WO2006104057A1 - Medical instrument insertion device and medical instrument insertion device system - Google Patents

Medical instrument insertion device and medical instrument insertion device system Download PDF

Info

Publication number
WO2006104057A1
WO2006104057A1 PCT/JP2006/306009 JP2006306009W WO2006104057A1 WO 2006104057 A1 WO2006104057 A1 WO 2006104057A1 JP 2006306009 W JP2006306009 W JP 2006306009W WO 2006104057 A1 WO2006104057 A1 WO 2006104057A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical instrument
insertion portion
holding
insertion device
instrument insertion
Prior art date
Application number
PCT/JP2006/306009
Other languages
French (fr)
Japanese (ja)
Inventor
Shinsuke Tanaka
Hironobu Takizawa
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Publication of WO2006104057A1 publication Critical patent/WO2006104057A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/01Guiding arrangements therefore
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00148Holding or positioning arrangements using anchoring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/0016Holding or positioning arrangements using motor drive units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/31Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the rectum, e.g. proctoscopes, sigmoidoscopes, colonoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0113Mechanical advancing means, e.g. catheter dispensers

Definitions

  • the present invention relates to a medical instrument insertion device and a medical instrument insertion device system for inserting a medical instrument such as an endoscope into a curved body cavity such as the large intestine.
  • Patent Document 1 as a first conventional example, the entire insertion portion of an endoscope is formed in a spiral shape, and the insertion portion is rotated by a needle provided at an outer end portion of the insertion portion.
  • Patent Document 2 as a second conventional example discloses a large intestine fiberscope inductor in which a large number of cylinders and rings (rings) are connected and a spiral member is provided on the outside thereof.
  • Patent Document 3 discloses an endoscope insertion device that performs an advance / retreat operation and a twist operation with respect to an insertion portion of an endoscope.
  • the ball connected to the motor rotates in the axial direction of the insertion portion or in a direction perpendicular to the axial direction. Twisting motion is being performed.
  • Patent Document 1 Japanese Patent Laid-Open No. 54-78884
  • Patent Document 2 Japanese Utility Model Publication No. 51-73884
  • Patent Document 3 Japanese Patent Laid-Open No. 3-92126
  • the inner portion provided with the anal portion and the rotation transmitting portion as the insertion port is provided.
  • the insertion part causes unstable movement or twists.
  • bringing the rotation drive portion closer to the insertion port leads to shortening the overall length of the insertion portion. Therefore, it is necessary to insert the insertion portion into a deep portion of the body cavity duct. Make it difficult.
  • the force for propelling the endoscope is not output beyond a certain value, for example, when the insertion portion of the endoscope is inserted deep in the body cavity duct, etc.
  • the frictional force generated between the insertion portion and the inner wall of the body cavity is increased, there is a problem that the propulsive force is insufficient.
  • making a powerful actuator such as a motor that generates propulsive force leads to an increase in the size of the entire apparatus, resulting in an increase in cost or low operability. Leading down.
  • the advancement / retraction operation and torsional operation of the insertion portion are performed by separate motors, the drive mechanism tends to be complicated.
  • the present invention has been made in view of the above-described points, and a medical instrument insertion device and a medical instrument insertion device system capable of reliably propelling the body with a simple mechanism while the insertion portion is stabilized.
  • the purpose is to provide.
  • the present invention provides the following means.
  • the present invention provides a helical structure provided in an elongated insertion portion, a holding means for holding the insertion portion so as to advance and retreat along a predetermined axial direction, and the holding means around the predetermined axis.
  • a medical instrument insertion device characterized by comprising a rotation drive unit for rotation.
  • the holding means holds the insertion portion so as to be able to advance and retreat in the axial direction while being held at a fixed position with respect to the subject.
  • the insertion portion since the insertion portion is held by the holding means, it rotates following the rotation of the holding means. Therefore, in the intraluminal duct, the insertion portion moves smoothly when the helical structure rotates in contact with the inner wall of the duct.
  • the holding means has the resistance portion, the resistance portion is provided at a position in contact with the insertion portion, and the resistance portion moves along the predetermined axis. It is desirable that it is possible.
  • the resistance portion rotates as the holding means rotates. Roll. At this time, since the resistance portion is in contact with the insertion portion, the insertion portion also rotates as the resistance portion rotates. As a result, when a part of the insertion part is in the body cavity, a propulsive force is generated in a part of the insertion part.
  • the resistance portion moves along a predetermined axis, even if the insertion portion moves along the predetermined axis, the resistance portion only moves together with the insertion portion. Therefore, the holding means and the rotation driving unit are not moved by being moved by the movement of the insertion unit. Therefore, the positions of the holding means and the rotation driving unit can always be kept at a fixed position.
  • the resistance portion generates a force that resists in a direction substantially perpendicular to the direction of the predetermined axis. According to the above configuration, the rotation of the rotation drive unit is reliably transmitted to the insertion unit by the resistance unit.
  • the resistance portion is a belt having a convex portion intermittently in a direction along a predetermined axis. According to the above configuration, it is possible to limit the advance / retreat direction of the insertion portion.
  • the resistance portion is a rotating member having a rotating shaft in a direction substantially perpendicular to the predetermined axial direction. According to the above configuration, it is possible to provide means for limiting the advancing / retreating direction of the insertion portion.
  • the holding means may be provided with a magnetic field generation unit.
  • the holding unit can have a simple structure.
  • an outer diameter varying means for varying the outer diameter of the helical structure portion it is preferable to have an outer diameter varying means for varying the outer diameter of the helical structure portion. According to the above configuration, since the contact between the spiral structure portion and the body tissue surface can be made appropriate, the insertion portion can be reliably propelled.
  • the present invention also provides an elongated insertion portion, a spiral structure portion provided in the insertion portion, a holding means for holding the insertion portion so as to advance and retreat along a predetermined axial direction, and the holding means.
  • a medical instrument insertion device system comprising: a rotation drive unit that rotates a rotation around a predetermined axis; and a medical device that is guided by the insertion unit and inserted into a body cavity.
  • the holding means holds the insertion portion so that the insertion portion can advance and retreat in the axial direction.
  • the rotation drive unit rotates the holding means while being held at a certain position with respect to the subject.
  • the insertion part rotates following the rotation of the holding means.
  • the spiral structure portion is provided in the insertion portion, the insertion portion is smoothly propelled or retracted in the body cavity by rotating the spiral structure portion in contact with the inner wall of the conduit. .
  • the holding means is movable in the longitudinal direction of the insertion portion, and resists the spiral structure substantially perpendicularly to the longitudinal direction of the insertion portion. It is preferable to provide. According to the above configuration, rotation is reliably transmitted to a medical device such as an endoscope by the resistance portion provided in the holding unit.
  • the holding means may be provided with a magnetic field generation unit, and the insertion unit may be provided with a magnet or a magnetic material.
  • the configuration of the holding means can be simplified.
  • the rotational motion is transmitted to the insertion portion in the vicinity of the insertion port, so that the insertion portion outside the body may perform an unstable motion or twist.
  • the insertion portion can be inserted into the body cavity in a stable state.
  • the operability of the insertion is improved, so that the insertion portion can be reliably inserted into the body cavity without requiring a complicated operation or skill from the operator.
  • the insertion part for assisting the insertion of the medical instrument into the body cavity duct is stably placed in the body cavity. Can be inserted. As a result, the operability of insertion is improved, so that it is possible to reliably insert the insertion portion and the medical instrument into the body cavity without requiring complicated operations and skill from the operator.
  • FIG. 1 is a diagram showing a state where an insertion portion of a medical instrument insertion device system of the present invention propels a body cavity duct.
  • FIG. 2-1 is a diagram for explaining the outline of the entire configuration of the medical instrument insertion device system according to the first embodiment of the present invention.
  • Fig. 2-2 is an enlarged view of the area surrounded by A in Fig. 2-1.
  • FIG. 3 is a diagram showing details of a rotation drive unit and a holding unit in the medical instrument insertion device system of FIG. 1.
  • FIG. 41 is a longitudinal side view showing the configuration of the endless track portion in the holding portion of FIG.
  • Fig. 42 is a longitudinal front view showing the configuration of the endless track portion in the holding portion of Fig. 3.
  • FIG. 4 3 is a plan view of the holding belt.
  • FIG. 5 is a diagram showing a deformation of the latch when the endless track portion is operated.
  • Fig. 6 is a diagram showing the deformation of the latch when the endless track moves in the direction opposite to that of Fig. 5.
  • FIG. 7 is a diagram showing a state where an endoscope is inserted into a body cavity duct using the medical instrument insertion device system of FIG. 2.
  • FIG. 7 is a diagram showing a state where an endoscope is inserted into a body cavity duct using the medical instrument insertion device system of FIG. 2.
  • FIG. 8-1 is a vertical side view showing the configuration of the rotating member of the holding unit according to a modification of the holding unit of FIG.
  • Fig. 8-2 is a longitudinal sectional front view showing the configuration of the rotating member of the holding unit according to a modification of the holding unit of Fig. 3.
  • FIG. 9 1 is a diagram showing an internal structure of a holding unit according to a modification of the holding unit of FIG.
  • FIG. 9-2 is a longitudinal side view showing a latch configuration according to a modified example of the holding portion of FIG.
  • FIG. 10 is a schematic diagram showing a configuration of a holding unit according to a modification of the holding unit in FIG.
  • FIG. 11-1 is a schematic diagram showing a configuration of a holding unit according to a modification of the holding unit in FIG.
  • FIG. 11 2 is an enlarged cross-sectional view of a part of the central portion.
  • FIG. 12-1 is a schematic diagram showing a configuration of a holding unit according to a modification of the holding unit of FIG.
  • FIG. 12-2 is an enlarged cross-sectional view of a part thereof.
  • FIG. 13 is a schematic diagram showing an overall configuration of a medical instrument insertion device system according to a second embodiment of the present invention.
  • FIG. 14 is a diagram showing a configuration of an insertion portion, a hollow shaft motor, and a tubular magnet.
  • FIG. 15 is a diagram showing an internal configuration of the insertion portion according to a modification of the insertion portion of FIG.
  • FIG. 16 is a view showing an insertion portion and a rotation drive portion according to a modification of the medical instrument insertion device system of FIG.
  • FIG. 17 is a schematic diagram showing an overall configuration of a medical instrument insertion device system according to a third embodiment of the present invention.
  • FIG. 18-1 is a diagram showing a transmission unit according to the medical instrument insertion device system of FIG.
  • FIG. 18-2 is a cross-sectional view showing the configuration of the transmission section.
  • FIG. 19 is a view showing a state in which forceps are inserted into a body cavity duct using the medical instrument insertion device system of FIG.
  • FIG. 20 is a schematic diagram showing an overall configuration of a medical instrument insertion device system according to a fourth embodiment of the present invention.
  • FIG. 21-1 is a cross-sectional view showing details of a rotation transmission system and the like in the medical instrument insertion device system of FIG.
  • Fig. 21-2 is a cross-sectional view taken along line AA in Fig. 21-1.
  • FIG. 22-1 is a diagram showing the operation of the slider of the rotation transmission system of FIG.
  • FIG. 22-2 is a diagram showing the operation of the slider of the rotation transmission system of FIG.
  • Fig. 22-3 is a diagram showing the operation of the slider of the rotation transmission system of Fig. 21.
  • FIG. 22-4 is a diagram showing the operation of the slider of the rotation transmission system of FIG.
  • FIG. 23 is a cross-sectional view showing a configuration of a slider according to a modification of the rotation transmission system of FIG.
  • FIG. 24 is a cross-sectional view showing a configuration of a rotation transmission system according to a modification of the rotation transmission system of FIG.
  • FIG. 25 is a diagram showing details of a base portion and a rotation transmission system of a medical instrument insertion device system according to a fourth embodiment of the present invention.
  • FIG. 26-1 is a diagram showing an overall configuration of a medical instrument insertion device system according to a modification of the helical structure of the present invention.
  • Fig. 26-2 is an enlarged view of a part of the insertion portion shown in Fig. 26-1.
  • FIG. 27-1 is a diagram showing a change in the shape of the helical structure.
  • FIG. 27-2 is a diagram showing a change in the shape of the spiral structure portion.
  • FIG. 27-3 is a diagram showing a change in the shape of the helical structure.
  • FIG. 1 is a diagram showing a state in which the insertion portion of the medical instrument insertion device system 1 according to the present invention propels a body lumen duct.
  • FIG. 2-1 is a diagram for explaining an outline of the overall configuration of the medical instrument insertion device system 1
  • FIG. 2-2 is an enlarged view of a portion surrounded by A in FIG.
  • the medical instrument insertion apparatus system 1 includes an insertion portion 10, a rotation driving portion 20, and a holding portion (holding means) 30.
  • the insertion portion 10 has an elongated shape having flexibility, and is inserted into a body cavity duct such as the large intestine.
  • the rotation driving unit 20 has a function of driving the holding unit 30 to rotate.
  • the holding unit 30 has a function of rotating the insertion unit 10 by holding the insertion unit 10 and rotating by receiving a rotational force from the rotation driving unit 20.
  • the insertion portion 10 is flexible, so that it can be bent according to the shape of the body cavity duct when inserted into the body cavity duct. Further, as shown in FIG. 2B, the surface of the insertion portion 10 is provided with a spiral structure portion 11 that also has a string-like member formed in a spiral shape. The spiral structure portion 11 has a function of generating a propulsive force when the insertion portion 10 rotates with at least a portion thereof in contact with the inner wall of the body cavity duct.
  • the rotation drive unit 20 Includes a motor 21 that generates a rotational force, a pulley 22 connected to the motor 21, and a rotation transmission belt 23 that transmits the rotational force from the pulley 22 to the holding unit 30.
  • FIG. 3 is a diagram showing a detailed configuration of the rotation drive unit 20 and the holding unit 30.
  • the holding portion 30 includes through tubes 32a and 32b, an endless track portion 33, and a latch 34 inside an outer cylinder 31 having a hollow cylindrical shape.
  • the through pipes 32a and 32b have a hollow cylindrical shape so that the insertion portion 10 can be passed therethrough, and are arranged so as to be coaxial with the central axis (predetermined axis) of the outer cylinder 31. 31 are fixed to end faces 41a and 41b, respectively.
  • a plurality of endless track portions 33 are provided between the through tubes 32a and 32b inside the outer cylinder 31, and are arranged so as to face each other with the central axis of the outer cylinder 31 interposed therebetween.
  • endless track portions 33 that are not limited to this may be provided, and each may be arranged so as to surround the central axis of the outer cylinder 31.
  • a plurality of latches 34 are attached to the inner wall of the outer cylinder 31 so as to face the endless track portion 33.
  • FIG. 4A to FIG. 4C are diagrams showing details of one of the endless track portions 33 provided in the holding portion 30.
  • the endless track 33 has a holding belt (resistor) 42, a recess 43, a protrusion (projection) 44, and a rotating cylinder 45.
  • the holding belt 42 as the resistance portion is an annular member having flexibility and having a width wider than the outer diameter of the insertion portion 10, and is stretched by the two rotating cylinders 45a and 45b. Is provided.
  • a plurality of recesses 43 are provided in the vicinity of the center on the surface of the holding belt 42 along the longitudinal direction of the holding belt 42.
  • the protrusions 44 as convex portions have a saw-like shape, and a plurality of protrusions 44 are arranged in the vicinity of both ends of the holding belt 42 along the longitudinal direction of the holding belt 42.
  • the concave portion 43 comes into contact with the insertion portion 10 inserted through the penetration tubes 32a and 32b, and the projection 44 does not come into contact with the insertion portion 10.
  • the protrusion 44 is preferably an elastic member.
  • the rotating cylinders 45a and 45b each have a cylindrical shape having a length equal to or greater than the width of the holding belt 42, and are rotatably held around the shaft member 46 as an axis.
  • Bearings 47 are respectively provided at both ends of the shaft member 46, and the bearings 47 are attached to the inner wall of the outer cylinder 31 via panel 48.
  • the holding belt 42 is held so as to be rotatable in the longitudinal direction thereof, so that even if a plurality of endless track portions 33 are urged to the insertion portion 10, the insertion portion 10 is propelled. There is no hindrance.
  • the endless track portion 33 has a function of making the insertion portion 10 free to propel and resist only in the circumferential direction without resisting in the advancing and retreating direction of the insertion portion 10. is doing. That is, the holding unit 30 has a function of continuing to transmit rotational power to the insertion unit 10 without hindering the operation in the advancing and retreating direction while being always located in the vicinity of the mouth entrance of the body cavity duct.
  • FIGS. 5 and 6 are diagrams showing the operation of the protrusion 44 and the latch 34.
  • FIG. A plurality of latches 34 are attached to the inner wall of the outer cylinder 31 and are arranged to face the endless track portion 33 so as to contact the protrusion 44 on the surface of the endless track portion 33. Further, a notch 51 is provided in a part of the side surface of the latch 34.
  • the projection 44 moves and contacts the latch 34 along with this rotation. To do.
  • the latch 34 is bent by the notch 51 provided in the latch 34, and the protrusion 44 passes through the latch 34.
  • the operator installs the rotary drive unit 20 in which the holding unit 30 is incorporated in the vicinity of the anus 61 as the insertion port of the subject, and inserts the insertion unit 10 into the perforation tubes 32a and 32b in the holding unit 30.
  • the rotational drive unit 20 is installed so that the end surface 41a side of the outer cylinder 31 faces the subject.
  • the operator inserts the vicinity of the distal end portion of the insertion portion 10 into the large intestine, and drives the motor 21.
  • the rotational driving force generated by the motor 21 is transmitted to the holding unit 30 via the pulley 22 and the rotation transmission belt 23.
  • the plurality of holding belts 42 urge the insertion portion 10 inserted through the penetration tubes 32a and 32b.
  • the insertion portion 10 is in contact with a plurality of recesses 43 provided in the longitudinal direction of the holding belt 42. Therefore, when the holding portion 30 rotates, a force force that resists the insertion portion 10 is generated in the contact portion in a direction substantially perpendicular to the longitudinal direction of the insertion portion 10. As a result, the insertion unit 10 rotates following the rotation operation of the holding unit 30. In this way, the rotational driving force generated by the motor 21 is reliably transmitted to the insertion portion 10.
  • the helical structure portion 11 provided on the surface of the insertion portion 10 generates a propulsive force by rotating at least a portion thereof in contact with the intestinal wall. Therefore, the insertion portion 10 smoothly promotes the large intestine. Accordingly, the holding belt 42 moves along a predetermined axis in the holding portion 30 following the movement of the insertion portion 10. Therefore, the holding unit 30 and the rotation driving unit 20 are not moved by being dragged by the movement of the insertion unit 10. That is, the positions of the holding means and the rotation drive unit can always be kept at a constant position. As a result, the rotary drive unit 20 can always be installed near the anus regardless of the total length of the insertion unit 10. As a result, the interval between the rotary drive unit 20 and the anus 61 can be shortened, so that the insertion unit 10 between them does not cause unstable movement or twist.
  • the propulsive force generated by the helical structure portion 11 is small while the insertion length of the insertion portion 10 is short.
  • the propulsion stops due to resistance to the intestinal wall, etc., and there is a case where the backward movement force that pushes the insertion portion 10 out of the body may work.
  • the rotation of the insertion portion 10 is restricted by the action of the projection 44 and the latch 34 provided on the endless track portion 33 to prevent the insertion portion 10 from moving backward.
  • the insertion part 10 propels to the deep part of the large intestine, and sufficient propulsive force is obtained.
  • the insertion section 10 This allows the insertion section 10 to provide sufficient Until it is obtained, the force for pushing the insertion portion 10 out of the body is hindered, so that the insertion can be made easier.
  • the insertion portion 10 bends along the shape of the intestine, and the reaction force may increase. In this case, the latch 34 is damaged and the rotation is not restricted. Therefore, forcibly inserting the insertion portion 10 is prevented.
  • an endoscope 71 as a medical instrument is inserted into the large intestine for observation, diagnosis or treatment.
  • a cylindrical member 72 that is inserted through the insertion portion 10 and connects the endoscope 71 and the insertion portion 10 is provided by a fixing member 73.
  • the endoscope 71 is guided to the deep part of the large intestine along the insertion part 10. That is, the inserted insertion portion 10 has a function as a guide wire for the endoscope 71.
  • the insertion portion 10 is used as a guide wire, the endoscope 71 can be smoothly inserted to the deepest part of the large intestine.
  • the insertion part 10 may be removed first so as not to interfere with diagnosis and treatment.
  • the rotation drive unit 20 drives the insertion unit 10 to rotate while maintaining a certain distance from the subject. be able to. That is, regardless of the total length of the insertion portion 10, the rotation driving portion 20 can always be arranged near the insertion port of the subject. As a result, the interval between the rotation drive unit 20 and the insertion port can be shortened, so that the insertion unit 10 force between them does not cause unstable movement or twisting when the insertion unit 10 is rotationally driven. Therefore, the insertion part 10 can be inserted into the body cavity in a stable state.
  • the insertion section 10 when propelling the intracorporeal duct by contacting the inner wall of the intraluminal duct while rotating the helical structure section 11, the insertion section 10 is smoothly inserted to reliably propel the intraluminal duct. be able to. As a result, the insertion portion 10 can be reliably inserted without requiring complicated operations and skill from the operator.
  • the holding portion 30 has the endless track portion 33.
  • the present invention is not limited to this.
  • a plurality of rotating members are used. ( It is good also as a structure which has the resistance part) 81.
  • the rotation member 81 as the resistance portion is configured to be rotatable in the longitudinal direction of the insertion portion 10, and a plurality of rotation members 81 are arranged along the longitudinal direction.
  • a plurality of recesses 43 are provided on the surface of the rotating member 81 along the circumferential direction of the rotating member 81.
  • a plurality of projections 44 are provided in the vicinity of both ends of the rotating member 81 whose width is larger than the outer diameter of the insertion portion 10 as in the holding belt 42.
  • the latch 34 is fixed inside the outer cylinder 31 so as to face the protrusion 44.
  • the rotation direction restriction is released by breaking the latch 34.
  • the load applied to the motor 21 is detected and the latch 34 is released. You may stumble to move.
  • a load detector 83 for detecting the load applied to the motor 21 1S is provided between the motor 21 and the pulley 22, and the latch 34 is moved closer to and away from the protrusion 44 as shown in FIG. 9-2.
  • An actuator 82 to be moved is provided between the outer cylinder 31 and the latch 34.
  • the load detection unit 83 determines that the deep part of the large intestine where rotation direction regulation is unnecessary is inserted, and the actuator 82 Start driving.
  • the actuator 82 releases the positional force that makes the latch 34 come into contact with the projection 44 and releases the rotation direction restriction. According to this, since the latch 34 is not broken when the rotational direction restriction is released, the holding portion 30 can be used repeatedly.
  • the force provided with the latch 34 and the projection 44 as means for restricting the rotation direction may be omitted.
  • the holding part 30 has a single through pipe 32c coaxial with the central axis of the holding part 30, and the inner peripheral part of the through pipe 32c is in its longitudinal direction.
  • a large number of grooves 84 may be provided along the.
  • the inner peripheral portion of the piercing tube 32c may be covered with a large number of cilia 85.
  • both ends of the cilia 85 are fixed to the inner peripheral portion of the penetration tube 32c so that the direction of the cilia 85 is the longitudinal direction of the penetration tube 32c.
  • the groove 84 or cilia 85 cast inside the insertion tube 32c is substantially parallel to the longitudinal direction of the insertion portion 10, so that no resistance is generated in the forward / backward direction of the insertion portion 10.
  • the cost can be reduced by simplifying the configuration of the holding unit 30.
  • the rotation operation of the holding unit 30 may be transmitted to the insertion unit 10 using magnetic force.
  • the insertion portion 10 has a hollow structure, and the magnet 86 is disposed inside the hollow structure.
  • the shape of the magnet 86 is a rectangular parallelepiped having a square cross section having the same length as the inner diameter of the insertion portion 10, and is magnetized in the radial direction of the insertion portion 10.
  • the holding unit 30 has a circular tube-shaped tubular magnet 87 instead of the outer cylinder 31.
  • the magnet 86 provided in the insertion portion 10 and the tubular magnet 87 included in the holding portion 30 are in a state of attracting each other with their opposite magnetic poles facing each other.
  • the surface of the insertion portion 10 is subjected to a surface treatment that reduces friction. Has been.
  • the rotation of the motor 21 is transmitted to the tubular magnet 87, so that the insertion portion 10 having the magnet 86 rotates following the rotation of the tubular magnet 87.
  • the helical structure portion 11 provided in the insertion portion 10 contacts the inner wall of the body cavity while rotating, so that the insertion portion 10 propels the body lumen.
  • the rotation drive unit 20 rotates the insertion unit 10 using the magnetic force of the holding unit 30, so that the insertion unit 10 can be smoothly promoted and retracted.
  • the tubular magnet 87 and the magnet 86 in the insertion portion 10 attract each other, the magnet 86 does not move relative to the holding portion 30.
  • FIG. 13 a medical instrument insertion device system 100 according to a second embodiment of the present invention will be described using FIG. 13 and FIG. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the medical instrument insertion device system 100 of the present embodiment is different from the first embodiment in that it includes an insertion portion 110 having a hollow structure. That is, as shown in FIG. 13, the insertion portion 110 is a flexible tube, and various functional members can be passed through the tube. Further, as shown in FIG. 14, the medical instrument insertion apparatus system 100 includes a hollow shaft motor 120 as the rotation drive unit 20 and a tubular magnet 130 as a holding means.
  • the insertion portion 110 is configured by connecting a large number of thin ring-shaped magnets 111 having poles in the radial direction so that the insertion portion 110 can be bent. Further, on the surface of the insertion portion 110, a spiral structure portion 112 is provided so as to be fixed to each ring-shaped magnet 111.
  • the tubular magnet 130 is a cylindrical magnet that is provided with a cylindrical duct having a radius larger than the outer diameter of the insertion portion 110 and is radially magnetized so that the insertion portion 110 can be passed through the inside.
  • the hollow shaft motor 120 is a circular tube-shaped motor provided so as to be fixed to the hollow shaft 131 surrounding the tubular magnet 130, and rotationally drives the tubular magnet 130.
  • the capsule medical device 140 for observing the intraluminal duct as a medical instrument is assisted in insertion into the intraluminal duct, as shown in FIG.
  • a flexible cable 141 connected to the capsule medical device 140 is inserted into 110.
  • the capsule medical device 140 has a hemispherical member with a transparent tip, an LED or other illumination device that illuminates the inside of the body cavity facing the hemispherical member inside the capsule medical device 140, and the body cavity
  • An image sensor such as a CCD is built-in.
  • These power sources are supplied by a power supply line provided in the cable 141.
  • the image signal of the captured image is sent to the image processing apparatus 142 installed outside the body via the signal line in the cable 141, and the processed image is displayed on the monitor 143.
  • the capsule medical device 140 and the cable 141 are not fixed at all with respect to the insertion portion 110. Therefore, even if the insertion portion 110 rotates, the capsule medical device 140 rotates or the cable 141 Will not twist. In this way, the capsule medical device 140 By rotating only the insertion portion 110 that does not rotate, the capsule medical device 140 is smoothly propelled into the body lumen.
  • the operator uses the hollow shaft motor 120 provided with the tubular magnet 130 as an anus as an insertion port of the subject. It is installed in the vicinity of 61 and the insertion part 110 is inserted through the inside of the tubular magnet 130. Next, the operator inserts the vicinity of the distal end portion of the insertion portion 110 into the large intestine, and drives the hollow shaft motor 120. Then, when the hollow shaft motor 120 rotates, the tubular magnet 130 fixed therein rotates, and the insertion portion 110 having the ring-shaped magnet 111 follows the rotation of the magnetic field generated by the tubular magnet 130. Rotate.
  • the helical structure part 112 provided on the surface of the insertion part 110 rotates while contacting the inner wall of the body cavity, so that a propulsive force is generated in the insertion part 110.
  • the capsule medical device 140 is pushed into the deep part of the body cavity duct.
  • the captured image does not rotate when the inside of the body cavity is observed using the image sensor.
  • the insertion unit 110 is inserted into the body cavity while the medical device such as the capsule medical device 140 is inserted into the insertion unit 110. Can be inserted into the inner conduit. Further, for the same reason as in the first embodiment, since the insertion portion 110 is inserted into the body cavity conduit in a stable state, the spiral structure portion 112 is in contact with the inner wall of the body cavity conduit while rotating. Thus, the insertion unit 110 can reliably push the intraluminal duct. As a result, the medical device inserted through the insertion portion 110 can be reliably inserted into the body cavity duct and propelled. Further, since the tubular magnet 130 as the holding means is directly rotated by the hollow shaft motor 120, the efficiency of power transmission is improved. Other effects are the same as those of the first embodiment.
  • the insertion portion 110 may be made of a magnetic material instead of the ring-shaped magnet 111. That is, since the material used for the insertion portion 110 is not limited to a magnet, a material more suitable for the insertion portion 110 can be selected.
  • a flexible magnet that does not constitute the entire insertion portion 110 with a magnet may be provided inside the insertion portion 110.
  • Magnet 113 force A plurality of magnets 113 may be embedded in the tubular insertion portion 110 in the circumferential direction.
  • the directions of the magnetic poles of the plurality of soft magnets 113 are provided so as to face the center line of the insertion portion 110, respectively.
  • Adjacent soft magnets 113 are arranged so as to have opposite magnetic directions. The effect in this case is the same as that of the present embodiment.
  • a plurality of magnets may be embedded in the insertion portion 110. That is, as shown in FIG. 16, a large number of the aforementioned string-like soft magnets 113 are embedded in the insertion portion 110, and the rotation drive portion 20 has a magnetic force generation portion 121 instead of the hollow shaft motor 120. Yes.
  • the magnetic force generator 121 a number of coils 122 that generate a magnetic force in the radial direction are arranged in the circumferential direction.
  • the currents flowing through the plurality of coils 122 are controlled so that adjacent coils 122 in the magnetic force generator 121 generate magnetic forces in opposite directions.
  • the direction of the magnetic force of each of the plurality of coils 122 is sequentially switched by repeating the control to reverse the direction of the current flowing through the coil 122.
  • the insertion portion 110 rotates when the soft magnet 113 provided therein receives a change in the magnetic force of the coil 122. Due to the rotation of the insertion portion 110, the helical structure portion 112 provided on the surface of the insertion portion 110 rotates while contacting the inner wall of the body cavity, so that a propulsive force is generated in the insertion portion 110, and the capsule medical device 140 Is pushed toward the deep part of the body lumen.
  • the number of mechanically driven parts can be reduced, so that the risk of failure due to wear or fatigue of each part can be reduced.
  • FIGS. a medical instrument insertion device system 150 according to a third embodiment of the present invention will be described with reference to FIGS. Note that the same components as those in the first or second embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the medical instrument insertion device system 150 of the present embodiment is different from the first and second embodiments in that the rotation driving unit 20 rotates the insertion unit using a high-pressure fluid. That is, as shown in FIG. 17, the medical instrument insertion device system 150 includes a high-pressure air source 151 as a rotation drive unit and a transmission unit 152 connected to the high-pressure air source 151.
  • the high-pressure air source 151 generates high-pressure air for rotating the insertion section 160 and feeds it through the transmission section 152.
  • the transmission unit 152 inserts high-pressure air sent from the high-pressure air source 151.
  • a mechanism for spraying the insertion portion 160 and rotating the insertion portion 160 is provided.
  • the insertion portion 160 has a hollow structure, and the inner diameter thereof is large enough to allow the endoscope 71 to pass through.
  • a U-shaped groove 153 as a holding means is carved in the center of the transmission portion 152.
  • the U-shaped groove 153 has a width that allows the insertion portion 160 to be slidably installed, and has a smooth surface so that friction with the insertion portion 160 is minimized.
  • the outlet is set to a height substantially equal to the highest position of the spiral structure portion 11 provided on the surface of the insertion portion 160. 1 54 are open.
  • a connection port 155 connected to the high-pressure air source 151 is provided on the side wall of the transmission unit 152.
  • connection port 155 and the plurality of air outlets 154 are communicated with each other by a high-pressure pipe 156 arranged inside the transmission unit 152. That is, the high-pressure line 156 connected to the connection port 155 branches into a plurality of parts inside the transmission unit 152 and is connected to each of the plurality of air outlets 154. Further, in the vicinity of the outlet 154, the high-pressure pipe 156 is arranged perpendicular to the side wall of the U-shaped groove 153, so that the high-pressure air is blown out perpendicularly to the side wall force of the U-shaped groove 153, and the spiral structure The part 11 can be sprayed in the circumferential direction of the insertion part 160.
  • the operator installs the high-pressure air source 151 and the transmission unit 152 in the vicinity of the anus 61 as the insertion port, and inserts the insertion unit 160 into the U-shaped groove 153 provided in the transmission unit 152.
  • the high-pressure air source 151 is driven to supply high-pressure air to the transmission unit 152.
  • the high-pressure air that has passed through the inside of the transmission part 152 is blown to the spiral structure part 11 of the insertion part 160 through a plurality of outlets 154 provided.
  • the helical structure 11 receives the force of the high-pressure air in the circumferential direction of the insertion part 160, so that the insertion part 160 rotates.
  • the endoscope 71 is inserted into the insertion portion 160 as shown in FIG. Normal Perform endoscopy and endoscopic treatment using forceps 161.
  • the insertion unit 160 is rotated by high-pressure air. It becomes possible to propel the pipeline. Further, the transmission unit 152 can drive the insertion unit 160 to rotate in a state where a constant distance is always maintained with respect to the subject near the subject's insertion port.
  • the fluid that the transmission unit 152 sprays and rotates on the insertion unit 160 may be a high-pressure water flow instead of the high-pressure air.
  • the transmission portion 152 may be provided with a cylindrical pipe line through which the insertion portion 160 can be passed. The effects in these cases are the same as in this embodiment.
  • the present embodiment is different from the first embodiment in that a rotation control unit that actively rotates a holding belt as a holding unit to directly rotate the insertion unit 10 is provided.
  • the medical instrument insertion device system 200 includes an insertion portion 10, a base portion 210 provided outside the body of the subject, and a rotation transmission system connected to the base portion 210.
  • the rotation transmission system 220 has a function of rotating the insertion portion 10.
  • the base portion 210 includes support members 211 and 212 arranged in two pairs in the forward and backward direction of the insertion portion 10.
  • the support member 211 (212) is divided into two support members 21 la (212a) and 211b (212b) having two symmetrical shapes.
  • the support members 211a (212a) and 211b (212b) are connected to each other by hinges 216 so that they can be opened and closed.
  • a notch is provided. That is, when the support member 21 la (212a) and the support member 211b (212b) are closed, the support member 211 (212) passes the insertion portion 10 near the center thereof. It is configured so that a substantially circular hole can be opened.
  • the configuration provided on the support member 211a side is denoted by a at the end of the reference numeral, and the configuration provided on the support member 2 ib side includes When b is added to the end of the code and both a and b are indicated, i is added to the end of the code.
  • the rotation transmission system 220 includes sliders 230i (230a, 230b) and bell rod rotating bodies 240i (240a, 240b).
  • the slider 230i is provided between the support member 21li and the support member 212i, and moves in the advancing / retreating direction of the insertion portion 10.
  • the belt rotating body 240i is connected to the slider 230i and has a function of rotating the insertion portion 10.
  • the slider 230i is movably provided on a slider shaft 23 li provided between the support member 211i and the support member 212i.
  • a panel 232i that urges the slider 230i in the direction of the support member 212i is disposed on the slider shaft 231i between the support member 211i and the slider 230i.
  • a linear encoder (not shown) is built in between the slider 230i and the slider shaft 231i. The linear encoder detects the distance between the support member 211i (212i) and the slider 230i by measuring the moving distance of the slider 230i on the slider shaft 231i.
  • a plurality of linear actuators 233i are attached to the side of the slider 230i facing the insertion portion 10.
  • the linear actuator 233i drives the belt rotating body 240i in a direction approaching and separating from the insertion portion 10 passed through the notch provided in the support members 211i and 212i. In this way, the slider 230i can move integrally with the belt rotating body 240i via the linear actuator 233i on the slider shaft 23li.
  • the belt rotating body 240i includes a belt rotating motor 241i constituting a rotation driving unit, a rotor 24 2i, and a holding belt (holding means, resistance unit) 243i.
  • the belt rotation motor 241i is connected to two linear actuators 233i separated from each other in the advancing / retreating direction of the insertion portion 10 among the four linear actuators 233i described above via a belt rotation shaft 244i.
  • a rotor 242i is connected to the remaining two linear actuators 233i via a belt rotating shaft 244i.
  • the holding belt 243i as the holding means and the resistance portion is annular and flexible. And is provided in a state of being stretched by the belt rotation motor 241i and the rotor 242i.
  • the benolet rotating bodies 240a and 240b are arranged so as to sandwich the insertion portion 10 passed through the notches provided in the support rods 211i and 212i. Further, the rotational speed of the belt rotating body 240i is controlled so as to be synchronized with the position on the slider shaft 23li.
  • the holding belt 243i is appropriate for the insertion portion 10. It is energized with a load.
  • the load urging the insertion portion 10 is adjusted by the movement of the reductor 233i.
  • the belt rotating body 240i is arranged symmetrically with respect to the insertion portion 10, the insertion portion 10 can be sandwiched with a suitable pressure.
  • the input / output line 251 for transmitting and receiving signals and power to / from the linear encoder, the belt rotation motor 241i, and the linear actuator 233i are connected to the outside via the slider 230i.
  • FIGS. 22-1 to 22-4 the operation of the medical instrument insertion device system 200 configured as described above will be described with reference to FIGS. 22-1 to 22-4.
  • the medical instrument insertion device system 200 is applied to insertion into the large intestine, but it can also be applied to insertion into other body cavity ducts, and the operation is similar to the operation described below. It is.
  • the spiral structure portion 11 provided on the outer surface of the insertion portion 10 is omitted.
  • the operator arranges the rotation transmission system 220 provided in the base portion 210 in the vicinity of the anus 61 as an insertion port so that the rule of the support member 211 is directed to the subject. Then, the operator opens the support member 21 li with the hinge 216 as an axis, disposes the insertion assisting tool in a semicircular columnar notch provided in the support member 21 li, and closes the support member 21 li. At this time, the support member 21 li (212i) is integrally opened and closed together with other components such as the slider 230i and the belt rotating body 240i. Next, the operator drives a belt rotation motor 241i as a rotation driving unit to rotate the holding belt 243i.
  • the slider 230i is integrated with the belt rotating body 240i and the linear actuator 233i to support the slider shaft 231i. It is located on the holding member 212i side.
  • the belt rotating bodies 240a and 240b urge the load so that they are opposed to the insertion portion 10 by the linear actuator 233i.
  • the belt rotation motor 241i rotates and the holding belt 243i rotates in a direction substantially perpendicular to the advancing / retreating direction of the insertion portion 10, whereby the insertion portion 10 rotates together with the spiral structure portion 11 (not shown). I do.
  • the rotational speeds of the two belt rotating bodies 240i and the positions on the slider shaft 231i are controlled so as to synchronize, so that the insertion portion 10 is smoothly rotated.
  • the force that the panel 232i urges toward the support member 212i with respect to the slider 230i is set to be weaker than the propulsive force of the insertion portion 10 by the helical structure 11, so that the movement of the slider 230i is hindered. Don't be.
  • the linear encoder Since the movement distance of the slider 230i is measured by the linear encoder, when the slider 23 Oi moves and hits the support member 21 li, the linear encoder moves closer to the support member 21 li. Detect that At this time, the linear actuator 233i is driven to raise the belt rotating body 240i to a height at which it does not come into contact with the insertion portion 10, and temporarily stops transmission of rotational power to the belt rotating body 240 insertion portion 10 ( Fig. 22-3) o As a result, the belt rotating body 240i does not follow the propulsion of the insertion portion 10, and the slider 230i can move freely. Then, the slider 230i is returned to the support member 212i side integrally with the belt rotating body 240i by the biasing force of the panel 232i (FIG. 22-4).
  • the linear actuator 233i again brings the belt rotating body 240i into contact with the insertion portion 10, and the holding belt 243i by the belt rotating motor 241i. Rotate the insertion part 10 again.
  • the insertion unit 10 continues to smoothly promote the body cavity duct.
  • the slider 230i may be moved toward the support member 212i by a linear motor 261i provided on the slider 230i instead of the panel.
  • the linear motor 26 li stops driving and frees the movement of the slider 230i.
  • the linear motor 261i is driven to move the slider 230i only when the actuator is returned to the support member 212i side (the state shown in FIGS. 22-3 and 22-4).
  • the rotation of the insertion portion 10 is directly and actively transmitted by the holding belt 243i, so that the insertion portion 10 can be more reliably obtained. Can be rotated. Further, since the belt rotating body 240 i and the insertion portion 10 are integrally advanced toward the insertion port by the slider 230i, the advancement of the insertion portion 10 in the body cavity passage is not hindered. Can be performed more reliably.
  • a plurality of rotation transmission systems 220 may be provided along the advancing / retreating direction of the insertion portion 10.
  • the intermediate support member 213i is provided at an intermediate position between the support members 211i and 212i, the space between the support member 211i and the intermediate support member 213i, and the support member 212i and the intermediate support member 213i.
  • the rotation transmission system 220 as described above is arranged in each space.
  • a plurality of rotation transmission systems 220 can be driven alternately to rotate the insertion portion 10. That is, when the belt rotating body 240i of one rotation transmission system 220 is separated from the insertion portion 10, the other rotation transmission system 220 can transmit rotational power to the insertion portion 10. Therefore, since the insertion part 10 can be always rotated, there is no loss of propulsion time, and the insertion part 10 can be efficiently promoted. Other effects are the same as in the fourth embodiment.
  • a contact sensor (not shown) that detects contact at one end of the slider 23Oi may be provided.
  • This contact sensor can be detected that the slider 230i has come into contact with the support member 21li, and the linear actuator 233i can be operated in response to the detection result.
  • the contact sensor is not particularly limited as long as it can detect that the force slider 230i, which is a sensor such as a pressure sensor, an optical sensor, or a switch, is close to the support member 211i.
  • the contact sensor may be mounted at a position facing the slider 230i of the support member 211i without being mounted on the end of the slider 230i. This is efficient because the position of the slider 230 i does not always need to be detected unlike a linear encoder.
  • FIG. 3 a medical instrument insertion device system 300 according to a fifth embodiment of the present invention will be described using FIG. Note that the same components as those in the first or fourth embodiment are denoted by the same reference numerals and description thereof is omitted.
  • This embodiment is different from the fourth embodiment in that the base portion 210 and the rotation transmission system 220 are provided in the holding portion 30 in the first embodiment. That is, the medical instrument insertion device system 300 includes the insertion unit 10, the rotation drive unit 20, and the holding unit (holding unit) 30 as in the first embodiment.
  • the holding part 30 has a base part 210 and a rotation transmission system 220.
  • the rotation transmission system 220 includes a pressing member 310i that presses against the insertion portion 10 without rotating, instead of the belt rotating body 240i and the belt rotating motor 241i. Yes. Further, the support member 21 li of the base portion 210 is fixed to one end of the outer cylinder 31, and the support member 212 i is fixed to the other end of the outer cylinder 31. In this way, the base portion 210 and the entire rotation transmission system 220 are fixed to the outer cylinder 31 of the holding portion 30 to rotate together with the holding portion 30.
  • the force of the pressing member 310i is driven by the linear actuator 233i, and the insertion portion 10 is sandwiched with a suitable pressure. Then, the entire rotation transmission system 220 is rotated by the rotation drive unit 20, so that rotational power is transmitted to the insertion unit 10 via the pressing member 310 i. In this way, the insertion section 10 propels the body cavity duct while rotating. Note that the operations of the slider 230i, the pressing member 310i, and the like with respect to the propelling direction of the insertion portion 10 at this time are the same as the operations in the fourth embodiment.
  • the rotation drive unit 20 is in a state where a certain distance from the subject is maintained near the subject's insertion port.
  • the insertion portion 10 can be rotationally driven. Further, since the pressing member 31 Oi and the insertion portion 10 are integrally advanced toward the insertion port by the slider 230i, the advancement of the insertion portion 10 in the body cavity duct is not hindered. This can be done more reliably.
  • the motor 21 that is driven to rotate is arranged outside the holding unit 30, a motor with a large output can be used, so that the insertion unit 10 can be rotated and propelled more reliably. It becomes.
  • FIG. 26-1 is a diagram showing an overall configuration of a medical instrument insertion device system according to a modification of the helical structure 11, and FIG. 26-2 is an enlarged view of a part of the insertion unit 10 shown in FIG. 26-1. It is a figure.
  • the helical structure 11 is provided with an outer diameter varying means.
  • the helical structure 11 is constituted by a hollow tube (outer diameter varying means) 12 having a hollow portion and formed by an elastic member such as rubber having excellent elasticity. It has been done.
  • a fluid supply unit 15 is provided at one end of the hollow tube 12 on the outside of the body.
  • the fluid supply unit 15 has a function of supplying a fluid such as compressed air to a hollow portion formed inside the hollow tube 12.
  • the supply of fluid such as compressed air to the hollow tube 12 forming the spiral structure portion 11 and the supply stop thereof are controlled, so that the insertion portion 10 Surface force It is possible to select whether or not to form a projecting spiral projection, and to adjust the height of the spiral projection. Therefore, when the insertion portion 10 is inserted into the body cavity conduit, as shown in FIG. 27-1 or FIG. 27-3, the insertion portion 10 in the body cavity conduit is formed by forming a spiral protrusion with the hollow tube 12. Can improve the propulsive power. Further, when the insertion portion 10 is also removed from the body cavity duct, the insertion portion 10 can be removed smoothly and in a short time by making the surface of the insertion portion 10 flat as shown in FIG. 27-2. Togashi.
  • the medical instrument insertion device and the medical instrument insertion device system according to the present invention are useful for inserting a medical instrument into a curved body cavity such as the large intestine. Suitable for insertion of capsule medical devices.

Abstract

A medical instrument insertion device and a medical instrument insertion device system, enabling an insertion section to be reliably advanced in a stable state in a body by using a simple mechanism. The medical instrument insertion device has a spiral structure section provided on an elongate insertion section (10); a holding section (30) for holding the insertion section (10) so that the insertion section (10) can be advanced and retreated in the direction of a predetermined axis; and a rotation drive section (20) for rotating the holding section (30) about the predetermined axis. The construction improves operability of the insertion of the insertion section (10), which enables the insertion section (10) to be reliably inserted into a body cavity without requiring an operator to perform complex operation and to be skilled.

Description

明 細 書  Specification
医療器具挿入装置及び医療器具挿入装置システム  Medical instrument insertion device and medical instrument insertion device system
技術分野  Technical field
[0001] 本発明は、大腸等の湾曲した体腔内に内視鏡等の医療器具の挿入を行う医療器 具挿入装置及び医療器具挿入装置システムに関する。  The present invention relates to a medical instrument insertion device and a medical instrument insertion device system for inserting a medical instrument such as an endoscope into a curved body cavity such as the large intestine.
背景技術  Background art
[0002] 通常、内視鏡を大腸等の体腔管路の深部に挿入するには、 S字結腸のような複雑 な湾曲部を通過させねばならず、使用する術者に熟練を必要としている。このような 内視鏡の挿入を容易にする発明が種々開示されている。  [0002] Normally, in order to insert an endoscope into a deep part of a body cavity duct such as the large intestine, it is necessary to pass through a complicated curved part such as a sigmoid colon, and the operator who uses it requires skill. . Various inventions that facilitate the insertion of such endoscopes have been disclosed.
[0003] 例えば、第 1の従来例としての特許文献 1には、内視鏡の挿入部全体を螺旋状に 形成し、挿入部の体外側端部に設けられたノヽンドルで挿入部を回転させることにより 、内視鏡の大腸内への挿入性を向上させた、大腸ファイバースコープが開示されて いる。第 2の従来例としての特許文献 2には、円筒と輪 (リング)を多数連結し、その外 側に螺旋状の部材を設けた大腸ファイバースコープ誘導器が開示されて 、る。ここで は、円筒と輪の内側に内視鏡の挿入部を揷通し、円筒と輪の連結体を回転させるこ とにより、内視鏡の大腸への挿入を行いやすくしている。また、第 3の従来例としての 特許文献 3には、内視鏡の挿入部に対して進退動作及びねじり動作を行う内視鏡挿 入装置が開示されている。ここでは、内視鏡挿入部を押圧する複数のボールのうち、 モータに接続されたボールが、挿入部の軸方向、または軸方向と垂直な方向に回転 することにより、挿入部の進退動作とねじり動作を行っている。  [0003] For example, in Patent Document 1 as a first conventional example, the entire insertion portion of an endoscope is formed in a spiral shape, and the insertion portion is rotated by a needle provided at an outer end portion of the insertion portion. Thus, a large intestine fiberscope is disclosed in which the insertion of an endoscope into the large intestine is improved. Patent Document 2 as a second conventional example discloses a large intestine fiberscope inductor in which a large number of cylinders and rings (rings) are connected and a spiral member is provided on the outside thereof. Here, the insertion part of the endoscope is passed through the inside of the cylinder and the ring, and the connecting body of the cylinder and the ring is rotated to facilitate the insertion of the endoscope into the large intestine. Further, Patent Document 3 as a third conventional example discloses an endoscope insertion device that performs an advance / retreat operation and a twist operation with respect to an insertion portion of an endoscope. Here, among the plurality of balls that press the endoscope insertion portion, the ball connected to the motor rotates in the axial direction of the insertion portion or in a direction perpendicular to the axial direction. Twisting motion is being performed.
特許文献 1:特開昭 54— 78884号公報  Patent Document 1: Japanese Patent Laid-Open No. 54-78884
特許文献 2:実開昭 51— 73884号公報  Patent Document 2: Japanese Utility Model Publication No. 51-73884
特許文献 3 :特開平 3— 92126号公報  Patent Document 3: Japanese Patent Laid-Open No. 3-92126
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、第 1の従来例及び第 2の従来例では、内視鏡後端部で回転力を伝達 するため、挿入口である肛門部と回転伝達部が設けられた内視鏡後端部との間で、 挿入部が不安定な運動を起こしたり捻れたりすることから、操作性を向上させることが 困難である。そして、この挿入部の安定性を向上させるために回転駆動部を挿入口 に近づけることは、挿入部の全長を短くすることにつながるため、挿入部を体腔内管 路の深部へ挿入させることを困難にする。また、第 3の従来例では、内視鏡を推進さ せる力がある一定の値を超えて出力されないため、例えば、内視鏡の挿入部が体腔 管路の深部に挿入される場合等において、挿入部と体腔内管路内壁との間に発生 する摩擦力が増加すると、推進力が不足するという問題がある。そして、この挿入部 の推進力の不足を補うために、推進力を発生するモータ等のァクチユエータを強力 なものにすることは、装置全体の大型化を招くので、コストの増加または操作性の低 下につながる。また、挿入部の進退動作とねじり動作を別々のモータにより行ってい るので、駆動機構が複雑になりやすい。 [0004] However, in the first conventional example and the second conventional example, in order to transmit the rotational force at the rear end portion of the endoscope, the inner portion provided with the anal portion and the rotation transmitting portion as the insertion port is provided. Between the rear end of the endoscope, It is difficult to improve operability because the insertion part causes unstable movement or twists. In order to improve the stability of the insertion portion, bringing the rotation drive portion closer to the insertion port leads to shortening the overall length of the insertion portion. Therefore, it is necessary to insert the insertion portion into a deep portion of the body cavity duct. Make it difficult. Further, in the third conventional example, since the force for propelling the endoscope is not output beyond a certain value, for example, when the insertion portion of the endoscope is inserted deep in the body cavity duct, etc. When the frictional force generated between the insertion portion and the inner wall of the body cavity is increased, there is a problem that the propulsive force is insufficient. In order to make up for the lack of propulsive force in the insertion section, making a powerful actuator such as a motor that generates propulsive force leads to an increase in the size of the entire apparatus, resulting in an increase in cost or low operability. Leading down. In addition, since the advancement / retraction operation and torsional operation of the insertion portion are performed by separate motors, the drive mechanism tends to be complicated.
[0005] 本発明は、上述した点に鑑みてなされたもので、簡易な機構により、挿入部を安定 させた状態で体内を確実に推進させることができる医療器具挿入装置及び医療器具 挿入装置システムを提供することを目的とする。 [0005] The present invention has been made in view of the above-described points, and a medical instrument insertion device and a medical instrument insertion device system capable of reliably propelling the body with a simple mechanism while the insertion portion is stabilized. The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0006] 上記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.
本発明は、細長の挿入部に設けられた螺旋状構造部と、前記挿入部を所定の軸方 向に沿って進退可能に保持する保持手段と、前記所定の軸の周りに前記保持手段 を回転させる回転駆動部と、を備えることを特徴とする医療器具挿入装置を提供する  The present invention provides a helical structure provided in an elongated insertion portion, a holding means for holding the insertion portion so as to advance and retreat along a predetermined axial direction, and the holding means around the predetermined axis. Provided is a medical instrument insertion device characterized by comprising a rotation drive unit for rotation.
[0007] 上記の構成によれば、保持手段は、被験者に対して一定の位置に保たれた状態で 、挿入部を軸方向に進退可能に保持する。ここで、挿入部は、保持手段により保持さ れているので、保持手段の回転に追従して回転する。よって、体腔内管路において、 螺旋状構造部が管路内壁に接触して回転することにより、挿入部は円滑な移動を行 [0007] According to the above configuration, the holding means holds the insertion portion so as to be able to advance and retreat in the axial direction while being held at a fixed position with respect to the subject. Here, since the insertion portion is held by the holding means, it rotates following the rotation of the holding means. Therefore, in the intraluminal duct, the insertion portion moves smoothly when the helical structure rotates in contact with the inner wall of the duct.
[0008] また上記発明の医療器具挿入装置によれば、保持手段は抵抗部を有し、抵抗部は 挿入部と接触する位置に設けられ、かつ、抵抗部は前記所定の軸に沿って移動可 能であることが望ましい。上記構成によれば、保持手段の回転に伴って、抵抗部が回 転する。このとき、抵抗部は挿入部と接触しているため、抵抗部の回転に伴って挿入 部も回転する。その結果、挿入部の一部が体腔内にあった場合、この挿入部の一部 において推進力が発生する。また、抵抗部は、所定の軸に沿って移動するようになつ ているので、挿入部が所定の軸に沿って移動しても、抵抗部が挿入部と一緒に移動 するだけである。そのため、保持手段及び回転駆動部は、挿入部の移動に引きずら れて移動することはない。したがって、保持手段及び回転駆動部の位置を、常に一 定の位置に保つことができる。 [0008] Further, according to the medical instrument insertion device of the above invention, the holding means has the resistance portion, the resistance portion is provided at a position in contact with the insertion portion, and the resistance portion moves along the predetermined axis. It is desirable that it is possible. According to the above configuration, the resistance portion rotates as the holding means rotates. Roll. At this time, since the resistance portion is in contact with the insertion portion, the insertion portion also rotates as the resistance portion rotates. As a result, when a part of the insertion part is in the body cavity, a propulsive force is generated in a part of the insertion part. Also, since the resistance portion moves along a predetermined axis, even if the insertion portion moves along the predetermined axis, the resistance portion only moves together with the insertion portion. Therefore, the holding means and the rotation driving unit are not moved by being moved by the movement of the insertion unit. Therefore, the positions of the holding means and the rotation driving unit can always be kept at a fixed position.
[0009] また、抵抗部は、所定の軸の方向と略垂直な方向に抵抗する力を生じることが好ま しい。上記構成によれば、抵抗部によって、挿入部に対して、回転駆動部の回転が 確実に伝達される。  [0009] Further, it is preferable that the resistance portion generates a force that resists in a direction substantially perpendicular to the direction of the predetermined axis. According to the above configuration, the rotation of the rotation drive unit is reliably transmitted to the insertion unit by the resistance unit.
[0010] また上記発明の医療器具挿入装置によれば、抵抗部は、所定の軸に沿う方向に断 続的に凸部を有するベルトであることが好ましい。上記構成によれば、挿入部の進退 方向を制限することが可能になる。  [0010] According to the medical instrument insertion device of the above invention, it is preferable that the resistance portion is a belt having a convex portion intermittently in a direction along a predetermined axis. According to the above configuration, it is possible to limit the advance / retreat direction of the insertion portion.
[0011] また上記発明の医療器具挿入装置によれば、抵抗部は、前記所定の軸方向と略 垂直な方向に回転軸を有する回転部材であることが好ましい。上記構成によれば、 挿入部の進退方向を制限する手段を設けることが可能になる。  [0011] According to the medical instrument insertion device of the present invention, it is preferable that the resistance portion is a rotating member having a rotating shaft in a direction substantially perpendicular to the predetermined axial direction. According to the above configuration, it is possible to provide means for limiting the advancing / retreating direction of the insertion portion.
[0012] また上記発明の医療器具挿入装置によれば、保持手段に磁界発生部を備える構 成にしてもよい。上記構成によれば、保持手段を簡単な構造とすることが可能になる  [0012] According to the medical instrument insertion device of the present invention, the holding means may be provided with a magnetic field generation unit. According to the above configuration, the holding unit can have a simple structure.
[0013] また上記発明の医療器具挿入装置によれば、螺旋状構造部の外径を可変にする 外径可変手段を有することが好ましい。上記構成によれば、螺旋状構造部と体内組 織表面の接触を適切なものにすることができるため、挿入部を確実に推進させること ができる。 [0013] Further, according to the medical instrument insertion device of the present invention, it is preferable to have an outer diameter varying means for varying the outer diameter of the helical structure portion. According to the above configuration, since the contact between the spiral structure portion and the body tissue surface can be made appropriate, the insertion portion can be reliably propelled.
[0014] また本発明は、細長の挿入部と、前記挿入部に設けられた螺旋状構造部と、前記 挿入部を所定の軸方向に沿って進退可能に保持する保持手段と、前記保持手段を 前記所定の軸の周りに回転させる回転駆動部と、前記挿入部に案内されて体腔内に 挿入される医療装置と、を備える医療器具挿入装置システムを提供する。  [0014] The present invention also provides an elongated insertion portion, a spiral structure portion provided in the insertion portion, a holding means for holding the insertion portion so as to advance and retreat along a predetermined axial direction, and the holding means. There is provided a medical instrument insertion device system comprising: a rotation drive unit that rotates a rotation around a predetermined axis; and a medical device that is guided by the insertion unit and inserted into a body cavity.
[0015] 上記の構成によれば、保持手段が挿入部を軸方向に進退可能に保持するので、 回転駆動部は、被験者に対して一定の位置に保たれた状態で、保持手段を回転さ せる。ここで、挿入部が保持手段により保持される状態にあるとき、挿入部は保持手 段の回転に追従して回転する。さらに、螺旋状構造部が挿入部に設けられる状態に あるとき、体腔内管路において、螺旋状構造部が管路内壁に接触して回転すること により、挿入部は円滑な推進または後退を行う。 [0015] According to the above configuration, the holding means holds the insertion portion so that the insertion portion can advance and retreat in the axial direction. The rotation drive unit rotates the holding means while being held at a certain position with respect to the subject. Here, when the insertion part is held by the holding means, the insertion part rotates following the rotation of the holding means. Further, when the spiral structure portion is provided in the insertion portion, the insertion portion is smoothly propelled or retracted in the body cavity by rotating the spiral structure portion in contact with the inner wall of the conduit. .
[0016] また上記発明の医療器具挿入装置システムによれば、保持手段は、挿入部の長手 方向に移動可能で、螺旋状構造体に対して挿入部の長手方向と略垂直に抵抗する 抵抗部を備えることが好ましい。上記の構成によれば、保持手段に設けられた抵抗 部によって、内視鏡等の医療装置に確実に回転が伝達される。  [0016] Further, according to the medical instrument insertion device system of the above invention, the holding means is movable in the longitudinal direction of the insertion portion, and resists the spiral structure substantially perpendicularly to the longitudinal direction of the insertion portion. It is preferable to provide. According to the above configuration, rotation is reliably transmitted to a medical device such as an endoscope by the resistance portion provided in the holding unit.
[0017] また上記発明の医療器具挿入装置によれば、保持手段に磁界発生部を備え、挿 入部に磁石或いは磁性体を備える構成にしてもよい。このような構成にすることで、 保持手段の構成を簡単にすることができる。  [0017] According to the medical instrument insertion device of the above invention, the holding means may be provided with a magnetic field generation unit, and the insertion unit may be provided with a magnet or a magnetic material. By adopting such a configuration, the configuration of the holding means can be simplified.
発明の効果  The invention's effect
[0018] 以上述べたように、本発明の医療器具挿入装置によれば、挿入口付近で挿入部に 回転動作を伝達するので、体外にある挿入部が不安定な運動をしたり捻れたりせず 、挿入部を安定した状態で体腔内に挿入させることが可能である。この結果、挿入の 操作性が向上するので、術者に対し複雑な操作や熟練を要求することなぐ挿入部 を確実に体腔内へ挿入させることができる。  [0018] As described above, according to the medical instrument insertion device of the present invention, the rotational motion is transmitted to the insertion portion in the vicinity of the insertion port, so that the insertion portion outside the body may perform an unstable motion or twist. First, the insertion portion can be inserted into the body cavity in a stable state. As a result, the operability of the insertion is improved, so that the insertion portion can be reliably inserted into the body cavity without requiring a complicated operation or skill from the operator.
[0019] また、本発明の医療器具挿入システムによれば、上記の効果と同様の理由から、医 療器具の体腔内管路への挿入を補助する挿入部を、安定した状態で体腔内に挿入 させることができる。この結果、挿入の操作性が向上するので、術者に対し複雑な操 作や熟練を要求することなぐ挿入部及び医療器具を確実に体腔内へ挿入させるこ とがでさる。  [0019] Further, according to the medical instrument insertion system of the present invention, for the same reason as the above effect, the insertion part for assisting the insertion of the medical instrument into the body cavity duct is stably placed in the body cavity. Can be inserted. As a result, the operability of insertion is improved, so that it is possible to reliably insert the insertion portion and the medical instrument into the body cavity without requiring complicated operations and skill from the operator.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]図 1は、本発明の医療器具挿入装置システムの挿入部が体腔内管路を推進す る状態を示す図である。  FIG. 1 is a diagram showing a state where an insertion portion of a medical instrument insertion device system of the present invention propels a body cavity duct.
[図 2-1]図 2—1は、本発明の第 1の実施形態に係る医療器具挿入装置システムの全 体構成の概略を説明する図である。 [図 2-2]図 2— 2は、図 2— 1の Aで囲まれた部分を拡大した図である。 [FIG. 2-1] FIG. 2-1 is a diagram for explaining the outline of the entire configuration of the medical instrument insertion device system according to the first embodiment of the present invention. [Fig. 2-2] Fig. 2-2 is an enlarged view of the area surrounded by A in Fig. 2-1.
[図 3]図 3は、図 1の医療器具挿入装置システムにおける回転駆動部及び保持部の 詳細を示す図である。  3 is a diagram showing details of a rotation drive unit and a holding unit in the medical instrument insertion device system of FIG. 1.
[図 4-1]図 4 1は、図 3の保持部における無限軌道部の構成を示す縦断側面図であ る。  [FIG. 4-1] FIG. 41 is a longitudinal side view showing the configuration of the endless track portion in the holding portion of FIG.
[図 4-2]図 4 2は、図 3の保持部における無限軌道部の構成を示す縦断正面図であ る。  [Fig. 4-2] Fig. 42 is a longitudinal front view showing the configuration of the endless track portion in the holding portion of Fig. 3.
[図 4-3]図 4 3は、保持ベルトの平面図である。  [FIG. 4-3] FIG. 4 3 is a plan view of the holding belt.
圆 5]図 5は、無限軌道部が動作した時のラッチの変形を示す図である。 [5] FIG. 5 is a diagram showing a deformation of the latch when the endless track portion is operated.
圆 6]図 6は、無限軌道部が図 5と逆方向に動作した時のラッチの変形を示す図であ る。 圆 6] Fig. 6 is a diagram showing the deformation of the latch when the endless track moves in the direction opposite to that of Fig. 5.
[図 7]図 7は、図 2の医療器具挿入装置システムを用いて内視鏡を体腔内管路へ揷 入する状態を示す図である。  7 is a diagram showing a state where an endoscope is inserted into a body cavity duct using the medical instrument insertion device system of FIG. 2. FIG.
[図 8-1]図 8— 1は、図 3の保持部の変形例に係る保持部の回転部材の構成を示す 縦断側面図である。  FIG. 8-1 is a vertical side view showing the configuration of the rotating member of the holding unit according to a modification of the holding unit of FIG.
[図 8-2]図 8— 2は、図 3の保持部の変形例に係る保持部の回転部材の構成を示す 縦断正面図である。  [Fig. 8-2] Fig. 8-2 is a longitudinal sectional front view showing the configuration of the rotating member of the holding unit according to a modification of the holding unit of Fig. 3.
[図 9-1]図 9 1は、図 3の保持部の変形例に係る保持部の内部構造を示す図である  [FIG. 9-1] FIG. 9 1 is a diagram showing an internal structure of a holding unit according to a modification of the holding unit of FIG.
[図 9-2]図 9 2は、図 3の保持部の変形例に係るラッチ構成を示す縦断側面図であ る。 FIG. 9-2 is a longitudinal side view showing a latch configuration according to a modified example of the holding portion of FIG.
[図 10]図 10は、図 3の保持部の変形例に係る保持部の構成を示す概略図である。  FIG. 10 is a schematic diagram showing a configuration of a holding unit according to a modification of the holding unit in FIG.
[図 11-1]図 11 1は、図 3の保持部の変形例に係る保持部の構成を示す概略図で ある。 FIG. 11-1 is a schematic diagram showing a configuration of a holding unit according to a modification of the holding unit in FIG.
[図 11-2]図 11 2は、その中央部分の一部を拡大して示す断面図である。  [FIG. 11-2] FIG. 11 2 is an enlarged cross-sectional view of a part of the central portion.
[図 12-1]図 12— 1は、図 3の保持部の変形例に係る保持部の構成を示す概略図で ある。  [FIG. 12-1] FIG. 12-1 is a schematic diagram showing a configuration of a holding unit according to a modification of the holding unit of FIG.
[図 12- 2]図 12— 2は、その一部を拡大して示す断面図である。 [図 13]図 13は、本発明の第 2の実施形態に係る医療器具挿入装置システムの全体 構成を示す概略図である。 [FIG. 12-2] FIG. 12-2 is an enlarged cross-sectional view of a part thereof. FIG. 13 is a schematic diagram showing an overall configuration of a medical instrument insertion device system according to a second embodiment of the present invention.
[図 14]図 14は、挿入部、中空軸モータ及び管状磁石の構成を示す図である。  FIG. 14 is a diagram showing a configuration of an insertion portion, a hollow shaft motor, and a tubular magnet.
[図 15]図 15は、図 13の挿入部の変形例に係る挿入部の内部構成を示す図である。 FIG. 15 is a diagram showing an internal configuration of the insertion portion according to a modification of the insertion portion of FIG.
[図 16]図 16は、図 13の医療器具挿入装置システムの変形例に係る挿入部及び回転 駆動部を示す図である。 FIG. 16 is a view showing an insertion portion and a rotation drive portion according to a modification of the medical instrument insertion device system of FIG.
[図 17]図 17は、本発明の第 3の実施形態に係る医療器具挿入装置システムの全体 構成を示す概略図である。  FIG. 17 is a schematic diagram showing an overall configuration of a medical instrument insertion device system according to a third embodiment of the present invention.
[図 18-1]図 18— 1は、図 17の医療器具挿入装置システムに係る伝達部を示す図で ある。  [FIG. 18-1] FIG. 18-1 is a diagram showing a transmission unit according to the medical instrument insertion device system of FIG.
[図 18-2]図 18— 2は、伝達部の構成を示す断面図である。  [FIG. 18-2] FIG. 18-2 is a cross-sectional view showing the configuration of the transmission section.
[図 19]図 19は、図 17の医療器具挿入装置システムを用いて鉗子を体腔内管路へ揷 入する状態を示す図である。  FIG. 19 is a view showing a state in which forceps are inserted into a body cavity duct using the medical instrument insertion device system of FIG.
[図 20]図 20は、本発明の第 4の実施形態に係る医療器具挿入装置システムの全体 構成を示す概略図である。  FIG. 20 is a schematic diagram showing an overall configuration of a medical instrument insertion device system according to a fourth embodiment of the present invention.
[図 2ト 1]図 21— 1は、図 20の医療器具挿入装置システムにおける回転伝達系等の 詳細を示す断面図である。  [FIG. 2D] FIG. 21-1 is a cross-sectional view showing details of a rotation transmission system and the like in the medical instrument insertion device system of FIG.
[図 21-2]図 21— 2は、図 21— 1の A— A線断面図である。  [Fig. 21-2] Fig. 21-2 is a cross-sectional view taken along line AA in Fig. 21-1.
[図 22-1]図 22— 1は、図 21の回転伝達系のスライダの動作を示す図である。  [FIG. 22-1] FIG. 22-1 is a diagram showing the operation of the slider of the rotation transmission system of FIG.
[図 22-2]図 22— 2は、図 21の回転伝達系のスライダの動作を示す図である。  [FIG. 22-2] FIG. 22-2 is a diagram showing the operation of the slider of the rotation transmission system of FIG.
[図 22-3]図 22— 3は、図 21の回転伝達系のスライダの動作を示す図である。  [Fig. 22-3] Fig. 22-3 is a diagram showing the operation of the slider of the rotation transmission system of Fig. 21.
[図 22-4]図 22— 4は、図 21の回転伝達系のスライダの動作を示す図である。  [FIG. 22-4] FIG. 22-4 is a diagram showing the operation of the slider of the rotation transmission system of FIG.
[図 23]図 23は、図 21の回転伝達系の変形例に係るスライダの構成を示す断面図で ある。  FIG. 23 is a cross-sectional view showing a configuration of a slider according to a modification of the rotation transmission system of FIG.
[図 24]図 24は、図 21の回転伝達系の変形例に係る回転伝達系の構成を示す断面 図である。  FIG. 24 is a cross-sectional view showing a configuration of a rotation transmission system according to a modification of the rotation transmission system of FIG.
[図 25]図 25は、本発明の第 4の実施形態に係る医療器具挿入装置システムのベー ス部及び回転伝達系の詳細を示す図である。 [図 26-1]図 26— 1は、本発明の螺旋状構造部の変形例に係る医療器具挿入装置シ ステムの全体構成を示す図である。 FIG. 25 is a diagram showing details of a base portion and a rotation transmission system of a medical instrument insertion device system according to a fourth embodiment of the present invention. [FIG. 26-1] FIG. 26-1 is a diagram showing an overall configuration of a medical instrument insertion device system according to a modification of the helical structure of the present invention.
[図 26-2]図 26— 2は、図 26— 1に示す揷入部の一部を拡大した図である。  [Fig. 26-2] Fig. 26-2 is an enlarged view of a part of the insertion portion shown in Fig. 26-1.
[図 27-1]図 27— 1は、螺旋状構造部の形状の変化を示す図である。 [FIG. 27-1] FIG. 27-1 is a diagram showing a change in the shape of the helical structure.
[図 27-2]図 27— 2は、螺旋状構造部の形状の変化を示す図である。 FIG. 27-2 is a diagram showing a change in the shape of the spiral structure portion.
[図 27-3]図 27— 3は、螺旋状構造部の形状の変化を示す図である。 [FIG. 27-3] FIG. 27-3 is a diagram showing a change in the shape of the helical structure.
符号の説明 Explanation of symbols
1、 100、 150、 200、 300···医療器具揷入装置システム  1, 100, 150, 200, 300 ... Medical instrument insertion device system
10、 110、 160…挿入部  10, 110, 160 ... Insertion section
11、 112…螺旋状構造部  11, 112 ... Helical structure
12···中空チューブ (外径可変手段)  12 ··· Hollow tube (outer diameter variable means)
20…回転駆動部  20 ... Rotation drive
21···モータ  21 ... Motor
22···プーリ  22 pulley
23…回転伝達ベルト  23 ... Rotation transmission belt
30…保持部 (保持手段)  30 ... Holding part (holding means)
31…外筒  31 ... Outer cylinder
33…無限軌道部  33 ... Endless track
34…ラッチ  34 ... Latch
42、 243···保持ベルト  42, 243 ... holding belt
71···内視鏡  71 ... Endoscope
81···回転部材  81 ··· Rotating member
83…負荷検出部  83… Load detector
86···磁石  86 ... Magnet
87、 130···管状磁石  87, 130 ... Tubular magnet
111···リング状磁石  111 ... Ring magnet
120···中空軸モータ  120 ... Hollow shaft motor
121…磁力発生部 140…カプセル型医療装置 121 ... Magnetic force generator 140 ... capsule type medical device
151…高圧空気源  151 ... High pressure air source
152· · ·伝達部  152 · · · Transmission
210· · ·ベース部  210 ··· Base
220· · ·回転伝達系  220 · · · Rotational transmission system
230i (230a、 230b)…スライダ  230i (230a, 230b) ... Slider
240i (240a、 240b)…ベル卜回転体  240i (240a, 240b) ... Bell rod rotating body
241i (241a、 241b)…ベルト回転モータ  241i (241a, 241b) ... Belt rotation motor
310i (310a、 310b)…押圧部材  310i (310a, 310b) ... Pressing member
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 〔第 1の実施形態〕 [First Embodiment]
以下、本発明の第 1の実施形態に係る医療器具挿入装置システムについて、図 1 力 図 12の図面を参照して説明する。  Hereinafter, a medical instrument insertion device system according to a first embodiment of the present invention will be described with reference to FIGS.
図 1は、本発明における医療器具挿入装置システム 1の挿入部が、体腔内管路を 推進する状態を示す図である。図 2—1は、医療器具挿入装置システム 1の全体構成 の概略を説明する図であり、図 2— 2は、図 2— 1の Aで囲まれた部分を拡大した図で ある。  FIG. 1 is a diagram showing a state in which the insertion portion of the medical instrument insertion device system 1 according to the present invention propels a body lumen duct. FIG. 2-1 is a diagram for explaining an outline of the overall configuration of the medical instrument insertion device system 1, and FIG. 2-2 is an enlarged view of a portion surrounded by A in FIG.
[0023] 医療器具挿入装置システム 1は、図 2— 1に示すように、挿入部 10と、回転駆動部 2 0と、保持部 (保持手段) 30とを有する。ここで、挿入部 10は、可撓性を有する細長の 形状を有し、大腸等の体腔内管路に挿入される。また、回転駆動部 20は、保持部 30 を回転駆動する機能を有する。保持部 30は、挿入部 10を保持するとともに、回転駆 動部 20から回転力を受けて回転動作することにより、挿入部 10を回転させる機能を 有する。  [0023] As shown in FIG. 2-1, the medical instrument insertion apparatus system 1 includes an insertion portion 10, a rotation driving portion 20, and a holding portion (holding means) 30. Here, the insertion portion 10 has an elongated shape having flexibility, and is inserted into a body cavity duct such as the large intestine. The rotation driving unit 20 has a function of driving the holding unit 30 to rotate. The holding unit 30 has a function of rotating the insertion unit 10 by holding the insertion unit 10 and rotating by receiving a rotational force from the rotation driving unit 20.
[0024] 挿入部 10は、可撓性を有することにより、体腔内管路に挿入された際に、体腔管路 の形状に応じて湾曲可能となっている。また、挿入部 10の表面には、図 2— 2に示す ように、螺旋状に構成された紐状の部材カもなる螺旋状構造部 11が設けられて 、る 。螺旋状構造部 11は、その少なくとも一部が体腔管路の内壁に接触した状態で挿入 部 10が回転する時に、推進力を発生させる機能を有する。また、上記回転駆動部 20 は、回転力を発生するモータ 21と、モータ 21に接続されたプーリ 22と、プーリ 22から 保持部 30に回転力を伝達する回転伝達ベルト 23とを有する。 [0024] The insertion portion 10 is flexible, so that it can be bent according to the shape of the body cavity duct when inserted into the body cavity duct. Further, as shown in FIG. 2B, the surface of the insertion portion 10 is provided with a spiral structure portion 11 that also has a string-like member formed in a spiral shape. The spiral structure portion 11 has a function of generating a propulsive force when the insertion portion 10 rotates with at least a portion thereof in contact with the inner wall of the body cavity duct. In addition, the rotation drive unit 20 Includes a motor 21 that generates a rotational force, a pulley 22 connected to the motor 21, and a rotation transmission belt 23 that transmits the rotational force from the pulley 22 to the holding unit 30.
[0025] 図 3は、前記回転駆動部 20と前記保持部 30の詳細な構成を示す図である。保持 部 30は、中空の円筒形状を有する外筒 31の内部に、揷通管 32a、 32bと、無限軌道 部 33と、ラッチ 34とを有する。ここで、揷通管 32a、 32bは、挿入部 10が揷通されるよ うに中空の円筒形状を有し、外筒 31の中心軸 (所定の軸)と同軸になるように、該外 筒 31の端面 41a、 41bにそれぞれ固定されている。また、無限軌道部 33は、外筒 31 の内部において、揷通管 32a、 32bの間に複数設けられ、それぞれが外筒 31の中心 軸を挟んで対向するように配置されている。なお、これに限られることなぐ無限軌道 部 33が 3つ以上設けられ、それぞれが外筒 31の中心軸の周りを取り囲むように配置 される構成としても構わない。また、ラッチ 34は、無限軌道部 33と対向するように、外 筒 31の内壁に複数取り付けられている。  FIG. 3 is a diagram showing a detailed configuration of the rotation drive unit 20 and the holding unit 30. The holding portion 30 includes through tubes 32a and 32b, an endless track portion 33, and a latch 34 inside an outer cylinder 31 having a hollow cylindrical shape. Here, the through pipes 32a and 32b have a hollow cylindrical shape so that the insertion portion 10 can be passed therethrough, and are arranged so as to be coaxial with the central axis (predetermined axis) of the outer cylinder 31. 31 are fixed to end faces 41a and 41b, respectively. In addition, a plurality of endless track portions 33 are provided between the through tubes 32a and 32b inside the outer cylinder 31, and are arranged so as to face each other with the central axis of the outer cylinder 31 interposed therebetween. Note that three or more endless track portions 33 that are not limited to this may be provided, and each may be arranged so as to surround the central axis of the outer cylinder 31. A plurality of latches 34 are attached to the inner wall of the outer cylinder 31 so as to face the endless track portion 33.
[0026] 図 4—1から図 4— 3は、保持部 30に複数設けられた無限軌道部 33の一つについ ての詳細を示す図である。無限軌道部 33は、保持ベルト (抵抗部) 42と、凹部 43と、 突起(凸部) 44と、回転筒 45とを有している。ここで、抵抗部としての保持ベルト 42は 、可撓性を有し、挿入部 10の外径より広い幅を有する環状の部材であり、 2本の回転 筒 45a、 45bによって張られた状態で設けられている。凹部 43は、保持ベルト 42の表 面上の中央付近に、保持ベルト 42の長手方向に沿って複数設けられている。また、 凸部としての突起 44は、鋸状の形状を有し、保持ベルト 42の両端付近に、保持ベル ト 42の長手方向に沿って複数個配置されている。このように構成することで、凹部 43 は揷通管 32a、 32bに挿通される挿入部 10と接触し、突起 44は該揷入部 10と接触 しないようになっている。また、突起 44は、保持ベルト 42の形状が湾曲するので、弹 性部材であることが好ま 、。  FIG. 4A to FIG. 4C are diagrams showing details of one of the endless track portions 33 provided in the holding portion 30. The endless track 33 has a holding belt (resistor) 42, a recess 43, a protrusion (projection) 44, and a rotating cylinder 45. Here, the holding belt 42 as the resistance portion is an annular member having flexibility and having a width wider than the outer diameter of the insertion portion 10, and is stretched by the two rotating cylinders 45a and 45b. Is provided. A plurality of recesses 43 are provided in the vicinity of the center on the surface of the holding belt 42 along the longitudinal direction of the holding belt 42. Further, the protrusions 44 as convex portions have a saw-like shape, and a plurality of protrusions 44 are arranged in the vicinity of both ends of the holding belt 42 along the longitudinal direction of the holding belt 42. With this configuration, the concave portion 43 comes into contact with the insertion portion 10 inserted through the penetration tubes 32a and 32b, and the projection 44 does not come into contact with the insertion portion 10. Further, since the shape of the holding belt 42 is curved, the protrusion 44 is preferably an elastic member.
[0027] 上記回転筒 45a、 45bは、それぞれ保持ベルト 42の幅と同等力、それ以上の長さを 有する円筒形状を有し、軸部材 46を軸として回転可能に保持されている。軸部材 46 の両端には、軸受け 47がそれぞれ設けられ、該軸受け 47は、パネ 48を介して外筒 3 1の内壁に取り付けられている。このように構成することで、無限軌道部 33は、パネ 4 8の弾性力により外筒 31の中心軸方向へ付勢される。すなわち、揷通管 32a、 32bに 挿通される挿入部 10は、複数の無限軌道部 33により好適な圧力で挟み込まれる。 The rotating cylinders 45a and 45b each have a cylindrical shape having a length equal to or greater than the width of the holding belt 42, and are rotatably held around the shaft member 46 as an axis. Bearings 47 are respectively provided at both ends of the shaft member 46, and the bearings 47 are attached to the inner wall of the outer cylinder 31 via panel 48. With this configuration, the endless track portion 33 is urged toward the central axis of the outer cylinder 31 by the elastic force of the panel 48. That is, to the through pipe 32a, 32b The insertion portion 10 to be inserted is sandwiched between the plurality of endless track portions 33 at a suitable pressure.
[0028] このようにして、保持ベルト 42は、その長手方向に回転可能に保持されるので、複 数の無限軌道部 33が挿入部 10に付勢していても、挿入部 10の推進を妨げることが ない。また、保持ベルト 42に設けられた凹部 43により、無限軌道部 33は、挿入部 10 の進退方向には抵抗せずに挿入部 10の推進を自由にし、周方向にのみ抵抗する機 能を有している。すなわち、保持部 30は、常に体腔管路の揷入口付近に位置した状 態で、挿入部 10に対してその進退方向の動作を妨げずに回転動力を伝達し続ける 機能を有している。 [0028] In this way, the holding belt 42 is held so as to be rotatable in the longitudinal direction thereof, so that even if a plurality of endless track portions 33 are urged to the insertion portion 10, the insertion portion 10 is propelled. There is no hindrance. Further, due to the recess 43 provided in the holding belt 42, the endless track portion 33 has a function of making the insertion portion 10 free to propel and resist only in the circumferential direction without resisting in the advancing and retreating direction of the insertion portion 10. is doing. That is, the holding unit 30 has a function of continuing to transmit rotational power to the insertion unit 10 without hindering the operation in the advancing and retreating direction while being always located in the vicinity of the mouth entrance of the body cavity duct.
[0029] 図 5及び図 6は、突起 44とラッチ 34の動作を示す図である。ラッチ 34は、外筒 31の 内壁に複数取り付けられ、無限軌道部 33の表面上の突起 44に接触するように、該 無限軌道部 33に対向するように配置されている。また、ラッチ 34の側面の一部には、 切欠 51が設けられている。ここで、図 5 (a)及び図 5 (b)に示すような向き(図では、左 方向)で無限軌道部 33が回転すると、この回転に伴って突起 44が移動してラッチ 34 と接触する。このとき、ラッチ 34に設けられた切欠 51により、ラッチ 34が曲がり、突起 44がラッチ 34を通過する。これに対して、図 6 (a)に示すような向き(図では、右方向 )で無限軌道部 33が回転して、突起 44がラッチ 34に接触すると、図 6 (b)に示すよう に突起 44とラッチ 34が干渉するため、無限軌道部 33は回転しない。この状態でさら に無限軌道部 33を回転させる力がはたらくと、図 6 (c)に示すように、切欠 51が裂け るようにラッチ 34が曲がる。そして、そのまま力がはたらき続けると、図 6 (d)に示すよ うにラッチ 34が折れる。このとき、無限軌道部 33はどちらの方向にも自由に回転する ようになる。このようにして、無限軌道部 33は、挿入部 10の推進方向には回転自在 であり、後退方向には一定以上の反力がかからな!、限り回転しな!、ようになって!/、る  FIGS. 5 and 6 are diagrams showing the operation of the protrusion 44 and the latch 34. FIG. A plurality of latches 34 are attached to the inner wall of the outer cylinder 31 and are arranged to face the endless track portion 33 so as to contact the protrusion 44 on the surface of the endless track portion 33. Further, a notch 51 is provided in a part of the side surface of the latch 34. Here, when the endless track 33 rotates in the direction shown in Fig. 5 (a) and Fig. 5 (b) (left direction in the figure), the projection 44 moves and contacts the latch 34 along with this rotation. To do. At this time, the latch 34 is bent by the notch 51 provided in the latch 34, and the protrusion 44 passes through the latch 34. On the other hand, when the endless track 33 rotates in the direction shown in Fig. 6 (a) (rightward in the figure) and the projection 44 contacts the latch 34, as shown in Fig. 6 (b). Since the projection 44 and the latch 34 interfere with each other, the endless track portion 33 does not rotate. In this state, when the force that further rotates the endless track 33 is applied, the latch 34 bends so that the notch 51 is torn as shown in FIG. 6 (c). If the force continues to act as it is, the latch 34 is broken as shown in FIG. 6 (d). At this time, the endless track 33 can freely rotate in either direction. In this way, the endless track section 33 is rotatable in the propelling direction of the insertion section 10 and does not apply a certain reaction force in the backward direction! /
[0030] 次に、このように構成された医療器具挿入装置システム 1の作用を説明する。ここで は、医療器具挿入装置システム 1を大腸への挿入に適用した例を示す力 その他の 体腔管路への挿入に適用することも可能であり、その作用は以下に説明する作用と 同様である。 Next, the operation of the medical instrument insertion device system 1 configured as described above will be described. Here, it is also possible to apply the force indicating an example in which the medical instrument insertion device system 1 is applied to insertion into the large intestine, and insertion into other body cavity ducts, and the operation is similar to the operation described below. is there.
[0031] 図 2に示すように、被験者の大腸等の体腔内管路で医療行為を行う必要がある場 合、操作者は、被験者の挿入口としての肛門 61付近に、保持部 30が組み込まれた 回転駆動部 20を設置し、保持部 30内の揷通管 32a、 32bに挿入部 10を挿通させる 。このとき、外筒 31の端面 41a側が被験者に向くように、回転駆動部 20を設置する。 次に、操作者は、前記挿入部 10の先端部付近を大腸内に挿入し、モータ 21を駆動 する。そして、モータ 21で発生した回転駆動力は、プーリ 22及び回転伝達ベルト 23 を介して保持部 30に伝達される。 [0031] As shown in FIG. 2, when it is necessary to perform a medical practice in a body cavity such as a large intestine of a subject In this case, the operator installs the rotary drive unit 20 in which the holding unit 30 is incorporated in the vicinity of the anus 61 as the insertion port of the subject, and inserts the insertion unit 10 into the perforation tubes 32a and 32b in the holding unit 30. . At this time, the rotational drive unit 20 is installed so that the end surface 41a side of the outer cylinder 31 faces the subject. Next, the operator inserts the vicinity of the distal end portion of the insertion portion 10 into the large intestine, and drives the motor 21. The rotational driving force generated by the motor 21 is transmitted to the holding unit 30 via the pulley 22 and the rotation transmission belt 23.
[0032] 該保持部 30では、複数の保持ベルト 42が、揷通管 32a、 32bに挿通された挿入部 10に対して付勢する。このとき、挿入部 10は、保持ベルト 42の長手方向に複数設け られた凹部 43に接触している。そのため、保持部 30が回転すると、この接触部にお いて、挿入部 10に対して抵抗する力力 挿入部 10の長手方向と略垂直な方向に発 生する。その結果、保持部 30の回転動作に追従して、挿入部 10が回転する。こうす ることで、モータ 21で発生させた回転駆動力は、確実に挿入部 10に伝達される。  [0032] In the holding portion 30, the plurality of holding belts 42 urge the insertion portion 10 inserted through the penetration tubes 32a and 32b. At this time, the insertion portion 10 is in contact with a plurality of recesses 43 provided in the longitudinal direction of the holding belt 42. Therefore, when the holding portion 30 rotates, a force force that resists the insertion portion 10 is generated in the contact portion in a direction substantially perpendicular to the longitudinal direction of the insertion portion 10. As a result, the insertion unit 10 rotates following the rotation operation of the holding unit 30. In this way, the rotational driving force generated by the motor 21 is reliably transmitted to the insertion portion 10.
[0033] 挿入部 10が回転動作を開始すると、該揷入部 10の表面に設けられた螺旋状構造 部 11は、その少なくとも一部が腸壁と接触しながら回転することにより推進力を発生 させるので、挿入部 10は円滑に大腸内を推進する。それに伴って、保持部 30にお いて、挿入部 10の移動に追従して、保持ベルト 42が所定の軸に沿って移動する。そ のため、挿入部 10の移動に引きずられて、保持部 30や回転駆動部 20が移動するこ とはない。すなわち、保持手段及び回転駆動部の位置を、常に一定の位置に保つこ とができる。これにより、挿入部 10の全長によらず回転駆動部 20を常に肛門付近に 設置することができる。この結果、回転駆動部 20と肛門 61との間隔を短くすることが できるので、この間にある挿入部 10力 不安定な運動をしたり捻れたりすることがなく なる。  [0033] When the insertion portion 10 starts rotating, the helical structure portion 11 provided on the surface of the insertion portion 10 generates a propulsive force by rotating at least a portion thereof in contact with the intestinal wall. Therefore, the insertion portion 10 smoothly promotes the large intestine. Accordingly, the holding belt 42 moves along a predetermined axis in the holding portion 30 following the movement of the insertion portion 10. Therefore, the holding unit 30 and the rotation driving unit 20 are not moved by being dragged by the movement of the insertion unit 10. That is, the positions of the holding means and the rotation drive unit can always be kept at a constant position. As a result, the rotary drive unit 20 can always be installed near the anus regardless of the total length of the insertion unit 10. As a result, the interval between the rotary drive unit 20 and the anus 61 can be shortened, so that the insertion unit 10 between them does not cause unstable movement or twist.
[0034] 挿入部 10が体腔管路への挿入を開始した後、挿入部 10の挿入された長さが短い 間は、螺旋構造部 11により発生する推進力が小さいため、挿入部 10の先端が腸壁 に抵抗するなどして推進が停止し、挿入部 10を体外に押し出す後進力がはたらく場 合がある。このような場合、無限軌道部 33に設けられた突起 44とラッチ 34のはたらき により、挿入部 10の後退を防ぐように回転が規制される。その後、挿入部 10が大腸 深部まで推進し、十分な推進力が得られる。これにより挿入部 10が十分な推進力を 得られるようになるまで、挿入部 10を体外に押し出す力が妨げられるので、より挿入 を容易にすることができる。一方、腸の形状に沿って挿入部 10が曲がり、それによる 反力が大きくなることがある。この場合、ラッチ 34が破損し、回転を規制しなくなる。よ つて、挿入部 10を無理に挿入するようなことが防止される。 [0034] After the insertion portion 10 starts insertion into the body cavity duct, the propulsive force generated by the helical structure portion 11 is small while the insertion length of the insertion portion 10 is short. The propulsion stops due to resistance to the intestinal wall, etc., and there is a case where the backward movement force that pushes the insertion portion 10 out of the body may work. In such a case, the rotation of the insertion portion 10 is restricted by the action of the projection 44 and the latch 34 provided on the endless track portion 33 to prevent the insertion portion 10 from moving backward. Thereafter, the insertion part 10 propels to the deep part of the large intestine, and sufficient propulsive force is obtained. This allows the insertion section 10 to provide sufficient Until it is obtained, the force for pushing the insertion portion 10 out of the body is hindered, so that the insertion can be made easier. On the other hand, the insertion portion 10 bends along the shape of the intestine, and the reaction force may increase. In this case, the latch 34 is damaged and the rotation is not restricted. Therefore, forcibly inserting the insertion portion 10 is prevented.
[0035] このようにして大腸の最深部まで挿入部 10が到達した後、操作者は、モータ 21を 停止させて挿入部 10の推進を停止する。その後、図 7に示すように、医療器具として の内視鏡 71が観察、診断もしくは治療のために大腸内に挿入される。ここで、該内視 鏡 71の先端付近には、挿入部 10を挿通して内視鏡 71と挿入部 10とを接続する円 筒部材 72が固定部材 73によって設けられている。内視鏡 71を体腔内管路へ挿入 するときには、この円筒部材 72の中に、体外にある挿入部 10の端部を揷通する。そ して、挿入部 10に沿って、内視鏡 71が大腸の深部へ案内される。すなわち、挿通さ れた揷入部 10は、内視鏡 71のガイドワイヤとしての機能を有する。このようにして、挿 入部 10をガイドワイヤとして利用しているので、大腸最深部まで内視鏡 71を円滑に 挿入することができる。内視鏡 71が大腸最深部に到達したら、診断、治療等の妨げと ならな 、ように挿入部 10を先に抜去してもよ 、。  [0035] After the insertion unit 10 reaches the deepest part of the large intestine in this manner, the operator stops the motor 21 and stops the propulsion of the insertion unit 10. Thereafter, as shown in FIG. 7, an endoscope 71 as a medical instrument is inserted into the large intestine for observation, diagnosis or treatment. Here, in the vicinity of the distal end of the endoscope 71, a cylindrical member 72 that is inserted through the insertion portion 10 and connects the endoscope 71 and the insertion portion 10 is provided by a fixing member 73. When the endoscope 71 is inserted into the body cavity duct, the end portion of the insertion portion 10 outside the body is passed through the cylindrical member 72. Then, the endoscope 71 is guided to the deep part of the large intestine along the insertion part 10. That is, the inserted insertion portion 10 has a function as a guide wire for the endoscope 71. Thus, since the insertion portion 10 is used as a guide wire, the endoscope 71 can be smoothly inserted to the deepest part of the large intestine. When the endoscope 71 reaches the deepest part of the large intestine, the insertion part 10 may be removed first so as not to interfere with diagnosis and treatment.
[0036] 以上説明したように、本実施例に係る医療器具挿入装置システム 1によれば、回転 駆動部 20が、被験者に対して一定の距離を保った状態で挿入部 10の回転駆動を 行うことができる。つまり、挿入部 10の全長によらず、回転駆動部 20を常に被験者の 挿入口付近に配置させることができる。これにより、回転駆動部 20と挿入口との間隔 を短くすることができるので、この間にある挿入部 10力 挿入部 10の回転駆動の際 に、不安定な運動をしたり捻れたりしない。そのため、挿入部 10を安定した状態で体 腔内管路に挿入させることができる。すなわち、螺旋状構造部 11が回転しながら体 腔内管路内壁と接触することにより体腔内管路を推進する際に、挿入部 10が円滑に 挿入されて体腔内管路を確実に推進することができる。この結果、術者に対し複雑な 操作や熟練を要求することなぐ挿入部 10の確実な挿入を行うことができる。  [0036] As described above, according to the medical instrument insertion device system 1 according to the present embodiment, the rotation drive unit 20 drives the insertion unit 10 to rotate while maintaining a certain distance from the subject. be able to. That is, regardless of the total length of the insertion portion 10, the rotation driving portion 20 can always be arranged near the insertion port of the subject. As a result, the interval between the rotation drive unit 20 and the insertion port can be shortened, so that the insertion unit 10 force between them does not cause unstable movement or twisting when the insertion unit 10 is rotationally driven. Therefore, the insertion part 10 can be inserted into the body cavity in a stable state. That is, when propelling the intracorporeal duct by contacting the inner wall of the intraluminal duct while rotating the helical structure section 11, the insertion section 10 is smoothly inserted to reliably propel the intraluminal duct. be able to. As a result, the insertion portion 10 can be reliably inserted without requiring complicated operations and skill from the operator.
[0037] なお、本実施形態は、上述した構成に限定されるものではな!/、。  Note that this embodiment is not limited to the configuration described above! /.
第 1に、本実施形態においては、保持部 30が無限軌道部 33を有する構成としたが 、これに限られるものではなぐ図 8— 1及び図 8— 2に示すように、複数の回転部材( 抵抗部) 81を有する構成としてもよい。この場合、抵抗部としての回転部材 81は、挿 入部 10の長手方向に回転自在に構成されて、前記長手方向に沿って複数配置され る。この回転部材 81の表面には、凹部 43が、回転部材 81の周方向に沿って複数設 けられている。また、該回転部材 81の幅は、保持ベルト 42と同様に挿入部 10の外径 より大きぐ回転部材 81の両端近傍に突起 44が複数設けられている。そして、この突 起 44と対向するように、ラッチ 34が、外筒 31の内部に固定されている。 First, in the present embodiment, the holding portion 30 has the endless track portion 33. However, the present invention is not limited to this. As shown in FIGS. 8-1 and 8-1, a plurality of rotating members are used. ( It is good also as a structure which has the resistance part) 81. In this case, the rotation member 81 as the resistance portion is configured to be rotatable in the longitudinal direction of the insertion portion 10, and a plurality of rotation members 81 are arranged along the longitudinal direction. A plurality of recesses 43 are provided on the surface of the rotating member 81 along the circumferential direction of the rotating member 81. Further, a plurality of projections 44 are provided in the vicinity of both ends of the rotating member 81 whose width is larger than the outer diameter of the insertion portion 10 as in the holding belt 42. The latch 34 is fixed inside the outer cylinder 31 so as to face the protrusion 44.
[0038] このように構成することで、第 1の実施形態における無限軌道部 33と同様に、挿入 部 10の推進、後退を妨げることなぐ挿入部 10に対して回転動力を伝達することが 可能になる。そして、挿入部 10に伝達された回転動力により体腔内管路において螺 旋状構造部 11が腸壁と接触しながら回転することで、挿入部 10が推進または後退 できる。また、この回転部材 81の幅を挿入部 10の外径より大きくすることで突起 44と ラッチ 34を無限軌道部 33と同様に取り付けることが可能になり、実施例 1と同様の効 果を得ることができる。 [0038] With this configuration, as with the endless track portion 33 in the first embodiment, it is possible to transmit rotational power to the insertion portion 10 without hindering the propulsion and retraction of the insertion portion 10. become. The insertion portion 10 can be propelled or retracted by rotating the spiral structure portion 11 in contact with the intestinal wall in the body cavity duct by the rotational power transmitted to the insertion portion 10. Further, by making the width of the rotating member 81 larger than the outer diameter of the insertion portion 10, the projection 44 and the latch 34 can be attached in the same manner as the endless track portion 33, and the same effect as in the first embodiment is obtained. be able to.
[0039] 第 2に、本実施形態においては、ラッチ 34の破壊によって回転方向規制解除を行 つていたが、図 9—1に示すように、モータ 21にかかる負荷を検知してラッチ 34を移 動するよう〖こしてもよい。この場合、モータ 21にかかる負荷を検出する負荷検出部 83 1S モータ 21とプーリ 22の間に設けられるとともに、図 9— 2に示すように、ラッチ 34 を突起 44に対して近接離間する方向に移動させるァクチユエータ 82が、外筒 31とラ ツチ 34の間に設けられる。ここで、負荷検出部 83は、挿入部 10が大腸深部まで推進 することでモータ 21にかかる負荷が閾値を超えた時に、回転方向規制が不要な大腸 深部まで挿入されたと判断し、ァクチユエータ 82の駆動を開始させる。ァクチユエ一 タ 82は、ラッチ 34を突起 44と接触する位置力も離して、回転方向規制を解除する。 これによると、回転方向規制を解除する際に、ラッチ 34を破壊しないので、保持部 30 を繰り返し使用することが可能になる。  [0039] Secondly, in this embodiment, the rotation direction restriction is released by breaking the latch 34. However, as shown in Fig. 9-1, the load applied to the motor 21 is detected and the latch 34 is released. You may stumble to move. In this case, a load detector 83 for detecting the load applied to the motor 21 1S is provided between the motor 21 and the pulley 22, and the latch 34 is moved closer to and away from the protrusion 44 as shown in FIG. 9-2. An actuator 82 to be moved is provided between the outer cylinder 31 and the latch 34. Here, when the load applied to the motor 21 exceeds the threshold value by the insertion unit 10 propelling to the deep part of the large intestine, the load detection unit 83 determines that the deep part of the large intestine where rotation direction regulation is unnecessary is inserted, and the actuator 82 Start driving. The actuator 82 releases the positional force that makes the latch 34 come into contact with the projection 44 and releases the rotation direction restriction. According to this, since the latch 34 is not broken when the rotational direction restriction is released, the holding portion 30 can be used repeatedly.
[0040] 第 3に、本実施形態においては、回転方向を規制する手段としてのラッチ 34と突起 44を設けた力 この回転方向規制手段を省略してもよい。この場合、図 10に示すよう に、保持部 30が、保持部 30の中心軸と同軸な一本の揷通管 32cを有し、該揷通管 3 2cの内周部が、その長手方向に沿って多数の溝 84を有するようにしてもよい。また、 図 11— 1及び図 11— 2に示すように、揷通管 32cの内周部が多数の繊毛 85で覆わ れるようにしてもよい。ここで、繊毛 85は、その向きが揷通管 32cの長手方向となるよ うに、繊毛 85の両端が揷通管 32cの内周部に固定される。 [0040] Thirdly, in the present embodiment, the force provided with the latch 34 and the projection 44 as means for restricting the rotation direction may be omitted. In this case, as shown in FIG. 10, the holding part 30 has a single through pipe 32c coaxial with the central axis of the holding part 30, and the inner peripheral part of the through pipe 32c is in its longitudinal direction. A large number of grooves 84 may be provided along the. Also, As shown in FIG. 11-1 and FIG. 11-2, the inner peripheral portion of the piercing tube 32c may be covered with a large number of cilia 85. Here, both ends of the cilia 85 are fixed to the inner peripheral portion of the penetration tube 32c so that the direction of the cilia 85 is the longitudinal direction of the penetration tube 32c.
[0041] このように構成することで、保持部 30が回転したとき、揷通管 32cの内部に設けられ た溝 84または繊毛 85により、揷通管 32cに挿通された挿入部 10の周方向に抵抗が 発生する。そして、この抵抗により、挿入部 10の推進或いは後退を妨げずに、保持 部 30の回転動作が挿入部 10に伝達される。挿入部 10が回転すると、螺旋状構造部 11が腸壁と接触しながら回転するので、挿入部 10は推進、後退できる。このとき、挿 通管 32cの内部にカ卩ェされた溝 84または繊毛 85は、挿入部 10の長手方向と略平 行なので、挿入部 10の進退方向に抵抗を発生しない。このように、保持部 30の構成 を簡単にすることで、コストを低減することができる。  [0041] With this configuration, when the holding portion 30 rotates, the circumferential direction of the insertion portion 10 inserted into the piercing tube 32c by the groove 84 or the cilia 85 provided inside the piercing tube 32c. Resistance is generated. Then, by this resistance, the rotation operation of the holding portion 30 is transmitted to the insertion portion 10 without preventing the insertion portion 10 from being propelled or retracted. When the insertion portion 10 rotates, the helical structure portion 11 rotates while contacting the intestinal wall, so that the insertion portion 10 can be pushed and retracted. At this time, the groove 84 or cilia 85 cast inside the insertion tube 32c is substantially parallel to the longitudinal direction of the insertion portion 10, so that no resistance is generated in the forward / backward direction of the insertion portion 10. Thus, the cost can be reduced by simplifying the configuration of the holding unit 30.
[0042] 第 4に、磁力を用いて挿入部 10に保持部 30の回転動作を伝達してもよい。この場 合、図 12—1及び図 12— 2に示すように、挿入部 10が中空構造を有し、その中空構 造の内部に磁石 86が配置される。この磁石 86の形状は、挿入部 10の内径と同じ長 さの対角線を有する正方形を断面とする直方体であり、挿入部 10の径方向に磁ィ匕さ れている。また、保持部 30は、外筒 31に代えて、円管形状の管状磁石 87を有してい る。ここで、挿入部 10に設けられた磁石 86と、保持部 30が有する管状磁石 87とが、 互いに反対の磁極を対向させて引き付け合う状態となっている。また、挿入部 10が、 管状磁石 87の内周部に挿通された状態で、進退方向に円滑に移動できるようにする ため、挿入部 10の表面には摩擦が少なくなるような表面処理が施されている。  [0042] Fourth, the rotation operation of the holding unit 30 may be transmitted to the insertion unit 10 using magnetic force. In this case, as shown in FIGS. 12-1 and 12-2, the insertion portion 10 has a hollow structure, and the magnet 86 is disposed inside the hollow structure. The shape of the magnet 86 is a rectangular parallelepiped having a square cross section having the same length as the inner diameter of the insertion portion 10, and is magnetized in the radial direction of the insertion portion 10. Further, the holding unit 30 has a circular tube-shaped tubular magnet 87 instead of the outer cylinder 31. Here, the magnet 86 provided in the insertion portion 10 and the tubular magnet 87 included in the holding portion 30 are in a state of attracting each other with their opposite magnetic poles facing each other. Further, in order to allow the insertion portion 10 to smoothly move in the forward and backward direction while being inserted through the inner peripheral portion of the tubular magnet 87, the surface of the insertion portion 10 is subjected to a surface treatment that reduces friction. Has been.
[0043] この構成によれば、モータ 21の回転が管状磁石 87に伝達することで、管状磁石 87 の回転に追従して、磁石 86を有する挿入部 10が回転する。このとき、挿入部 10に設 けられた螺旋状構造部 11が回転しながら体腔内管路内壁に接触するので、挿入部 10は体腔内管路を推進する。このようにして、回転駆動部 20が、保持部 30が有する 磁力を用いて挿入部 10を回転させるので、挿入部 10が円滑に推進、後退動作する ことができる。また、管状磁石 87と挿入部 10内の磁石 86とは互いに引き付け合うの で、磁石 86が保持部 30に対して移動することはない。  According to this configuration, the rotation of the motor 21 is transmitted to the tubular magnet 87, so that the insertion portion 10 having the magnet 86 rotates following the rotation of the tubular magnet 87. At this time, the helical structure portion 11 provided in the insertion portion 10 contacts the inner wall of the body cavity while rotating, so that the insertion portion 10 propels the body lumen. In this way, the rotation drive unit 20 rotates the insertion unit 10 using the magnetic force of the holding unit 30, so that the insertion unit 10 can be smoothly promoted and retracted. Further, since the tubular magnet 87 and the magnet 86 in the insertion portion 10 attract each other, the magnet 86 does not move relative to the holding portion 30.
[0044] 〔第 2の実施形態〕 次に本発明の第 2の実施形態に係る医療器具挿入装置システム 100について、図 13及び図 14を用いて説明する。なお、第 1の実施形態と同一の構成要素には、同 一の符号を付して説明を省略する。 [Second Embodiment] Next, a medical instrument insertion device system 100 according to a second embodiment of the present invention will be described using FIG. 13 and FIG. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0045] 本実施形態の医療器具挿入装置システム 100は、中空構造を有する挿入部 110を 備える点で、第 1の実施形態と異なる。すなわち、図 13に示すように、挿入部 110は 、可撓性を有するチューブであり、該チューブの内部に各種機能部材を揷通できるよ うになつている。また、図 14に示すように、医療器具挿入装置システム 100は、回転 駆動部 20としての中空軸モータ 120と、保持手段としての管状磁石 130とを有してい る。 [0045] The medical instrument insertion device system 100 of the present embodiment is different from the first embodiment in that it includes an insertion portion 110 having a hollow structure. That is, as shown in FIG. 13, the insertion portion 110 is a flexible tube, and various functional members can be passed through the tube. Further, as shown in FIG. 14, the medical instrument insertion apparatus system 100 includes a hollow shaft motor 120 as the rotation drive unit 20 and a tubular magnet 130 as a holding means.
[0046] ここで、挿入部 110は、湾曲が可能となるように、径方向に極を有する薄いリング状 磁石 111を多数連結して構成されている。また、挿入部 110の表面には、螺旋状構 造部 112が各々のリング状磁石 111に固定されるようにして設けられて!/ヽる。管状磁 石 130は、内部に挿入部 110を揷通できるよう、挿入部 110の外径より大きい半径を 有する円筒状の管路が設けられ、径方向に着磁された円管状の磁石である。また、 中空軸モータ 120は、管状磁石 130の周囲を囲む中空軸 131に固定するように設け られた円管形状のモータであり、管状磁石 130を回転駆動する。  Here, the insertion portion 110 is configured by connecting a large number of thin ring-shaped magnets 111 having poles in the radial direction so that the insertion portion 110 can be bent. Further, on the surface of the insertion portion 110, a spiral structure portion 112 is provided so as to be fixed to each ring-shaped magnet 111. The tubular magnet 130 is a cylindrical magnet that is provided with a cylindrical duct having a radius larger than the outer diameter of the insertion portion 110 and is radially magnetized so that the insertion portion 110 can be passed through the inside. . The hollow shaft motor 120 is a circular tube-shaped motor provided so as to be fixed to the hollow shaft 131 surrounding the tubular magnet 130, and rotationally drives the tubular magnet 130.
[0047] ここで、医療器具として体腔内管路を観察するカプセル型医療装置 140に対して 体腔内管路への挿入を補助する場合には、図 13に示すように、チューブ状の挿入 部 110の内部に、カプセル型医療装置 140に接続された柔軟なケーブル 141が挿 通される。カプセル型医療装置 140は、先端が透明な半球状部材を有し、カプセル 型医療装置 140の内部に該半球状部材に対向して、体腔内を照明する LED等の照 明装置と、体腔内を撮像する CCD等の撮像素子が内蔵されている。これらの電源は 、ケーブル 141内に設けられた電力供給線により供給される。また、撮像された画像 の画像信号は、ケーブル 141内の信号線を介して、体外に設置された画像処理装 置 142〖こ送られ、処理された画像がモニタ 143に表示される。  [0047] Here, when the capsule medical device 140 for observing the intraluminal duct as a medical instrument is assisted in insertion into the intraluminal duct, as shown in FIG. A flexible cable 141 connected to the capsule medical device 140 is inserted into 110. The capsule medical device 140 has a hemispherical member with a transparent tip, an LED or other illumination device that illuminates the inside of the body cavity facing the hemispherical member inside the capsule medical device 140, and the body cavity An image sensor such as a CCD is built-in. These power sources are supplied by a power supply line provided in the cable 141. In addition, the image signal of the captured image is sent to the image processing apparatus 142 installed outside the body via the signal line in the cable 141, and the processed image is displayed on the monitor 143.
[0048] このカプセル型医療装置 140及びケーブル 141は、揷入部 110に対してなんら固 定されて 、な 、ため、挿入部 110が回転してもカプセル型医療装置 140が回転した り、ケーブル 141が捻れたりすることはない。このように、カプセル型医療装置 140を 回転させることなぐ挿入部 110のみを回転させることで、カプセル型医療装置 140を 体腔内管路に円滑に推進させるようになつている。 [0048] The capsule medical device 140 and the cable 141 are not fixed at all with respect to the insertion portion 110. Therefore, even if the insertion portion 110 rotates, the capsule medical device 140 rotates or the cable 141 Will not twist. In this way, the capsule medical device 140 By rotating only the insertion portion 110 that does not rotate, the capsule medical device 140 is smoothly propelled into the body lumen.
[0049] このように構成することにより、カプセル型医療装置 140を体腔内管路に挿入する 場合、操作者は、管状磁石 130が設けられた中空軸モータ 120を、被験者の挿入口 としての肛門 61付近に設置し、挿入部 110を管状磁石 130の内部に挿通させる。次 に、操作者は、前記挿入部 110の先端部付近を大腸内に挿入し、中空軸モータ 120 を駆動する。そして、中空軸モータ 120が回転すると、その内部に固定された管状磁 石 130が回転し、この管状磁石 130が生成する磁界の回転に追従して、リング状磁 石 111を有する挿入部 110が回転する。挿入部 110の回転により、挿入部 110の表 面に設けられた螺旋状構造部 112が体腔内管路内壁と接触しながら回転するので、 挿入部 110に推進力が発生する。これにより、カプセル型医療装置 140が、体腔管 路の深部に押し込まれる。このとき、カプセル型医療装置 140は回転動作しないので 、撮像素子を用いて体腔内を観察する場合において、撮像した画像は回転しない。  [0049] With this configuration, when the capsule medical device 140 is inserted into the intraluminal duct, the operator uses the hollow shaft motor 120 provided with the tubular magnet 130 as an anus as an insertion port of the subject. It is installed in the vicinity of 61 and the insertion part 110 is inserted through the inside of the tubular magnet 130. Next, the operator inserts the vicinity of the distal end portion of the insertion portion 110 into the large intestine, and drives the hollow shaft motor 120. Then, when the hollow shaft motor 120 rotates, the tubular magnet 130 fixed therein rotates, and the insertion portion 110 having the ring-shaped magnet 111 follows the rotation of the magnetic field generated by the tubular magnet 130. Rotate. Due to the rotation of the insertion part 110, the helical structure part 112 provided on the surface of the insertion part 110 rotates while contacting the inner wall of the body cavity, so that a propulsive force is generated in the insertion part 110. As a result, the capsule medical device 140 is pushed into the deep part of the body cavity duct. At this time, since the capsule medical device 140 does not rotate, the captured image does not rotate when the inside of the body cavity is observed using the image sensor.
[0050] 以上説明したように、本実施形態に係る医療器具挿入装置システム 100によれば、 挿入部 110の内部にカプセル型医療装置 140等の医療装置を挿通した状態で、挿 入部 110を体腔内管路に挿入することができる。また、第 1の実施形態と同様の理由 から、挿入部 110が安定した状態で体腔内管路に挿入されるため、螺旋状構造部 1 12が回転しながら体腔内管路内壁と接触することにより、挿入部 110が体腔内管路 を確実に推進することができる。この結果、挿入部 110に挿通された医療装置を確実 に体腔内管路に挿入し、推進させることができる。また、保持手段としての管状磁石 1 30を中空軸モータ 120で直接回転させるので、動力伝達の効率が向上する。その他 の効果は、第 1の実施形態と同様である。  [0050] As described above, according to the medical instrument insertion device system 100 according to the present embodiment, the insertion unit 110 is inserted into the body cavity while the medical device such as the capsule medical device 140 is inserted into the insertion unit 110. Can be inserted into the inner conduit. Further, for the same reason as in the first embodiment, since the insertion portion 110 is inserted into the body cavity conduit in a stable state, the spiral structure portion 112 is in contact with the inner wall of the body cavity conduit while rotating. Thus, the insertion unit 110 can reliably push the intraluminal duct. As a result, the medical device inserted through the insertion portion 110 can be reliably inserted into the body cavity duct and propelled. Further, since the tubular magnet 130 as the holding means is directly rotated by the hollow shaft motor 120, the efficiency of power transmission is improved. Other effects are the same as those of the first embodiment.
[0051] なお、本実施形態は、上述した構成に限定されるものではな!/、。  [0051] It should be noted that this embodiment is not limited to the configuration described above!
第 1に、挿入部 110をリング状磁石 111ではなく磁性体で構成してもよい。すなわち 、挿入部 110に用いる材料を磁石に限定しないので、より挿入部 110として適した材 料を選択することができる。  First, the insertion portion 110 may be made of a magnetic material instead of the ring-shaped magnet 111. That is, since the material used for the insertion portion 110 is not limited to a magnet, a material more suitable for the insertion portion 110 can be selected.
[0052] 第 2に、挿入部 110全体を磁石で構成するのではなぐ可撓性を有する磁石を挿入 部 110の内部に設けられることとしてもよい。例えば、図 15に示すように、紐状の軟性 磁石 113力 チューブ状の挿入部 110に円周方向に複数並べて埋め込んでもよ 、。 ここで、複数の軟性磁石 113の磁極の方向は、それぞれ挿入部 110の中心線を向く ように設けられている。また、隣接する軟性磁石 113は互いに逆向きの磁ィ匕方向を有 するように配列されている。この場合の効果は、本実施の形態と同様である。 Secondly, a flexible magnet that does not constitute the entire insertion portion 110 with a magnet may be provided inside the insertion portion 110. For example, as shown in FIG. Magnet 113 force A plurality of magnets 113 may be embedded in the tubular insertion portion 110 in the circumferential direction. Here, the directions of the magnetic poles of the plurality of soft magnets 113 are provided so as to face the center line of the insertion portion 110, respectively. Adjacent soft magnets 113 are arranged so as to have opposite magnetic directions. The effect in this case is the same as that of the present embodiment.
[0053] 第 3に、前記挿入部 110内に複数の磁石を埋め込んでもよい。すなわち、図 16に 示すように、前述した紐状の軟性磁石 113が挿入部 110内に多数埋め込まれ、回転 駆動部 20が、中空軸モータ 120に代えて磁力発生部 121を有するようになつている 。該磁力発生部 121は、径方向に磁力を発生させるコイル 122を、円周方向に多数 配置している。また、磁力発生部 121内の隣接するコイル 122が互いに逆向きに磁 力を発生するように、複数のコイル 122に流れる電流が制御されるようになって 、る。  [0053] Third, a plurality of magnets may be embedded in the insertion portion 110. That is, as shown in FIG. 16, a large number of the aforementioned string-like soft magnets 113 are embedded in the insertion portion 110, and the rotation drive portion 20 has a magnetic force generation portion 121 instead of the hollow shaft motor 120. Yes. In the magnetic force generator 121, a number of coils 122 that generate a magnetic force in the radial direction are arranged in the circumferential direction. In addition, the currents flowing through the plurality of coils 122 are controlled so that adjacent coils 122 in the magnetic force generator 121 generate magnetic forces in opposite directions.
[0054] この構成によれば、コイル 122を流れる電流の向きを反転させる制御を繰り返すこと により、複数のコイル 122それぞれの磁力の向きは順々に切り替えられる。このとき、 挿入部 110は、その内部に設けられた軟性磁石 113がコイル 122の磁力の変化を受 けることによって回転する。挿入部 110の回転により、挿入部 110の表面に設けられ た螺旋状構造部 112が体腔内管路内壁と接触しながら回転するので、挿入部 110 に推進力が発生し、カプセル型医療装置 140が体腔内管路の深部方向へ押し出さ れる。このように構成することで、機械的に駆動する部品を減らせるので、各部品の 磨耗や疲労による故障の危険性を低減できる。  [0054] According to this configuration, the direction of the magnetic force of each of the plurality of coils 122 is sequentially switched by repeating the control to reverse the direction of the current flowing through the coil 122. At this time, the insertion portion 110 rotates when the soft magnet 113 provided therein receives a change in the magnetic force of the coil 122. Due to the rotation of the insertion portion 110, the helical structure portion 112 provided on the surface of the insertion portion 110 rotates while contacting the inner wall of the body cavity, so that a propulsive force is generated in the insertion portion 110, and the capsule medical device 140 Is pushed toward the deep part of the body lumen. With this configuration, the number of mechanically driven parts can be reduced, so that the risk of failure due to wear or fatigue of each part can be reduced.
[0055] 〔第 3の実施形態〕  [Third Embodiment]
次に、本発明の第 3の実施形態に係る医療器具挿入装置システム 150について、 図 17ないし図 19を用いて説明する。なお第 1、または第 2の実施形態と同一の構成 要素には同一の符号を付して説明を省略する。  Next, a medical instrument insertion device system 150 according to a third embodiment of the present invention will be described with reference to FIGS. Note that the same components as those in the first or second embodiment are denoted by the same reference numerals and description thereof is omitted.
[0056] 本実施形態の医療器具挿入装置システム 150は、回転駆動部 20が高圧流体を用 いて挿入部を回転させる点で、第 1及び第 2の実施形態と異なる。すなわち、図 17に 示すように、医療器具挿入装置システム 150は、回転駆動部としての高圧空気源 15 1と、前記高圧空気源 151に接続された伝達部 152とを有している。ここで、高圧空 気源 151は、挿入部 160を回転させるための高圧空気を発生させて、伝達部 152〖こ 送り込む。また、伝達部 152は、該高圧空気源 151から送り込まれた高圧空気を挿 入部 160に対して吹き付け、挿入部 160を回転させる機構を有している。また、本実 施形態においては、挿入部 160は中空構造とし、その内径は内視鏡 71を揷通可能 な大きさとなっている。 [0056] The medical instrument insertion device system 150 of the present embodiment is different from the first and second embodiments in that the rotation driving unit 20 rotates the insertion unit using a high-pressure fluid. That is, as shown in FIG. 17, the medical instrument insertion device system 150 includes a high-pressure air source 151 as a rotation drive unit and a transmission unit 152 connected to the high-pressure air source 151. Here, the high-pressure air source 151 generates high-pressure air for rotating the insertion section 160 and feeds it through the transmission section 152. The transmission unit 152 inserts high-pressure air sent from the high-pressure air source 151. A mechanism for spraying the insertion portion 160 and rotating the insertion portion 160 is provided. In the present embodiment, the insertion portion 160 has a hollow structure, and the inner diameter thereof is large enough to allow the endoscope 71 to pass through.
[0057] 図 18— 1及び図 18— 2に示すように、伝達部 152の中央部には、保持手段として の U字溝 153が彫られている。この U字溝 153は、挿入部 160を摺動可能に設置で きるような幅を有し、挿入部 160との摩擦が最小限となるように滑らかな表面を有して いる。また、 U字溝 153の側壁には、挿入部 160を U字溝に設置した時、挿入部 160 の表面に設けられた螺旋状構造部 11の最も高い位置とほぼ等しい高さに、吹出口 1 54が複数空けられている。また、伝達部 152の側壁には、高圧空気源 151と接続さ れる接続口 155が設けられている。この接続口 155と複数の吹出口 154とは、伝達 部 152の内部に配置された高圧管路 156により連通されている。つまり、接続口 155 に接続された高圧管路 156は、伝達部 152の内部で複数に分岐し、複数の吹出口 1 54それぞれに接続されるようになっている。また、吹出口 154の近傍では、高圧管路 156が U字溝 153の側壁に対して垂直に配置されることにより、高圧空気が、 U字溝 153の側壁力も垂直に吹き出され、螺旋状構造部 11に対して挿入部 160の周方向 に吹き付けられるようになって 、る。  As shown in FIGS. 18-1 and 18-2, a U-shaped groove 153 as a holding means is carved in the center of the transmission portion 152. The U-shaped groove 153 has a width that allows the insertion portion 160 to be slidably installed, and has a smooth surface so that friction with the insertion portion 160 is minimized. Further, on the side wall of the U-shaped groove 153, when the insertion portion 160 is installed in the U-shaped groove, the outlet is set to a height substantially equal to the highest position of the spiral structure portion 11 provided on the surface of the insertion portion 160. 1 54 are open. Further, a connection port 155 connected to the high-pressure air source 151 is provided on the side wall of the transmission unit 152. The connection port 155 and the plurality of air outlets 154 are communicated with each other by a high-pressure pipe 156 arranged inside the transmission unit 152. That is, the high-pressure line 156 connected to the connection port 155 branches into a plurality of parts inside the transmission unit 152 and is connected to each of the plurality of air outlets 154. Further, in the vicinity of the outlet 154, the high-pressure pipe 156 is arranged perpendicular to the side wall of the U-shaped groove 153, so that the high-pressure air is blown out perpendicularly to the side wall force of the U-shaped groove 153, and the spiral structure The part 11 can be sprayed in the circumferential direction of the insertion part 160.
[0058] このように構成することにより、操作者は、挿入口としての肛門 61近傍に高圧空気 源 151及び伝達部 152を設置し、伝達部 152に設けられた U字溝 153に揷入部 160 を配置し、高圧空気源 151を駆動して高圧空気を伝達部 152に供給する。このとき、 伝達部 152の内部を通過した高圧空気は、複数設けられた吹出口 154を介して挿入 部 160の螺旋状構造部 11に吹き付けられる。螺旋状構造部 11は、この高圧空気の 力を挿入部 160の周方向に受けることにより、挿入部 160が回転する。そして、挿入 部 160の表面に設けられた螺旋状構造部 11が体腔内管路内壁と接触しながら回転 するので、挿入部 160に推進力が発生して、挿入部 160が体腔内管路を推進する。 ここで、伝達部 152の U字溝 153は低摩擦なので、挿入部 160の推進を妨げることは なぐ伝達部 152が挿入口の内部に引きずり込まれることもな!/、。  With this configuration, the operator installs the high-pressure air source 151 and the transmission unit 152 in the vicinity of the anus 61 as the insertion port, and inserts the insertion unit 160 into the U-shaped groove 153 provided in the transmission unit 152. The high-pressure air source 151 is driven to supply high-pressure air to the transmission unit 152. At this time, the high-pressure air that has passed through the inside of the transmission part 152 is blown to the spiral structure part 11 of the insertion part 160 through a plurality of outlets 154 provided. The helical structure 11 receives the force of the high-pressure air in the circumferential direction of the insertion part 160, so that the insertion part 160 rotates. Then, since the helical structure 11 provided on the surface of the insertion portion 160 rotates while contacting the inner wall of the body cavity duct, a propulsive force is generated in the insertion section 160, and the insertion section 160 passes through the body cavity duct. Promote. Here, since the U-shaped groove 153 of the transmission part 152 has low friction, the transmission part 152 that does not hinder the propulsion of the insertion part 160 is not dragged into the insertion port! /.
[0059] このようにして、中空構造を有する挿入部 160を体腔内管路の深部に到達させた 後、図 19に示すように、挿入部 160の内部に内視鏡 71を挿通させることで、通常の 内視鏡検査や鉗子 161を用いた内視鏡治療を行う。 In this way, after the insertion portion 160 having a hollow structure has reached the deep part of the body cavity duct, the endoscope 71 is inserted into the insertion portion 160 as shown in FIG. Normal Perform endoscopy and endoscopic treatment using forceps 161.
[0060] 以上説明したように、本実施形態に係る医療器具挿入装置システム 150によれば、 挿入部 160の回転を高圧空気により行うので、簡易な構造で挿入部 160を回転させ て、体腔内管路を推進させることが可能になる。また、伝達部 152は、被験者の挿入 口付近で、被験者に対して常に一定の距離を保った状態で、挿入部 160に対して回 転駆動を行うことができる。 [0060] As described above, according to the medical instrument insertion device system 150 according to the present embodiment, the insertion unit 160 is rotated by high-pressure air. It becomes possible to propel the pipeline. Further, the transmission unit 152 can drive the insertion unit 160 to rotate in a state where a constant distance is always maintained with respect to the subject near the subject's insertion port.
[0061] なお、本実施形態は、上述した構成に限定されるものではな!/、。 Note that this embodiment is not limited to the configuration described above! /.
例えば、伝達部 152が挿入部 160に吹き付けて回転させる流体は、高圧空気に代 えて、高圧水流であってもよい。また、伝達部 152には、 U字溝 153に代えて、挿入 部 160を揷通可能な円筒状の管路が設けられるようにしてもよい。これらの場合の効 果は、本実施形態と同様である。  For example, the fluid that the transmission unit 152 sprays and rotates on the insertion unit 160 may be a high-pressure water flow instead of the high-pressure air. Further, instead of the U-shaped groove 153, the transmission portion 152 may be provided with a cylindrical pipe line through which the insertion portion 160 can be passed. The effects in these cases are the same as in this embodiment.
[0062] 〔第 4の実施形態〕 [Fourth Embodiment]
次に、本発明の第 4の実施形態に係る医療器具挿入装置システム 200について、 図 20ないし図 24を用いて説明する。なお第 1、または第 2の実施形態と同一の構成 要素には同一の符号を付して説明を省略する。  Next, a medical instrument insertion device system 200 according to a fourth embodiment of the present invention will be described with reference to FIGS. Note that the same components as those in the first or second embodiment are denoted by the same reference numerals and description thereof is omitted.
[0063] 本実施形態では、保持手段としての保持ベルトを能動的に回転させて挿入部 10を 直接回転させる回転制御部を備える点で、第 1の実施形態と異なる。 [0063] The present embodiment is different from the first embodiment in that a rotation control unit that actively rotates a holding belt as a holding unit to directly rotate the insertion unit 10 is provided.
すなわち、図 20に示すように、医療器具挿入装置システム 200は、挿入部 10と、被 験者の体外に設けられたベース部 210と、該ベース部 210に接続された回転伝達系 That is, as shown in FIG. 20, the medical instrument insertion device system 200 includes an insertion portion 10, a base portion 210 provided outside the body of the subject, and a rotation transmission system connected to the base portion 210.
220とを有している。この回転伝達系 220は、該揷入部 10を回転駆動する機能を有 している。 220. The rotation transmission system 220 has a function of rotating the insertion portion 10.
[0064] 図 21— 1及び図 21— 2に示すように、ベース部 210は、揷入部 10の進退方向に 2 対配置された支持部材 211、 212からなる。また、支持部材 211 (212)は、 2つの対 称な形状を有する支持部材 21 la (212a)、 211b (212b)に分かれている。この支持 部材 211a (212a)、 211b (212b)は、ヒンジ 216によって開閉可能に接続され、これ らが閉じたときに接触する側の端面の中央付近に、それぞれ挿入部 10を通す半円 柱状の切欠が設けられている。すなわち、支持部材 21 la (212a)と支持部材 211b ( 212b)を閉じたときに、支持部材 211 (212)は、その中央付近に挿入部 10を通すこ とができる略円形の穴が開くように構成されている。 [0064] As shown in FIGS. 21-1 and 21-2, the base portion 210 includes support members 211 and 212 arranged in two pairs in the forward and backward direction of the insertion portion 10. The support member 211 (212) is divided into two support members 21 la (212a) and 211b (212b) having two symmetrical shapes. The support members 211a (212a) and 211b (212b) are connected to each other by hinges 216 so that they can be opened and closed. A notch is provided. That is, when the support member 21 la (212a) and the support member 211b (212b) are closed, the support member 211 (212) passes the insertion portion 10 near the center thereof. It is configured so that a substantially circular hole can be opened.
[0065] なお、以降の本実施形態に係る説明では、支持部材 211a側に設けられた構成に は、符号の末尾に aを付し、支持部材 2 l ib側に設けられた構成には、符号の末尾に bを付し、 a及び bの両方を指す場合には、符号の末尾に iを付して説明する。  [0065] In the following description of the present embodiment, the configuration provided on the support member 211a side is denoted by a at the end of the reference numeral, and the configuration provided on the support member 2 ib side includes When b is added to the end of the code and both a and b are indicated, i is added to the end of the code.
[0066] 回転伝達系 220は、スライダ 230i (230a、 230b)と、ベル卜回転体 240i (240a、 2 40b)とを有している。ここで、スライダ 230iは、支持部材 21 liと支持部材 212iの間 に設けられ、挿入部 10の進退方向に移動する。また、ベルト回転体 240iは、スライダ 230iに接続され、挿入部 10を回転させる機能を有する。  The rotation transmission system 220 includes sliders 230i (230a, 230b) and bell rod rotating bodies 240i (240a, 240b). Here, the slider 230i is provided between the support member 21li and the support member 212i, and moves in the advancing / retreating direction of the insertion portion 10. Further, the belt rotating body 240i is connected to the slider 230i and has a function of rotating the insertion portion 10.
[0067] スライダ 230iは、支持部材 211iと支持部材 212iとの間に設けられたスライダ軸 23 li上に移動可能に設けられている。また、支持部材 211iとスライダ 230iの間のスライ ダ軸 231i上には、スライダ 230iに対して支持部材 212i方向に付勢するパネ 232iが 配置されている。また、スライダ 230iとスライダ軸 231iとの間には図示しないリニアェ ンコーダが内蔵されている。該リニアエンコーダは、スライダ 230iのスライダ軸 231i上 の移動距離を計測することにより、支持部材 211i (212i)とスライダ 230iとの位置間 隔を検出している。  [0067] The slider 230i is movably provided on a slider shaft 23 li provided between the support member 211i and the support member 212i. A panel 232i that urges the slider 230i in the direction of the support member 212i is disposed on the slider shaft 231i between the support member 211i and the slider 230i. Further, a linear encoder (not shown) is built in between the slider 230i and the slider shaft 231i. The linear encoder detects the distance between the support member 211i (212i) and the slider 230i by measuring the moving distance of the slider 230i on the slider shaft 231i.
[0068] また、スライダ 230iの揷入部 10と対向する側には、リニアァクチユエータ 233iが複 数取り付けられている。本実施形態では、一例として、リニアァクチユエータ 233iがス ライダ 230iに 4つ取り付けられた構成について説明する。このリニアァクチユエータ 2 33iは、ベルト回転体 240iを支持部材 211i、 212iに設けられた切欠に通された挿入 部 10に対して近接離間する方向に駆動する。このようにして、スライダ 230iは、スライ ダ軸 23 li上をリニアァクチユエータ 233iを介してベルト回転体 240iと一体的に移動 できるようになつている。  [0068] A plurality of linear actuators 233i are attached to the side of the slider 230i facing the insertion portion 10. In the present embodiment, as an example, a configuration in which four linear actuators 233i are attached to a slider 230i will be described. The linear actuator 233i drives the belt rotating body 240i in a direction approaching and separating from the insertion portion 10 passed through the notch provided in the support members 211i and 212i. In this way, the slider 230i can move integrally with the belt rotating body 240i via the linear actuator 233i on the slider shaft 23li.
[0069] ベルト回転体 240iは、回転駆動部を構成するベルト回転モータ 241iと、回転子 24 2iと、保持ベルト (保持手段、抵抗部) 243iとを有している。該ベルト回転モータ 241i は、前述した 4つのリニアァクチユエータ 233iのうち挿入部 10の進退方向に離間した 2つのリニアァクチユエータ 233iに、ベルト回転軸 244iを介して接続されている。残り の 2つのリニアァクチユエータ 233iには、回転子 242iがベルト回転軸 244iを介して 接続されている。保持手段及び抵抗部としての保持ベルト 243iは、環状で可撓性を 有する部材であり、該ベルト回転モータ 241i及び回転子 242iによって張られた状態 で設けられている。すなわち、ベノレト回転体 240a、 240bは、支持咅材 211iゝ 212iに 設けられた切欠に通された挿入部 10を挟み込むように配置されている。また、ベルト 回転体 240iの回転速度ゃスライダ軸 23 li上の位置は、同期するように制御されてい る。 [0069] The belt rotating body 240i includes a belt rotating motor 241i constituting a rotation driving unit, a rotor 24 2i, and a holding belt (holding means, resistance unit) 243i. The belt rotation motor 241i is connected to two linear actuators 233i separated from each other in the advancing / retreating direction of the insertion portion 10 among the four linear actuators 233i described above via a belt rotation shaft 244i. A rotor 242i is connected to the remaining two linear actuators 233i via a belt rotating shaft 244i. The holding belt 243i as the holding means and the resistance portion is annular and flexible. And is provided in a state of being stretched by the belt rotation motor 241i and the rotor 242i. That is, the benolet rotating bodies 240a and 240b are arranged so as to sandwich the insertion portion 10 passed through the notches provided in the support rods 211i and 212i. Further, the rotational speed of the belt rotating body 240i is controlled so as to be synchronized with the position on the slider shaft 23li.
[0070] このように構成することで、リニアァクチユエータ 233iにより、ベルト回転体 240iが 挿入部 10に対して近接する方向に移動した時には、保持ベルト 243iが挿入部 10に 対して適切な荷重で付勢するようになっている。この挿入部 10に付勢する荷重は、リ -ァァクチユエータ 233iの移動により調整される。また、ベルト回転体 240iが挿入部 10に対して対称に配置されるため、挿入部 10を好適な圧力で挟み込むことが可能 になっている。  [0070] With this configuration, when the belt rotating body 240i is moved in the direction approaching the insertion portion 10 by the linear actuator 233i, the holding belt 243i is appropriate for the insertion portion 10. It is energized with a load. The load urging the insertion portion 10 is adjusted by the movement of the reductor 233i. Further, since the belt rotating body 240i is arranged symmetrically with respect to the insertion portion 10, the insertion portion 10 can be sandwiched with a suitable pressure.
[0071] なお、リニアエンコーダ、ベルト回転モータ 241i、及びリニアァクチユエータ 233iへ 入出力する信号及び動力を伝達する入出力線 251は、スライダ 230iを経由して外部 に接続されている。  It should be noted that the input / output line 251 for transmitting and receiving signals and power to / from the linear encoder, the belt rotation motor 241i, and the linear actuator 233i are connected to the outside via the slider 230i.
[0072] 次に、このように構成された医療器具挿入装置システム 200の作用を図 22— 1〜 図 22— 4を用いて説明する。ここでは、医療器具挿入装置システム 200を大腸への 挿入に適用した例を示すが、その他の体腔管路への挿入に適用することも可能であ り、その作用は以下に説明する作用と同様である。なお、図 22— 1〜図 22— 4では、 挿入部 10の外表面に設けられて ヽる螺旋状構造部 11は省略してある。  Next, the operation of the medical instrument insertion device system 200 configured as described above will be described with reference to FIGS. 22-1 to 22-4. Here, an example is shown in which the medical instrument insertion device system 200 is applied to insertion into the large intestine, but it can also be applied to insertion into other body cavity ducts, and the operation is similar to the operation described below. It is. In FIG. 22-1 to FIG. 22-4, the spiral structure portion 11 provided on the outer surface of the insertion portion 10 is omitted.
[0073] まず、操作者は、挿入口としての肛門 61の近傍に、ベース部 210に設けられた回 転伝達系 220を、支持部材 211 則を被験者に向けるようにして配置する。そして、操 作者は、ヒンジ 216を軸に支持部材 21 liを開いて、支持部材 21 liに設けられた半円 柱状の切欠に挿入補助具を配置し、支持部材 21 liを閉じる。このとき、支持部材 21 li (212i)は、スライダ 230i及びベルト回転体 240i等の他の構成とともに一体的に開 閉する。次に、操作者は、回転駆動部としてのベルト回転モータ 241iを駆動して、保 持ベルト 243iを回転させる。  [0073] First, the operator arranges the rotation transmission system 220 provided in the base portion 210 in the vicinity of the anus 61 as an insertion port so that the rule of the support member 211 is directed to the subject. Then, the operator opens the support member 21 li with the hinge 216 as an axis, disposes the insertion assisting tool in a semicircular columnar notch provided in the support member 21 li, and closes the support member 21 li. At this time, the support member 21 li (212i) is integrally opened and closed together with other components such as the slider 230i and the belt rotating body 240i. Next, the operator drives a belt rotation motor 241i as a rotation driving unit to rotate the holding belt 243i.
[0074] 保持ベルト 243iが回転を始めたとき、図 22— 1に示すように、スライダ 230iは、ベ ルト回転体 240i及びリニアァクチユエータ 233iと一体となって、スライダ軸 231iの支 持部材 212i側に位置している。その上で、ベルト回転体 240a、 240bは,リニアァク チユエータ 233iにより挿入部 10に対して互いに対向するように荷重を付勢する。この 状態で、ベルト回転モータ 241iが回転して、保持ベルト 243iが揷入部 10の進退方 向と略垂直な方向に回転することにより、挿入部 10が図示していない螺旋状構造部 11ごと回転を行う。このとき、 2つのベルト回転体 240iの回転速度ゃスライダ軸 231i 上の位置は、同期するように制御されているので、挿入部 10の回転が円滑に行われ る。 [0074] When the holding belt 243i starts rotating, as shown in Fig. 22-1, the slider 230i is integrated with the belt rotating body 240i and the linear actuator 233i to support the slider shaft 231i. It is located on the holding member 212i side. In addition, the belt rotating bodies 240a and 240b urge the load so that they are opposed to the insertion portion 10 by the linear actuator 233i. In this state, the belt rotation motor 241i rotates and the holding belt 243i rotates in a direction substantially perpendicular to the advancing / retreating direction of the insertion portion 10, whereby the insertion portion 10 rotates together with the spiral structure portion 11 (not shown). I do. At this time, the rotational speeds of the two belt rotating bodies 240i and the positions on the slider shaft 231i are controlled so as to synchronize, so that the insertion portion 10 is smoothly rotated.
[0075] 挿入部 10が消化管等の体腔内管路で回転すると、挿入部 10の外表面に設けられ た螺旋状構造部 11が体腔内管路内壁と接触しながら回転するので、挿入部 10に推 進力が発生する。これにより、挿入部 10が体腔内管路を前進する。それに応じて、挿 入部 10に回転動力を伝達しているベルト回転体 240iには、挿入部 10とともに支持 部材 21 li側へ移動する力が作用するため、スライダ 230iがベルト回転体 240iと一 体に支持部材 21 li側へ移動する(図 22— 2)。このとき、パネ 232iがスライダ 230iに 対して支持部材 212i側へ付勢する力は、螺旋状構造部 11による挿入部 10の推進 力より弱く設定してあるため、スライダ 230iの移動の妨げにはならない。  [0075] When the insertion portion 10 rotates in a body cavity duct such as the digestive tract, the helical structure portion 11 provided on the outer surface of the insertion portion 10 rotates while contacting the inner wall of the body cavity. 10 has thrust. As a result, the insertion portion 10 advances in the body cavity duct. Accordingly, a force that moves to the support member 21 li side together with the insertion portion 10 acts on the belt rotation body 240i that transmits rotational power to the insertion portion 10, and therefore the slider 230i is integrated with the belt rotation body 240i. To the support member 21 li side (Fig. 22-2). At this time, the force that the panel 232i urges toward the support member 212i with respect to the slider 230i is set to be weaker than the propulsive force of the insertion portion 10 by the helical structure 11, so that the movement of the slider 230i is hindered. Don't be.
[0076] スライダ 230iの移動距離はリニアエンコーダにより計測されているため、スライダ 23 Oiが移動して支持部材 21 liに突き当たりそうになると、リニアエンコーダは、スライダ 230iが支持部材 21 liに近接していることを検出する。このとき、リニアァクチユエータ 233iが駆動して、ベルト回転体 240iを挿入部 10と接触しない高さまで引き上げ、ベ ルト回転体 240 挿入部 10への回転動力の伝達を一時的に停止する(図 22— 3 ) oこれにより、ベルト回転体 240iが挿入部 10の推進に追従しなくなるため、スライダ 230iが自由に移動できるようになる。そして、スライダ 230iは、パネ 232iの付勢力に よって、ベルト回転体 240iと一体的に支持部材 212i側へ戻される(図 22— 4)。  [0076] Since the movement distance of the slider 230i is measured by the linear encoder, when the slider 23 Oi moves and hits the support member 21 li, the linear encoder moves closer to the support member 21 li. Detect that At this time, the linear actuator 233i is driven to raise the belt rotating body 240i to a height at which it does not come into contact with the insertion portion 10, and temporarily stops transmission of rotational power to the belt rotating body 240 insertion portion 10 ( Fig. 22-3) o As a result, the belt rotating body 240i does not follow the propulsion of the insertion portion 10, and the slider 230i can move freely. Then, the slider 230i is returned to the support member 212i side integrally with the belt rotating body 240i by the biasing force of the panel 232i (FIG. 22-4).
[0077] スライダ 230iが支持部材 212iに突き当たつたことをリニアエンコーダが検出すると、 リニアァクチユエータ 233iが再度ベルト回転体 240iを揷入部 10に接触させ、ベルト 回転モータ 241iによる保持ベルト 243iの回転を再開させ、挿入部 10を回転させる。 以上の動作を繰り返すことにより、挿入部 10は、体腔内管路を円滑に推進し続ける。  [0077] When the linear encoder detects that the slider 230i has hit the support member 212i, the linear actuator 233i again brings the belt rotating body 240i into contact with the insertion portion 10, and the holding belt 243i by the belt rotating motor 241i. Rotate the insertion part 10 again. By repeating the above operation, the insertion unit 10 continues to smoothly promote the body cavity duct.
[0078] なお、リニアァクチユエータ 233iがベルト回転体 240iを昇降させる際に、ベルト回 転モータ 241iを停止させずに、常時保持ベルト 243iを回転させてもょ 、。 [0078] Note that when the linear actuator 233i raises or lowers the belt rotating body 240i, the belt rotation Rotate the holding belt 243i without stopping the motor 241i.
また、図 23に示すように、スライダ 230iの支持部材 212i側への移動は、パネの代 わりにスライダ 230iに設けられたリニアモータ 261iにより行うようにしてもよい。この場 合、挿入部 10へ回転動力を伝達しているとき(図 22— 1及び図 22— 2の状態)、リニ ァモータ 26 liは駆動を停止してスライダ 230iの移動を自由にし、スライダ 230iを支 持部材 212i側に戻すとき(図 22— 3及び図 22— 4の状態)のみ、リニアモータ 261i が駆動してスライダ 230iを移動させる。このように制御するように構成することで、上 述した作用と同等の作用が得られる。  Further, as shown in FIG. 23, the slider 230i may be moved toward the support member 212i by a linear motor 261i provided on the slider 230i instead of the panel. In this case, when the rotational power is transmitted to the insertion portion 10 (the state shown in FIGS. 22-1 and 22-2), the linear motor 26 li stops driving and frees the movement of the slider 230i. The linear motor 261i is driven to move the slider 230i only when the actuator is returned to the support member 212i side (the state shown in FIGS. 22-3 and 22-4). By configuring so as to control in this way, an operation equivalent to the above-described operation can be obtained.
[0079] 以上説明したように、本実施形態に係る医療器具挿入装置システム 200によれば、 挿入部 10の回転を保持ベルト 243iにより直接的かつ能動的に伝達するため、より確 実に挿入部 10を回転させることができる。また、スライダ 230iによりベルト回転体 240 iと挿入部 10とが一体的に挿入口側に前進することにより、挿入部 10の体腔内管路 の前進を妨げることがないため、挿入部 10の推進をより確実に行うことができる。  [0079] As described above, according to the medical instrument insertion device system 200 according to the present embodiment, the rotation of the insertion portion 10 is directly and actively transmitted by the holding belt 243i, so that the insertion portion 10 can be more reliably obtained. Can be rotated. Further, since the belt rotating body 240 i and the insertion portion 10 are integrally advanced toward the insertion port by the slider 230i, the advancement of the insertion portion 10 in the body cavity passage is not hindered. Can be performed more reliably.
[0080] なお、本実施形態は、上述した構成に限定されるものではな!/、。  It should be noted that this embodiment is not limited to the configuration described above! /.
第 1に、図 24に示すように、回転伝達系 220が、挿入部 10の進退方向に沿って複 数設けられるようにしてもよい。すなわち、本変形例では、支持部材 211i、 212iの中 間位置に、中間支持部材 213iが設けられ、支持部材 211iと中間支持部材 213iに 挟まれる空間、及び支持部材 212iと中間支持部材 213iに挟まれる空間に、それぞ れ上述したような回転伝達系 220が配置される。  First, as shown in FIG. 24, a plurality of rotation transmission systems 220 may be provided along the advancing / retreating direction of the insertion portion 10. In other words, in the present modification, the intermediate support member 213i is provided at an intermediate position between the support members 211i and 212i, the space between the support member 211i and the intermediate support member 213i, and the support member 212i and the intermediate support member 213i. The rotation transmission system 220 as described above is arranged in each space.
[0081] このように構成することにより、回転伝達系 220が 1組のときと異なり、複数の回転伝 達系 220を交互に駆動して、挿入部 10を回転させることが可能になる。つまり、一方 の回転伝達系 220のベルト回転体 240iが揷入部 10から離間しているとき、他方の回 転伝達系 220が挿入部 10に対して回転動力を伝達することができる。したがって、 挿入部 10を常時回転させることができるため、推進時間のロスがなくなり、効率的に 挿入部 10を推進させることが可能となる。その他の効果については第 4の実施形態 と同様である。  With this configuration, unlike the case of a single set of rotation transmission system 220, a plurality of rotation transmission systems 220 can be driven alternately to rotate the insertion portion 10. That is, when the belt rotating body 240i of one rotation transmission system 220 is separated from the insertion portion 10, the other rotation transmission system 220 can transmit rotational power to the insertion portion 10. Therefore, since the insertion part 10 can be always rotated, there is no loss of propulsion time, and the insertion part 10 can be efficiently promoted. Other effects are the same as in the fourth embodiment.
[0082] また第 2に、スライダ 230iの位置を検出するリニアエンコーダに代えて、スライダ 23 Oiの一端に接触を検知する図示しな 、接触センサを設けてもよ!ヽ。この接触センサ により、スライダ 230iが支持部材 21 liに接触したことが検出でき、この検出結果に反 応して、リニアァクチユエータ 233iを動作させることができる。接触センサは、圧力セ ンサ、光センサ、またはスィッチ等のセンサである力 スライダ 230iが支持部材 211i に近接したことを検出できるものであれば、特に方式を限定するものではない。また、 接触センサは、スライダ 230i—端へ搭載せずに、支持部材 211iのスライダ 230iと対 向する位置に搭載してもよい。これにより、リニアエンコーダのように常時スライダ 230 iの位置を検出せずに済むため、効率的である。 [0082] Second, instead of the linear encoder that detects the position of the slider 230i, a contact sensor (not shown) that detects contact at one end of the slider 23Oi may be provided. This contact sensor Thus, it can be detected that the slider 230i has come into contact with the support member 21li, and the linear actuator 233i can be operated in response to the detection result. The contact sensor is not particularly limited as long as it can detect that the force slider 230i, which is a sensor such as a pressure sensor, an optical sensor, or a switch, is close to the support member 211i. In addition, the contact sensor may be mounted at a position facing the slider 230i of the support member 211i without being mounted on the end of the slider 230i. This is efficient because the position of the slider 230 i does not always need to be detected unlike a linear encoder.
[0083] 〔第 5の実施形態〕  [Fifth Embodiment]
次に、本発明の第 5の実施形態に係る医療器具挿入装置システム 300について、 図 25を用いて説明する。なお第 1、または第 4の実施形態と同一の構成要素には同 一の符号を付して説明を省略する。  Next, a medical instrument insertion device system 300 according to a fifth embodiment of the present invention will be described using FIG. Note that the same components as those in the first or fourth embodiment are denoted by the same reference numerals and description thereof is omitted.
[0084] 本実施形態では、ベース部 210及び回転伝達系 220が、第 1の実施形態における 保持部 30の中に設けられる点で、第 4の実施形態と異なる。すなわち、医療器具挿 入装置システム 300は、第 1の実施形態と同様に、挿入部 10と、回転駆動部 20と、 保持部 (保持手段) 30とを有している。そして、該保持部 30が、ベース部 210と、回 転伝達系 220を有して 、る。  [0084] This embodiment is different from the fourth embodiment in that the base portion 210 and the rotation transmission system 220 are provided in the holding portion 30 in the first embodiment. That is, the medical instrument insertion device system 300 includes the insertion unit 10, the rotation drive unit 20, and the holding unit (holding unit) 30 as in the first embodiment. The holding part 30 has a base part 210 and a rotation transmission system 220.
[0085] この場合、図 25に示すように、回転伝達系 220がベルト回転体 240i及びベルト回 転モータ 241iに代えて、回転動作せずに挿入部 10に押圧する押圧部材 310iを有 している。また、ベース部 210の支持部材 21 liが外筒 31の一端に固定され、支持部 材 212iが外筒 31の他端に固定されている。このようにして、ベース部 210及び回転 伝達系 220全体が、保持部 30の外筒 31に固定されることにより、保持部 30とともに 回転するようになっている。  In this case, as shown in FIG. 25, the rotation transmission system 220 includes a pressing member 310i that presses against the insertion portion 10 without rotating, instead of the belt rotating body 240i and the belt rotating motor 241i. Yes. Further, the support member 21 li of the base portion 210 is fixed to one end of the outer cylinder 31, and the support member 212 i is fixed to the other end of the outer cylinder 31. In this way, the base portion 210 and the entire rotation transmission system 220 are fixed to the outer cylinder 31 of the holding portion 30 to rotate together with the holding portion 30.
[0086] このように構成することにより、押圧部材 310i力 それぞれリニアァクチユエータ 23 3iによって駆動され、挿入部 10を好適な圧力で挟み込む。そして、回転伝達系 220 全体が回転駆動部 20によって回転されることにより、押圧部材 310iを介して挿入部 10に回転動力が伝達される。このようにして、挿入部 10は回転しながら体腔内管路 を推進する。なお、このときの挿入部 10の推進方向に対するスライダ 230i及び押圧 部材 310i等の動作は、第 4の実施形態における動作と同様である。 [0087] 以上説明したように、本実施形態に係る医療器具挿入装置システム 300によれば、 回転駆動部 20が、被験者の挿入口付近で、被験者に対して一定の距離を保った状 態で挿入部 10の回転駆動を行うことができる。また、スライダ 230iにより押圧部材 31 Oiと挿入部 10とが一体的に挿入口側に前進することにより、挿入部 10の体腔内管路 の前進を妨げることがないため、挿入部 10の推進をより確実に行うことができる。さら に、回転駆動するモータ 21は、保持部 30の外部に配置されることから、出力の大き いものを使用することができるため、より確実に挿入部 10を回転、推進させることが可 能となる。 [0086] With this configuration, the force of the pressing member 310i is driven by the linear actuator 233i, and the insertion portion 10 is sandwiched with a suitable pressure. Then, the entire rotation transmission system 220 is rotated by the rotation drive unit 20, so that rotational power is transmitted to the insertion unit 10 via the pressing member 310 i. In this way, the insertion section 10 propels the body cavity duct while rotating. Note that the operations of the slider 230i, the pressing member 310i, and the like with respect to the propelling direction of the insertion portion 10 at this time are the same as the operations in the fourth embodiment. [0087] As described above, according to the medical instrument insertion device system 300 according to the present embodiment, the rotation drive unit 20 is in a state where a certain distance from the subject is maintained near the subject's insertion port. The insertion portion 10 can be rotationally driven. Further, since the pressing member 31 Oi and the insertion portion 10 are integrally advanced toward the insertion port by the slider 230i, the advancement of the insertion portion 10 in the body cavity duct is not hindered. This can be done more reliably. In addition, since the motor 21 that is driven to rotate is arranged outside the holding unit 30, a motor with a large output can be used, so that the insertion unit 10 can be rotated and propelled more reliably. It becomes.
[0088] なお、本発明は、以上述べた実施形態のみに限定されるものではなぐ発明の要 旨を逸脱しな 、範囲にぉ 、て上述した各実施形態を部分的に組み合わせる等して 種々変形実施が可能である。  It should be noted that the present invention is not limited to the above-described embodiments, and various modifications may be made by, for example, partially combining the above-described embodiments without departing from the scope of the invention. Variations are possible.
[0089] また、各実施形態に記載の螺旋状構造部 11 (112)は、上述した形態に限られるも のではない。  [0089] The helical structure 11 (112) described in each embodiment is not limited to the above-described form.
図 26— 1は、螺旋状構造部 11の変形例に係る医療器具挿入装置システムの全体 構成を示す図であり、図 26— 2は、図 26— 1に示す挿入部 10の一部を拡大した図で ある。本変形例においては、螺旋状構造部 11が外径可変手段を備えている。すなわ ち、螺旋状構造部 11は、図 26— 2に示すように、中空部を有し、伸縮性に富むゴム 等の弾性部材により形成された中空チューブ (外径可変手段) 12により構成されてい る。また、図 26— 1に示すように、中空チューブ 12の体外側の一端には、流体供給 部 15が設けられる。流体供給部 15は、例えば圧縮空気等の流体を中空チューブ 12 の内部に形成された中空部に供給する機能を有する。  FIG. 26-1 is a diagram showing an overall configuration of a medical instrument insertion device system according to a modification of the helical structure 11, and FIG. 26-2 is an enlarged view of a part of the insertion unit 10 shown in FIG. 26-1. It is a figure. In this modification, the helical structure 11 is provided with an outer diameter varying means. In other words, as shown in FIG. 26-2, the helical structure 11 is constituted by a hollow tube (outer diameter varying means) 12 having a hollow portion and formed by an elastic member such as rubber having excellent elasticity. It has been done. As shown in FIG. 26-1, a fluid supply unit 15 is provided at one end of the hollow tube 12 on the outside of the body. The fluid supply unit 15 has a function of supplying a fluid such as compressed air to a hollow portion formed inside the hollow tube 12.
[0090] 上記構成において、流体供給部 15を駆動して圧縮空気を中空チューブ 12内に送 つた状態にすると、図 27— 1に示すように、伸縮性に富む中空チューブ 12は、挿入 部 10の外径よりも突出した螺旋状突起を形成する。一方、流体供給部 15の駆動を 停止させて圧縮空気を送らない状態にすると、図 27— 2に示すように、中空チューブ 12は、それ自身の弾性力により縮むため、中空チューブ 12の高さは、挿入部 10の 表面と殆ど同じ高さとなる。また、中空チューブ 12に対して圧縮空気を送る量を多く することにより、図 27— 3に示すように、中空チューブ 12の外径が大きくなるため、該 螺旋状突起の高さは図 27— 1に示す状態に比べて高くなる。このようにして、中空チ ユーブ 12内に送られる圧縮空気の量を調整することにより、中空チューブ 12により形 成される螺旋状突起の高さが調整される。なお、流体供給部 15は、中空チューブ 12 の中空部力 流体を排出する機能を有するようにしても良 、。 [0090] In the above configuration, when the fluid supply unit 15 is driven and compressed air is sent into the hollow tube 12, the hollow tube 12 having high stretchability is inserted into the insertion unit 10 as shown in FIG. Helical protrusions that protrude from the outer diameter of the protrusions are formed. On the other hand, when the fluid supply unit 15 is stopped and the compressed air is not sent, the hollow tube 12 contracts due to its own elastic force as shown in FIG. 27-2. Is almost the same height as the surface of the insertion portion 10. Also, increasing the amount of compressed air sent to the hollow tube 12 increases the outer diameter of the hollow tube 12 as shown in FIG. The height of the spiral protrusion is higher than that shown in Figure 27-1. In this manner, the height of the spiral protrusion formed by the hollow tube 12 is adjusted by adjusting the amount of compressed air sent into the hollow tube 12. Note that the fluid supply unit 15 may have a function of discharging the hollow portion force fluid of the hollow tube 12.
[0091] 以上説明したように本変形例によれば、螺旋状構造部 11を形成する中空チューブ 12に対して圧縮空気等の流体の供給及び供給停止を制御することにより、挿入部 1 0の表面力 突出する螺旋状突起を形成する力否かを選択できるとともに、螺旋状突 起の高さの調整を行うことができる。したがって、挿入部 10を体腔内管路に挿入する 時には、図 27— 1或いは図 27— 3に示すように、中空チューブ 12により螺旋状突起 を形成することにより、体腔内管路における挿入部 10の推進力を向上させることがで きる。また、挿入部 10を体腔内管路カも抜去する時には、図 27— 2に示すように、挿 入部 10の表面を平坦面とすることにより、挿入部 10を円滑かつ短時間に抜去するこ とがでさる。 As described above, according to the present modification, the supply of fluid such as compressed air to the hollow tube 12 forming the spiral structure portion 11 and the supply stop thereof are controlled, so that the insertion portion 10 Surface force It is possible to select whether or not to form a projecting spiral projection, and to adjust the height of the spiral projection. Therefore, when the insertion portion 10 is inserted into the body cavity conduit, as shown in FIG. 27-1 or FIG. 27-3, the insertion portion 10 in the body cavity conduit is formed by forming a spiral protrusion with the hollow tube 12. Can improve the propulsive power. Further, when the insertion portion 10 is also removed from the body cavity duct, the insertion portion 10 can be removed smoothly and in a short time by making the surface of the insertion portion 10 flat as shown in FIG. 27-2. Togashi.
産業上の利用可能性  Industrial applicability
[0092] 以上のように、本発明にかかる医療器具挿入装置及び医療器具挿入装置システム は、大腸等の湾曲した体腔内に医療器具の挿入を行うのに有用であり、特に、内視 鏡やカプセル型医療装置の挿入に適して 、る。 [0092] As described above, the medical instrument insertion device and the medical instrument insertion device system according to the present invention are useful for inserting a medical instrument into a curved body cavity such as the large intestine. Suitable for insertion of capsule medical devices.

Claims

請求の範囲 The scope of the claims
[1] 細長の挿入部に設けられる螺旋状構造部と、  [1] a spiral structure provided in the elongated insertion portion;
前記挿入部を所定の軸方向に沿って進退可能に保持する保持手段と、 前記保持手段を回転させる回転駆動部と、  Holding means for holding the insertion portion so as to be movable back and forth along a predetermined axial direction; and a rotation driving portion for rotating the holding means;
を備えることを特徴とする医療器具挿入装置。  A medical instrument insertion device comprising:
[2] 前記保持手段は、抵抗部を有し、前記抵抗部は前記挿入部と接触する位置に設け られ、かつ、抵抗部は前記所定の軸に沿って移動可能であることを特徴とする請求 項 1に記載の医療器具挿入装置。  [2] The holding means includes a resistance portion, the resistance portion is provided at a position in contact with the insertion portion, and the resistance portion is movable along the predetermined axis. The medical instrument insertion device according to claim 1.
[3] 前記抵抗部は、前記所定の軸の方向と略垂直な方向に抵抗する力を生じることを 特徴とする請求項 2に記載の医療器具挿入装置。 3. The medical instrument insertion device according to claim 2, wherein the resistance portion generates a force that resists in a direction substantially perpendicular to the direction of the predetermined axis.
[4] 前記抵抗部は、前記所定の軸に沿う方向に断続的に凸部を有するベルトであるこ とを特徴とする請求項 2又は 3に記載の医療器具挿入装置。 [4] The medical instrument insertion device according to [2] or [3], wherein the resistance portion is a belt having convex portions intermittently in a direction along the predetermined axis.
[5] 前記抵抗部は、前記所定の軸方向と略垂直な方向に回転軸を有する回転部材で あることを特徴とする請求項 2又は 3に記載の医療器具挿入装置。 [5] The medical instrument insertion device according to [2] or [3], wherein the resistance portion is a rotating member having a rotating shaft in a direction substantially perpendicular to the predetermined axial direction.
[6] 前記保持手段は、磁界発生部を備えることを特徴とする請求項 1から 5の 、ずれか 一つに記載の医療器具挿入装置。 6. The medical instrument insertion device according to any one of claims 1 to 5, wherein the holding means includes a magnetic field generation unit.
[7] 前記医療器具挿入装置は、前記螺旋状構造部の外径を可変にする外径可変手段 を有することを特徴とする請求項 1から 5のいずれか一つに記載の医療器具挿入装 置。 [7] The medical instrument insertion device according to any one of [1] to [5], wherein the medical instrument insertion device includes an outer diameter varying unit that varies an outer diameter of the spiral structure portion. Place.
[8] 体腔内に挿入される細長の挿入部と、  [8] an elongated insertion portion to be inserted into the body cavity;
前記挿入部の外周に設けられた螺旋状構造部と、  A helical structure provided on the outer periphery of the insertion part;
前記挿入部を所定の軸方向に沿って進退可能に保持する保持手段と、 前記保持手段を回転させる回転駆動部と、  Holding means for holding the insertion portion so as to be movable back and forth along a predetermined axial direction; and a rotation driving portion for rotating the holding means;
前記挿入部に案内されて体腔内に挿入される医療器具と、  A medical instrument guided by the insertion portion and inserted into a body cavity;
を備えることを特徴とする医療器具挿入装置システム。  A medical instrument insertion device system comprising:
[9] 前記保持手段は、前記挿入部の長手方向に移動可能で、前記螺旋状構造部に対 して前記挿入部の長手方向と略垂直に抵抗する抵抗部を備えることを特徴とする請 求項 8に記載の医療器具挿入装置システム。 [9] The holding means includes a resistance portion that is movable in a longitudinal direction of the insertion portion and resists the helical structure portion substantially perpendicularly to the longitudinal direction of the insertion portion. 9. The medical instrument insertion device system according to claim 8.
[10] 前記保持手段は、磁界発生部を備え、 [10] The holding means includes a magnetic field generator,
前記挿入部は、磁石を備えることを特徴とする請求項 8に記載の医療器具挿入装 置システム。  The medical instrument insertion device system according to claim 8, wherein the insertion portion includes a magnet.
[11] 前記保持手段は、磁界発生部を備え、  [11] The holding means includes a magnetic field generator,
前記挿入部は、磁性体を備えることを特徴とする請求項 8に記載の医療器具挿入 装置システム。  9. The medical instrument insertion device system according to claim 8, wherein the insertion unit includes a magnetic body.
PCT/JP2006/306009 2005-03-28 2006-03-24 Medical instrument insertion device and medical instrument insertion device system WO2006104057A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005093190 2005-03-28
JP2005-093190 2005-03-28
JP2006-057375 2006-03-03
JP2006057375A JP2006305320A (en) 2005-03-28 2006-03-03 Medical instrument insertion device and medical instrument insertion device system

Publications (1)

Publication Number Publication Date
WO2006104057A1 true WO2006104057A1 (en) 2006-10-05

Family

ID=37053315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306009 WO2006104057A1 (en) 2005-03-28 2006-03-24 Medical instrument insertion device and medical instrument insertion device system

Country Status (2)

Country Link
JP (1) JP2006305320A (en)
WO (1) WO2006104057A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030632A1 (en) * 2009-09-08 2011-03-17 オリンパスメディカルシステムズ株式会社 Device for insertion into tube
CN103517663A (en) * 2012-03-29 2014-01-15 奥林巴斯医疗株式会社 In vivo introduction device, and endoscope having in vivo introduction device
JP2014503256A (en) * 2010-12-03 2014-02-13 オリンパス エンド テクノロジー アメリカ インコーポレイテッド Rotating advance catheter insertion system
CN103889299A (en) * 2011-07-27 2014-06-25 奥林巴斯内镜科技美国公司 Rotate-to-advance catheterization system
US9220395B2 (en) 1999-09-27 2015-12-29 James J. Frassica Rotate-to-advance catheterization system
CN115500777A (en) * 2022-11-24 2022-12-23 安徽库派医疗科技有限公司 Gastroscope tube fixing device for detection and diagnosis based on electromagnetic positioning system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275170A (en) * 2002-03-25 2003-09-30 Olympus Optical Co Ltd Encapsulated medical device
JP2003299612A (en) * 2002-04-08 2003-10-21 Olympus Optical Co Ltd Capsule endoscope system
JP2003325438A (en) * 2002-05-10 2003-11-18 Olympus Optical Co Ltd Capsule type medical treatment device
JP2004229922A (en) * 2003-01-30 2004-08-19 Olympus Corp Medical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275170A (en) * 2002-03-25 2003-09-30 Olympus Optical Co Ltd Encapsulated medical device
JP2003299612A (en) * 2002-04-08 2003-10-21 Olympus Optical Co Ltd Capsule endoscope system
JP2003325438A (en) * 2002-05-10 2003-11-18 Olympus Optical Co Ltd Capsule type medical treatment device
JP2004229922A (en) * 2003-01-30 2004-08-19 Olympus Corp Medical device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9220395B2 (en) 1999-09-27 2015-12-29 James J. Frassica Rotate-to-advance catheterization system
WO2011030632A1 (en) * 2009-09-08 2011-03-17 オリンパスメディカルシステムズ株式会社 Device for insertion into tube
US8491466B2 (en) 2009-09-08 2013-07-23 Olympus Medical Systems Corp. Intraductal insertion device
JP2014503256A (en) * 2010-12-03 2014-02-13 オリンパス エンド テクノロジー アメリカ インコーポレイテッド Rotating advance catheter insertion system
CN103889299A (en) * 2011-07-27 2014-06-25 奥林巴斯内镜科技美国公司 Rotate-to-advance catheterization system
CN103517663A (en) * 2012-03-29 2014-01-15 奥林巴斯医疗株式会社 In vivo introduction device, and endoscope having in vivo introduction device
CN115500777A (en) * 2022-11-24 2022-12-23 安徽库派医疗科技有限公司 Gastroscope tube fixing device for detection and diagnosis based on electromagnetic positioning system
CN115500777B (en) * 2022-11-24 2023-03-14 安徽库派医疗科技有限公司 Gastroscope tube fixing device for detection and diagnosis based on electromagnetic positioning system

Also Published As

Publication number Publication date
JP2006305320A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
Phee et al. Analysis and development of locomotion devices for the gastrointestinal tract
US20090012359A1 (en) Medical instrument insertion apparatus and medical instrument insertion apparatus system
CN104955376B (en) Integral type manipulation device
JP5214187B2 (en) Endoscope, endoscope apparatus, and operation method of endoscope apparatus
CN101653353B (en) Continuous body type semi-autonomous endoscope robot
CN104822331B (en) Insertable endoscopic instrument for tissue removal
JP4155619B2 (en) Rollback tube structure
WO2006104057A1 (en) Medical instrument insertion device and medical instrument insertion device system
Menciassi et al. Microrobotics for future gastrointestinal endoscopy
Dehghani et al. Design and preliminary evaluation of a self-steering, pneumatically driven colonoscopy robot
JP2009520507A (en) Tip propulsion device moving through a passage
JP5361112B2 (en) Alternate propulsion endoscope
Phee et al. An innovative locomotion principle for minirobots moving in the gastrointestinal tract
JP4553502B2 (en) Endoscope shaft
WO2008041809A1 (en) Capsule type endoscope device
CN100399977C (en) Active tube and active tube system
JP2010259721A (en) Internal pressure detecting device for inflating and deflating member and endoscope apparatus
JPH08322786A (en) Diagnosing/treating apparatus for inside of organism
JP4624714B2 (en) Endoscope
JPS6056488B2 (en) Endoscope intracavity guidance device
JP2010063490A (en) Endoscope insertion assisting device and endoscope system
JP4583809B2 (en) Endoscope and endoscope apparatus
WO2023001759A1 (en) Inspection robot
JP5445953B2 (en) Yarn pulling propulsion endoscope device
JP2004041700A (en) Endoscope apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11665091

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729957

Country of ref document: EP

Kind code of ref document: A1