WO2006102418A9 - Implantable devices formed of non-fouling methacrylate or acrylate polymers - Google Patents

Implantable devices formed of non-fouling methacrylate or acrylate polymers

Info

Publication number
WO2006102418A9
WO2006102418A9 PCT/US2006/010420 US2006010420W WO2006102418A9 WO 2006102418 A9 WO2006102418 A9 WO 2006102418A9 US 2006010420 W US2006010420 W US 2006010420W WO 2006102418 A9 WO2006102418 A9 WO 2006102418A9
Authority
WO
WIPO (PCT)
Prior art keywords
poly
methacrylate
rapamycin
acrylate
polymer
Prior art date
Application number
PCT/US2006/010420
Other languages
French (fr)
Other versions
WO2006102418A3 (en
WO2006102418A2 (en
Inventor
Stephen D Pacetti
Original Assignee
Advanced Cardiovascular System
Stephen D Pacetti
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Cardiovascular System, Stephen D Pacetti filed Critical Advanced Cardiovascular System
Priority to EP06748556.5A priority Critical patent/EP1866003B1/en
Priority to JP2008503133A priority patent/JP2008534062A/en
Publication of WO2006102418A2 publication Critical patent/WO2006102418A2/en
Publication of WO2006102418A9 publication Critical patent/WO2006102418A9/en
Publication of WO2006102418A3 publication Critical patent/WO2006102418A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/06Use of macromolecular materials
    • A61L33/064Use of macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings

Definitions

  • This invention generally relates to coatings or implantable devices, such as stents or coatings on a stent, formed of a material that contains methacrylates or acrylates having non-fouling pendant groups.
  • compositions provide to stents described therein an enhanced biocompatibility and may optionally include a bioactive agent.
  • U.S. Patent No. 6,231,590 to Scimed Life Systems, Inc. describes a coating composition, which includes a bioactive agent, a collagenous material, or a collagenous coating optionally containing or coated with other bioactive agents.
  • a current paradigm in biomaterials is the control of protein adsorption on the implant surface. Uncontrolled protein adsorption, leading to mixed layer of partially denatured proteins, is a hallmark of current biomaterials when implanted. Such a surface presents different cell binding sites from adsorbed plasma proteins such as fibrogen and immunogloblulin G. Platelets and inflammatory cells such as monocyte/macrophages and neutrophils adhere to these surfaces. Unfavorable events can be controlled by the use of non-fouling surfaces. These are materials, which absorb little or no protein, primarily due to their hydrophilic surface properties.
  • a biomaterials- based strategy for further improving the outcome of drug-delivery stents is by the use of biobeneficial materials or surfaces in stent coatings.
  • a biobeneficial material is one which enhances the biocompatibility of a device by being non-fouling, hemocompatible, actively non-thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent.
  • poly(vinylidene fluoride-co-hexafluoropropene) have good mechanical properties, and acceptable biocompatibility, but also have low permeability to drugs.
  • One proposed solution to ameliorate this issue is to blend in hydrophilic polymers.
  • hydrophilic materials such as polyethylene oxide or hyaluronic acid are water-soluble and can be leached out of the composition such that the coating may lose biobeneficiality.
  • Such polymeric blends can also have compromised mechanical properties, particularly the ultimate elongation.
  • the present invention addresses such problems by providing a polymeric material for coating implantable devices by providing polymeric materials from which the device can be made.
  • the polymer can be a polymer that contains repeating units of Formula I:
  • R 1 , R 2 , R 3 , R 4 and R 5 are independently H, C1-C4 alkyl such as CH 3 , ethyl, propyl, isopropyl, isobutyl, sec-butyl, or n-butyl, silyl groups, siloxy groups, and phenyl,
  • Z is O or NH
  • X is absence, O, S, or NR 6 where R 6 is H, C1-C4 alkyl such as CH 3 , ethyl, propyl, isopropyl, or n-butyl, and phenyl, and n can be 0 or a positive integer ranging from, e.g., 1 to 100,000.
  • the polymer that contains the repeating units of Formula I can be a homopolymer or a copolymer.
  • the copolymer can be, statistical, random, alternating, periodic block or graft copolymer including the repeating units of Formula I, and include other repeating units such as a biocompatible polymer, and/or a biobeneficial material.
  • the polymer defined herein can be used alone or in combination with another biocompatible polymer and/or a biobeneficial material to form coatings on implantable medical devices or to form the implantable medical devices themselves.
  • the coatings or medical devices optionally include a bioactive agent.
  • the polymer or polymer blends described herein can be used to form a coating(s) on an implantable device.
  • the polymers or polymer blends described herein can also be used to form the implantable device itself.
  • the implantable device can optionally include a bioactive agent.
  • bioactive agents are paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-l-oxyl (4-amino- TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2- hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2- (2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, ABT-578, clobetasol, prodrugs thereof, co-drugs thereof, and combinations thereof.
  • the implantable device can be implanted in a patient to treat or prevent a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
  • a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
  • Figure 1 shows the number of platelets adhered to the surface of a poly(methacrylate) polymer coating.
  • Figure 2 shows the total amount of proteins from human plasma adsorbed onto the surface of a poly(methacrylate) polymer coating.
  • coating or implantable medical device formed of a polymer having non-fouling pendant groups.
  • the polymer defined herein can be used alone or in combination with another biocompatible polymer and/or a biobeneficial material to form coatings on implantable medical devices or to form the implantable medical devices themselves.
  • the coatings or medical devices optionally include a bioactive agent.
  • bioactive agents are paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-l-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2- hydroxy)ethyl-rapaniycin (everolimus), 40-O-(3-hydroxy) ⁇ ropyl-rapamycin, 40-O-[2- (2-hydroxy)ethoxy]ethyl-rapamycin, 40-O-tetrazole-rapamycin, ABT-578, clobetasol, prodrugs thereof, co-drugs thereof, and combinations thereof.
  • the implantable device can be implanted in a patient to treat, prevent or ameliorate a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, plaque rupture in type 2 diabetes, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
  • a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, plaque rupture in type 2 diabetes, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
  • polymers formed of monomers having non-fouling pendant groups can be a polymer that contains repeating units of Formula I:
  • R 1 , R 2 , R 3 , R 4 and R 5 are independently H, C1-C4 alkyl such as CH 3 , ethyl, propyl, isopropyl, isobutyl, sec-butyl, or n-butyl, silyl groups, siloxy groups, or phenyl, Z is O or NH,
  • X is absence, O, S, or NR 6 where R 6 is H, C1-C4 alkyl such as CH 3 , ethyl, propyl, isopropyl, isobutyl, sec-butyl, or n-butyl, or phenyl, and n can be 0 or a positive integer ranging from, e.g., 1 to 100,000.
  • the polymer that contains the repeating units of Formula I can be a homopolymer or a copolymer.
  • the copolymer can be statistical, random, alternating, period block or graft copolymer including the repeating units of Formula I and/or other repeating units such as a biocompatible polymer, and/or a biobeneficial material,
  • X is O.
  • Some representative polymers of Formula I are: poly(2-methoxyethyl acrylate) (PMEA), poly(2-hydroxyethyl acrylate) (PHEA), ⁇ oly(ethyl acrylate) (PEA), ( ⁇ oly(2- ethylhexyl acrylate) (PEHA), poly(2-phenoxyethyl acrylate) (PPEA), ⁇ oly(2- ethoxyethyl acrylate) (PEEA), poly(2-hydroxyethyl methacrylate) (PHEMA), poly(2- methoxyethyl methacrylate) (PMEMA), poly(ethyl methacrylate) (PEMA), (poly(2- ethylhexyl methacrylate) (PEHMA), poly(2-phenoxyethyl methacrylate) (PPEMA), poly(hydroxypropyl methacrylamide), poly(2-ethoxyethyl methacrylate) (PEEM), and combinations thereof.
  • R 1 , R 2 , R 3 , R 4 , R 5 , Z and X of Formula I are selected to exclude from Formula I any of the methacrylate or acrylate polymers described in the sections entitled “Polymer blends" or “Biobeneficial material”, below.
  • the polymers described herein can be synthesized by methods known in the art (see, for example, D. Braun, et al., Polymer Synthesis: Theory and Practice. Fundamentals, Methods, Experiments. 3 rd Ed., Springer, 2001; Hans R. Kricheldorf, Handbook of Polymer Synthesis, Marcel Dekker Inc., 1992; G. Odian, Principles of Polymerization, 3 rd ed. John Wiley & Sons, 1991).
  • one method that can be used to make the polymer can be free radical methods (see, for example, D. Braun, et al., Polymer Synthesis: Theory and Practice. Fundamentals, Methods, Experiments. 3 rd Ed., Springer, 2001; Hans R.
  • the polymers described herein can be blended with one or more additional biocompatible polymers having different hydrophilicity and/or flexibility to generate a polymer blend coating material that has desired biocompatibility, flexibility and drug permeability.
  • the polymers of the present invention can be bonded, conjugated, grafted or crosslinked with one or more additional biocompatible polymers.
  • the polymers can be coated in separate layers.
  • the additional biocompatible polymer can be biodegradable (both bioerodable or bioabsorbable) or nondegradable, and can be hydrophilic or hydrophobic. In some embodiments,
  • hydrophilic is defined to have a Hildebrand solubility parameter ⁇
  • the ⁇ is determined by
  • biocompatible polymers include, but are not limited to, poly(ester amide), polyhydroxyalkanoates (PHA), poly(3-hydroxyalkanoates) such as poly(3-hydroxypropanoate), poly(3-hydroxybutyrate), poly(3-hydroxyvalerate), poly(3-hydroxyhexanoate), poly(3-hydroxyheptanoate) andpoly(3- hydroxyoctanoate), poly(4-hydroxyalkanoate) such as poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanoate), poly(4-hydroxyheptanoate), poly(4-hydroxyoctanoate) and copolymers including any of the 3-hydroxyalkanoate or 4-hydroxyalkanoate monomers or blends thereof, poly polyesters, poly(D,L- lactide), poly(L-lactide), polyglycolide, poly(D,L-lactide-co-glycolide), poly(L- lactide-co-
  • polyethylene oxide/poly(lactic acid) PEO/PLA
  • polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, polyphosphazenes, phosphoryl choline, choline, poly(aspirin), polymers and copolymers of hydroxyl bearing monomers other than the polymers of Formula I (defined above), PEG acrylate (PEGA), PEG methacrylate, 2- methacryloyloxyethylphosphorylcholine (MPC) and 72-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(styrene-isoprene-styrene)-PEG (SIS-PEG), polystyrene-PEG, polyisobut
  • poly(D,L-lactide), poly(L-lactide), poly(D,L-lactide- co-glycolide), and poly(L-lactide-co-glycolide) can be used interchangeably with the terms poly(D,L-lactic acid), poly(L-lactic acid), poly(D,L-lactic acid-co-glycolic acid), and poly(L-lactic acid-co-glycolic acid), respectively.
  • the polymers or polymer blends described herein may form a coating on an implantable device such as a stent or form the implantable device such as the stent optionally with a biobeneficial material.
  • the combination can be mixed, blended, bonded, conjugated, crosslinked, grafted, or coated in separate layers. In some embodiments, it can be an interpenetrating polymer network (IPN).
  • IPN interpenetrating polymer network
  • the biobeneficial material useful in the coatings described herein can be a polymeric material or non- polymeric material.
  • the biobeneficial material is preferably non-toxic, non-antigenic and non-immunogenic.
  • a biobeneficial material is one which enhances the biocompatibility of a device by being non-fouling, hemocompatible, actively non- thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent.
  • biobeneficial materials include, but are not limited to, polyethers such as poly(ethylene glycol), copoly(ether-esters) (e.g. PEO/PLA); polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, polyphosphazenes, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers such as hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, poly (ethylene glycol) acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and H-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethyl
  • PolyActiveTM refers to a block copolymer having flexible polyethylene glycol) and poly(butylene terephthalate) blocks (PEGT/PBT).
  • PolyActiveTM is intended to include AB, ABA, BAB copolymers having such segments of PEG and PBT (e.g., poly(ethylene glycol)-block- poly(butyleneterephthalate)-block polyethylene glycol) (PEG-PBT-PEG).
  • the biobeneficial material can be a polyether such as poly (ethylene glycol) (PEG) or polyalkylene oxide.
  • the polymer of Formula I or a polymer blend or conjugation (e.g., bonded or grafed) having the polymer of Formula I may form a coating or an implantable device optionally with one or more bioactive agents.
  • bioactive agents can be any agent which can be a therapeutic, prophylactic, ameliorative or diagnostic agent.
  • agents can have anti-proliferative or anti-inflamrnmatory properties or can have other properties such as antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombonic, antimitotic, antibiotic, antiallergic, antioxidant as well as cystostatic agents.
  • Suitable therapeutic, prophylactic or ameliorative agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities.
  • Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes.
  • bioactive agents include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy.
  • anti-proliferative agents include rapamycin and its functional or structural derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), and its functional or structural derivatives, and paclitaxel and its functional and structural derivatives.
  • rapamycin derivatives examples include 40-epi-(Nl-tetrazolyl)- rapamycin (ABT-578), 40-(9-(3-hydroxy) ⁇ ropyl-rapamycin, 40-O-[2-(2- hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin.
  • paclitaxel derivatives include docetaxel.
  • antineoplastics and/or antimitotics include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g.
  • Adriamycin ® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin e.g. Mutamycin ® from Bristol-Myers Squibb Co., Stamford, Conn.
  • antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D- phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein Ilb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Angiomax a (Bio gen, hie, Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists,
  • anti-inflammatory agents including steroidal and non-steroidal anti- inflammatory agents include tacrolimus, dexamethasone, clobetasol, combinations thereof.
  • cytostatic substance include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten ® and Capozide ® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil ® and Prinzide ® from Merck & Co., Inc., Wliitehouse Station, NJ).
  • An example of an antiallergic agent is permirolast potassium.
  • therapeutic substances or agents which may be appropriate include midostaurin, pimecrolimus, imatinib mesylate, alpha-interferon, bioactive RGD, and genetically engineered epithelial cells.
  • the foregoing substances can also be used in the form of prodrugs or co-drugs thereof.
  • the foregoing substances are listed by way of example and are not meant to be limiting.
  • Other active agents which are currently available or that may be developed in the future are equally applicable.
  • the dosage or concentration of the bioactive agent required to produce a favorable therapeutic effect should be less than the level at which the bioactive agent produces toxic effects and greater than the level at which non-therapeutic results are obtained.
  • the dosage or concentration of the bioactive agent can depend upon factors such as the particular circumstances of the patient; the nature of the trauma; the nature of the therapy desired; the time over which the ingredient administered resides at the vascular site; and if other active agents are employed, the nature and type of the substance or combination of substances.
  • Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.
  • an implantable device may be any suitable medical substrate that can be implanted in a human or veterinary patient.
  • implantable devices include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, CA).
  • the underlying structure of the device can be of virtually any design.
  • the device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, "MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof.
  • ELGILOY cobalt chromium alloy
  • 316L stainless steel
  • high nitrogen stainless steel e.g., BIODUR 108, cobalt chrome alloy L-605, "MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof.
  • BIODUR 108 cobalt chrome alloy L-605, "MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-tit
  • MP35N consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum.
  • MP20N consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum.
  • Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention.
  • the device itself, such as a stent, can also be made from the described inventive polymers or polymer blends.
  • a coating of the various described embodiments can be formed on an implantable device or prosthesis, e.g., a stent.
  • the agent will retain on the medical device such as a stent during delivery and expansion of the device, and released at a desired rate and for a predetermined duration of time at the site of implantation.
  • bioabsorbable or non-degradable devices can be formed of a material containing the polymer of Formula I.
  • the material can be the polymer of Formula I or a polymer blend containing the polymer of Formula I with one or more biocompatible polymers, optionally with a biobeneficial material and/or a bioactive agents, which are defined above.
  • the medical device is a stent.
  • a stent having the above-described coating is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways.
  • a stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.
  • an angiogram is first performed to determine the appropriate positioning for stent therapy.
  • An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken.
  • a guidewire is then advanced through the lesion or proposed site of treatment.
  • Over the guidewire is passed a delivery catheter, which allows a stent in its collapsed configuration to be inserted into the passageway.
  • the delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance.
  • a stent having the above-described coating may then be expanded at the desired area of treatment.
  • a post-insertion angiogram may also be utilized to confirm appropriate positioning.
  • P comes from hypothesis testing to determine if, in fact, the levels of protein absorption between the various polymers are equivalent (null hypothesis).
  • P is the probability, on a scale of zero to one, of wrongly rejecting the null hypothesis if it is in fact true. Consequently, P ⁇ 0.05 means there is less than a 5% chance that the difference seen between the two groups was caused by sampling error. This is often restated to mean there is a 95% confidence that the two groups are different.
  • the PMEA coating has both the lowest number of platelets absorbed and the lowest plasma protein absorption of the polymers tested.
  • Example 2 Fabrication of a polymer-coated implantable medical device
  • Poly(n-butyl methacrylate) is dissolved in 1:1 acetone :xylene (by weight) to give a 2% by weight solution.
  • An EFD 780S spray nozzle with a VALVEMATE 7040 control system, manufactured by EFD, Inc., East Buffalo, Rhode Island is used to spray the polymer solution onto a stent.
  • the stent can be optionally rotated about its longitudinal axis, at a speed of 50 to about 150 rpm.
  • the stent can also be linearly moved along the same axis during the application.
  • the 2% solution of the polymer is applied to a 12-mm VISIONTM stent (available from Guidant Corporation) in a series of 10-second passes, to deposit 10 ⁇ g of coating per spray pass. Between the spray passes, the stent is dried for 10 seconds using a flow of air at 80 0 C. Five spray passes are applied to form a 50 ⁇ g primer layer, followed by baking the primer layer at 80 0 C for one hour.
  • VISIONTM stent available from Guidant Corporation
  • a mixture is prepared that consists of, by weight, 2% of poly(n-butyl methacrylate), 1.0% of everolimus, and 97% of the 1:1 (by weight) acetone: cyclohexanone.
  • the same apparatus used to spray the primer layer on the stent is used to apply the drug layer. 10 spray passes are performed to form a 175 ⁇ g drug-polymer layer, followed by drying the drug-polymer layer at 50 0 C for 1 hour.
  • a topcoat layer comprising, by weight, 2% poly(2-methoxyethyl acrylate) and 98% 60:40 acetone: cyclohexanone is then applied over the drug-containing layer using the same apparatus used to coat the primer layer and the drug-containing layer. Six spray passes are performed to form a 100 ⁇ g topcoat layer, followed by drying at 50 0 C for 1 hour.

Abstract

Implantable devices formed of or coated with a material that includes a polymer having a non-fouling acrylate or methacrylate polymer are provided. The implantable device can be used for treating or preventing a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, patent foramen ovale, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.

Description

IMPLANTABLE DEVICES FORMED OF NON-FOULING METHACRYLATE
OR ACRYLATE POLYMERS
BACKGROUND OF THE INVENTION Field of the Invention
This invention generally relates to coatings or implantable devices, such as stents or coatings on a stent, formed of a material that contains methacrylates or acrylates having non-fouling pendant groups. Description of the Background
Although stents work well mechanically, the chronic issues of restenosis and, to a lesser extent, stent thrombosis remain. Pharmacological therapy in the form of a drug-delivery stent appears a feasible means to tackle these biologically derived issues. Polymeric coatings placed onto the stent serve to act both as the drug reservoir, and to control the release of the drug. One of the commercially available polymer coated products is stents manufactured by Boston Scientific. For example, U.S. Patent Nos. 5,869,127; 6,099,563; 6,179,817; and 6,197,051, assigned to Boston Scientific Corporation, describe various compositions for coating medical devices. These compositions provide to stents described therein an enhanced biocompatibility and may optionally include a bioactive agent. U.S. Patent No. 6,231,590 to Scimed Life Systems, Inc., describes a coating composition, which includes a bioactive agent, a collagenous material, or a collagenous coating optionally containing or coated with other bioactive agents.
A current paradigm in biomaterials is the control of protein adsorption on the implant surface. Uncontrolled protein adsorption, leading to mixed layer of partially denatured proteins, is a hallmark of current biomaterials when implanted. Such a surface presents different cell binding sites from adsorbed plasma proteins such as fibrogen and immunogloblulin G. Platelets and inflammatory cells such as monocyte/macrophages and neutrophils adhere to these surfaces. Unfavorable events can be controlled by the use of non-fouling surfaces. These are materials, which absorb little or no protein, primarily due to their hydrophilic surface properties.
Another limitation of current drug-delivery stents stems from the fact that the stent is a foreign body. Use of drug-delivery stents has proved successful by use of controlled release of antiproliferative or anti-inflammatory drugs to control restenosis. However, drug-delivery stents still have a small, but measurable, incidence of sub-acute thrombosis. Moreover, drug-delivery stents have not driven restenosis to zero levels, especially in more challenging patient subsets such as diabetics or patients with small vessels, and/or long, diffuse lesions. A biomaterials- based strategy for further improving the outcome of drug-delivery stents is by the use of biobeneficial materials or surfaces in stent coatings. A biobeneficial material is one which enhances the biocompatibility of a device by being non-fouling, hemocompatible, actively non-thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent.
Some of the currently used polymeric materials such as poly(vinylidene fluoride-co-hexafluoropropene) have good mechanical properties, and acceptable biocompatibility, but also have low permeability to drugs. One proposed solution to ameliorate this issue is to blend in hydrophilic polymers. However, it is well known in the art that many hydrophilic materials such as polyethylene oxide or hyaluronic acid are water-soluble and can be leached out of the composition such that the coating may lose biobeneficiality. Such polymeric blends can also have compromised mechanical properties, particularly the ultimate elongation.
The present invention addresses such problems by providing a polymeric material for coating implantable devices by providing polymeric materials from which the device can be made. SUMMARY OF THE INVENTION
Provided herein is a coating or implantable medical device formed of a polymer having non-fouling pendant groups. hi one embodiment, the polymer can be a polymer that contains repeating units of Formula I:
Figure imgf000004_0001
where:
R1, R2, R3, R4 and R5 are independently H, C1-C4 alkyl such as CH3, ethyl, propyl, isopropyl, isobutyl, sec-butyl, or n-butyl, silyl groups, siloxy groups, and phenyl,
Z is O or NH,
X is absence, O, S, or NR6 where R6 is H, C1-C4 alkyl such as CH3, ethyl, propyl, isopropyl, or n-butyl, and phenyl, and n can be 0 or a positive integer ranging from, e.g., 1 to 100,000. The polymer that contains the repeating units of Formula I can be a homopolymer or a copolymer. The copolymer can be, statistical, random, alternating, periodic block or graft copolymer including the repeating units of Formula I, and include other repeating units such as a biocompatible polymer, and/or a biobeneficial material.
The polymer defined herein can be used alone or in combination with another biocompatible polymer and/or a biobeneficial material to form coatings on implantable medical devices or to form the implantable medical devices themselves. In some embodiments, the coatings or medical devices optionally include a bioactive agent.
The polymer or polymer blends described herein can be used to form a coating(s) on an implantable device. The polymers or polymer blends described herein can also be used to form the implantable device itself. The implantable device can optionally include a bioactive agent. Some exemplary bioactive agents are paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-l-oxyl (4-amino- TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2- hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2- (2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, ABT-578, clobetasol, prodrugs thereof, co-drugs thereof, and combinations thereof. The implantable device can be implanted in a patient to treat or prevent a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows the number of platelets adhered to the surface of a poly(methacrylate) polymer coating.
Figure 2 shows the total amount of proteins from human plasma adsorbed onto the surface of a poly(methacrylate) polymer coating.
DETAILED DESCRIPTION
Provided herein is coating or implantable medical device formed of a polymer having non-fouling pendant groups. The polymer defined herein can be used alone or in combination with another biocompatible polymer and/or a biobeneficial material to form coatings on implantable medical devices or to form the implantable medical devices themselves. In some embodiments, the coatings or medical devices optionally include a bioactive agent. Some exemplary bioactive agents are paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-l-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2- hydroxy)ethyl-rapaniycin (everolimus), 40-O-(3-hydroxy)ρropyl-rapamycin, 40-O-[2- (2-hydroxy)ethoxy]ethyl-rapamycin, 40-O-tetrazole-rapamycin, ABT-578, clobetasol, prodrugs thereof, co-drugs thereof, and combinations thereof. The implantable device can be implanted in a patient to treat, prevent or ameliorate a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, plaque rupture in type 2 diabetes, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
Polymers formed of monomers having non-fouling pendant groups In one embodiment, the polymer can be a polymer that contains repeating units of Formula I:
Figure imgf000007_0001
where:
R1, R2, R3, R4 and R5 are independently H, C1-C4 alkyl such as CH3, ethyl, propyl, isopropyl, isobutyl, sec-butyl, or n-butyl, silyl groups, siloxy groups, or phenyl, Z is O or NH,
X is absence, O, S, or NR6 where R6 is H, C1-C4 alkyl such as CH3, ethyl, propyl, isopropyl, isobutyl, sec-butyl, or n-butyl, or phenyl, and n can be 0 or a positive integer ranging from, e.g., 1 to 100,000.
The polymer that contains the repeating units of Formula I can be a homopolymer or a copolymer. The copolymer can be statistical, random, alternating, period block or graft copolymer including the repeating units of Formula I and/or other repeating units such as a biocompatible polymer, and/or a biobeneficial material,
both defined below. In some embodiments, in the polymer of Formula I, X is O.
Some representative polymers of Formula I are: poly(2-methoxyethyl acrylate) (PMEA), poly(2-hydroxyethyl acrylate) (PHEA), ρoly(ethyl acrylate) (PEA), (ρoly(2- ethylhexyl acrylate) (PEHA), poly(2-phenoxyethyl acrylate) (PPEA), ρoly(2- ethoxyethyl acrylate) (PEEA), poly(2-hydroxyethyl methacrylate) (PHEMA), poly(2- methoxyethyl methacrylate) (PMEMA), poly(ethyl methacrylate) (PEMA), (poly(2- ethylhexyl methacrylate) (PEHMA), poly(2-phenoxyethyl methacrylate) (PPEMA), poly(hydroxypropyl methacrylamide), poly(2-ethoxyethyl methacrylate) (PEEM), and combinations thereof.
In some embodiments, R1, R2, R3, R4, R5, Z and X of Formula I are selected to exclude from Formula I any of the methacrylate or acrylate polymers described in the sections entitled "Polymer blends" or "Biobeneficial material", below.
The polymers described herein can be synthesized by methods known in the art (see, for example, D. Braun, et al., Polymer Synthesis: Theory and Practice. Fundamentals, Methods, Experiments. 3rd Ed., Springer, 2001; Hans R. Kricheldorf, Handbook of Polymer Synthesis, Marcel Dekker Inc., 1992; G. Odian, Principles of Polymerization, 3rd ed. John Wiley & Sons, 1991). For example, one method that can be used to make the polymer can be free radical methods (see, for example, D. Braun, et al., Polymer Synthesis: Theory and Practice. Fundamentals, Methods, Experiments. 3rd Ed., Springer, 2001; Hans R. Kricheldorf, Handbook of Polymer Synthesis, Marcel Dekker Inc., 1992). Polymerization by suspension or emulsion techniques utilizing free radical initiation is commonly employed. Block copolymers and terpolymers can be produced by atom transfer polymerization. Polymerization in solvent can also be used to synthesize the polymers described herein. Polymer blends or conjugation
In another embodiment, the polymers described herein can be blended with one or more additional biocompatible polymers having different hydrophilicity and/or flexibility to generate a polymer blend coating material that has desired biocompatibility, flexibility and drug permeability. In other embodiments, the polymers of the present invention can be bonded, conjugated, grafted or crosslinked with one or more additional biocompatible polymers. In some embodiments, the polymers can be coated in separate layers.
The additional biocompatible polymer can be biodegradable (both bioerodable or bioabsorbable) or nondegradable, and can be hydrophilic or hydrophobic. In some
embodiments, hydrophilic is defined to have a Hildebrand solubility parameter δ
value greater than about 8.5 (cal/cm ) , e.g., greater than about 9.5 (cal/cm ) ,
greater than about 10.5 (cal/cm3)1 2 or about 11.5 (cal/cm3)1 2. The δ is determined by
the following equation:
δ = (ΔE/V)1/2
where ΔE is the energy of vaporization, cal/mole, and V is the molar volume,
cm3/mole.
Representative biocompatible polymers include, but are not limited to, poly(ester amide), polyhydroxyalkanoates (PHA), poly(3-hydroxyalkanoates) such as poly(3-hydroxypropanoate), poly(3-hydroxybutyrate), poly(3-hydroxyvalerate), poly(3-hydroxyhexanoate), poly(3-hydroxyheptanoate) andpoly(3- hydroxyoctanoate), poly(4-hydroxyalkanoate) such as poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanoate), poly(4-hydroxyheptanoate), poly(4-hydroxyoctanoate) and copolymers including any of the 3-hydroxyalkanoate or 4-hydroxyalkanoate monomers or blends thereof, poly polyesters, poly(D,L- lactide), poly(L-lactide), polyglycolide, poly(D,L-lactide-co-glycolide), poly(L- lactide-co-glycolide), polycaprolactone, poly(lactide-co-caprolactone), poly(glycolide-co-caprolactone), poly(dioxanone), poly(ortho esters), poly(anhydrides), poly(tyrosine carbonates) and derivatives thereof, poly(tyrosine ester) and derivatives thereof, poly(imino carbonates), poly(glycolic acid-co- trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), polycyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), polyurethanes, polyphosphazenes, silicones, polyesters, polyolefms, polyisobutylene and ethylene-alphaolefm copolymers, acrylic polymers and copolymers, vinyl lialide polymers and copolymers, such as polyvinyl chloride, polyvinyl ethers, such as polyvinyl methyl ether, polyvinylidene halides, such as polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics, such as polystyrene, polyvinyl esters, such as polyvinyl acetate, copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile- styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers, polyamides, such as Nylon 66 and polycaprolactam, alkyd resins, polycarbonates, polyoxymethylenes, polyimides, polyethers, poly(glyceryl sebacate), poly(propylene fumarate), epoxy resins, polyurethanes, rayon, rayon-triacetate, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, carboxymethyl cellulose, polyethers such as polyethylene glycol) (PEG), copoly(ether-esters) (e.g. polyethylene oxide/poly(lactic acid) (PEO/PLA)), polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, polyphosphazenes, phosphoryl choline, choline, poly(aspirin), polymers and copolymers of hydroxyl bearing monomers other than the polymers of Formula I (defined above), PEG acrylate (PEGA), PEG methacrylate, 2- methacryloyloxyethylphosphorylcholine (MPC) and 72-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(styrene-isoprene-styrene)-PEG (SIS-PEG), polystyrene-PEG, polyisobutylene-PEG, polycaprolactone-PEG (PCL-PEG), PLA-PEG, poly(methyl methacrylate)-PEG (PMMA-PEG), polydimethylsiloxane-co-PEG (PDMS-PEG), poly(vinylidene fluoride)-PEG (PVDF-PEG), PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), hydroxy functional poly( vinyl pyrrolidone), biomolecules such as collagen, alginate, fibrin, fibrinogen, albumin, cellulose, starch, collagen, dextran, dextrin, fragments and derivatives of hyaluronic acid, heparin, fragments and derivatives of heparin, glycosamino glycan (GAG), GAG derivatives, polysaccharide, elastin, chitosan, alginate, and combinations thereof. In some embodiments, the polymer can exclude any one of the aforementioned polymers.
As used herein, the terms poly(D,L-lactide), poly(L-lactide), poly(D,L-lactide- co-glycolide), and poly(L-lactide-co-glycolide) can be used interchangeably with the terms poly(D,L-lactic acid), poly(L-lactic acid), poly(D,L-lactic acid-co-glycolic acid), and poly(L-lactic acid-co-glycolic acid), respectively.
Biobeneficial Material
The polymers or polymer blends described herein may form a coating on an implantable device such as a stent or form the implantable device such as the stent optionally with a biobeneficial material. The combination can be mixed, blended, bonded, conjugated, crosslinked, grafted, or coated in separate layers. In some embodiments, it can be an interpenetrating polymer network (IPN). The biobeneficial material useful in the coatings described herein can be a polymeric material or non- polymeric material. The biobeneficial material is preferably non-toxic, non-antigenic and non-immunogenic. A biobeneficial material is one which enhances the biocompatibility of a device by being non-fouling, hemocompatible, actively non- thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent.
Representative biobeneficial materials include, but are not limited to, polyethers such as poly(ethylene glycol), copoly(ether-esters) (e.g. PEO/PLA); polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, polyphosphazenes, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers such as hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, poly (ethylene glycol) acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and H-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(styrene-isoρrene-styrene)-PEG (SIS-PEG), polystyrene-PEG, polyisobutylene-PEG, polycaprolactone-PEG (PCL-PEG), PLA- PEG, ρoly(methyl methacrylate) -PEG (PMMA-PEG), polydimethylsiloxane-co-PEG (PDMS-PEG), poly(vinylidene fluoride)-PEG (PVDF-PEG), PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), hydroxy functional polyvinyl pyrrolidone), biomolecules such as fibrin, fibrinogen, albumin, cellulose, starch, collagen, dextran, dextrin, hyaluronic acid, fragments and derivatives of hyaluronic acid, heparin, fragments and derivatives of heparin, glycosamino glycan (GAG), GAG derivatives, polysaccharide, elastin, chitosan, alginate, silicones, PolyActive™, and combinations thereof. In some embodiments, the coating can exclude any one of the aforementioned polymers.
The term PolyActive™ refers to a block copolymer having flexible polyethylene glycol) and poly(butylene terephthalate) blocks (PEGT/PBT). PolyActive™ is intended to include AB, ABA, BAB copolymers having such segments of PEG and PBT (e.g., poly(ethylene glycol)-block- poly(butyleneterephthalate)-block polyethylene glycol) (PEG-PBT-PEG).
In a preferred embodiment, the biobeneficial material can be a polyether such as poly (ethylene glycol) (PEG) or polyalkylene oxide.
Bioactive Agents
The polymer of Formula I or a polymer blend or conjugation (e.g., bonded or grafed) having the polymer of Formula I may form a coating or an implantable device optionally with one or more bioactive agents. These bioactive agents can be any agent which can be a therapeutic, prophylactic, ameliorative or diagnostic agent. These agents can have anti-proliferative or anti-inflamrnmatory properties or can have other properties such as antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombonic, antimitotic, antibiotic, antiallergic, antioxidant as well as cystostatic agents. Examples of suitable therapeutic, prophylactic or ameliorative agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes. Some other examples of other bioactive agents include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy. Examples of anti-proliferative agents include rapamycin and its functional or structural derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), and its functional or structural derivatives, and paclitaxel and its functional and structural derivatives. Examples of rapamycin derivatives include 40-epi-(Nl-tetrazolyl)- rapamycin (ABT-578), 40-(9-(3-hydroxy)ρropyl-rapamycin, 40-O-[2-(2- hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin. Examples of paclitaxel derivatives include docetaxel. Examples of antineoplastics and/or antimitotics include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D- phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein Ilb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Angiomax a (Bio gen, hie, Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3 -fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, NJ), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), nitric oxide or nitric oxide donors, super oxide dismutases, super oxide dismutase mimetic, 4- amino-2,2,6,6-tetramethylpiperidine-l-oxyl (4-amino-TEMPO), estradiol, anticancer agents, dietary supplements such as various vitamins, and a combination thereof. Examples of anti-inflammatory agents including steroidal and non-steroidal anti- inflammatory agents include tacrolimus, dexamethasone, clobetasol, combinations thereof. Examples of such cytostatic substance include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Wliitehouse Station, NJ). An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include midostaurin, pimecrolimus, imatinib mesylate, alpha-interferon, bioactive RGD, and genetically engineered epithelial cells. The foregoing substances can also be used in the form of prodrugs or co-drugs thereof. The foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.
The dosage or concentration of the bioactive agent required to produce a favorable therapeutic effect should be less than the level at which the bioactive agent produces toxic effects and greater than the level at which non-therapeutic results are obtained. The dosage or concentration of the bioactive agent can depend upon factors such as the particular circumstances of the patient; the nature of the trauma; the nature of the therapy desired; the time over which the ingredient administered resides at the vascular site; and if other active agents are employed, the nature and type of the substance or combination of substances. Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.
Examples of Implantable Device
As used herein, an implantable device may be any suitable medical substrate that can be implanted in a human or veterinary patient. Examples of such implantable devices include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, CA). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, "MP35N," "MP20N," ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. "MP35N" and "MP20N" are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, PA. "MP35N" consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. "MP20N" consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention. The device itself, such as a stent, can also be made from the described inventive polymers or polymer blends.
Method of Use
In accordance with embodiments of the invention, a coating of the various described embodiments can be formed on an implantable device or prosthesis, e.g., a stent. For coatings including one or more active agents, the agent will retain on the medical device such as a stent during delivery and expansion of the device, and released at a desired rate and for a predetermined duration of time at the site of implantation. In accordance with some other embodiments of the invention, bioabsorbable or non-degradable devices can be formed of a material containing the polymer of Formula I. The material can be the polymer of Formula I or a polymer blend containing the polymer of Formula I with one or more biocompatible polymers, optionally with a biobeneficial material and/or a bioactive agents, which are defined above. Preferably, the medical device is a stent. A stent having the above-described coating is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.
For implantation of a stent, an angiogram is first performed to determine the appropriate positioning for stent therapy. An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter, which allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having the above-described coating may then be expanded at the desired area of treatment. A post-insertion angiogram may also be utilized to confirm appropriate positioning.
EXAMPLES
The embodiments of the present invention will be illustrated by the following set forth examples. AU parameters and data are not to be construed to unduly limit the scope of the embodiments of the invention.
Example 1. Hemocompatibility study of poly(2-methoxyethyl acrylate) (PMEA)
The measures of in vitro hemocompatibility, including human platelet adhesion, changes in platelet morphology, total absorbed protein from human plasma, amount of absorbed BSA (bovine serum albumin), absorbed human fibrinogen, and changes in protein conformation by circular dichroism of polymers PPEA, PEHA, PEA, PMEA, PHEMA and PHEA were measured (see M, Tanaka M, et al., Biomaterials 21:1471-1481 (2000)). Figure 1 shows number of platelets adhered to the surface of the polymers (**P < 0.01 vs. PMEA, mean ± SD, n = 5), and Figure 2 shows the total amount of proteins from human plasma adsorbed onto polymers (*P < 0.05 vs. PMEA; **P < 0.01 vs. PMEA, mean ± SD, n = 5). In this statistical analysis, the P value comes from hypothesis testing to determine if, in fact, the levels of protein absorption between the various polymers are equivalent (null hypothesis). Here, P is the probability, on a scale of zero to one, of wrongly rejecting the null hypothesis if it is in fact true. Consequently, P < 0.05 means there is less than a 5% chance that the difference seen between the two groups was caused by sampling error. This is often restated to mean there is a 95% confidence that the two groups are different.
As can be seen, the PMEA coating has both the lowest number of platelets absorbed and the lowest plasma protein absorption of the polymers tested.
Example 2: Fabrication of a polymer-coated implantable medical device
Primer layer
Poly(n-butyl methacrylate) is dissolved in 1:1 acetone :xylene (by weight) to give a 2% by weight solution. An EFD 780S spray nozzle with a VALVEMATE 7040 control system, manufactured by EFD, Inc., East Providence, Rhode Island is used to spray the polymer solution onto a stent. During the process of applying the composition, the stent can be optionally rotated about its longitudinal axis, at a speed of 50 to about 150 rpm. The stent can also be linearly moved along the same axis during the application.
The 2% solution of the polymer is applied to a 12-mm VISION™ stent (available from Guidant Corporation) in a series of 10-second passes, to deposit 10 μg of coating per spray pass. Between the spray passes, the stent is dried for 10 seconds using a flow of air at 80 0C. Five spray passes are applied to form a 50 μg primer layer, followed by baking the primer layer at 80 0C for one hour.
Drug-containing layer
A mixture is prepared that consists of, by weight, 2% of poly(n-butyl methacrylate), 1.0% of everolimus, and 97% of the 1:1 (by weight) acetone: cyclohexanone. The same apparatus used to spray the primer layer on the stent is used to apply the drug layer. 10 spray passes are performed to form a 175 μg drug-polymer layer, followed by drying the drug-polymer layer at 50 0C for 1 hour.
Biobeneficial topcoat layer
A topcoat layer comprising, by weight, 2% poly(2-methoxyethyl acrylate) and 98% 60:40 acetone: cyclohexanone is then applied over the drug-containing layer using the same apparatus used to coat the primer layer and the drug-containing layer. Six spray passes are performed to form a 100 μg topcoat layer, followed by drying at 50 0C for 1 hour.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims

CLAIMSWhat is claimed is:
1. An implantable device having a coating comprising a polymer that comprises repeating units of Formula I:
Figure imgf000021_0001
wherein R1, R2, R3, R4 and R5 are independently H, C1-C4 alkyl groups, silyl groups, siloxy groups, and phenyl, wherein Z is O or NH, and wherein X is absence, O, S, or NR6 where R6 is H, C1-C4 alkyl, or phenyl.
2. The implantable device of claim 1, wherein R1, R2, R3, R4 and R5, R6 are independently CH3, ethyl, propyl, isopropyl, isobutyl, sec-butyl, or n-butyl, and wherein Z is O.
3. The implantable device of claim 1 , wherein Z is O, and wherein X is O or NH.
4. The implantable device of claim 1 , wherein the polymer is selected from the group consisting of poly(2-methoxyethyl acrylate) (PMEA), poly(2- hydroxyethyl acrylate) (PHEA), poly(ethyl acrylate) (PEA), (ρoly(2-ethylhexyl acrylate) (PEHA), poly(2-phenoxyethyl acrylate) (PPEA), poly(2-ethoxyethyl acrylate) (PEEA), poly(2-hydroxyethyl methacrylate) (PHEMA), poly(2-methoxyethyl methacrylate) (PMEMA), poly(ethyl methacrylate) (PEMA), (poly(2-ethylhexyl methacrylate) (PEHMA), poly(2-phenoxyethyl methacrylate) (PPEMA), poly(2- ethoxyethyl methacrylate) (PEEM), and combinations thereof.
5. The implantable device of claim 1, further comprising a biocompatible polymer, blended or bonded with the polymer according to claim 1.
6. The implantable device of claim 1, further comprising a bioactive agent.
7. The implantable device of claim 9, wherein the bioactive agent is selected from the group consisting of paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6- tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-(9-(2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-0-tetrazole-rapamycin, ABT-578, clobetasol, prodrugs thereof, co-drugs thereof, and a combination thereof.
8. The implantable device of claim 1 which is a stent.
9. The implantable device of claim 7, which is a stent.
10. An absorbable device formed of a material comprising a polymer that comprises repeating units of Formula I:
Figure imgf000023_0001
wherein R1, R2, R3, R4 and R5 are independently H, C1-C4 alkyl groups, silyl groups, siloxy groups, and phenyl, wherein Z is O or NH, and wherein X is absence, O, S, or NR6 where R6 is H, C1-C4 alkyl, or phenyl.
11. The absorbable device of claim 10, wherein R1, R2, R3, R4 and R5, R6 are independently CH3, ethyl, propyl, isopropyl, or n-butyl, and wherein Z is O.
12. The absorbable device of claim 10, wherein Z is O, and wherein X is O or NH.
13. The absorbable device of claim 10, wherein the polymer is selected from the group consisting of pory(2-methoxyethyl acrylate) (PMEA), poly(2- hydroxyethyl acrylate) (PHEA), poly(ethyl acrylate) (PEA), (poly(2-ethylhexyl acrylate) (PEHA), poly(2-phenoxyethyl acrylate) (PPEA), poly(2-ethoxyethyl acrylate) (PEEA), ρoly(2-hydroxyethyl methacrylate) (PHEMA), poly(2-methoxyethyl methacrylate) (PMEMA), poly(ethyl methacrylate) (PEMA), (poly(2-ethylhexyl methacrylate) (PEHMA), poly(2-phenoxyethyl methacrylate) (PPEMA), poly(2- ethoxyethyl methacrylate) (PEEM), and combinations thereof.
14. The absorbable device of claim 10, further comprising a bioactive agent.
15. The implantable device of claim 14, wherein the bioactive agent is selected from the group consisting of paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6- tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, ABT-578, clobetasol, prodrugs thereof, co-drugs thereof, and a combination thereof.
16. The implantable device of claim 10 which is a stent.
17. A method of treating a disorder in a patient comprising implanting in the patient the impantable device of claim 9, wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, patent foramen ovale, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
18. A method of treating a disorder in a patient comprising implanting in the patient the impantable device of claim 16, wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, patent foramen ovale, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
PCT/US2006/010420 2005-03-24 2006-03-20 Implantable devices formed of non-fouling methacrylate or acrylate polymers WO2006102418A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06748556.5A EP1866003B1 (en) 2005-03-24 2006-03-20 Implantable devices formed of non-fouling methacrylate or acrylate polymers
JP2008503133A JP2008534062A (en) 2005-03-24 2006-03-20 Implantable devices formed from nonfouling methacrylate or acrylate polymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/089,774 2005-03-24
US11/089,774 US7700659B2 (en) 2005-03-24 2005-03-24 Implantable devices formed of non-fouling methacrylate or acrylate polymers

Publications (3)

Publication Number Publication Date
WO2006102418A2 WO2006102418A2 (en) 2006-09-28
WO2006102418A9 true WO2006102418A9 (en) 2006-11-23
WO2006102418A3 WO2006102418A3 (en) 2007-04-19

Family

ID=36917293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/010420 WO2006102418A2 (en) 2005-03-24 2006-03-20 Implantable devices formed of non-fouling methacrylate or acrylate polymers

Country Status (4)

Country Link
US (3) US7700659B2 (en)
EP (1) EP1866003B1 (en)
JP (1) JP2008534062A (en)
WO (1) WO2006102418A2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0100761D0 (en) 2001-01-11 2001-02-21 Biocompatibles Ltd Drug delivery from stents
US7563483B2 (en) * 2003-02-26 2009-07-21 Advanced Cardiovascular Systems Inc. Methods for fabricating a coating for implantable medical devices
US7700659B2 (en) 2005-03-24 2010-04-20 Advanced Cardiovascular Systems, Inc. Implantable devices formed of non-fouling methacrylate or acrylate polymers
US9381279B2 (en) * 2005-03-24 2016-07-05 Abbott Cardiovascular Systems Inc. Implantable devices formed on non-fouling methacrylate or acrylate polymers
US7713541B1 (en) 2006-11-21 2010-05-11 Abbott Cardiovascular Systems Inc. Zwitterionic terpolymers, method of making and use on medical devices
WO2008064058A2 (en) * 2006-11-21 2008-05-29 Abbott Laboratories Use of a terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride in drug eluting coatings
WO2008094706A2 (en) 2007-02-01 2008-08-07 Cook Incorporated Closure device and method of closing a bodily opening
US8617205B2 (en) 2007-02-01 2013-12-31 Cook Medical Technologies Llc Closure device
US20080286332A1 (en) 2007-05-14 2008-11-20 Pacetti Stephen D Implantable medical devices with a topcoat layer of phosphoryl choline acrylate polymer for reduced thrombosis, and improved mechanical properties
US20090062838A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Spider device with occlusive barrier
US8308752B2 (en) * 2007-08-27 2012-11-13 Cook Medical Technologies Llc Barrel occlusion device
US8025495B2 (en) * 2007-08-27 2011-09-27 Cook Medical Technologies Llc Apparatus and method for making a spider occlusion device
US8734483B2 (en) * 2007-08-27 2014-05-27 Cook Medical Technologies Llc Spider PFO closure device
US8092822B2 (en) 2008-09-29 2012-01-10 Abbott Cardiovascular Systems Inc. Coatings including dexamethasone derivatives and analogs and olimus drugs
US9346971B2 (en) * 2009-07-15 2016-05-24 Technical University Of Denmark Polymer coating comprising 2-methoxyethyl acrylate units synthesized by surface-initiated atom transfer radical polymerization
WO2012051489A2 (en) 2010-10-15 2012-04-19 Cook Medical Technologies Llc Occlusion device for blocking fluid flow through bodily passages
EP3281608B1 (en) 2012-02-10 2020-09-16 CVDevices, LLC Medical product comprising a frame and visceral pleura
CA2900862C (en) 2013-02-11 2017-10-03 Cook Medical Technologies Llc Expandable support frame and medical device
US10080640B2 (en) 2013-04-18 2018-09-25 National University Corporation Yamagata University Stent to be placed in bile duct
JP6640584B2 (en) * 2016-02-02 2020-02-05 テルモ株式会社 Medical device and manufacturing method thereof
US11439494B2 (en) * 2017-05-12 2022-09-13 Microvention, Inc. Medical devices
JP7358030B2 (en) * 2018-01-31 2023-10-10 住友ゴム工業株式会社 Hydrophilic base material
JP2021514801A (en) 2018-05-03 2021-06-17 マイクロベンション インコーポレイテッドMicrovention, Inc. Treatment of hydrocephalus

Family Cites Families (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117235A (en) * 1971-09-23 1978-09-26 Owens-Illinois, Inc. Novel preparation of novel low molecular weight, liquid polymer
US4156034A (en) * 1974-03-20 1979-05-22 Hitachi, Ltd. Liquid developer for electro photography
JPS50136315A (en) * 1974-04-17 1975-10-29
US4273760A (en) * 1979-02-05 1981-06-16 National Starch And Chemical Corporation Shampoo compositions
US4612209A (en) * 1983-12-27 1986-09-16 Ciba-Geigy Corporation Process for the preparation of heat-curable adhesive films
CA1281479C (en) * 1986-04-22 1991-03-12 Noriyuki Tsuboniwa Blocked isocyanatocarbonyl group-containing polymers, and their production and use
US6387379B1 (en) * 1987-04-10 2002-05-14 University Of Florida Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
JP2641452B2 (en) * 1987-07-27 1997-08-13 株式会社日立製作所 Pattern formation method
US5019096A (en) * 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
US4931287A (en) * 1988-06-14 1990-06-05 University Of Utah Heterogeneous interpenetrating polymer networks for the controlled release of drugs
US5721299A (en) * 1989-05-26 1998-02-24 International Business Machines Corporation Electrically conductive and abrasion/scratch resistant polymeric materials, method of fabrication thereof and uses thereof
US6746770B1 (en) * 1989-05-26 2004-06-08 Internatonal Business Machines Corporation Electrically conductive and abrasion/scratch resistant polymeric materials, method of fabrication thereof and uses thereof
JPH03229745A (en) * 1990-02-05 1991-10-11 Junkosha Co Ltd Insulation material
US5163952A (en) * 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
US5258020A (en) * 1990-09-14 1993-11-02 Michael Froix Method of using expandable polymeric stent with memory
US6248129B1 (en) * 1990-09-14 2001-06-19 Quanam Medical Corporation Expandable polymeric stent with memory and delivery apparatus and method
JP2806510B2 (en) * 1990-10-18 1998-09-30 テルモ 株式会社 Artificial organ membrane or medical device
US5385795A (en) * 1991-03-08 1995-01-31 Nippon Oil Co., Ltd. Method for producing color filter
US5314770A (en) * 1991-04-26 1994-05-24 Nippon Oil Co., Ltd. Method for producing color filter
US5214541A (en) * 1991-06-12 1993-05-25 Nippon Oil Co., Ltd. Method for producing color filter
US5334468A (en) * 1991-07-09 1994-08-02 Nippon Oil Co., Ltd. Method for producing color filter
US5500760A (en) * 1991-09-06 1996-03-19 Donnelly Corporation Electrochemichromic solutions, processes for preparing and using the same, and devices manufactured with the same
US5357636A (en) * 1992-06-30 1994-10-25 Dresdner Jr Karl P Flexible protective medical gloves and methods for their use
JP2949391B2 (en) * 1992-08-04 1999-09-13 日石三菱株式会社 Manufacturing method of color filter
US5910854A (en) * 1993-02-26 1999-06-08 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
DE69426040T2 (en) * 1993-02-26 2001-05-17 Donnelly Corp Electrochromic polymeric solid films, manufacture of electrochromic devices with such films, and processes for the manufacture of such solid films and devices
EP0706537B1 (en) * 1993-07-01 1999-08-18 The Procter & Gamble Company Thermoplastic elastomeric copolymers and hair and skin care compositions containing the same
ATE193025T1 (en) * 1993-07-01 2000-06-15 Procter & Gamble THERMOPLASTIC ELASTOMERS COPOLYMERS AND HAIR AND SKIN CARE PRODUCTS CONTAINING SAME
US5730966A (en) * 1993-07-01 1998-03-24 The Procter & Gamble Company Thermoplastic elastomeric copolymers used in hair and skin care compositions
CA2169091C (en) * 1993-08-23 2000-06-20 Peter Marte Torgerson Silicone grafted thermoplastic elastomeric copolymers and hair and skin care compositions containing the same
ES2136739T3 (en) * 1993-08-23 1999-12-01 Procter & Gamble GRAFTED THERMOPLASTIC ELASTOMER COPOLYMERS OF SILICONE AND HAIR AND SKIN CARE COMPOSITIONS THAT CONTAIN THEM.
US5661219A (en) * 1993-09-06 1997-08-26 Nof Corporation Curable composition, thermal latent acid catalyst, method of coating, coated article, method of molding and molded article
DE4444577B4 (en) * 1993-12-15 2005-02-10 Bridgestone Corp. Method for producing an optical waveguide
US5453530A (en) 1994-03-11 1995-09-26 The Curators Of The University Of Missouri S-(ω-hydroxyalkyl) esters of thioacrylic and thiomethacrylic acids
WO1995024929A2 (en) * 1994-03-15 1995-09-21 Brown University Research Foundation Polymeric gene delivery system
MA23592A1 (en) 1994-06-30 1995-12-31 Procter & Gamble COMPOSITIONS FOR BODY CARE CONTAINING THERMOPLASTIC ELASTOMERIC GRAFT COPOLYMERS
EP0785774B1 (en) * 1994-10-12 2001-01-31 Focal, Inc. Targeted delivery via biodegradable polymers
US6291620B1 (en) * 1994-11-09 2001-09-18 E. I. Du Pont De Nemours And Company Polymer synthesis
DE19547738B4 (en) * 1994-12-22 2007-10-18 Bridgestone Corp. Optical waveguide tube and method for its manufacture
EP0799842B1 (en) * 1994-12-22 2000-03-15 Mitsubishi Rayon Co., Ltd. Block copolymer and process for producing the same
US5869127A (en) * 1995-02-22 1999-02-09 Boston Scientific Corporation Method of providing a substrate with a bio-active/biocompatible coating
US6179817B1 (en) * 1995-02-22 2001-01-30 Boston Scientific Corporation Hybrid coating for medical devices
US5674242A (en) * 1995-06-06 1997-10-07 Quanam Medical Corporation Endoprosthetic device with therapeutic compound
US7550005B2 (en) 1995-06-07 2009-06-23 Cook Incorporated Coated implantable medical device
US7611533B2 (en) 1995-06-07 2009-11-03 Cook Incorporated Coated implantable medical device
US5609629A (en) * 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
AU716005B2 (en) * 1995-06-07 2000-02-17 Cook Medical Technologies Llc Implantable medical device
US6774278B1 (en) 1995-06-07 2004-08-10 Cook Incorporated Coated implantable medical device
TW504387B (en) * 1995-09-06 2002-10-01 Kao Corp Emulsified, water-in-oil type composition and skin cosmetic preparation
US5723219A (en) * 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
US5753146A (en) * 1996-03-29 1998-05-19 Transitions Optical, Inc. Photochromic naphthopyran compositions of neutral color
US5770115A (en) * 1996-04-19 1998-06-23 Ppg Industries, Inc. Photochromic naphthopyran compositions of improved fatigue resistance
US5932299A (en) * 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
EP0917666B1 (en) * 1996-08-08 2000-10-25 Danionics A/S High voltage electrochromic devices, the method of preparation thereof and the use of a specific non-aqueous electrolyte in electrochromic devices
US6174329B1 (en) * 1996-08-22 2001-01-16 Advanced Cardiovascular Systems, Inc. Protective coating for a stent with intermediate radiopaque coating
US6197844B1 (en) * 1996-09-13 2001-03-06 3M Innovative Properties Company Floor finish compositions
US6530951B1 (en) * 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
EP0841353A1 (en) * 1996-11-07 1998-05-13 Witco GmbH Process for the preparation of polymeric binders and their application as antifouling paint
JP3695024B2 (en) * 1996-11-14 2005-09-14 Jsr株式会社 Radiation sensitive resin composition for semiconductor device manufacturing
US5859127A (en) * 1996-11-29 1999-01-12 Shin-Etsu Polymer Co., Ltd. Thermosetting resin composition and two-parts composite body thereof with silcone rubber
US5997517A (en) * 1997-01-27 1999-12-07 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
US6498163B1 (en) 1997-02-05 2002-12-24 Warner-Lambert Company Pyrido[2,3-D]pyrimidines and 4-aminopyrimidines as inhibitors of cellular proliferation
EP1637544A3 (en) * 1997-04-18 2006-05-17 Kaneka Corporation Polymers, process for processing the same, and curable compositions produced therefrom
US6555117B2 (en) * 1997-04-25 2003-04-29 The Procter & Gamble Company Personal care compositions containing linear toughened silicone grafted polymers
US6136296A (en) * 1997-04-25 2000-10-24 The Procter & Gamble Company Personal care compositions
US6113883A (en) * 1997-04-25 2000-09-05 The Procter & Gamble Company Hair styling compositions comprising silicone-containing copolymers
US5919879A (en) * 1997-04-25 1999-07-06 The Procter & Gamble Company Linear toughened silicone grafted polymers
US5929173A (en) * 1997-05-12 1999-07-27 The Procter & Gamble Company Toughened grafted polymers
US6165457A (en) 1997-05-12 2000-12-26 The Procter & Gamble Company Personal care compositions containing toughened grafted polymers
US5986015A (en) * 1997-05-16 1999-11-16 The Procter & Gamble Company Method of making graft polymers
US6180632B1 (en) * 1997-05-28 2001-01-30 Aventis Pharmaceuticals Products Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6245760B1 (en) * 1997-05-28 2001-06-12 Aventis Pharmaceuticals Products, Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6159978A (en) 1997-05-28 2000-12-12 Aventis Pharmaceuticals Product, Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
DE69839077T2 (en) * 1997-06-18 2009-01-22 Boston Scientific Ltd., St. Michael POLYCARBONATE POLYURETHANE DISPERSION AS A DUST-RESISTANT COATING
US6110483A (en) * 1997-06-23 2000-08-29 Sts Biopolymers, Inc. Adherent, flexible hydrogel and medicated coatings
US6646354B2 (en) * 1997-08-22 2003-11-11 Micron Technology, Inc. Adhesive composition and methods for use in packaging applications
JPH1189929A (en) * 1997-09-17 1999-04-06 Terumo Corp Indwelling catheter
US6083393A (en) * 1997-10-27 2000-07-04 Pall Corporation Hydrophilic membrane
US6039872A (en) * 1997-10-27 2000-03-21 Pall Corporation Hydrophilic membrane
JP3930984B2 (en) * 1997-12-12 2007-06-13 日東電工株式会社 Transdermal preparation
US6133391A (en) * 1998-03-17 2000-10-17 3M Innovative Properties Company Adhesive compositions and adhesive tapes comprising zwitterionic copolymers, and novel zwitterionic copolymers
US6258371B1 (en) * 1998-04-03 2001-07-10 Medtronic Inc Method for making biocompatible medical article
US20030040790A1 (en) 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US20010029351A1 (en) 1998-04-16 2001-10-11 Robert Falotico Drug combinations and delivery devices for the prevention and treatment of vascular disease
US20020188037A1 (en) 1999-04-15 2002-12-12 Chudzik Stephen J. Method and system for providing bioactive agent release coating
ES2179646T3 (en) * 1998-04-27 2003-01-16 Surmodics Inc COATING THAT RELEASES A BIOACTIVE AGENT.
WO2000002599A1 (en) * 1998-07-08 2000-01-20 Advanced Biocompatible Coatings Inc. Biocompatible metallic stents with hydroxy methacrylate coating
WO2000010622A1 (en) * 1998-08-20 2000-03-02 Cook Incorporated Coated implantable medical device
US6187024B1 (en) * 1998-11-10 2001-02-13 Target Therapeutics, Inc. Bioactive coating for vaso-occlusive devices
US6530950B1 (en) * 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
US6210856B1 (en) * 1999-01-27 2001-04-03 International Business Machines Corporation Resist composition and process of forming a patterned resist layer on a substrate
US6143354A (en) * 1999-02-08 2000-11-07 Medtronic Inc. One-step method for attachment of biomolecules to substrate surfaces
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
FR2798589B1 (en) * 1999-09-16 2001-11-30 Oreal COSMETIC COMPOSITION COMPRISING AT LEAST ONE SILICONE / ACRYLATE COPOLYMER AND AT LEAST ONE THICKENING AGENT
US6613432B2 (en) 1999-12-22 2003-09-02 Biosurface Engineering Technologies, Inc. Plasma-deposited coatings, devices and methods
US6403760B1 (en) * 1999-12-28 2002-06-11 Omnova Solutions Inc. Monohydric polyfluorooxetane polymer and radiation curable coatings containing a monofunctional polyfluorooxetane polymer
WO2001047572A2 (en) 1999-12-29 2001-07-05 Advanced Cardiovascular Systems, Inc. Device and active component for inhibiting formation of thrombus-inflammatory cell matrix
US20020007213A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020005206A1 (en) 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US20020007215A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007214A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
JP4754714B2 (en) 2000-06-01 2011-08-24 テルモ株式会社 Intraluminal indwelling
US6306423B1 (en) * 2000-06-02 2001-10-23 Allergan Sales, Inc. Neurotoxin implant
IL147579A0 (en) * 2000-09-06 2002-08-14 Appleton Paper Inc In situ microencapsulated adhesive
WO2002024249A2 (en) * 2000-09-22 2002-03-28 Koole Levinas H Method for immobilizing poly(hema) on stents
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US20020051730A1 (en) 2000-09-29 2002-05-02 Stanko Bodnar Coated medical devices and sterilization thereof
US7261735B2 (en) 2001-05-07 2007-08-28 Cordis Corporation Local drug delivery devices and methods for maintaining the drug coatings thereon
JP4404468B2 (en) * 2000-09-29 2010-01-27 テルモ株式会社 Blood filter and manufacturing method thereof
JP2004510719A (en) 2000-10-03 2004-04-08 ユニリーバー・ナームローゼ・ベンノートシヤープ Cosmetic and personal care compositions
US7077859B2 (en) 2000-12-22 2006-07-18 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
US20020082679A1 (en) 2000-12-22 2002-06-27 Avantec Vascular Corporation Delivery or therapeutic capable agents
US6663662B2 (en) 2000-12-28 2003-12-16 Advanced Cardiovascular Systems, Inc. Diffusion barrier layer for implantable devices
US6541537B1 (en) * 2001-01-19 2003-04-01 Renaissance Technology Llc Acrylate polymeric compositions and methods
WO2002064014A2 (en) 2001-02-09 2002-08-22 Endoluminal Therapeutics, Inc. Endomural therapy
US20030004141A1 (en) 2001-03-08 2003-01-02 Brown David L. Medical devices, compositions and methods for treating vulnerable plaque
EP1383504A1 (en) 2001-04-26 2004-01-28 Control Delivery Systems, Inc. Sustained release drug delivery system containing codrugs
JP4725941B2 (en) * 2001-05-23 2011-07-13 楠本化成株式会社 Smoothing agent for powder coating
US7247313B2 (en) 2001-06-27 2007-07-24 Advanced Cardiovascular Systems, Inc. Polyacrylates coatings for implantable medical devices
JP4162931B2 (en) * 2001-06-28 2008-10-08 テルモ株式会社 Cardiopulmonary circuit system
US20030083739A1 (en) 2001-09-24 2003-05-01 Robert Cafferata Rational drug therapy device and methods
US7195640B2 (en) 2001-09-25 2007-03-27 Cordis Corporation Coated medical devices for the treatment of vulnerable plaque
US20030065377A1 (en) 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices
US6939376B2 (en) * 2001-11-05 2005-09-06 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US6627584B2 (en) * 2002-01-28 2003-09-30 Ethyl Corporation Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids
US6846892B2 (en) 2002-03-11 2005-01-25 Johnson & Johnson Vision Care, Inc. Low polydispersity poly-HEMA compositions
US7005137B1 (en) 2002-06-21 2006-02-28 Advanceed Cardiovascular Systems, Inc. Coating for implantable medical devices
US7396539B1 (en) 2002-06-21 2008-07-08 Advanced Cardiovascular Systems, Inc. Stent coatings with engineered drug release rate
US7070798B1 (en) * 2002-06-21 2006-07-04 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices incorporating chemically-bound polymers and oligomers of L-arginine
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US7083646B2 (en) 2002-06-28 2006-08-01 Bausch & Lomb Incorporated Surface modification of functional group-containing intraocular lenses
US7094256B1 (en) 2002-12-16 2006-08-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical device containing polycationic peptides
JP2004298223A (en) * 2003-03-28 2004-10-28 Terumo Corp Biocompatible material
US7563454B1 (en) 2003-05-01 2009-07-21 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices
US20040225345A1 (en) * 2003-05-05 2004-11-11 Fischell Robert E. Means and method for stenting bifurcated vessels
US7700659B2 (en) 2005-03-24 2010-04-20 Advanced Cardiovascular Systems, Inc. Implantable devices formed of non-fouling methacrylate or acrylate polymers

Also Published As

Publication number Publication date
WO2006102418A3 (en) 2007-04-19
US20060216326A1 (en) 2006-09-28
US20100119571A1 (en) 2010-05-13
WO2006102418A2 (en) 2006-09-28
US20150098977A1 (en) 2015-04-09
JP2008534062A (en) 2008-08-28
EP1866003B1 (en) 2016-08-10
US7700659B2 (en) 2010-04-20
US8932615B2 (en) 2015-01-13
EP1866003A2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
US7700659B2 (en) Implantable devices formed of non-fouling methacrylate or acrylate polymers
US9345814B2 (en) Methacrylate copolymers for medical devices
EP1784434B2 (en) Implantable device from polymers of fluorinated monomers and hydrophilic monomers
EP2046848B1 (en) Random copolymers of methacrylates and acrylates
US20090311301A1 (en) Coating construct containing poly(vinyl alcohol)
US8105391B2 (en) Merhods of treatment with devices having a coating containing pegylated hyaluronic acid and a pegylated non-hyaluronic acid polymer
WO2006124365A2 (en) Endothelial cell binding coatings for rapid encapsulation of bioerodable stents
US20080095918A1 (en) Coating construct with enhanced interfacial compatibility
EP2038319A1 (en) Block copolymers including a methoxyethyl methacrylate midblock
US9381279B2 (en) Implantable devices formed on non-fouling methacrylate or acrylate polymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008503133

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2006748556

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006748556

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU