WO2006090433A1 - Hydrogen gas sensor and process for producing the same - Google Patents

Hydrogen gas sensor and process for producing the same Download PDF

Info

Publication number
WO2006090433A1
WO2006090433A1 PCT/JP2005/002796 JP2005002796W WO2006090433A1 WO 2006090433 A1 WO2006090433 A1 WO 2006090433A1 JP 2005002796 W JP2005002796 W JP 2005002796W WO 2006090433 A1 WO2006090433 A1 WO 2006090433A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen gas
heating resistor
platinum
gas sensor
resistor
Prior art date
Application number
PCT/JP2005/002796
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Koda
Original Assignee
Fis Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fis Inc. filed Critical Fis Inc.
Priority to JP2007504568A priority Critical patent/JP4571665B2/en
Priority to PCT/JP2005/002796 priority patent/WO2006090433A1/en
Publication of WO2006090433A1 publication Critical patent/WO2006090433A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas

Definitions

  • the present invention relates to a hydrogen gas sensor that detects hydrogen gas.
  • a combustible gas is detected by dispersing a catalyst such as platinum or palladium in a bead-shaped porous combustor and detecting the reaction heat generated when the combustible gas is burned using a catalyst.
  • a contact combustion type gas sensor adapted to detect the above.
  • Fig. 12 shows a conventional gas sensor disclosed in Japanese Patent Publication No. 90210 (hereinafter referred to as “gazette”).
  • the gas sensor 20 includes a combustor 21 that combusts a combustible gas, and a heating resistor 22 that heats the combustor 21 with Joule heat that is generated in response to conduction.
  • the combustor 21 is formed of an insulator such as alumina in a bead shape and contains a catalyst such as palladium or platinum.
  • the heating resistor 22 is mainly made of a platinum wire having a high temperature resistance coefficient.
  • the heating resistor 22 is wound in a coil shape, and a portion wound in the coil shape is embedded in the combustion body 21.
  • a substantially constant current is passed through the heating resistor 22, and the combustor 21 is heated to a constant temperature by Joule heat generated in the heating resistor 22.
  • the temperature of the heating resistor 22 rises due to the heat of combustion, and the resistance value of the heating resistor 22 changes.
  • Power to put out S That is, as shown in FIG. 13, the gas sensor 20, the compensation element 23, and the fixed resistors 24 and 25 form a bridge circuit, and the voltage Vc between the output terminals c and d of the bridge circuit is measured to measure the heating resistor 22 The resistance value change is obtained, and combustible degenerate gas is detected from this resistance value change.
  • the compensation element 23 is composed of a heating resistor and a bead-like insulator as in the gas sensor 20, and has a temperature characteristic and a humidity characteristic substantially the same as those of the gas sensor 20, and a combustible gas is applied to the force insulator. It does not react with combustible gas because it does not contain a catalyst to be burned. Shown in Figure 13 In the bridge circuit, a series circuit of the gas sensor 20 and the compensation element 23 and a series circuit of the fixed resistors 24 and 25 are connected between the terminals a and b, respectively.
  • variable resistor 26 for balance adjustment is connected between terminals a and b, and an intermediate tap of the variable resistor 26 is connected to the midpoint of the fixed resistors 24 and 25.
  • DC power supply E1 is connected between terminals a and b via variable resistor 27 and switch SW, and the voltage applied between terminals a and b is adjusted by adjusting the resistance value of variable resistor 27. is doing.
  • Fig. 14 shows examples of output characteristics for various combustible gases.
  • a is methane (CH 2)
  • b in the figure is carbon monoxide (CO)
  • C in the figure shows the output characteristics for hydrogen (H), and d in the figure shows the output characteristics for isobutane (i-C H).
  • a heating resistor 22 is formed by winding a platinum wire having a wire diameter of about 20 50 ⁇ m in a coil shape.
  • a ceramic carrier mainly composed of an inorganic insulator such as alumina is made into a sol or paste form, applied to the coil portion of the heating resistor 22 so as to form an elliptical shape, and subjected to heat treatment to bead-like combustion. Form with body 21.
  • the combustor 21 is impregnated with a catalyst such as platinum or palladium and subjected to heat treatment, thereby forming the gas sensor 20 in which the catalyst is supported on the alumina carrier in a highly dispersed state.
  • the combustion body 21 provided so as to cover the coil portion of the heating resistor 22 is formed in a bead shape, so that the inertia of the combustion body 21 is relatively large.
  • the heating resistor 22 may be deformed or disconnected by vibration or impact.
  • the combustible gas is burned by the catalyst supported on the combustor 21, and the temperature of the combustor 21 having a large heat capacity is increased by the combustion heat, and the temperature rise is transmitted to the heat generating resistor 22.
  • the electrical resistance of the gas changes, there is a limit to improving the sensitivity and response speed of combustible gases.
  • a zone or paste such as alumina manufactured to form the combustor 21 is attached to the coil portion of the heating resistor 22 and dried, followed by firing.
  • a zone or paste such as alumina manufactured to form the combustor 21 is attached to the coil portion of the heating resistor 22 and dried, followed by firing.
  • the formation is performed by manual work or work close to manual work, it is difficult to finely control the outer dimensions of the combustor 21, and the compensator elements 2 and 3 to be combined are thermally equivalent. Since it was necessary to select, there was a problem that complicated work was required and the number of man-hours increased, resulting in an increase in cost.
  • porous insulation on the surface of the heating resistor 22 wound in a coil shape discloses porous insulation on the surface of the heating resistor 22 wound in a coil shape.
  • a catalytic combustion type gas sensor in which a catalyst such as platinum or palladium is dispersed on the surface of this thin film has also been proposed. Due to the weak coupling with the heating element, when mounted on an automobile, the porous insulator with the catalyst dispersed and supported by vibration and impact may peel off the coil-like heating element force, resulting in deterioration of sensitivity.
  • the present invention has been made to solve the above problems, and provides a hydrogen gas sensor excellent in vibration resistance, impact resistance, and stable detection performance over a long period of time, and a method for manufacturing the same. There is to do.
  • the hydrogen gas sensor according to the present invention detects hydrogen gas.
  • This hydrogen gas sensor has a heating resistor.
  • the surface composition of the heating resistor is an alloy of platinum and at least one of palladium, ruthenium, rhodium, nickel, or cobalt.
  • the heating resistor is heated to a temperature at which hydrogen gas can be combusted by Joule heat by energization, and hydrogen gas burns on the surface of the heating resistor, and the electrical resistance changes as the temperature rises due to the heat of combustion. Is output as a hydrogen gas concentration detection signal.
  • hydrogen gas is burned on the surface of the heating resistor, the electrical resistance of the heating resistor changes according to the temperature rise due to the heat of combustion, and the change in electrical resistance is detected by detecting the concentration of hydrogen gas. It is output as a signal, and the heating resistor can have a function of heating the catalyst, a function of burning hydrogen gas, and a function of generating a change in electrical resistance due to combustion heat. Therefore, unlike the conventional gas sensor, it is not necessary to form a bead-shaped combustion body on the heating resistor, and the possibility that the heating resistor is deformed by vibration or impact can be reduced. As a result, the detection performance is stable over a long period of time.
  • the surface composition of the heating resistor is formed of an alloy of platinum and at least one of palladium, ruthenium, rhodium, nickel, or cobalt, and the catalyst and platinum are alloyed.
  • the stability of the platinum catalyst which prevents the catalyst carried on the combustor from peeling off, is increased, the deterioration of sensitivity is reduced, and the detection performance can be stabilized for a long time.
  • a case for storing the heating resistor and the compensation resistor is provided, and a vent hole communicating with the outside is formed in the case, and the gas flow path between the vent hole, the heating resistor, and the compensation resistor is poisoned. It is possible to reduce a decrease in sensitivity due to the poisoning substance by providing the filter to adsorb the poisoning substance which is also preferably provided with the substance adsorbing substance.
  • a solution obtained by mixing a predetermined concentration of at least one of palladium, ruthenium, rhodium, nickel, and cobalt in a solvent is used as a base material made of platinum.
  • a step of applying, a step of removing the solvent by air drying, and a step of forming a platinum alloy by applying a predetermined voltage to the base material Since the process of forming the combustor is eliminated, the number of man-hours can be reduced.
  • the method for manufacturing a hydrogen gas sensor according to the present invention includes the step of eliminating the combustion activity for hydrogen gas by poisoning a compensation resistor formed of the same material as the heating resistor.
  • a compensation resistor made of the same material as the heating resistor, the combustion activity against hydrogen gas is eliminated, so it is easy to produce a compensation resistor with approximately the same temperature and humidity characteristics as the heating resistor. Therefore, the work of combining the heating resistor and the compensation resistor can be easily performed.
  • FIG. 1 is a partially omitted front view showing a hydrogen gas sensor according to a first embodiment.
  • FIG. 2 is an external perspective view of the hydrogen gas sensor same as above.
  • FIG. 3 is a sectional view of the hydrogen gas sensor same as above.
  • FIG. 4 is a partially omitted front view showing another configuration of the hydrogen gas sensor.
  • FIG. 5 is a partially omitted front view showing another configuration of the hydrogen gas sensor of the above.
  • FIG. 6 is an external perspective view showing a hydrogen gas sensor of Embodiment 2.
  • FIG. 7 is an external perspective view showing a hydrogen gas sensor of Embodiment 3.
  • FIG. 8 is a sectional view of the hydrogen gas sensor same as above.
  • FIG. 9 is an output characteristic diagram of the hydrogen gas sensor same as above.
  • FIG. 10 is an output characteristic diagram of the hydrogen gas sensor same as above.
  • FIG. 11 is an output characteristic diagram of the hydrogen gas sensor same as above.
  • FIG. 12 is an external perspective view of a conventional catalytic combustion type gas sensor partially broken.
  • FIG. 13 is a circuit diagram of a measurement circuit using the gas sensor same as above.
  • FIG. 1 is a diagram schematically showing the structure of a hydrogen gas sensor 1 of the present embodiment
  • FIG. 2 is an external perspective view
  • FIG. 3 is a cross-sectional view.
  • the hydrogen gas sensor 1 includes a heating resistor 2 and a stem. 3a, 3b, base 4 and protective cap 5 are provided.
  • the heating resistor 2 has the functions of both the combustion body 21 and the heating resistor 22 in the conventional gas sensor, and the surface composition is at least one of palladium, ruthenium, rhodium, nickel and cobalt.
  • a platinum wire made of an alloy of aluminum and platinum is wound in a coil shape, and both ends thereof are electrically and mechanically connected to the stems 3a and 3b.
  • the heating resistor 2 having, for example, a wire diameter of about 20 ⁇ m is used, and the coil diameter is about 210 ⁇ m, the spring is wound about 10 ⁇ m, and the total length of the inole is reduced. 360—400 ⁇ m.
  • a material other than pure platinum may be used as long as it is a force-based resistance wire using a platinum wire as the heating resistor 2.
  • a platinum wire as the heating resistor 2.
  • zirconia stabilized platinum may be used.
  • the surface of the platinum-based resistance wire is alloyed with at least one of palladium, ruthenium, rhodium, nickel, and cobalt to form the heating resistor 2. Platinum-based resistance may be used.
  • the base 4 is formed in a disc shape from a synthetic resin, and the three stems 3a, 3b, 3c are the base 4
  • the base 4 is insert-molded so as to penetrate vertically.
  • the center stem 3c has a shorter protrusion from the top than the other two stems 3a, 3b, and the bases of the two stems 3a, 3b at both ends Both ends 2a and 2b of the heating resistor 2 are fixed to a portion protruding from the upper surface of 4 by a method such as welding.
  • the central stem 3c is used when both the heating resistor 2 and the compensation resistor 8 are attached as described in the second embodiment described later. When only the heating resistor 2 is used, the stem 3c is used. Is not used.
  • the protective cap 5 has a substantially cylindrical shape with an open end on the lower surface side, and the base 4 is press-fitted and fixed so that the exothermic antibody 2 is accommodated from the opening.
  • a round hole 6 is formed in the center of the ceiling of the protective cap 5, and a 100 mesh stainless steel wire mesh 7 is attached to the hole 6 for explosion protection.
  • the protective cap 5 may be made of metal or resin.
  • a heating circuit 2 when measuring hydrogen gas, a heating circuit 2 is heated to a predetermined temperature (for example, about 100 ° C.) by applying a substantially constant voltage between the stems 3a and 3b by a measurement circuit (not shown). .
  • a measurement circuit not shown.
  • the hydrogen gas that has entered inside through the vent hole 6 of the protective cap 5 comes into contact with the heating resistor 2, the hydrogen gas burns on the surface of the heating resistor 2 by the catalytic action of platinum on the surface of the heating resistor 2.
  • the temperature of the heating resistor 2 rises due to the combustion heat of hydrogen gas, and the electrical resistance increases as the temperature rises, so the measurement circuit measures the amount of change in the electrical resistance value of the heating resistor 2.
  • the gas concentration of hydrogen gas can be measured.
  • the heating resistor 2 is formed in a coil shape, and the force S is attached to the stems 3a and 3b so that the axial direction of the coil is substantially parallel to the upward and downward directions, as shown in FIG. It may be attached to the stems 3a and 3b so that the axial direction of the coil is substantially parallel to the horizontal direction. Further, the force S that increases the surface area by forming the heating resistor 2 in a coil shape, and the work of winding in a coil shape that can be formed linearly as shown in FIG. 5, can be eliminated.
  • the solvent is removed by air drying at room temperature for about 1 hour. After that, by applying a voltage of about 1. IV between both ends of the resistance wire for about 10 minutes and heating the surface temperature of the resistance wire to about 900 ° C, the surface of the resistance wire is palladium, ruthenium, rhodium, nickel, cobalt. Alloy with at least one of these.
  • the heating resistor 2 is formed into an alloy by forming a resistance wire in a desired shape, applying a solution containing a desired catalyst to the surface of the resistance wire, air-drying, and applying a predetermined voltage.
  • the process of forming the bead-shaped combustion body on the coil-shaped heating resistor is not required, and the manufacturing process can be simplified.
  • variations in the shape and dimensions of the combustion body are large.
  • the resistance wire 2 is coiled and the surface is alloyed. Variations in shape and dimensions can be reduced, and variations in sensitivity can be reduced.
  • the exothermic resistor 2 is composed of a platinum-based resistance wire with an alloy of catalyst and platinum formed on the surface, so that the catalyst carried on the combustor is not peeled off like a conventional gas sensor. Can be stabilized in the long term.
  • the gas sensor 1 of this embodiment is connected instead of the gas sensor 20, and a fixed resistor of 10 ⁇ , for example, is used instead of the compensation element 23, and the voltage applied to the gas sensor 1 is used.
  • a voltage of about 0.2 V is applied to the gas sensor 1
  • the temperature of the heating resistor 2 is heated to about 100 ° C.
  • hydrogen gas enters the protective cap 6 through the metal mesh 7 from the vent hole 6, the hydrogen gas burns on the surface of the heating resistor 2, and the resistance value of the exothermic antibody 2 changes due to the heat of combustion.
  • FIG. 9 shows the measurement results of gas sensitivity for various flammable gases.
  • the horizontal axis is the gas concentration (ppm) and the vertical axis is the block. This is the output voltage (mV) of the ridge circuit.
  • a is hydrogen
  • b is carbon monoxide
  • c is methane
  • d is isobutane
  • e is ethanol.
  • the power consumption of the gas sensor 1 is about 10 mW, and measurement can be performed with very low power consumption.
  • the reason why it can operate with such low power consumption is that it does not have the large combustion capacity 21 like the conventional catalytic combustion type gas sensor, and the combustion heat generated by the combustion of hydrogen gas is efficiently converted into a platinum wire. This is because the resistance value change of the heating resistor 2 can be detected without heating the heating resistor 2 to a high temperature.
  • the surface composition of the heating resistor 2 is pure platinum or zirconia stabilized platinum (that is, the surface is not alloyed), platinum-palladium alloy, platinum-ruthenium alloy, platinum-rhodium alloy, platinum
  • the gas sensitivity to hydrogen gas was measured. In either case, the gas sensitivity at the initial stage of use was substantially the same. However, if a voltage of about 0.2 V is applied to the platinum resistance wires of each composition and the operation is continued in a clean atmosphere, the surface composition will be pure platinum or zirconium-stabilized platinum (that is, the surface of the platinum resistance wire). It was found that the sensitivity decreased slightly after 10 days had passed.
  • the heating resistor 2 has the three functions of the heat generator, the combustion body, and the catalyst. Since the inertia of the heating resistor 2 itself, which does not need to be formed, becomes small, it has been found that it is extremely resistant to impact. Also, with respect to vibration, the vibration resistance could be improved by reducing the inertia of the heating resistor 2.
  • FIG. Figure 11 shows the measurement results of the hydrogen gas sensitivity when the ambient temperature is approximately constant (21 ° C or 22 ° C) and the humidity in the atmosphere is changed from about 30% to about 80%.
  • a in the figure is measurement data when the temperature is 22 ° C and humidity is 31%
  • b in the figure is measurement data when the temperature is 21 ° C and humidity is 52%
  • c in the figure is Measurement data when temperature is 21 ° C and humidity is 78%. From this test result, it was confirmed that there was almost no change in the output characteristics of the gas sensor 1 in the humidity range from about 30% to about 80%.
  • the gas sensor 1 of the present embodiment is operated at a relatively low temperature, and most of the heat generated by the heating resistor 2 is released through the stems 3a and 3b, and the ratio of heat radiated into the air (gas heat conduction rate). Therefore, even if the humidity in the atmosphere (that is, gas thermal conductivity) changes, the effect on the output characteristics is considered to be small. In other words, it is considered that the gas sensor 1 of the present embodiment has the property that it is not easily affected by the change in gas thermal conductivity (humidity change) of the atmosphere, and as a result, the output fluctuation due to the humidity change can be reduced.
  • the composition of the surface of the heating resistor 2 is pure platinum or dinoleconia stabilized white.
  • gold that is, the one whose surface is not alloyed
  • platinum-palladium alloy platinum-norenium alloy
  • platinum-rhodium alloy platinum-nickel alloy
  • platinum-cobalt alloy temperature 60 ° C
  • the surface composition of the heating resistor 2 is pure platinum or dinoleconia stabilized platinum (that is, platinum-based).
  • the resistance wire surface was not alloyed, and the sensitivity to hydrogen gas disappeared within 24 hours.
  • the composition of the surface of the heating resistor 2 is platinum-palladium alloy, platinum-ruthenium alloy, platinum-rhodium alloy, or platinum-nickenore alloy, there is almost no deterioration in sensitivity within 24 hours.
  • the sensitivity gradually decreased over the course of the day, and the sensitivity dropped to about half when about 20 days had passed. After that, the sensitivity was maintained even after about one month.
  • the composition of the surface of the heating resistor 2 was a platinum-cobalt alloy, the sensitivity did not decrease for about one month.
  • the composition of the surface of the heating resistor 2 is pure platinum or dinoleconia stabilized platinum (that is, the one in which the surface is not alloyed), platinum-palladium alloy, platinum-norenium alloy, platinum-rhodium alloy, platinum-sore alloy, When a platinum-cobalt alloy was continuously operated for 24 hours by applying a voltage of about 0.2 V to the heating resistor 2 in an atmosphere containing hydrogen gas, methane, isobutane, and ethanol, each of lOOOOppm, No sensitivity degradation was observed for gas sensor 1.
  • the gas sensor 1 of the present embodiment operates at a relatively low temperature, so that a combustible gas other than hydrogen gas on the surface of the heating resistor 2 ( This is probably because methane, isobutane, ethanol, etc.) do not burn and are not easily affected by combustion heat.
  • hydrogen gas burns in hydrogen gas, and the surface temperature of the heating resistor 2 rises due to the heat of combustion.
  • the gas sensor 1 of the present embodiment is the platinum constituting the heating resistor 2. Or Zirconia stabilized platinum or platinum alloy It is considered that there is no decrease in sensitivity that makes it difficult for the catalyst to agglomerate due to the presence of active sites.
  • the composition of the surface of the heating resistor 2 is pure platinum or platinum-stabilized platinum (that is, the alloy whose surface is not alloyed), platinum-palladium alloy, platinum-norretium alloy, platinum-rhodium alloy, platinum A nickel alloy or platinum-cobalt alloy was continuously operated for 24 hours by applying a voltage of about 0.2 V to heating resistor 2 in an atmosphere of 300 ppm sulfurous acid gas and 150 ppm hexamethyldisiloxane.
  • the composition of the surface of the heating resistor 2 is pure platinum or zirconia stabilized platinum (that is, alloying the surface of the platinum resistance wire), the sensitivity to hydrogen gas after about 10 minutes. Is gone.
  • the composition of the surface of the heating resistor 2 is platinum one-renium alloy, platinum-rhodium alloy, or platinum-nickel alloy, the sensitivity starts to decrease after 5 minutes, but the sensitivity remains about half even after one hour.
  • the composition of the surface of the heating resistor 2 was a platinum-palladium alloy, there was almost no sensitivity degradation even after 15 minutes, and about half of the sensitivity was maintained even after 24 hours. From the above results, it was found that the durability against poisoning gas was greatly improved when the composition of the surface of the heating resistor 2 was a platinum alloy.
  • the gas sensor 1 described in the first embodiment is provided with a compensation resistor 8 that is made of the same material as the heating resistor 2 and has no activity against hydrogen gas. Since the configuration other than the compensation resistor 8 is the same as that of the first embodiment, common components are denoted by the same reference numerals and description thereof is omitted.
  • the compensation resistor 8 is formed by winding a platinum wire in a coil shape, similar to the heating resistor 2 described in the first embodiment, and is formed in substantially the same shape and dimensions as the heating resistor 2. However, a treatment for eliminating the combustion activity against hydrogen gas is performed.
  • the material of the compensation resistor 8 is not limited to the platinum wire, but may be formed of the same platinum resistance wire as the heating resistor 2.
  • the compensation resistor 8 is made of the same material as the heating resistor 2, and therefore has the same temperature-resistance characteristics as the heating resistor 2. Therefore, the ambient temperature is determined using the resistance value of the compensation resistor 8. By correcting the atmospheric conditions such as changes, the resistance value change of the heating resistor 2 due to the heat of combustion can be measured more accurately, and the detection accuracy for hydrogen gas is improved.
  • the base 4 is formed in a disc shape from a synthetic resin, and is insert-molded so that the three stems 3a, 3b, 3c penetrate the base 4 in the vertical direction.
  • the three stems 3a, 3b, 3c are arranged in a line in the same plane, and the central stem 3c has a shorter protruding amount from the upper surface than the other two stems 3a, 3b. .
  • both ends of the heating resistor 2 are fixed to the left two stems 3a and 3c by a method such as welding to a portion protruding from the upper surface of the base 4, and the right two stems 3b and 3c are fixed to the two stems 3b and 3c on the right side.
  • the both ends of the compensation resistor 8 are fixed to the portion protruding from the upper surface of the base 4 by a method such as welding.
  • a method such as welding.
  • the three stems 3a-3c are arranged in the same plane, when the heating resistor 2 and the compensation resistor 8 are laser welded to the stem 3a-3c, the welding work can be performed at one time. This has the advantage of improving the performance.
  • a platinum-based (eg, platinum, dinoleconia stabilized platinum) resistance wire (base material) is wound in a coil shape to have the same shape 'dimension. After forming two coils, both ends of one coil are fixed to the stems 3a and 3c insert-molded on the base 4, and both ends of the other coil are fixed to the stems 3b and 3c, respectively.
  • each coil in order to alloy the surface of each coil with at least one of palladium, ruthenium, rhodium, nickel and cobalt, for example, at least one of palladium nitrate, ruthenium nitrate, rhodium nitrate, nickel nitrate and cobalt nitrate.
  • the solvent is removed by air drying at room temperature for about 1 hour. Then, a voltage of about 1.
  • the compensation resistor 8 whose catalytic activity has been deactivated by this method has the same size and shape as the heating resistor 2, and the surface of the compensation resistor 8 is not different from the surface of the heating resistor 2 in appearance.
  • the compensation resistor 8 heats the catalytic activity of the surface after the same platinum-based resistance wire as that of the heating resistor 2 is wound in a coil shape by a winding machine and alloyed on the surface.
  • the same shape and the same dimensions as the resistor 2 can be easily manufactured, the heating resistor 2 has the same temperature-resistance characteristics, and the compensation resistor 8 can be easily combined.
  • the atmospheric conditions of the heating resistor 2 and the compensation resistor 8 can be made substantially the same. Although it is possible to accurately correct the output of the heating resistor 2 using the resistance value, if the atmospheric conditions of the heating resistor 2 and the compensation resistor 8 can be made almost the same, they should be stored in separate cases. May be.
  • a third embodiment according to the present invention will be described with reference to FIG. 7 and FIG.
  • the filter cap 9 holding the filter 12 is put on the upper side of the protective cap 5. Since the configuration other than the filter cap 9 and the filter 12 is the same as that of the second embodiment, common components are denoted by the same reference numerals and description thereof is omitted.
  • the filter cap 9 is made of a synthetic resin, and is formed in a substantially cylindrical shape whose end on the upper surface side is closed.
  • a round hole 10 is formed in the upper surface of the filter cap 9, and a 100 mesh stainless steel wire mesh 11 is attached to the hole 10 for explosion protection.
  • a filter 12 that adsorbs poisonous substances in the gas that enters the inside through the vent hole 10 is mounted in the tube of the filter cap 9.
  • the filter 12 is made of an adsorbent porous material such as activated carbon, silica gel, or zeolite, or an adsorbent obtained by impregnating an organic or inorganic porous material with a chemical-capturing liquid component, and is covered with a gas.
  • Poisonous It has the function of adsorbing quality (for example, silicon).
  • the chemical substance capturing liquid component include KOH, ammonia, and phosphoric acid, which are supported to remove oxidizing gas, to adsorb specific poisonous substances.
  • the organic inorganic porous material may be used by impregnating the liquid with an appropriate component.
  • the base 4, the protective cap 5, and the filter cap 9 constitute a case in which the heating resistor 2 and the compensation resistor 8 are housed, and the ventilation hole 10 provided in the case (filter cap 9) Since the filter 12 that adsorbs poisonous substances is provided in the gas flow path between the heating resistor 2 and the compensation resistor 8, it can adsorb the poisonous substances in the gas that enters the inside through the vent hole 10. The poisoning of the heating resistor 2 and the compensation resistor 8 due to poisoning substances is suppressed, and the deterioration of sensitivity can be reduced.
  • the composition of the surface of the heating resistor 2 is pure platinum or zirconia-stabilized platinum (that is, the one in which the surface is not alloyed), platinum-palladium alloy, platinum-ruthenium alloy, platinum-necked zinc alloy, platinum-neckenore alloy.
  • the platinum-cobalt alloy was continuously operated for 24 hours by applying a voltage of about 0.2 V to the heating resistor 2 in an atmosphere containing 30 Oppm of sulfurous acid gas and 150 ppm of hexamethyldisiloxane.
  • any gas sensor 1 had the same gas sensitivity as before the test after 24 hours.
  • the provision of the filter 12 can greatly improve the poisoning durability, and it is possible to maintain stable performance for a long time even when the atmospheric conditions are poor.
  • the filter cap 9 holding the filter 12 may be placed on the upper side of the protective cap 5 as in the present embodiment. It is possible to reduce the deterioration of sensitivity by suppressing the poisoning.

Abstract

A hydrogen gas sensor for detection of hydrogen gas. There is provided a hydrogen gas sensor having heat generation resistor (2) comprising a platinum resistance wire and, superimposed on its surface, a platinum alloy composed of platinum and at least one member selected from among palladium, ruthenium, rhodium, nickel and cobalt. This heat generation resistor (2) is heated at approximately constant temperature, and hydrogen gas is burnt on the surface thereof. The electrical resistance is changed in accordance with any temperature increase brought about by the combustion heat, and thus the change of electrical resistance is outputted as a concentration detection signal for hydrogen gas.

Description

明 細 書  Specification
水素ガスセンサ及びその製造方法  Hydrogen gas sensor and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、水素ガスを検出する水素ガスセンサに関する。  The present invention relates to a hydrogen gas sensor that detects hydrogen gas.
背景技術  Background art
[0002] 従来より、ビーズ状の多孔質燃焼体に白金やパラジウムなどの触媒を分散させ、触 媒を用いて可燃性ガスを燃焼させた時に発生する反応熱を検出することで、可燃性 ガスを検出するようにした接触燃焼式のガスセンサが提供されている。図 12は日本 国公開特許平成 10年第 90210号公報(以下、公報という)に開示された従来のガス センサを示している。このガスセンサ 20は、可燃性ガスを燃焼させる燃焼体 21と、通 電に応じて発生するジュール熱で燃焼体 21を加熱する発熱抵抗体 22とで構成され る。  Conventionally, a combustible gas is detected by dispersing a catalyst such as platinum or palladium in a bead-shaped porous combustor and detecting the reaction heat generated when the combustible gas is burned using a catalyst. There is provided a contact combustion type gas sensor adapted to detect the above. Fig. 12 shows a conventional gas sensor disclosed in Japanese Patent Publication No. 90210 (hereinafter referred to as “gazette”). The gas sensor 20 includes a combustor 21 that combusts a combustible gas, and a heating resistor 22 that heats the combustor 21 with Joule heat that is generated in response to conduction.
[0003] 燃焼体 21は、アルミナなどの絶縁体をビーズ状に形成して、パラジウムや白金など の触媒を含有させてある。また発熱抵抗体 22は主に高温度抵抗係数を有する白金 線からなり、この発熱抵抗体 22をコイル状に卷回し、コイル状に巻かれた部分を燃焼 体 21内に埋設してある。  [0003] The combustor 21 is formed of an insulator such as alumina in a bead shape and contains a catalyst such as palladium or platinum. The heating resistor 22 is mainly made of a platinum wire having a high temperature resistance coefficient. The heating resistor 22 is wound in a coil shape, and a portion wound in the coil shape is embedded in the combustion body 21.
[0004] このタイプのガスセンサ 20では、発熱抵抗体 22に略一定の電流を流して、発熱抵 抗体 22に発生するジュール熱で燃焼体 21を一定温度に加熱している。燃焼体 21の 表面で可燃性ガスが燃焼すると、この燃焼熱によって発熱抵抗体 22の温度が上昇し て、発熱抵抗体 22の抵抗値が変化するので、この抵抗値変化から可燃性ガスを検 出すること力 Sできる。すなわち、図 13に示すようにガスセンサ 20と補償素子 23と固定 抵抗 24, 25とでブリッジ回路を形成し、ブリッジ回路の出力端子 c, d間の電圧 Vcを 測定することによって発熱抵抗体 22の抵抗値変化を求め、この抵抗値変化から可燃 十生ガスを検出している。  In this type of gas sensor 20, a substantially constant current is passed through the heating resistor 22, and the combustor 21 is heated to a constant temperature by Joule heat generated in the heating resistor 22. When combustible gas burns on the surface of the combustor 21, the temperature of the heating resistor 22 rises due to the heat of combustion, and the resistance value of the heating resistor 22 changes. Power to put out S That is, as shown in FIG. 13, the gas sensor 20, the compensation element 23, and the fixed resistors 24 and 25 form a bridge circuit, and the voltage Vc between the output terminals c and d of the bridge circuit is measured to measure the heating resistor 22 The resistance value change is obtained, and combustible degenerate gas is detected from this resistance value change.
[0005] 補償素子 23は、ガスセンサ 20と同様に発熱抵抗体とビーズ状の絶縁体とで構成さ れ、温度特性および湿度特性はガスセンサ 20と略同じである力 絶縁体に可燃性ガ スを燃焼させる触媒を含有させていないため可燃性ガスには反応しない。図 13に示 すブリッジ回路では、端子 a, b間にガスセンサ 20および補償素子 23の直列回路と、 固定抵抗 24, 25の直列回路とをそれぞれ接続してある。また端子 a, b間に平衡調 整用の可変抵抗 26を接続し、この可変抵抗 26の中間タップを固定抵抗 24, 25の中 間点に接続している。また端子 a, b間には可変抵抗 27とスィッチ SWとを介して直流 電源 E1を接続してあり、可変抵抗 27の抵抗値を調整することで、端子 a, b間に印加 する電圧を調整している。 [0005] The compensation element 23 is composed of a heating resistor and a bead-like insulator as in the gas sensor 20, and has a temperature characteristic and a humidity characteristic substantially the same as those of the gas sensor 20, and a combustible gas is applied to the force insulator. It does not react with combustible gas because it does not contain a catalyst to be burned. Shown in Figure 13 In the bridge circuit, a series circuit of the gas sensor 20 and the compensation element 23 and a series circuit of the fixed resistors 24 and 25 are connected between the terminals a and b, respectively. In addition, a variable resistor 26 for balance adjustment is connected between terminals a and b, and an intermediate tap of the variable resistor 26 is connected to the midpoint of the fixed resistors 24 and 25. DC power supply E1 is connected between terminals a and b via variable resistor 27 and switch SW, and the voltage applied between terminals a and b is adjusted by adjusting the resistance value of variable resistor 27. is doing.
[0006] 而して、この測定回路では可変抵抗 27の抵抗値を調整することによって、発熱抵 抗体 22に流れる電流が変化してその発熱量が調整されるから、雰囲気中に可燃性 ガスが存在しない状態で可変抵抗 27の抵抗値を調整して燃焼体 21を 300°C 500 °C程度に加熱し、この状態で可変抵抗 26を調整して、ブリッジ回路の平衡状態を維 持させる。その後、燃焼体 21の表面に可燃性ガスが接触すると、燃焼体 21に含有さ せた触媒の作用によって可燃性ガスが燃焼し、この燃焼熱によって発熱抵抗体 22の 電気抵抗が増加する。一方、補償素子 23には触媒を含有させていないため、補償 素子 23の表面では可燃性ガスが燃焼せず、発熱抵抗体の電気抵抗は変化しなレ、。 したがって、ガスセンサ 20と補償素子 23との間で金属線の電気抵抗に抵抗差が発 生し、出力端子 c, d間にブリッジ電圧が発生する。このブリッジ電圧は可燃性ガスの ガス濃度に比例して出力されるので、このブリッジ電圧を検出することによって可燃性 ガスのガス濃度を検出することができる。尚、図 14は各種の可燃性ガスに対する出 力特性の例を示しており、図中の aはメタン(CH )、図中の bは一酸化炭素(CO)、図 [0006] Therefore, in this measurement circuit, by adjusting the resistance value of the variable resistor 27, the current flowing through the exothermic resistor 22 changes and the amount of generated heat is adjusted, so that combustible gas is generated in the atmosphere. In the absence, adjust the resistance value of the variable resistor 27 to heat the combustor 21 to about 300 ° C to 500 ° C. In this state, adjust the variable resistor 26 to maintain the equilibrium state of the bridge circuit. Thereafter, when the combustible gas comes into contact with the surface of the combustor 21, the combustible gas is combusted by the action of the catalyst contained in the combustor 21, and the electric resistance of the heating resistor 22 is increased by this combustion heat. On the other hand, since the compensation element 23 does not contain a catalyst, the combustible gas does not burn on the surface of the compensation element 23, and the electrical resistance of the heating resistor does not change. Therefore, a resistance difference occurs in the electric resistance of the metal wire between the gas sensor 20 and the compensation element 23, and a bridge voltage is generated between the output terminals c and d. Since the bridge voltage is output in proportion to the gas concentration of the combustible gas, the gas concentration of the combustible gas can be detected by detecting the bridge voltage. Fig. 14 shows examples of output characteristics for various combustible gases. In the figure, a is methane (CH 2), b in the figure is carbon monoxide (CO),
4  Four
中の cは水素(H )、図中の dはイソブタン (i一 C H )に対する出力特性をそれぞれ  C in the figure shows the output characteristics for hydrogen (H), and d in the figure shows the output characteristics for isobutane (i-C H).
2 4 10  2 4 10
示している。  Show.
[0007] このタイプのガスセンサ 20の一般的な製造方法は、先ず、線径が 20 50 μ m程 度の白金線をコイル状に卷回して発熱抵抗体 22を形成する。次にアルミナ等の無機 絶縁物が主成分であるセラミック担体をゾル又はペースト状にして、発熱抵抗体 22の コイル部分に楕円形状を為すように塗布し、熱処理を施すことによってビーズ状の燃 焼体 21と形成する。次いで燃焼体 21に白金又はパラジウム等の触媒を含浸させ、 熱処理を施すことによって、アルミナ担体に触媒を高分散に担持させたガスセンサ 2 0を形成する。 [0008] ところで、近年、石油に代わるエネルギー源として水素が注目されており、燃料電 池を搭載した自動車の開発が進められている力 このような燃料電池車では、燃料 電池や水素タンクからの水素漏洩を検出するために 1乃至複数個の水素ガスセンサ を設置する必要があり、この水素ガスセンサとして接触燃焼式のガスセンサを用いる ことが検討されている。 [0007] In a general manufacturing method of this type of gas sensor 20, first, a heating resistor 22 is formed by winding a platinum wire having a wire diameter of about 20 50 μm in a coil shape. Next, a ceramic carrier mainly composed of an inorganic insulator such as alumina is made into a sol or paste form, applied to the coil portion of the heating resistor 22 so as to form an elliptical shape, and subjected to heat treatment to bead-like combustion. Form with body 21. Next, the combustor 21 is impregnated with a catalyst such as platinum or palladium and subjected to heat treatment, thereby forming the gas sensor 20 in which the catalyst is supported on the alumina carrier in a highly dispersed state. [0008] By the way, in recent years, hydrogen has attracted attention as an energy source to replace petroleum, and the power of development of automobiles equipped with fuel cells is being promoted. One or more hydrogen gas sensors need to be installed to detect hydrogen leakage, and the use of catalytic combustion gas sensors as the hydrogen gas sensor is being studied.
[0009] し力、しながら、ガスセンサを自動車に搭載して使用する場合、振動などの物理的な 条件に対する耐久性が要求されるとともに、高温高湿の条件下や雑ガスなどが存在 する過酷な雰囲気中でも検知特性が影響を受けにくぐまたこのような雰囲気中でも 長期間にわたって特性が劣化しない耐久性が求められる。上述した従来のガスセン サ 20では、発熱抵抗体 22のコイル部分を覆うように設けた燃焼体 21がビーズ状に 形成されているので、燃焼体 21の慣性が比較的大きぐ 自動車に搭載した場合振動 や衝撃によって発熱抵抗体 22が変形したり、断線する可能性がある。また低濃度の 水素ガスを検出するために、燃焼体 21を高温に加熱すると、発生した熱が空気中に 輻射されることによって生じる損失の割合 (所謂気体熱伝導の割合)が増加するため 、雰囲気中の湿度依存性が増したり、被毒物質との反応性が増して長期信頼性が損 なわれるという問題があった。また高湿雰囲気中で触媒活性が劣化したり、燃焼体 2 1に高分散に担持されている触媒成分の凝集現象が起こるため、感度劣化が起こり やすいという問題もあった。また燃焼体 21に担持させた触媒により可燃性ガスを燃焼 させ、その燃焼熱で熱容量の大きな燃焼体 21の温度を上昇させ、その温度上昇が 発熱抵抗体 22に伝導して初めて発熱抵抗体 22の電気抵抗が変化するので、可燃 性ガスの感度や応答速度を向上させるのには限界があった。  However, when a gas sensor is mounted on an automobile and used, durability against physical conditions such as vibration is required, and severe conditions such as high-temperature and high-humidity conditions and miscellaneous gases exist. In such an atmosphere, the detection characteristics are not easily affected. In such an atmosphere, durability that does not deteriorate the characteristics over a long period of time is required. In the conventional gas sensor 20 described above, the combustion body 21 provided so as to cover the coil portion of the heating resistor 22 is formed in a bead shape, so that the inertia of the combustion body 21 is relatively large. The heating resistor 22 may be deformed or disconnected by vibration or impact. In addition, when the combustor 21 is heated to a high temperature in order to detect low-concentration hydrogen gas, the rate of loss caused by radiation of the generated heat into the air (so-called gas heat conduction rate) increases. There was a problem that the humidity dependency in the atmosphere increased and the reactivity with poisoning substances increased and long-term reliability was impaired. In addition, the catalytic activity deteriorates in a high-humidity atmosphere, and the agglomeration phenomenon of the catalyst components supported on the combustor 21 in a highly dispersed state occurs. The combustible gas is burned by the catalyst supported on the combustor 21, and the temperature of the combustor 21 having a large heat capacity is increased by the combustion heat, and the temperature rise is transmitted to the heat generating resistor 22. As the electrical resistance of the gas changes, there is a limit to improving the sensitivity and response speed of combustible gases.
[0010] さらに、上述したガスセンサ 20の製造方法は、燃焼体 21を形成するために製造さ れたアルミナ等のゾノレ又はペーストを発熱抵抗体 22のコイル部分に取り付けて乾燥 させた後、焼成しているが、その形成は手作業や手作業に近い作業で行われるため 、燃焼体 21の外形寸法を微細に制御するのは難しぐまた組み合わせる補償素子 2 3には熱的に同等のものを選定する必要があるので、複雑な作業が必要になって作 業工数が増加し、コストアップを招くという問題もあった。  [0010] Furthermore, in the method for manufacturing the gas sensor 20 described above, a zone or paste such as alumina manufactured to form the combustor 21 is attached to the coil portion of the heating resistor 22 and dried, followed by firing. However, since the formation is performed by manual work or work close to manual work, it is difficult to finely control the outer dimensions of the combustor 21, and the compensator elements 2 and 3 to be combined are thermally equivalent. Since it was necessary to select, there was a problem that complicated work was required and the number of man-hours increased, resulting in an increase in cost.
[0011] また上述の公報には、コイル状に卷回された発熱抵抗体 22の表面に多孔質絶縁 体の薄膜を形成し、この薄膜の表面に白金やパラジウムなどの触媒を分散させた接 触燃焼式のガスセンサも提案されているが、触媒を分散担持させた多孔質絶縁体の 薄膜とコイル状発熱体との結合が弱い為に、 自動車に搭載した場合は振動や衝撃 によって触媒を分散担持させた多孔質絶縁体がコイル状発熱体力 剥がれ、感度が 劣化してしまう可能性があった。 [0011] Further, the above-mentioned publication discloses porous insulation on the surface of the heating resistor 22 wound in a coil shape. A catalytic combustion type gas sensor in which a catalyst such as platinum or palladium is dispersed on the surface of this thin film has also been proposed. Due to the weak coupling with the heating element, when mounted on an automobile, the porous insulator with the catalyst dispersed and supported by vibration and impact may peel off the coil-like heating element force, resulting in deterioration of sensitivity.
発明の開示  Disclosure of the invention
[0012] 本発明は、上記問題点を解決するために為されたものであって、耐振動性ゃ耐衝 撃性に優れ、検知性能が長期的に安定した水素ガスセンサおよびその製造方法を 提供することにある。  [0012] The present invention has been made to solve the above problems, and provides a hydrogen gas sensor excellent in vibration resistance, impact resistance, and stable detection performance over a long period of time, and a method for manufacturing the same. There is to do.
[0013] 本発明に係る水素ガスセンサは水素ガスを検出する。この水素ガスセンサは発熱 抵抗体を備える。この発熱抵抗体の表面組成はパラジウム、ルテニウム、ロジウム、二 ッケル、又はコバルトの内の少なくとも 1種と白金との合金である。発熱抵抗体は通電 によるジュール熱で水素ガスを燃焼可能な温度まで加熱され、発熱抵抗体の表面で 水素ガスが燃焼し、その燃焼熱による温度上昇に応じて電気抵抗が変化し、電気抵 抗の変化を水素ガスの濃度検知信号として出力する。  [0013] The hydrogen gas sensor according to the present invention detects hydrogen gas. This hydrogen gas sensor has a heating resistor. The surface composition of the heating resistor is an alloy of platinum and at least one of palladium, ruthenium, rhodium, nickel, or cobalt. The heating resistor is heated to a temperature at which hydrogen gas can be combusted by Joule heat by energization, and hydrogen gas burns on the surface of the heating resistor, and the electrical resistance changes as the temperature rises due to the heat of combustion. Is output as a hydrogen gas concentration detection signal.
[0014] この発明によれば、発熱抵抗体の表面で水素ガスを燃焼させ、その燃焼熱による 温度上昇に応じて発熱抵抗体の電気抵抗が変化し、電気抵抗の変化を水素ガスの 濃度検知信号として出力しており、発熱抵抗体に、触媒を加熱させる機能と、水素ガ スを燃焼させる機能と、燃焼熱による電気抵抗の変化を発生する機能とを持たせるこ とができる。したがって、従来のガスセンサのように発熱抵抗体にビーズ状の燃焼体 を形成する必要が無ぐ振動や衝撃などによって発熱抵抗体が変形する可能性を低 減でき、また発熱抵抗体自体が触媒作用を有する金属材料で形成されているので、 触媒の凝集減少や剥がれが発生することはなぐ検知性能が長期的に安定するとい う効果が得られる。さらに発熱抵抗体の表面組成が、パラジウム、ルテニウム、ロジゥ ム、ニッケル、又はコバルトの内の少なくとも 1種と白金との合金により形成され、触媒 と白金とを合金化しているので、従来のガスセンサのように燃焼体に担持させた触媒 が剥がれることがなぐ白金触媒の安定性が増して感度の劣化が低減し、検知性能 を長期的に安定させることができる。 [0015] また発熱抵抗体と同一の材料から形成され、水素ガスに対する燃焼活性を無くした 補償抵抗を備えることも好ましぐ補償抵抗の表面では水素ガスが燃焼せず、燃焼熱 による抵抗値変化が発生しないので、補償抵抗の出力値を用いて発熱抵抗体の出 力信号を補償することができる。 According to the present invention, hydrogen gas is burned on the surface of the heating resistor, the electrical resistance of the heating resistor changes according to the temperature rise due to the heat of combustion, and the change in electrical resistance is detected by detecting the concentration of hydrogen gas. It is output as a signal, and the heating resistor can have a function of heating the catalyst, a function of burning hydrogen gas, and a function of generating a change in electrical resistance due to combustion heat. Therefore, unlike the conventional gas sensor, it is not necessary to form a bead-shaped combustion body on the heating resistor, and the possibility that the heating resistor is deformed by vibration or impact can be reduced. As a result, the detection performance is stable over a long period of time. Furthermore, the surface composition of the heating resistor is formed of an alloy of platinum and at least one of palladium, ruthenium, rhodium, nickel, or cobalt, and the catalyst and platinum are alloyed. In this way, the stability of the platinum catalyst, which prevents the catalyst carried on the combustor from peeling off, is increased, the deterioration of sensitivity is reduced, and the detection performance can be stabilized for a long time. [0015] It is also preferable to have a compensation resistor that is made of the same material as the heating resistor and eliminates the combustion activity for hydrogen gas. It is preferable that the surface of the compensation resistor does not burn hydrogen gas, and the resistance value changes due to combustion heat. Therefore, the output signal of the heating resistor can be compensated using the output value of the compensation resistor.
[0016] さらに発熱抵抗体と補償抵抗とを収納するケースを備え、このケースに外部と連通 する通気孔を形成し、通気孔と発熱抵抗体および補償抵抗との間のガス流路に被毒 物質を吸着するフィルタを設けることも好ましぐ被毒物質をフィルタが吸着することで 、被毒物質による感度の低下を低減することができる。  [0016] Further, a case for storing the heating resistor and the compensation resistor is provided, and a vent hole communicating with the outside is formed in the case, and the gas flow path between the vent hole, the heating resistor, and the compensation resistor is poisoned. It is possible to reduce a decrease in sensitivity due to the poisoning substance by providing the filter to adsorb the poisoning substance which is also preferably provided with the substance adsorbing substance.
[0017] また本発明に係る水素ガスセンサの製造方法は、溶媒中にパラジウム、ルテニウム 、ロジウム、ニッケル、コバルトの内の少なくとも 1種を所定濃度混ぜ合わせた溶液を、 白金で形成された母材に塗布する工程と、溶媒を風乾により除去する工程と、母材 に所定の電圧を印加することによって白金合金を形成する工程とを有し、従来のガス センサのように発熱抵抗体にビーズ状の燃焼体を形成する工程が無くなるので、作 業工数を少なくできる。  [0017] Further, in the method for producing a hydrogen gas sensor according to the present invention, a solution obtained by mixing a predetermined concentration of at least one of palladium, ruthenium, rhodium, nickel, and cobalt in a solvent is used as a base material made of platinum. A step of applying, a step of removing the solvent by air drying, and a step of forming a platinum alloy by applying a predetermined voltage to the base material. Since the process of forming the combustor is eliminated, the number of man-hours can be reduced.
[0018] また本発明に係る水素ガスセンサの製造方法は、発熱抵抗体と同一の材料により 形成された補償抵抗を被毒することによって、水素ガスに対する燃焼活性を無くすェ 程を有する。発熱抵抗体と同一の材料により形成された補償抵抗を被毒することで、 水素ガスに対する燃焼活性を無くしているので、発熱抵抗体と温度特性および湿度 特性が略同じ補償抵抗を容易に製造することができ、発熱抵抗体と補償抵抗とを組 み合わせる作業を容易に行うことができる。  [0018] Further, the method for manufacturing a hydrogen gas sensor according to the present invention includes the step of eliminating the combustion activity for hydrogen gas by poisoning a compensation resistor formed of the same material as the heating resistor. By poisoning a compensation resistor made of the same material as the heating resistor, the combustion activity against hydrogen gas is eliminated, so it is easy to produce a compensation resistor with approximately the same temperature and humidity characteristics as the heating resistor. Therefore, the work of combining the heating resistor and the compensation resistor can be easily performed.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]実施形態 1の水素ガスセンサを示す一部省略せる正面図である。  FIG. 1 is a partially omitted front view showing a hydrogen gas sensor according to a first embodiment.
[図 2]同上の水素ガスセンサの外観斜視図である。  FIG. 2 is an external perspective view of the hydrogen gas sensor same as above.
[図 3]同上の水素ガスセンサの断面図である。  FIG. 3 is a sectional view of the hydrogen gas sensor same as above.
[図 4]同上の水素ガスセンサの他の構成を示す一部省略せる正面図である。  FIG. 4 is a partially omitted front view showing another configuration of the hydrogen gas sensor.
[図 5]同上の水素ガスセンサのまた別の構成を示す一部省略せる正面図である。  FIG. 5 is a partially omitted front view showing another configuration of the hydrogen gas sensor of the above.
[図 6]実施形態 2の水素ガスセンサを示す外観斜視図である。  FIG. 6 is an external perspective view showing a hydrogen gas sensor of Embodiment 2.
[図 7]実施形態 3の水素ガスセンサを示す外観斜視図である。 [図 8]同上の水素ガスセンサの断面図である。 FIG. 7 is an external perspective view showing a hydrogen gas sensor of Embodiment 3. FIG. 8 is a sectional view of the hydrogen gas sensor same as above.
[図 9]同上の水素ガスセンサの出力特¾図である。  FIG. 9 is an output characteristic diagram of the hydrogen gas sensor same as above.
[図 10]同上の水素ガスセンサの出力特¾図である。  FIG. 10 is an output characteristic diagram of the hydrogen gas sensor same as above.
[図 11]同上の水素ガスセンサの出力特性図である。  FIG. 11 is an output characteristic diagram of the hydrogen gas sensor same as above.
[図 12]従来の接触燃焼式のガスセンサの一部破断せる外観斜視図である。  FIG. 12 is an external perspective view of a conventional catalytic combustion type gas sensor partially broken.
[図 13]同上のガスセンサを用いた測定回路の回路図である。  FIG. 13 is a circuit diagram of a measurement circuit using the gas sensor same as above.
[図 14]同上のガスセンサの出力特 1"生図である。  [Fig.14] Output characteristics of gas sensor same as above 1 "Raw drawing.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 本発明を詳細に説述するために、添付の図面に従ってこれを説明する。 [0020] In order to describe the present invention in detail, it will be described with reference to the accompanying drawings.
[0021] (第 1の実施形態) [0021] (First embodiment)
本発明に係る第 1の実施形態について添付図面を参照して説明する。尚、以下の 説明では特に断りがない限り、図 1に示す向きにおいて上下左右の方向を規定する  A first embodiment according to the present invention will be described with reference to the accompanying drawings. In the following explanation, unless otherwise specified, the vertical and horizontal directions are defined in the direction shown in FIG.
[0022] 図 1は本実施形態の水素ガスセンサ 1の構造を模式的に示した図、図 2は外観斜 視図、図 3は断面図であり、この水素ガスセンサ 1は発熱抵抗体 2とステム 3a, 3bとべ ース 4と保護キャップ 5とを備える。 FIG. 1 is a diagram schematically showing the structure of a hydrogen gas sensor 1 of the present embodiment, FIG. 2 is an external perspective view, and FIG. 3 is a cross-sectional view. The hydrogen gas sensor 1 includes a heating resistor 2 and a stem. 3a, 3b, base 4 and protective cap 5 are provided.
[0023] 発熱抵抗体 2は、従来のガスセンサにおける燃焼体 21と発熱抵抗体 22の両方の 機能を備えており、表面の組成をパラジウム、ルテニウム、ロジウム、ニッケル、コバル トの内の少なくとも 1種と白金との合金とした白金線をコイル状に卷回して形成されて おり、その両端がステム 3a, 3bに電気的且つ機械的に接続されている。本実施形態 では発熱抵抗体 2として例えば線径が約 20 μ mのものを用い、コイル径を約 210 β m、 泉間を糸勺 20 μ mとして 10ターン卷回しており、 ィノレの全長を 360— 400 μ mと している。なお本実施形態では発熱抵抗体 2として白金線を用いている力 白金系の 抵抗線であれば純白金以外の材料を用いても良ぐ例えばジルコニァ安定化白金な どでも良い。なお本実施形態では白金系の抵抗線の表面を、パラジウム、ルテニウム 、ロジウム、ニッケル、コバルトの内の少なくとも 1種と合金化して発熱抵抗体 2を形成 しているが、最初から合金化された白金系抵抗性を使用しても良い。  [0023] The heating resistor 2 has the functions of both the combustion body 21 and the heating resistor 22 in the conventional gas sensor, and the surface composition is at least one of palladium, ruthenium, rhodium, nickel and cobalt. A platinum wire made of an alloy of aluminum and platinum is wound in a coil shape, and both ends thereof are electrically and mechanically connected to the stems 3a and 3b. In this embodiment, the heating resistor 2 having, for example, a wire diameter of about 20 μm is used, and the coil diameter is about 210 β m, the spring is wound about 10 μm, and the total length of the inole is reduced. 360—400 μm. In this embodiment, a material other than pure platinum may be used as long as it is a force-based resistance wire using a platinum wire as the heating resistor 2. For example, zirconia stabilized platinum may be used. In this embodiment, the surface of the platinum-based resistance wire is alloyed with at least one of palladium, ruthenium, rhodium, nickel, and cobalt to form the heating resistor 2. Platinum-based resistance may be used.
[0024] ベース 4は合成樹脂により円盤状に形成され、 3本のステム 3a, 3b, 3cはベース 4 を上下方向に貫通するようにベース 4にインサート成形されている。 3本のステム 3a— 3cの内、中央のステム 3cは他の 2本のステム 3a, 3bに比べて上面からの突出量が 短くなつており、両端にある 2本のステム 3a, 3bにおいてベース 4の上面から突出す る部位に発熱抵抗体 2の両端部 2a, 2bが溶接などの方法で固着されている。なお中 央のステム 3cは、後述の実施形態 2で説明するように発熱抵抗体 2と補償抵抗 8の両 方共に取り付ける場合に使用するものであり、発熱抵抗体 2だけの場合にはステム 3c は使用しない。 [0024] The base 4 is formed in a disc shape from a synthetic resin, and the three stems 3a, 3b, 3c are the base 4 The base 4 is insert-molded so as to penetrate vertically. Of the three stems 3a-3c, the center stem 3c has a shorter protrusion from the top than the other two stems 3a, 3b, and the bases of the two stems 3a, 3b at both ends Both ends 2a and 2b of the heating resistor 2 are fixed to a portion protruding from the upper surface of 4 by a method such as welding. The central stem 3c is used when both the heating resistor 2 and the compensation resistor 8 are attached as described in the second embodiment described later. When only the heating resistor 2 is used, the stem 3c is used. Is not used.
[0025] 保護キャップ 5は下面側の端部が開口した略円筒状であって、開口部から発熱抵 抗体 2を内部に納めるようにしてベース 4が圧入固定されている。保護キャップ 5の天 井面には丸孔状の通気孔 6が中央に貫設され、通気孔 6には防爆のために 100メッ シュのステンレス製の金網 7が装着されてレ、る。なお保護キャップ 5は金属製のもので も、樹脂製のものでも良い。  [0025] The protective cap 5 has a substantially cylindrical shape with an open end on the lower surface side, and the base 4 is press-fitted and fixed so that the exothermic antibody 2 is accommodated from the opening. A round hole 6 is formed in the center of the ceiling of the protective cap 5, and a 100 mesh stainless steel wire mesh 7 is attached to the hole 6 for explosion protection. The protective cap 5 may be made of metal or resin.
[0026] ここで、水素ガスの測定時には図示しない測定回路によりステム 3a, 3b間に略一定 の電圧を印加して、発熱抵抗体 2を所定の温度(例えば約 100°C程度)に加熱する。 そして、保護キャップ 5の通気孔 6を通して内部に侵入した水素ガスが発熱抵抗体 2 に接触すると、発熱抵抗体 2表面の白金の触媒作用によって発熱抵抗体 2の表面で 水素ガスが燃焼する。この時、水素ガスの燃焼熱によって発熱抵抗体 2の温度が上 昇し、温度上昇に応じて電気抵抗が増加するので、測定回路では発熱抵抗体 2の電 気抵抗値の変化量を測定することで、水素ガスのガス濃度を測定することが可能に なる。  Here, when measuring hydrogen gas, a heating circuit 2 is heated to a predetermined temperature (for example, about 100 ° C.) by applying a substantially constant voltage between the stems 3a and 3b by a measurement circuit (not shown). . When the hydrogen gas that has entered inside through the vent hole 6 of the protective cap 5 comes into contact with the heating resistor 2, the hydrogen gas burns on the surface of the heating resistor 2 by the catalytic action of platinum on the surface of the heating resistor 2. At this time, the temperature of the heating resistor 2 rises due to the combustion heat of hydrogen gas, and the electrical resistance increases as the temperature rises, so the measurement circuit measures the amount of change in the electrical resistance value of the heating resistor 2. Thus, the gas concentration of hydrogen gas can be measured.
[0027] なお本実施形態では発熱抵抗体 2をコイル状に形成し、コイルの軸方向が上下方 向と略平行するようにステム 3a, 3bに取り付けている力 S、図 4に示すようにコイルの軸 方向が左右方向と略平行するようにステム 3a, 3bに取り付けても良い。また発熱抵抗 体 2をコイル状に形成することで表面積を大きくしている力 S、図 5に示すように直線状 に形成しても良ぐコイル状に巻く作業を無くすことができる。  In this embodiment, the heating resistor 2 is formed in a coil shape, and the force S is attached to the stems 3a and 3b so that the axial direction of the coil is substantially parallel to the upward and downward directions, as shown in FIG. It may be attached to the stems 3a and 3b so that the axial direction of the coil is substantially parallel to the horizontal direction. Further, the force S that increases the surface area by forming the heating resistor 2 in a coil shape, and the work of winding in a coil shape that can be formed linearly as shown in FIG. 5, can be eliminated.
[0028] 次に発熱抵抗体 2の製造方法について以下に説明する。先ず白金系(例えば白金 、ジノレコニァ安定化白金など)の抵抗線 (母材)をコイル状に卷回し、この抵抗線の表 面をパラジウム、ルテニウム、ロジウム、ニッケル、コバルトの内の少なくとも 1種と合金 化するために、例えば硝酸パラジウム、硝酸ルテニウム、硝酸ロジウム、硝酸ニッケルNext, a method for manufacturing the heating resistor 2 will be described below. First, a resistance wire (base material) of a platinum series (for example, platinum, dinoleconia stabilized platinum) is wound in a coil shape, and the surface of the resistance wire is made of at least one of palladium, ruthenium, rhodium, nickel, and cobalt. alloy For example, palladium nitrate, ruthenium nitrate, rhodium nitrate, nickel nitrate
、硝酸コバルトの内の少なくとも 1種を所定濃度含んだ水溶液を上記抵抗線に塗布し た後、室温で約 1時間風乾して溶媒を除去する。その後抵抗線の両端間に約 1. IV の電圧を 10分程度印加し、抵抗線の表面温度を約 900°Cに加熱することによって、 抵抗線の表面をパラジウム、ルテニウム、ロジウム、ニッケル、コバルトの内の少なくと も 1種と合金化する。このように発熱抵抗体 2は抵抗線を所望の形状に形成した後、 所望の触媒を含む溶液を抵抗線の表面に塗布し、風乾後所定の電圧を印加するこ とで合金化しているので、従来のガスセンサのように、コイル状の発熱抵抗体にビー ズ状の燃焼体を形成する工程が不要になり、製造工程が簡素化できる。またビーズ 状の燃焼体を形成する場合は燃焼体の形状や寸法のばらつきが大きいが、本実施 形態では抵抗線をコイル状に巻いてその表面を合金化しているだけなので、発熱抵 抗体 2の形状 ·寸法のばらつきを小さくでき、感度のばらつきを低減できる。また発熱 抵抗体 2は表面に触媒と白金との合金が形成された白金系の抵抗線で構成されて いるので、従来のガスセンサのように燃焼体に担持させた触媒が剥がれることがなぐ 検知性能を長期的に安定させることができる。 After applying an aqueous solution containing a predetermined concentration of at least one of cobalt nitrate to the resistance wire, the solvent is removed by air drying at room temperature for about 1 hour. After that, by applying a voltage of about 1. IV between both ends of the resistance wire for about 10 minutes and heating the surface temperature of the resistance wire to about 900 ° C, the surface of the resistance wire is palladium, ruthenium, rhodium, nickel, cobalt. Alloy with at least one of these. In this way, the heating resistor 2 is formed into an alloy by forming a resistance wire in a desired shape, applying a solution containing a desired catalyst to the surface of the resistance wire, air-drying, and applying a predetermined voltage. Thus, unlike the conventional gas sensor, the process of forming the bead-shaped combustion body on the coil-shaped heating resistor is not required, and the manufacturing process can be simplified. In addition, when forming a bead-shaped combustion body, variations in the shape and dimensions of the combustion body are large. However, in this embodiment, the resistance wire 2 is coiled and the surface is alloyed. Variations in shape and dimensions can be reduced, and variations in sensitivity can be reduced. In addition, the exothermic resistor 2 is composed of a platinum-based resistance wire with an alloy of catalyst and platinum formed on the surface, so that the catalyst carried on the combustor is not peeled off like a conventional gas sensor. Can be stabilized in the long term.
[0029] 以上のようにして形成されたガスセンサ 1の出力特性について図 9一図 11を参照し て説明する。なお、発熱抵抗体 2をコイル状に卷回した場合と直線状に形成した場合 とでは特性に大差が無かったため、以下では発熱抵抗体 2をコイル状に卷回した場 合の測定データを参照して説明を行う。  The output characteristics of the gas sensor 1 formed as described above will be described with reference to FIGS. Note that there was no significant difference in characteristics between when the heating resistor 2 was wound in a coil shape and when it was formed in a straight line. Refer to the measurement data when the heating resistor 2 is wound in a coil shape below. And explain.
[0030] 図 13に示した測定回路においてガスセンサ 20の代わりに本実施形態のガスセン サ 1を接続し、補償素子 23の代わりに例えば 10 Ωの固定抵抗を用レ、、ガスセンサ 1 への印加電圧が清浄大気中で約 0. 2Vとなるように可変抵抗 27を用いて調整を行つ た。ここで、ガスセンサ 1に約 0. 2Vの電圧を印加すると、発熱抵抗体 2の温度は 100 °C程度に加熱される。通気孔 6から金網 7を通過して保護キャップ 6内に水素ガスが 侵入すると、水素ガスが発熱抵抗体 2の表面で燃焼し、その燃焼熱によって発熱抵 抗体 2の抵抗値が変化する。この時、ブリッジ回路の出力端 c, d間の電圧が変化する ので、この出力電圧の変化から水素ガス濃度を測定することができる。図 9は各種の 可燃性ガスに対するガス感度の測定結果であり、横軸はガス濃度(ppm)、縦軸はブ リッジ回路の出力電圧(mV)である。なお、図中の aは水素、 bは一酸化炭素、 cはメタ ン、 dはイソブタン、 eはエタノールの測定結果をそれぞれ示している。図 9の測定結 果より、 100°C程度の温度域では水素ガス以外の可燃性ガス(C〇、 CH、 IB、ェタノ In the measurement circuit shown in FIG. 13, the gas sensor 1 of this embodiment is connected instead of the gas sensor 20, and a fixed resistor of 10 Ω, for example, is used instead of the compensation element 23, and the voltage applied to the gas sensor 1 is used. Was adjusted using variable resistor 27 so that the voltage was about 0.2 V in a clean atmosphere. Here, when a voltage of about 0.2 V is applied to the gas sensor 1, the temperature of the heating resistor 2 is heated to about 100 ° C. When hydrogen gas enters the protective cap 6 through the metal mesh 7 from the vent hole 6, the hydrogen gas burns on the surface of the heating resistor 2, and the resistance value of the exothermic antibody 2 changes due to the heat of combustion. At this time, since the voltage between the output terminals c and d of the bridge circuit changes, the hydrogen gas concentration can be measured from the change in the output voltage. Figure 9 shows the measurement results of gas sensitivity for various flammable gases. The horizontal axis is the gas concentration (ppm) and the vertical axis is the block. This is the output voltage (mV) of the ridge circuit. In the figure, a is hydrogen, b is carbon monoxide, c is methane, d is isobutane, and e is ethanol. From the measurement results in Fig. 9, flammable gases other than hydrogen gas (C〇, CH, IB, ethano
4 ール)は燃焼せず、水素ガスのみが燃焼するため水素ガスの選択性が非常に良ぐ 水素ガスを精度良く検出することが判明した。なお、この場合のガスセンサ 1の消費 電力は約 10mWであり、非常に小さい消費電力で測定が行える。このような低消費 電力で動作できる理由は、従来の接触燃焼式ガスセンサのように熱容量の大きな燃 焼体 21を持たないためであり、水素ガスの燃焼によって発生した燃焼熱を効率良く 白金線に伝えることで、発熱抵抗体 2を高温に加熱することなく発熱抵抗体 2の抵抗 値変化を検出できるからである。  4) was not combusted, but only hydrogen gas was combusted, so the selectivity of hydrogen gas was very good. In this case, the power consumption of the gas sensor 1 is about 10 mW, and measurement can be performed with very low power consumption. The reason why it can operate with such low power consumption is that it does not have the large combustion capacity 21 like the conventional catalytic combustion type gas sensor, and the combustion heat generated by the combustion of hydrogen gas is efficiently converted into a platinum wire. This is because the resistance value change of the heating resistor 2 can be detected without heating the heating resistor 2 to a high temperature.
[0031] ここで、発熱抵抗体 2の表面の組成を純白金又はジルコニァ安定化白金(つまり表 面を合金化していないもの)、白金一パラジウム合金、白金一ルテニウム合金、白金一 ロジウム合金、白金 ニッケル合金、白金 コバルト合金とした場合の各々について、 水素ガスに対するガス感度を測定したところ、何れの場合でも使用初期時のガス感 度は略同等であった。し力 ながら、各々の組成の白金抵抗線に約 0. 2Vの電圧を 印加して清浄大気中で動作させ続けると、表面の組成が純白金又はジルコユア安定 化白金 (つまり白金系抵抗線の表面を合金化していないもの)のものでは、十数日が 経過した時点で感度が若干減少することが判明した。感度低下の原因は不明である 力 表面の白金の燃焼活性点がなんらかの理由で失活するものと考えられる。一方、 表面を合金化したものは失活が 60日以上起こらないことから合金化により活性点の 耐久性が増してレ、ると考えられる。  [0031] Here, the surface composition of the heating resistor 2 is pure platinum or zirconia stabilized platinum (that is, the surface is not alloyed), platinum-palladium alloy, platinum-ruthenium alloy, platinum-rhodium alloy, platinum For each of the nickel alloy and the platinum-cobalt alloy, the gas sensitivity to hydrogen gas was measured. In either case, the gas sensitivity at the initial stage of use was substantially the same. However, if a voltage of about 0.2 V is applied to the platinum resistance wires of each composition and the operation is continued in a clean atmosphere, the surface composition will be pure platinum or zirconium-stabilized platinum (that is, the surface of the platinum resistance wire). It was found that the sensitivity decreased slightly after 10 days had passed. The cause of the decrease in sensitivity is unknown. Force The burning active sites of platinum on the surface are thought to be deactivated for some reason. On the other hand, when the surface is alloyed, deactivation does not occur for more than 60 days, so it is considered that the durability of active sites increases due to alloying.
[0032] また本実施形態のガスセンサ 1を、燃料電池車に搭載して水素ガスの漏洩を検知 するために使用したレ、とレ、う要望があるので、自動車等の過酷な振動を発する機器 にガスセンサ 1を取り付ける場合を想定して落下試験を行った。落下試験は高さ lm 力 コンクリート上にガスセンサ 1を 50回落下させ、発熱抵抗体 2のコイル部分の形状 を試験の前後で観察するというものであり、試験の前後でコイル部分の形状は変化 せず、機能上問題は無いことを確認できた。また図 10は落下試験の前後で水素ガス に対する感度測定を行った結果を示しており、図中の aは試験前の測定データ、図 中の bは試験後の測定データを示している。この測定結果より水素ガスに対する感度 にも特に変化は見られなかった。なお実験に用いたガスセンサ 1の発熱抵抗体 2は、 その表面に白金 パラジウム合金を形成したものである力 S、表面に他の組成の白金 合金を形成したものでも、同じ試験結果が得られた。 [0032] In addition, there is a demand for using the gas sensor 1 of the present embodiment in a fuel cell vehicle to detect leakage of hydrogen gas. A drop test was conducted on the assumption that the gas sensor 1 was attached. In the drop test, the gas sensor 1 is dropped 50 times on concrete with a height of lm force, and the shape of the coil part of the heating resistor 2 is observed before and after the test. The shape of the coil part changes before and after the test. It was confirmed that there were no functional problems. Figure 10 shows the results of sensitivity measurement for hydrogen gas before and after the drop test. B in the figure shows the measured data after the test. From this measurement result, there was no particular change in sensitivity to hydrogen gas. The same test results were obtained with the heating resistor 2 of the gas sensor 1 used in the experiment, even though the force S was a platinum-palladium alloy formed on the surface and a platinum alloy of another composition was formed on the surface. .
[0033] なお抵抗線をコイル状に卷回し、そのコイル部分を覆うようにビーズ状のアルミナ担 体 (燃焼体)を形成した従来のガスセンサでは、燃焼体の重量が大きいために数回の 落下で抵抗線が変形したり、断線が発生したが、本実施形態では発熱抵抗体 2が発 熱体と燃焼体と触媒の 3つの機能を有しているので、発熱抵抗体 2にアルミナ担体を 形成する必要が無ぐ発熱抵抗体 2自体の慣性が小さくなるから、衝撃に非常に強い ことが判明した。また振動に対しても、発熱抵抗体 2の慣性を小さくすることで、耐振 動性を向上させることができた。  [0033] In the conventional gas sensor in which the resistance wire is wound in a coil shape and a bead-shaped alumina support (combustion body) is formed so as to cover the coil portion, the combustion body is heavy, and thus drops several times. However, in this embodiment, the heating resistor 2 has the three functions of the heat generator, the combustion body, and the catalyst. Since the inertia of the heating resistor 2 itself, which does not need to be formed, becomes small, it has been found that it is extremely resistant to impact. Also, with respect to vibration, the vibration resistance could be improved by reducing the inertia of the heating resistor 2.
[0034] 次にガスセンサ 1の湿度特性について図 11を参照して説明する。図 11は雰囲気温 度を略一定(21°C又は 22°C)とし、雰囲気中の湿度を約 30%から約 80%まで変化 させた場合の水素ガス感度を測定した結果を示す。ここで、図中の aは温度が 22°C、 湿度が 31%の場合の測定データ、図中の bは温度が 21°C、湿度が 52%の場合の 測定データ、図中の cは温度が 21°C、湿度が 78%の場合の測定データである。この 試験結果より、約 30 %から約 80 %までの湿度範囲ではガスセンサ 1の出力特性に殆 ど変化がなレ、ことを確認できた。なお実験に用いたガスセンサ 1の発熱抵抗体 2は、 その表面に白金 パラジウム合金を形成したものである力 S、表面に他の組成の白金 合金を形成したものでも、同じ試験結果が得られた。本実施形態のガスセンサ 1は比 較的低温で動作させており、発熱抵抗体 2の発熱の大部分をステム 3a, 3bを介して 逃がしており、空気中に放熱される割合 (気体熱伝導の割合)が少ないため、雰囲気 中の湿度(つまり気体熱伝導率)が変化しても出力特性に与える影響が少ないものと 考えられる。つまり本実施形態のガスセンサ 1が、雰囲気の気体熱伝導率の変化 (湿 度変化)に影響されにくい性質を持っており、その結果湿度変化による出力変動を低 減できたと考えられる。  Next, humidity characteristics of the gas sensor 1 will be described with reference to FIG. Figure 11 shows the measurement results of the hydrogen gas sensitivity when the ambient temperature is approximately constant (21 ° C or 22 ° C) and the humidity in the atmosphere is changed from about 30% to about 80%. Here, a in the figure is measurement data when the temperature is 22 ° C and humidity is 31%, b in the figure is measurement data when the temperature is 21 ° C and humidity is 52%, and c in the figure is Measurement data when temperature is 21 ° C and humidity is 78%. From this test result, it was confirmed that there was almost no change in the output characteristics of the gas sensor 1 in the humidity range from about 30% to about 80%. The same test results were obtained with the heating resistor 2 of the gas sensor 1 used in the experiment, even though the force S was a platinum-palladium alloy formed on the surface and a platinum alloy of another composition was formed on the surface. . The gas sensor 1 of the present embodiment is operated at a relatively low temperature, and most of the heat generated by the heating resistor 2 is released through the stems 3a and 3b, and the ratio of heat radiated into the air (gas heat conduction rate). Therefore, even if the humidity in the atmosphere (that is, gas thermal conductivity) changes, the effect on the output characteristics is considered to be small. In other words, it is considered that the gas sensor 1 of the present embodiment has the property that it is not easily affected by the change in gas thermal conductivity (humidity change) of the atmosphere, and as a result, the output fluctuation due to the humidity change can be reduced.
[0035] また本実施形態のガスセンサ 1について高湿雰囲気下でガス特性を測定した結果 について説明する。発熱抵抗体 2の表面の組成を純白金又はジノレコニァ安定化白 金 (つまり表面を合金化していないもの)、白金一パラジウム合金、白金一ノレテニゥム合 金、白金一ロジウム合金、白金一ニッケル合金、白金一コバルト合金とした場合の各々 について、温度 60°C、湿度 80%Rhの雰囲気中で発熱抵抗体 2に約 0. 2Vの電圧を 印加して長時間連続動作させると、発熱抵抗体 2の表面の組成が純白金又はジノレコ ニァ安定化白金 (つまり白金系抵抗線の表面を合金化していないもの)のものでは 2 4時間以内に水素ガスに対する感度が無くなった。一方、発熱抵抗体 2の表面の組 成が白金一パラジウム合金、白金一ルテニウム合金、白金一ロジウム合金、白金—ニッ ケノレ合金のものでは 24時間以内では感度劣化は殆ど見られず、その後は数日間で 徐々に感度が低下していき、約 20日が経過した時点で感度は半分程度となるが、そ の後はこの時の感度を約 1ヶ月が経過した時点でも維持していた。また発熱抵抗体 2 の表面の組成が白金一コバルト合金のものは、約 1ヶ月にわたつて、感度低下が見ら れな力、つた。以上の結果より発熱抵抗体 2の表面の組成を白金合金としたものは高 湿雰囲気中での耐久性が向上し、特に白金一コバルト合金を形成したものは高湿雰 囲気に対する耐久性を大幅に向上させることができた。 [0035] The results of measuring the gas characteristics of the gas sensor 1 of the present embodiment under a high humidity atmosphere will be described. The composition of the surface of the heating resistor 2 is pure platinum or dinoleconia stabilized white. For each of gold (that is, the one whose surface is not alloyed), platinum-palladium alloy, platinum-norenium alloy, platinum-rhodium alloy, platinum-nickel alloy, platinum-cobalt alloy, temperature 60 ° C, humidity When a voltage of about 0.2 V is applied to the heating resistor 2 in an 80% Rh atmosphere for a long period of continuous operation, the surface composition of the heating resistor 2 is pure platinum or dinoleconia stabilized platinum (that is, platinum-based). The resistance wire surface was not alloyed, and the sensitivity to hydrogen gas disappeared within 24 hours. On the other hand, when the composition of the surface of the heating resistor 2 is platinum-palladium alloy, platinum-ruthenium alloy, platinum-rhodium alloy, or platinum-nickenore alloy, there is almost no deterioration in sensitivity within 24 hours. The sensitivity gradually decreased over the course of the day, and the sensitivity dropped to about half when about 20 days had passed. After that, the sensitivity was maintained even after about one month. In addition, when the composition of the surface of the heating resistor 2 was a platinum-cobalt alloy, the sensitivity did not decrease for about one month. Based on the above results, those with a platinum alloy composition on the surface of the heating resistor 2 have improved durability in a high-humidity atmosphere, and those with a platinum-cobalt alloy in particular have greatly improved durability against high-humidity atmospheres. Could be improved.
さらに本実施形態のガスセンサ 1について高濃度ガス中での耐久性試験を行った 結果について説明する。発熱抵抗体 2の表面の組成を純白金又はジノレコニァ安定 化白金 (つまり表面を合金化していないもの)、白金一パラジウム合金、白金一ノレテニ ゥム合金、白金一ロジウム合金、白金一二ッケノレ合金、白金一コバルト合金としたものを 、水素ガス、メタン、イソブタン、エタノールを各々 lOOOOppm含む雰囲気中で、発熱 抵抗体 2に約 0. 2Vの電圧を印加して 24時間連続動作させたところ、全てのガスセ ンサ 1について感度劣化は見られなかった。メタン、イソブタン、エタノール中で感度 劣化が発生しない理由としては、本実施形態のガスセンサ 1が比較的低い温度で動 作しているため、発熱抵抗体 2の表面で水素ガス以外の可燃性ガス (メタン、イソブタ ン、エタノールなど)が燃えないため、燃焼熱の影響を受けにくいためと考えられる。 一方、水素ガス中では水素ガスが燃焼し、その燃焼熱によって発熱抵抗体 2の表面 温度が上昇する。ここで、従来の接触燃焼センサでは高分散に坦持された触媒がシ ンタリングするために感度低下現象が見られる場合があるが、本実施形態のガスセン サ 1は発熱抵抗体 2を構成する白金又はジルコニァ安定化白金、あるいは白金合金 上に活性点が存在するため触媒の凝集現象が起こりにくぐ感度の低下が見られな レ、ものと考えられる。 Furthermore, the result of having performed the durability test in the high concentration gas about the gas sensor 1 of this embodiment is demonstrated. The composition of the surface of the heating resistor 2 is pure platinum or dinoleconia stabilized platinum (that is, the one in which the surface is not alloyed), platinum-palladium alloy, platinum-norenium alloy, platinum-rhodium alloy, platinum-deckenore alloy, When a platinum-cobalt alloy was continuously operated for 24 hours by applying a voltage of about 0.2 V to the heating resistor 2 in an atmosphere containing hydrogen gas, methane, isobutane, and ethanol, each of lOOOOppm, No sensitivity degradation was observed for gas sensor 1. The reason that sensitivity degradation does not occur in methane, isobutane, and ethanol is that the gas sensor 1 of the present embodiment operates at a relatively low temperature, so that a combustible gas other than hydrogen gas on the surface of the heating resistor 2 ( This is probably because methane, isobutane, ethanol, etc.) do not burn and are not easily affected by combustion heat. On the other hand, hydrogen gas burns in hydrogen gas, and the surface temperature of the heating resistor 2 rises due to the heat of combustion. Here, in the conventional catalytic combustion sensor, there is a case where the sensitivity reduction phenomenon may be observed due to the sintering of the catalyst supported in a highly dispersed state. However, the gas sensor 1 of the present embodiment is the platinum constituting the heating resistor 2. Or Zirconia stabilized platinum or platinum alloy It is considered that there is no decrease in sensitivity that makes it difficult for the catalyst to agglomerate due to the presence of active sites.
[0037] 本実施形態のガスセンサ 1について、触媒の被毒成分として知られる亜硫酸ガスお よびシリコンガスによる被毒の影響を調べた結果について以下に説明する。ここで、 発熱抵抗体 2の表面の組成を純白金又はジノレコニァ安定化白金(つまり表面を合金 ィ匕していないもの)、白金一パラジウム合金、白金一ノレテニゥム合金、白金一ロジウム合 金、白金一ニッケル合金、白金一コバルト合金としたものを、亜硫酸ガスが 300ppm、 へキサメチルジシロキサンが 150ppmの雰囲気中で、発熱抵抗体 2に約 0. 2Vの電 圧を印加して 24時間連続動作させたところ、発熱抵抗体 2の表面の組成が純白金又 はジルコニァ安定化白金 (つまり白金系抵抗線の表面を合金化してレ、なレ、)のもので は約 10分後に水素ガスに対する感度が無くなった。一方、発熱抵抗体 2の表面の組 成が白金一ノレテニゥム合金、白金—ロジウム合金、白金—ニッケル合金のものでは 5分 経過後から感度低下が始まるものの、 1時間後でも半分程度の感度を維持していた。 また発熱抵抗体 2の表面の組成が白金-パラジウム合金のものでは 15分後でも感度 劣化が殆ど見られず、 24時間後でも半分程度の感度を維持していた。以上の結果よ り発熱抵抗体 2の表面の組成を白金合金としたものでは被毒ガスに対する耐久性が 大幅に向上したことが判明した。  [0037] With respect to the gas sensor 1 of the present embodiment, the results of examining the influence of poisoning by sulfurous acid gas and silicon gas, which are known as poisoning components of the catalyst, will be described below. Here, the composition of the surface of the heating resistor 2 is pure platinum or platinum-stabilized platinum (that is, the alloy whose surface is not alloyed), platinum-palladium alloy, platinum-norretium alloy, platinum-rhodium alloy, platinum A nickel alloy or platinum-cobalt alloy was continuously operated for 24 hours by applying a voltage of about 0.2 V to heating resistor 2 in an atmosphere of 300 ppm sulfurous acid gas and 150 ppm hexamethyldisiloxane. As a result, if the composition of the surface of the heating resistor 2 is pure platinum or zirconia stabilized platinum (that is, alloying the surface of the platinum resistance wire), the sensitivity to hydrogen gas after about 10 minutes. Is gone. On the other hand, when the composition of the surface of the heating resistor 2 is platinum one-renium alloy, platinum-rhodium alloy, or platinum-nickel alloy, the sensitivity starts to decrease after 5 minutes, but the sensitivity remains about half even after one hour. Was. In addition, when the composition of the surface of the heating resistor 2 was a platinum-palladium alloy, there was almost no sensitivity degradation even after 15 minutes, and about half of the sensitivity was maintained even after 24 hours. From the above results, it was found that the durability against poisoning gas was greatly improved when the composition of the surface of the heating resistor 2 was a platinum alloy.
[0038] (第 2の実施形態)  [0038] (Second Embodiment)
本発明に係る第 2の実施形態について図 6を参照して説明する。本実施形態では 、第 1の実施形態で説明したガスセンサ 1において、発熱抵抗体 2と同一の材料から 形成され、水素ガスに対する活性を無くした補償抵抗 8を備えている。尚、補償抵抗 8以外の構成は第 1の実施形態と同様であるので、共通する構成要素には同一の符 号を付して、その説明は省略する。  A second embodiment according to the present invention will be described with reference to FIG. In this embodiment, the gas sensor 1 described in the first embodiment is provided with a compensation resistor 8 that is made of the same material as the heating resistor 2 and has no activity against hydrogen gas. Since the configuration other than the compensation resistor 8 is the same as that of the first embodiment, common components are denoted by the same reference numerals and description thereof is omitted.
[0039] 補償抵抗 8は、第 1の実施形態で説明した発熱抵抗体 2と同じく白金線をコイル状 に卷回して形成されており、発熱抵抗体 2と略同一の形状、寸法に形成されているが 、水素ガスに対する燃焼活性を無くすための処理を行っている。なお補償抵抗 8の材 料は白金線に限定されるものではなぐ発熱抵抗体 2と同一の白金系の抵抗線で形 成されていれば良い。 [0040] 補償抵抗 8は水素ガスに対する燃焼活性を無くしてレ、るので、補償抵抗 8を発熱抵 抗体 2と同じ温度に加熱したとしても補償抵抗 8の表面で水素ガスが燃焼することは ないから、燃焼熱による温度上昇が発生しない。また補償抵抗 8は発熱抵抗体 2と同 一の材料で形成されているので、発熱抵抗体 2と同一の温度一抵抗特性を有してい るから、補償抵抗 8の抵抗値を用いて雰囲気温度変化等の雰囲気条件を補正するこ とで、燃焼熱による発熱抵抗体 2の抵抗値変化をより正確に測定することができ、水 素ガスに対する検出精度が向上する。 [0039] The compensation resistor 8 is formed by winding a platinum wire in a coil shape, similar to the heating resistor 2 described in the first embodiment, and is formed in substantially the same shape and dimensions as the heating resistor 2. However, a treatment for eliminating the combustion activity against hydrogen gas is performed. The material of the compensation resistor 8 is not limited to the platinum wire, but may be formed of the same platinum resistance wire as the heating resistor 2. [0040] Since the compensation resistor 8 has no combustion activity against hydrogen gas, the hydrogen gas does not burn on the surface of the compensation resistor 8 even if the compensation resistor 8 is heated to the same temperature as the exothermic resistor 2. Therefore, temperature rise due to combustion heat does not occur. The compensation resistor 8 is made of the same material as the heating resistor 2, and therefore has the same temperature-resistance characteristics as the heating resistor 2. Therefore, the ambient temperature is determined using the resistance value of the compensation resistor 8. By correcting the atmospheric conditions such as changes, the resistance value change of the heating resistor 2 due to the heat of combustion can be measured more accurately, and the detection accuracy for hydrogen gas is improved.
[0041] ベース 4は合成樹脂により円盤状に形成され、 3本のステム 3a, 3b, 3cがベース 4 を上下方向に貫通するようにインサート成形されている。 3本のステム 3a, 3b, 3cは 同一平面内に一列に並ぶように設けられ、中央のステム 3cは他の 2本のステム 3a, 3 bに比べて上面からの突出量が短くなつている。そして、左側の 2本のステム 3a, 3c には、ベース 4の上面から突出する部位に発熱抵抗体 2の両端部が溶接などの方法 で固着され、右側の 2本のステム 3b, 3cには、ベース 4の上面から突出する部位に補 償抵抗 8の両端部が溶接などの方法で固着されている。ここで、 3本のステム 3a— 3c は同一平面内に並んでいるので、ステム 3a— 3cに発熱抵抗体 2および補償抵抗 8を レーザ溶接する場合は溶接作業を一度に行うことができ、作業性が向上するという利 点がある。  [0041] The base 4 is formed in a disc shape from a synthetic resin, and is insert-molded so that the three stems 3a, 3b, 3c penetrate the base 4 in the vertical direction. The three stems 3a, 3b, 3c are arranged in a line in the same plane, and the central stem 3c has a shorter protruding amount from the upper surface than the other two stems 3a, 3b. . Then, both ends of the heating resistor 2 are fixed to the left two stems 3a and 3c by a method such as welding to a portion protruding from the upper surface of the base 4, and the right two stems 3b and 3c are fixed to the two stems 3b and 3c on the right side. The both ends of the compensation resistor 8 are fixed to the portion protruding from the upper surface of the base 4 by a method such as welding. Here, since the three stems 3a-3c are arranged in the same plane, when the heating resistor 2 and the compensation resistor 8 are laser welded to the stem 3a-3c, the welding work can be performed at one time. This has the advantage of improving the performance.
[0042] 本実施形態のガスセンサを製造するにあたっては、先ず白金系(例えば白金、ジノレ コニァ安定化白金など)の抵抗線 (母材)をコイル状に卷回して、同一の形状'寸法を 有するコイルを 2つ形成した後、ベース 4にインサート成形されたステム 3a, 3cに一方 のコイルの両端を固着するとともに、ステム 3b, 3cに他方のコイルの両端をそれぞれ 固着する。次に各コイルの表面をパラジウム、ルテニウム、ロジウム、ニッケル、コバル トの内の少なくとも 1種と合金化するために、例えば硝酸パラジウム、硝酸ルテニウム 、硝酸ロジウム、硝酸ニッケル、硝酸コバルトの内の少なくとも 1種を所定濃度含んだ 水溶液を両コイルに塗布した後、室温で約 1時間風乾して溶媒を除去する。その後ス テム 3a, 3c間、ステム 3b, 3c間にそれぞれ約 1. IVの電圧を 10分程度印加し、コィ ルの表面温度を約 900°Cに加熱することによって、コイルの表面をパラジウム、ルテ 二ゥム、ロジウム、ニッケノレ、コバルトの内の少なくとも 1種と合金化する。その後、補 償抵抗 8となるコイルを加熱するため、ステム 3b, 3c間に約 0· 8Vの電圧を印加して コイルを約 700°Cに加熱し、雰囲気中に約 lOOOOppmの亜硫酸ガスあるいは約 100 Oppmのへキサメチルジシロキサン蒸気を導入して約 1分間保持することで触媒を被 毒し、白金合金の触媒活性を失活させることにより補償抵抗 8を形成する。この方法 で触媒活性を失活させた補償抵抗 8は発熱抵抗体 2と同一の寸法 ·形状を有し、且 つ、その表面は発熱抵抗体 2の表面と外観上の差異は見られない。また補償抵抗 8 は、発熱抵抗体 2と同一の白金系抵抗線を卷線機でコイル状に巻いて、その表面を 合金化した後、さらに表面の触媒活性を失活させているから、発熱抵抗体 2と同一形 状、同一寸法のものを容易に製造することができ、発熱抵抗体 2と温度一抵抗特性が 等しレ、補償抵抗 8を容易に組み合わせることができる。 [0042] In manufacturing the gas sensor of the present embodiment, first, a platinum-based (eg, platinum, dinoleconia stabilized platinum) resistance wire (base material) is wound in a coil shape to have the same shape 'dimension. After forming two coils, both ends of one coil are fixed to the stems 3a and 3c insert-molded on the base 4, and both ends of the other coil are fixed to the stems 3b and 3c, respectively. Next, in order to alloy the surface of each coil with at least one of palladium, ruthenium, rhodium, nickel and cobalt, for example, at least one of palladium nitrate, ruthenium nitrate, rhodium nitrate, nickel nitrate and cobalt nitrate. After applying an aqueous solution containing a predetermined concentration of seeds to both coils, the solvent is removed by air drying at room temperature for about 1 hour. Then, a voltage of about 1. IV is applied between stems 3a and 3c and between stems 3b and 3c for about 10 minutes, and the coil surface temperature is heated to about 900 ° C, so that the coil surface is palladium, Alloy with at least one of ruthenium, rhodium, nickelenore and cobalt. After that, In order to heat the coil that becomes compensation resistance 8, a voltage of about 0.8V is applied between stems 3b and 3c to heat the coil to about 700 ° C, and about lOOOOppm sulfurous acid gas or about 100 Oppm in the atmosphere. Hexamethyldisiloxane vapor is introduced and held for about 1 minute to poison the catalyst and deactivate the catalytic activity of the platinum alloy to form compensation resistor 8. The compensation resistor 8 whose catalytic activity has been deactivated by this method has the same size and shape as the heating resistor 2, and the surface of the compensation resistor 8 is not different from the surface of the heating resistor 2 in appearance. In addition, the compensation resistor 8 heats the catalytic activity of the surface after the same platinum-based resistance wire as that of the heating resistor 2 is wound in a coil shape by a winding machine and alloyed on the surface. The same shape and the same dimensions as the resistor 2 can be easily manufactured, the heating resistor 2 has the same temperature-resistance characteristics, and the compensation resistor 8 can be easily combined.
[0043] なお本実施形態では発熱抵抗体 2と補償抵抗 8とを同じケースの内部に収納して いるので、発熱抵抗体 2と補償抵抗 8の雰囲気条件をほぼ同じにでき、補償抵抗 8の 抵抗値を用いて発熱抵抗体 2の出力を正確に補正することが可能であるが、発熱抵 抗体 2と補償抵抗 8との雰囲気条件をほぼ同じにできるのであれば、別々のケースに 収納しても良い。  In this embodiment, since the heating resistor 2 and the compensation resistor 8 are housed in the same case, the atmospheric conditions of the heating resistor 2 and the compensation resistor 8 can be made substantially the same. Although it is possible to accurately correct the output of the heating resistor 2 using the resistance value, if the atmospheric conditions of the heating resistor 2 and the compensation resistor 8 can be made almost the same, they should be stored in separate cases. May be.
[0044] (第 3の実施形態)  [0044] (Third embodiment)
本発明に係る第 3の実施形態について図 7および図 8を参照して説明する。本実施 形態では、第 2の実施形態で説明したガスセンサ 1において、保護キャップ 5の上側 にフィルタ 12を保持したフィルタキャップ 9を被せてある。尚、フィルタキャップ 9ゃフィ ルタ 12以外の構成は第 2の実施形態と同様であるので、共通する構成要素には同 一の符号を付して、その説明は省略する。  A third embodiment according to the present invention will be described with reference to FIG. 7 and FIG. In the present embodiment, in the gas sensor 1 described in the second embodiment, the filter cap 9 holding the filter 12 is put on the upper side of the protective cap 5. Since the configuration other than the filter cap 9 and the filter 12 is the same as that of the second embodiment, common components are denoted by the same reference numerals and description thereof is omitted.
[0045] フィルタキャップ 9は合成樹脂製であって、上面側の端部が閉塞された略円筒状に 形成されている。フィルタキャップ 9の上面には丸孔状の通気孔 10が貫設されており 、この通気孔 10には防爆のために 100メッシュのステンレス製の金網 11が装着され ている。またフィルタキャップ 9の筒内には、通気孔 10を通って内部に侵入するガス 中の被毒物質を吸着するフィルタ 12が装着されている。このフィルタ 12は、活性炭、 シリカゲル、又はゼォライトのような吸着性多孔質体、或いは、有機または無機の多 孔質体に化学物質捕捉性液体成分を含浸させた吸着剤からなり、ガス中の被毒物 質 (例えばシリコンなど)を吸着する機能を有している。なお上記の化学物質捕捉液 体成分としては、例えば酸化性ガスを取り除くために担持される KOHやアンモニア、 アミン等を取り除くために担持される燐酸等があり、特定の被毒物質を吸着するため に適宜の成分の液体を有機無機多孔質体に含浸させて使用すれば良い。 [0045] The filter cap 9 is made of a synthetic resin, and is formed in a substantially cylindrical shape whose end on the upper surface side is closed. A round hole 10 is formed in the upper surface of the filter cap 9, and a 100 mesh stainless steel wire mesh 11 is attached to the hole 10 for explosion protection. Further, a filter 12 that adsorbs poisonous substances in the gas that enters the inside through the vent hole 10 is mounted in the tube of the filter cap 9. The filter 12 is made of an adsorbent porous material such as activated carbon, silica gel, or zeolite, or an adsorbent obtained by impregnating an organic or inorganic porous material with a chemical-capturing liquid component, and is covered with a gas. Poisonous It has the function of adsorbing quality (for example, silicon). Examples of the chemical substance capturing liquid component include KOH, ammonia, and phosphoric acid, which are supported to remove oxidizing gas, to adsorb specific poisonous substances. The organic inorganic porous material may be used by impregnating the liquid with an appropriate component.
[0046] ここにベース 4と保護キャップ 5とフィルタキャップ 9とで、発熱抵抗体 2および補償抵 抗 8を内部に収納するケースが構成され、ケース(フィルタキャップ 9)に設けた通気 孔 10と発熱抵抗体 2および補償抵抗 8との間のガス流路に被毒物質を吸着するフィ ルタ 12を設けているので、通気孔 10を通って内部に侵入するガス中の被毒物質を 吸着でき、被毒物質による発熱抵抗体 2および補償抵抗 8の被毒が抑制されて、感 度の劣化を低減できる。  Here, the base 4, the protective cap 5, and the filter cap 9 constitute a case in which the heating resistor 2 and the compensation resistor 8 are housed, and the ventilation hole 10 provided in the case (filter cap 9) Since the filter 12 that adsorbs poisonous substances is provided in the gas flow path between the heating resistor 2 and the compensation resistor 8, it can adsorb the poisonous substances in the gas that enters the inside through the vent hole 10. The poisoning of the heating resistor 2 and the compensation resistor 8 due to poisoning substances is suppressed, and the deterioration of sensitivity can be reduced.
[0047] ここで、本実施形態のガスセンサ 1について、触媒の被毒成分として知られる亜硫 酸ガスおよびシリコンガスによる被毒の影響を調べた結果について以下に説明する。 ここで、発熱抵抗体 2の表面の組成を純白金又はジルコニァ安定化白金(つまり表面 を合金化していないもの)、白金一パラジウム合金、白金一ルテニウム合金、白金一口 ジゥム合金、白金一二ッケノレ合金、白金一コバルト合金としたものを、亜硫酸ガスが 30 Oppm、 へキサメチルジシロキサンが 150ppmの雰囲気中で、発熱抵抗体 2に約 0. 2 Vの電圧を印加して 24時間連続動作させたところ、何れのガスセンサ 1においても 2 4時間経過後に試験前と同等のガス感度を有していた。而してフィルタ 12を設けるこ とで被毒耐久性を大幅に向上させることができ、雰囲気条件が劣悪な場合でも長期 間安定した性能を維持することが可能になった。なお第 1の実施形態で説明したガス センサ 1においても、本実施形態と同様に、保護キャップ 5の上側にフィルタ 12を保 持したフィルタキャップ 9を被せても良いことは言うまでもなぐ発熱抵抗体 2の被毒を 抑制して、感度の劣化を低減することが可能である。  Here, with respect to the gas sensor 1 of the present embodiment, the results of examining the influence of poisoning by sulfurous acid gas and silicon gas, which are known as poisoning components of the catalyst, will be described below. Here, the composition of the surface of the heating resistor 2 is pure platinum or zirconia-stabilized platinum (that is, the one in which the surface is not alloyed), platinum-palladium alloy, platinum-ruthenium alloy, platinum-necked zinc alloy, platinum-neckenore alloy. The platinum-cobalt alloy was continuously operated for 24 hours by applying a voltage of about 0.2 V to the heating resistor 2 in an atmosphere containing 30 Oppm of sulfurous acid gas and 150 ppm of hexamethyldisiloxane. However, any gas sensor 1 had the same gas sensitivity as before the test after 24 hours. Thus, the provision of the filter 12 can greatly improve the poisoning durability, and it is possible to maintain stable performance for a long time even when the atmospheric conditions are poor. In the gas sensor 1 described in the first embodiment, it is needless to say that the filter cap 9 holding the filter 12 may be placed on the upper side of the protective cap 5 as in the present embodiment. It is possible to reduce the deterioration of sensitivity by suppressing the poisoning.
[0048] 上記のように、本発明の精神と範囲に反することなしに、広範に異なる実施形態を 構成することができることは明白なので、この発明は、添付クレームにおいて限定した 以外は、その特定の実施形態に制約されるものではない。  [0048] As noted above, it will be apparent that a wide variety of different embodiments can be constructed without departing from the spirit and scope of the invention, so that the invention is not limited to that particular, except as limited in the appended claims. The present invention is not limited to the embodiment.

Claims

請求の範囲 The scope of the claims
[1] 水素ガスを検出する水素ガスセンサであって、以下の構成を備える、  [1] A hydrogen gas sensor for detecting hydrogen gas, comprising:
発熱抵抗体、この発熱抵抗体の表面組成はパラジウム、ルテニウム、ロジウム、ニッ ケル、又はコバルトの内の少なくとも 1種と白金との合金であり、通電によるジュール 熱で水素ガスを燃焼可能な温度まで加熱され、発熱抵抗体の表面で水素ガスを燃 焼させ、その燃焼熱による温度上昇に応じて電気抵抗が変化し、電気抵抗の変化を 水素ガスの濃度検知信号として出力する。  A heating resistor, and the surface composition of the heating resistor is an alloy of platinum and at least one of palladium, ruthenium, rhodium, nickel, or cobalt, up to a temperature at which hydrogen gas can be combusted by Joule heat generated by energization. When heated, hydrogen gas is burned on the surface of the heating resistor, and the electrical resistance changes as the temperature rises due to the combustion heat, and the change in electrical resistance is output as a hydrogen gas concentration detection signal.
[2] 請求項 1に記載の水素ガスセンサにおいて、  [2] In the hydrogen gas sensor according to claim 1,
前記発熱抵抗体と同一の材料力 形成され、水素ガスに対する燃焼活性を無くし た補償抵抗を備える。  It has the same material force as that of the heating resistor, and has a compensation resistor that eliminates the combustion activity against hydrogen gas.
[3] 請求項 2に記載の水素ガスセンサにおいて、 [3] The hydrogen gas sensor according to claim 2,
前記発熱抵抗体と前記補償抵抗とを収納するケースを備える、このケースには外部 と連通する通気孔が形成され、前記通気孔と前記発熱抵抗体および前記補償抵抗 との間のガス流路に被毒物質を吸着するフィルタを設ける。  The case includes a case for storing the heating resistor and the compensation resistor. The case has a vent hole communicating with the outside, and a gas flow path between the vent hole, the heating resistor, and the compensation resistor is provided. Provide a filter that adsorbs poisonous substances.
[4] 請求項 1に記載の水素ガスセンサの製造方法であって、 [4] The method of manufacturing a hydrogen gas sensor according to claim 1,
溶媒中にパラジウム、ルテニウム、ロジウム、ニッケル、コバルトの内の少なくとも 1種 を所定濃度混ぜ合わせた溶液を、白金で形成された母材に塗布する工程と、 前記溶媒を風乾により除去する工程と、  Applying a solution in which a predetermined concentration of at least one of palladium, ruthenium, rhodium, nickel, and cobalt is mixed in a solvent to a base material formed of platinum; removing the solvent by air drying;
前記母材に所定の電圧を印加することによって白金合金を形成する工程とを有す る。  Forming a platinum alloy by applying a predetermined voltage to the base material.
[5] 請求項 2に記載の水素ガスセンサの製造方法であって、  [5] A method of manufacturing a hydrogen gas sensor according to claim 2,
前記発熱抵抗体と同一の材料により形成された補償抵抗を被毒することによって、 水素ガスに対する燃焼活性を無くす工程を有する。  There is a step of eliminating the combustion activity against hydrogen gas by poisoning a compensation resistor formed of the same material as the heating resistor.
PCT/JP2005/002796 2005-02-22 2005-02-22 Hydrogen gas sensor and process for producing the same WO2006090433A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007504568A JP4571665B2 (en) 2005-02-22 2005-02-22 Hydrogen gas sensor
PCT/JP2005/002796 WO2006090433A1 (en) 2005-02-22 2005-02-22 Hydrogen gas sensor and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/002796 WO2006090433A1 (en) 2005-02-22 2005-02-22 Hydrogen gas sensor and process for producing the same

Publications (1)

Publication Number Publication Date
WO2006090433A1 true WO2006090433A1 (en) 2006-08-31

Family

ID=36927084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002796 WO2006090433A1 (en) 2005-02-22 2005-02-22 Hydrogen gas sensor and process for producing the same

Country Status (2)

Country Link
JP (1) JP4571665B2 (en)
WO (1) WO2006090433A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102959389A (en) * 2010-05-17 2013-03-06 本田技研工业株式会社 Catalytic combustion type gas sensor
US8669131B1 (en) 2011-09-30 2014-03-11 Silicon Laboratories Inc. Methods and materials for forming gas sensor structures
US8691609B1 (en) 2011-09-30 2014-04-08 Silicon Laboratories Inc. Gas sensor materials and methods for preparation thereof
US8852513B1 (en) 2011-09-30 2014-10-07 Silicon Laboratories Inc. Systems and methods for packaging integrated circuit gas sensor systems
US9164052B1 (en) 2011-09-30 2015-10-20 Silicon Laboratories Inc. Integrated gas sensor
JP2015230278A (en) * 2014-06-06 2015-12-21 新コスモス電機株式会社 Gas detector
JP2016114434A (en) * 2014-12-12 2016-06-23 日本写真印刷株式会社 Contact combustion type hydrogen gas sensor element and contact combustion type hydrogen gas sensor
JP2018141800A (en) * 2018-04-24 2018-09-13 新コスモス電機株式会社 Gas detector
JP2019015687A (en) * 2017-07-10 2019-01-31 新コスモス電機株式会社 Contact combustion-type gas sensor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321987A (en) * 1976-08-12 1978-02-28 Gasurotsuku Hanbai Kk Detecting element using combustible gas concentration measurements
JPS5523379B2 (en) * 1975-11-05 1980-06-23
JPS5524580B2 (en) * 1975-11-06 1980-06-30
JPH1090210A (en) * 1996-08-31 1998-04-10 Lg Electron Inc Catalytic combustion type gas sesnor and its manufacture
JPH1183781A (en) * 1997-09-11 1999-03-26 Fuji Electric Co Ltd Manufacture of catalyst for gas sensor
JPH11160266A (en) * 1997-12-02 1999-06-18 Matsushita Seiko Co Ltd Gas sensor
JP2002052338A (en) * 2000-08-09 2002-02-19 New Cosmos Electric Corp Silicone gas adsorbent, gas filter, and gas sensor
JP2004020377A (en) * 2002-06-17 2004-01-22 Honda Motor Co Ltd Catalytic combustion type gas sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257891A (en) * 1975-11-06 1977-05-12 Matsushita Electric Ind Co Ltd Production of inflammable gas detecting element
DE2740158A1 (en) * 1977-09-02 1979-03-15 Auergesellschaft Gmbh CATALYTICALLY INACTIVE GAS DETECTING ELEMENT AND METHOD FOR THE PRODUCTION THEREOF
JP2004276283A (en) * 2003-03-13 2004-10-07 Mitsubishi Pencil Co Ltd Pressurizing-type ball-point pen
JP4440743B2 (en) * 2004-09-24 2010-03-24 シチズンホールディングス株式会社 Platinum alloy wire and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523379B2 (en) * 1975-11-05 1980-06-23
JPS5524580B2 (en) * 1975-11-06 1980-06-30
JPS5321987A (en) * 1976-08-12 1978-02-28 Gasurotsuku Hanbai Kk Detecting element using combustible gas concentration measurements
JPH1090210A (en) * 1996-08-31 1998-04-10 Lg Electron Inc Catalytic combustion type gas sesnor and its manufacture
JPH1183781A (en) * 1997-09-11 1999-03-26 Fuji Electric Co Ltd Manufacture of catalyst for gas sensor
JPH11160266A (en) * 1997-12-02 1999-06-18 Matsushita Seiko Co Ltd Gas sensor
JP2002052338A (en) * 2000-08-09 2002-02-19 New Cosmos Electric Corp Silicone gas adsorbent, gas filter, and gas sensor
JP2004020377A (en) * 2002-06-17 2004-01-22 Honda Motor Co Ltd Catalytic combustion type gas sensor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102959389A (en) * 2010-05-17 2013-03-06 本田技研工业株式会社 Catalytic combustion type gas sensor
JPWO2011145492A1 (en) * 2010-05-17 2013-07-22 本田技研工業株式会社 Contact combustion type gas sensor
US8669131B1 (en) 2011-09-30 2014-03-11 Silicon Laboratories Inc. Methods and materials for forming gas sensor structures
US8691609B1 (en) 2011-09-30 2014-04-08 Silicon Laboratories Inc. Gas sensor materials and methods for preparation thereof
US8852513B1 (en) 2011-09-30 2014-10-07 Silicon Laboratories Inc. Systems and methods for packaging integrated circuit gas sensor systems
US9164052B1 (en) 2011-09-30 2015-10-20 Silicon Laboratories Inc. Integrated gas sensor
JP2015230278A (en) * 2014-06-06 2015-12-21 新コスモス電機株式会社 Gas detector
JP2016114434A (en) * 2014-12-12 2016-06-23 日本写真印刷株式会社 Contact combustion type hydrogen gas sensor element and contact combustion type hydrogen gas sensor
JP2019015687A (en) * 2017-07-10 2019-01-31 新コスモス電機株式会社 Contact combustion-type gas sensor
JP7019330B2 (en) 2017-07-10 2022-02-15 新コスモス電機株式会社 Contact combustion type gas sensor
JP2018141800A (en) * 2018-04-24 2018-09-13 新コスモス電機株式会社 Gas detector

Also Published As

Publication number Publication date
JPWO2006090433A1 (en) 2008-08-07
JP4571665B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP4571665B2 (en) Hydrogen gas sensor
JP4580405B2 (en) Hydrogen gas sensor
JP5016599B2 (en) Gas detector
US7007542B2 (en) Method of warning of poisoning in poison resistant combustible gas sensors
US20090035184A1 (en) Hydrogen gas sensor
JP4833717B2 (en) Contact combustion type gas sensor and its sensing element and compensating element
JP4820528B2 (en) Catalyst sensor
JPH08510561A (en) Electrochemical sensor for measuring oxygen concentration in air-fuel mixture
JP2004522944A (en) Carbon monoxide sensor and detection method based on catalytic adsorption and oxidation
WO2006063183A2 (en) Electrochemical sensor system
JP2007232406A (en) Gas detector
JP6558884B2 (en) Contact combustion type gas sensor
JP2004020377A (en) Catalytic combustion type gas sensor
JP4210758B2 (en) Gas alarm
JPH10115597A (en) Gas sensor
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JP2007248197A (en) Contact combustion type gas sensor
JPH0875691A (en) Gas sensor
JP2726886B2 (en) Contact combustion type carbon monoxide sensor
JP4593979B2 (en) Gas sensor and gas detection method
JPH09145656A (en) Contact burning type gas sensor
JPS6146455Y2 (en)
JP4129253B2 (en) Semiconductor gas sensor
JPH0894576A (en) Gas sensor and its manufacture
JP5044540B2 (en) Hydrogen gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007504568

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05710522

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5710522

Country of ref document: EP