. The filter manipulation device of claim 18, wherein the means for centering the elongate shaft is an inflatable member.
20. The filter manipulation device of claim 19, wherein the inflatable member has a plurality of lobes.
21. The filter manipulation device of claim 18, wherein the means for centering the elongate shaft is a plurality of wires.
22. The filter manipulation device of claim 21 , wherein the plurality of wires include a shape memory alloy.
23. The filter manipulation device of claim 12, further comprising a second braided member, wherein the second braided member is disposed within a portion of the braided member and secured to the core wire.
24. An intravascular filter having a central longitudinal axis, wherein the filter has an expanded position and a contracted position, the filter comprising: a plurality of legs having a proximal end and a distal end, the plurality of legs biased in the expanded position wherein the proximal end of the legs has a common apex at the central longitudinal axis and the distal end of the legs extends radially outward from the central longitudinal axis, a tip disposed at the apex of the plurality of legs, and a plurality of feet connected to the distal end of the plurality of legs.
25. The intravascular filter of claim 24, wherein the plurality of feet include longitudinal feet for centering the filter.
26. The intravascular filter of claim 25, wherein the longitudinal feet extend from the distal end of the plurality of legs to a point proximal of the distal end of the legs.
27. The intravascular filter of claim 25, wherein the longitudinal feet have a proximal end and a distal end, wherein the longitudinal feet are connected to the distal end of the plurality of legs at a point intermediate the proximal and distal ends of the longitudinal feet.
28. The intravascular filter of claim 25, further comprising a plurality of anchoring hooks disposed on the plurality of longitudinal feet.
29. The intravascular filter of claim 28, wherein the plurality of feet include a wedge to facilitate disengagement from a vessel wall.
PCT/US2006/003939 2005-02-16 2006-02-06 Improved filter with positioning and retrieval devices and methods WO2006088671A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007556168A JP4870692B2 (en) 2005-02-16 2006-02-06 Improved filter and method with positioning device and recovery device
EP06720259.8A EP1850788B1 (en) 2005-02-16 2006-02-06 Improved filter's positioning and retrieval devices
ES06720259T ES2410595T3 (en) 2005-02-16 2006-02-06 Enhanced filter positioning and recovery devices
CA002597911A CA2597911A1 (en) 2005-02-16 2006-02-06 Improved filter with positioning and retrieval devices and methods
DK06720259.8T DK1850788T3 (en) 2005-02-16 2006-02-06 IMPROVED FILTER POSITIONING AND RECOVERY DEVICES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/058,856 US7993362B2 (en) 2005-02-16 2005-02-16 Filter with positioning and retrieval devices and methods
US11/058,856 2005-02-16

Publications (2)

Publication Number Publication Date
WO2006088671A2 true WO2006088671A2 (en) 2006-08-24
WO2006088671A3 WO2006088671A3 (en) 2006-12-07

Family

ID=36337355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/003939 WO2006088671A2 (en) 2005-02-16 2006-02-06 Improved filter with positioning and retrieval devices and methods

Country Status (7)

Country Link
US (1) US7993362B2 (en)
EP (1) EP1850788B1 (en)
JP (1) JP4870692B2 (en)
CA (1) CA2597911A1 (en)
DK (1) DK1850788T3 (en)
ES (1) ES2410595T3 (en)
WO (1) WO2006088671A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509806A (en) * 2008-01-24 2011-03-31 メドトロニック,インコーポレイテッド Delivery system and method for implantation of a prosthetic heart valve

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314477B1 (en) 1998-09-25 2008-01-01 C.R. Bard Inc. Removable embolus blood clot filter and filter delivery unit
US9204956B2 (en) 2002-02-20 2015-12-08 C. R. Bard, Inc. IVC filter with translating hooks
US7704267B2 (en) 2004-08-04 2010-04-27 C. R. Bard, Inc. Non-entangling vena cava filter
US7967838B2 (en) 2005-05-12 2011-06-28 C. R. Bard, Inc. Removable embolus blood clot filter
EP1912696A1 (en) 2005-08-09 2008-04-23 C.R.Bard, Inc. Embolus blood clot filter and delivery system
CA2940038C (en) 2005-11-18 2018-08-28 C.R. Bard, Inc. Vena cava filter with filament
US20100256669A1 (en) * 2005-12-02 2010-10-07 C.R. Bard, Inc. Helical Vena Cava Filter
EP1965851A2 (en) 2005-12-30 2008-09-10 C.R.Bard, Inc. Embolus blood clot filter delivery system
WO2007079415A2 (en) * 2005-12-30 2007-07-12 C.R. Bard Inc. Embolus blood clot filter removal system and method
WO2007133366A2 (en) 2006-05-02 2007-11-22 C. R. Bard, Inc. Vena cava filter formed from a sheet
US9326842B2 (en) 2006-06-05 2016-05-03 C. R . Bard, Inc. Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access
US20070299461A1 (en) * 2006-06-21 2007-12-27 Boston Scientific Scimed, Inc. Embolic coils and related components, systems, and methods
WO2008088835A1 (en) * 2007-01-18 2008-07-24 Valvexchange Inc. Tools for removal and installation of exchangeable cardiovascular valves
US8795351B2 (en) 2007-04-13 2014-08-05 C.R. Bard, Inc. Migration resistant embolic filter
EP2148718A1 (en) * 2007-05-23 2010-02-03 Interventional & Surgical Innovations, LLC Vein filter
EP2182860A4 (en) 2007-08-21 2013-07-24 Valvexchange Inc Method and apparatus for prosthetic valve removal
US8114116B2 (en) * 2008-01-18 2012-02-14 Cook Medical Technologies Llc Introduction catheter set for a self-expandable implant
US8246649B2 (en) * 2008-03-19 2012-08-21 Schneider M Bret Electrostatic vascular filters
EP2331015A1 (en) * 2008-09-12 2011-06-15 ValveXchange Inc. Valve assembly with exchangeable valve member and a tool set for exchanging the valve member
MX2012001288A (en) 2009-07-29 2012-06-19 Bard Inc C R Tubular filter.
US20110040321A1 (en) * 2009-08-11 2011-02-17 Angiodynamics, Inc. Retrieval Device and Method of Use
EP2560589B1 (en) 2010-04-23 2018-06-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
CN106377312B (en) * 2010-10-25 2019-12-10 美敦力Af卢森堡有限责任公司 Microwave catheter apparatus, systems, and methods for renal neuromodulation
US10010437B2 (en) 2011-10-17 2018-07-03 W. L. Gore & Associates, Inc. Endoluminal device retrieval devices and related systems and methods
JP6177307B2 (en) * 2012-03-29 2017-08-09 スパイレーション インコーポレイテッド ディー ビー エイ オリンパス レスピラトリー アメリカ MEDICAL DEVICE AND MEDICAL SYSTEM FOR TREATING A PARTICLE AND METHOD OF USING THE SAME
US11134981B2 (en) * 2012-03-29 2021-10-05 Gyrus Acmi, Inc. Pulmonary nodule access devices and methods of using the same
AU2013363667B2 (en) * 2012-12-19 2017-08-03 Muffin Incorporated Apparatus and method for the retrieval of an intravascular filter
US9844395B2 (en) 2013-03-14 2017-12-19 Cook Medical Technologies Llc Umbrella inferior vena cava filter retrieval device
US9486303B2 (en) * 2013-03-14 2016-11-08 Cook Medical Technologies Llc Implantable medical device retrieval system, apparatus, and method
US9248037B2 (en) * 2013-03-15 2016-02-02 Cook Medical Technologies Llc Automatic wireless medical device release mechanism
AU2014277922B2 (en) 2013-06-14 2019-01-31 Avantec Vascular Corporation Inferior Vena Cava filter and retrieval systems
US10010398B2 (en) 2013-10-01 2018-07-03 Cook Medical Technologies Llc Filter device, system, and method
WO2015143432A1 (en) * 2014-03-21 2015-09-24 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Conductive and retrievable devices
WO2016073530A1 (en) 2014-11-04 2016-05-12 Avantec Vascular Corporation Catheter device with longitudinally expanding interior components for compressing cancellous bone
US10278804B2 (en) * 2014-12-12 2019-05-07 Avantec Vascular Corporation IVC filter retrieval systems with releasable capture feature
WO2016094676A1 (en) * 2014-12-12 2016-06-16 Avantec Vascular Corporation Ivc filter retrieval systems with interposed support members
CN108697497A (en) * 2015-12-10 2018-10-23 阿万泰血管公司 IVC filter recovery system sheaths improve
EP3386433A4 (en) * 2015-12-10 2019-09-25 Avantec Vascular Corporation Ivc filter retrieval systems with multiple capture modes
US10765502B2 (en) * 2016-10-03 2020-09-08 3Dt Holdings, Llc Blood filter devices, systems, and methods of using the same to detect the presence of a thrombus within said filter devices
WO2018118939A1 (en) 2016-12-22 2018-06-28 Avantec Vascular Corporation Systems, devices, and methods for retrieval systems having a tether
CN107468373A (en) * 2017-08-28 2017-12-15 科塞尔医疗科技(苏州)有限公司 A kind of double release sheath vena cava filter release devices and release recovery method
EP3813739A4 (en) 2018-06-29 2022-04-13 Avantec Vascular Corporation Systems and methods for implants and deployment devices
CN113180881A (en) * 2021-06-04 2021-07-30 上海蓝脉医疗科技有限公司 Medical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147379A (en) * 1990-11-26 1992-09-15 Louisiana State University And Agricultural And Mechanical College Insertion instrument for vena cava filter
US5407243A (en) * 1993-12-10 1995-04-18 Riemann; Mathew W. Tick removing device
US6338735B1 (en) * 1991-07-16 2002-01-15 John H. Stevens Methods for removing embolic material in blood flowing through a patient's ascending aorta
US20030181945A1 (en) * 2002-03-15 2003-09-25 Nmt Medical, Inc. Coupling system useful in placement of implants
US20040225322A1 (en) * 2003-03-19 2004-11-11 Garrison Michael L. Delivery systems and methods for deploying expandable intraluminal medical devices

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US600118A (en) * 1898-03-01 Charles
US4643184A (en) 1982-09-29 1987-02-17 Mobin Uddin Kazi Embolus trap
FR2606641B1 (en) 1986-11-17 1991-07-12 Promed FILTERING DEVICE FOR BLOOD CLOTS
US4832055A (en) 1988-07-08 1989-05-23 Palestrant Aubrey M Mechanically locking blood clot filter
US4969891A (en) 1989-03-06 1990-11-13 Gewertz Bruce L Removable vascular filter
US5242462A (en) 1989-09-07 1993-09-07 Boston Scientific Corp. Percutaneous anti-migration vena cava filter
US5504646A (en) * 1989-10-13 1996-04-02 Hitachi, Ltd. Magnetic disk including protective layer having surface with protusions and magnetic disk apparatus including the magnetic disk
GB2238485B (en) 1989-11-28 1993-07-14 Cook William Europ A collapsible filter for introduction in a blood vessel of a patient
US5071407A (en) 1990-04-12 1991-12-10 Schneider (U.S.A.) Inc. Radially expandable fixation member
US5221261A (en) 1990-04-12 1993-06-22 Schneider (Usa) Inc. Radially expandable fixation member
FR2663217B1 (en) 1990-06-15 1992-10-16 Antheor FILTERING DEVICE FOR THE PREVENTION OF EMBOLIES.
DE69222156T2 (en) 1991-03-14 1998-04-02 Ethnor Pulmonary embolism filter and kit for presenting and inserting the same
US5626605A (en) 1991-12-30 1997-05-06 Scimed Life Systems, Inc. Thrombosis filter
US6059825A (en) 1992-03-05 2000-05-09 Angiodynamics, Inc. Clot filter
US5413588A (en) * 1992-03-06 1995-05-09 Urologix, Inc. Device and method for asymmetrical thermal therapy with helical dipole microwave antenna
US5324304A (en) 1992-06-18 1994-06-28 William Cook Europe A/S Introduction catheter set for a collapsible self-expandable implant
US5836868A (en) 1992-11-13 1998-11-17 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
WO1995009567A1 (en) 1993-10-01 1995-04-13 Boston Scientific Corporation Improved vena cava filter
US5853420A (en) 1994-04-21 1998-12-29 B. Braun Celsa Assembly comprising a blood filter for temporary or definitive use and device for implanting it, corresponding filter and method of implanting such a filter
US5601595A (en) 1994-10-25 1997-02-11 Scimed Life Systems, Inc. Remobable thrombus filter
US6214025B1 (en) 1994-11-30 2001-04-10 Boston Scientific Corporation Self-centering, self-expanding and retrievable vena cava filter
NL1003497C2 (en) 1996-07-03 1998-01-07 Cordis Europ Catheter with temporary vena-cava filter.
US5669933A (en) 1996-07-17 1997-09-23 Nitinol Medical Technologies, Inc. Removable embolus blood clot filter
US6066158A (en) 1996-07-25 2000-05-23 Target Therapeutics, Inc. Mechanical clot encasing and removal wire
US6391044B1 (en) 1997-02-03 2002-05-21 Angioguard, Inc. Vascular filter system
US5814064A (en) 1997-03-06 1998-09-29 Scimed Life Systems, Inc. Distal protection device
US5827324A (en) 1997-03-06 1998-10-27 Scimed Life Systems, Inc. Distal protection device
FR2767121B1 (en) * 1997-08-05 1999-10-29 Jean Michel Chabout DISTRIBUTOR OF DRUGS
US6066149A (en) 1997-09-30 2000-05-23 Target Therapeutics, Inc. Mechanical clot treatment device with distal filter
ATE382309T1 (en) 1997-11-07 2008-01-15 Salviac Ltd EMBOLIC PROTECTION DEVICE
US6443972B1 (en) 1997-11-19 2002-09-03 Cordis Europa N.V. Vascular filter
US5984947A (en) 1998-05-04 1999-11-16 Scimed Life Systems, Inc. Removable thrombus filter
US6342062B1 (en) * 1998-09-24 2002-01-29 Scimed Life Systems, Inc. Retrieval devices for vena cava filter
US6007558A (en) 1998-09-25 1999-12-28 Nitinol Medical Technologies, Inc. Removable embolus blood clot filter
US6171327B1 (en) 1999-02-24 2001-01-09 Scimed Life Systems, Inc. Intravascular filter and method
US6231589B1 (en) 1999-03-22 2001-05-15 Microvena Corporation Body vessel filter
US6156055A (en) * 1999-03-23 2000-12-05 Nitinol Medical Technologies Inc. Gripping device for implanting, repositioning or extracting an object within a body vessel
US6179859B1 (en) 1999-07-16 2001-01-30 Baff Llc Emboli filtration system and methods of use
US6544279B1 (en) 2000-08-09 2003-04-08 Incept, Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
US6589263B1 (en) 1999-07-30 2003-07-08 Incept Llc Vascular device having one or more articulation regions and methods of use
US6214026B1 (en) 1999-07-30 2001-04-10 Incept Llc Delivery system for a vascular device with articulation region
US6346116B1 (en) 1999-08-03 2002-02-12 Medtronic Ave, Inc. Distal protection device
US6251122B1 (en) * 1999-09-02 2001-06-26 Scimed Life Systems, Inc. Intravascular filter retrieval device and method
US6146404A (en) 1999-09-03 2000-11-14 Scimed Life Systems, Inc. Removable thrombus filter
US6187025B1 (en) 1999-09-09 2001-02-13 Noble-Met, Ltd. Vascular filter
US6325815B1 (en) 1999-09-21 2001-12-04 Microvena Corporation Temporary vascular filter
US6364895B1 (en) 1999-10-07 2002-04-02 Prodesco, Inc. Intraluminal filter
US6375670B1 (en) 1999-10-07 2002-04-23 Prodesco, Inc. Intraluminal filter
US6540722B1 (en) 1999-12-30 2003-04-01 Advanced Cardiovascular Systems, Inc. Embolic protection devices
US6540768B1 (en) 2000-02-09 2003-04-01 Cordis Corporation Vascular filter system
US6602271B2 (en) 2000-05-24 2003-08-05 Medtronic Ave, Inc. Collapsible blood filter with optimal braid geometry
US6468290B1 (en) 2000-06-05 2002-10-22 Scimed Life Systems, Inc. Two-planar vena cava filter with self-centering capabilities
US6558405B1 (en) 2000-08-29 2003-05-06 Advanced Cardiovascular Systems, Inc. Embolic filter
US6616684B1 (en) * 2000-10-06 2003-09-09 Myocor, Inc. Endovascular splinting devices and methods
US6616680B1 (en) 2000-11-01 2003-09-09 Joseph M. Thielen Distal protection and delivery system and method
US6692458B2 (en) * 2000-12-19 2004-02-17 Edwards Lifesciences Corporation Intra-pericardial drug delivery device with multiple balloons and method for angiogenesis
US6569184B2 (en) 2001-02-27 2003-05-27 Advanced Cardiovascular Systems, Inc. Recovery system for retrieving an embolic protection device
US6596011B2 (en) 2001-06-12 2003-07-22 Cordis Corporation Emboli extraction catheter and vascular filter system
AU2002312441B8 (en) * 2001-06-18 2008-08-21 Rex Medical, L.P. Vein Filter
US6623506B2 (en) 2001-06-18 2003-09-23 Rex Medical, L.P Vein filter
US7658747B2 (en) * 2003-03-12 2010-02-09 Nmt Medical, Inc. Medical device for manipulation of a medical implant
US8231649B2 (en) * 2004-01-20 2012-07-31 Boston Scientific Scimed, Inc. Retrievable blood clot filter with retractable anchoring members

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147379A (en) * 1990-11-26 1992-09-15 Louisiana State University And Agricultural And Mechanical College Insertion instrument for vena cava filter
US6338735B1 (en) * 1991-07-16 2002-01-15 John H. Stevens Methods for removing embolic material in blood flowing through a patient's ascending aorta
US5407243A (en) * 1993-12-10 1995-04-18 Riemann; Mathew W. Tick removing device
US20030181945A1 (en) * 2002-03-15 2003-09-25 Nmt Medical, Inc. Coupling system useful in placement of implants
US20040225322A1 (en) * 2003-03-19 2004-11-11 Garrison Michael L. Delivery systems and methods for deploying expandable intraluminal medical devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509806A (en) * 2008-01-24 2011-03-31 メドトロニック,インコーポレイテッド Delivery system and method for implantation of a prosthetic heart valve

Also Published As

Publication number Publication date
EP1850788B1 (en) 2013-05-22
JP2008529722A (en) 2008-08-07
EP1850788A2 (en) 2007-11-07
CA2597911A1 (en) 2006-08-24
US20060184193A1 (en) 2006-08-17
ES2410595T3 (en) 2013-07-02
WO2006088671A3 (en) 2006-12-07
JP4870692B2 (en) 2012-02-08
US7993362B2 (en) 2011-08-09
DK1850788T3 (en) 2013-07-29

Similar Documents

Publication Publication Date Title
US7993362B2 (en) Filter with positioning and retrieval devices and methods
EP1718242B1 (en) Centering intravascular filters
US20180008393A1 (en) Embolus blood clot filter removal system and method
US7534251B2 (en) Retrievable IVC filter
US9055996B2 (en) Method of retrieving a blood clot filter
US20060015137A1 (en) Retrievable intravascular filter with bendable anchoring members
US20060203769A1 (en) Intravascular filter with centering member
CA2460043A1 (en) Intravascular devices, retrieval systems, and corresponding methods
EP2816969B1 (en) Vascular filter
JP6553939B2 (en) Insertion method of vein filter
EP2768427B1 (en) Femoral removal vena cava filter
EP2708207B1 (en) Vena cava filter with dual retrieval
US9724184B2 (en) Filter with deployable anchors
JP4767870B6 (en) Intravascular filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006720259

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2597911

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007556168

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE