WO2006113117A1 - Mild, structured, multiphase personal cleansing compositions - Google Patents

Mild, structured, multiphase personal cleansing compositions Download PDF

Info

Publication number
WO2006113117A1
WO2006113117A1 PCT/US2006/012401 US2006012401W WO2006113117A1 WO 2006113117 A1 WO2006113117 A1 WO 2006113117A1 US 2006012401 W US2006012401 W US 2006012401W WO 2006113117 A1 WO2006113117 A1 WO 2006113117A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
surfactant
density
structured
mild
Prior art date
Application number
PCT/US2006/012401
Other languages
French (fr)
Inventor
Daniel Jacob Soffin
Scott William Syfert
Karl Shiqing Wei
Edawrd Dewey Smith, Iii
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to EP06749195A priority Critical patent/EP1874408A1/en
Priority to MX2007007312A priority patent/MX2007007312A/en
Publication of WO2006113117A1 publication Critical patent/WO2006113117A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/03Liquid compositions with two or more distinct layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/42Amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns

Definitions

  • the present invention relates to a mild, structured, multiphase, personal cleansing composition that comprises a density modifier wherein the first density of the structured surfactant component differs from the second density of the benefit component by less than 0.15 g/cm. 3
  • compositions that attempt to provide skin-conditioning benefits are known. Many of these compositions are aqueous systems comprising an emulsified conditioning oil or other similar materials in combination with a lathering surfactant. Although these products provide both conditioning and cleansing benefits, it is often difficult to formulate a product that deposits sufficient amount of skin conditioning agents on skin during use. In order to combat emulsification of the skin conditioning agents by the cleansing surfactant, large amounts of the skin conditioning agent are added to the compositions. However, this introduces another problem associated with these dual cleansing and conditioning products. Raising the level of skin conditioning agent in order to achieve increased deposition negatively affects product stability.
  • dispersions and emulsions in personal cleansing compositions that comprise structured surfactants exhibit buoyant forces due to the difference in density between the continuous structured surfactant component, and the benefit component.
  • the benefit component comprises a hydrophobic material such as a triglyceride or a hydrocarbon material
  • the density of the dispersed phase is about 0.9 gm/cm 3
  • the density of the continuous structured surfactant component is about 1.0 gm/cm 3 .
  • the buoyant force of a benefit component exceeds the local value of the yield stress of the continuous structured surfactant component, the droplet can rise through the continuous phase in a process called creaming.
  • phase separation can occur as the product becomes unstable, e.g., during shipping and extended storage on a store shelf.
  • the present invention relates to a mild, multiphase cleansing composition that comprises a structured surfactant component has a first density; a benefit component that has a second density and a density modifier; wherein the first density differs from the second density by less than 0.15 g/cm 3 ; the structured surfactant component comprises at least one surfactant and provides a Total Lather Volume of at least about 600 ml.
  • the present invention also relates to a mild, multiphase cleansing composition that comprises a structured surfactant component that has a first density; a benefit component that has a second density; and a density modifier; wherein the first density differs from the second density by less than 0.15 g/cm 3 ; the surfactant comprises at least one surfactant and provides a Total Lather Volume of at least about 600 ml; wherein the mild, multiphase composition that comprises an opaque structured domain; wherein the opaque structured domain is lamellar phase.
  • the present invention also relates to a mild, structured, multiphase personal cleansing composition that comprises a structured surfactant component; a benefit component; and a density modifier; the structured surfactant component comprises at least one surfactant and provides a Total Lather Volume of at least about 600 ml; the mild, multiphase cleansing composition has a density of preferably less than about 0.97 g/cm 3 .
  • the structured surfactant component comprises low density particles such that all parts of the structured composition are exposed to buoyant forces by the dispersed low density phase and the low density particles, creaming and phase separation are mitigated and the composition can be stabilized even under harsh conditions such as high temperature shipping and storage conditions.
  • a large number of low density particles are added so that all parts of the structured surfactant composition are exposed to buoyant forces.
  • a multiphase personal cleansing composition containing both cleansing and benefit phases that are blended together can be formulated to provide improved cosmetics and skin feel during and after application while also providing excellent skin conditioning and cleansing benefits.
  • the inventors believe that such a composition can be formulated with sufficiently high levels of benefit agents without compromising product lather performance and stability.
  • compositions can be formulated with enhanced stability by density matching of the cleansing phase and the benefit phase and by incorporating density modifiers in the cleansing phase and/or the benefit phase.
  • ambient conditions refers to surrounding conditions at one (1) atmosphere of pressure, 50% relative humidity, and 25°C.
  • multi-phase or “multi-phase” as used herein, is meant that the phases of the present compositions occupy separate but distinct physical spaces inside the package in which they are stored, but are in direct contact with one another (i.e., they are not separated by a barrier and they are not emulsified or mixed to any significant degree).
  • the "multi-phase" personal care compositions comprise at least two visually distinct phases which are present within the container as a visually distinct pattern. The pattern results from the combination of the "multi-phase” composition by a process herein described.
  • patterns include but are not limited to the following examples: striped, marbled, rectilinear, interrupted striped, check, mottled, veined, clustered, speckled, geometric, spotted, ribbons, helical, swirl, arrayed, variegated, textured, grooved, ridged, waved, sinusoidal, spiral, twisted, curved, cycle, streaks, striated, contoured, anisotropic, laced, weave or woven, basket weave, spotted, and tessellated.
  • the pattern is selected from the group consisting of striped, geometric, marbled, and combinations thereof.
  • the striped pattern may be relatively uniform across the dimension of the package.
  • the striped pattern may be uneven, i.e. wavy, or may be non-uniform in dimension.
  • the striped pattern does not need to necessarily extend across the entire dimension of the package.
  • the size of the stripes can be at least about 0.1mm in width and 10 mm in length, preferably at least about 1 mm in width and at least 20 mm in length as measured from the package exterior.
  • the phases may be various different colors, and/or include particles, glitter or pearlescent agents in at least one of the phases in order to offset its appearance from the other phase(s) present.
  • multi-phase personal care composition refers to compositions intended for topical application to the skin or hair.
  • surfactant component means the total of all anionic, nonionic, amphoteric, zwitterionic and cationic surfactants in a phase.
  • surfactant component water and electrolyte are excluded from the calculations involving the surfactant component, since surfactants as manufactured typically are diluted and neutralized.
  • the term "structured,” as used herein means having a rheology that confers stability on the multi-phase composition.
  • the degree of structure is determined by characteristics determined by one or more of the following methods the Yield Stress Method, or the Zero
  • a surfactant phase of the multiphase composition of the present invention is considered “structured,” if the surfactant phase has one or more of the following properties described below according to the Yield Stress Method, or the Zero
  • a surfactant phase is considered to be structured, if the phase has one or more of the following characteristics: A. a Yield Stress of greater than about 0.1 Pascal (Pa), more preferably greater than about 0.5 Pa, even more preferably greater than about 1.0 Pa, still more preferably greater than about 2.0 Pa, still even more preferably greater than about 3 Pa, and even still even more preferably greater than about 5 Pa as measured by the Yield
  • C a Structured Domain Volume Ratio as measured by the Ultracentrifugation Method described hereafter, of greater than about 40%, preferably at least about 45%, more preferably at least about 50%, more preferably at least about 55%, more preferably at least about 60%, more preferably at least about 65%, more preferably at least about 70%, more preferably at least about 75%, more preferably at least about 80%, even more preferably at least about 85%.
  • a phase generally occupies a space or spaces having dimensions larger than the colloidal or sub- colloidal components it comprises.
  • a phase may also be constituted or re-constituted, collected, or separated into a bulk phase in order to observe its properties, e.g., by centrifugation, filtration or the like.
  • the multi-phase personal care composition of the present invention is typically extrudable or dispensible from a package.
  • the multi-phase personal care compositions typically exhibit a viscosity of from about 1,500 centipoise (cP) to about 1,000,000 cP, as measured by the Viscosity Method as described in copending application serial number 10/841174 filed on May 7, 2004 titled "Mulit-phase Personal Care Compositions.”
  • each individual phase is evaluated prior to combining, unless otherwise indicated in the individual methodology.
  • each phase can be separated by centrifugation, ultracentrifugation, pipetting, filtering, washing, dilution, concentration, or combination thereof, and then the separate components or phases can be evaluated.
  • the separation means is chosen so that the resulting separated components being evaluated is not destroyed, but is representative of the component as it exists in the structured multi-phase personal care composition, i.e., its composition and distribution of components therein is not substantially altered by the separation means.
  • compositions of the present invention are rinse-off formulations, by which is meant the product is applied topically to the skin or hair and then subsequently (i.e., within minutes) the skin or hair is rinsed with water, or otherwise wiped off using a substrate or other suitable removal means with deposition of a portion of the composition.
  • the structured multi-phase personal care composition comprises at least two visually distinct phases wherein a first phase is visually distinct from a second phase.
  • the visually distinct phases are packaged in physical contact with one another and are stable.
  • the visually distinct phases form a pattern.
  • the multi-phase personal care compositions of the present invention comprise at least two visually distinct phases, wherein the composition can have a first structured phase, a second phase, a third phase, a fourth phase and so on.
  • the ratio of a first phase to a second phase is preferably from about 1 :99 to about 99:1, preferably from about 90:10 to about 10:90, more preferably from about 80:20 to about 20:80, even more preferably from about 70:30 to about 30:70, still even more preferably from about 60:40 to about 40:60, even still even more preferably about 50:50.
  • the multi-phase personal care composition of the present invention can comprise a cleansing phase.
  • the cleansing phase preferably comprises at least one branched anionic surfactant.
  • the structured surfactant component comprises a mixture of surfactants.
  • the structured multi-phase personal care composition typically comprises from about 1 % to about 99 %, by weight of the composition, of the cleansing phase.
  • the structured surfactant component preferably comprises a lathering surfactant or a mixture of lathering surfactants.
  • the structured surfactant component preferably comprises at least one branched anionic surfactant.
  • the structured surfactant component comprises surfactants suitable for application to the skin or hair. Suitable surfactants for use herein include any known or otherwise effective cleansing surfactant suitable for application to the skin, and which are otherwise compatible with the other essential ingredients in the structured multi-phase personal care composition including water. These surfactants include anionic, nonionic, cationic, zwitterionic, amphoteric surfactants, soap, or combinations thereof.
  • anionic surfactant comprises at least 40% of the structured surfactant component, more preferably from about 45% to about 95% of the structured surfactant component, even more preferably from about 50% to about 90%, still more preferably from about 55% to about 85%, and even still most preferably at least about 60% of the structured surfactant component comprises anionic surfactant.
  • the multi-phase personal care composition preferably comprises a structured surfactant component at concentrations ranging from about 2% to about 23.5%, more preferably from about 3% to about 21%, even more preferably from about 4% to about 20.4%, still more preferably from about 5% to about 20%, still even more preferably from about 13% to about 18.5%, and even still even more preferably from about 14% to about 18%, by weight of the cleansing phase.
  • the cleansing phase comprising the structured surfactant component is preferably a structured domain comprising surfactants.
  • the structured domain enables the incorporation of high levels of benefit components in a separate phase that are not emulsified in the composition.
  • the structured domain is an opaque structured domain.
  • the opaque structured domain is preferably a lamellar phase.
  • the lamellar phase produces a lamellar gel network.
  • the lamellar phase can provide resistance to shear, adequate yield to suspend particles and droplets and at the same time provides long term stability, since it is thermodynamically stable.
  • the lamellar phase tends to have a higher viscosity thus minimizing the need for viscosity modifiers.
  • the cleansing phase typically provides a Total Lather Volume of at least about 600 ml, preferably greater than about 800ml, more preferably greater than about 1000ml, even more preferably greater than about 1200ml, and still more preferably greater than about 1500ml, as measured by the Lather Volume Test described hereafter.
  • the cleansing phase preferably has a Flash Lather Volume of at least about 300 ml, preferably greater than about 400ml, even more preferably greater than about 500ml, as measured by the Lather Volume Test described hereafter.
  • Suitable surfactants are described in McCutcheon's, Detergents and Emulsifiers,
  • Suitable surfactants are described in McCutcheon's, Detergents and Emulsifiers, North American edition (1986), published by allured Publishing Corporation; and McCutcheon's, Functional Materials, North American Edition (1992); and in U.S. Patent 3,929,678 issued to Laughlin, et al on December 30, 1975.
  • Preferred linear anionic surfactants for use in the structured surfactant phase of the multiphase, personal care composition include ammonium lauryl sulfate, ammonium laureth sulfate, sodium lauryl sulfate, sodium laureth sulfate, potassium laureth sulfate, sodium lauryl sarcosinate, sodium lauroyl sarcosinate, lauryl sarcosine, cocoyl sarcosine, ammonium cocoyl sulfate, potassium lauryl sulfate, and combinations thereof.
  • amphoteric surfactants are suitable for use in the multiphase composition of the present invention.
  • the amphoteric surfactants include those that are broadly described as derivatives of aliphatic secondary and tertiary amines in which the aliphatic radical can be straight or branched chain and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
  • Examples of compounds falling within this definition are sodium 3-dodecyl-aminopropionate, sodium 3- dodecylaminopropane sulfonate, sodium lauryl sarcosinate, and N-alkyltaurines.
  • Zwitterionic surfactants suitable for use include those that are broadly described as derivatives of aliphatic quaternary ammonium, phosphonium, and sulfonium compounds, in which the aliphatic radicals can be straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
  • Zwitterionic surfactants suitable for use in the multiphase, personal care composition include betaines, including cocoamidopropyl betaine.
  • Non-limiting examples of preferred nonionic surfactants for use herein are those selected form the group consisting of glucose amides, alkyl polyglucosides, sucrose cocoate, sucrose laurate, alkanolamides, ethoxylated alcohols and mixtures thereof.
  • the nonionic surfactant is selected from the group consisting of glyceryl monohydroxystearate, isosteareth-2, trideceth-3, hydroxystearic acid, propylene glycol stearate, PEG-2 stearate, sorbitan monostearate, glyceryl laurate, laureth-2, cocamide monoethanolamine, lauramide monoethanolamine, and mixtures thereof.
  • the nonionic surfactant has an HLB from about 1.0 to about 15.0, preferably from about 3.4 to about 15.0, more preferably from about 3.4 to about 9.5, even more preferably from about 3.4 to about 5.0.
  • the multi-phase personal care composition preferably comprises a nonionic surfactant at concentrations ranging from about 0.01% to about 50%, more preferably from about 0.10% to about 10%, and even more preferably from about 0.5% to about 5.0%, by weight of the surfactant component.
  • Mixtures of anionic surfactants can be used in some embodiments, including mixtures of linear and branched surfactants, and anionic surfactants combined with nonionic, amphoteric, and/or zwitterionic surfactants.
  • An electrolyte if used, can be added per se to the multiphase personal care composition or it can be formed in situ via the counterions included in one of the raw materials.
  • the electrolyte preferably includes an anion comprising phosphate, chloride, sulfate or citrate and a cation comprising sodium, ammonium, potassium, magnesium or mixtures thereof.
  • Some preferred electrolytes are sodium chloride, ammonium chloride, sodium or ammonium sulfate.
  • the electrolyte is preferably added to the structured surfactant phase of the composition in the amount of from about 0.1% to about 15% by weight, preferably from about 1% to about 6% by weight, more preferably from about 3% to about 6%, by weight of the structured surfactant composition.
  • the multiphase, personal care composition comprises a structured surfactant phase comprising a mixture of at least one nonionic surfactant, and an electrolyte.
  • the surfactant phase can comprise a mixture of surfactants, water, at least one anionic surfactant, an electrolyte, and at least one alkanolamide.
  • At least one anionic surfactant comprising anionic surfactant molecules of the present invention is preferably branched.
  • a surfactant molecule is branched when the hydrocarbon tail of the surfactant molecule comprises at least one ternary or quaternary carbon atom, such that a methyl, ethyl, propyl, butyl, pentyl or hexyl side chain extends from the hydrocarbon backbone.
  • the hydrocarbon backbone is described by the longest hydrocarbon length in the hydrocarbon tail.
  • a side chain in the branched hydrocarbon of a surfactant molecule can be described by its position on the backbone, counting from the first carbon attached to a hydrophilic atom, enumerated as carbon number 1, the adjacent carbon on the backbone being carbon number 2, and so on. Side chains are also described by their length, a single carbon side chain denoted methyl; a 2-carbon length denoted ethyl, and so on. Side chains that have their own branching are denoted by conventional nomenclature techniques, e.g., isopropyl, but are less common.
  • Anionic surfactant molecules which do not have branching are linear anionic surfactant molecules, and surfactants comprising a preponderance of linear anioinic surfactant molecules as indicated hereafter are linear anionic surfactants.
  • anionic surfactants typically comprises a mixture of different types of surfactant molecules
  • anionic surfactants can be called linear or branched depending on the relative amounts of individual surfactant molecules of different types that comprise the anionic surfactant.
  • sodium tridecyl sulfate and sodium trideceth sulfate can be called branched surfactants because they typically comprise nearly all (>95%) branched surfactant molecules.
  • an anionic surfactant is considered branched surfactant when at least 10% of its hydrocarbon chains are branched molecules.
  • Branched anionic surfactants comprise surfactant molecules having different kinds of branching.
  • Some branched anionic surfactants such as tridecanol based sulfates such as sodium trideceth sulfate, comprise a high level of branching, with over 80% of surfactant molecules comprising at least 2 branches and having an average of about 2.7 branches per molecule in some sodium trideceth sulfates.
  • Other branched anionic surfactants such as C 12 - J3 alkyl sulfate derived from Safol TM 23 alcohol (Sasol, Inc, Houston, TX, USA) comprise a mixture of about 50-55% linear anionic surfactant molecules, with about 15-30% branched surfactant molecules.
  • anionic surfactants comprising more than 10% branched surfactant molecules, but having an average of less than 2.0 branches per molecule, are considered monomethyl branched anionic surfactants.
  • Sasol publishes the following information related to Safol TM 23 primary alcohol: Linear Alcohol Isomers 50% Mono-Methyl Alcohol Isomers 30%
  • Safol TM 23 alcohol can be sulfated, for example in an SO 3 /air stream falling film reactor followed by rapid neutralization with sodium hydroxide to produce sodium C 12 - 13 alkyl sulfate, a process known in the art. Since the sulfation process involves no rearrangement of the hydrocarbon backbone, the backbone of the C 12 - 13 alkyl sulfate has the same structure as the Safol TM 23 alcohol, and is a branched anionic surfactant, and is also a monomethyl branched anionic surfactant.
  • Other suppliers of alcohols provide similar information on their primary alcohols, e.g., Shell Chemical for the Neodol TM primary alcohols.
  • GC-MS gas chromatography — mass spectrometry
  • a typical GC program is 80-320C at 5C/min rate on a 30 m x 0.25 mm DB-I (0.25 uM film) column, and can give specific information on branching location for a majority of a hydrocarbon tail of an anionic surfactant.
  • GC-MS is able to obtain the amount of branched components, which is taken as 100% minus the sum of n- C12 and rc-C13 eluted.
  • W-C 11 , «-C 12 and W-C 13 elution times are known for a column and/or can be obtained by simple running of standards which are available.
  • inventors sum all oxazoline peaks in the GC window between n-C ⁇ ⁇ and «-C 12 , said peaks are the branched C 12 peaks; sum all oxazoline peaks in the GC window between W-C 12 and «-C 13 , said peaks are the branched C 13 peaks; dividing the peak areas obtained by the total area obtained, including linear C 12 and linear C 13 , to obtain the fractional amount of each component.
  • the sum of the peak fractions in the branched C 12 and branched C 13 windows, added together, is the fraction of branched molecules, which can be expressed as a percentage.
  • the integrated area under each GC peak is the peak information used in the calculations.
  • the surfactant can even be obtained by extraction from a composition first, e.g. by filtration such as crossflow filtration. From the GC data, the number of branch points per hydrocarbon chain is summed, multiplying number of branches per molecule by mole fraction for each species identified to obtain an average degree of branching per molecule for the surfactant. For example, 50% of molecules having 1 branch point with 50% linear molecules is an average degree of branching of 0.5.
  • Branched anionic surfactants include but are not limited to the following surfactants: sodium trideceth sulfate, sodium tridecyl sulfate, sodium C] 2 - 13 alkyl sulfate, sodium C 12-15 alkyl sulfate, sodium C 11 - ⁇ alkyl sulfate, sodium C 12 - ⁇ alkyl sulfate, sodium C 10 - I6 alkyl sulfate, sodium C 12 - 13 pareth sulfate, sodium C 12 - 13 pareth- « sulfate, and sodium C 12 - 14 pareth-?? sulfate.
  • alkoxylates include the ethylene oxide, propylene oxide and EO/PO mixed alkoxylates. Phosphates, carboxylates and sulfonates prepared from branched alcohols are also useful anionic branched surfactants.
  • Branched surfactants can be derived from synthetic alcohols such as the primary alcohols from the liquid hydrocarbons produced by Fischer-Tropsch condensed syngas, for example Safol TM 23 Alcohol available from Sasol North America, Houston, TX; from synthetic alcohols such as Neodol TM 23 Alcohol available from Shell Chemicals, USA; from synthetically made alcohols such as those described in U.S. Patent No. 6,335,312 issued to Coffindaffer, et al on January 1, 2002.
  • Preferred alcohols are Safol TM 23 and Neodol TM 23.
  • Preferred alkoxylated alcohols are Safol TM 23-3 and Neodol TM 23-3.
  • Sulfates can be prepared by conventional processes to high purity from a sulfur based SO 3 air stream process, chlorosulfonic acid process, sulfuric acid process, or Oleum process. Preparation via SO 3 air stream in a falling film reactor is a preferred sulfation process.
  • Monomethyl branched anionic surfactants include but are not limited to the branched anionic sulfates derived from Safol TM 23- « and Neodol TM 23-n as previously described, where n is an integer between 1 and about 20.
  • Fractional alkloxylation is also useful, for example by stoichiometrically adding only about 0.3 moles EO, or 1.5 moles EO, or 2.2 moles EO 5 based on the moles of alcohol present, since the molecular combinations that result are in fact always distributions of alkoxylates so that representation of n as an integer is merely an average representation.
  • Preferred monomethyl branched anionic surfactants include a Ci 2 - 13 alkyl sulfate derived from the sulfation of Safol TM 23, which has about 28% branched anionic surfactant molecules; and a C 12-13 pareth sulfate derived from Neodol TM 23-3, which has about 10-18% branched anionic surfactant molecules.
  • the anionic surfactant when it is a branched anionic primary sulfate, it may contain some of the following branched anionic surfactant molecules: 4-methyl undecyl sulfate, 5- methyl undecyl sulfate, 7-methyl undecyl sulfate, 8-methyl undecyl sulfate, 7-methyl dodecyl sulfate, 8-methyl-dodecyl sulfate, 9-methyl dodecyl sulfate, 4,5-dimethyl decyl sulfate, 6,9-dimethyl decyl sulfate, 6,9-dimethyl undecyl sulfate, 5-methyl-8-ethyl undecyl sulfate, 9-methyl undecyl sulfate, 5,6,8-trimethyl decyl sulfate, 2-methyl dodecyl sulfate, and 2-methyl undecyl sulf
  • the anionic surfactant is a primary alkoxylated sulfate
  • the density modifier of the present invention can be comprised in the surfactant component.
  • These density modifiers are preferably low density microspheres.
  • the structured surfactant component comprises low density particles such that all parts of the structured composition are exposed to buoyant forces by the dispersed low density phase and the low density particles, creaming and phase separation are mitigated and the composition can be stabilized even under harsh conditions such as high temperature shipping and storage conditions.
  • a large number of low density particles are added so that all parts of the structured surfactant composition are exposed to buoyant forces.
  • the yield stress to stabilize a single particle under a 1Og acceleration can be calculated to be about 0.21 Pa, assuming monodispersed lipid droplets in a cubic array with a homogenous stress distribution over the cube faces.
  • the required yield stress can be calculated to be 0.30 Pa, due to the more concentrated stress per individual particle.
  • introducing other low density, dispersed domains of any kind would also lead to instability by the same mechanism — increased stress concentration required to stabilize each individual dispersed domain.
  • introducing particular buoyant particles to compositions comprising a dispersed hydrophobic phase has a tendency to exert a stabilizing, not a destabilizing, effect on the composition.
  • the stabilizing effect may be related to the density difference between the added buoyant particles and the dispersed hydrophobic phase.
  • the added buoyant particles have a density of about 25 kg/m 3 (i.e., 0.025 gm/cm 3 ), and the dispersed hydrophobic phase is petrolatum which has a density of about 0.88 gm/cm 3 , the buoyant particles are 0.855 gm/cm 3 lower in density than the hydrophobic phase, leading to essentially 'superbuoyant regions' of composition comprising a buoyant particle and structured surfactant surrounding the particle, which reduces the gravitational force on the structured surfactant in the region adjacent to the particle.
  • the net contribution of the buoyant particles can be to increase stability of compositions comprising both the buoyant particles and a dispersed hydrophobic phase in a structured surfactant composition.
  • the effective volume of the composition increases by about 10%. If the particles are about 50 micron diameter, about 1.5 * 10 8 buoyant particles are added per 100 grams of composition, resulting in a substantial number of superbouyant particle domains.
  • the buoyant particles have a density of less than 0.85 gm/cm 3 , more preferably less than about 0.5 gm/cm 3 , still more preferably less than about 0.1 gm/cm 3 , even more preferably less than about 0.05 gm/cm 3 .
  • the need for density modifiers is also increased.
  • the need to add density modifier to the surfactant component is increased when (1) the benefit component is a hydrophobic material (petrolatum, e.g., having a lower density than the cleansing phase); (2) the amount of 'petrolatum' is higher than 20%, even 30%, even about 40% or more of the composition.
  • low density microspheres can be added to the surfactant component of the mild, structured, multiphase cleansing composition.
  • the low density microspheres employed to reduce the overall density of the surfactant component are particles having a density lower than 0.7 g/cm 3 , preferably less than 0.2 g/cm 3 , more preferably less than 0.1 g/cm 3 , most preferably less than 0.05 g/cm 3 .
  • the low density microspheres generally have a diameter less than 200 ⁇ m, preferably less than 100 ⁇ m, most preferably less than 40 ⁇ m.
  • the density difference between the first density of the surfactant component when the surfactant component comprises the low density particles and the second density of the benefit component is less than 0.15 g/cm 3 , more preferably, the density difference is less than 0.10 g/cm , even more preferably, the density difference is less than 0.08g/cm 3 , still more preferably, the density differerence is less than 0.06 g/cm 3 , still even more preferably, the density difference is less than 0.05 g/cm 3 , most preferably, the density difference is less than 0.02 g/cm 3 .
  • the benefit component comprising hydrophobic materials such as petrolatum, mineral oil, waxes, hydrophobic polymers, fatty esters, fatty ethers, and/or triglycerides which have a density
  • the resulting blended composition has a density indicative of the mixture.
  • a multiphase personal cleansing composition comprises 15% petrolatum having a density of 0.88 g/cm 3 mixed with a 85% of a surfactant component having a density of 1.0 g/cm 3 has a density of about 0.982 g/cm 3 , but if the surfactant component utilizes low density particles to reduce its density to 0.93 g/cm 3 , the resultingresulting multiphase personal cleansing composition has a density of about 0.923 g/cm 3 .
  • the structured surfactant phase comprises low density particles so that the blended composition has a low density.
  • the density of the composition is preferably less than about 0.97 g/cm 3 , more preferably less than about 0.96 g/cm 3 , even more preferably less than about 0.95 g/cm 3 , still more preferably less than about 0.94 g/cm 3 , still even more preferably less than about 0.92 g/cm 3 , most preferably less than about 0.90 g/cm 3 .
  • microspheres are produced from any appropriate inorganic or organic material, compatible with a use on the skin, that is, nonirritating and nontoxic. Preferably, the microspheres don't negatively impact the product lather performance. Expanded microspheres made of thermoplastic material are known, and may be obtained, for example, according to the processes described in Patents and Patent Applications EP-56219, EP-348372, EP-486080, EP-320473, EP-112807 and U.S. Pat. No. 3,615,972.
  • microspheres may be produced from any nontoxic and non-irritant thermoplastic materials. These microspheres can be in the dry or hydrated state. Among hollow microspheres which can be used, special mention may be made of those marketed under the brand name EXPANCEL® (thermoplastic expandable microspheres) by the Akzo Nobel Company, especially those of DE (dry state) or WE (hydrated state) grade. Representative microspheres derived from an inorganic material, include, for instance, "QCEL® Hollow Microspheres” and "EXTENDOSPHERES” TM Ceramic Hollow Spheres", both available from the PQ Corporation. Examples are: Qcel ® 300; Qcel ® 6019; Qcel ® 6042S.
  • the multiphase personal care compositions of the present invention can comprise a benefit phase.
  • the benefit phase in the present invention is preferably anhydrous and can be substantially free of water.
  • the benefit phase can comprise less than about 5% water, preferable less than 3% water or most preferably less than 1% water.
  • the benefit phase can be substantially free of surfactant.
  • the benefit phase can comprise less than about 5% of surfactant, more preferably less than about 3% of surfactant and most preferably less than about 1% surfactant.
  • the benefit phase typically comprises hydrophobic moisturizing materials.
  • the benefit phase can be comprised of the components selected from the group consisting of petrolatum, lanolin, hydrocarbon oils such as mineral oil, natural and synthetic waxes such as micro-crystalline waxes, paraffins, ozokerite, lanolin wax, lanolin alcohols, lanolin fatty acids, polyethylene, polybutene, polydecene and perhydrosqualene, volatile or non-volatile organosiloxanes and their derivatives such as dimethicones, cyclomethicones, alkyl siloxanes, polymethylsiloxanes and methylphenylpolysiloxanes, lanolin oil, esters such as isopropyl lanolate, acetylated lanolin, acetylated lanolin alcohols, lanolin alcohol linoleate, lanolin alcohol riconoleate natural and synthetic triglycerides such as castor oil, soy bean
  • the benefit phase may comprise from about 1% to about 100%, preferably at least about 15%, preferably at least about 17.5%, preferably at least about 20%, preferably at least about 24%, preferably at least about 30%, by weight of the benefit phase, of a hydrophobic moisturizing material.
  • Hydrophobic moisturizing materials suitable for use in the present invention preferably have a Vaughan Solubility Parameter of from about 5 (cal/cm 3 ) 1/2 to about 15 (cal/cm 3 ) 1/2 , as defined by Vaughan in Cosmetics and Toiletries, Vol. 103.
  • Non-limiting examples of hydrophobic moisturizing materials having VSP values ranging from about 5 to about 15 include the following: Cyclomethicone 5.92, Squalene 6.03, Petrolatum 7.33, Isopropyl Palmitate 7.78, Isopropyl Myristate 8.02, Castor Oil 8.90, Cholesterol 9.55, as reported in Solubility, Effects in Product, Package, Penetration and Preservation, C. D. Vaughan, Cosmetics and Toiletries, Vol. 103, October 1988.
  • the hydrophobic materials are preferably selected among those having defined rheological properties as described hereinafter, including selected Consistency value (K) and Shear Index (n).
  • the benefit phase has a Consistency Value (K) from about 20 to about 2,000 Pa-s, preferably from about 25 to about 500 Pa-s, more preferably from about 30 to about 450 Pa-s, still more preferably from about 30 to about 400 Pa-s and even still more preferably from about 30 to about 350 Pa-s.
  • K Consistency Value
  • the benefit phase has a Shear Index from about 0.025 to about 0.99.
  • the density modifiers of the present invention can be comprised in the benefit component.
  • high density materials can be added to the benefit component to increase its density having the same impact on stability.
  • the high density particles employed to increase the overall density of the benefit component are particles having a density greater than 1.1 g/cm , preferably greater than 1.5 g/cm 3 , more preferably greater than 2.0 g/cm 3 , most preferably greater than 2.5 g/cm 3 .
  • the high density particles generally have a diameter less than 200 ⁇ m, preferably less than 100 ⁇ m, most preferably less than 40 ⁇ m.
  • the high density particles are selected from water-insoluble inorganic materials, metals, metal oxides, metal alloys and mixture thereof.
  • Non-limiting examples include calcium carbonate, silica, clays, mica, talc, iron, zinc, copper, lead, titanium dioxide, zinc oxide, and the like.
  • the multi-phase personal care compositions of the present invention can comprise a structured aqueous phase that comprises a water structurant and water.
  • the structured aqueous phase can be hydrophilic and in a preferred embodiment the structured aqueous phase is a hydrophilic, non-lathering gelled water phase.
  • the structured aqueous phase typically comprises less than about 5%, preferably less than about 3%, and more preferably less than about 1%, by weight of the structured aqueous phase, of a surfactant.
  • the structured aqueous phase is free of lathering surfactant in the formulation.
  • a preferred structured aqueous phase is a non-lathering structured aqueous phase as described in published U.S. Patent Application No. 2005/0143269A1 entitled "Multi-phase Personal Cleansing Compositions Containing A Lathering Cleansing Phase And A Non-Lathering Structured Aqueous Phase.”
  • the structured aqueous phase of the present invention can comprise from about
  • the structured aqueous phase generally comprises more than about 50%, preferably more than about
  • the structured aqueous phase will typically have a pH of from about 5 to about
  • a water structurant for the structured aqueous phase can have a net cationic charge, net anionic charge, or neutral charge.
  • the structured aqueous phase of the present compositions can further comprise optional ingredients such as, pigments, pH regulators (e.g. triethanolamine), and preservatives.
  • the structured aqueous phase can comprise from about 0.1% to about 30%, preferably from about 0.5% to about 20%, more preferably from about 0.5% to about 10%, and even more preferably from about 0.5% to about 5%, by weight of the structured aqueous phase, of a water structurant.
  • the water structurant is typically selected from the group consisting of inorganic water structurants, charged polymeric water structurants, water soluble polymeric structurants, associative water structurants, and mixtures thereof.
  • inorganic water structurants include silicas, polymeric gellants such as polyacrylates, polyacrylamides, starches, modified starches, crosslinked polymeric gellants, copolymers, and mixtures thereof.
  • Non-limiting examples of charged polymeric water structurants for use in the multi-phase personal care composition include Acrylates/Vinyl Isodecanoate Crosspolymer (Stabylen 30 from 3V), Acrylates/C 10-30 Alkyl Acrylate Crosspolymer (Pemulen TRl and TR2), Carbomers, Ammonium Acryloyldimethyltaurate/VP Copolymer (Aristoflex AVC from Clariant), Ammonium
  • Acryloyldimethyltaurate/Beheneth-25 Methacrylate Crosspolymer (Aristoflex HMB from Clariant), Acrylates/Ceteth-20 Itaconate Copolymer (Structure 3001 from National Starch), Polyacrylamide (Sepigel 305 from SEPPIC), and mixtures thereof.
  • water soluble polymeric structurants for use in the multi-phase personal care composition include cellulose gums and gel, and starches.
  • Non-limiting examples of associative water structurants for use in the multi-phase personal care composition include xanthum gum, gellum gum, pectins, alginates such as propylene glycol alginate, and mixtures thereof.
  • the phases of the multi-phase personal care composition can further comprise a polymeric phase structurant.
  • the compositions of the present invention typically can comprise from about 0.05% to about 10%, preferably from about 0.1% to about 4%, of a polymeric phase structurant.
  • polymeric phase structurant include but are not limited to the following examples: naturally derived polymers, synthetic polymers, crosslinked polymers, block copolymers, copolymers, hydrophilic polymers, nonionic polymers, anionic polymers, hydrophobic polymers, hydrophobically modified polymers, associative polymers, and oligomers.
  • the polymeric phase structurant can be crosslinked and further comprise a crosslinking.
  • These polymeric phase structurant useful in the present invention are more fully described in U.S. Pat. No. 5.087,445, to Haffey et al., issued Feb. 11, 1992; U.S. Pat. No. 4,509.949. to Huang et al., issued Apr. 5, 1985, U.S. Pat. No. 2,798,053. to Brown, issued JuI. 2, 1957. See also, CTFA International Cosmetic Ingredient Dictionary, fourth edition, 1991, pp. 12 and 80.
  • the phase of the present compositions optionally can further comprise a liquid crystalline phase inducing structurant, which when present is at concentrations ranging from about 0.3% to about 15%, by weight of the phase, more preferably at from about 0.5% to about 5% by weight of the phase.
  • suitable liquid crystalline phase inducing structurants include fatty acids (e.g. lauric acid, oleic acid, isostearic acid, linoleic acid) ester derivatives of fatty acids (e.g. propylene glycol isostearate, propylene glycol oleate, glyceryl isostearate) fatty alcohols, trihydroxystearin (available from Rheox, Inc. under the trade name THIXCIN ® R).
  • the liquid crystalline phase inducing structurant is selected from lauric acid, trihydroxystearin, lauryl pyrrolidone, and tridecanol.
  • the structured multi-phase personal care compositions of the present invention can additionally comprise an organic cationic deposition polymer in the one or more phases as a deposition aid for the benefit agents described herein.
  • Suitable cationic deposition polymers for use in the structured multi-phase personal care compositions of the present invention contain cationic nitrogen-containing moieties such as quaternary ammonium or cationic protonated amino moieties.
  • the cationic protonated amines can be primary, secondary, or tertiary amines (preferably secondary or tertiary), depending upon the particular species and the selected pH of the structured multi-phase personal care composition.
  • Suitable cationic deposition polymers that would be useful in the compositions of the present invention are disclosed in the co-pending and commonly assigned U.S.
  • One or more of the phases of the multiphase personal care composition can comprise a variety of additional optional ingredients such as shiny particles, particles or beads, exfoliating beads.
  • the multiphase personal care composition may compriseg a particle selected from the group consisting of natural, synthetic, semi-synthetic, hybrid, and combinations thereof.
  • the exfoliant particle is preferably present at a level of less than about 10%, by weight of the composition, more about 5%, by weight of the composition, more preferably about 3% by weight of the composition, , more preferably about 2% by weight of the composition, and more preferably about 1% by weight of the composition
  • a water insoluble particle of various shapes and densities is useful.
  • the particle tends to have a spherical, an oval, an irregular, or any other shape in which the ratio of the largest dimension to the smallest dimension (defined as the Aspect Ratio) is less than about 10, preferably less than about 8, and still more preferably the Aspect Ratio of the particle is less than about 5.
  • the particle will also have physical properties which are not significantly affected by typical processing of the composition.
  • the structured multi-phase personal care composition of the present invention can comprise an exfoliant particle.
  • a preferred particle is selected from the group consisting of polyethylene, microcrystalline wax, jojoba esters, acrephors silica, talc, tracalcium orthophosphate, or blends thereof, and the like in at least one phase of the multi-phase personal care composition.
  • the exfoliant particle is preferably present at a level of less than about 10%, by weight of the composition.
  • the structured multi-phase personal care compositions of the present invention can comprise a shiny particle in at least one phase of the multi-phase personal care composition.
  • shiny particles include the following: interference pigment, multi-layered pigment, metallic particle, solid and liquid crystals, and combinations thereof.
  • An interference pigment is a pigment with pearl gloss prepared by coating the surface of a particle substrate material with a thin film.
  • the particle substrate material is generally platelet in shape.
  • the thin film is a transparent or semitransparent material having a high refractive index.
  • the high refractive index material shows a pearl gloss resulting from mutual interfering action between reflection and incident light from the platelet substrate/coating layer interface and reflection of incident light from the surface of the coating layer.
  • the deposited pigment on the skin is preferably at least 0.5 ⁇ g/cm 2 , more preferably at least 1 ⁇ g/cm 2 , and even more preferably at least 5 ⁇ g/cm 2 .
  • Interference pigments that are suitable for use in the compositions of the present invention are those disclosed in U.S. Patent No. 6,395,691 issued to Liang Sheng Tsaur on May 28, 2002, U.S. Patent No. 6,645,511 issued to Aronson, et al, U.S. Patent No.
  • a portion of the interference pigment surface can be coated with a hydrophobic material.
  • Hydrophobically modified interference pigments that are suitable for use in the compositions of the present invention are those disclosed in pending and commonly assigned under U.S. Patent Application Number 10/841,173 filed on May 7, 2004 by Clapp, et al titled "Personal Care Compositions Containing Hydrophobically Modified Interference Pigments.”
  • Optional ingredients are most typically those materials approved for use in cosmetics and that are described in reference books such as the CTFA Cosmetic Ingredient Handbook, Second Edition, The Cosmetic, Toiletries, and Fragrance Association, Inc. 1988, 1992.
  • vitamins and derivatives thereof e.g., ascorbic acid, vitamin E, tocopheryl acetate, and the like
  • sunscreens e.g., thickening agents, preservatives for maintaining the anti microbial integrity of the cleansing compositions, anti-acne medicaments, antioxidants, skin soothing and healing agents such as aloe vera extract, allantoin and the like, chelators and sequestrants, skin lightening agents, and agents suitable for aesthetic purposes such as fragrances, essential oils, skin sensates, pigments, pearlescent agents and essential oils and fragrance.
  • the preferred pH range of the structured multi-phase personal care composition is from about 5 to about 8.
  • the mild, multiphase cleansing compositions of the present invention are preferably applied topically to the desired area of the skin or hair in an amount sufficient to provide effective delivery of the structured surfactant component, hydrophobic benefit material, and particles to the applied surface.
  • the compositions can be applied directly to the skin or indirectly via the use of a cleansing puff, washcloth, sponge or other implement.
  • the compositions are preferably diluted with water prior to, during, or after topical application, and then subsequently the skin or hair rinsed or wiped off, preferably rinsed off of the applied surface using water or a water-insoluble substrate in combination with water.
  • the multi-phase personal care compositions of the present invention may be prepared by any known or otherwise effective technique, suitable for making and formulating the desired multi-phase product form. It is effective to combine toothpaste-tube filling technology with a spinning stage design. Additionally, the present invention can be prepared by the method and apparatus as disclosed in U.S. Patent No. 6,213,166 issued to Thibiant, et al. on April 10, 2001. The method and apparatus allows two or more compositions to be filled with a spiral configuration into a single container. The method requires that at least two nozzles be employed to fill the container. The container is placed on a static mixer and spun as the composition is introduced into the container.
  • it is effective to combine at least two phases by first placing the separate compositions in separate storage tanks having a pump and a hose attached. The phases are then pumped in predetermined amounts into a single combining section. Next, the phases are moved from the combining sections into the blending sections and the phases are mixed in the blending section such that the single resulting product exhibits a distinct pattern of the phases. The pattern is selected from the group consisting of striped, marbled, geometric, and mixtures thereof. The next step involves pumping the product that was mixed in the blending section via a hose into a single nozzle, then placing the nozzle into a container and filing the container with the resulting product. Specific non- limiting examples of such methods as they are applied to specific embodiments of the present invention are described in the following examples.
  • the multi-phase personal care compositions are patterned, it can be desirable to be packaged as a personal care article.
  • the personal care article would comprise these compositions in a transparent or translucent package such that the consumer can view the pattern through the package. Because of the viscosity of the subject compositions it may also be desirable to include instructions to the consumer to store the package upside down, on its cap to facilitate dispensing.
  • every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification includes every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification includes every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
  • the Yield Stress and Zero Shear Viscosity of a phase of the present composition can be measured either prior to combining in the composition, or after combining in the composition by separating the phase by suitable physical separation means, such as centrifugation, pipetting, cutting away mechanically, rinsing, filtering, or other separation means.
  • a controlled stress rheometer such as a TA Instruments AR2000 Rheometer is used to determine the Yield Stress and Zero Shear Viscosity. The determination is performed at 25°C with the 4 cm diameter parallel plate measuring system and a 1 mm gap. The geometry has a shear stress factor of 79580 m "3 to convert torque obtained to stress.
  • phase is obtained and placed in position on the rheometer base plate, the measurement geometry (upper plate) moving into position 1 mm above the base plate. Excess phase at the geometry edge is removed by scraping after locking the geometry. If the phase comprises particles discernible to the eye or by feel (beads, e.g.) which are larger than about 150 microns in number average diameter, the gap setting between the base plate and upper plate is increased to the smaller of 4 mm or 8-fold the diameter of the 95 th volume percentile particle diameter. If a phase has any particle larger than 5 mm in any dimension, the particles are removed prior to the measurement.
  • the determination is performed via the programmed application of a continuous shear stress ramp from 0,1 Pa to 1,000 Pa over a time interval of 5 minutes using a logarithmic progression, i.e., measurement points evenly spaced on a logarithmic scale. Thirty (30) measurement points per decade of stress increase are obtained. Stress, strain and viscosity are recorded. If the measurement result is incomplete, for example if material flows from the gap, results obtained are evaluated and incomplete data points excluded.
  • the Yield Stress is determined as follows. Stress (Pa) and strain (unitless) data are transformed by taking their logarithms (base 10). Log(stress) is graphed vs. log(strain) for only the data obtained between a stress of 0.2 Pa and 2.0 Pa, about 30 points.
  • a predicted value of log(strain) is obtained using the coefficients m and b obtained, and the actual stress, using Equation (1).
  • a predicted strain at each stress is obtained by taking the antilog (i.e., 10 x for each x). The predicted strain is compared to the actual strain at each measurement point to obtain a %variation at each point, using Equation (2).
  • the Yield Stress is the first stress (Pa) at which %variation exceeds 10% and subsequent (higher) stresses result in even greater variation than 10% due to the onset of flow or deformation of the structure.
  • the Zero Shear Viscosity is obtained by taking a first median value of viscosity in Pascal-seconds (Pa-sec) for viscosity data obtained between and including 0.1 Pa and the Yield Stress. After taking the first median viscosity, all viscosity values greater than 5-fold the first median value and less than 0.2x the median value are excluded, and a second median viscosity value is obtained of the same viscosity data, excluding the indicated data points. The second median viscosity so obtained is the Zero Shear Viscosity.
  • the Ultracentrifugation Method is used to determine the percent of a structured domain or an opaque structured domain that is present in a structured multi-phase personal care composition that comprises a cleansing phase comprising a structured surfactant component.
  • the method involves the separation of the composition by ultracentrifugation into separate but distinguishable layers.
  • the structured multi-phase personal care composition of the present invention can have multiple distinguishable layers, for example a non-structured surfactant layer, a structured surfactant layer, and a benefit layer.
  • H 3 H a — Hb
  • the structured surfactant layer components may comprise several layers or a single layer.
  • This clear isotropic layer typically represents the non-structured micellar surfactant layer.
  • the layers above the isotropic phase generally comprise higher surfactant concentration with higher ordered structures
  • structured surfactant layers are sometimes opaque to naked eyes, or translucent, or clear. There is generally a distinct phase boundary between the structured layer and the non-structured isotropic layer.
  • the physical nature of the structured surfactant layers can be determined through microscopy under polarized light.
  • the structured surfactant layers typically exhibit distinctive texture under polarized light.
  • Another method for characterizing the structured surfactant layer is to use X-ray diffraction technique.
  • Structured surfactant layer display multiple lines that are often associated primarily with the long spacings of the liquid crystal structure. There may be several structured layers present, so that H 0 is the sum of the individual structured layers. If a coacervate phase or any type of polymer-surfactant phase is present, it is considered a structured phase.
  • the structured domain volume ratio is calculated as follows:
  • H 5 H 3 .
  • Lather volume of a cleansing phase, a structured surfactant component or a structured domain of a structured multi-phase personal care composition is measured using a graduated cylinder and a rotating apparatus.
  • a 1,000 ml graduated cylinder is used which is marked in 10 ml increments and has a height of 14.5 inches at the 1,000 ml mark from the inside of its base (for example, Pyrex No. 2982).
  • Distilled water 100 grams at 25°C is added to the graduated cylinder.
  • the cylinder is clamped in a rotating device, which clamps the cylinder with an axis of rotation that transects the center of the graduated cylinder.
  • the first lather volume is measured to the nearest 10 ml mark by recording the lather height in ml up from the base (including any water that has drained to the bottom on top of which the lather is floating). If the top surface of the lather is uneven, the lowest height at which it is possible to see halfway across the graduated cylinder is the first lather volume (ml). If the lather is so coarse that a single or only a few foam cells which comprise the lather ("bubbles") reach across the entire cylinder, the height at which at least 10 foam cells are required to fill the space is the first lather volume, also in ml up from the base.
  • Foam cells larger than one inch in any dimension, no matter where they occur, are designated as unfilled air instead of lather.
  • Foam that collects on the top of the graduated cylinder but does not drain is also incorporated in the measurement if the foam on the top is in its own continuous layer, by adding the ml of foam collected there using a ruler to measure thickness of the layer, to the ml of foam measured up from the base.
  • the maximum lather height is 1,000 ml (even if the total lather height exceeds the 1,000 ml mark on the graduated cylinder).
  • a second rotation sequence is commenced which is identical in speed and duration to the first rotation sequence.
  • the second lather volume is recorded in the same manner as the first, after the same 15 seconds of drainage time.
  • a third sequence is completed and the third lather volume is measured in the same manner, with the same pause between each for drainage and taking the measurement.
  • compositions according to the present invention perform significantly better in this test than similar compositions in conventional emulsion form.
  • the Shear Index (n) and Consistency Value (K) are known and accepted means for reporting the viscosity profile of materials having a viscosity that varies with applied shear rate using a Power Law model.
  • the term "Consistency value” or “K” as used herein is a measure of viscosity and is used in combination with Shear Index, to define viscosity for materials whose viscosity is a function of shear rate.
  • the measurements of Consistency value and Shear Index are made at 25 0 C.
  • the units for "Consistency value” or “K” are Pascal seconds.
  • the units for "Shear Index” are dimensionless.
  • Viscosity of a phase can be measured by applying a shear stress and measuring the shear rate using a rheometer, such as a TA Instruments AR2000 (TA Instruments, New Castle, DE, USA 19720). Viscosity is determined at different shear rates in the following manner.
  • the benefit phase is obtained. If there exists more than one distinct (immiscible, e.g.) benefit phase in the composition, such as for example a silicone oil phase and a hydrocarbon phase, they are preferably prepared separately and/or separated from each other, and evaluated separately from each other, although certain benefit phases which are mixtures such as emulsions can be evaluated as mixtures, in addition to evaluating the individual benefit phases individually.
  • a 40 mm diameter parallel plate geometry with a gap of lmm is used unless there are particles greater than 0.25 mm, in which case a gap of 2mm is used.
  • the rheometer uses standard parallel plate conventions to report shear rate at the edge as shear rate of the test; and converts torque to stress using the factor 2/( ⁇ R 3 ).
  • a sample comprising a small excess of the benefit phase is loaded onto the rheometer base plate which is at 25 0 C, the gap is obtained, and excess composition outside the top measurement geometry is removed, locking the top plate in position during the removal of excess sample.
  • the sample is equilibrated to the base plate temperature for 2 minutes.
  • a preshear step is performed comprising 15 seconds of shear at a shear rate of 50 inverse seconds (1/sec).
  • the shear rate with a parallel plate geometry is expressed as the shear rate at the edge, which is also the maximum shear rate.
  • the measurement is performed, which comprises ramping the stress from 10 Pa to 1,000 Pa over a 2.0 minute interval at 25 0 C, while collecting 60 viscosity data points, in an evenly spaced linear progression.
  • a shear rate of at least 500 I/seconds is obtained in the test, or the test is repeated with a fresh sample of the same component with a higher final stress value, maintaining the same rate of stress increase per time, until a shear rate of at least 500 1/sec is obtained during the measurement period.
  • observe the sample to make certain the area under the top parallel plate is not evacuated of sample at any edge location during the measurement, or the measurement is repeated until a sample remains for the duration of the test. If after several trials a result cannot be obtained due to sample evacuation at the edge, the measurement is repeated leaving an excess reservoir of material at the edge (not scraping). If evacuation still cannot be avoided, a concentric cylinder geometry is used with a large excess of sample to avoid air pockets during loading.
  • the value obtained for the log-log slope is (n-1) where n is the Shear Index and the value obtained for K is the Consistency Value, expressed in units of in Pa-s.
  • Density Method The metal pycnometer is utilized for determination of density of the individual phases, the surfactant phase and the benefit phase compositions. Density is measured in the absence of confounding factors such as whipped air bubbles which are generally kept to a minimum in commercial processes. A metal pycnometer can be obtained from Fisher Scientific (USA). Following are the steps for measuring density of cleansing phase and benefit phase compositions, and the multiphase personal cleansing composition. All instrument parts and phases are measured at ambient temperature.
  • the first step is Cleaning:
  • the metal pycnometer must be clean and dry before use. Disassemble the metal pycnometer completely and wash all parts well with water. Follow the water rinse with an alcohol rinse. Expel the alcohol with a stream of dry, clean air.
  • the second step is to obtain the weight of the empty pycnometer, and get pycnometer volume: Fill the clean, dry pycnometer with distilled water at 25 C. Place the lid on body of pycnometer and screw the cap firmly in place. Dry the outside of pycnometer well with a tissue and weigh to 0.00 Ig. Remove the water, clean and dry the pycnometer according to the directions shown above. Assemble and weigh the dry, empty pycnometer to 0.001 g to obtain the weight of empty pycnometer. Calculate the Water Weight in grams, which is numerically the pycnometer volume in cm 3 , using the assumption that the density of water is 1.00 g/cm 3 .
  • Water Weight Weight of pycnometer filled with water - Weight of Empty Pycnometer
  • the third step is the measurement of phase weight: Obtain a cleansing phase.
  • the cleansing phase is preferably obtained prior to combining with a benefit phase, or it can be separated from a multiphase composition by physical means such as centrifugation, pipetting, etc.
  • the phase can contain a density modifier. Clean and dry the pycnometer according to the directions shown above. Pour or otherwise fill the phase into the pycnometer without introducing air, adding an excess of the phase so that it extends slightly above the top of the pycnometer. Screw the cap firmly onto the body of the pycnometer: excess is forced through the hole in the lid of the pycnometer. Wipe away the excess. Weigh the filled pycnometer to 0.001 g to obtain the Weight of Filled Pycnometer. Calculate the Phase Weight according to the following equation.
  • Phase Weight Weight of Filled Pycnometer - Weight of Empty Pycnometer.
  • the fourth step is tp calculate the Density of the phase according to the following equation:
  • Density of Phase Sample Weight/Water Weight (express in g/cm 3 ).
  • the fifth step is repeat the procedure to obtain the Density of a benefit phase, using a benefit phase composition obtained by preparation of a phase, or by separation means.
  • the sixth step is to calculate the Density Difference:
  • the Density Difference between the phases is calculated by subtracting the two values obtained for the Density of a Phase. Express the result as a positive number. When there are more than 2 phases present, three, or more than three, such Density Differences can be obtained by subtracting the values obtained in pairs.
  • the Density Difference is less than 0.15 g/cm 3 , more preferably, the
  • Density Difference is less than 0.10 g/cm 3 , even more preferably, the Density Difference is less than 0.08g/cm 3 , still more preferably, the Density Difference is less than 0.06 g/cm 3 , still even more preferably, the Density Difference is less than 0.05 g/cm 3 , most preferably, the Density Difference is less than 0.02 g/cm 3 .
  • compositions described above can be prepared by conventional formulation and mixing techniques.
  • Prepare the personal cleansing composition by first adding citric acid into water at 1 :3 ratios to form a citric acid premix.
  • Prepare a polymer premix by adding Polyox WSR301 and Xanthan Gum into Trideceth-3. Then, add the following ingredients into the main mixing vessel in the following sequence with agitation: water, N-Hance polymer, Expancel (Inventive Example 1). Pass the mixture (water, N-Hance, Expancel) through a mill to break up the Expancel agglomerate.
  • the surfactant phase and benefit phase are blended together through a Koch SMX 4 element mixer (3/4" nominal) (available from Koch-Glitsch LP Mass Transfer Sales and Engineering, 9525 Kenwood Road, Suite 16-246, Cincinnati, OH 45242)to form a homogenous multiphase product.
  • the surfactant phase density of comparative Example has a density of about 1.04
  • compositions described above can be prepared by conventional formulation and mixing techniques. First prepare a citric acid premix by adding citric acid in water at
  • N-Hance 3196, Polyox WSR 301 and the rest of water Heat the vessel with agitation until it reaches 190F (88C), then add the benefit phase, which is petrolatum. Mix for about 10 min. Cool the batch with slow agitation until it reaches HO 0 F (43°C). Add the following ingredients: Glydant, perfume, and Expancel. Keep mixing until homogeneous.
  • citric acid premix by adding citric acid into water at 1 :3 ratio. Then, add the following ingredients into the main mixing vessel in the following sequence with agitation: water, N-Hance 3196, Expancel, Polyox WSR 301, and Miracare SLB-365. Adjust the pH to 6.0 using citric acid premix. Then, add sodium chloride, disodium EDTA, sodium benzoate, Glydant, and perfume. In a separate vessel, prepare a benefit phase which is a hydrophobic phase, by preparing a lipid premix by adding Petrolatum into Mineral oil and heat to 190F. Cool the lipid premix to IOOF and add into the main batch. Keep mixing until homogeneous.
  • citric acid premix by adding citric acid into water at 1:3 ratio and a polymer premix by adding Polyox WSR 301 and Keltrol 1000 to isosteareth-2. Then, add the following ingredients into the main mixing vessel with agitation: water, N-Hance 3196, sodium trideceth sulfate, sodium lauroamphoacetate, citric acid premix, ammonium lauryl sulfate. Then add polymer premix (Polyox and Keltrol 1000 in isosteareth-2). Add sodium chloride, disodium EDTA, sodium benzoate, Glydant, and perfume.
  • a benefit phase which is a hydrophobic phase
  • a benefit phase which is a hydrophobic phase
  • a lipid premix by adding Petrolatum into Mineral oil and heat to 190F. Cool the lipid premix to IOOF and then add into the main batch. Adjust pH to 6.0. Keep agitation until homogeneous..

Abstract

A mild, multiphase cleansing composition is described that includes a structured surfactant component has a first density; a benefit component that has a second density; and a density modifier; wherein the first density differs from the second density by less than 0.15 g/cm3; the structured surfactant component includes at least one surfactant and provides a Total Lather Volume of at least about 600 ml.

Description

MILD, STRUCTURED, MULTIPHASE PERSONAL CLEANSING COMPOSITIONS
FIELD OF THE INVENTION
The present invention relates to a mild, structured, multiphase, personal cleansing composition that comprises a density modifier wherein the first density of the structured surfactant component differs from the second density of the benefit component by less than 0.15 g/cm.3
BACKGROUND OF THE INVENTION Personal cleansing compositions that attempt to provide skin-conditioning benefits are known. Many of these compositions are aqueous systems comprising an emulsified conditioning oil or other similar materials in combination with a lathering surfactant. Although these products provide both conditioning and cleansing benefits, it is often difficult to formulate a product that deposits sufficient amount of skin conditioning agents on skin during use. In order to combat emulsification of the skin conditioning agents by the cleansing surfactant, large amounts of the skin conditioning agent are added to the compositions. However, this introduces another problem associated with these dual cleansing and conditioning products. Raising the level of skin conditioning agent in order to achieve increased deposition negatively affects product stability. It is known that dispersions and emulsions in personal cleansing compositions that comprise structured surfactants exhibit buoyant forces due to the difference in density between the continuous structured surfactant component, and the benefit component. For example, when the benefit component comprises a hydrophobic material such as a triglyceride or a hydrocarbon material, the density of the dispersed phase is about 0.9 gm/cm3, whereas the density of the continuous structured surfactant component is about 1.0 gm/cm3. When the buoyant force of a benefit component exceeds the local value of the yield stress of the continuous structured surfactant component, the droplet can rise through the continuous phase in a process called creaming. Given a sufficient amount of creaming, exacerbated by coalescence of the benefit component, phase separation can occur as the product becomes unstable, e.g., during shipping and extended storage on a store shelf.
Accordingly, the need still remains for a multiphase, blended personal cleansing composition that provides both cleansing and improved skin conditioning benefits which remains for a personal cleansing composition comprising two phases in physical contact that remain stable for long periods of time.
SUMMARY OF THE INVENTION
The present invention relates to a mild, multiphase cleansing composition that comprises a structured surfactant component has a first density; a benefit component that has a second density and a density modifier; wherein the first density differs from the second density by less than 0.15 g/cm3; the structured surfactant component comprises at least one surfactant and provides a Total Lather Volume of at least about 600 ml.
The present invention also relates to a mild, multiphase cleansing composition that comprises a structured surfactant component that has a first density; a benefit component that has a second density; and a density modifier; wherein the first density differs from the second density by less than 0.15 g/cm3; the surfactant comprises at least one surfactant and provides a Total Lather Volume of at least about 600 ml; wherein the mild, multiphase composition that comprises an opaque structured domain; wherein the opaque structured domain is lamellar phase.
The present invention also relates to a mild, structured, multiphase personal cleansing composition that comprises a structured surfactant component; a benefit component; and a density modifier; the structured surfactant component comprises at least one surfactant and provides a Total Lather Volume of at least about 600 ml; the mild, multiphase cleansing composition has a density of preferably less than about 0.97 g/cm3.
The inventors believe that when the structured surfactant component comprises low density particles such that all parts of the structured composition are exposed to buoyant forces by the dispersed low density phase and the low density particles, creaming and phase separation are mitigated and the composition can be stabilized even under harsh conditions such as high temperature shipping and storage conditions. Preferably, a large number of low density particles are added so that all parts of the structured surfactant composition are exposed to buoyant forces. The inventor believe that a multiphase personal cleansing composition containing both cleansing and benefit phases that are blended together can be formulated to provide improved cosmetics and skin feel during and after application while also providing excellent skin conditioning and cleansing benefits. The inventors believe that such a composition can be formulated with sufficiently high levels of benefit agents without compromising product lather performance and stability.
The inventors believe that personal cleansing compositions can be formulated with enhanced stability by density matching of the cleansing phase and the benefit phase and by incorporating density modifiers in the cleansing phase and/or the benefit phase.
DETAILED DESCRIPTION OF THE INVENTION The term "ambient conditions" as used herein, refers to surrounding conditions at one (1) atmosphere of pressure, 50% relative humidity, and 25°C.
By the term "multi-phase" or "multi-phase" as used herein, is meant that the phases of the present compositions occupy separate but distinct physical spaces inside the package in which they are stored, but are in direct contact with one another (i.e., they are not separated by a barrier and they are not emulsified or mixed to any significant degree). In one preferred embodiment of the present invention, the "multi-phase" personal care compositions comprise at least two visually distinct phases which are present within the container as a visually distinct pattern. The pattern results from the combination of the "multi-phase" composition by a process herein described. The "patterns" or "patterned" include but are not limited to the following examples: striped, marbled, rectilinear, interrupted striped, check, mottled, veined, clustered, speckled, geometric, spotted, ribbons, helical, swirl, arrayed, variegated, textured, grooved, ridged, waved, sinusoidal, spiral, twisted, curved, cycle, streaks, striated, contoured, anisotropic, laced, weave or woven, basket weave, spotted, and tessellated. Preferably the pattern is selected from the group consisting of striped, geometric, marbled, and combinations thereof.
In a preferred embodiment, the striped pattern may be relatively uniform across the dimension of the package. Alternatively, the striped pattern may be uneven, i.e. wavy, or may be non-uniform in dimension. The striped pattern does not need to necessarily extend across the entire dimension of the package. The size of the stripes can be at least about 0.1mm in width and 10 mm in length, preferably at least about 1 mm in width and at least 20 mm in length as measured from the package exterior. The phases may be various different colors, and/or include particles, glitter or pearlescent agents in at least one of the phases in order to offset its appearance from the other phase(s) present.
The term "multi-phase personal care composition" as used herein, refers to compositions intended for topical application to the skin or hair.
The term "surfactant component" as used herein means the total of all anionic, nonionic, amphoteric, zwitterionic and cationic surfactants in a phase. When calculations are based on the surfactant component, water and electrolyte are excluded from the calculations involving the surfactant component, since surfactants as manufactured typically are diluted and neutralized.
The term "structured," as used herein means having a rheology that confers stability on the multi-phase composition. The degree of structure is determined by characteristics determined by one or more of the following methods the Yield Stress Method, or the Zero
Shear Viscosity Method or by the Ultracentrifugation Method, all in the Test Methods below. Accordingly, a surfactant phase of the multiphase composition of the present invention is considered "structured," if the surfactant phase has one or more of the following properties described below according to the Yield Stress Method, or the Zero
Shear Viscosity Method or by the Ultracentrifugation Method. A surfactant phase is considered to be structured, if the phase has one or more of the following characteristics: A. a Yield Stress of greater than about 0.1 Pascal (Pa), more preferably greater than about 0.5 Pa, even more preferably greater than about 1.0 Pa, still more preferably greater than about 2.0 Pa, still even more preferably greater than about 3 Pa, and even still even more preferably greater than about 5 Pa as measured by the Yield
Stress and Zero Shear Viscosity Method described hereafter: B. a Zero Shear Viscosity of at least about 500 Pascal-seconds (Pa-s), preferably at least about 1,000 Pa-s, more preferably at least about 1,500 Pa-s, even more preferably at least about 2,000 Pa-s; or
C. a Structured Domain Volume Ratio as measured by the Ultracentrifugation Method described hereafter, of greater than about 40%, preferably at least about 45%, more preferably at least about 50%, more preferably at least about 55%, more preferably at least about 60%, more preferably at least about 65%, more preferably at least about 70%, more preferably at least about 75%, more preferably at least about 80%, even more preferably at least about 85%.
The term "visually distinct phase" as used herein, refers to a region of the multiphase personal care composition having one average composition, as distinct from another region having a different average composition, wherein the regions are visible to the unaided naked eye. This would not preclude the distinct regions from comprising two similar phases where one phase could comprise pigments, dyes, particles, and various optional ingredients, hence a region of a different average composition. A phase generally occupies a space or spaces having dimensions larger than the colloidal or sub- colloidal components it comprises. A phase may also be constituted or re-constituted, collected, or separated into a bulk phase in order to observe its properties, e.g., by centrifugation, filtration or the like.
The multi-phase personal care composition of the present invention is typically extrudable or dispensible from a package. The multi-phase personal care compositions typically exhibit a viscosity of from about 1,500 centipoise (cP) to about 1,000,000 cP, as measured by the Viscosity Method as described in copending application serial number 10/841174 filed on May 7, 2004 titled "Mulit-phase Personal Care Compositions."
When evaluating a structured multi-phase personal care composition, by the methods described herein, preferably each individual phase is evaluated prior to combining, unless otherwise indicated in the individual methodology. However, if the phases are combined, each phase can be separated by centrifugation, ultracentrifugation, pipetting, filtering, washing, dilution, concentration, or combination thereof, and then the separate components or phases can be evaluated. Preferably, the separation means is chosen so that the resulting separated components being evaluated is not destroyed, but is representative of the component as it exists in the structured multi-phase personal care composition, i.e., its composition and distribution of components therein is not substantially altered by the separation means. Generally, multi-phase compositions comprise domains significantly larger than colloidal dimensions so that separation of the phases into the bulk is relatively easy to accomplish while retaining the colloidal or microscopic distribution of components therein. Prefebably, the compositions of the present invention are rinse-off formulations, by which is meant the product is applied topically to the skin or hair and then subsequently (i.e., within minutes) the skin or hair is rinsed with water, or otherwise wiped off using a substrate or other suitable removal means with deposition of a portion of the composition.
In a preferred embodiment of the present invention the structured multi-phase personal care composition comprises at least two visually distinct phases wherein a first phase is visually distinct from a second phase. Preferably, the visually distinct phases are packaged in physical contact with one another and are stable. Preferably, the visually distinct phases form a pattern.
The multi-phase personal care compositions of the present invention comprise at least two visually distinct phases, wherein the composition can have a first structured phase, a second phase, a third phase, a fourth phase and so on. The ratio of a first phase to a second phase is preferably from about 1 :99 to about 99:1, preferably from about 90:10 to about 10:90, more preferably from about 80:20 to about 20:80, even more preferably from about 70:30 to about 30:70, still even more preferably from about 60:40 to about 40:60, even still even more preferably about 50:50.
The multi-phase personal care composition of the present invention can comprise a cleansing phase. The cleansing phase preferably comprises at least one branched anionic surfactant. Preferably, the structured surfactant component comprises a mixture of surfactants. The structured multi-phase personal care composition typically comprises from about 1 % to about 99 %, by weight of the composition, of the cleansing phase.
The structured surfactant component preferably comprises a lathering surfactant or a mixture of lathering surfactants. The structured surfactant component preferably comprises at least one branched anionic surfactant. The structured surfactant component comprises surfactants suitable for application to the skin or hair. Suitable surfactants for use herein include any known or otherwise effective cleansing surfactant suitable for application to the skin, and which are otherwise compatible with the other essential ingredients in the structured multi-phase personal care composition including water. These surfactants include anionic, nonionic, cationic, zwitterionic, amphoteric surfactants, soap, or combinations thereof. Preferably, anionic surfactant comprises at least 40% of the structured surfactant component, more preferably from about 45% to about 95% of the structured surfactant component, even more preferably from about 50% to about 90%, still more preferably from about 55% to about 85%, and even still most preferably at least about 60% of the structured surfactant component comprises anionic surfactant.
The multi-phase personal care composition preferably comprises a structured surfactant component at concentrations ranging from about 2% to about 23.5%, more preferably from about 3% to about 21%, even more preferably from about 4% to about 20.4%, still more preferably from about 5% to about 20%, still even more preferably from about 13% to about 18.5%, and even still even more preferably from about 14% to about 18%, by weight of the cleansing phase.
The cleansing phase comprising the structured surfactant component is preferably a structured domain comprising surfactants. The structured domain enables the incorporation of high levels of benefit components in a separate phase that are not emulsified in the composition. In a preferred embodiment the structured domain is an opaque structured domain. The opaque structured domain is preferably a lamellar phase. The lamellar phase produces a lamellar gel network. The lamellar phase can provide resistance to shear, adequate yield to suspend particles and droplets and at the same time provides long term stability, since it is thermodynamically stable. The lamellar phase tends to have a higher viscosity thus minimizing the need for viscosity modifiers.
The cleansing phase typically provides a Total Lather Volume of at least about 600 ml, preferably greater than about 800ml, more preferably greater than about 1000ml, even more preferably greater than about 1200ml, and still more preferably greater than about 1500ml, as measured by the Lather Volume Test described hereafter. The cleansing phase preferably has a Flash Lather Volume of at least about 300 ml, preferably greater than about 400ml, even more preferably greater than about 500ml, as measured by the Lather Volume Test described hereafter. Suitable surfactants are described in McCutcheon's, Detergents and Emulsifiers,
North American edition (1986), published by allured Publishing Corporation; and McCutcheon's, Functional Materials, North American Edition (1992); and in U.S. Patent 3,929,678 issued to Laughlin, et al on December 30, 1975.
Suitable surfactants are described in McCutcheon's, Detergents and Emulsifiers, North American edition (1986), published by allured Publishing Corporation; and McCutcheon's, Functional Materials, North American Edition (1992); and in U.S. Patent 3,929,678 issued to Laughlin, et al on December 30, 1975.
Preferred linear anionic surfactants for use in the structured surfactant phase of the multiphase, personal care composition include ammonium lauryl sulfate, ammonium laureth sulfate, sodium lauryl sulfate, sodium laureth sulfate, potassium laureth sulfate, sodium lauryl sarcosinate, sodium lauroyl sarcosinate, lauryl sarcosine, cocoyl sarcosine, ammonium cocoyl sulfate, potassium lauryl sulfate, and combinations thereof.
Amphoteric surfactants are suitable for use in the multiphase composition of the present invention. The amphoteric surfactants include those that are broadly described as derivatives of aliphatic secondary and tertiary amines in which the aliphatic radical can be straight or branched chain and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate. Examples of compounds falling within this definition are sodium 3-dodecyl-aminopropionate, sodium 3- dodecylaminopropane sulfonate, sodium lauryl sarcosinate, and N-alkyltaurines. Zwitterionic surfactants suitable for use include those that are broadly described as derivatives of aliphatic quaternary ammonium, phosphonium, and sulfonium compounds, in which the aliphatic radicals can be straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate. Zwitterionic surfactants suitable for use in the multiphase, personal care composition include betaines, including cocoamidopropyl betaine.
Non-limiting examples of preferred nonionic surfactants for use herein are those selected form the group consisting of glucose amides, alkyl polyglucosides, sucrose cocoate, sucrose laurate, alkanolamides, ethoxylated alcohols and mixtures thereof. In a preferred embodiment the nonionic surfactant is selected from the group consisting of glyceryl monohydroxystearate, isosteareth-2, trideceth-3, hydroxystearic acid, propylene glycol stearate, PEG-2 stearate, sorbitan monostearate, glyceryl laurate, laureth-2, cocamide monoethanolamine, lauramide monoethanolamine, and mixtures thereof. Preferably the nonionic surfactant has an HLB from about 1.0 to about 15.0, preferably from about 3.4 to about 15.0, more preferably from about 3.4 to about 9.5, even more preferably from about 3.4 to about 5.0. The multi-phase personal care composition preferably comprises a nonionic surfactant at concentrations ranging from about 0.01% to about 50%, more preferably from about 0.10% to about 10%, and even more preferably from about 0.5% to about 5.0%, by weight of the surfactant component. Mixtures of anionic surfactants can be used in some embodiments, including mixtures of linear and branched surfactants, and anionic surfactants combined with nonionic, amphoteric, and/or zwitterionic surfactants.
An electrolyte, if used, can be added per se to the multiphase personal care composition or it can be formed in situ via the counterions included in one of the raw materials. The electrolyte preferably includes an anion comprising phosphate, chloride, sulfate or citrate and a cation comprising sodium, ammonium, potassium, magnesium or mixtures thereof. Some preferred electrolytes are sodium chloride, ammonium chloride, sodium or ammonium sulfate. The electrolyte is preferably added to the structured surfactant phase of the composition in the amount of from about 0.1% to about 15% by weight, preferably from about 1% to about 6% by weight, more preferably from about 3% to about 6%, by weight of the structured surfactant composition.
In one embodiment of the present invention, the multiphase, personal care composition comprises a structured surfactant phase comprising a mixture of at least one nonionic surfactant, and an electrolyte. In another embodiment, the surfactant phase can comprise a mixture of surfactants, water, at least one anionic surfactant, an electrolyte, and at least one alkanolamide.
At least one anionic surfactant comprising anionic surfactant molecules of the present invention is preferably branched. A surfactant molecule is branched when the hydrocarbon tail of the surfactant molecule comprises at least one ternary or quaternary carbon atom, such that a methyl, ethyl, propyl, butyl, pentyl or hexyl side chain extends from the hydrocarbon backbone. The hydrocarbon backbone is described by the longest hydrocarbon length in the hydrocarbon tail. A side chain in the branched hydrocarbon of a surfactant molecule can be described by its position on the backbone, counting from the first carbon attached to a hydrophilic atom, enumerated as carbon number 1, the adjacent carbon on the backbone being carbon number 2, and so on. Side chains are also described by their length, a single carbon side chain denoted methyl; a 2-carbon length denoted ethyl, and so on. Side chains that have their own branching are denoted by conventional nomenclature techniques, e.g., isopropyl, but are less common. Anionic surfactant molecules which do not have branching are linear anionic surfactant molecules, and surfactants comprising a preponderance of linear anioinic surfactant molecules as indicated hereafter are linear anionic surfactants. Most anionic surfactants derived from common natural sources such as coconut and palm, are linear anionic surfactants, such as ammonium lauryl sulfate, sodium lauryl ether sulfate. Linear anionic surfactants can also be derived from other sources including synthetic.
Because an anionic surfactant typically comprises a mixture of different types of surfactant molecules, anionic surfactants can be called linear or branched depending on the relative amounts of individual surfactant molecules of different types that comprise the anionic surfactant. For example, sodium tridecyl sulfate and sodium trideceth sulfate can be called branched surfactants because they typically comprise nearly all (>95%) branched surfactant molecules. For the purposes of the present invention, an anionic surfactant is considered branched surfactant when at least 10% of its hydrocarbon chains are branched molecules.
Branched anionic surfactants comprise surfactant molecules having different kinds of branching. Some branched anionic surfactants, such as tridecanol based sulfates such as sodium trideceth sulfate, comprise a high level of branching, with over 80% of surfactant molecules comprising at least 2 branches and having an average of about 2.7 branches per molecule in some sodium trideceth sulfates. Other branched anionic surfactants, such as C12-J3 alkyl sulfate derived from Safol ™ 23 alcohol (Sasol, Inc, Houston, TX, USA) comprise a mixture of about 50-55% linear anionic surfactant molecules, with about 15-30% branched surfactant molecules. For the purposes of the present invention, anionic surfactants comprising more than 10% branched surfactant molecules, but having an average of less than 2.0 branches per molecule, are considered monomethyl branched anionic surfactants.
Branching information for many surfactants is typically known or obtainable from suppliers of branched alcohol feedstocks. For example, Sasol publishes the following information related to Safol ™ 23 primary alcohol: Linear Alcohol Isomers 50% Mono-Methyl Alcohol Isomers 30%
Other Primary Alcohol Isomers <20% Total 100%
Safol ™ 23 alcohol can be sulfated, for example in an SO3/air stream falling film reactor followed by rapid neutralization with sodium hydroxide to produce sodium C12-13 alkyl sulfate, a process known in the art. Since the sulfation process involves no rearrangement of the hydrocarbon backbone, the backbone of the C12-13 alkyl sulfate has the same structure as the Safol ™ 23 alcohol, and is a branched anionic surfactant, and is also a monomethyl branched anionic surfactant. Other suppliers of alcohols provide similar information on their primary alcohols, e.g., Shell Chemical for the Neodol ™ primary alcohols. In the absence of published analytical information by established methods from material suppliers on branching of a surfactant or its feedstock alcohol, analytical techniques known to those skilled in the art can be used to determine branching. For example, when the structure of the hydrocarbon tail is not very complex (i.e., less than about a dozen major components), a gas chromatography — mass spectrometry (GC-MS) technique can be used, involving oxidation of the alcohol in acetone (cosolvent) by a 3.3 M H2CRO4 Jones Reagent to a fatty acid followed by oxazoline derivatization using 2- amino, 2-methyl, 1-propanol at 200C for 2 hours, dilution with CHCl3 and subsequent washing with distilled water, drying with sodium sulfate prior to injection into a split injection (280C) or on-column injection. A typical GC program is 80-320C at 5C/min rate on a 30 m x 0.25 mm DB-I (0.25 uM film) column, and can give specific information on branching location for a majority of a hydrocarbon tail of an anionic surfactant. When co-elution of species and/or elution of unknown components occurs, GC-MS is able to obtain the amount of branched components, which is taken as 100% minus the sum of n- C12 and rc-C13 eluted. Typically, W-C11 , «-C12 and W-C13 elution times are known for a column and/or can be obtained by simple running of standards which are available. By convention for our invention, inventors sum all oxazoline peaks in the GC window between n-C\ \ and «-C12, said peaks are the branched C12 peaks; sum all oxazoline peaks in the GC window between W-C12 and «-C13, said peaks are the branched C13 peaks; dividing the peak areas obtained by the total area obtained, including linear C12 and linear C13, to obtain the fractional amount of each component. By our convention, the sum of the peak fractions in the branched C12 and branched C13 windows, added together, is the fraction of branched molecules, which can be expressed as a percentage. The integrated area under each GC peak is the peak information used in the calculations. If necessary, the surfactant can even be obtained by extraction from a composition first, e.g. by filtration such as crossflow filtration. From the GC data, the number of branch points per hydrocarbon chain is summed, multiplying number of branches per molecule by mole fraction for each species identified to obtain an average degree of branching per molecule for the surfactant. For example, 50% of molecules having 1 branch point with 50% linear molecules is an average degree of branching of 0.5. For highly branched molecules (> 1.25 average degree of branching), such as sodium trideceth sulfate, determining degree of branching from the GC spectra can be difficult and require specialized equipment, so instead is determined from conventional NMR techniques, using the ratio of ternary to secondary carbon-carbon bonds in the hydrocarbon tail to determine average degree of branching. Branched anionic surfactants include but are not limited to the following surfactants: sodium trideceth sulfate, sodium tridecyl sulfate, sodium C]2-13 alkyl sulfate, sodium C12-15 alkyl sulfate, sodium C11-^ alkyl sulfate, sodium C12-^ alkyl sulfate, sodium C10-I6 alkyl sulfate, sodium C12-13 pareth sulfate, sodium C12-13 pareth-« sulfate, and sodium C12-14 pareth-?? sulfate. Other salts of all the aforementioned surfactants are useful, such as TEA, DEA, ammonia, potassium salts. Useful alkoxylates include the ethylene oxide, propylene oxide and EO/PO mixed alkoxylates. Phosphates, carboxylates and sulfonates prepared from branched alcohols are also useful anionic branched surfactants. Branched surfactants can be derived from synthetic alcohols such as the primary alcohols from the liquid hydrocarbons produced by Fischer-Tropsch condensed syngas, for example Safol ™ 23 Alcohol available from Sasol North America, Houston, TX; from synthetic alcohols such as Neodol ™ 23 Alcohol available from Shell Chemicals, USA; from synthetically made alcohols such as those described in U.S. Patent No. 6,335,312 issued to Coffindaffer, et al on January 1, 2002. Preferred alcohols are Safol ™ 23 and Neodol ™ 23. Preferred alkoxylated alcohols are Safol ™ 23-3 and Neodol ™ 23-3. Sulfates can be prepared by conventional processes to high purity from a sulfur based SO3 air stream process, chlorosulfonic acid process, sulfuric acid process, or Oleum process. Preparation via SO3 air stream in a falling film reactor is a preferred sulfation process.
Monomethyl branched anionic surfactants include but are not limited to the branched anionic sulfates derived from Safol ™ 23-« and Neodol ™ 23-n as previously described, where n is an integer between 1 and about 20. Fractional alkloxylation is also useful, for example by stoichiometrically adding only about 0.3 moles EO, or 1.5 moles EO, or 2.2 moles EO5 based on the moles of alcohol present, since the molecular combinations that result are in fact always distributions of alkoxylates so that representation of n as an integer is merely an average representation. Preferred monomethyl branched anionic surfactants include a Ci2-13 alkyl sulfate derived from the sulfation of Safol ™ 23, which has about 28% branched anionic surfactant molecules; and a C 12-13 pareth sulfate derived from Neodol ™ 23-3, which has about 10-18% branched anionic surfactant molecules.
When the anionic surfactant is a branched anionic primary sulfate, it may contain some of the following branched anionic surfactant molecules: 4-methyl undecyl sulfate, 5- methyl undecyl sulfate, 7-methyl undecyl sulfate, 8-methyl undecyl sulfate, 7-methyl dodecyl sulfate, 8-methyl-dodecyl sulfate, 9-methyl dodecyl sulfate, 4,5-dimethyl decyl sulfate, 6,9-dimethyl decyl sulfate, 6,9-dimethyl undecyl sulfate, 5-methyl-8-ethyl undecyl sulfate, 9-methyl undecyl sulfate, 5,6,8-trimethyl decyl sulfate, 2-methyl dodecyl sulfate, and 2-methyl undecyl sulfate,. When the anionic surfactant is a primary alkoxylated sulfate, these same molecules may be present as the n = 0 unreacted alcohol sulfates, in addition to the typical alkoxylated adducts that result from alkoxylation (e.g., Neodol ™ 23-3 mol EO retains typically 16% unreacted Neodol ™ 23 with 57% of molecules having 1 to 5 EO molecules reacted, according to Shell Chemicals technical literature, 'Typical Distributions of NEODOL Ethoxylate Adducts").
The density modifier of the present invention can be comprised in the surfactant component. These density modifiers are preferably low density microspheres. When the structured surfactant component comprises low density particles such that all parts of the structured composition are exposed to buoyant forces by the dispersed low density phase and the low density particles, creaming and phase separation are mitigated and the composition can be stabilized even under harsh conditions such as high temperature shipping and storage conditions. Preferably, a large number of low density particles are added so that all parts of the structured surfactant composition are exposed to buoyant forces. For example, in a composition comprising, by volume, 70% structured surfactant and 30% dispersed lipid wherein the lipid is dispersed to a size of 50 micron diameter, the yield stress to stabilize a single particle under a 1Og acceleration (e.g., during shipping) can be calculated to be about 0.21 Pa, assuming monodispersed lipid droplets in a cubic array with a homogenous stress distribution over the cube faces. When the volume fraction of lipid is increased to 50% of the same composition, the required yield stress can be calculated to be 0.30 Pa, due to the more concentrated stress per individual particle. Thus, one would expect that increasing the number of low density dispersed phase droplets would destabilize the composition, which has been the experience of the inventors. Conventionally, one would expect that introducing other low density, dispersed domains of any kind would also lead to instability by the same mechanism — increased stress concentration required to stabilize each individual dispersed domain. However, introducing particular buoyant particles to compositions comprising a dispersed hydrophobic phase has a tendency to exert a stabilizing, not a destabilizing, effect on the composition. The stabilizing effect may be related to the density difference between the added buoyant particles and the dispersed hydrophobic phase. For example, when the added buoyant particles have a density of about 25 kg/m3 (i.e., 0.025 gm/cm3), and the dispersed hydrophobic phase is petrolatum which has a density of about 0.88 gm/cm3, the buoyant particles are 0.855 gm/cm3 lower in density than the hydrophobic phase, leading to essentially 'superbuoyant regions' of composition comprising a buoyant particle and structured surfactant surrounding the particle, which reduces the gravitational force on the structured surfactant in the region adjacent to the particle. Given a sufficient number of buoyant particles, the net contribution of the buoyant particles can be to increase stability of compositions comprising both the buoyant particles and a dispersed hydrophobic phase in a structured surfactant composition. For example, when 0.30 weight % of buoyant particles having an average density of 25 kg/m3 is added to a composition,, the effective volume of the composition increases by about 10%. If the particles are about 50 micron diameter, about 1.5 * 108 buoyant particles are added per 100 grams of composition, resulting in a substantial number of superbouyant particle domains.
Preferably, the buoyant particles have a density of less than 0.85 gm/cm3, more preferably less than about 0.5 gm/cm3, still more preferably less than about 0.1 gm/cm3, even more preferably less than about 0.05 gm/cm3.
When the amount of a low density benefit component is increased in the composition; the need for density modifiers is also increased. Specifically, the need to add density modifier to the surfactant component is increased when (1) the benefit component is a hydrophobic material (petrolatum, e.g., having a lower density than the cleansing phase); (2) the amount of 'petrolatum' is higher than 20%, even 30%, even about 40% or more of the composition.
To further improve stability under stress conditions such as high temperature and vibration, it is preferable to adjust the densities of the separate components, such that they are substantially equal. To achieve this, low density microspheres can be added to the surfactant component of the mild, structured, multiphase cleansing composition. The low density microspheres employed to reduce the overall density of the surfactant component are particles having a density lower than 0.7 g/cm3, preferably less than 0.2 g/cm3, more preferably less than 0.1 g/cm3, most preferably less than 0.05 g/cm3. The low density microspheres generally have a diameter less than 200 μm, preferably less than 100 μm, most preferably less than 40 μm. Preferably, the density difference between the first density of the surfactant component when the surfactant component comprises the low density particles and the second density of the benefit component is less than 0.15 g/cm3, more preferably, the density difference is less than 0.10 g/cm , even more preferably, the density difference is less than 0.08g/cm3, still more preferably, the density differerence is less than 0.06 g/cm3, still even more preferably, the density difference is less than 0.05 g/cm3, most preferably, the density difference is less than 0.02 g/cm3.
When the benefit component comprising hydrophobic materials such as petrolatum, mineral oil, waxes, hydrophobic polymers, fatty esters, fatty ethers, and/or triglycerides which have a density is blended with a structured surfactant component, the resulting blended composition has a density indicative of the mixture. For example, a multiphase personal cleansing composition comprises 15% petrolatum having a density of 0.88 g/cm3 mixed with a 85% of a surfactant component having a density of 1.0 g/cm3 has a density of about 0.982 g/cm3, but if the surfactant component utilizes low density particles to reduce its density to 0.93 g/cm3, the resultingresulting multiphase personal cleansing composition has a density of about 0.923 g/cm3. Preferably, the structured surfactant phase comprises low density particles so that the blended composition has a low density. When the structured surfactant phase comprises low density particles, the density of the composition (i.e., hydrophobic phase combined with surfactant phase) is preferably less than about 0.97 g/cm3, more preferably less than about 0.96 g/cm3, even more preferably less than about 0.95 g/cm3, still more preferably less than about 0.94 g/cm3, still even more preferably less than about 0.92 g/cm3, most preferably less than about 0.90 g/cm3.
The microspheres are produced from any appropriate inorganic or organic material, compatible with a use on the skin, that is, nonirritating and nontoxic. Preferably, the microspheres don't negatively impact the product lather performance. Expanded microspheres made of thermoplastic material are known, and may be obtained, for example, according to the processes described in Patents and Patent Applications EP-56219, EP-348372, EP-486080, EP-320473, EP-112807 and U.S. Pat. No. 3,615,972.
These microspheres may be produced from any nontoxic and non-irritant thermoplastic materials. These microspheres can be in the dry or hydrated state. Among hollow microspheres which can be used, special mention may be made of those marketed under the brand name EXPANCEL® (thermoplastic expandable microspheres) by the Akzo Nobel Company, especially those of DE (dry state) or WE (hydrated state) grade. Representative microspheres derived from an inorganic material, include, for instance, "QCEL® Hollow Microspheres" and "EXTENDOSPHERES" ™ Ceramic Hollow Spheres", both available from the PQ Corporation. Examples are: Qcel ® 300; Qcel ® 6019; Qcel ® 6042S.
Benefit Phase: The multiphase personal care compositions of the present invention can comprise a benefit phase. The benefit phase in the present invention is preferably anhydrous and can be substantially free of water. The benefit phase can comprise less than about 5% water, preferable less than 3% water or most preferably less than 1% water. The benefit phase can be substantially free of surfactant. The benefit phase can comprise less than about 5% of surfactant, more preferably less than about 3% of surfactant and most preferably less than about 1% surfactant.
The benefit phase typically comprises hydrophobic moisturizing materials. The benefit phase can be comprised of the components selected from the group consisting of petrolatum, lanolin, hydrocarbon oils such as mineral oil, natural and synthetic waxes such as micro-crystalline waxes, paraffins, ozokerite, lanolin wax, lanolin alcohols, lanolin fatty acids, polyethylene, polybutene, polydecene and perhydrosqualene, volatile or non-volatile organosiloxanes and their derivatives such as dimethicones, cyclomethicones, alkyl siloxanes, polymethylsiloxanes and methylphenylpolysiloxanes, lanolin oil, esters such as isopropyl lanolate, acetylated lanolin, acetylated lanolin alcohols, lanolin alcohol linoleate, lanolin alcohol riconoleate natural and synthetic triglycerides such as castor oil, soy bean oil, sunflower seed oil, maleated soy bean oil, safflower oil, cotton seed oil, corn oil, walnut oil, peanut oil, olive oil, cod liver oil, almond oil, avocado oil, palm oil and sesame oil, and combinations thereof.
The benefit phase may comprise from about 1% to about 100%, preferably at least about 15%, preferably at least about 17.5%, preferably at least about 20%, preferably at least about 24%, preferably at least about 30%, by weight of the benefit phase, of a hydrophobic moisturizing material. Hydrophobic moisturizing materials suitable for use in the present invention preferably have a Vaughan Solubility Parameter of from about 5 (cal/cm3)1/2 to about 15 (cal/cm3)1/2, as defined by Vaughan in Cosmetics and Toiletries, Vol. 103. Non-limiting examples of hydrophobic moisturizing materials having VSP values ranging from about 5 to about 15 include the following: Cyclomethicone 5.92, Squalene 6.03, Petrolatum 7.33, Isopropyl Palmitate 7.78, Isopropyl Myristate 8.02, Castor Oil 8.90, Cholesterol 9.55, as reported in Solubility, Effects in Product, Package, Penetration and Preservation, C. D. Vaughan, Cosmetics and Toiletries, Vol. 103, October 1988. The hydrophobic materials are preferably selected among those having defined rheological properties as described hereinafter, including selected Consistency value (K) and Shear Index (n). These preferred rheological properties are especially useful in providing the personal care compositions with lubrication of the skin surface for shaving and for improved deposition of hydrophobic moisturizing materials. The benefit phase has a Consistency Value (K) from about 20 to about 2,000 Pa-s, preferably from about 25 to about 500 Pa-s, more preferably from about 30 to about 450 Pa-s, still more preferably from about 30 to about 400 Pa-s and even still more preferably from about 30 to about 350 Pa-s. The benefit phase has a Shear Index from about 0.025 to about 0.99.
Examples of suitable benefit phases and description of measuring the values of Consistency (K) and Shear Index (n) are described in U.S. Patent Application No. 10/665,670, Publication No. 2004/0057920 Al entitled Striped liquid personal cleansing compositions containing a cleansing phase and a separate benefit phase" filed by Fact, et al. on Sept. 18, 2003, published on April 4, 2004, U.S. Patent Application No. 10/699,469 Publication No. 2004/0092415 Al entitled "Striped liquid personal cleansing compositions containing a cleansing phase and a separate benefit phase with improved stability" filed by Fact, et al. on Oct. 31, 2003, published on May 13, 2004 and U.S. Patent Application No. 10/837,214 Publication No. 2004/0219119 Al entitled "Visually distinctive multiple liquid phase compositions" filed by Weir, et al. on April 30, 2004, published on November 18, 2004.
The density modifiers of the present invention can be comprised in the benefit component. Just as low density microspheres can be added to the structured surfactant component of the present invention to improve stability, high density materials can be added to the benefit component to increase its density having the same impact on stability. The high density particles employed to increase the overall density of the benefit component are particles having a density greater than 1.1 g/cm , preferably greater than 1.5 g/cm3, more preferably greater than 2.0 g/cm3, most preferably greater than 2.5 g/cm3. The high density particles generally have a diameter less than 200 μm, preferably less than 100 μm, most preferably less than 40 μm. Preferably, the high density particles are selected from water-insoluble inorganic materials, metals, metal oxides, metal alloys and mixture thereof. Non-limiting examples include calcium carbonate, silica, clays, mica, talc, iron, zinc, copper, lead, titanium dioxide, zinc oxide, and the like. Structured Aqueous Phase:
The multi-phase personal care compositions of the present invention can comprise a structured aqueous phase that comprises a water structurant and water. The structured aqueous phase can be hydrophilic and in a preferred embodiment the structured aqueous phase is a hydrophilic, non-lathering gelled water phase. In addition, the structured aqueous phase typically comprises less than about 5%, preferably less than about 3%, and more preferably less than about 1%, by weight of the structured aqueous phase, of a surfactant. In one embodiment of the present invention, the structured aqueous phase is free of lathering surfactant in the formulation. A preferred structured aqueous phase is a non-lathering structured aqueous phase as described in published U.S. Patent Application No. 2005/0143269A1 entitled "Multi-phase Personal Cleansing Compositions Containing A Lathering Cleansing Phase And A Non-Lathering Structured Aqueous Phase."
The structured aqueous phase of the present invention can comprise from about
30% to about 99%, by weight of the structured aqueous phase, of water. The structured aqueous phase generally comprises more than about 50%, preferably more than about
60%, even more preferably more than about 70%, and still more preferably more than about 80%, by weight of the structured aqueous phase, of water.
The structured aqueous phase will typically have a pH of from about 5 to about
9.5, more preferably about 7. A water structurant for the structured aqueous phase can have a net cationic charge, net anionic charge, or neutral charge. The structured aqueous phase of the present compositions can further comprise optional ingredients such as, pigments, pH regulators (e.g. triethanolamine), and preservatives.
The structured aqueous phase can comprise from about 0.1% to about 30%, preferably from about 0.5% to about 20%, more preferably from about 0.5% to about 10%, and even more preferably from about 0.5% to about 5%, by weight of the structured aqueous phase, of a water structurant.
The water structurant is typically selected from the group consisting of inorganic water structurants, charged polymeric water structurants, water soluble polymeric structurants, associative water structurants, and mixtures thereof. Non-limiting examples of inorganic water structurants include silicas, polymeric gellants such as polyacrylates, polyacrylamides, starches, modified starches, crosslinked polymeric gellants, copolymers, and mixtures thereof. Non-limiting examples of charged polymeric water structurants for use in the multi-phase personal care composition include Acrylates/Vinyl Isodecanoate Crosspolymer (Stabylen 30 from 3V), Acrylates/C 10-30 Alkyl Acrylate Crosspolymer (Pemulen TRl and TR2), Carbomers, Ammonium Acryloyldimethyltaurate/VP Copolymer (Aristoflex AVC from Clariant), Ammonium
Acryloyldimethyltaurate/Beheneth-25 Methacrylate Crosspolymer (Aristoflex HMB from Clariant), Acrylates/Ceteth-20 Itaconate Copolymer (Structure 3001 from National Starch), Polyacrylamide (Sepigel 305 from SEPPIC), and mixtures thereof. Non-limiting examples of water soluble polymeric structurants for use in the multi-phase personal care composition include cellulose gums and gel, and starches. Non-limiting examples of associative water structurants for use in the multi-phase personal care composition include xanthum gum, gellum gum, pectins, alginates such as propylene glycol alginate, and mixtures thereof.
Additional Ingredients: The phases of the multi-phase personal care composition, preferably the cleansing phase, can further comprise a polymeric phase structurant. The compositions of the present invention typically can comprise from about 0.05% to about 10%, preferably from about 0.1% to about 4%, of a polymeric phase structurant. Non-limiting examples of polymeric phase structurant include but are not limited to the following examples: naturally derived polymers, synthetic polymers, crosslinked polymers, block copolymers, copolymers, hydrophilic polymers, nonionic polymers, anionic polymers, hydrophobic polymers, hydrophobically modified polymers, associative polymers, and oligomers.
Preferably the polymeric phase structurant can be crosslinked and further comprise a crosslinking. These polymeric phase structurant useful in the present invention are more fully described in U.S. Pat. No. 5.087,445, to Haffey et al., issued Feb. 11, 1992; U.S. Pat. No. 4,509.949. to Huang et al., issued Apr. 5, 1985, U.S. Pat. No. 2,798,053. to Brown, issued JuI. 2, 1957. See also, CTFA International Cosmetic Ingredient Dictionary, fourth edition, 1991, pp. 12 and 80.
The phase of the present compositions, preferably the cleansing phase, optionally can further comprise a liquid crystalline phase inducing structurant, which when present is at concentrations ranging from about 0.3% to about 15%, by weight of the phase, more preferably at from about 0.5% to about 5% by weight of the phase. Suitable liquid crystalline phase inducing structurants include fatty acids (e.g. lauric acid, oleic acid, isostearic acid, linoleic acid) ester derivatives of fatty acids (e.g. propylene glycol isostearate, propylene glycol oleate, glyceryl isostearate) fatty alcohols, trihydroxystearin (available from Rheox, Inc. under the trade name THIXCIN® R). Preferably, the liquid crystalline phase inducing structurant is selected from lauric acid, trihydroxystearin, lauryl pyrrolidone, and tridecanol.
The structured multi-phase personal care compositions of the present invention can additionally comprise an organic cationic deposition polymer in the one or more phases as a deposition aid for the benefit agents described herein. Suitable cationic deposition polymers for use in the structured multi-phase personal care compositions of the present invention contain cationic nitrogen-containing moieties such as quaternary ammonium or cationic protonated amino moieties. The cationic protonated amines can be primary, secondary, or tertiary amines (preferably secondary or tertiary), depending upon the particular species and the selected pH of the structured multi-phase personal care composition. Suitable cationic deposition polymers that would be useful in the compositions of the present invention are disclosed in the co-pending and commonly assigned U.S. Patent Application No. 60/628,036 filed on November 15, 2003 by Wagner, et al titled "Depositable Solids." One or more of the phases of the multiphase personal care composition can comprise a variety of additional optional ingredients such as shiny particles, particles or beads, exfoliating beads. The multiphase personal care composition may compriseg a particle selected from the group consisting of natural, synthetic, semi-synthetic, hybrid, and combinations thereof. The exfoliant particle is preferably present at a level of less than about 10%, by weight of the composition, more about 5%, by weight of the composition, more preferably about 3% by weight of the composition, , more preferably about 2% by weight of the composition, and more preferably about 1% by weight of the composition
A water insoluble particle of various shapes and densities is useful. In a preferred embodiment, the particle tends to have a spherical, an oval, an irregular, or any other shape in which the ratio of the largest dimension to the smallest dimension (defined as the Aspect Ratio) is less than about 10, preferably less than about 8, and still more preferably the Aspect Ratio of the particle is less than about 5. Preferably, the particle will also have physical properties which are not significantly affected by typical processing of the composition. The structured multi-phase personal care composition of the present invention can comprise an exfoliant particle. A preferred particle is selected from the group consisting of polyethylene, microcrystalline wax, jojoba esters, amourphors silica, talc, tracalcium orthophosphate, or blends thereof, and the like in at least one phase of the multi-phase personal care composition. The exfoliant particle is preferably present at a level of less than about 10%, by weight of the composition.
The structured multi-phase personal care compositions of the present invention can comprise a shiny particle in at least one phase of the multi-phase personal care composition. Nonlimiting examples of shiny particles include the following: interference pigment, multi-layered pigment, metallic particle, solid and liquid crystals, and combinations thereof. An interference pigment is a pigment with pearl gloss prepared by coating the surface of a particle substrate material with a thin film. The particle substrate material is generally platelet in shape. The thin film is a transparent or semitransparent material having a high refractive index. The high refractive index material shows a pearl gloss resulting from mutual interfering action between reflection and incident light from the platelet substrate/coating layer interface and reflection of incident light from the surface of the coating layer. When pigment is applied and rinsed as described in the Pigment Deposition Tape Strip Method as described in copending application serial number 60/469,075, filed on May 8, 2003, the deposited pigment on the skin is preferably at least 0.5μg/cm2, more preferably at least 1 μg/cm2, and even more preferably at least 5 μg/cm2. Interference pigments that are suitable for use in the compositions of the present invention are those disclosed in U.S. Patent No. 6,395,691 issued to Liang Sheng Tsaur on May 28, 2002, U.S. Patent No. 6,645,511 issued to Aronson, et al, U.S. Patent No. 6,759,376 issued to Zhang, et al on July 6, 2004, U.S. Patent No. 6,780,826 issued on August 24, 2004, U.S. Patent Application No. 2003/0054019 filed on May 21, 2002, published on March 21, 2003 to Aronson, et al, as well as those pending and commonly assigned under U.S. Patent Application Number 60/469,570 filed on May 9, 2003 by Clapp, et al titled "Personal Care Compositions That Deposit Shiny Particles," and U.S. Patent Application Number 60/515,029 filed on October 28, 2003, 2003 by Clapp, et al titled "Methods for Using Personal Care Compositions Containing Shiny Particles."
A portion of the interference pigment surface can be coated with a hydrophobic material. Hydrophobically modified interference pigments that are suitable for use in the compositions of the present invention are those disclosed in pending and commonly assigned under U.S. Patent Application Number 10/841,173 filed on May 7, 2004 by Clapp, et al titled "Personal Care Compositions Containing Hydrophobically Modified Interference Pigments." Optional ingredients are most typically those materials approved for use in cosmetics and that are described in reference books such as the CTFA Cosmetic Ingredient Handbook, Second Edition, The Cosmetic, Toiletries, and Fragrance Association, Inc. 1988, 1992.
Other non limiting examples of these optional ingredients include vitamins and derivatives thereof (e.g., ascorbic acid, vitamin E, tocopheryl acetate, and the like), sunscreens; thickening agents, preservatives for maintaining the anti microbial integrity of the cleansing compositions, anti-acne medicaments, antioxidants, skin soothing and healing agents such as aloe vera extract, allantoin and the like, chelators and sequestrants, skin lightening agents, and agents suitable for aesthetic purposes such as fragrances, essential oils, skin sensates, pigments, pearlescent agents and essential oils and fragrance. The preferred pH range of the structured multi-phase personal care composition is from about 5 to about 8.
Method of Use: The mild, multiphase cleansing compositions of the present invention are preferably applied topically to the desired area of the skin or hair in an amount sufficient to provide effective delivery of the structured surfactant component, hydrophobic benefit material, and particles to the applied surface. The compositions can be applied directly to the skin or indirectly via the use of a cleansing puff, washcloth, sponge or other implement. The compositions are preferably diluted with water prior to, during, or after topical application, and then subsequently the skin or hair rinsed or wiped off, preferably rinsed off of the applied surface using water or a water-insoluble substrate in combination with water.
Method of Manufacture:
The multi-phase personal care compositions of the present invention may be prepared by any known or otherwise effective technique, suitable for making and formulating the desired multi-phase product form. It is effective to combine toothpaste-tube filling technology with a spinning stage design. Additionally, the present invention can be prepared by the method and apparatus as disclosed in U.S. Patent No. 6,213,166 issued to Thibiant, et al. on April 10, 2001. The method and apparatus allows two or more compositions to be filled with a spiral configuration into a single container. The method requires that at least two nozzles be employed to fill the container. The container is placed on a static mixer and spun as the composition is introduced into the container.
Alternatively, it is effective to combine at least two phases by first placing the separate compositions in separate storage tanks having a pump and a hose attached. The phases are then pumped in predetermined amounts into a single combining section. Next, the phases are moved from the combining sections into the blending sections and the phases are mixed in the blending section such that the single resulting product exhibits a distinct pattern of the phases. The pattern is selected from the group consisting of striped, marbled, geometric, and mixtures thereof. The next step involves pumping the product that was mixed in the blending section via a hose into a single nozzle, then placing the nozzle into a container and filing the container with the resulting product. Specific non- limiting examples of such methods as they are applied to specific embodiments of the present invention are described in the following examples.
If the multi-phase personal care compositions are patterned, it can be desirable to be packaged as a personal care article. The personal care article would comprise these compositions in a transparent or translucent package such that the consumer can view the pattern through the package. Because of the viscosity of the subject compositions it may also be desirable to include instructions to the consumer to store the package upside down, on its cap to facilitate dispensing. It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification includes every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification includes every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
All parts, ratios, and percentages herein, in the Specification, Examples, and Claims, are by weight and all numerical limits are used with the normal degree of accuracy afforded by the art, unless otherwise specified. Test Methods:
Yield Stress and Zero Shear Viscosity Method: The Yield Stress and Zero Shear Viscosity of a phase of the present composition, can be measured either prior to combining in the composition, or after combining in the composition by separating the phase by suitable physical separation means, such as centrifugation, pipetting, cutting away mechanically, rinsing, filtering, or other separation means.
A controlled stress rheometer such as a TA Instruments AR2000 Rheometer is used to determine the Yield Stress and Zero Shear Viscosity. The determination is performed at 25°C with the 4 cm diameter parallel plate measuring system and a 1 mm gap. The geometry has a shear stress factor of 79580 m"3 to convert torque obtained to stress.
First a sample of the phase is obtained and placed in position on the rheometer base plate, the measurement geometry (upper plate) moving into position 1 mm above the base plate. Excess phase at the geometry edge is removed by scraping after locking the geometry. If the phase comprises particles discernible to the eye or by feel (beads, e.g.) which are larger than about 150 microns in number average diameter, the gap setting between the base plate and upper plate is increased to the smaller of 4 mm or 8-fold the diameter of the 95th volume percentile particle diameter. If a phase has any particle larger than 5 mm in any dimension, the particles are removed prior to the measurement.
The determination is performed via the programmed application of a continuous shear stress ramp from 0,1 Pa to 1,000 Pa over a time interval of 5 minutes using a logarithmic progression, i.e., measurement points evenly spaced on a logarithmic scale. Thirty (30) measurement points per decade of stress increase are obtained. Stress, strain and viscosity are recorded. If the measurement result is incomplete, for example if material flows from the gap, results obtained are evaluated and incomplete data points excluded. The Yield Stress is determined as follows. Stress (Pa) and strain (unitless) data are transformed by taking their logarithms (base 10). Log(stress) is graphed vs. log(strain) for only the data obtained between a stress of 0.2 Pa and 2.0 Pa, about 30 points. If the viscosity at a stress of 1 Pa is less than 500 Pa-sec but greater than 75 Pa- sec, then log(stress) is graphed vs. log(strain) for only the data between 0.2 Pa and 1.0 Pa, and the following mathematical procedure is followed. If the viscosity at a stress of 1 Pa is less than 75 Pa-sec, the zero shear viscosity is the median of the 4 highest viscosity values (i.e., individual points) obtained in the test, the yield stress is zero, and the following mathematical procedure is not used. The mathematical procedure is as follows. A straight line least squares regression is performed on the results using the logarithmically transformed data in the indicated stress region, an equation being obtained of the form:
(1) Log(strain) = m * Log(stress) + b
Using the regression obtained, for each stress value (i.e., individual point) in the determination between 0.1 and 1,000 Pa, a predicted value of log(strain) is obtained using the coefficients m and b obtained, and the actual stress, using Equation (1). From the predicted log(strain), a predicted strain at each stress is obtained by taking the antilog (i.e., 10x for each x). The predicted strain is compared to the actual strain at each measurement point to obtain a %variation at each point, using Equation (2).
(2) %variation = 100 * (measured strain - predicted strain)/measured strain
The Yield Stress is the first stress (Pa) at which %variation exceeds 10% and subsequent (higher) stresses result in even greater variation than 10% due to the onset of flow or deformation of the structure. The Zero Shear Viscosity is obtained by taking a first median value of viscosity in Pascal-seconds (Pa-sec) for viscosity data obtained between and including 0.1 Pa and the Yield Stress. After taking the first median viscosity, all viscosity values greater than 5-fold the first median value and less than 0.2x the median value are excluded, and a second median viscosity value is obtained of the same viscosity data, excluding the indicated data points. The second median viscosity so obtained is the Zero Shear Viscosity.
Ultracentrifugation Method: The Ultracentrifugation Method is used to determine the percent of a structured domain or an opaque structured domain that is present in a structured multi-phase personal care composition that comprises a cleansing phase comprising a structured surfactant component. The method involves the separation of the composition by ultracentrifugation into separate but distinguishable layers. The structured multi-phase personal care composition of the present invention can have multiple distinguishable layers, for example a non-structured surfactant layer, a structured surfactant layer, and a benefit layer.
First, dispense about 4 grams of multi-phase personal care composition into Beckman Centrifuge Tube (l lxόOmm). Next, place the centrifuge tubes in an Ultracentrifuge (Beckman Model L8-M or equivalent) and ultracentrifuge using the following conditions: 50,000rpm, 18 hours, and 250C. After ultracentrifuging for 18 hours, determine the relative phase volume by measuring the height of each layer visually using an Electronic Digital Caliper (within 0.01mm). First, the total height is measured as Ha which includes all materials in the ultracentrifuge tube. Second, the height of the benefit layer is measured as Hb. Third, the structured surfactant layer is measured as H0. The benefit layer is determined by its low moisture content (less than 10% water as measured by Karl Fischer Titration). It generally presents at the top of the centrifuge tube. The total surfactant layer height (Hs) can be calculated by this equation:
H3 = Ha — Hb
The structured surfactant layer components may comprise several layers or a single layer. Upon ultracentrifugation, there is generally an isotropic layer at the bottom or next to the bottom of the ultracentrifuge tube. This clear isotropic layer typically represents the non-structured micellar surfactant layer. The layers above the isotropic phase generally comprise higher surfactant concentration with higher ordered structures
(such as liquid crystals). These structured layers are sometimes opaque to naked eyes, or translucent, or clear. There is generally a distinct phase boundary between the structured layer and the non-structured isotropic layer. The physical nature of the structured surfactant layers can be determined through microscopy under polarized light. The structured surfactant layers typically exhibit distinctive texture under polarized light. Another method for characterizing the structured surfactant layer is to use X-ray diffraction technique. Structured surfactant layer display multiple lines that are often associated primarily with the long spacings of the liquid crystal structure. There may be several structured layers present, so that H0 is the sum of the individual structured layers. If a coacervate phase or any type of polymer-surfactant phase is present, it is considered a structured phase. Finally, the structured domain volume ratio is calculated as follows:
Structured Domain Volume Ratio = Hc / Hs * 100%
If there is no benefit phase present, use the total height as the surfactant layer height, H5=H3.
Lather Volume Test: Lather volume of a cleansing phase, a structured surfactant component or a structured domain of a structured multi-phase personal care composition, is measured using a graduated cylinder and a rotating apparatus. A 1,000 ml graduated cylinder is used which is marked in 10 ml increments and has a height of 14.5 inches at the 1,000 ml mark from the inside of its base (for example, Pyrex No. 2982). Distilled water (100 grams at 25°C) is added to the graduated cylinder. The cylinder is clamped in a rotating device, which clamps the cylinder with an axis of rotation that transects the center of the graduated cylinder. Inject 0.50 grams of a structured surfactant component or cleansing phase from a syringe (weigh to ensure proper dosing) into the graduated cylinder onto the side of the cylinder, above the water line, and cap the cylinder. When the sample is evaluated, use only 0.25 cc, keeping everything else the same. The cylinder is rotated for 20 complete revolutions at a rate of about 10 revolutions per 18 seconds, and stopped in a vertical position to complete the first rotation sequence. A timer is set to allow 15 seconds for lather generated to drain. After 15 seconds of such drainage, the first lather volume is measured to the nearest 10 ml mark by recording the lather height in ml up from the base (including any water that has drained to the bottom on top of which the lather is floating). If the top surface of the lather is uneven, the lowest height at which it is possible to see halfway across the graduated cylinder is the first lather volume (ml). If the lather is so coarse that a single or only a few foam cells which comprise the lather ("bubbles") reach across the entire cylinder, the height at which at least 10 foam cells are required to fill the space is the first lather volume, also in ml up from the base. Foam cells larger than one inch in any dimension, no matter where they occur, are designated as unfilled air instead of lather. Foam that collects on the top of the graduated cylinder but does not drain is also incorporated in the measurement if the foam on the top is in its own continuous layer, by adding the ml of foam collected there using a ruler to measure thickness of the layer, to the ml of foam measured up from the base. The maximum lather height is 1,000 ml (even if the total lather height exceeds the 1,000 ml mark on the graduated cylinder). 30 seconds after the first rotation is completed, a second rotation sequence is commenced which is identical in speed and duration to the first rotation sequence. The second lather volume is recorded in the same manner as the first, after the same 15 seconds of drainage time. A third sequence is completed and the third lather volume is measured in the same manner, with the same pause between each for drainage and taking the measurement.
The lather results after each sequence are added together and the Total Lather Volume determined as the sum of the three measurements, in milliters ("ml"). The Flash Lather Volume is the result after the first rotation sequence only, in ml, i.e., the first lather volume. Compositions according to the present invention perform significantly better in this test than similar compositions in conventional emulsion form.
The Shear Index (n) and Consistency Value (K): The Shear Index (n) and Consistency Value (K) are known and accepted means for reporting the viscosity profile of materials having a viscosity that varies with applied shear rate using a Power Law model. The term "Consistency value" or "K" as used herein is a measure of viscosity and is used in combination with Shear Index, to define viscosity for materials whose viscosity is a function of shear rate. The measurements of Consistency value and Shear Index are made at 250C. The units for "Consistency value" or "K" are Pascal seconds. The units for "Shear Index" are dimensionless. Viscosity of a phase can be measured by applying a shear stress and measuring the shear rate using a rheometer, such as a TA Instruments AR2000 (TA Instruments, New Castle, DE, USA 19720). Viscosity is determined at different shear rates in the following manner. First, the benefit phase is obtained. If there exists more than one distinct (immiscible, e.g.) benefit phase in the composition, such as for example a silicone oil phase and a hydrocarbon phase, they are preferably prepared separately and/or separated from each other, and evaluated separately from each other, although certain benefit phases which are mixtures such as emulsions can be evaluated as mixtures, in addition to evaluating the individual benefit phases individually. For measurement, a 40 mm diameter parallel plate geometry with a gap of lmm is used unless there are particles greater than 0.25 mm, in which case a gap of 2mm is used. The rheometer uses standard parallel plate conventions to report shear rate at the edge as shear rate of the test; and converts torque to stress using the factor 2/(πR3). Using a spatula, a sample comprising a small excess of the benefit phase is loaded onto the rheometer base plate which is at 250C, the gap is obtained, and excess composition outside the top measurement geometry is removed, locking the top plate in position during the removal of excess sample. The sample is equilibrated to the base plate temperature for 2 minutes. A preshear step is performed comprising 15 seconds of shear at a shear rate of 50 inverse seconds (1/sec). As is known to one skilled in the art, the shear rate with a parallel plate geometry is expressed as the shear rate at the edge, which is also the maximum shear rate. After the preshear step, the measurement is performed, which comprises ramping the stress from 10 Pa to 1,000 Pa over a 2.0 minute interval at 250C, while collecting 60 viscosity data points, in an evenly spaced linear progression. A shear rate of at least 500 I/seconds is obtained in the test, or the test is repeated with a fresh sample of the same component with a higher final stress value, maintaining the same rate of stress increase per time, until a shear rate of at least 500 1/sec is obtained during the measurement period. During the measurement, observe the sample to make certain the area under the top parallel plate is not evacuated of sample at any edge location during the measurement, or the measurement is repeated until a sample remains for the duration of the test. If after several trials a result cannot be obtained due to sample evacuation at the edge, the measurement is repeated leaving an excess reservoir of material at the edge (not scraping). If evacuation still cannot be avoided, a concentric cylinder geometry is used with a large excess of sample to avoid air pockets during loading. The results are fitted to the power law model by selecting only the data points between 25 - 500 1/sec shear rate, viscosity in Pa-s, shear rate in 1/sec, and using a least squares regression of the logarithm of viscosity vs. the logarithm of shear rate to obtain values of K and n according to the Power Law equation:
Figure imgf000032_0001
The value obtained for the log-log slope is (n-1) where n is the Shear Index and the value obtained for K is the Consistency Value, expressed in units of in Pa-s. Density Method: The metal pycnometer is utilized for determination of density of the individual phases, the surfactant phase and the benefit phase compositions. Density is measured in the absence of confounding factors such as whipped air bubbles which are generally kept to a minimum in commercial processes. A metal pycnometer can be obtained from Fisher Scientific (USA). Following are the steps for measuring density of cleansing phase and benefit phase compositions, and the multiphase personal cleansing composition. All instrument parts and phases are measured at ambient temperature.
The first step is Cleaning: The metal pycnometer must be clean and dry before use. Disassemble the metal pycnometer completely and wash all parts well with water. Follow the water rinse with an alcohol rinse. Expel the alcohol with a stream of dry, clean air.
The second step is to obtain the weight of the empty pycnometer, and get pycnometer volume: Fill the clean, dry pycnometer with distilled water at 25 C. Place the lid on body of pycnometer and screw the cap firmly in place. Dry the outside of pycnometer well with a tissue and weigh to 0.00 Ig. Remove the water, clean and dry the pycnometer according to the directions shown above. Assemble and weigh the dry, empty pycnometer to 0.001 g to obtain the weight of empty pycnometer. Calculate the Water Weight in grams, which is numerically the pycnometer volume in cm3, using the assumption that the density of water is 1.00 g/cm3. Water Weight = Weight of pycnometer filled with water - Weight of Empty Pycnometer The third step is the measurement of phase weight: Obtain a cleansing phase. The cleansing phase is preferably obtained prior to combining with a benefit phase, or it can be separated from a multiphase composition by physical means such as centrifugation, pipetting, etc. The phase can contain a density modifier. Clean and dry the pycnometer according to the directions shown above. Pour or otherwise fill the phase into the pycnometer without introducing air, adding an excess of the phase so that it extends slightly above the top of the pycnometer. Screw the cap firmly onto the body of the pycnometer: excess is forced through the hole in the lid of the pycnometer. Wipe away the excess. Weigh the filled pycnometer to 0.001 g to obtain the Weight of Filled Pycnometer. Calculate the Phase Weight according to the following equation.
Phase Weight = Weight of Filled Pycnometer - Weight of Empty Pycnometer. The fourth step is tp calculate the Density of the phase according to the following equation:
Density of Phase = Sample Weight/Water Weight (express in g/cm3).
The fifth step is repeat the procedure to obtain the Density of a benefit phase, using a benefit phase composition obtained by preparation of a phase, or by separation means.
The sixth step is to calculate the Density Difference: The Density Difference between the phases is calculated by subtracting the two values obtained for the Density of a Phase. Express the result as a positive number. When there are more than 2 phases present, three, or more than three, such Density Differences can be obtained by subtracting the values obtained in pairs.
Preferably, the Density Difference is less than 0.15 g/cm3, more preferably, the
Density Difference is less than 0.10 g/cm3, even more preferably, the Density Difference is less than 0.08g/cm3, still more preferably, the Density Difference is less than 0.06 g/cm3, still even more preferably, the Density Difference is less than 0.05 g/cm3, most preferably, the Density Difference is less than 0.02 g/cm3.
Examples:
The following examples further describe and demonstrate embodiments within the scope of the present invention. The examples are given solely for the purpose of illustration and are not to be construed as limitations of the present invention, as many variations thereof are possible without departing from the spirit and scope of the invention. The following examples described in Table 1 are comparative and non-limiting inventive examples of multiphase personal cleansing compositions.
Figure imgf000034_0001
The compositions described above can be prepared by conventional formulation and mixing techniques. Prepare the personal cleansing composition by first adding citric acid into water at 1 :3 ratios to form a citric acid premix. Prepare a polymer premix by adding Polyox WSR301 and Xanthan Gum into Trideceth-3. Then, add the following ingredients into the main mixing vessel in the following sequence with agitation: water, N-Hance polymer, Expancel (Inventive Example 1). Pass the mixture (water, N-Hance, Expancel) through a mill to break up the Expancel agglomerate. Then add sodium lauroamphoacetate, sodium trideceth sulfate, sodium lauroamphoacetate, sodium lauryl sulfate, sodium chloride, sodium benzoate, and Disodium EDTA. Add citric acid premix to adjust pH to 5.7 ± 0.2. Add the polymer premix, Kathon CG, and perfume into the main mixing vessel with continuous agitation. In a separate vessel, prepare the benefit phase by adding Petrolatum and heat to 190F. Cool the benefit phase to 140F with slow agitation. The surfactant phase and benefit phase are blended together through a Koch SMX 4 element mixer (3/4" nominal) (available from Koch-Glitsch LP Mass Transfer Sales and Engineering, 9525 Kenwood Road, Suite 16-246, Cincinnati, OH 45242)to form a homogenous multiphase product.
The surfactant phase density of comparative Example has a density of about 1.04
1 "X g/cm and the benefit phase density about 0.88 g/cm . The difference between the surfactant phase and benefit phase in the comparative Example is about 0.16 g/cm3. The surfactant phase density of the inventive example has a density of about 0.90 g/cm3 and the benefit phase density about 0.88 g/cm3. The difference between the surfactant phase and the benefit phase in the inventive Example is about 0.02 g/cm3. Both products are placed in a rapid stability testing for IOdays at 120F. The comparative Example is not stable due to creaming of mineral oil to the surface. The inventive Example is stable without noticeable mineral oil creaming to the surface. The following examples further describe and demonstrate embodiments within the scope of the present invention. The examples are given solely for the purpose of illustration and are not to be construed as limitations of the present invention, as many variations thereof are possible without departing from the spirit and scope of the invention.
Figure imgf000035_0001
Figure imgf000036_0001
The compositions described above can be prepared by conventional formulation and mixing techniques. First prepare a citric acid premix by adding citric acid in water at
1:3 ratio. Then, add the following ingredients into the main mixing vessel with agitation: surfactants, sodium chloride, sodium benzoate, disodium EDTA, lauric acid, Thixcin R,
N-Hance 3196, Polyox WSR 301 and the rest of water. Heat the vessel with agitation until it reaches 190F (88C), then add the benefit phase, which is petrolatum. Mix for about 10 min. Cool the batch with slow agitation until it reaches HO0F (43°C). Add the following ingredients: Glydant, perfume, and Expancel. Keep mixing until homogeneous.
Figure imgf000036_0002
Figure imgf000037_0001
Prepare the compositions described above by conventional formulation and mixing techniques. First prepare a citric acid premix by adding citric acid into water at 1 :3 ratio. Then, add the following ingredients into the main mixing vessel in the following sequence with agitation: water, N-Hance 3196, Expancel, Polyox WSR 301, and Miracare SLB-365. Adjust the pH to 6.0 using citric acid premix. Then, add sodium chloride, disodium EDTA, sodium benzoate, Glydant, and perfume. In a separate vessel, prepare a benefit phase which is a hydrophobic phase, by preparing a lipid premix by adding Petrolatum into Mineral oil and heat to 190F. Cool the lipid premix to IOOF and add into the main batch. Keep mixing until homogeneous.
Figure imgf000037_0002
Figure imgf000038_0001
Prepare the compositions described above by conventional formulation and mixing techniques. First prepare a citric acid premix by adding citric acid into water at 1:3 ratio and a polymer premix by adding Polyox WSR 301 and Keltrol 1000 to isosteareth-2. Then, add the following ingredients into the main mixing vessel with agitation: water, N-Hance 3196, sodium trideceth sulfate, sodium lauroamphoacetate, citric acid premix, ammonium lauryl sulfate. Then add polymer premix (Polyox and Keltrol 1000 in isosteareth-2). Add sodium chloride, disodium EDTA, sodium benzoate, Glydant, and perfume. In a separate vessel, prepare a benefit phase which is a hydrophobic phase, by preparing a lipid premix by adding Petrolatum into Mineral oil and heat to 190F. Cool the lipid premix to IOOF and then add into the main batch. Adjust pH to 6.0. Keep agitation until homogeneous..
All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention. To the extent that any meaning or definition of a term in this written document conflicts with any meaning or definition of the term in a document incorporated by reference, the meaning or definition assigned to the term in this written document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims

What is claimed is:
1. A mild, multiphase personal cleansing composition comprising: a structured surfactant component having a first density; a benefit component having a second density; and a density modifier; characterized in that said first density differs from said second density by less than
0.15 g/cm3; said structured surfactant component comprises at least one surfactant and provides a Total Lather Volume of at least about 600 ml.
2. The mild, multi-phase personal cleansing composition according to claim 1 wherein said density modifier is comprised within said cleansing phase.
3. The mild, multi-phase personal cleansing composition according to claims 1 or 2, wherein said density modifier comprising a low density microsphere.
4. The mild, multi-phase personal cleansing composition according to claim 3 wherein said low density microsphere comprises a particle having a density lower than 0.7 g/cm.3
5. The mild, multiphase cleansing composition of any one of the preceding claims, comprising from about 1% to about 95%, by weight of the composition, of said structured surfactant component.
6. The mild, multiphase cleansing composition of any one of the preceding claims, wherein said surfactant is selected from the group consisting of anionic surfactant, nonionic surfactant, zwitterionic surfactant, cationic surfactant, amphoteric surfactant, soap, and mixtures thereof.
7. The mild, multiphase cleansing composition of claim 6, wherein said anionic surfactant is selected from the group consisting of alkyl ether sulfates, alkyl sulfonates and mixtures thereof.
8. The mild, multiphase cleansing composition of claim 6, wherein said amphoteric surfactant is selected from the group consisting of sodium lauroamphoacetate, sodium cocoamphoactetate, disodium lauroamphoacetate, and disodium cocodiamphoacetate, and mixtures thereof.
9. The mild, multiphase cleansing composition of claim 6, wherein said nonionic surfactant is selected from the group consisting of glyceryl monohydroxystearate, steareth-2, propylene glycol stearate, sorbitan monostearate, glyceryl stearate, laureth-2, and mixtures thereof.
10. The mild, multiphase cleansing composition of claim 6, comprising from about 0.1% to about 50%, by weight of said structured surfactant component, of said nonionic surfactant.
11. The mild, multiphase cleansing composition of any one of the preceding claims, wherein said composition comprises a structured domain wherein said structured domain is an opaque structured domain.
12. The mild, multiphase cleansing composition of claim 11, wherein said opaque structured domain is a lamellar phase.
13. The mild, multiphase cleansing composition of any one of the preceding claims, wherein said composition is substantially free of an alkyl amines and an alkanolamides.
14. The mild, multiphase cleansing composition of any one of the preceding claims, wherein said benefit component is selected from the group consisting of lipids, hydrocarbons, fats, oils, emollients, hydrophobic plant extracts, fatty acids, essential oils, silicone materials, vitamins and derivatives thereof; sunscreens; preservatives; anti-acne medicaments; antioxidants; chelators; sequestrants; skin sensates, and mixtures thereof.
PCT/US2006/012401 2005-04-13 2006-03-31 Mild, structured, multiphase personal cleansing compositions WO2006113117A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06749195A EP1874408A1 (en) 2005-04-13 2006-03-31 Mild, structured, multiphase personal cleansing compositions
MX2007007312A MX2007007312A (en) 2005-04-13 2006-03-31 Mild, structured, multiphase personal cleansing compositions.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US67078505P 2005-04-13 2005-04-13
US60/670,785 2005-04-13
US68011405P 2005-05-12 2005-05-12
US68014905P 2005-05-12 2005-05-12
US60/680,149 2005-05-12
US60/680,114 2005-05-12

Publications (1)

Publication Number Publication Date
WO2006113117A1 true WO2006113117A1 (en) 2006-10-26

Family

ID=36686004

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2006/012401 WO2006113117A1 (en) 2005-04-13 2006-03-31 Mild, structured, multiphase personal cleansing compositions
PCT/US2006/012402 WO2006113118A1 (en) 2005-04-13 2006-03-31 Structured multi-phased personal care composition comprising branched anionic surfactants

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2006/012402 WO2006113118A1 (en) 2005-04-13 2006-03-31 Structured multi-phased personal care composition comprising branched anionic surfactants

Country Status (6)

Country Link
US (3) US8084407B2 (en)
EP (2) EP1874409A1 (en)
JP (1) JP2008538360A (en)
CA (1) CA2603299A1 (en)
MX (2) MX2007007312A (en)
WO (2) WO2006113117A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2164446A4 (en) * 2007-07-12 2015-08-05 Amcol International Corp High-foaming cleanser composition with a skin care agent
WO2019079405A1 (en) * 2017-10-20 2019-04-25 The Procter & Gamble Company Aerosol foam skin cleanser
WO2019079409A1 (en) * 2017-10-20 2019-04-25 The Procter & Gamble Company Aerosol foam skin cleanser
US10966916B2 (en) 2014-11-10 2021-04-06 The Procter And Gamble Company Personal care compositions
US11207248B2 (en) 2014-11-10 2021-12-28 The Procter And Gamble Company Personal care compositions with two benefit phases

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100681739B1 (en) 2002-09-20 2007-02-15 더 프록터 앤드 갬블 캄파니 Striped liquid personal cleansing compositions containing a cleansing phase and a separate benefit phase
MXPA05004808A (en) 2002-11-04 2005-07-22 Procter & Gamble Striped liquid personal cleansing compositions containing a cleansing phase and a separate benefit phase with improved stability.
EP1617809B1 (en) * 2003-05-01 2015-07-08 The Procter & Gamble Company Striped liquid personal cleansing compositions containing a cleansing phase and a separate benefit phase comprising a high internal phase emulsion
US8951947B2 (en) 2003-12-24 2015-02-10 The Procter & Gamble Company Multi-phase personal cleansing compositions comprising a lathering cleansing phase and a non-lathering structured aqueous phase
EP1718267B1 (en) 2004-02-27 2017-01-25 The Procter and Gamble Company A mild multi-phased personal care composition
US7820609B2 (en) 2005-04-13 2010-10-26 The Procter & Gamble Company Mild, structured, multi-phase personal cleansing compositions comprising density modifiers
JP2008538360A (en) 2005-04-13 2008-10-23 ザ プロクター アンド ギャンブル カンパニー Structured multi-phase personal care compositions containing branched anionic surfactants
US20070044824A1 (en) * 2005-09-01 2007-03-01 Scott William Capeci Processing system and method of processing
EP1957374A2 (en) * 2005-12-08 2008-08-20 The Procter and Gamble Company A container comprising an in-mold label positioned proximate to a surface topography
US20070167338A1 (en) * 2006-01-09 2007-07-19 Mchugh Colin M Multiphase personal care compositions comprising beads
US8104616B2 (en) 2006-02-11 2012-01-31 The Procter & Gamble Company Clamshell package for holding and displaying consumer products
US8153144B2 (en) 2006-02-28 2012-04-10 The Proctor & Gamble Company Stable multiphase composition comprising alkylamphoacetate
CN101977583B (en) * 2007-03-21 2012-12-12 高露洁-棕榄公司 Structured compositions comprising a clay
US8105996B2 (en) 2007-03-30 2012-01-31 The Procter & Gamble Company Multiphase personal care composition comprising a structuring
US8158566B2 (en) * 2007-03-30 2012-04-17 The Procter & Gamble Company Multiphase personal care composition comprising a structuring system that comprises an associative polymer, a low HLB emulsifier and an electrolyte
US20080247971A1 (en) * 2007-04-05 2008-10-09 Nicholas Seymour Gantenberg Transparent multi-phase dentifrice with coils
US20080248073A1 (en) * 2007-04-05 2008-10-09 Nicholas Seymour Gantenberg Opaque multi-phase dentifrice with coils
US20080248072A1 (en) * 2007-04-05 2008-10-09 William Michael Glandorf Transparent multi-phase dentifrice with patterns
US20090005460A1 (en) * 2007-06-29 2009-01-01 Gunn Euen T Methods of making and using structured compositions comprising betaine
US8518991B2 (en) * 2007-06-29 2013-08-27 Johnson & Johnson Consumer Companies, Inc. Structured compositions comprising betaine
US8623344B2 (en) 2007-06-29 2014-01-07 Mcneil-Ppc, Inc. Structured depilatory compositions
US20090028808A1 (en) * 2007-07-27 2009-01-29 The Procter & Gamble Company Personal care article for sequentially dispensing compositions with variable concentrations of partitioned benefit or suspended benefit agents
US20090028809A1 (en) * 2007-07-27 2009-01-29 Jonathan Robert Cetti Personal care article for sequentially dispensing compositions with variable concentrations of hydrophobic benefit materials
CN102215806A (en) 2008-07-28 2011-10-12 宝洁公司 Multiphase personal care composition with enhanced deposition
WO2010013203A2 (en) * 2008-07-28 2010-02-04 The Procter & Gamble Company In-vitro deposition evaluation method for identifying personal care compositions which provide improved deposition of benefit agents
US8772212B2 (en) 2008-08-07 2014-07-08 Conopco, Inc. Liquid personal cleansing composition
EP2403631B1 (en) 2009-03-06 2013-09-04 Colgate-Palmolive Company Apparatus and method for filling a container with at least two components of a composition
ES2483122T3 (en) 2009-12-23 2014-08-05 Colgate-Palmolive Company Compositions with visual configuration and orientation
CN102933190A (en) 2010-06-11 2013-02-13 宝洁公司 Compositions for treating skin
CN104203203A (en) 2012-03-22 2014-12-10 宝洁公司 Personal care compositions and methods
RU2602806C2 (en) 2012-05-17 2016-11-20 Колгейт-Палмолив Компани Multiphase composition containing surfactant and fragrance substance
EP2897305A1 (en) * 2014-01-21 2015-07-22 Alcatel Lucent Apparatuses, Methods and Computer Programs for a Base Station Transceiver and a Mobile Transceiver
WO2016077329A1 (en) 2014-11-10 2016-05-19 The Procter & Gamble Company Personal care compositions
US20160128927A1 (en) 2014-11-10 2016-05-12 The Procter & Gamble Company Personal Care Compositions With Two Benefit Phases
FR3029111A1 (en) * 2014-11-27 2016-06-03 Oreal COMPOSITION COMPRISING A VISUALLY DISTINCT AQUEOUS PHASE AND A FATTY PHASE
ES2877403T3 (en) 2015-04-23 2021-11-16 Procter & Gamble Surfactant soluble anti-dandruff agent supply
JP6810924B2 (en) * 2015-05-11 2021-01-13 ユニリーバー・ナームローゼ・ベンノートシヤープ Body cleansing composition
CN108697609A (en) 2016-03-03 2018-10-23 宝洁公司 Aerosol anti-dandruff composition
EP3432776B1 (en) 2016-03-23 2023-03-29 The Procter & Gamble Company Imaging method for determining stray fibers
US10441519B2 (en) 2016-10-21 2019-10-15 The Procter And Gamble Company Low viscosity hair care composition comprising a branched anionic/linear anionic surfactant mixture
CA3038128C (en) * 2016-10-21 2021-10-12 The Procter & Gamble Company Stable compact shampoo products with low viscosity and viscosity reducing agent
US11141361B2 (en) 2016-10-21 2021-10-12 The Procter And Gamble Plaza Concentrated shampoo dosage of foam designating hair volume benefits
EP3528898A1 (en) 2016-10-21 2019-08-28 The Procter and Gamble Company Concentrated shampoo dosage of foam designating hair conditioning benefits
CN109843383A (en) 2016-10-21 2019-06-04 宝洁公司 For delivering the foam of the desired dose volume of consumer, amount of surfactant and scalp health dosage in optimal formulation space
CN109843381A (en) 2016-10-21 2019-06-04 宝洁公司 For providing the concentrated type shampoo foam of hair-care beneficial effect
CN109862944A (en) 2016-10-21 2019-06-07 宝洁公司 For with the foam of dosage form volume and amount of surfactant needed for optimal formulation space delivery consumer
CN109843382A (en) 2016-10-21 2019-06-04 宝洁公司 For providing the concentrated type shampoo foam of hair-care beneficial effect
US11141370B2 (en) 2017-06-06 2021-10-12 The Procter And Gamble Company Hair compositions comprising a cationic polymer mixture and providing improved in-use wet feel
US11679073B2 (en) 2017-06-06 2023-06-20 The Procter & Gamble Company Hair compositions providing improved in-use wet feel
US11224567B2 (en) 2017-06-06 2022-01-18 The Procter And Gamble Company Hair compositions comprising a cationic polymer/silicone mixture providing improved in-use wet feel
JP6952906B2 (en) 2017-10-10 2021-10-27 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company How to treat hair or skin with a personal care composition in the form of foam
US11116705B2 (en) 2017-10-10 2021-09-14 The Procter And Gamble Company Compact shampoo composition containing sulfate-free surfactants
JP6974928B2 (en) 2017-10-10 2021-12-01 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company Compact shampoo composition
EP3694480A1 (en) 2017-10-10 2020-08-19 The Procter and Gamble Company Compact shampoo composition containing sulfate-free surfactants
CN111432892B (en) 2017-12-08 2023-08-29 宝洁公司 Method for screening mild skin cleaning agent
MX2020005900A (en) 2017-12-20 2022-03-31 Procter & Gamble Clear shampoo composition containing silicone polymers.
MX2020014144A (en) 2018-06-29 2021-03-25 Procter & Gamble Low surfactant aerosol antidandruff composition.
CN113015904A (en) 2018-11-29 2021-06-22 宝洁公司 Method for screening personal care products
EP4110474A1 (en) 2020-02-27 2023-01-04 The Procter & Gamble Company Anti-dandruff compositions with sulfur having enhanced efficacy and aesthetics
WO2022120109A1 (en) 2020-12-04 2022-06-09 The Procter & Gamble Company Hair care compositions comprising malodor reduction materials
US11633332B2 (en) * 2021-03-30 2023-04-25 L'oreal Multi-phase water-based smudge-resistant make-up remover
WO2022228806A1 (en) * 2021-04-28 2022-11-03 Basf Se Biphasic cosmetic composition and application thereof
US20220378684A1 (en) 2021-05-14 2022-12-01 The Procter & Gamble Company Shampoo Compositions Containing a Sulfate-Free Surfactant System and Sclerotium Gum Thickener
CN114246816B (en) * 2021-11-23 2024-03-05 广州奥蓓斯化妆品有限公司 Transparent water-oil double-cleansing oil composition and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040092415A1 (en) * 2002-11-04 2004-05-13 The Procter & Gamble Company Striped liquid personal cleansing compositions containing a cleansing phase and a separate benefit phase with improved stability
WO2004100919A1 (en) * 2003-05-08 2004-11-25 The Procter & Gamble Company A multi-phase personal care compositon
US20040248748A1 (en) * 2003-05-01 2004-12-09 The Procter & Gamble Company Striped liquid personal cleansing compositions containing a cleansing phase and a separate benefit phase comprising a water in oil emulsion
WO2005084614A1 (en) * 2004-02-27 2005-09-15 The Procter & Gamble Company A mild body wash
WO2005084616A1 (en) * 2004-02-27 2005-09-15 The Procter & Gamble Company A mild multi-phased personal care composition

Family Cites Families (221)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2020454A (en) 1930-10-18 1935-11-12 Canal Nat Bank Of Portland Molded pulp article
US2438091A (en) * 1943-09-06 1948-03-16 American Cyanamid Co Aspartic acid esters and their preparation
US2658072A (en) 1951-05-17 1953-11-03 Monsanto Chemicals Process of preparing amine sulfonates and products obtained thereof
US2798053A (en) * 1952-09-03 1957-07-02 Goodrich Co B F Carboxylic polymers
US2986271A (en) 1958-04-23 1961-05-30 Mead Corp Wrapper carton for group packaging of different sized articles
US3228662A (en) 1965-01-26 1966-01-11 Warner Lambert Pharmaceutical Multi-colored cosmetic preparation
CA783534A (en) 1965-06-15 1968-04-23 Unilever Limited Liquid detergent compositions
US3480556A (en) * 1966-09-29 1969-11-25 Atlantic Richfield Co Primary alcohol sulfate detergent compositions
US3455440A (en) 1967-01-04 1969-07-15 Pioneer Packaging Inc Display package
US3980767A (en) 1968-07-23 1976-09-14 Beecham Group Limited Gel toothpastes
US3542256A (en) 1968-09-16 1970-11-24 Atlantic Design & Dev Corp Liquid container dispensing closures
IE34461B1 (en) 1969-10-22 1975-05-14 Chesebrough Ponds Petrolatum composition
US3618757A (en) 1970-01-29 1971-11-09 Mead Corp Article carrier
US3800998A (en) 1972-08-24 1974-04-02 Prent Corp Thermoformed container
NL7312645A (en) 1972-09-23 1974-03-26
DE2313332C3 (en) 1973-03-17 1978-10-05 Merck Patent Gmbh, 6100 Darmstadt Colored pigments
LU67772A1 (en) 1973-06-08 1975-03-06
US3899076A (en) 1973-07-16 1975-08-12 Mobil Oil Corp Bottle carrier
US3929678A (en) 1974-08-01 1975-12-30 Procter & Gamble Detergent composition having enhanced particulate soil removal performance
US4335103A (en) 1977-03-28 1982-06-15 Almay, Inc. Multiphase cosmetic composition
US4159028A (en) 1977-03-28 1979-06-26 Almay, Inc. Method of forming and containerizing a multiphase cosmetic composition
US4263363A (en) 1979-12-20 1981-04-21 Colgate-Palmolive Company Emulsion-containing absorbent article having improved water holding capacity
US4379753A (en) 1980-02-07 1983-04-12 The Procter & Gamble Company Hair care compositions
US4387090A (en) * 1980-12-22 1983-06-07 The Procter & Gamble Company Hair conditioning compositions
GB2100126B (en) 1981-06-11 1984-08-01 Colgate Palmolive Co A dentifrice
NZ202128A (en) 1981-10-24 1985-02-28 Beecham Group Plc Detergent composition containing translucent gels
US4518578A (en) 1983-05-16 1985-05-21 Colgate-Palmolive Company Dentifrice composition containing visually clear pigment-colored stripe
US4509949A (en) * 1983-06-13 1985-04-09 The B. F. Goodrich Company Water thickening agents consisting of copolymers of crosslinked acrylic acids and esters
USRE34584E (en) * 1984-11-09 1994-04-12 The Procter & Gamble Company Shampoo compositions
USD292879S (en) 1984-11-20 1987-11-24 Product Pak (Australia) Pty. Limited Combined packaging and carrying container for bottles or the like
US5002680A (en) 1985-03-01 1991-03-26 The Procter & Gamble Company Mild skin cleansing aerosol mousse with skin feel and moisturization benefits
GB8713263D0 (en) * 1987-06-05 1987-07-08 Unilever Plc Spheroidal silica
ATE177939T1 (en) * 1987-10-22 1999-04-15 Procter & Gamble LIGHT PROTECTIVE AGENTS CONTAINING CHELATES
US4966205A (en) 1988-02-02 1990-10-30 Pola Chemical Industries Ltd. Method and apparatus for charging transparent material
US4814160A (en) 1988-03-01 1989-03-21 Colgate-Palmolive Company Non-bleeding striped dentifrice
CA1340219C (en) 1988-04-06 1998-12-15 Tadahiko Katsura Labelled vessel and process for preparation thereof
US5059414A (en) 1988-07-01 1991-10-22 Shiseido Co. Ltd. Multi-phase high viscosity cosmetic products
US5228189A (en) 1988-11-12 1993-07-20 Mania Gmbh & Co. Adapter arrangement for electrically connecting flat wire carriers
US4899877A (en) * 1989-02-13 1990-02-13 Bares Group Packaging of tools
US5132037A (en) 1989-05-05 1992-07-21 Lever Brothers Company, Division Of Conopco, Inc. Aqueous based personal washing cleanser
US5087445A (en) * 1989-09-08 1992-02-11 Richardson-Vicks, Inc. Photoprotection compositions having reduced dermal irritation
US4980155A (en) 1989-09-11 1990-12-25 Revlon, Inc. Two phase cosmetic composition
DD300443A5 (en) * 1989-09-13 1992-06-11 Exxon Chemical Patents Inc HOT MELT GLUE
US5635171A (en) 1990-12-21 1997-06-03 L'oreal Cosmetic or pharmaceutical composition in the form of a rigid gel, particularly for containing inclusions therein
DE4207722A1 (en) 1991-05-28 1992-12-03 Merck Patent Gmbh SURFACE-MODIFIED PLAIN-SHAPED PIGMENTS WITH IMPROVED REALLY BEHAVIOR
US5248495A (en) * 1992-04-16 1993-09-28 The Procter & Gamble Company Post foaming shaving gel composition
US5304334A (en) 1992-04-28 1994-04-19 Estee Lauder, Inc. Method of preparing a multiphase composition
CA2096505C (en) * 1992-05-21 1999-09-21 Robert Stanley Lee Exfoliant composition
JP2589932B2 (en) 1992-06-15 1997-03-12 インターナショナル・ビジネス・マシーンズ・コーポレイション Global optimization method and system for device allocation
FR2694494B1 (en) 1992-08-05 1994-09-30 Rhone Poulenc Chimie Cosmetic composition containing non-water-soluble particles in suspension.
US5687779A (en) 1992-09-17 1997-11-18 Tetra Laval Holdings & Finance S.A. Packaging machine system for filling primary and secondary products into a container
GB9223439D0 (en) 1992-11-09 1992-12-23 Unilever Plc Washing composition
GB9223603D0 (en) 1992-11-11 1992-12-23 Unilever Plc Cosmetic composition
US5632420A (en) 1993-11-03 1997-05-27 Zeller Plastik, Inc. Dispensing package
CN1100532C (en) * 1993-11-12 2003-02-05 普罗克特和甘保尔公司 Desquamation compositions containing salicylic acid and zwitterionic compounds
US5451396A (en) * 1993-11-17 1995-09-19 S. C. Johnson & Son, Inc. Shaving compositions
US5455035A (en) 1994-01-13 1995-10-03 Elizabeth Arden Company, Division Of Conopco, Inc. Clear two-phase cosmetic composition
GB9414573D0 (en) 1994-07-19 1994-09-07 Unilever Plc Detergent composition
GB9414572D0 (en) 1994-07-19 1994-09-07 Unilever Plc Soap composition
GB9414574D0 (en) 1994-07-19 1994-09-07 Unilever Plc Detergent composition
US5540334A (en) * 1994-08-22 1996-07-30 Lab Safety Supply, Inc. Beaker transport tray
US5578299A (en) 1994-10-20 1996-11-26 The Andrew Jergens Company Rinse-off skin conditioner
US5540853A (en) 1994-10-20 1996-07-30 The Procter & Gamble Company Personal treatment compositions and/or cosmetic compositions containing enduring perfume
GB9423573D0 (en) 1994-11-22 1995-01-11 Rhone Poulenc Chemicals Process for the preparation of amphoacetate surfactants
US6080707A (en) * 1995-02-15 2000-06-27 The Procter & Gamble Company Crystalline hydroxy waxes as oil in water stabilizers for skin cleansing liquid composition
EP0813406B1 (en) * 1995-02-15 2001-09-19 THE PROCTER &amp; GAMBLE COMPANY Crystalline hydroxy waxes as oil in water stabilizers for skin cleansing liquid composition
EP0839023B1 (en) 1995-08-07 2003-04-09 Unilever Plc Liquid cleansing composition comprising soluble, lamellar phase inducing structurant
FR2740334B1 (en) * 1995-10-25 1997-12-05 Oreal COSMETIC COMPOSITION CONTAINING A MONOESTER OF C4-C10 ACID AND C16-C18 ALCOHOL AND HOLLOW PARTICLES
GB9523167D0 (en) 1995-11-13 1996-01-17 Unilever Plc Cosmetic composition
US5932203A (en) * 1996-03-27 1999-08-03 Proctor & Gamble Company Conditioning shampoo compositions containing select hair conditioning esters
US5935561A (en) * 1996-03-27 1999-08-10 Procter & Gamble Company Conditioning shampoo compositions containing select hair conditioning agents
CN1226820A (en) * 1996-06-27 1999-08-25 普罗克特和甘保尔公司 Cosmetic compositions
US5716920A (en) 1996-09-23 1998-02-10 The Procter & Gamble Company Method for preparing moisturizing liquid personal cleansing compostions
US6194364B1 (en) 1996-09-23 2001-02-27 The Procter & Gamble Company Liquid personal cleansing compositions which contain soluble oils and soluble synthetic surfactants
US5947335A (en) 1996-10-15 1999-09-07 Lever Brothers Company Dual compartment package
US5972361A (en) 1996-10-25 1999-10-26 The Procter & Gamble Company Cleansing products
DE19650952A1 (en) 1996-12-07 1998-06-10 Henkel Kgaa Two-phase skin care products
WO1998027193A1 (en) 1996-12-16 1998-06-25 The Procter & Gamble Company Personal cleansing bar composition containing sodium lauroyl lactylate
AU5898598A (en) 1996-12-19 1998-07-15 Rhodia Inc. Liquid delivery systems
US5954213A (en) 1996-12-27 1999-09-21 Lever Brothers Company Dual container and individual chamber therefor
US5929019A (en) 1997-01-30 1999-07-27 Lever Brothers Company, Division Of Conopco, Inc. Cleansing composition with separately dispensed cleansing base and benefit base wherein benefit base also comprises surfactant
US5965501A (en) 1997-03-28 1999-10-12 Lever Brothers Company, Division Of Conopco, Inc. Personal washing bar compositions comprising emollient rich phase/stripe
US6174533B1 (en) * 1997-05-23 2001-01-16 The Procter & Gamble Company Skin care compositions and method of improving skin appearance
TW505521B (en) 1997-06-25 2002-10-11 Kao Corp Hair cosmetics
US5965500A (en) 1997-07-24 1999-10-12 Levers Brothers Company, Division Of Conopco, Inc. Stable liquid composition comprising high levels of emollients
US5873494A (en) 1997-09-05 1999-02-23 Aptargroup, Inc. Dual stream liquid dispensing structure
USD426158S (en) 1997-10-03 2000-06-06 Helene Curtis, Inc. Cap
EP1023042A1 (en) 1997-10-14 2000-08-02 The Procter & Gamble Company Personal cleansing compositions comprising mid-chain branched surfactants
EP0916334A1 (en) * 1997-11-07 1999-05-19 Unilever Plc Detergent composition
MXPA00007480A (en) 1998-01-28 2003-08-01 Procter & Gamble Liquid personal cleansing emulsion compositions which contain a weighting oil.
EP1051153A1 (en) 1998-01-28 2000-11-15 The Procter & Gamble Company Moisturizing personal cleansing compositions with improved lipid deposition
FR2780644B1 (en) 1998-07-03 2001-07-20 Oreal COSMETIC OR DERMATOLOGICAL COMPOSITION IN THE FORM OF A DISPERSION OF AN OIL PHASE AND AN AQUEOUS PHASE, STABILIZED USING CUBIC GEL PARTICLES
AU137227S (en) 1998-07-03 1999-05-11 Unilever Plc Bottle with cap
US6419783B1 (en) 1999-04-16 2002-07-16 Unilever Home & Personal Care Usa Container and closure
DE19854086A1 (en) 1998-11-24 2000-05-25 Henkel Kgaa Non-bleeding striped toothpaste includes red or yellow iron oxide pigment and/or red organic pigment
DE19855767A1 (en) 1998-12-03 1999-12-23 Wella Ag Manually and reversibly emulsifiable hair- or scalp-treatment composition free of organic emulsifiers
GB9827614D0 (en) * 1998-12-15 1999-02-10 Unilever Plc Detergent composition
US6051541A (en) * 1998-12-16 2000-04-18 Unilever Home & Personal Care, Division Of Conopco, Inc. Process for preparing pourable, transparent/translucent liquid detergent with continuous suspending system
US6362156B1 (en) * 1998-12-16 2002-03-26 Unilever Home & Personal Care, Usa, Division Of Conopco, Inc. Pourable transparent/translucent liquid detergent composition with suspended particles
USD441645S1 (en) 1999-01-27 2001-05-08 Beams Holdings Limited Packaging for a bottle
JP2000229817A (en) 1999-02-09 2000-08-22 Nippon Shikizai Kogyo Kenkyusho:Kk Production of multi-colored solid cosmetic and apparatus for the same
USD438460S1 (en) 1999-03-18 2001-03-06 Mccormick Distilling Co., Inc. Bottle carrier
US6150312A (en) * 1999-04-05 2000-11-21 Unilever Home & Personal Care Usa, A Division Of Conopco, Inc. Liquid composition with enhanced low temperature stability comprising sodium tricedeth sulfate
US6176395B1 (en) 1999-04-21 2001-01-23 Pechiney Plastic Packaging, Inc. Dual dispense container
FR2794125B1 (en) * 1999-05-26 2001-07-20 Oreal COMPOSITION IN THE FORM OF AN OIL-IN-WATER EMULSION AND ITS USES, IN PARTICULAR COSMETICS
US6495498B2 (en) 1999-05-27 2002-12-17 Johnson & Johnson Consumer Companies, Inc. Detergent compositions with enhanced depositing, conditioning and softness capabilities
FR2794765B1 (en) 1999-06-09 2005-03-11 Oreal INTERFERENTIAL PIGMENT AND COSMETIC COMPOSITION COMPRISING SUCH A PIGMENT
US6176391B1 (en) 1999-06-21 2001-01-23 Oddzon, Inc. Message providing candy dispenser
FR2795317B1 (en) 1999-06-25 2001-08-24 Oreal HAIR COSMETIC PROCESS USING METALLIC-LIKE PARTICLES TO GIVE SHINE HAIR
US6516838B2 (en) 1999-07-28 2003-02-11 Patrick Thibiant Apparatus and process for forming novel spiral compositions
US6245344B1 (en) 1999-07-28 2001-06-12 Patrick Thibiant Enhanced spiral compositions
US6394323B2 (en) 1999-08-24 2002-05-28 Owens-Brockway Plastic Products Inc. Dispenser package for fluent products and method of manufacture
US6517939B1 (en) 1999-09-03 2003-02-11 Engelhard Corporation Noble metal coated substrate pigments
US6533873B1 (en) * 1999-09-10 2003-03-18 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Suspending clear cleansing formulation
US6426326B1 (en) 1999-09-16 2002-07-30 Unilever Home & Person Care Usa, A Division Of Conopco, Inc. Liquid cleansing composition comprising lamellar phase inducing structurant with low salt content and enhanced low temperature stability
AU1492401A (en) 1999-09-27 2001-04-30 Shaklee Corporation Cleanser that is gentle to human skin
JP4557193B2 (en) 1999-10-05 2010-10-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Highly oriented flaky pigment and process for producing the same
WO2001026985A1 (en) 1999-10-08 2001-04-19 Lloyd James J Portable beverage delivery system
US6268322B1 (en) 1999-10-22 2001-07-31 Unilever Home & Personal Care Usa, A Division Of Conopco, Inc. Dual chamber cleansing system, comprising multiple emulsion
EP1227789B1 (en) 1999-11-12 2004-09-22 The Procter & Gamble Company Improved dual phase stannous oral compositions
US6271187B1 (en) 1999-12-01 2001-08-07 Ecolab Inc. Hand soap concentrate, use solution and method for modifying a hand soap concentrate
GB9929969D0 (en) 1999-12-17 2000-02-09 Unilever Plc Packaged liquid cleansing composition
US6213166B1 (en) 2000-01-12 2001-04-10 Patrick Thibiant Apparatus and process for forming novel spiral compositions
US6383999B1 (en) 2000-02-10 2002-05-07 Unilever Home & Personal Care Usa. Division Of Conopco, Inc. Personal washing bar having adjacent emollient rich and emollient poor phases
US6534457B2 (en) 2000-03-20 2003-03-18 Unilever Home And Personal Care Usa, Division Of Conopco, Inc. Extrudable multiphase composition comprising lamellar phase inducing structurant in each phase
US6534456B2 (en) 2000-03-20 2003-03-18 Unilever Home And Personal Care Usa, Division Of Conopco, Inc. Extrudable multiphase composition comprising a lamellar phase and an isotropic phase
US6306806B1 (en) 2000-03-22 2001-10-23 Unilever Home & Personal Care Usa, Division Of Conopco, Inc Dual chamber cleansing system comprising water-in-oil emulsion as benefit stripe
MXPA02010256A (en) 2000-04-17 2003-04-25 Procter & Gamble Phase separated rinse off hair coloring cleansing products.
US6245323B1 (en) 2000-05-26 2001-06-12 Engelhard Corporation Bonded metal hydroxide-organic composite polymer films on particulate substrates
US6695510B1 (en) 2000-05-31 2004-02-24 Wyeth Multi-composition stick product and a process and system for manufacturing the same
AU149608S (en) 2000-06-27 2002-10-21 Unilever Plc Bottle with cap
US6310019B1 (en) 2000-07-05 2001-10-30 Wako Pure Chemical Industries, Ltd. Cleaning agent for a semi-conductor substrate
DE10033414B4 (en) 2000-07-08 2004-02-19 Wella Aktiengesellschaft Clear, two-phase, foam-forming aerosol hair care product
US6385992B1 (en) 2000-08-21 2002-05-14 Joseph Frank Flore, Jr. Beverage bottle container
US6574985B2 (en) 2000-08-21 2003-06-10 Joseph F. Fiore, Jr. Beverage bottle container
US6429177B1 (en) * 2000-08-22 2002-08-06 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Separating multi-phase personal wash composition in a transparent or translucent package
FR2814677B1 (en) 2000-10-03 2003-04-18 Oreal HYDROPHILIC CONTINUOUS PHASE COSMETIC COMPOSITION COMPRISING A MULTI-LAYER GONIOCHROMATIC PIGMENT AND USE THEREOF
BR0114370A (en) 2000-10-03 2003-12-09 Unilever Nv Cosmetic or personal care makeup, cosmetic method of treating hair, and, use of a makeup
US6547063B1 (en) 2000-10-10 2003-04-15 The Procter & Gamble Company Article for the delivery of foam products
JP2002128639A (en) 2000-10-26 2002-05-09 Kose Corp Cosmetic
GB0026473D0 (en) 2000-10-30 2000-12-13 Unilever Plc Shear gel compositions
JP2002138010A (en) 2000-10-31 2002-05-14 Nippon Sheet Glass Co Ltd Cosmetic
ES2332210T3 (en) 2000-12-06 2010-01-29 TREOFAN GERMANY GMBH &amp; CO. KG FILM FOR LABELS WITH IMPROVED ADHESION.
US6555509B2 (en) 2001-01-29 2003-04-29 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Multi-phase toilet articles and methods for their manufacture
US6564978B1 (en) 2001-02-12 2003-05-20 Owens-Brockway Plastic Products Inc. Disk-top fluid dispensing package
US6691394B1 (en) 2001-02-12 2004-02-17 Owens-Brockway Plastic Products Inc. Disk-top fluid dispensing package
US6395691B1 (en) * 2001-02-28 2002-05-28 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Personal wash compositions containing particle-in-oil dispersion
US20030003069A1 (en) 2001-04-04 2003-01-02 Carson John C. Multiple phase foaming personal cleansing products
US6682726B2 (en) * 2001-04-30 2004-01-27 The Gillette Company Self-foaming shaving lotion
US7192598B2 (en) * 2001-05-17 2007-03-20 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Wet-skin treatment compositions
US6923975B2 (en) * 2001-05-17 2005-08-02 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Method of enhanced moisture or reduced drying using wet-skin treatment compositions
WO2002100358A1 (en) 2001-06-11 2002-12-19 Patrick Thibiant Two-phase composition having a visible pattern
BR0208323B1 (en) * 2001-08-02 2014-01-28 Water dispersible particle, method of depositing a benefit agent on a substrate, and, composition
GB0119831D0 (en) * 2001-08-14 2001-10-10 Unilever Plc Dual compartment packaged cosmetic composition
AU2002361840B2 (en) * 2001-12-21 2007-08-23 Rhodia Inc. Stable surfactant compositions for suspending components
DE10200724A1 (en) 2002-01-11 2003-07-24 Clariant Gmbh Three-phase systems
US6673755B2 (en) 2002-01-16 2004-01-06 The Procter & Gamble Company Personal cleansing compositions containing cleansing and skin active phases separated by one or more packaging barriers
WO2003066016A1 (en) 2002-02-08 2003-08-14 The Procter & Gamble Company Rinse-off skin conditioning compositions
US6797683B2 (en) * 2002-03-04 2004-09-28 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Ordered liquid crystalline cleansing composition with benefit agent particles
ES2193875B2 (en) * 2002-04-09 2005-03-01 Laboratorios Del Dr. Esteve, S.A. DERIVATIVES OF BENZOXAZINONA, ITS PREPARATION AND ITS APPLICATION AS MEDICATIONS.
BRPI0201235B1 (en) 2002-04-12 2017-05-02 Natura Cosmeticos Sa multiphase cosmetic makeup
US7143893B2 (en) 2002-04-12 2006-12-05 Jay Packaging Group, Inc. Multiple pack bottle holder
GB0209510D0 (en) 2002-04-26 2002-06-05 Procter & Gamble Containers comprising at least one label made of an elastomeric material adhered to a squeezable resilient wall
US20030211069A1 (en) * 2002-05-09 2003-11-13 The Procter & Gamble Company Rinsable skin conditioning compositions
US6752982B2 (en) 2002-06-12 2004-06-22 The Gillette Company Personal care product
US6664217B1 (en) * 2002-07-18 2003-12-16 Unilever Home & Personal Care, Usa Division Of Conopco, Inc. Toilet bar having simultaneous exfoliating and moisturizing properties
UY3381Q (en) 2002-08-08 2003-08-29 Unilever Nv BOTTLE
UY3382Q (en) 2002-08-08 2003-08-29 Unilever Nv BOTTLE
US6787511B2 (en) * 2002-08-14 2004-09-07 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Biphasic composition induced by polydextrose
US6727209B2 (en) 2002-08-14 2004-04-27 Unilever Home & Personal Care, Usa, Division Of Conopco, Inc. Biphasic composition induced by polydextrose and sucrose
US6780826B2 (en) 2002-09-11 2004-08-24 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Oil-containing personal wash compositions or emulsions comprising particles of high refractive index and defined thickness, geometry and size
US6759376B2 (en) 2002-09-11 2004-07-06 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Oil-containing personal wash liquid compositions or emulsions comprising particles of high refractive index and defined thickness, geometry and size
KR100681739B1 (en) 2002-09-20 2007-02-15 더 프록터 앤드 갬블 캄파니 Striped liquid personal cleansing compositions containing a cleansing phase and a separate benefit phase
US7524807B2 (en) 2002-11-01 2009-04-28 The Procter & Gamble Company Rinse-off personal care compositions comprising anionic and/or nonionic perfume polymeric particles
US20040091445A1 (en) 2002-11-01 2004-05-13 The Procter & Gamble Company Rinse-off personal care compositions comprising cationic perfume polymeric particles
BR0315924A (en) 2002-11-04 2005-09-20 Procter & Gamble Liquid laundry detergent composition, use thereof, method for softening fabrics, method for treating a substrate, as well as processes for preparing said composition
US6924256B2 (en) 2002-11-08 2005-08-02 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Liquid cleansing composition having simultaneous exfoliating and moisturizing properties
US20040146475A1 (en) 2003-01-17 2004-07-29 Peffly Marjorie Mossman Personal care composition containing a cationic cellulose polymer and an anionic surfactant system
US20040180020A1 (en) 2003-03-15 2004-09-16 Manelski Jean Marie Cosmetic compositions
US7229486B2 (en) 2003-04-17 2007-06-12 Saralee/De N.V. Shoe and leather care product
EP1617809B1 (en) 2003-05-01 2015-07-08 The Procter & Gamble Company Striped liquid personal cleansing compositions containing a cleansing phase and a separate benefit phase comprising a high internal phase emulsion
KR20070121060A (en) * 2003-05-01 2007-12-26 더 프록터 앤드 갬블 캄파니 Visually distinctive multiple liquid phase compositions
US20040223929A1 (en) 2003-05-08 2004-11-11 The Procter & Gamble Company Personal care compositions containing hydrophobically modified interference pigments
US20050100570A1 (en) 2003-05-08 2005-05-12 The Procter & Gamble Company Multi-phase personal care composition
US20040223992A1 (en) 2003-05-09 2004-11-11 The Procter & Gamble Company Wet skin treatment compositions comprising gel-networks
US20040232023A1 (en) 2003-05-21 2004-11-25 Unilever Bestfoods North America Asymmetric package for market appeal
US7838479B2 (en) 2003-06-09 2010-11-23 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Packaged product containing an extrudable multiphase composition of a free fatty acid phase and a soap phase
US20050003975A1 (en) 2003-06-18 2005-01-06 Browne Yvonne Bridget Blooming soap bars
BRPI0412732A (en) 2003-07-22 2006-09-26 Rhodia structured surfactant composition, personal care composition and aqueous surfactant composition
EP1656105A1 (en) 2003-08-18 2006-05-17 Unilever Plc Liquid compositions which thicken on dilution and methods for producing the same
US20050143268A1 (en) * 2003-11-14 2005-06-30 The Procter & Gamble Company Personal care composition containing a cleansing phase and a benefit phase
US8951947B2 (en) 2003-12-24 2015-02-10 The Procter & Gamble Company Multi-phase personal cleansing compositions comprising a lathering cleansing phase and a non-lathering structured aqueous phase
US20050143269A1 (en) 2003-12-24 2005-06-30 Wei Karl S. Multi-phase personal cleansing compositions comprising a lathering cleansing phase and a non-lathering structured aqueous phase
US20050139574A1 (en) 2003-12-30 2005-06-30 Unilever Home & Personal Care Usa Bottle with soft feel handle
US7268104B2 (en) 2003-12-31 2007-09-11 Kimberly-Clark Worldwide, Inc. Color changing liquid cleansing products
EP1722743A1 (en) 2004-02-27 2006-11-22 The Procter and Gamble Company A mild body wash
US20050238680A1 (en) 2004-04-21 2005-10-27 Qing Stella Personal care compositions that deposit hydrophilic benefit agents
US6903057B1 (en) * 2004-05-19 2005-06-07 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Personal product liquid cleansers stabilized with starch structuring system
US20050269372A1 (en) 2004-06-07 2005-12-08 Smith Roger P Vented dispensing package
US20050276768A1 (en) 2004-06-14 2005-12-15 Karl Shiqing Wei Multi-phased personal care composition
US8623341B2 (en) 2004-07-02 2014-01-07 The Procter & Gamble Company Personal care compositions containing cationically modified starch and an anionic surfactant system
EP1765275A1 (en) 2004-07-09 2007-03-28 The Procter and Gamble Company Multi-phased personal care composition
US20060102654A1 (en) * 2004-07-23 2006-05-18 Seys Andrew C Multiple dispenser container
US7537819B2 (en) 2004-08-25 2009-05-26 Dinesol Plastics, Inc. One-piece expanding plastic shim
US7040073B2 (en) 2004-08-30 2006-05-09 Free-Flow Packaging International Machine for inflating and sealing air-filled cushioning materials
US7666825B2 (en) 2004-10-08 2010-02-23 The Procter & Gamble Company Stable, patterned multi-phased personal care composition
US20060079419A1 (en) 2004-10-08 2006-04-13 Julie Ann Wagner Depositable solids
US20060079420A1 (en) 2004-10-08 2006-04-13 Wagner Julie A Multi-phase personal cleansing composition
US7678754B2 (en) * 2004-11-01 2010-03-16 Shell Oil Company System and method for cleaning and/or treating surfaces of objects
US8147853B2 (en) * 2005-02-15 2012-04-03 The Procter & Gamble Company Personal care compositions containing hydrophobically modified non-platelet particles
US7527077B2 (en) * 2005-02-25 2009-05-05 The Procter & Gamble Company Multi-phase personal care compositions, processes for making and providing, and articles of commerce
CA2590433C (en) 2005-03-21 2012-09-18 The Procter & Gamble Company Multi-phase personal care composition comprising visually distinct phases
US7820609B2 (en) * 2005-04-13 2010-10-26 The Procter & Gamble Company Mild, structured, multi-phase personal cleansing compositions comprising density modifiers
JP2008538360A (en) 2005-04-13 2008-10-23 ザ プロクター アンド ギャンブル カンパニー Structured multi-phase personal care compositions containing branched anionic surfactants
US20120015009A9 (en) 2005-06-07 2012-01-19 The Procter & Gamble Company Multi-phased personal care composition comprising a blooming perfume composition
EP1957374A2 (en) * 2005-12-08 2008-08-20 The Procter and Gamble Company A container comprising an in-mold label positioned proximate to a surface topography
US20070141001A1 (en) 2005-12-15 2007-06-21 The Procter & Gamble Company Non-migrating colorants in multi-phase personal cleansing compositions
US20070167338A1 (en) * 2006-01-09 2007-07-19 Mchugh Colin M Multiphase personal care compositions comprising beads
US8104616B2 (en) 2006-02-11 2012-01-31 The Procter & Gamble Company Clamshell package for holding and displaying consumer products
US8153144B2 (en) 2006-02-28 2012-04-10 The Proctor & Gamble Company Stable multiphase composition comprising alkylamphoacetate
DE602007012126D1 (en) 2006-10-13 2011-03-03 Philips Intellectual Property X-RAY MISSION DEVICE AND METHOD OF TORQUE X-RAY IN AN X-RAY MISSION DEVICE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040092415A1 (en) * 2002-11-04 2004-05-13 The Procter & Gamble Company Striped liquid personal cleansing compositions containing a cleansing phase and a separate benefit phase with improved stability
US20040248748A1 (en) * 2003-05-01 2004-12-09 The Procter & Gamble Company Striped liquid personal cleansing compositions containing a cleansing phase and a separate benefit phase comprising a water in oil emulsion
WO2004100919A1 (en) * 2003-05-08 2004-11-25 The Procter & Gamble Company A multi-phase personal care compositon
WO2005084614A1 (en) * 2004-02-27 2005-09-15 The Procter & Gamble Company A mild body wash
WO2005084616A1 (en) * 2004-02-27 2005-09-15 The Procter & Gamble Company A mild multi-phased personal care composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2164446A4 (en) * 2007-07-12 2015-08-05 Amcol International Corp High-foaming cleanser composition with a skin care agent
US10966916B2 (en) 2014-11-10 2021-04-06 The Procter And Gamble Company Personal care compositions
US11207248B2 (en) 2014-11-10 2021-12-28 The Procter And Gamble Company Personal care compositions with two benefit phases
WO2019079405A1 (en) * 2017-10-20 2019-04-25 The Procter & Gamble Company Aerosol foam skin cleanser
WO2019079409A1 (en) * 2017-10-20 2019-04-25 The Procter & Gamble Company Aerosol foam skin cleanser
US10987290B2 (en) 2017-10-20 2021-04-27 The Procter And Gamble Company Aerosol foam skin cleanser
US11419805B2 (en) 2017-10-20 2022-08-23 The Procter & Gamble Company Aerosol foam skin cleanser

Also Published As

Publication number Publication date
US20060276357A1 (en) 2006-12-07
US20070155637A1 (en) 2007-07-05
MX2007012898A (en) 2007-12-10
EP1874408A1 (en) 2008-01-09
MX2007007312A (en) 2007-07-09
US8084407B2 (en) 2011-12-27
WO2006113118A1 (en) 2006-10-26
CA2603299A1 (en) 2006-10-26
US20060252662A1 (en) 2006-11-09
EP1874409A1 (en) 2008-01-09
JP2008538360A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
US8084407B2 (en) Mild, structured, multiphase personal cleansing compositions comprising density modifiers
EP1988872B1 (en) Stable multiphase composition comprising alkylamphoacetate
US8088721B2 (en) Mild, structured, multi-phase personal cleansing compositions comprising density modifiers
US7666825B2 (en) Stable, patterned multi-phased personal care composition
US20060079418A1 (en) Stable multi-phased personal care composition
US20060079420A1 (en) Multi-phase personal cleansing composition
US20060079419A1 (en) Depositable solids
US20070280976A1 (en) Multi-phased personal care composition comprising a blooming perfume composition
WO2006132974A1 (en) Multi-phased personal care composition comprising a blooming perfume composition
EP1942860A2 (en) Multi-phase personal care composition comprising a depositing perfume
US20110226272A1 (en) Shaving kit, article of commerce and a method of shaving comprising a personal care composition
CN106726635A (en) Gentle structured, multi-phase personal cleansing compositions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680001464.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/007312

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2006749195

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU