WO2006097531A1 - Optical device for wavelength-division multiplexing - Google Patents

Optical device for wavelength-division multiplexing Download PDF

Info

Publication number
WO2006097531A1
WO2006097531A1 PCT/EP2006/060846 EP2006060846W WO2006097531A1 WO 2006097531 A1 WO2006097531 A1 WO 2006097531A1 EP 2006060846 W EP2006060846 W EP 2006060846W WO 2006097531 A1 WO2006097531 A1 WO 2006097531A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
spectral
beams
diodes
spectral selection
Prior art date
Application number
PCT/EP2006/060846
Other languages
French (fr)
Inventor
Christian Larat
Eric Lallier
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2006097531A1 publication Critical patent/WO2006097531A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • G02B19/0057Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • G02B27/1093Beam splitting or combining systems operating by diffraction only for use with monochromatic radiation only, e.g. devices for splitting a single laser source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • H01S5/405Two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4081Near-or far field control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Definitions

  • the field of the invention is that of wavelength division multiplexing optical devices for generating from a plurality of optical beams emitted by different sources at different wavelengths a beam of light that is unique in one direction. common.
  • the invention can be applied to different types of light sources but it is particularly well suited to the multiplexing of laser diodes, either mounted on a single bar or on several bars. A luminance light source is thus obtained which is much higher than that of each diode or each diode array taken individually.
  • Laser diode arrays are monolithic components comprising a number of unitary laser diodes all emitting in the same direction.
  • the number of diodes is typically between 10 and 50.
  • Wavelength multiplexing of light sources is known. Examples include EP 0859249 entitled “Optical fiber wavelength multiplexer and demultiplexer” and US 4930855 entitled “Wavelength multiplexing of lasers”. These devices comprise an optical beam mixing optical device which is generally a diffraction grating operating in reflection. The beams are emitted by the sources at different wavelengths under different incidentals chosen so that the emitted beams are diffracted by the optical mixing device in a single common direction.
  • French patent 99 16401 entitled “Wavelength multiplexer of laser sources” describes a device of this type. It comprises a plurality of laser sources emitting beams at different wavelengths, a first network of cavity mirror diffraction and performing a Littrow type configuration, focusing optics and a second diffraction grating ensuring the superposition of the emission beams of the laser diodes.
  • One of the disadvantages of this type of device is related to the use in reflection of the first diffraction grating which ensures the spectral selection of the laser diodes. Indeed, it is necessary to use a relay-optics to focus the beams emitted on the network, this optics to include cylindrical elements to compensate for divergence asymmetries beams emitted. Therefore, the final device is complex and cumbersome. In addition, the use of multiple optics reduces beam transmissions and increases stray light problems. Finally, it can not be applied simply to a light source comprising several strips of laser diodes.
  • the device according to the invention makes it possible to solve these problems to a large extent.
  • the device comprises, indeed, a spectral selection device operating by transmission. We can thus achieve a very compact device arrangement and requiring few components.
  • the subject of the invention is an optical device for wavelength division multiplexing comprising:
  • An optical mixing device having spectral dispersion properties, transforming an incident light beam into an emergent light beam, the direction of the emergent beam depending both on the direction of the incident beam and on its wavelength; characterized in that the light sources each comprise a transmissive type spectral selection device disposed in the vicinity of said source and making it possible to select the wavelengths of the emission beams according to their direction of incidence on the optical device of mixing so that the emerging beam directions are all identical, thus ensuring the multiplexing of light sources.
  • the optical mixing device is an optical element operating by diffraction of light.
  • the device has only one spectral selection filter having the shape of an optical plate substantially flat and parallel faces, common to all sources and whose spectral selection properties vary in a preferred direction, either continuous, in incremental steps.
  • the sources are mounted on at least one bar, the sources are laser diodes and the emission wavelength of the sources is imposed by the spectral selection filter, said cavity mirror filter.
  • the parts of the spectral selection filter arranged in front of each laser diode each have a reflectivity of the order of 10% over a narrow spectral band whose width is less than one nanometer; outside this narrow spectral band, the reflectivity is close to zero over a spectral band whose width is at least equal to the spectral width of the gain curve of the laser diode.
  • the device comprises several bars of substantially flat sources, they are arranged in superposed layers, the bars being substantially parallel to each other.
  • the distance separating two successive layers may be substantially constant or substantially variable.
  • the wavelength emitted by the sources of the same bar is substantially identical.
  • the parts of the spectral selection filter arranged in front of each source of said array have the same spectral selection properties.
  • Each array of sources then emits a wavelength different from that of the other bars.
  • the wavelengths emitted by the sources of a same strip vary continuously from one source to the next source, the parts of the spectral selection filter arranged in front of each source of said array having spectral selection properties varying from one source to the next source. All the source bars then emit a substantially identical spectral distribution.
  • the device comprises at least one cylindrical lens whose main axes are parallel to the beam emission axes, said lens being arranged between the sources and the filter spectral selection.
  • the device may also comprise a microlens array placed in the vicinity of the sources and making it possible to modify the divergence angles of the emitted light beams, as well as Fourier optics, the sources being placed in the vicinity of the first focal plane of said optics and the optical mixing device being placed in the vicinity of the second focal plane of this optic.
  • FIGS. 1 and 2 show two views in two perpendicular planes of a device according to the invention comprising a single bar of laser diodes;
  • Figure 3 shows a partial view of Figure 1
  • FIG. 4 represents a variant of the device of the preceding figures comprising a spectral selection device comprising a single filter;
  • FIGS. 5 and 6 show two embodiments of the preceding spectral selection device
  • FIG. 7 represents an arrangement similar to that of FIGS. 1 to 4 but comprising several bars;
  • FIGS. 8 and 9 show two views in two perpendicular planes of a device according to the invention comprising a plurality of laser diode strips;
  • FIGS. 10 and 11 show two views in two perpendicular planes of a variant of the preceding device having no Fourier optics;
  • FIG. 12 represents a partial view of FIG.
  • FIGS. 1 and 2 show two views in two perpendicular planes (y, z) and (x, z) identified in an orthonormal coordinate system (x, y, z) of a device according to the invention comprising a single strip of laser diodes .
  • the device comprises:
  • the strip may contain a different number of laser diodes;
  • a transmissive type spectral selection device 200 comprising N spectral selection filters 201, 202, .... disposed at the output of each laser diode; An emitted beam reshaping optics 300 arranged between the laser diodes and the spectral selection filters;
  • a diffraction grating 4 ensuring the mixing of the light beams 401, 402, .... in a single beam 500.
  • the bar 100 being placed in the vicinity of the first focal plane of said optics and the diffraction grating 4 is placed in the vicinity of the second focal plane of this optic.
  • the assembly consisting of a laser diode, the portion of the optical 300 and the spectral selection filter arranged opposite the laser diode is a source of light emission.
  • the spectral selection filter has a quasi-zero reflectivity over the entire gain curve of the laser diode and not zero over a narrow spectral band centered on a wavelength ⁇ .
  • the reflectivity is about 10% over a width of about 0.5 nanometer. Outside this narrow spectral band, the reflectivity is close to zero over a spectral band whose width is at least equal to the spectral width of the gain curve of the laser diode.
  • the diode can, by this principle, operate only at the wavelength ⁇ imposed by the filter.
  • the Exit face of the laser diode can be anti-reflective treated.
  • the spectral filter is, for example, a thick Bragg grating composed of strata inscribed in a glass plate with flat and parallel faces.
  • the strip comprises a large number of laser diodes
  • a single filter having the shape of an optical plate substantially flat and parallel faces, common to all sources and whose spectral selection properties vary according to a preferred direction as illustrated in Figure 4 where the set of filters 201, 202, .. has been replaced by a single filter.
  • This filter may be a Bragg grating as shown in FIGS. 5 and 6.
  • the variations of the pitch p of the grating are indicated by thin lines parallel to each other in these figures. In this case, there are two major possible embodiments. In a first embodiment, the pitch p of the network varies incrementally as shown in FIG. 5. In a second embodiment, the grating pitch varies continuously as indicated in FIG.
  • the beams emitted by the laser diodes are highly elliptical.
  • the divergence of the beams is, for example, of the order of 10 degrees and on an axis perpendicular to this slow axis, said fast axis, the divergence can vary between 30 degrees and 70 degrees.
  • a beam shaping lens is used to collimate the beam along the fast axis. This lens is generally placed closer to the diodes so as to limit the broadening of the emitted beam. Generally, this lens is cylindrical. It may also comprise a microlens array placed in the vicinity of the laser diodes and making it possible to modify the angles of divergence of the beams of light emitted in both directions.
  • the Fourier optics focus the beams emitted by the laser diodes onto the diffraction grating 4.
  • the grating is placed in the image focal plane of the focusing optics so as to superimpose all the light beams 401, 402, ... at the same network location.
  • the laser diodes are placed in the focal plane object of the focusing optics 300. In this case, the image of the far field of the slow axis of each emitted beam is focused on the network while the image of Near field is returned to infinity. A more homogeneous energy distribution of the beams at the output of the diffraction grating 4 is thus obtained.
  • the Fourier optic 5 may be an objective comprising one or more spherical, aspherical or cylindrical lenses according to the corrections and focuses that the we want to achieve.
  • Fourier optics is a simple cylindrical lens. It is preferable that this optics include antireflection treatment at the emission wavelengths of the laser diodes so as not to interfere with the operation of the diodes.
  • these optical functions can also be realized, in whole or in part, by mirrors.
  • the wavelength multiplexing of the beams emitted by the laser diodes is carried out by the diffraction grating 4 which, from the different beams emitted by the laser diodes, diffracts emerging beams into a single beam 500. It is known that the direction of diffraction of an incident beam on a diffraction grating depends both on its direction of incidence and on its wavelength. It is therefore possible, by appropriately choosing the wavelengths associated with each incident beam coming from a different direction, to obtain a single direction for all the diffracted emergent beams as illustrated in FIG.
  • the values of the wavelengths of the beams on the network 4 essentially depend on the focal length of the optics 5, the pitch of the grating and the average angle of incidence of the beams on the grating.
  • each strip of FIG. 1 has simply been replaced by a set of substantially identical strips 101 provided with spectral selection devices 201 and identical lenses 300, each strip of diodes 101 emitting a spectral distribution substantially. identical, all the devices being substantially parallel to each other and parallel to the plane of incidence of the light beams 401 on the diffraction grating 4.
  • each strip has an individual filter. It is also possible to replace the individual filters by a single filter, which simplifies the assembly and ensures a better homogeneity of the wavelengths emitted.
  • the laser diode strips are arranged perpendicular to the plane of incidence on the network.
  • FIGS. 8 and 9 represent two views in two perpendicular planes (y, z) and (x, z) identified in an orthonormal coordinate system (x, y, z) of a device according to this variant, comprising several laser diode arrays 100 , 110, 120, .... 5 bars are shown in Figures 8 and 9.
  • the wavelength emitted by the diodes of the same bar is substantially identical, the parts of the spectral selection filter arranged in front of each diode of said array having the same spectral selection properties, each array of diodes emitting a wavelength different from that of the other arrays.
  • the device comprises:
  • FIG. 8 for the sake of clarity, only 5 diode arrays are shown but, of course, the device may contain a different number of laser diode arrays;
  • a transmissive type spectral selection device 200 comprising N spectral selection filters 210, 220, 230, .... arranged at the output of each strip;
  • a diffraction grating 4 ensuring the mixing of the light beams 410, 420, 430, ....;
  • a Fourier optics 5 the strips 100 being placed in the vicinity of the first focal plane of said optics and the diffraction grating 4 being placed in the vicinity of the second focal plane of this optic.
  • the assembly consisting, for example, of the diode bar 110, the optical 310 and the spectral selection filter
  • the spectral selection filter has a quasi-zero reflectivity throughout the gain curve of the laser diodes and non-zero on a narrow spectral band centered on a wavelength ⁇ .
  • Optics 310 generally of cylindrical shape, makes it possible to correct the ellipticity variations of the emitted beams.
  • the wavelength multiplexing of the beams emitted by the laser diodes is carried out by the diffraction grating 4, the Fourier optics 5 focusing the beams emitted by the laser diodes on the diffraction grating 4.
  • the main parameters of a device according to the invention comprising 9 bars are:
  • Network pitch 4 600 lines per millimeter Average angle of incidence on the network 4: 70.2 degrees Angle reflected by the network 5: 21.9 degrees
  • FIGS. 10 and 11 show two views in two perpendicular planes (x, z) and (y, z) located in an orthonormal coordinate system (x, y, z) of a device according to the invention comprising several laser diode arrays 100 , 110, 120, .... 5 bars are shown in Figures 10 and 11.
  • Figure 12 shows only the emitting part of the device. Unlike the previous device, the device described in these figures does not include a Fourier lens 5.
  • the optics 300 are slightly offset distances ⁇ as shown in Figure 12 which shows a laser diode array 100 , its collimation optics 300 and its spectral selection filter 200.
  • the distances ⁇ depend on the location of the arrays in the stack of arrays.
  • the bars can also be inclined on their optical axis to obtain the same effect.
  • the spectral filters must also be adjusted in rotation and translation to obtain the desired spectral selection effect as shown in FIG. 10 where the filter is inclined by an angle ⁇ .
  • This arrangement makes it possible to obtain compact devices with only a minimum of components.
  • the assembly of the arrays, optics and spectral filters can be achieved in different ways: • Each array is individually equipped with its optics and its spectral selection filter. The bars thus equipped are stacked with the appropriate spacing. • Each optic is equipped with a spectral selection filter. Each optical assembly thus obtained is placed in front of a bar. The equipped bars are stacked.
  • An array of collimation optics is first assembled with a matrix of spectral filters, these optical assemblies can be either monolithic or result from an assembly. Then, this assembly is positioned in front of the previously stacked diode arrays with sufficiently good positioning tolerances.
  • the multiplexed beams can then be reformatted according to different techniques, either to reduce the ellipticity of the beams, or to equalize the product size of the beam by divergence of the beam along the two axes slow and fast. It is also possible to use optical devices for optically suppressing the inactive areas between the diodes of the same bar or the spaces between the bars.

Abstract

The invention concerns the field of optical devices for wavelength-division multiplexing for generating from a plurality of optical beams (410, 420, 430) emitted by different sources (110, 120, 130) at different wavelengths a single polychromatic light beam in a common direction. The invention concerns a compact optical device for wavelength-division multiplexing comprising several light sources (110, 120, 130) of laser diode type each including a transmissive spectral device (210, 220, 230) arranged proximate the sources and enabling wavelengths of emission beams to be selected in accordance with the incidence direction on a dispersion grating (4) so that the directions of the diffracted beams are all identical, thereby multiplexing the light sources. The laser diodes can be mounted in the form of a strip. Additional optics (310, 320, 330) enable the characteristics of the emitted beams to be modified and in particular their ellipticity.

Description

DISPOSITIF OPTIQUE DE MULTIPLEXAGE EN LONGUEUR D'ONDE OPTICAL DEVICE FOR WAVELENGTH MULTIPLEXING
Le domaine de l'invention est celui des dispositifs optiques de multiplexage en longueur d'onde permettant de générer à partir d'une pluralité de faisceaux optiques émis par des sources différentes à des longueurs d'onde différentes un faisceau de lumière unique dans une direction commune.The field of the invention is that of wavelength division multiplexing optical devices for generating from a plurality of optical beams emitted by different sources at different wavelengths a beam of light that is unique in one direction. common.
L'invention peut s'appliquer à différents types de sources de lumière mais elle est tout particulièrement bien adaptée au multiplexage de diodes laser, soit montées sur une barrette unique soit sur plusieurs barrettes. On obtient ainsi une source de lumière de luminance très supérieure à celle de chaque diode ou de chaque barrette de diodes prise individuellement.The invention can be applied to different types of light sources but it is particularly well suited to the multiplexing of laser diodes, either mounted on a single bar or on several bars. A luminance light source is thus obtained which is much higher than that of each diode or each diode array taken individually.
Les barrettes de diodes laser sont des composants monolithiques comprenant un certain nombre de diodes laser unitaires émettant toutes dans la même direction. Le nombre de diodes est typiquement compris entre 10 et 50.Laser diode arrays are monolithic components comprising a number of unitary laser diodes all emitting in the same direction. The number of diodes is typically between 10 and 50.
Le multiplexage en longueur d'onde de sources lumineuses est connu. On citera notamment les brevets EP 0859249 intitulé : « Optical fiber wavelength multiplexer and démultiplexeur » et US 4930855 intitulé « Wavelength multiplexing of lasers ». Ces dispositifs comprennent un dispositif optique de mélange des faisceaux optiques qui est généralement un réseau de diffraction fonctionnant en réflexion. Les faisceaux sont émis par les sources à des longueurs d'onde différentes sous des incidentes différentes choisies de façon que les faisceaux émis soient diffractés par le dispositif optique de mélange dans une direction commune unique.Wavelength multiplexing of light sources is known. Examples include EP 0859249 entitled "Optical fiber wavelength multiplexer and demultiplexer" and US 4930855 entitled "Wavelength multiplexing of lasers". These devices comprise an optical beam mixing optical device which is generally a diffraction grating operating in reflection. The beams are emitted by the sources at different wavelengths under different incidentals chosen so that the emitted beams are diffracted by the optical mixing device in a single common direction.
Il est possible de perfectionner encore ce dispositif en imposant la longueur d'onde d'émission des sources de lumière au moyen d'un dispositif de sélection spectral externe. Le brevet français de référence 99 16401 intitulé : « Multiplexeur en longueurs d'onde de sources laser » décrit un dispositif de ce type. Il comprend une pluralité de sources laser émettant des faisceaux à des longueurs d'onde différentes, un premier réseau de diffraction formant miroir de cavité et réalisant une configuration de type Littrow, une optique de focalisation et un second réseau de diffraction assurant la superposition des faisceaux d'émission des diodes laser.It is possible to further perfect this device by imposing the emission wavelength of the light sources by means of an external spectral selection device. French patent 99 16401 entitled "Wavelength multiplexer of laser sources" describes a device of this type. It comprises a plurality of laser sources emitting beams at different wavelengths, a first network of cavity mirror diffraction and performing a Littrow type configuration, focusing optics and a second diffraction grating ensuring the superposition of the emission beams of the laser diodes.
Un des inconvénients de ce type de dispositif est lié à l'utilisation en réflexion du premier réseau de diffraction qui assure la sélection spectrale des diodes laser. En effet, il faut nécessairement utiliser une optique-relais permettant de focaliser les faisceaux émis sur ce réseau, cette optique devant comporter des éléments cylindriques pour compenser les dissymétries de divergence des faisceaux émis. Par conséquent, le dispositif final est complexe et encombrant. De plus, l'utilisation de plusieurs optiques diminue la transmission des faisceaux et accroît les problèmes de lumière parasite. Enfin, il ne saurait s'appliquer simplement à une source de lumière comportant plusieurs barrettes de diodes laser.One of the disadvantages of this type of device is related to the use in reflection of the first diffraction grating which ensures the spectral selection of the laser diodes. Indeed, it is necessary to use a relay-optics to focus the beams emitted on the network, this optics to include cylindrical elements to compensate for divergence asymmetries beams emitted. Therefore, the final device is complex and cumbersome. In addition, the use of multiple optics reduces beam transmissions and increases stray light problems. Finally, it can not be applied simply to a light source comprising several strips of laser diodes.
Le dispositif selon l'invention permet de résoudre en grande partie ces problèmes. Le dispositif comporte, en effet, un dispositif de sélection spectral fonctionnant par transmission. On peut ainsi réaliser un agencement du dispositif très compact et nécessitant peu de composants.The device according to the invention makes it possible to solve these problems to a large extent. The device comprises, indeed, a spectral selection device operating by transmission. We can thus achieve a very compact device arrangement and requiring few components.
Plus précisément, l'invention a pour objet un dispositif optique de multiplexage en longueur d'onde comprenant :More specifically, the subject of the invention is an optical device for wavelength division multiplexing comprising:
• Plusieurs sources de lumière émettant des faisceaux de lumière incidents substantiellement monochromatiques centrés sur des longueurs d'onde toutes différentes ; • Un dispositif optique de mélange ayant des propriétés de dispersion spectrale, transformant un faisceau de lumière incident en un faisceau de lumière émergent, la direction du faisceau émergent dépendant à la fois de la direction du faisceau incident et de sa longueur d'onde ; caractérisé en ce que les sources de lumière comportent chacune un dispositif de sélection spectral de type transmissif disposé au voisinage de ladite source et permettant de sélectionner les longueurs d'onde des faisceaux d'émission en fonction de leur direction d'incidence sur le dispositif optique de mélange de façon que les directions des faisceaux émergents soient toutes identiques, assurant ainsi le multiplexage des sources de lumière.• Multiple light sources emitting substantially monochromatic incident light beams centered on all different wavelengths; An optical mixing device having spectral dispersion properties, transforming an incident light beam into an emergent light beam, the direction of the emergent beam depending both on the direction of the incident beam and on its wavelength; characterized in that the light sources each comprise a transmissive type spectral selection device disposed in the vicinity of said source and making it possible to select the wavelengths of the emission beams according to their direction of incidence on the optical device of mixing so that the emerging beam directions are all identical, thus ensuring the multiplexing of light sources.
Généralement, le dispositif optique de mélange est un élément optique fonctionnant par diffraction de la lumière.Generally, the optical mixing device is an optical element operating by diffraction of light.
Avantageusement, le dispositif ne comporte qu'un seul filtre de sélection spectral ayant la forme d'une lame optique sensiblement à faces planes et parallèles, commune à toutes les sources et dont les propriétés de sélection spectrale varient selon une direction privilégiée, soit de façon continue, soit par pas incrémental.Advantageously, the device has only one spectral selection filter having the shape of an optical plate substantially flat and parallel faces, common to all sources and whose spectral selection properties vary in a preferred direction, either continuous, in incremental steps.
Avantageusement, les sources sont montées sur au moins une barrette, les sources sont des diodes laser et la longueur d'onde d'émission des sources est imposée par le filtre de sélection spectral, ledit filtre formant miroir de cavité. Avantageusement, les parties du filtre de sélection spectral disposées devant chaque diode laser ont chacune une réflectivité de l'ordre de 10% sur une bande spectrale étroite dont la largeur est inférieure au nanomètre ; en dehors de cette bande spectrale étroite, la réflectivité est voisine de zéro sur une bande spectrale dont la largeur est au moins égale à la largeur spectrale de la courbe de gain de la diode laser.Advantageously, the sources are mounted on at least one bar, the sources are laser diodes and the emission wavelength of the sources is imposed by the spectral selection filter, said cavity mirror filter. Advantageously, the parts of the spectral selection filter arranged in front of each laser diode each have a reflectivity of the order of 10% over a narrow spectral band whose width is less than one nanometer; outside this narrow spectral band, the reflectivity is close to zero over a spectral band whose width is at least equal to the spectral width of the gain curve of the laser diode.
Avantageusement, lorsque le dispositif comporte plusieurs barrettes de sources sensiblement planes, celles-ci sont disposées en couches superposées, les barrettes étant sensiblement parallèles entre elles.Advantageously, when the device comprises several bars of substantially flat sources, they are arranged in superposed layers, the bars being substantially parallel to each other.
Dans ce cas, la distance séparant deux couches successives peut-être soit sensiblement constante, soit sensiblement variable.In this case, the distance separating two successive layers may be substantially constant or substantially variable.
Concernant l'agencement des barrettes de sources, il existe deux grandes configurations possibles.Concerning the arrangement of the source bars, there are two main possible configurations.
Dans le premier cas, la longueur d'onde émise par les sources d'une même barrette est sensiblement identique. Les parties du filtre de sélection spectral disposées devant chaque source de ladite barrette ont les mêmes propriétés de sélection spectrale. Chaque barrette de sources émet alors une longueur d'onde différente de celle des autres barrettes.In the first case, the wavelength emitted by the sources of the same bar is substantially identical. The parts of the spectral selection filter arranged in front of each source of said array have the same spectral selection properties. Each array of sources then emits a wavelength different from that of the other bars.
Dans le second cas, les longueurs d'onde émises par les sources d'une même barrette varient continûment d'une source à la source suivante, les parties du filtre de sélection spectral disposées devant chaque source de ladite barrette ayant des propriétés de sélection spectrale variant d'une source à la source suivante. Toutes les barrettes de sources émettent alors une répartition spectrale sensiblement identique.In the second case, the wavelengths emitted by the sources of a same strip vary continuously from one source to the next source, the parts of the spectral selection filter arranged in front of each source of said array having spectral selection properties varying from one source to the next source. All the source bars then emit a substantially identical spectral distribution.
Avantageusement, les faisceaux de lumière émis ayant des angles de divergence différents selon deux axes perpendiculaires, le dispositif comporte au moins une lentille cylindrique dont les axes principaux sont parallèles aux axes d'émission des faisceaux, ladite lentille étant disposée entre les sources et le filtre de sélection spectral.Advantageously, the emitted light beams having divergent angles of divergence along two perpendicular axes, the device comprises at least one cylindrical lens whose main axes are parallel to the beam emission axes, said lens being arranged between the sources and the filter spectral selection.
Le dispositif peut également comporter un réseau de microlentilles placé au voisinage des sources et permettant de modifier les angles de divergence des faisceaux de lumière émis, ainsi qu'une optique de Fourier, les sources étant placées au voisinage du premier plan focal de ladite optique et le dispositif optique de mélange étant placé au voisinage du second plan focal de cette optique.The device may also comprise a microlens array placed in the vicinity of the sources and making it possible to modify the divergence angles of the emitted light beams, as well as Fourier optics, the sources being placed in the vicinity of the first focal plane of said optics and the optical mixing device being placed in the vicinity of the second focal plane of this optic.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre, donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles :The invention will be better understood and other advantages will become apparent on reading the description which follows, given by way of non-limiting example and thanks to the appended figures among which:
• Les figures 1 et 2 représentent deux vues dans deux plans perpendiculaires d'un dispositif selon l'invention comportant une unique barrette de diodes laser ;FIGS. 1 and 2 show two views in two perpendicular planes of a device according to the invention comprising a single bar of laser diodes;
• La figure 3 représente une vue partielle de la figure 1 ;• Figure 3 shows a partial view of Figure 1;
• La figure 4 représente une variante du dispositif des figures précédentes comportant un dispositif de sélection spectral comportant un filtre unique ;FIG. 4 represents a variant of the device of the preceding figures comprising a spectral selection device comprising a single filter;
• Les figures 5 et 6 représentent deux modes de réalisation du dispositif de sélection spectrale précédent ;FIGS. 5 and 6 show two embodiments of the preceding spectral selection device;
• La figure 7 représente un agencement similaire à celui des figures 1 à 4 mais comportant plusieurs barrettes ; • Les figures 8 et 9 représentent deux vues dans deux plans perpendiculaires d'un dispositif selon l'invention comportant une pluralité de barrettes de diodes laser ;FIG. 7 represents an arrangement similar to that of FIGS. 1 to 4 but comprising several bars; FIGS. 8 and 9 show two views in two perpendicular planes of a device according to the invention comprising a plurality of laser diode strips;
• Les figures 10 et 11 représentent deux vues dans deux plans perpendiculaires d'une variante du dispositif précédent ne comportant pas d'optique de Fourier ; • La figure 12 représente une vue partielle de la figure 10.FIGS. 10 and 11 show two views in two perpendicular planes of a variant of the preceding device having no Fourier optics; FIG. 12 represents a partial view of FIG.
Les figures 1 et 2 représentent deux vues dans deux plans perpendiculaires (y, z) et (x, z) repérés dans un repère orthonormé (x, y , z) d'un dispositif selon l'invention comportant une unique barrette de diodes laser.FIGS. 1 and 2 show two views in two perpendicular planes (y, z) and (x, z) identified in an orthonormal coordinate system (x, y, z) of a device according to the invention comprising a single strip of laser diodes .
Le dispositif comporte :The device comprises:
• une barrette de diodes laser 100 comportant N diodes laser 101 , 102,... émettant des faisceaux de lumière 401 , 402, Sur la figure, pour des raisons de clarté, seules 5 diodes sont représentées mais, bien entendu, la barrette peut contenir un nombre différent de diodes laser ;A strip of laser diodes 100 having N laser diodes 101, 102, ... emitting light beams 401, 402. In the figure, for the sake of clarity, only 5 diodes are shown but, of course, the strip may contain a different number of laser diodes;
• un dispositif de sélection spectral de type transmissif 200 comportant N filtres de sélection spectral 201 , 202, ....disposés à la sortie de chaque diode laser ; • une optique 300 de remise en forme des faisceaux émis disposée entre les diodes laser et les filtres de sélection spectrale ;A transmissive type spectral selection device 200 comprising N spectral selection filters 201, 202, .... disposed at the output of each laser diode; An emitted beam reshaping optics 300 arranged between the laser diodes and the spectral selection filters;
• un réseau de diffraction 4 assurant le mélange des faisceaux de lumière 401 , 402, ....en un faisceau unique 500.A diffraction grating 4 ensuring the mixing of the light beams 401, 402, .... in a single beam 500.
• une optique de Fourier 5. La barrette 100 étant placée au voisinage du premier plan focal de ladite optique et le réseau de diffraction 4 étant placé au voisinage du second plan focal de cette optique.• Fourier optics 5. The bar 100 being placed in the vicinity of the first focal plane of said optics and the diffraction grating 4 is placed in the vicinity of the second focal plane of this optic.
L'ensemble constitué d'une diode laser, de la partie de l'optique 300 et du filtre de sélection spectral disposés en regard de la diode laser constitue une source d'émission de lumière. Le filtre de sélection spectral a une réflectivité quasi-nulle sur toute la courbe de gain de la diode laser et non nulle sur une bande spectrale étroite centrée sur une longueur d'onde λ. A titre d'exemple, la réflectivité vaut environ 10% sur une largeur d'environ 0.5 nanomètre. En dehors de cette bande spectrale étroite, la réflectivité est voisine de zéro sur une bande spectrale dont la largeur est au moins égale à la largeur spectrale de la courbe de gain de la diode laser. En ajustant précisément l'optique 300 et le filtre de sélection spectral, une partie du faisceau émis par la diode laser est réinjectée dans celle-ci, assurant son fonctionnement. Ainsi, la diode ne peut, par ce principe, fonctionner qu'à la longueur d'onde λ imposée par le filtre. Pour améliorer le fonctionnement, la face de sortie de la diode laser peut être traitée anti-reflet. Le filtre spectral est, par exemple, un réseau de Bragg épais composé de strates inscrit dans une lame en verre à faces planes et parallèles.The assembly consisting of a laser diode, the portion of the optical 300 and the spectral selection filter arranged opposite the laser diode is a source of light emission. The spectral selection filter has a quasi-zero reflectivity over the entire gain curve of the laser diode and not zero over a narrow spectral band centered on a wavelength λ. For example, the reflectivity is about 10% over a width of about 0.5 nanometer. Outside this narrow spectral band, the reflectivity is close to zero over a spectral band whose width is at least equal to the spectral width of the gain curve of the laser diode. By precisely adjusting the optics 300 and the spectral selection filter, part of the beam emitted by the laser diode is reinjected into it, ensuring its operation. Thus, the diode can, by this principle, operate only at the wavelength λ imposed by the filter. To improve the operation, the Exit face of the laser diode can be anti-reflective treated. The spectral filter is, for example, a thick Bragg grating composed of strata inscribed in a glass plate with flat and parallel faces.
Lorsque la barrette comporte un grand nombre de diodes laser, il est plus pratique d'utiliser un filtre unique ayant la forme d'une lame optique sensiblement à faces planes et parallèles, commune à toutes les sources et dont les propriétés de sélection spectrale varient selon une direction privilégiée comme illustré en figure 4 où l'ensemble des filtres 201 , 202, .. a été remplacé par un filtre unique. Ce filtre peut être un réseau de Bragg comme indiqué en figures 5 et 6. Les variations du pas p du réseau sont indiquées par des lignes fines et parallèles entre elles sur ces figures. Dans ce cas, il existe deux grands modes de réalisation possibles. Dans un premier mode de réalisation, le pas p du réseau varie de façon incrémental comme indiqué sur la figure 5. Dans un second mode de réalisation, le pas de réseau varie de façon continue comme indiqué en figure 6.When the strip comprises a large number of laser diodes, it is more convenient to use a single filter having the shape of an optical plate substantially flat and parallel faces, common to all sources and whose spectral selection properties vary according to a preferred direction as illustrated in Figure 4 where the set of filters 201, 202, .. has been replaced by a single filter. This filter may be a Bragg grating as shown in FIGS. 5 and 6. The variations of the pitch p of the grating are indicated by thin lines parallel to each other in these figures. In this case, there are two major possible embodiments. In a first embodiment, the pitch p of the network varies incrementally as shown in FIG. 5. In a second embodiment, the grating pitch varies continuously as indicated in FIG.
Généralement, les faisceaux émis par les diodes laser sont fortement elliptiques. Sur un premier axe dit axe lent, la divergence des faisceaux est, par exemple, de l'ordre de 10 degrés et sur un axe perpendiculaire à cet axe lent, dit axe rapide, la divergence peut varier entre 30 degrés et 70 degrés. Aussi, on utilise une lentille de mise en forme des faisceaux pour collimater le faisceau selon l'axe rapide. Cette lentille est généralement placée au plus près des diodes de façon à limiter l'élargissement du faisceau émis. Généralement, cette lentille est cylindrique. Elle peut également comprendre un réseau de microlentilles placé au voisinage des diodes laser et permettant de modifier les angles de divergence des faisceaux de lumière émis selon les deux directions.Generally, the beams emitted by the laser diodes are highly elliptical. On a first axis called slow axis, the divergence of the beams is, for example, of the order of 10 degrees and on an axis perpendicular to this slow axis, said fast axis, the divergence can vary between 30 degrees and 70 degrees. Also, a beam shaping lens is used to collimate the beam along the fast axis. This lens is generally placed closer to the diodes so as to limit the broadening of the emitted beam. Generally, this lens is cylindrical. It may also comprise a microlens array placed in the vicinity of the laser diodes and making it possible to modify the angles of divergence of the beams of light emitted in both directions.
L'optique de Fourier 5 focalise les faisceaux émis par les diodes laser sur le réseau de diffraction 4. De préférence, le réseau est placé dans le plan focal image de l'optique de focalisation de façon à superposer tous les faisceaux de lumière 401 , 402, ... au même emplacement du réseau. De la même façon, les diodes laser sont placées dans le plan focal objet de l'optique de focalisation 300. Dans ce cas, l'image du champ lointain de l'axe lent de chaque faisceau émis est focalisé sur le réseau tandis que l'image du champ proche est renvoyée à l'infini. On obtient ainsi une répartition d'énergie plus homogène des faisceaux à la sortie du réseau de diffraction 4. L'optique de Fourier 5 peut être un objectif comportant une ou plusieurs lentilles sphériques, asphériques ou cylindriques selon les corrections et les focalisations que l'on souhaite réaliser. A titre d'exemple, sur les figures 1 , 2, 4, 7, 8 et 9, l'optique de Fourier est une lentille simple cylindrique. Il est préférable que cette optique comporte un traitement antireflet aux longueurs d'onde d'émission des diodes laser de façon à ne pas parasiter le fonctionnement des diodes. Bien entendu, ces fonctions optiques peuvent également être réalisées, en totalité ou en partie, par des miroirs.The Fourier optics focus the beams emitted by the laser diodes onto the diffraction grating 4. Preferably, the grating is placed in the image focal plane of the focusing optics so as to superimpose all the light beams 401, 402, ... at the same network location. In the same way, the laser diodes are placed in the focal plane object of the focusing optics 300. In this case, the image of the far field of the slow axis of each emitted beam is focused on the network while the image of Near field is returned to infinity. A more homogeneous energy distribution of the beams at the output of the diffraction grating 4 is thus obtained. The Fourier optic 5 may be an objective comprising one or more spherical, aspherical or cylindrical lenses according to the corrections and focuses that the we want to achieve. By way of example, in FIGS. 1, 2, 4, 7, 8 and 9, Fourier optics is a simple cylindrical lens. It is preferable that this optics include antireflection treatment at the emission wavelengths of the laser diodes so as not to interfere with the operation of the diodes. Of course, these optical functions can also be realized, in whole or in part, by mirrors.
Le multiplexage en longueur d'onde des faisceaux émis par les diodes laser est réalisé par le réseau de diffraction 4 qui, à partir des différents faisceaux émis par les diodes laser, diffracte des faisceaux émergents dans un faisceau unique 500. On sait que la direction de diffraction d'un faisceau incident sur un réseau de diffraction dépend à la fois de sa direction d'incidence et de sa longueur d'onde. Il est donc possible, en choisissant convenablement les longueurs d'onde associées à chaque faisceau incident venant d'une direction différente, d'obtenir une direction unique pour tous les faisceaux émergents diffractés comme illustré en figure 3 où deux faisceaux incidents 401 et 402 émis à deux longueurs d'onde λ40i et λ402 et ayant des incidences Θ401 et Θ402 sur le réseau 4 sont diffractés en deux faisceaux de diffraction 501 et 502 ayant une direction de diffraction commune faisant un angle θc avec le réseau 4.The wavelength multiplexing of the beams emitted by the laser diodes is carried out by the diffraction grating 4 which, from the different beams emitted by the laser diodes, diffracts emerging beams into a single beam 500. It is known that the direction of diffraction of an incident beam on a diffraction grating depends both on its direction of incidence and on its wavelength. It is therefore possible, by appropriately choosing the wavelengths associated with each incident beam coming from a different direction, to obtain a single direction for all the diffracted emergent beams as illustrated in FIG. 3, where two incident beams 401 and 402 emitted at two wavelengths λ 40 i and λ 40 2 and having incidences Θ401 and Θ402 on the grating 4 are diffracted into two diffraction beams 501 and 502 having a common diffraction direction at an angle θc with the grating 4.
Les valeurs des longueurs d'onde des faisceaux sur le réseau 4 dépendent essentiellement de la distance focale de l'optique 5, du pas du réseau et de l'angle d'incidence moyen des faisceaux sur le réseau.The values of the wavelengths of the beams on the network 4 essentially depend on the focal length of the optics 5, the pitch of the grating and the average angle of incidence of the beams on the grating.
Il est, bien entendu possible de remplacer les diodes laser par tout type de source dont la longueur d'onde peut être déterminée par un filtre spectral. On citera, en particulier, l'association de lasers fibres.It is of course possible to replace the laser diodes by any type of source whose wavelength can be determined by a spectral filter. In particular, the combination of fiber lasers is mentioned.
Il est également possible de remplacer la barrette unique de diodes laser par un ensemble de barrettes de diodes laser comme indiqué sur les figures 7, 8, 9, 10 et 11. Dans le cas de la figure 7, on a simplement remplacé la barrette unique de la figure 1 par un ensemble de barrettes 101 sensiblement identiques munies de dispositifs de sélection spectral 201 et de lentilles identiques 300, chaque barrette de diodes 101 émettant une répartition spectrale sensiblement identique, tous les dispositifs étant sensiblement parallèles entre eux et parallèle au plan d'incidence des faisceaux lumineux 401 sur le réseau de diffraction 4. Sur la figure 7, chaque barrette dispose d'un filtre individuel. Il est également possible de remplacer les filtres individuels par un filtre unique, ce qui simplifie le montage et assure une meilleure homogénéité des longueurs d'onde émises.It is also possible to replace the single laser diode array with a set of laser diode arrays as shown in FIGS. 7, 8, 9, 10 and 11. In the case of FIG. 7, the single strip of FIG. 1 has simply been replaced by a set of substantially identical strips 101 provided with spectral selection devices 201 and identical lenses 300, each strip of diodes 101 emitting a spectral distribution substantially. identical, all the devices being substantially parallel to each other and parallel to the plane of incidence of the light beams 401 on the diffraction grating 4. In FIG. 7, each strip has an individual filter. It is also possible to replace the individual filters by a single filter, which simplifies the assembly and ensures a better homogeneity of the wavelengths emitted.
Dans une autre variante, les barrettes de diodes laser sont disposées perpendiculairement au plan d'incidence sur le réseau. Les figures 8 et 9 représentent deux vues dans deux plans perpendiculaires (y, z) et (x,z) repérés dans un repère orthonormé (x, y, z) d'un dispositif selon cette variante, comportant plusieurs barrettes de diodes laser 100, 110, 120, .... 5 barrettes sont représentées sur les figures 8 et 9. Dans ce cas, la longueur d'onde émise par les diodes d'une même barrette est sensiblement identique, les parties du filtre de sélection spectral disposées devant chaque diode de ladite barrette ayant les mêmes propriétés de sélection spectrale, chaque barrette de diodes émettant une longueur d'onde différente de celle des autres barrettes.In another variant, the laser diode strips are arranged perpendicular to the plane of incidence on the network. FIGS. 8 and 9 represent two views in two perpendicular planes (y, z) and (x, z) identified in an orthonormal coordinate system (x, y, z) of a device according to this variant, comprising several laser diode arrays 100 , 110, 120, .... 5 bars are shown in Figures 8 and 9. In this case, the wavelength emitted by the diodes of the same bar is substantially identical, the parts of the spectral selection filter arranged in front of each diode of said array having the same spectral selection properties, each array of diodes emitting a wavelength different from that of the other arrays.
Le dispositif comporte :The device comprises:
• N barrettes de diodes laser 110, 120, 130, ... comportant M diodes laser 111 , 112, 113 .. émettant des faisceaux de lumière 410, 420, 430, Sur la figure 8, pour des raisons de clarté, seules 5 barrettes de diodes sont représentées mais, bien entendu, le dispositif peut contenir un nombre différent de barrettes de diodes laser ;N laser diode arrays 110, 120, 130, ... having M laser diodes 111, 112, 113 emitting light beams 410, 420, 430. In FIG. 8, for the sake of clarity, only 5 diode arrays are shown but, of course, the device may contain a different number of laser diode arrays;
• un dispositif de sélection spectral de type transmissif 200 comportant N filtres de sélection spectral 210, 220, 230,.... disposés à la sortie de chaque barrette;A transmissive type spectral selection device 200 comprising N spectral selection filters 210, 220, 230, .... arranged at the output of each strip;
• N optiques 310, 320, 330, ... de remise en forme des faisceaux émis disposée entre chaque barrette de diodes laser et chaque filtre de sélection spectrale ;N optical 310, 320, 330, ... of emitted beam shaping arranged between each laser diode array and each spectral selection filter;
• un réseau de diffraction 4 assurant le mélange des faisceaux de lumière 410, 420, 430,.... ; • une optique de Fourier 5, les barrettes 100 étant placées au voisinage du premier plan focal de ladite optique et le réseau de diffraction 4 étant placé au voisinage du second plan focal de cette optique.A diffraction grating 4 ensuring the mixing of the light beams 410, 420, 430, ....; A Fourier optics 5, the strips 100 being placed in the vicinity of the first focal plane of said optics and the diffraction grating 4 being placed in the vicinity of the second focal plane of this optic.
Comme dans le cas précédent, l'ensemble constitué, par exemple, de la barrette de diode 110, de l'optique 310 et du filtre de sélection spectralAs in the previous case, the assembly consisting, for example, of the diode bar 110, the optical 310 and the spectral selection filter
210 disposés en regard de la barrette constitue une source d'émission de lumière. Le filtre de sélection spectral a une réflectivité quasi-nulle sur toute la courbe de gain des diodes laser et non nulle sur une bande spectrale étroite centrée sur une longueur d'onde λ. En ajustant précisément l'optique 310 et le filtre de sélection spectral 210, une partie du faisceau émis par les diodes laser est réinjectée dans celles-ci, assurant son fonctionnement.210 disposed opposite the bar is a source of light emission. The spectral selection filter has a quasi-zero reflectivity throughout the gain curve of the laser diodes and non-zero on a narrow spectral band centered on a wavelength λ. By precisely adjusting the optical 310 and the spectral selection filter 210, part of the beam emitted by the laser diodes is reinjected into them, ensuring its operation.
L'optique 310, généralement de forme cylindrique permet de corriger les variations d'ellipticité des faisceaux émis.Optics 310, generally of cylindrical shape, makes it possible to correct the ellipticity variations of the emitted beams.
Bien entendu, on peut utiliser des barrettes d'un même type si leur courbe de gain est suffisamment large pour contenir toutes les longueurs d'onde sélectionnées par les filtres de sélection spectrale. Sinon, il est possible d'utiliser plusieurs types de barrettes dont les courbes de gain respectives sont adaptées aux longueurs d'onde des filtres de sélection spectrale. Le multiplexage en longueur d'onde des faisceaux émis par les diodes laser est réalisé par le réseau de diffraction 4, l'optique de Fourier 5 focalisant les faisceaux émis par les diodes laser sur ledit réseau de diffraction 4.Of course, it is possible to use strips of the same type if their gain curve is large enough to contain all the wavelengths selected by the spectral selection filters. Otherwise, it is possible to use several types of bars whose respective gain curves are adapted to the wavelengths of the spectral selection filters. The wavelength multiplexing of the beams emitted by the laser diodes is carried out by the diffraction grating 4, the Fourier optics 5 focusing the beams emitted by the laser diodes on the diffraction grating 4.
A titre d'exemple, les principaux paramètres d'un dispositif selon l'invention comportant 9 barrettes sont :By way of example, the main parameters of a device according to the invention comprising 9 bars are:
Espacement entre barrettes : 2 millimètresSpacing between bars: 2 millimeters
Focale de l'optique 5 : 150 millimètresFocal length of optics 5: 150 millimeters
Pas du réseau 4: 600 traits par millimètre Angle d'incidence moyen sur le réseau 4 : 70.2 degrés Angle réfléchi par le réseau 5 : 21.9 degrésNetwork pitch 4: 600 lines per millimeter Average angle of incidence on the network 4: 70.2 degrees Angle reflected by the network 5: 21.9 degrees
Longueurs d'onde des diodes : 915.0 - 923.5 - 931.7 - 939.6Wavelengths of the diodes: 915.0 - 923.5 - 931.7 - 939.6
947.2 - 954.6 - 961.7 - 968.5 et 975.0 nanomètres Les figures 10, 11 et 12 constituent une variante du dispositif des figures précédentes. Les figures 10 et 11 représentent deux vues dans deux plans perpendiculaires (x, z) et (y, z) repérés dans un repère orthonormé (x, y , z) d'un dispositif selon l'invention comportant plusieurs barrettes de diodes laser 100, 110, 120, .... 5 barrettes sont représentées sur les figures 10 et 11. La figure 12 représente uniquement la partie émissive du dispositif. A la différence du dispositif précédent, le dispositif décrit sur ces figures ne comporte pas de lentille de Fourier 5. Pour obtenir cet effet, les optiques 300 sont légèrement décalées de distances δ comme indiqué sur la figure 12 qui représente une barrette de diodes laser 100, son optique de collimation 300 et son filtre de sélection spectral 200. Les distances δ dépendent de l'emplacement des barrettes dans l'empilement de barrettes. Les barrettes peuvent être également inclinées sur leur axe optique pour obtenir le même effet. On doit également ajuster en rotation et en translation les filtres spectraux pour obtenir l'effet de sélection spectrale souhaité comme montré sur la figure 10 où le filtre est incliné d'un angle ε.947.2 - 954.6 - 961.7 - 968.5 and 975.0 nanometers Figures 10, 11 and 12 are a variant of the device of the preceding figures. FIGS. 10 and 11 show two views in two perpendicular planes (x, z) and (y, z) located in an orthonormal coordinate system (x, y, z) of a device according to the invention comprising several laser diode arrays 100 , 110, 120, .... 5 bars are shown in Figures 10 and 11. Figure 12 shows only the emitting part of the device. Unlike the previous device, the device described in these figures does not include a Fourier lens 5. To obtain this effect, the optics 300 are slightly offset distances δ as shown in Figure 12 which shows a laser diode array 100 , its collimation optics 300 and its spectral selection filter 200. The distances δ depend on the location of the arrays in the stack of arrays. The bars can also be inclined on their optical axis to obtain the same effect. The spectral filters must also be adjusted in rotation and translation to obtain the desired spectral selection effect as shown in FIG. 10 where the filter is inclined by an angle ε.
Ce montage permet d'obtenir des dispositifs compacts ne comportant qu'un minimum de composants.This arrangement makes it possible to obtain compact devices with only a minimum of components.
Dans les dispositifs à barrettes, il n'est pas nécessaire que la distance séparant deux couches successives soit constante de façon à obtenir une répartition spectrale sensiblement uniforme du faisceau de sortie.In bar devices, it is not necessary for the distance separating two successive layers to be constant so as to obtain a substantially uniform spectral distribution of the output beam.
Si certaines longueurs d'onde ne sont pas utiles pour l'application recherchée, il est possible de supprimer les barrettes correspondantes et de les remplacer par des entretoises afin de conserver l'emplacement voulu pour les autres barrettes. Plus généralement, il est possible d'utiliser un espacement entre barrettes variable pour obtenir un profil spectral particulier du faisceau multiplexe.If certain wavelengths are not useful for the desired application, it is possible to delete the corresponding strips and replace them with spacers to maintain the desired location for the other strips. More generally, it is possible to use a spacing between variable arrays to obtain a particular spectral profile of the multiplexed beam.
L'assemblage des barrettes, des optiques et des filtres spectraux peut être réalisé de différentes façons : • Chaque barrette est équipée individuellement de son optique puis de son filtre de sélection spectral. Les barrettes ainsi équipées sont empilées avec l'espacement adapté. • Chaque optique est équipée d'un filtre de sélection spectral. Chaque ensemble optique ainsi obtenu est placé devant une barrette. Les barrettes équipées sont empilées.The assembly of the arrays, optics and spectral filters can be achieved in different ways: • Each array is individually equipped with its optics and its spectral selection filter. The bars thus equipped are stacked with the appropriate spacing. • Each optic is equipped with a spectral selection filter. Each optical assembly thus obtained is placed in front of a bar. The equipped bars are stacked.
• Les barrettes seules sont empilées avec des tolérances de positionnement suffisamment bonnes. L'empilement est ensuite disposé d'abord devant une matrice d'optiques de collimation qui peut être soit monolithique, soit résultée d'un assemblage. Enfin, ce nouvel ensemble est disposée devant une matrice de filtres spectraux qui peut être soit monolithique, soit résultée d'un assemblage.• Bars only are stacked with good positioning tolerances. The stack is then placed first in front of a collimation optical array that can be either monolithic or the result of an assembly. Finally, this new set is arranged in front of a matrix of spectral filters which can be either monolithic or the result of an assembly.
• une matrice d'optiques de collimation est d'abord assemblée avec une matrice de filtres spectraux, ces ensembles optiques pouvant être soit monolithiques, soit résultés d'un assemblage. Puis, cet ensemble est positionné devant les barrettes de diodes préalablement empilées avec des tolérances de positionnement suffisamment bonnes.An array of collimation optics is first assembled with a matrix of spectral filters, these optical assemblies can be either monolithic or result from an assembly. Then, this assembly is positioned in front of the previously stacked diode arrays with sufficiently good positioning tolerances.
Les faisceaux multiplexes peuvent ensuite être remis en forme selon différentes techniques, soit pour réduire l'ellipticité des faisceaux, soit pour égaliser le produit taille du faisceau par divergence du faisceau suivant les deux axes lent et rapide. On peut également utiliser des dispositifs optiques permettant de supprimer optiquement les zones inactives entre les diodes d'une même barrette ou les espaces entre barrettes. The multiplexed beams can then be reformatted according to different techniques, either to reduce the ellipticity of the beams, or to equalize the product size of the beam by divergence of the beam along the two axes slow and fast. It is also possible to use optical devices for optically suppressing the inactive areas between the diodes of the same bar or the spaces between the bars.

Claims

REVENDICATIONS
1. Dispositif optique de multiplexage en longueur d'onde comprenant :An optical wavelength multiplexing device comprising:
• Plusieurs diodes laser montées sur au moins deux barrettes sensiblement parallèles entre elles (100, 110, 120), les diodes émettant des faisceaux de lumière incidents (400, 410, 420) substantiellement monochromatiques ;A plurality of laser diodes mounted on at least two substantially parallel parallel bars (100, 110, 120), the diodes emitting incident light beams (400, 410, 420) substantially monochromatic;
• Un dispositif optique de mélange (4) ayant des propriétés de dispersion spectrale, transformant un faisceau de lumière incident (400, 410, 420) en un faisceau de lumière émergent, la direction du faisceau émergent dépendant à la fois de la direction du faisceau incident et de sa longueur d'onde ;An optical mixing device (4) having spectral dispersion properties, transforming an incident light beam (400, 410, 420) into an emergent light beam, the direction of the emerging beam depending both on the direction of the beam incident and its wavelength;
• les longueurs d'onde émises par les diodes laser d'une même barrette variant continûment d'une diode laser à la diode laser suivante, toutes les barrettes de diodes laser émettant une répartition spectrale sensiblement identique ; • les diodes laser (100, 110, 120) comportant chacune un dispositif de sélection spectral de type transmissif (200, 210, 220) disposé au voisinage de ladite diode laser et permettant de sélectionner les longueurs d'onde des faisceaux d'émission en fonction de leur direction d'incidence sur le dispositif optique de mélange de façon que les directions des faisceaux émergents soient toutes identiques, assurant ainsi le multiplexage des faisceaux de lumière , caractérisé en ce que tous les faisceaux émergents issus des diodes d'une même barrette sont confondus entre eux et parallèles aux faisceaux émergents issus des diodes des autres barrettes.The wavelengths emitted by the laser diodes of the same strip varying continuously from one laser diode to the next laser diode, all the laser diode arrays emitting a substantially identical spectral distribution; The laser diodes (100, 110, 120) each comprising a transmissive type spectral selection device (200, 210, 220) disposed in the vicinity of said laser diode and making it possible to select the wavelengths of the emission beams in FIG. according to their direction of incidence on the optical mixing device so that the directions of the emerging beams are all identical, thus ensuring the multiplexing of the light beams, characterized in that all the emerging beams coming from the diodes of the same bar are confused with each other and parallel to the emerging beams coming from the diodes of the other bars.
2. Dispositif optique de multiplexage selon la revendication 1 , caractérisé en ce que le dispositif optique de mélange (4) est un élément optique fonctionnant par diffraction de la lumière. Optical multiplexing device according to claim 1, characterized in that the optical mixing device (4) is an optical element operating by diffraction of light.
3. Dispositif optique de multiplexage selon la revendication 2, caractérisé en ce que le dispositif ne comporte qu'un seul filtre de sélection spectral (200) ayant la forme d'une lame optique sensiblement à faces planes et parallèles, commune à toutes les diodes et dont les propriétés de sélection spectrale varient selon une direction privilégiée.3. Optical multiplexing device according to claim 2, characterized in that the device comprises only one spectral selection filter (200) in the form of an optical plate substantially flat and parallel faces, common to all diodes and whose spectral selection properties vary in a preferred direction.
4. Dispositif optique de multiplexage selon la revendication 3, caractérisé en ce que les propriétés de sélection spectrale dudit filtre varient de façon continue selon cette direction privilégiée.4. Optical multiplexing device according to claim 3, characterized in that the spectral selection properties of said filter continuously vary in this preferred direction.
5. Dispositif optique de multiplexage selon la revendication 3, caractérisé en ce que les propriétés de sélection spectrale dudit filtre varient par pas incrémental selon cette direction privilégiée.5. Optical multiplexing device according to claim 3, characterized in that the spectral selection properties of said filter vary in incremental increments according to this preferred direction.
6. Dispositif optique de multiplexage selon la revendication 1_, caractérisé en ce que la longueur d'onde d'émission des diodes est imposée par le filtre de sélection spectral (200), ledit filtre formant miroir de cavité.6. Optical multiplexing device according to claim 1_, characterized in that the emission wavelength of the diodes is imposed by the spectral selection filter (200), said cavity mirror filter.
7. Dispositif optique de multiplexage selon la revendication 6, caractérisé en ce que les parties du filtre de sélection spectral disposées devant chaque source ont chacuneOptical multiplexing device according to claim 6, characterized in that the parts of the spectral selection filter arranged in front of each source each have
• une réflectivité de l'ordre de 10% sur une bande spectrale étroite dont la largeur est inférieure au nanomètre et,A reflectivity of the order of 10% over a narrow spectral band whose width is less than one nanometer and,
• en dehors de cette bande spectrale étroite, une réflectivité voisine de zéro sur une bande spectrale dont la largeur est au moins égale à la largeur spectrale de la courbe de gain de la diode laser.Outside this narrow spectral band, a reflectivity close to zero over a spectral band whose width is at least equal to the spectral width of the gain curve of the laser diode.
8. Dispositif optique de multiplexage selon l'une des revendications précédentes, caractérisé en ce que les faisceaux de lumière émis ayant des angles de divergence différents selon deux axes perpendiculaires, le dispositif comporte au moins une lentille cylindrique (300) dont les axes principaux sont parallèles aux axes d'émission des faisceaux, ladite lentille étant disposée entre les diodes laser et le filtre de sélection spectral. Optical multiplexing device according to one of the preceding claims, characterized in that the emitted light beams having divergent angles of divergence along two perpendicular axes, the device comprises at least one cylindrical lens (300) whose main axes are parallel to the emission axes of the beams, said lens being disposed between the laser diodes and the spectral selection filter.
9. Dispositif optique de multiplexage selon l'une des revendications précédentes, caractérisé en ce que le dispositif comporte un réseau de microlentilles placé au voisinage des sources et permettant de modifier les angles de divergence des faisceaux de lumière émis.9. Optical multiplexing device according to one of the preceding claims, characterized in that the device comprises a microlens array placed in the vicinity of the sources and for modifying the divergence angles of emitted light beams.
10. Dispositif optique de multiplexage selon l'une des revendications précédentes, caractérisé en ce que le dispositif comporte une optique de Fourier (5), les sources étant placées au voisinage du premier plan focal de ladite optique et le dispositif optique de mélange étant placé au voisinage du second plan focal de cette optique. 10. Optical multiplexing device according to one of the preceding claims, characterized in that the device comprises a Fourier optics (5), the sources being placed in the vicinity of the first focal plane of said optics and the optical mixing device being placed in the vicinity of the second focal plane of this optics.
PCT/EP2006/060846 2005-03-18 2006-03-17 Optical device for wavelength-division multiplexing WO2006097531A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0502712A FR2883384B1 (en) 2005-03-18 2005-03-18 OPTICAL DEVICE FOR WAVELENGTH MULTIPLEXING
FR0502712 2005-03-18

Publications (1)

Publication Number Publication Date
WO2006097531A1 true WO2006097531A1 (en) 2006-09-21

Family

ID=34954888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/060846 WO2006097531A1 (en) 2005-03-18 2006-03-17 Optical device for wavelength-division multiplexing

Country Status (2)

Country Link
FR (1) FR2883384B1 (en)
WO (1) WO2006097531A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053911A2 (en) * 2008-11-04 2010-05-14 Massachusetts Institute Of Technology External-cavity one-dimensional multi-wavelength beam combining of two-dimensional laser elements
WO2012064516A3 (en) * 2010-11-09 2013-01-31 Coherent, Inc. Line-projection apparatus for arrays of diode-laser bar stacks
JP2013521666A (en) * 2010-03-05 2013-06-10 テラダイオード,インコーポレーテッド Wavelength beam combining system and method
US8531761B2 (en) 2010-05-27 2013-09-10 Massachusetts Institute Of Technology High peak power optical amplifier
US8614853B2 (en) 2010-03-09 2013-12-24 Massachusetts Institute Of Technology Two-dimensional wavelength-beam-combining of lasers using first-order grating stack
US9104029B2 (en) 2012-02-22 2015-08-11 TeraDiode, Inc. Multi-wavelength beam combining system and method
US9124065B2 (en) 2010-03-05 2015-09-01 TeraDiode, Inc. System and method for wavelength beam combination on a single laser emitter
US9256073B2 (en) 2010-03-05 2016-02-09 TeraDiode, Inc. Optical cross-coupling mitigation system for multi-wavelength beam combining systems
US9620928B2 (en) 2010-07-16 2017-04-11 Massachusetts Institute Of Technology Continuous wave or ultrafast lasers
US9865985B1 (en) 2012-06-20 2018-01-09 TeraDiode, Inc. Widely tunable infrared source system and method
US10444482B2 (en) 2010-03-05 2019-10-15 TeraDiode, Inc. Optical cross-coupling mitigation systems for wavelength beam combining laser systems
US10606089B2 (en) 2012-02-22 2020-03-31 TeraDiode, Inc. Wavelength beam combining laser systems with micro-optics
US20210281044A1 (en) * 2020-01-02 2021-09-09 Institute Of Semiconductors, Chinese Academy Of Sciences Broadband tuning system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092935A1 (en) * 2000-05-31 2001-12-06 Lightchip, Inc. Ultra-dense wavelength division multiplexing/demultiplexing devices
WO2002071119A1 (en) * 2001-03-01 2002-09-12 Zolo Technologies, Inc. (de)multiplexer with four "f" configuration and hybrid lens
US20030214700A1 (en) * 2001-11-30 2003-11-20 Yakov Sidorin Tunable filter
US6661819B1 (en) * 1994-06-28 2003-12-09 Jds Uniphase Corporation Fiber grating stabilized diode laser
WO2005013439A2 (en) * 2003-07-03 2005-02-10 Pd-Ld, Inc. Use of volume bragg gratings for the conditioning of laser emission characteristics
US20050036180A1 (en) * 2000-12-28 2005-02-17 Petersen Paul Michael Optical system having a holographic optical element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084695A (en) * 1997-02-14 2000-07-04 Photonetics Optical fiber wavelength multiplexer and demutiplexer
FR2803116B1 (en) * 1999-12-23 2002-03-22 Thomson Csf WAVELENGTH MULTIPLEXER OF LASER SOURCES

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661819B1 (en) * 1994-06-28 2003-12-09 Jds Uniphase Corporation Fiber grating stabilized diode laser
WO2001092935A1 (en) * 2000-05-31 2001-12-06 Lightchip, Inc. Ultra-dense wavelength division multiplexing/demultiplexing devices
US20050036180A1 (en) * 2000-12-28 2005-02-17 Petersen Paul Michael Optical system having a holographic optical element
WO2002071119A1 (en) * 2001-03-01 2002-09-12 Zolo Technologies, Inc. (de)multiplexer with four "f" configuration and hybrid lens
US20030214700A1 (en) * 2001-11-30 2003-11-20 Yakov Sidorin Tunable filter
WO2005013439A2 (en) * 2003-07-03 2005-02-10 Pd-Ld, Inc. Use of volume bragg gratings for the conditioning of laser emission characteristics

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GROSSO P ET AL: "Bragg grating photo-writing method suitable for ITU grid wavelengths", OPTICS COMMUNICATIONS, NORTH-HOLLAND PUBLISHING CO. AMSTERDAM, NL, vol. 214, no. 1-6, 15 December 2002 (2002-12-15), pages 129 - 132, XP004396695, ISSN: 0030-4018 *
TAKAHASHI H ET AL: "A 2.5 Gb/s, 4-channel multiwavelength light source composed of UV written waveguide gratings and laser diodes integrated on Si", IOOC - ECOC '97. 11TH INTERNATIONAL CONFERENCE ON INTEGRATED OPTICS AND OPTICAL FIBRE COMMUNICATIONS / 23RD EUROPEAN CONFERENCE ON OPTICAL COMMUNICATIONS. EDINBURGH, SEPT. 22 - 25, 1997, IEE CONFERENCE PUBLICATION, LONDON : IEE, UK, vol. VOL. 3 NO. 448, 22 September 1997 (1997-09-22), pages 355 - 358, XP006508533, ISBN: 0-85296-697-0 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8531772B2 (en) 2008-11-04 2013-09-10 Massachusetts Institute Of Technology External-cavity one-dimensional multi-wavelength beam combining of two-dimensional laser elements
WO2010053911A3 (en) * 2008-11-04 2011-01-06 Massachusetts Institute Of Technology External-cavity one-dimensional multi-wavelength beam combining of two-dimensional laser elements
US8049966B2 (en) 2008-11-04 2011-11-01 Massachusetts Institute Of Technology External-cavity one-dimensional multi-wavelength beam combining of two-dimensional laser elements
CN102273030A (en) * 2008-11-04 2011-12-07 麻省理工学院 External-cavity one-dimensional multi-wavelength beam combining of two-dimensional laser elements
JP2012508453A (en) * 2008-11-04 2012-04-05 マサチューセッツ インスティテュート オブ テクノロジー Two-dimensional laser device external cavity one-dimensional multi-wavelength beam coupling
WO2010053911A2 (en) * 2008-11-04 2010-05-14 Massachusetts Institute Of Technology External-cavity one-dimensional multi-wavelength beam combining of two-dimensional laser elements
US9256073B2 (en) 2010-03-05 2016-02-09 TeraDiode, Inc. Optical cross-coupling mitigation system for multi-wavelength beam combining systems
JP2013521666A (en) * 2010-03-05 2013-06-10 テラダイオード,インコーポレーテッド Wavelength beam combining system and method
US11604340B2 (en) 2010-03-05 2023-03-14 TeraDiode, Inc. Optical cross-coupling mitigation systems for wavelength beam combining laser systems
US10871639B2 (en) 2010-03-05 2020-12-22 TeraDiode, Inc. Optical cross-coupling mitigation systems for wavelength beam combining laser systems
US9124065B2 (en) 2010-03-05 2015-09-01 TeraDiode, Inc. System and method for wavelength beam combination on a single laser emitter
US10444482B2 (en) 2010-03-05 2019-10-15 TeraDiode, Inc. Optical cross-coupling mitigation systems for wavelength beam combining laser systems
US9268142B2 (en) 2010-03-05 2016-02-23 TeraDiode, Inc. Optical cross-coupling mitigation system for multi-wavelength beam combining systems
US8614853B2 (en) 2010-03-09 2013-12-24 Massachusetts Institute Of Technology Two-dimensional wavelength-beam-combining of lasers using first-order grating stack
US9575325B2 (en) 2010-03-09 2017-02-21 Massachusetts Institute Of Technology Two-dimensional wavelength-beam-combining of lasers using first-order grating stack
US8531761B2 (en) 2010-05-27 2013-09-10 Massachusetts Institute Of Technology High peak power optical amplifier
US9136667B2 (en) 2010-05-27 2015-09-15 Massachusetts Institute Of Technology High peak power optical amplifier
US9620928B2 (en) 2010-07-16 2017-04-11 Massachusetts Institute Of Technology Continuous wave or ultrafast lasers
WO2012064516A3 (en) * 2010-11-09 2013-01-31 Coherent, Inc. Line-projection apparatus for arrays of diode-laser bar stacks
US8547641B2 (en) 2010-11-09 2013-10-01 Cohernet, Inc. Line-projection apparatus for arrays of diode-laser bar stacks
US10606089B2 (en) 2012-02-22 2020-03-31 TeraDiode, Inc. Wavelength beam combining laser systems with micro-optics
US9104029B2 (en) 2012-02-22 2015-08-11 TeraDiode, Inc. Multi-wavelength beam combining system and method
US11391958B2 (en) 2012-02-22 2022-07-19 TeraDiode, Inc. Wavelength beam combining laser systems with micro-optics
US9865985B1 (en) 2012-06-20 2018-01-09 TeraDiode, Inc. Widely tunable infrared source system and method
US10256595B2 (en) 2012-06-20 2019-04-09 TeraDiode, Inc. Widely tunable infrared source system and method
US10686288B2 (en) 2012-06-20 2020-06-16 TeraDiode, Inc. Widely tunable infrared source system and method
US11043787B2 (en) 2012-06-20 2021-06-22 TeraDiode, Inc. Widely tunable infrared source system and method
US11658454B2 (en) 2012-06-20 2023-05-23 Panasonic Connect North America, division of Panasonic Corporation of North America Widely tunable infrared source system and method
US20210281044A1 (en) * 2020-01-02 2021-09-09 Institute Of Semiconductors, Chinese Academy Of Sciences Broadband tuning system and method
US11876347B2 (en) * 2020-01-02 2024-01-16 Institute Of Semiconductors, Chinese Academy Of Sciences Broadband tuning system and method

Also Published As

Publication number Publication date
FR2883384B1 (en) 2008-01-18
FR2883384A1 (en) 2006-09-22

Similar Documents

Publication Publication Date Title
WO2006097531A1 (en) Optical device for wavelength-division multiplexing
EP2165169B1 (en) Multispectral imaging device with moems type filter for satellite observation
US20050248819A1 (en) Wavelength stabilized lasers with feedback from multiplexed volume holograms feedback
US20050248820A1 (en) System and methods for spectral beam combining of lasers using volume holograms
EP1030418A1 (en) Optical reflector and external cavity laser including such a reflector
JP2004072069A (en) Resonant cavity system of tunable multiple-wavelength semiconductor laser
EP2502112B1 (en) Laser pulses shaping setup and corresponding method
EP3855068A1 (en) Device for distributed projection of light
EP3149524B1 (en) System for spatial recombination of ultrashort laser pulses by means of a diffractive element
EP1717915B1 (en) Optical pump system for a laser source, and laser source comprising such an optical pump system
EP0887672A1 (en) Fibre-optic wavelength division multiplexer-demultiplexer
EP4139657A1 (en) Device for distributing light based on diffraction gratings
EP1030195A1 (en) Auto-aligned retroreflecting optical system for wavelength filtering, monochromator and laser using the same
FR2492176A1 (en) OPTICAL SELECTOR DEVICE USING A CORNER OF A FIZEAU IN REFLECTION
WO2016124757A1 (en) Methods and devices for laser emission by coherent combination
EP3274766B1 (en) Frequency-tunable laser source and method for emitting a tunable laser beam
WO2003055015A1 (en) Amplifier chain for generating high-power ultrashort pulses
WO2012101367A1 (en) Tunable dual frequency laser cavity and method for adjusting the frequency difference between an ordinary wave and an extraordinary wave of a dual frequency laser
FR3122263A1 (en) Device for producing a polychromatic light beam by combining several individual light beams
EP1155484A1 (en) Laser source wavelength multiplexer
EP2423720B1 (en) Wavelength-tuneable optical filter and reflective element
EP3987337A1 (en) Light source comprising at least one semiconductor chip bearing at least one diode
WO2003029862A2 (en) Optical component with spectral separation
FR2787938A1 (en) Industrial stacked laser brightness increasing system having laser assembly output beams spatial slot filter focussed and collimator output beam coupling mirror passing.
WO2010069836A1 (en) Compact spectrometry device and method for making same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06725141

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6725141

Country of ref document: EP