WO2006127125A2 - Crimpable and expandable side branch cell - Google Patents

Crimpable and expandable side branch cell Download PDF

Info

Publication number
WO2006127125A2
WO2006127125A2 PCT/US2006/011814 US2006011814W WO2006127125A2 WO 2006127125 A2 WO2006127125 A2 WO 2006127125A2 US 2006011814 W US2006011814 W US 2006011814W WO 2006127125 A2 WO2006127125 A2 WO 2006127125A2
Authority
WO
WIPO (PCT)
Prior art keywords
stent
longitudinal axis
petal
side branch
appendage
Prior art date
Application number
PCT/US2006/011814
Other languages
French (fr)
Other versions
WO2006127125A3 (en
Inventor
Daniel Gregorich
Michael P. Meyer
Original Assignee
Boston Scientific Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Limited filed Critical Boston Scientific Limited
Priority to JP2008513470A priority Critical patent/JP2008541839A/en
Priority to CA002601903A priority patent/CA2601903A1/en
Priority to EP06740138A priority patent/EP1887992A2/en
Publication of WO2006127125A2 publication Critical patent/WO2006127125A2/en
Publication of WO2006127125A3 publication Critical patent/WO2006127125A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/856Single tubular stent with a side portal passage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91508Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a difference in amplitude along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91516Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a change in frequency along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak

Definitions

  • this invention relates to implantable medical devices, their manufacture, and methods of use. Some embodiments are directed to delivery systems, such as catheter systems of all types, which are utilized in the delivery of such devices.
  • a stent is a medical device introduced to a body lumen and is well known in the art.
  • a stent is implanted in a blood vessel at the site of a stenosis or aneurysm endoluminally, i.e. by so-called “minimally invasive techniques” in which the stent in a radially reduced configuration, optionally restrained in a radially compressed configuration by a sheath and/or catheter, is delivered by a stent delivery system or "introducer" to the site where it is required.
  • the introducer may enter the body from an access location outside the body, such as through the patient's skin, or by a "cut down" technique in which the entry blood vessel is exposed by minor surgical means.
  • Stents, grafts, stent-grafts, vena cava filters, expandable frameworks, and similar implantable medical devices, collectively referred to hereinafter as stents, are radially expandable endoprostheses which are typically intravascular implants capable of being implanted transluminally and enlarged radially after being introduced percutaneously.
  • Stents may be implanted in a variety of body lumens or vessels such as within the vascular system, urinary tracts, bile ducts, fallopian tubes, coronary vessels, secondary vessels, etc.
  • Stents may be used to reinforce body vessels and to prevent restenosis following angioplasty in the vascular system. They may be self-expanding, expanded by an internal radial force, such as when mounted on a balloon, or a combination of self-expanding and balloon expandable (hybrid expandable).
  • Stents may be created by methods including cutting or etching a design from a tubular stock, from a flat sheet which is cut or etched and which is subsequently rolled or from one or more interwoven wires or braids.
  • a bifurcation is an area of the vasculature or other portion of the body where a first (or parent) vessel is bifurcated into two or more branch vessels.
  • the lesion(s) can affect only one of the vessels (i.e., either of the branch vessels or the parent vessel) two of the vessels, or all three vessels.
  • stents however are not wholly satisfactory for use where the site of desired application of the stent is juxtaposed or extends across a bifurcation in an artery or vein such, for example, as the bifurcation in the mammalian aortic artery into the common iliac arteries.
  • Stents for use in bifurcated regions are generally known.
  • When treating a bifurcated vessel it may desirable to use a stent having a side branch opening configured to provide fluid communication between the primary vessel and a secondary or branch vessel of the bifurcation.
  • a secondary or branch stent may be received within and/or be positioned adjacent to the side branch opening of the primary stent.
  • a side opening in some stents may further include a structural component, which when deployed, extends from the primary stent and into the branch vessel.
  • a side branch structure e.g. limb, arm, branch, etc.
  • strut members of the stent in areas around the side opening must be designed to help compensate for the expansion characteristics of the side opening. Therefore, strut members adjacent to a side opening may be designed differently than strut members of the main body portion of the stent, and may experience higher stress levels, greater amounts of strain and provide less scaffolding support.
  • a stent may have a longitudinal axis and may comprise a side branch cell.
  • the side branch cell may comprise a plurality of petals including a first petal, and each petal may comprise a plurality of substantially straight struts and at least one turn.
  • Each petal may have a central axis, and the central axis of the first petal may extend in a direction nonparallel to the stent longitudinal axis. At least two of said substantially straight struts of the first petal may extend substantially parallel to said stent longitudinal axis.
  • a stent may comprise a body having a longitudinal axis and may be expandable from an unexpanded state to an expanded state.
  • the stent body may define a plurality of interconnected strut members.
  • a plurality of said interconnected strut members may comprise a plurality of petals, and the plurality of petals may define a side branch opening.
  • Each petal may have a longitudinal axis and may further comprise at least one appendage.
  • Each appendage may have a longitudinal axis and may comprise a first strut member, a turn and a second strut member. When the stent is in the unexpanded state, the longitudinal axis of each appendage may be substantially parallel to the longitudinal axis of the body.
  • Figure 1 shows an embodiment of a stent having a side branch cell.
  • Figure 2 shows an embodiment of a side branch cell.
  • Figure 3 shows another embodiment of a stent having a side branch cell.
  • Figure 4 shows an embodiment of a side branch cell.
  • stent patterns depicted herein are generally shown and described as flat patterns.
  • a person of ordinary skill in the art will understand that a cylindrical stent may be manufactured according to the design of the flat patterns disclosed.
  • Some examples of stents having a side opening and methods of deploying such stents are disclosed in US 5,596,020 and US 6,835,203, the entire disclosures of which are hereby incorporated herein in their entireties.
  • Figure 1 shows a flat pattern for an embodiment of a stent 10 which may include a side branch cell 30.
  • the stent 10 may comprise a proximal end 11 and a distal end 13.
  • the stent 10 may further comprise a plurality of serpentine bands 12 which may have any suitable shape, and in some embodiments may comprise a plurality of struts 14 connected by turns 16. Adjacent serpentine bands 12 may be connected by connectors 20.
  • a side branch cell 30 may comprise a continuous strut member 32, or in some embodiments a plurality of strut members, which may extend in serpentine fashion about the center 34 of the side branch cell 30.
  • the side branch cell 30 desirably defines a plurality of side branch petals 40 which may have any suitable shape and may each be oriented in any suitable direction.
  • a side branch cell 30 may have any suitable number of petals 40 and in some embodiments may have anywhere from six to ten petals 40.
  • the pattern of the continuous strut member(s) 32 may define the plurality of side branch petals 40.
  • Figure 1 includes a reference box 22a drawn about a portion of the side branch cell 30 which may be defined as a petal 40.
  • Reference box 22b indicates another portion of the side branch cell 30 which may be defined as a petal 40.
  • Each petal 40 may have an approximate longitudinal axis 42.
  • a petal 40 may have a longitudinal axis 42 which is oriented to extend substantially radially outwardly from the center 34 of the side branch cell 30.
  • a longitudinal axis 42 may pass through the centroid of the stent elements which comprise the petal 40.
  • Each petal 40 may comprise a plurality of struts 36 and at least one turn 38.
  • a strut 36 may be straight along its length, and may be oriented in any suitable direction.
  • a turn 38 may be oriented in any suitable direction, hi some embodiments, a turn 38 may comprise a proximal turn 38p oriented with a peak facing the proximal end 11 of the stent 10, or a distal turn 38d oriented with a peak facing the distal end 13 of the stent 10.
  • Petals 40 which are adjacent to one another about the side branch cell 30 may be connected to one another by a connecting portion 44.
  • a connecting portion 44 may comprise a turn 38, a strut 36, or any combination of one or more turns 38 and one or more struts 36.
  • a petal 40 may include struts 36 that are oriented substantially parallel to the longitudinal axis 18 of the stent 10, and/or may include struts 36 that are oriented substantially parallel to the longitudinal axis 42 of the petal 40.
  • one or more struts 36 may be oriented at a range from 30° to 60° with respect to the longitudinal axis 18 of the stent 10.
  • one or more struts 36 may be oriented at approximately 45° with respect to the longitudinal axis 18 of the stent 10.
  • a petal may include a plurality of struts 36 that are oriented substantially parallel to the longitudinal axis 18 of the stent 10. This may be true even though the longitudinal axis 42 of the petal 40 may be oriented at an angle with respect to the longitudinal axis 18 of the stent 10. In some embodiments, a majority of the struts 36 or all of the struts 36 in a petal 40 maybe oriented substantially parallel to the longitudinal axis 18 of the stent 10. Each petal 40 may further comprise one or more appendages 70.
  • An appendage 70 may comprise a first strut 36a and a second strut 36b connected by a turn 38.
  • an appendage 70 may include a proximal turn 38p, or may include a distal turn 38d.
  • An appendage 70 may have an approximate longitudinal axis 72, and the approximate longitudinal axis 72 may be substantially parallel to the longitudinal axis 18 of the stent 10.
  • FIG. 2 shows an embodiment of a side branch cell 30.
  • Each petal 40 may occupy an area of space on the surface of the stent.
  • an embodiment of a petal 40a is shown with the approximate bounds of the petal 40a shaded.
  • Each petal 40 may include a longitudinal length component 46 or a distance between a proximal most point (e.g. 41) and a distal most point (e.g. 43) of the petal 40 as measured in a direction parallel to the stent longitudinal axis 18.
  • a proximal most point 41 may be defined as the point of a petal 40 that is closest to the proximal end 11 (see Figure 1) of the stent
  • a distal most point 43 may be defined as the point of a petal 40 that is closest to the distal end 13 (see Figure 1) of the stent.
  • a proximal most point 41 and a distal most point 43 are specifically indicated in Figure 2 with respect to petal 40a, the location of a proximal most point and the location of a distal most point on any petal 40 may change as the shape of any petal 40 may change with stent crimping and/or stent expansion.
  • Each petal 40 may further include a circumferential length component 48, or a distance between opposed circumferential extremities 45, 47 of a petal 40 as measured in a direction about the circumference of the stent.
  • a circumferential length component 48 or a distance between opposed circumferential extremities 45, 47 of a petal 40 as measured in a direction about the circumference of the stent.
  • the circumferential length component 48 of a petal 40 may be perpendicular to the longitudinal length component 46 of the petal 40.
  • a side branch cell 30 may include a longitudinal length component 26, or a distance between proximal most and distal most points of the side branch cell 30 as measured parallel to the stent longitudinal axis 18.
  • a side branch cell 30 may also include a circumferential length component 28, or a distance between opposed extremities of the side branch cell 30 as measured in a direction about the circumference of the stent. The locations of a proximal most point, a distal most point, and the opposed circumferential extremities may change as a side branch cell 30 may change in size and shape with stent crimping and/or stent expansion.
  • the longitudinal length component 26 of the side branch cell 30 may be perpendicular to the circumferential length component 28.
  • the geometric design of various embodiments of a side branch cell 30, including the design of the individual petals 40 within a side branch cell 30, desirably allows a stent 10 to expand more similarly to a standard stent not having a side branch cell 30.
  • the circumferential length component 28, 48 of a petal 40 or a side branch cell 30 may experience an increase that is proportionally larger than any related increase in the longitudinal length component 26, 46 of the respective petal 40 or side branch cell 30.
  • a longitudinal length component 26, 46 may remain the same or even reduce as the stent 10 expands.
  • the geometric design of the petals 40, and particularly the petals 40 which have an approximate longitudinal axis 42 that is nonparallel to the stent longitudinal axis 18 and a plurality of struts 36 which are oriented substantially parallel to the stent longitudinal axis 18, allows for a relatively large increase in the circumferential length component 28, 48 as compared to any change (i.e. increase or decrease) in the longitudinal length component 26, 46 of the petal 40 or side branch cell 30 during stent expansion.
  • the petals 40 may change shape, and the orientation of struts 36 and turns 38 may also change.
  • Struts 36 which are substantially parallel to the stent longitudinal axis 18 in an unexpanded state may reorient on expansion and be nonparallel to the stent longitudinal axis 18 when the stent is expanded.
  • Appendages 70 may also change shape as the stent expands. In some embodiments, although an appendage 70 may change shape, the approximate longitudinal axis 72 of the appendage 70 may remain substantially parallel to the stent longitudinal axis 18 after expansion.
  • An appendage 70 may have a longitudinal axis 72 which is a predetermined distance away from a longitudinal axis 31 of the side branch cell 30, as measured in a stent circumferential direction.
  • Figure 2 shows a first longitudinal axis 72a, a second longitudinal axis 72b and a third longitudinal axis 72c for three respective appendages 70. Three respective predetermined distances 74a, 74b, 74c are shown between the side branch cell longitudinal axis 31 and the respective appendage longitudinal axes 72a, 72b, 72c.
  • each appendage longitudinal axis 72 may displace away from the side branch cell longitudinal axis 31.
  • appendage longitudinal axis 72a may displace away from the side branch cell longitudinal axis 31.
  • Appendage longitudinal axis 72b may also displace away from the side branch cell longitudinal axis 31.
  • the amount of displacement of appendage longitudinal axis 72b may be greater than the amount of displacement of appendage longitudinal axis 72a.
  • appendage longitudinal axis 72c may also displace away from the side branch cell longitudinal axis 31, and the amount of displacement of appendage longitudinal axis 72c may be greater than the amount of displacement of appendage longitudinal axis 72b.
  • the stent 10 may include serpentine bands 12 which extend about an entire circumference of the stent 10.
  • serpentine bands 12 may be located in portions of stent length that do not include a side branch cell 30.
  • the stent 10 may include one or more partial serpentine bands 60, which may extend from one side of a side branch cell 30 about the circumference of the stent 10 to the other side of the side branch cell 30.
  • the design of struts 14 and turns 16 in a partial serpentine band 60 may be similar to or different than the design geometry of the standard serpentine bands 12.
  • a stent 10 may include side branch connectors 56 which may connect between the side branch cell 30 and other portions of the stent 10.
  • a side branch connector 56 may extend from any portion of a side branch cell 30, such as a petal 40 or connecting portion 44, and connect to any other portion of the stent 10, such as a serpentine band 12 or a partial serpentine band 60.
  • a side branch connector 56 may include straight portions, peaks, valleys or other undulations.
  • a side branch connector 56 may comprise a flexible connector which may support an ostium when deployed in a vessel.
  • the design of a side branch cell 30, and particularly the design of petals 40 having a plurality of struts 36 oriented substantially parallel to the stent longitudinal axis 10 may allow for more struts 14 and turns 16 in a partial serpentine band 60 than prior art designs.
  • the design of a side branch cell 30 may also allow the design of the partial serpentine band(s) 60 to be consistent with the design of the standard serpentine bands 12. This allows the stent to provide more scaffolding support to vessel locations adjacent to the petal 40 region, particularly around juncture points between a main branch vessel and a side branch vessel, such as the carina and vessel areas contralateral to the carina.
  • a side branch cell 30 also allows for the circumferential length component 28 of the side branch cell 30 to be further reduced as the stent 10 is further crimped to an unexpanded configuration which is more reduced than shown in Figure 1. Minimizing the circumferential length component 28 in an unexpanded state may allow for additional stent elements, such as struts 14, in areas of the stent 10 adjacent to the side branch cell 30 about the circumference of the stent 10, for example in the partial serpentine band(s) 60.
  • additional stent elements such as struts 14
  • Figure 3 shows another embodiment of a side branch cell 30, which may comprise a continuous strut 32 which extends with serpentine undulations about a center 34 of the side branch cell 30.
  • the side branch cell 30 may comprise a plurality of petals 40 which may be oriented in any suitable direction.
  • a petal 40 may have a longitudinal axis 42 which is oriented to extend substantially radially outwardly from the center 34 of the side branch cell 30.
  • Each petal 40 may include a plurality of struts 36 and at least one turn 38.
  • a strut 36 may be straight along its length.
  • Petals 40 which are adjacent to one another about the side branch cell 30 may be connected to one another by a connecting portion 44.
  • each petal 40 may include a plurality of struts 36 that are oriented substantially parallel to the longitudinal axis 18 of the stent 10.
  • Each petal 40 may further comprise a plurality of appendages 70.
  • a single petal 40 may include appendages 70 that are oriented in different or opposite directions.
  • a single petal 40 may include at least one appendage having a proximal turn 38p, and at least one other appendage 70 having a distal turn 38d.
  • Figure 4 shows an embodiment of a side branch cell 30 which may have a plurality of petals 80.
  • a side branch cell 30 may include a plurality of expansion states, such as a nominal state, a crimped or reduced state, and an expanded state.
  • a stent may be manufactured in the nominal state, and then be reduced in size to the crimped state. Upon stent expansion, the stent may assume the expanded state, which may be larger in size than the nominal state.
  • Each petal 80 may have a longitudinal axis 82.
  • petals 80 which are adjacent to one another along the length of the stent may have longitudinal axes 82 which share a common line.
  • Petals 80 which are adjacent to one another about the circumference of the stent may have longitudinal axes 82 which are substantially parallel to one another.
  • Petals 80 may have a longitudinal axis 82 which is substantially parallel to the longitudinal axis of the stent.
  • the inventive stents may be made from any suitable biocompatible materials including one or more polymers, one or more metals or combinations of polymer(s) and metal(s).
  • suitable materials include biodegradable materials that are also biocompatible.
  • biodegradable is meant that a material will undergo breakdown or decomposition into harmless compounds as part of a normal biological process.
  • Suitable biodegradable materials include polylactic acid, polyglycolic acid (PGA), collagen or other connective proteins or natural materials, polycaprolactone, hylauric acid, adhesive proteins, co-polymers of these materials as well as composites and combinations thereof and combinations of other biodegradable polymers.
  • Other polymers that may be used include polyester and polycarbonate copolymers.
  • suitable metals include, but are not limited to, stainless steel, titanium, tantalum, platinum, tungsten, gold and alloys of any of the above-mentioned metals.
  • suitable alloys include platinum-indium alloys, cobalt-chromium alloys including Elgiloy and Phynox, MP35N alloy and nickel-titanium alloys, for example, Nitinol.
  • the inventive stents may be made of shape memory materials such as superelastic Nitinol or spring steel, or may be made of materials which are plastically deformable.
  • shape memory materials such as superelastic Nitinol or spring steel, or may be made of materials which are plastically deformable.
  • the stent may be provided with a memorized shape and then deformed to a reduced diameter shape. The stent may restore itself to its memorized shape upon being heated to a transition temperature and having any restraints removed therefrom.
  • inventive stents may be created by methods including cutting or etching a design from a tubular stock, from a flat sheet which is cut or etched and which is subsequently rolled or from one or more interwoven wires or braids. Any other suitable technique which is known in the art or which is subsequently developed may also be used to manufacture the inventive stents disclosed herein.
  • the stent, the delivery system or other portion of the assembly may include one or more areas, bands, coatings, members, etc. that is (are) detectable by imaging modalities such as X-Ray, MRI, ultrasound, etc.
  • imaging modalities such as X-Ray, MRI, ultrasound, etc.
  • at least a portion of the stent and/or adjacent assembly is at least partially radiopaque.
  • the stent is configured to include one or more mechanisms for the delivery of a therapeutic agent.
  • the agent will be in the form of a coating or other layer (or layers) of material placed on a surface region of the stent, which is adapted to be released at the site of stent implantation or areas adjacent thereto.
  • a therapeutic agent may be a drug or other pharmaceutical product such as non-genetic agents, genetic agents, cellular material, etc.
  • suitable non-genetic therapeutic agents include but are not limited to: anti-thrombogenic agents such as heparin, heparin derivatives, vascular cell growth promoters, growth factor inhibitors, Paclitaxel, etc.
  • an agent includes a genetic therapeutic agent, such a genetic agent may include but is not limited to: DNA, RNA and their respective W
  • a therapeutic agent includes cellular material
  • the cellular material may include but is not limited to: cells of human origin and/or non-human origin as well as their respective components and/or derivatives thereof.
  • the therapeutic agent includes a polymer agent
  • the polymer agent may be a polystyrene-polyisobutylene-polystyrene triblock copolymer (SIBS), polyethylene oxide, silicone rubber and/or any other suitable substrate.
  • any dependent claim which follows should be taken as alternatively written in a multiple dependent form from all prior claims which possess all antecedents referenced in such dependent claim if such multiple dependent format is an accepted format within the jurisdiction (e.g. each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims).
  • each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims.
  • the following dependent claims should each be also taken as alternatively written in each singly dependent claim format which creates a dependency from a prior antecedent-possessing claim other than the specific claim listed in such dependent claim below.

Abstract

A stent (10) may include a side branch cell (30) comprising a plurality of petals (40) . Each petal may comprise struts (36) and turns (38) , and may have a longitudinal axis (42) oriented at an angle to the stent longitudinal axis (18) . Each petal may include a plurality of straight struts which are substantially parallel to the stent longitudinal axis. Each petal may include at least one appendage (70) which may be oriented substantially parallel to the stent longitudinal axis, and which may remain substantially parallel to the stent longitudinal axis as the stent is deployed. The dimension of the side branch cell about the circumference of the stent may increase more than the dimension of the side branch cell in a stent lengthwise directions as the stent is expanded.

Description

CRJMPABLE AND EXPANDABLE SIDE BRANCH CELL
BACKGROUND OF THE INVENTION
Field of the Invention In some embodiments this invention relates to implantable medical devices, their manufacture, and methods of use. Some embodiments are directed to delivery systems, such as catheter systems of all types, which are utilized in the delivery of such devices.
Description of the Related Art
A stent is a medical device introduced to a body lumen and is well known in the art. Typically, a stent is implanted in a blood vessel at the site of a stenosis or aneurysm endoluminally, i.e. by so-called "minimally invasive techniques" in which the stent in a radially reduced configuration, optionally restrained in a radially compressed configuration by a sheath and/or catheter, is delivered by a stent delivery system or "introducer" to the site where it is required. The introducer may enter the body from an access location outside the body, such as through the patient's skin, or by a "cut down" technique in which the entry blood vessel is exposed by minor surgical means.
Stents, grafts, stent-grafts, vena cava filters, expandable frameworks, and similar implantable medical devices, collectively referred to hereinafter as stents, are radially expandable endoprostheses which are typically intravascular implants capable of being implanted transluminally and enlarged radially after being introduced percutaneously. Stents may be implanted in a variety of body lumens or vessels such as within the vascular system, urinary tracts, bile ducts, fallopian tubes, coronary vessels, secondary vessels, etc. Stents may be used to reinforce body vessels and to prevent restenosis following angioplasty in the vascular system. They may be self-expanding, expanded by an internal radial force, such as when mounted on a balloon, or a combination of self-expanding and balloon expandable (hybrid expandable).
Stents may be created by methods including cutting or etching a design from a tubular stock, from a flat sheet which is cut or etched and which is subsequently rolled or from one or more interwoven wires or braids. Within the vasculature, it is not uncommon for stenoses to form at a vessel bifurcation. A bifurcation is an area of the vasculature or other portion of the body where a first (or parent) vessel is bifurcated into two or more branch vessels. Where a stenotic lesion or lesions form at such a bifurcation, the lesion(s) can affect only one of the vessels (i.e., either of the branch vessels or the parent vessel) two of the vessels, or all three vessels. Many prior art stents however are not wholly satisfactory for use where the site of desired application of the stent is juxtaposed or extends across a bifurcation in an artery or vein such, for example, as the bifurcation in the mammalian aortic artery into the common iliac arteries. Stents for use in bifurcated regions are generally known. When treating a bifurcated vessel, it may desirable to use a stent having a side branch opening configured to provide fluid communication between the primary vessel and a secondary or branch vessel of the bifurcation. A secondary or branch stent may be received within and/or be positioned adjacent to the side branch opening of the primary stent. A side opening in some stents may further include a structural component, which when deployed, extends from the primary stent and into the branch vessel. In some instances a side branch structure (e.g. limb, arm, branch, etc.) exhibits expansion characteristics that are different from other portions of the primary stent. In some instances, it may be difficult to initiate an outward expansion of the side branch. In some instances, strut members of the stent in areas around the side opening must be designed to help compensate for the expansion characteristics of the side opening. Therefore, strut members adjacent to a side opening may be designed differently than strut members of the main body portion of the stent, and may experience higher stress levels, greater amounts of strain and provide less scaffolding support. There remains a need for a stent having a side branch which exhibits superior expansion characteristics. It would further be desirable to provide a stent wherein strut design adjacent to a side opening provides a high level of scaffolding support and more closely matches the design of other portions of the stent.
The art referred to and/or described above is not intended to constitute an admission that any patent, publication or other information referred to herein is "prior art" with respect to this invention. In addition, this section should not be construed to mean that a search has been made or that no other pertinent information as defined in 37 C.F.R. §1.56(a) exists.
AU US patents and applications and all other published documents mentioned anywhere in this application are incorporated herein by reference in their entirety. Without limiting the scope of the invention a brief summary of some of the claimed embodiments of the invention is set forth below. Additional details of the summarized embodiments of the invention and/or additional embodiments of the invention may be found in the Detailed Description of the Invention below.
A brief abstract of the technical disclosure in the specification is provided as well only for the purposes of complying with 37 C.F.R. 1.72. The abstract is not intended to be used for interpreting the scope of the claims.
BRIEF SUMMARY OF THE INVENTION
In at least one embodiment, a stent may have a longitudinal axis and may comprise a side branch cell. The side branch cell may comprise a plurality of petals including a first petal, and each petal may comprise a plurality of substantially straight struts and at least one turn. Each petal may have a central axis, and the central axis of the first petal may extend in a direction nonparallel to the stent longitudinal axis. At least two of said substantially straight struts of the first petal may extend substantially parallel to said stent longitudinal axis.
In another embodiment, a stent may comprise a body having a longitudinal axis and may be expandable from an unexpanded state to an expanded state. The stent body may define a plurality of interconnected strut members. A plurality of said interconnected strut members may comprise a plurality of petals, and the plurality of petals may define a side branch opening. Each petal may have a longitudinal axis and may further comprise at least one appendage. Each appendage may have a longitudinal axis and may comprise a first strut member, a turn and a second strut member. When the stent is in the unexpanded state, the longitudinal axis of each appendage may be substantially parallel to the longitudinal axis of the body. These and other embodiments which characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for a better understanding of the invention, its advantages and objectives obtained by its use, reference should be made to the drawings which form a further part hereof and the accompanying descriptive matter, in which there are illustrated and described various embodiments of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
A detailed description of the invention is hereafter described with specific reference being made to the drawings.
Figure 1 shows an embodiment of a stent having a side branch cell. Figure 2 shows an embodiment of a side branch cell. Figure 3 shows another embodiment of a stent having a side branch cell.
Figure 4 shows an embodiment of a side branch cell.
DETAILED DESCRIPTION OF THE INVENTION
While this invention may be embodied in many different forms, there are described in detail herein specific preferred embodiments of the invention. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.
For the purposes of this disclosure, like reference numerals in the figures shall refer to like features unless otherwise indicated. Use of the term "parallel" is intended to describe an orientation in which two elements may be exactly parallel or substantially parallel to one another.
The stent patterns depicted herein are generally shown and described as flat patterns. A person of ordinary skill in the art will understand that a cylindrical stent may be manufactured according to the design of the flat patterns disclosed. Some examples of stents having a side opening and methods of deploying such stents are disclosed in US 5,596,020 and US 6,835,203, the entire disclosures of which are hereby incorporated herein in their entireties.
The entire disclosures of US 5,922,021, US 6,123,721, US 6,334,870, US 6,478,816, US 6,348,065 and US 6,325,826 are hereby incorporated herein by reference in their entireties.
Figure 1 shows a flat pattern for an embodiment of a stent 10 which may include a side branch cell 30. The stent 10 may comprise a proximal end 11 and a distal end 13. The stent 10 may further comprise a plurality of serpentine bands 12 which may have any suitable shape, and in some embodiments may comprise a plurality of struts 14 connected by turns 16. Adjacent serpentine bands 12 may be connected by connectors 20. A side branch cell 30 may comprise a continuous strut member 32, or in some embodiments a plurality of strut members, which may extend in serpentine fashion about the center 34 of the side branch cell 30. The side branch cell 30 desirably defines a plurality of side branch petals 40 which may have any suitable shape and may each be oriented in any suitable direction. A side branch cell 30 may have any suitable number of petals 40 and in some embodiments may have anywhere from six to ten petals 40. In some embodiments, the pattern of the continuous strut member(s) 32 may define the plurality of side branch petals 40.
Figure 1 includes a reference box 22a drawn about a portion of the side branch cell 30 which may be defined as a petal 40. Reference box 22b indicates another portion of the side branch cell 30 which may be defined as a petal 40.
Each petal 40 may have an approximate longitudinal axis 42. hi some embodiments, a petal 40 may have a longitudinal axis 42 which is oriented to extend substantially radially outwardly from the center 34 of the side branch cell 30. A longitudinal axis 42 may pass through the centroid of the stent elements which comprise the petal 40.
Each petal 40 may comprise a plurality of struts 36 and at least one turn 38. A strut 36 may be straight along its length, and may be oriented in any suitable direction. A turn 38 may be oriented in any suitable direction, hi some embodiments, a turn 38 may comprise a proximal turn 38p oriented with a peak facing the proximal end 11 of the stent 10, or a distal turn 38d oriented with a peak facing the distal end 13 of the stent 10. Petals 40 which are adjacent to one another about the side branch cell 30 may be connected to one another by a connecting portion 44. In various locations, a connecting portion 44 may comprise a turn 38, a strut 36, or any combination of one or more turns 38 and one or more struts 36. A petal 40 may include struts 36 that are oriented substantially parallel to the longitudinal axis 18 of the stent 10, and/or may include struts 36 that are oriented substantially parallel to the longitudinal axis 42 of the petal 40. In some embodiments, one or more struts 36 may be oriented at a range from 30° to 60° with respect to the longitudinal axis 18 of the stent 10. In some embodiments, one or more struts 36 may be oriented at approximately 45° with respect to the longitudinal axis 18 of the stent 10. In some embodiments, a petal may include a plurality of struts 36 that are oriented substantially parallel to the longitudinal axis 18 of the stent 10. This may be true even though the longitudinal axis 42 of the petal 40 may be oriented at an angle with respect to the longitudinal axis 18 of the stent 10. In some embodiments, a majority of the struts 36 or all of the struts 36 in a petal 40 maybe oriented substantially parallel to the longitudinal axis 18 of the stent 10. Each petal 40 may further comprise one or more appendages 70. An appendage 70 may comprise a first strut 36a and a second strut 36b connected by a turn 38. In some embodiments, an appendage 70 may include a proximal turn 38p, or may include a distal turn 38d. An appendage 70 may have an approximate longitudinal axis 72, and the approximate longitudinal axis 72 may be substantially parallel to the longitudinal axis 18 of the stent 10.
Figure 2 shows an embodiment of a side branch cell 30. Each petal 40 may occupy an area of space on the surface of the stent. For the purposes of the following disclosure, an embodiment of a petal 40a is shown with the approximate bounds of the petal 40a shaded. Each petal 40 may include a longitudinal length component 46 or a distance between a proximal most point (e.g. 41) and a distal most point (e.g. 43) of the petal 40 as measured in a direction parallel to the stent longitudinal axis 18. A proximal most point 41 may be defined as the point of a petal 40 that is closest to the proximal end 11 (see Figure 1) of the stent, and a distal most point 43 may be defined as the point of a petal 40 that is closest to the distal end 13 (see Figure 1) of the stent. Although a proximal most point 41 and a distal most point 43 are specifically indicated in Figure 2 with respect to petal 40a, the location of a proximal most point and the location of a distal most point on any petal 40 may change as the shape of any petal 40 may change with stent crimping and/or stent expansion.
Each petal 40 may further include a circumferential length component 48, or a distance between opposed circumferential extremities 45, 47 of a petal 40 as measured in a direction about the circumference of the stent. As with the proximal most and distal most points 41, 43 of a petal 40, the locations of points which comprise the opposed circumferential extremities 45, 47 for a given petal 40 may change with stent crimping and/or stent expansion. The circumferential length component 48 of a petal 40 may be perpendicular to the longitudinal length component 46 of the petal 40.
Similar to the circumferential length component 48 and longitudinal length component 46 of a petal 40, a side branch cell 30 may include a longitudinal length component 26, or a distance between proximal most and distal most points of the side branch cell 30 as measured parallel to the stent longitudinal axis 18. A side branch cell 30 may also include a circumferential length component 28, or a distance between opposed extremities of the side branch cell 30 as measured in a direction about the circumference of the stent. The locations of a proximal most point, a distal most point, and the opposed circumferential extremities may change as a side branch cell 30 may change in size and shape with stent crimping and/or stent expansion. The longitudinal length component 26 of the side branch cell 30 may be perpendicular to the circumferential length component 28. The geometric design of various embodiments of a side branch cell 30, including the design of the individual petals 40 within a side branch cell 30, desirably allows a stent 10 to expand more similarly to a standard stent not having a side branch cell 30. Desirably, upon expansion, the circumferential length component 28, 48 of a petal 40 or a side branch cell 30 may experience an increase that is proportionally larger than any related increase in the longitudinal length component 26, 46 of the respective petal 40 or side branch cell 30. In some embodiments, a longitudinal length component 26, 46 may remain the same or even reduce as the stent 10 expands. The geometric design of the petals 40, and particularly the petals 40 which have an approximate longitudinal axis 42 that is nonparallel to the stent longitudinal axis 18 and a plurality of struts 36 which are oriented substantially parallel to the stent longitudinal axis 18, allows for a relatively large increase in the circumferential length component 28, 48 as compared to any change (i.e. increase or decrease) in the longitudinal length component 26, 46 of the petal 40 or side branch cell 30 during stent expansion.
As a stent expands, the petals 40 may change shape, and the orientation of struts 36 and turns 38 may also change. Struts 36 which are substantially parallel to the stent longitudinal axis 18 in an unexpanded state may reorient on expansion and be nonparallel to the stent longitudinal axis 18 when the stent is expanded. o
Appendages 70 may also change shape as the stent expands. In some embodiments, although an appendage 70 may change shape, the approximate longitudinal axis 72 of the appendage 70 may remain substantially parallel to the stent longitudinal axis 18 after expansion. An appendage 70 may have a longitudinal axis 72 which is a predetermined distance away from a longitudinal axis 31 of the side branch cell 30, as measured in a stent circumferential direction. Figure 2 shows a first longitudinal axis 72a, a second longitudinal axis 72b and a third longitudinal axis 72c for three respective appendages 70. Three respective predetermined distances 74a, 74b, 74c are shown between the side branch cell longitudinal axis 31 and the respective appendage longitudinal axes 72a, 72b, 72c.
As the stent expands, each appendage longitudinal axis 72 may displace away from the side branch cell longitudinal axis 31. The greater the distance 74 between the appendage longitudinal axis 72 and the side branch cell longitudinal axis 31, the greater the increase in the distance 74 may be. For example, during expansion, appendage longitudinal axis 72a may displace away from the side branch cell longitudinal axis 31. Appendage longitudinal axis 72b may also displace away from the side branch cell longitudinal axis 31. The amount of displacement of appendage longitudinal axis 72b may be greater than the amount of displacement of appendage longitudinal axis 72a. Similarly, appendage longitudinal axis 72c may also displace away from the side branch cell longitudinal axis 31, and the amount of displacement of appendage longitudinal axis 72c may be greater than the amount of displacement of appendage longitudinal axis 72b.
Referring again to Figure 1, the stent 10 may include serpentine bands 12 which extend about an entire circumference of the stent 10. In some embodiments, serpentine bands 12 may be located in portions of stent length that do not include a side branch cell 30. In portions of length that do include a side branch cell 30, the stent 10 may include one or more partial serpentine bands 60, which may extend from one side of a side branch cell 30 about the circumference of the stent 10 to the other side of the side branch cell 30. The design of struts 14 and turns 16 in a partial serpentine band 60 may be similar to or different than the design geometry of the standard serpentine bands 12. A stent 10 may include side branch connectors 56 which may connect between the side branch cell 30 and other portions of the stent 10. A side branch connector 56 may extend from any portion of a side branch cell 30, such as a petal 40 or connecting portion 44, and connect to any other portion of the stent 10, such as a serpentine band 12 or a partial serpentine band 60.
In some embodiments, a side branch connector 56 may include straight portions, peaks, valleys or other undulations. In some embodiments, a side branch connector 56 may comprise a flexible connector which may support an ostium when deployed in a vessel. Desirably, the design of a side branch cell 30, and particularly the design of petals 40 having a plurality of struts 36 oriented substantially parallel to the stent longitudinal axis 10, may allow for more struts 14 and turns 16 in a partial serpentine band 60 than prior art designs. The design of a side branch cell 30 may also allow the design of the partial serpentine band(s) 60 to be consistent with the design of the standard serpentine bands 12. This allows the stent to provide more scaffolding support to vessel locations adjacent to the petal 40 region, particularly around juncture points between a main branch vessel and a side branch vessel, such as the carina and vessel areas contralateral to the carina.
The design of a side branch cell 30 also allows for the circumferential length component 28 of the side branch cell 30 to be further reduced as the stent 10 is further crimped to an unexpanded configuration which is more reduced than shown in Figure 1. Minimizing the circumferential length component 28 in an unexpanded state may allow for additional stent elements, such as struts 14, in areas of the stent 10 adjacent to the side branch cell 30 about the circumference of the stent 10, for example in the partial serpentine band(s) 60.
Figure 3 shows another embodiment of a side branch cell 30, which may comprise a continuous strut 32 which extends with serpentine undulations about a center 34 of the side branch cell 30. The side branch cell 30 may comprise a plurality of petals 40 which may be oriented in any suitable direction. In some embodiments, a petal 40 may have a longitudinal axis 42 which is oriented to extend substantially radially outwardly from the center 34 of the side branch cell 30. Each petal 40 may include a plurality of struts 36 and at least one turn 38. A strut 36 may be straight along its length. Petals 40 which are adjacent to one another about the side branch cell 30 may be connected to one another by a connecting portion 44.
All of the descriptions of a stent 10 and side branch cell 30 with respect to Figures 1 and 2 may be applied to Figure 3. For example, each petal 40 may include a plurality of struts 36 that are oriented substantially parallel to the longitudinal axis 18 of the stent 10.
Each petal 40 may further comprise a plurality of appendages 70. A single petal 40 may include appendages 70 that are oriented in different or opposite directions. A single petal 40 may include at least one appendage having a proximal turn 38p, and at least one other appendage 70 having a distal turn 38d.
Figure 4 shows an embodiment of a side branch cell 30 which may have a plurality of petals 80. A side branch cell 30 may include a plurality of expansion states, such as a nominal state, a crimped or reduced state, and an expanded state. For example, a stent may be manufactured in the nominal state, and then be reduced in size to the crimped state. Upon stent expansion, the stent may assume the expanded state, which may be larger in size than the nominal state.
Each petal 80 may have a longitudinal axis 82. In at least a nominal state, petals 80 which are adjacent to one another along the length of the stent may have longitudinal axes 82 which share a common line. Petals 80 which are adjacent to one another about the circumference of the stent may have longitudinal axes 82 which are substantially parallel to one another. Petals 80 may have a longitudinal axis 82 which is substantially parallel to the longitudinal axis of the stent.
The inventive stents may be made from any suitable biocompatible materials including one or more polymers, one or more metals or combinations of polymer(s) and metal(s). Examples of suitable materials include biodegradable materials that are also biocompatible. By biodegradable is meant that a material will undergo breakdown or decomposition into harmless compounds as part of a normal biological process. Suitable biodegradable materials include polylactic acid, polyglycolic acid (PGA), collagen or other connective proteins or natural materials, polycaprolactone, hylauric acid, adhesive proteins, co-polymers of these materials as well as composites and combinations thereof and combinations of other biodegradable polymers. Other polymers that may be used include polyester and polycarbonate copolymers. Examples of suitable metals include, but are not limited to, stainless steel, titanium, tantalum, platinum, tungsten, gold and alloys of any of the above-mentioned metals. Examples of suitable alloys include platinum-indium alloys, cobalt-chromium alloys including Elgiloy and Phynox, MP35N alloy and nickel-titanium alloys, for example, Nitinol.
The inventive stents may be made of shape memory materials such as superelastic Nitinol or spring steel, or may be made of materials which are plastically deformable. In the case of shape memory materials, the stent may be provided with a memorized shape and then deformed to a reduced diameter shape. The stent may restore itself to its memorized shape upon being heated to a transition temperature and having any restraints removed therefrom.
The inventive stents may be created by methods including cutting or etching a design from a tubular stock, from a flat sheet which is cut or etched and which is subsequently rolled or from one or more interwoven wires or braids. Any other suitable technique which is known in the art or which is subsequently developed may also be used to manufacture the inventive stents disclosed herein.
In some embodiments the stent, the delivery system or other portion of the assembly may include one or more areas, bands, coatings, members, etc. that is (are) detectable by imaging modalities such as X-Ray, MRI, ultrasound, etc. In some embodiments at least a portion of the stent and/or adjacent assembly is at least partially radiopaque.
In some embodiments, at least a portion of the stent is configured to include one or more mechanisms for the delivery of a therapeutic agent. Often the agent will be in the form of a coating or other layer (or layers) of material placed on a surface region of the stent, which is adapted to be released at the site of stent implantation or areas adjacent thereto.
A therapeutic agent may be a drug or other pharmaceutical product such as non-genetic agents, genetic agents, cellular material, etc. Some examples of suitable non-genetic therapeutic agents include but are not limited to: anti-thrombogenic agents such as heparin, heparin derivatives, vascular cell growth promoters, growth factor inhibitors, Paclitaxel, etc. Where an agent includes a genetic therapeutic agent, such a genetic agent may include but is not limited to: DNA, RNA and their respective W
derivatives and/or components; hedgehog proteins, etc. Where a therapeutic agent includes cellular material, the cellular material may include but is not limited to: cells of human origin and/or non-human origin as well as their respective components and/or derivatives thereof. Where the therapeutic agent includes a polymer agent, the polymer agent may be a polystyrene-polyisobutylene-polystyrene triblock copolymer (SIBS), polyethylene oxide, silicone rubber and/or any other suitable substrate.
The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this field of art. All these alternatives and variations are intended to be included within the scope of the claims where the term "comprising" means "including, but not limited to". Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the claims.
Further, the particular features presented in the dependent claims can be combined with each other in other manners within the scope of the invention such that the invention should be recognized as also specifically directed to other embodiments having any other possible combination of the features of the dependent claims. For instance, for purposes of claim publication, any dependent claim which follows should be taken as alternatively written in a multiple dependent form from all prior claims which possess all antecedents referenced in such dependent claim if such multiple dependent format is an accepted format within the jurisdiction (e.g. each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims). In jurisdictions where multiple dependent claim formats are restricted, the following dependent claims should each be also taken as alternatively written in each singly dependent claim format which creates a dependency from a prior antecedent-possessing claim other than the specific claim listed in such dependent claim below.
This completes the description of the preferred and alternate embodiments of the invention. Those skilled in the art may recognize other equivalents to the specific embodiment described herein which equivalents are intended to be encompassed by the claims attached hereto.

Claims

CLAIMS:
1. A stent having a longitudinal axis and comprising a side branch cell, the side branch cell comprising a plurality of petals including a first petal, each petal comprising a plurality of straight struts and at least one turn, each petal having a central axis, the central axis of the first petal extending in a direction nonparallel to the stent longitudinal axis, wherein at least two of said straight struts of the first petal extend substantially parallel to said stent longitudinal axis.
2. The stent of claim 1, wherein the first petal further comprises a third straight strut oriented substantially parallel to said stent longitudinal axis.
3. The stent of claim 2, wherein the first petal further comprises a fourth straight strut oriented substantially parallel to said stent longitudinal axis.
4. The stent of claim 1, wherein said first petal further comprises a straight strut that is oriented an angle to the stent longitudinal axis, wherein the angle ranges from 30° to 60°.
5. The stent of claim 1, further comprising a second petal, the central axis of the second petal extending in a direction nonparallel to the stent longitudinal axis, wherein at least two of said straight struts of the second petal extend substantially parallel to said stent longitudinal axis.
6. The stent of claim 1 , wherein each petal includes at least two straight struts that are oriented substantially parallel to said stent longitudinal axis.
7. The stent of claim 6, wherein the side branch cell comprises 6, 7, 8, 9 or 10 petals.
8. The stent of claim 1, wherein the side branch cell includes a longitudinal length component and a circumferential length component, wherein as a diameter of the stent increases, an increase in the circumferential length component is greater than any change in the longitudinal length component.
9. The stent of claim 1, wherein said first petal includes a longitudinal length component and a circumferential length component, wherein as a diameter of the stent increases, an increase in the circumferential length component is greater than any change in the longitudinal length component.
10. The stent of claim 1, wherein each petal includes a longitudinal length component and a circumferential length component, wherein as a diameter of the stent increases, for each petal an increase in the circumferential length component is greater than any change in the longitudinal length component.
11. The stent of claim 1 , wherein the first petal further comprises a plurality of appendages, each appendage having a longitudinal axis oriented substantially parallel to said stent longitudinal axis.
12. The stent of claim 11, wherein the longitudinal axis of each appendage remains substantially parallel to said stent longitudinal axis as the stent is expanded.
13. A stent comprising a body having a longitudinal axis, the stent having a nominal state and a crimped state, the body defining a plurality of interconnected strut members, a plurality of said interconnected strut members comprising a plurality of petals, the plurality of petals defining a side branch opening, each petal having a longitudinal axis, in at least the nominal state the longitudinal axis of each petal being substantially parallel to the longitudinal axis of the body.
14. A stent comprising a body having a longitudinal axis, the stent being expandable from an unexpanded state to an expanded state, the body defining a plurality of interconnected strut members, a plurality of said interconnected strut members comprising a plurality of petals, the plurality of petals defining a side branch opening, each petal having a longitudinal axis, each petal further comprising at least one appendage, each appendage comprising a first strut member, a turn and a second strut member, each appendage having a longitudinal axis, wherein when the stent is in the unexpanded state, the longitudinal axis of each appendage is substantially parallel to the longitudinal axis of the body.
15. The stent of claim 14, wherein a first petal comprises a first appendage and a second appendage.
16. The stent of claim 15, wherein the turn of said first appendage is oriented toward a proximal end of the stent, and wherein the turn of said second appendage is oriented toward the proximal end of the stent.
17. The stent of claim 15, wherein the turn of said first appendage is oriented toward a proximal end of the stent, and wherein the turn of said second appendage is oriented toward a distal end of the stent
18. The stent of claim 14, wherein each petal further comprises a plurality of appendages.
19. The stent of claim 14, wherein the longitudinal axis of a first petal is nonparallel to the longitudinal axis of the body.
20. The stent of claim 14, wherein the longitudinal axis of an appendage remains substantially parallel to the longitudinal axis of the body as the stent is expanded.
PCT/US2006/011814 2005-05-26 2006-03-29 Crimpable and expandable side branch cell WO2006127125A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008513470A JP2008541839A (en) 2005-05-26 2006-03-29 Crimpable and expandable side branch cell
CA002601903A CA2601903A1 (en) 2005-05-26 2006-03-29 Crimpable and expandable side branch cell
EP06740138A EP1887992A2 (en) 2005-05-26 2006-03-29 Crimpable and expandable side branch cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/138,022 2005-05-26
US11/138,022 US8317855B2 (en) 2005-05-26 2005-05-26 Crimpable and expandable side branch cell

Publications (2)

Publication Number Publication Date
WO2006127125A2 true WO2006127125A2 (en) 2006-11-30
WO2006127125A3 WO2006127125A3 (en) 2007-04-19

Family

ID=36616838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/011814 WO2006127125A2 (en) 2005-05-26 2006-03-29 Crimpable and expandable side branch cell

Country Status (5)

Country Link
US (1) US8317855B2 (en)
EP (1) EP1887992A2 (en)
JP (1) JP2008541839A (en)
CA (1) CA2601903A1 (en)
WO (1) WO2006127125A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9114033B2 (en) 2005-01-10 2015-08-25 Trireme Medical, Inc. Stent with self-deployable portion

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8038708B2 (en) 2001-02-05 2011-10-18 Cook Medical Technologies Llc Implantable device with remodelable material and covering material
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US7223283B2 (en) * 2002-10-09 2007-05-29 Boston Scientific Scimed, Inc. Stent with improved flexibility
US7625399B2 (en) 2003-04-24 2009-12-01 Cook Incorporated Intralumenally-implantable frames
EP1615595B1 (en) 2003-04-24 2009-10-21 Cook Incorporated Artificial valve prosthesis with improved flow dynamics
US7717952B2 (en) 2003-04-24 2010-05-18 Cook Incorporated Artificial prostheses with preferred geometries
US7658759B2 (en) 2003-04-24 2010-02-09 Cook Incorporated Intralumenally implantable frames
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
WO2011111047A2 (en) 2010-03-10 2011-09-15 Mitraltech Ltd. Prosthetic mitral valve with tissue anchors
US9132009B2 (en) 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
US8992604B2 (en) 2010-07-21 2015-03-31 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
JP2014508559A (en) 2010-12-30 2014-04-10 ボストン サイエンティフィック サイムド,インコーポレイテッド Multi-stage open stent design
WO2012118526A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Low strain high strength stent
US8790388B2 (en) 2011-03-03 2014-07-29 Boston Scientific Scimed, Inc. Stent with reduced profile
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US8852272B2 (en) * 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021375A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Percutaneous mitral valve replacement and sealing
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US10940167B2 (en) 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
EP2948103B1 (en) 2013-01-24 2022-12-07 Cardiovalve Ltd Ventricularly-anchored prosthetic valves
AU2014214700B2 (en) 2013-02-11 2018-01-18 Cook Medical Technologies Llc Expandable support frame and medical device
EP4066786A1 (en) 2014-07-30 2022-10-05 Cardiovalve Ltd. Articulatable prosthetic valve
EP3253333B1 (en) 2015-02-05 2024-04-03 Cardiovalve Ltd Prosthetic valve with axially-sliding frames
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
CN114587712A (en) 2016-08-10 2022-06-07 卡迪尔维尔福股份有限公司 Prosthetic valve with coaxial frame
USD800908S1 (en) 2016-08-10 2017-10-24 Mitraltech Ltd. Prosthetic valve element
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
GB201720803D0 (en) 2017-12-13 2018-01-24 Mitraltech Ltd Prosthetic Valve and delivery tool therefor
GB201800399D0 (en) 2018-01-10 2018-02-21 Mitraltech Ltd Temperature-control during crimping of an implant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013091A (en) * 1997-10-09 2000-01-11 Scimed Life Systems, Inc. Stent configurations
US20040059406A1 (en) * 2002-09-20 2004-03-25 Cully Edward H. Medical device amenable to fenestration
US20050010278A1 (en) * 1996-11-04 2005-01-13 Advanced Stent Technologies, Inc. Extendible stent apparatus
WO2005009295A1 (en) * 2003-07-16 2005-02-03 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels

Family Cites Families (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309994A (en) 1980-02-25 1982-01-12 Grunwald Ronald P Cardiovascular cannula
US4774949A (en) 1983-06-14 1988-10-04 Fogarty Thomas J Deflector guiding catheter
DE8717643U1 (en) 1987-05-12 1989-09-21 Foerster, Ernst, Dr.Med. Dr.Rer.Nat.
US4769005A (en) 1987-08-06 1988-09-06 Robert Ginsburg Selective catheter guide
US4896670A (en) 1988-04-19 1990-01-30 C. R. Bard, Inc. Kissing balloon catheter
US4994071A (en) 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5147385A (en) 1989-11-01 1992-09-15 Schneider (Europe) A.G. Stent and catheter for the introduction of the stent
AR246020A1 (en) 1990-10-03 1994-03-30 Hector Daniel Barone Juan Carl A ball device for implanting an intraluminous aortic prosthesis, for repairing aneurysms.
EP0479730B1 (en) 1990-10-04 1995-04-19 Schneider (Europe) Ag Balloon dilatation catheter
US5628783A (en) 1991-04-11 1997-05-13 Endovascular Technologies, Inc. Bifurcated multicapsule intraluminal grafting system and method
US5304220A (en) 1991-07-03 1994-04-19 Maginot Thomas J Method and apparatus for implanting a graft prosthesis in the body of a patient
FR2678508B1 (en) 1991-07-04 1998-01-30 Celsa Lg DEVICE FOR REINFORCING VESSELS OF THE HUMAN BODY.
US5387235A (en) 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5693084A (en) 1991-10-25 1997-12-02 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5342387A (en) 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5487730A (en) 1992-12-30 1996-01-30 Medtronic, Inc. Balloon catheter with balloon surface retention means
US5395846A (en) 1993-06-25 1995-03-07 Rhone-Poulenc Rorer Pharmaceuticals Inc. Amino Bi- and tri-carbocyclic aklane bis-aryl squalene synthase inhibitors
IL106738A (en) 1993-08-19 1998-02-08 Mind E M S G Ltd Device for external correction of deficient valves in venous junctions
US5632772A (en) 1993-10-21 1997-05-27 Corvita Corporation Expandable supportive branched endoluminal grafts
US5639278A (en) 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5607444A (en) 1993-12-02 1997-03-04 Advanced Cardiovascular Systems, Inc. Ostial stent for bifurcations
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5683451A (en) 1994-06-08 1997-11-04 Cardiovascular Concepts, Inc. Apparatus and methods for deployment release of intraluminal prostheses
US5636641A (en) 1994-07-25 1997-06-10 Advanced Cardiovascular Systems, Inc. High strength member for intracorporeal use
US5609605A (en) 1994-08-25 1997-03-11 Ethicon, Inc. Combination arterial stent
CA2175720C (en) 1996-05-03 2011-11-29 Ian M. Penn Bifurcated stent and method for the manufacture and delivery of same
CA2134997C (en) 1994-11-03 2009-06-02 Ian M. Penn Stent
US5613980A (en) 1994-12-22 1997-03-25 Chauhan; Tusharsindhu C. Bifurcated catheter system and method
NL9500094A (en) 1995-01-19 1996-09-02 Industrial Res Bv Y-shaped stent and method of deployment.
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
DE69637527D1 (en) 1995-03-01 2008-06-26 Boston Scient Scimed Inc Longitudinally flexible and expandable stent
US5709713A (en) 1995-03-31 1998-01-20 Cardiovascular Concepts, Inc. Radially expansible vascular prosthesis having reversible and other locking structures
FR2733682B1 (en) 1995-05-04 1997-10-31 Dibie Alain ENDOPROSTHESIS FOR THE TREATMENT OF STENOSIS ON BIFURCATIONS OF BLOOD VESSELS AND LAYING EQUIPMENT THEREFOR
US5591228A (en) 1995-05-09 1997-01-07 Edoga; John K. Methods for treating abdominal aortic aneurysms
US5707348A (en) 1995-06-06 1998-01-13 Krogh; Steve S. Intravenous bandage
US6033434A (en) 1995-06-08 2000-03-07 Ave Galway Limited Bifurcated endovascular stent and methods for forming and placing
FR2737969B1 (en) 1995-08-24 1998-01-30 Rieu Regis INTRALUMINAL ENDOPROSTHESIS IN PARTICULAR FOR ANGIOPLASTY
US5824036A (en) 1995-09-29 1998-10-20 Datascope Corp Stent for intraluminal grafts and device and methods for delivering and assembling same
US5669924A (en) 1995-10-26 1997-09-23 Shaknovich; Alexander Y-shuttle stent assembly for bifurcating vessels and method of using the same
FR2740346A1 (en) 1995-10-30 1997-04-30 Debiotech Sa ANGIOPLASTY DEVICE FOR ARTERIAL BIFURCATION
US5632762A (en) 1995-11-09 1997-05-27 Hemodynamics, Inc. Ostial stent balloon
US5824040A (en) 1995-12-01 1998-10-20 Medtronic, Inc. Endoluminal prostheses and therapies for highly variable body lumens
US6436104B2 (en) 1996-01-26 2002-08-20 Cordis Corporation Bifurcated axially flexible stent
US6017363A (en) 1997-09-22 2000-01-25 Cordis Corporation Bifurcated axially flexible stent
US6258116B1 (en) 1996-01-26 2001-07-10 Cordis Corporation Bifurcated axially flexible stent
US5824042A (en) 1996-04-05 1998-10-20 Medtronic, Inc. Endoluminal prostheses having position indicating markers
BE1010183A3 (en) 1996-04-25 1998-02-03 Dereume Jean Pierre Georges Em Luminal endoprosthesis FOR BRANCHING CHANNELS OF A HUMAN OR ANIMAL BODY AND MANUFACTURING METHOD THEREOF.
US5922021A (en) 1996-04-26 1999-07-13 Jang; G. David Intravascular stent
US6440165B1 (en) 1996-05-03 2002-08-27 Medinol, Ltd. Bifurcated stent with improved side branch aperture and method of making same
UA58485C2 (en) 1996-05-03 2003-08-15 Медінол Лтд. Method for manufacture of bifurcated stent (variants) and bifurcated stent (variants)
US6251133B1 (en) 1996-05-03 2001-06-26 Medinol Ltd. Bifurcated stent with improved side branch aperture and method of making same
US6770092B2 (en) 1996-05-03 2004-08-03 Medinol Ltd. Method of delivering a bifurcated stent
US5851464A (en) 1996-05-13 1998-12-22 Cordis Corporation Method of making a fuseless soft tip catheter
US5669932A (en) 1996-05-29 1997-09-23 Isostent, Inc. Means for accurately positioning an expandable stent
CA2227446A1 (en) 1996-05-31 1997-12-04 Bard Galway Limited Bifurcated endovascular stents and method and apparatus for their placement
US5617878A (en) 1996-05-31 1997-04-08 Taheri; Syde A. Stent and method for treatment of aortic occlusive disease
US5755773A (en) 1996-06-04 1998-05-26 Medtronic, Inc. Endoluminal prosthetic bifurcation shunt
US7238197B2 (en) 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
US8728143B2 (en) 1996-06-06 2014-05-20 Biosensors International Group, Ltd. Endoprosthesis deployment system for treating vascular bifurcations
FR2749500B1 (en) 1996-06-06 1998-11-20 Jacques Seguin DEVICE ALLOWING THE TREATMENT OF BODY DUCTS AT THE LEVEL OF A BIFURCATION
US5697971A (en) 1996-06-11 1997-12-16 Fischell; Robert E. Multi-cell stent with cells having differing characteristics
US5676697A (en) 1996-07-29 1997-10-14 Cardiovascular Dynamics, Inc. Two-piece, bifurcated intraluminal graft for repair of aneurysm
US5749825A (en) 1996-09-18 1998-05-12 Isostent, Inc. Means method for treatment of stenosed arterial bifurcations
US5755778A (en) 1996-10-16 1998-05-26 Nitinol Medical Technologies, Inc. Anastomosis device
US6692483B2 (en) 1996-11-04 2004-02-17 Advanced Stent Technologies, Inc. Catheter with attached flexible side sheath
US6596020B2 (en) 1996-11-04 2003-07-22 Advanced Stent Technologies, Inc. Method of delivering a stent with a side opening
US7591846B2 (en) 1996-11-04 2009-09-22 Boston Scientific Scimed, Inc. Methods for deploying stents in bifurcations
US7220275B2 (en) 1996-11-04 2007-05-22 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
US6599316B2 (en) 1996-11-04 2003-07-29 Advanced Stent Technologies, Inc. Extendible stent apparatus
US6325826B1 (en) 1998-01-14 2001-12-04 Advanced Stent Technologies, Inc. Extendible stent apparatus
AU4896797A (en) 1996-11-04 1998-05-29 Davidson, Charles Extendible stent apparatus and method for deploying the same
US5972017A (en) 1997-04-23 1999-10-26 Vascular Science Inc. Method of installing tubular medical graft connectors
FR2756173B1 (en) 1996-11-22 1999-02-12 Marcade Jean Paul MODULAR AND EXPANDABLE ENDOPROSTHESIS FOR THE ARTERIAL NETWORK
US5749890A (en) 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
DE29701758U1 (en) 1997-02-01 1997-03-27 Jomed Implantate Gmbh Radially expandable stent for implantation in a body vessel, particularly in the area of a vascular branch
DE29701883U1 (en) 1997-02-04 1997-03-27 Beck Harry Central lubrication
US5720735A (en) 1997-02-12 1998-02-24 Dorros; Gerald Bifurcated endovascular catheter
US6096073A (en) 1997-02-25 2000-08-01 Scimed Life Systems, Inc. Method of deploying a stent at a lesion site located at a bifurcation in a parent vessel
US20020133222A1 (en) 1997-03-05 2002-09-19 Das Gladwin S. Expandable stent having a plurality of interconnected expansion modules
WO1998047447A1 (en) 1997-04-23 1998-10-29 Dubrul William R Bifurcated stent and distal protection system
US6033433A (en) 1997-04-25 2000-03-07 Scimed Life Systems, Inc. Stent configurations including spirals
US6013054A (en) 1997-04-28 2000-01-11 Advanced Cardiovascular Systems, Inc. Multifurcated balloon catheter
ATE336958T1 (en) 1997-05-07 2006-09-15 Cordis Corp INTRAVASCULAR STENT AND SYSTEM FOR INSERTING (OBSTRUCTION OF THE OSTIUM OF A VESSEL)
DE29708803U1 (en) 1997-05-17 1997-07-31 Jomed Implantate Gmbh Radially expandable stent for implantation in a body vessel in the area of a vascular branch
CA2235911C (en) 1997-05-27 2003-07-29 Schneider (Usa) Inc. Stent and stent-graft for treating branched vessels
US5906641A (en) 1997-05-27 1999-05-25 Schneider (Usa) Inc Bifurcated stent graft
EP0891751A1 (en) 1997-07-18 1999-01-20 Thomas Prof. Dr. Ischinger Vascular stent for bifurcations, sidebranches and ostial lesions and an application catheter and method for implantation
IT1293690B1 (en) 1997-08-08 1999-03-08 Sorin Biomedica Cardio Spa ANGIOPLASTIC STENT, PARTICULARLY FOR THE TREATMENT OF AORTO-HOSPITAL AND HOSPITAL INJURIES.
US6361544B1 (en) 1997-08-13 2002-03-26 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6165195A (en) 1997-08-13 2000-12-26 Advanced Cardiovascylar Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6520988B1 (en) 1997-09-24 2003-02-18 Medtronic Ave, Inc. Endolumenal prosthesis and method of use in bifurcation regions of body lumens
US6086611A (en) 1997-09-25 2000-07-11 Ave Connaught Bifurcated stent
US5893887A (en) 1997-10-14 1999-04-13 Iowa-India Investments Company Limited Stent for positioning at junction of bifurcated blood vessel and method of making
US6033435A (en) 1997-11-03 2000-03-07 Divysio Solutions Ulc Bifurcated stent and method for the manufacture and delivery of same
WO1999024104A1 (en) 1997-11-07 1999-05-20 Ave Connaught Balloon catheter for repairing bifurcated vessels
US6030414A (en) 1997-11-13 2000-02-29 Taheri; Syde A. Variable stent and method for treatment of arterial disease
US5961548A (en) 1997-11-18 1999-10-05 Shmulewitz; Ascher Bifurcated two-part graft and methods of implantation
CA2220864A1 (en) 1998-01-20 1999-07-20 Nisar Huq A bifurcation stent
US6395018B1 (en) 1998-02-09 2002-05-28 Wilfrido R. Castaneda Endovascular graft and process for bridging a defect in a main vessel near one of more branch vessels
CN1177570C (en) 1998-02-12 2004-12-01 托马斯·R·马罗塔 Endovassular prosthesis
AU2684499A (en) 1998-02-17 1999-08-30 G. David Jang Tubular stent consists of chevron-shape expansion struts and ipsilaterally attached m-frame connectors
US6113579A (en) 1998-03-04 2000-09-05 Scimed Life Systems, Inc. Catheter tip designs and methods for improved stent crossing
US5938697A (en) 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
DE69931472T2 (en) * 1998-03-04 2006-09-28 Boston Scientific Ltd., St. Michael STENT WITH IMPROVED CELL CONFIGURATION
US6099497A (en) 1998-03-05 2000-08-08 Scimed Life Systems, Inc. Dilatation and stent delivery system for bifurcation lesions
US6093203A (en) 1998-05-13 2000-07-25 Uflacker; Renan Stent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation
US6168621B1 (en) 1998-05-29 2001-01-02 Scimed Life Systems, Inc. Balloon expandable stent with a self-expanding portion
US6129738A (en) 1998-06-20 2000-10-10 Medtronic Ave, Inc. Method and apparatus for treating stenoses at bifurcated regions
US6261319B1 (en) 1998-07-08 2001-07-17 Scimed Life Systems, Inc. Stent
US6264662B1 (en) 1998-07-21 2001-07-24 Sulzer Vascutek Ltd. Insertion aid for a bifurcated prosthesis
US6143002A (en) 1998-08-04 2000-11-07 Scimed Life Systems, Inc. System for delivering stents to bifurcation lesions
US6117117A (en) 1998-08-24 2000-09-12 Advanced Cardiovascular Systems, Inc. Bifurcated catheter assembly
US6017324A (en) 1998-10-20 2000-01-25 Tu; Lily Chen Dilatation catheter having a bifurcated balloon
US6293967B1 (en) 1998-10-29 2001-09-25 Conor Medsystems, Inc. Expandable medical device with ductile hinges
ATE303107T1 (en) 1998-12-11 2005-09-15 Endologix Inc ENDOLUMINAL VASCULAR PROSTHESIS
US6059824A (en) 1998-12-23 2000-05-09 Taheri; Syde A. Mated main and collateral stent and method for treatment of arterial disease
US7655030B2 (en) 2003-07-18 2010-02-02 Boston Scientific Scimed, Inc. Catheter balloon systems and methods
US20050060027A1 (en) 1999-01-13 2005-03-17 Advanced Stent Technologies, Inc. Catheter balloon systems and methods
CA2360587A1 (en) 1999-01-15 2000-07-20 Darin C. Gittings Methods and devices for forming vascular anastomoses
IT1309583B1 (en) 1999-02-26 2002-01-24 Ams Italia S R L PERFECTED CATHETER FOR VASCULAR INTERVENTIONS.
US6261316B1 (en) 1999-03-11 2001-07-17 Endologix, Inc. Single puncture bifurcation graft deployment system
US6258099B1 (en) 1999-03-31 2001-07-10 Scimed Life Systems, Inc. Stent security balloon/balloon catheter
US6290673B1 (en) 1999-05-20 2001-09-18 Conor Medsystems, Inc. Expandable medical device delivery system and method
US6884258B2 (en) 1999-06-04 2005-04-26 Advanced Stent Technologies, Inc. Bifurcation lesion stent delivery using multiple guidewires
US7387639B2 (en) 1999-06-04 2008-06-17 Advanced Stent Technologies, Inc. Short sleeve stent delivery catheter and methods
DE19934923A1 (en) 1999-07-20 2001-01-25 Biotronik Mess & Therapieg Balloon catheter
DE19938377A1 (en) 1999-08-06 2001-03-01 Biotronik Mess & Therapieg Stent for vascular branching
US6293968B1 (en) 1999-09-02 2001-09-25 Syde A. Taheri Inflatable intraluminal vascular stent
CN1409622A (en) 1999-09-23 2003-04-09 先进扩张技术公司 Bifurcation stent system and method
US6689156B1 (en) 1999-09-23 2004-02-10 Advanced Stent Technologies, Inc. Stent range transducers and methods of use
US6383213B2 (en) 1999-10-05 2002-05-07 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6387120B2 (en) 1999-12-09 2002-05-14 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6254593B1 (en) 1999-12-10 2001-07-03 Advanced Cardiovascular Systems, Inc. Bifurcated stent delivery system having retractable sheath
US6361555B1 (en) 1999-12-15 2002-03-26 Advanced Cardiovascular Systems, Inc. Stent and stent delivery assembly and method of use
ATE255860T1 (en) 2000-03-03 2003-12-15 Cook Inc ENDOVASCULAR DEVICE WITH STENT
US6210433B1 (en) 2000-03-17 2001-04-03 LARRé JORGE CASADO Stent for treatment of lesions of bifurcated vessels
US6468301B1 (en) 2000-03-27 2002-10-22 Aga Medical Corporation Repositionable and recapturable vascular stent/graft
US6334864B1 (en) 2000-05-17 2002-01-01 Aga Medical Corp. Alignment member for delivering a non-symmetric device with a predefined orientation
US7101391B2 (en) 2000-09-18 2006-09-05 Inflow Dynamics Inc. Primarily niobium stent
US20020072792A1 (en) 2000-09-22 2002-06-13 Robert Burgermeister Stent with optimal strength and radiopacity characteristics
WO2002030329A2 (en) 2000-10-13 2002-04-18 Rex Medical, L.P. Covered stents with side branch
US6582394B1 (en) 2000-11-14 2003-06-24 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcated vessels
US6645242B1 (en) 2000-12-11 2003-11-11 Stephen F. Quinn Bifurcated side-access intravascular stent graft
WO2002067815A1 (en) 2001-02-26 2002-09-06 Scimed Life Systems, Inc. Bifurcated stent
WO2002067816A1 (en) 2001-02-26 2002-09-06 Scimed Life Systems, Inc. Bifurcated stent and delivery system
WO2002067653A2 (en) 2001-02-26 2002-09-06 Scimed Life Systems, Inc. Bifurcated stent and delivery system
FR2822370B1 (en) 2001-03-23 2004-03-05 Perouse Lab TUBULAR ENDOPROSTHESIS COMPRISING A DEFORMABLE RING AND REQUIRED OF INTERVENTION FOR ITS IMPLANTATION
US8337540B2 (en) 2001-05-17 2012-12-25 Advanced Cardiovascular Systems, Inc. Stent for treating bifurcations and method of use
US6749628B1 (en) 2001-05-17 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
AU2002316254A1 (en) 2001-06-18 2003-01-02 Eva Corporation Prosthetic graft assembly and method of use
US6743259B2 (en) 2001-08-03 2004-06-01 Core Medical, Inc. Lung assist apparatus and methods for use
ES2319621T3 (en) 2001-08-23 2009-05-11 Darrell C. Gumm ROTARY SYSTEM OF IMPLANT OF ENDOVASCULAR PROTESIS FOR ACCSO OF SIDE BRANCH AND PROTECTION.
US7252679B2 (en) 2001-09-13 2007-08-07 Cordis Corporation Stent with angulated struts
US7004963B2 (en) 2001-09-14 2006-02-28 Scimed Life Systems, Inc. Conformable balloons
US6939368B2 (en) 2002-01-17 2005-09-06 Scimed Life Systems, Inc. Delivery system for self expanding stents for use in bifurcated vessels
EP1513470A2 (en) 2002-05-28 2005-03-16 The Cleveland Clinic Foundation Minimally invasive treatment system for aortic aneurysms
US6858038B2 (en) 2002-06-21 2005-02-22 Richard R. Heuser Stent system
US6761734B2 (en) 2002-07-22 2004-07-13 William S. Suhr Segmented balloon catheter for stenting bifurcation lesions
US7326242B2 (en) 2002-11-05 2008-02-05 Boston Scientific Scimed, Inc. Asymmetric bifurcated crown
US7314480B2 (en) 2003-02-27 2008-01-01 Boston Scientific Scimed, Inc. Rotating balloon expandable sheath bifurcation delivery
US7731747B2 (en) 2003-04-14 2010-06-08 Tryton Medical, Inc. Vascular bifurcation prosthesis with multiple thin fronds
US20040225345A1 (en) 2003-05-05 2004-11-11 Fischell Robert E. Means and method for stenting bifurcated vessels
US8298280B2 (en) 2003-08-21 2012-10-30 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
RU2318474C1 (en) 2003-10-10 2008-03-10 Аршад КВАДРИ System and method for endoluminal prosthetics of branched vessels and those with bifurcations
DE602004015486D1 (en) 2003-10-10 2008-09-11 Cook Inc DEHNIBLE PROSTHESIS WINDOW
US20050131526A1 (en) 2003-12-10 2005-06-16 Shing-Chiu Wong Stent and balloon system for bifurcated vessels and lesions
US7686841B2 (en) 2003-12-29 2010-03-30 Boston Scientific Scimed, Inc. Rotating balloon expandable sheath bifurcation delivery system
US7922753B2 (en) 2004-01-13 2011-04-12 Boston Scientific Scimed, Inc. Bifurcated stent delivery system
US7225518B2 (en) 2004-02-23 2007-06-05 Boston Scientific Scimed, Inc. Apparatus for crimping a stent assembly
US20050209673A1 (en) 2004-03-04 2005-09-22 Y Med Inc. Bifurcation stent delivery devices
CA2559540A1 (en) 2004-06-08 2005-12-29 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
US20060041303A1 (en) 2004-08-18 2006-02-23 Israel Henry M Guidewire with stopper
WO2006036319A2 (en) 2004-09-15 2006-04-06 Conor Medsystems, Inc. Bifurcation stent with crushable end and method for delivery of a stent to a bifurcation
WO2006074476A2 (en) 2005-01-10 2006-07-13 Trireme Medical, Inc. Stent with self-deployable portion
US7582111B2 (en) 2005-08-22 2009-09-01 Incept, Llc Steep-taper flared stents and apparatus and methods for delivering them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050010278A1 (en) * 1996-11-04 2005-01-13 Advanced Stent Technologies, Inc. Extendible stent apparatus
US6013091A (en) * 1997-10-09 2000-01-11 Scimed Life Systems, Inc. Stent configurations
US20040059406A1 (en) * 2002-09-20 2004-03-25 Cully Edward H. Medical device amenable to fenestration
WO2005009295A1 (en) * 2003-07-16 2005-02-03 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9114033B2 (en) 2005-01-10 2015-08-25 Trireme Medical, Inc. Stent with self-deployable portion

Also Published As

Publication number Publication date
JP2008541839A (en) 2008-11-27
EP1887992A2 (en) 2008-02-20
WO2006127125A3 (en) 2007-04-19
US8317855B2 (en) 2012-11-27
US20060271159A1 (en) 2006-11-30
CA2601903A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
US8317855B2 (en) Crimpable and expandable side branch cell
US7540881B2 (en) Bifurcation stent pattern
US8480728B2 (en) Stent side branch deployment initiation geometry
US7959669B2 (en) Bifurcated stent with open ended side branch support
EP1940315B1 (en) Stent with expanding side branch geometry
US8043366B2 (en) Overlapping stent
US20060271161A1 (en) Selective treatment of stent side branch petals
US8298278B2 (en) Bifurcated stent with improvement securement
US20070225798A1 (en) Side branch stent
EP2086475B1 (en) Bifurcated stent
US20070123970A1 (en) Bifurcation stent with overlapping crimped struts
US20070260304A1 (en) Bifurcated stent with minimally circumferentially projected side branch
US20070208411A1 (en) Bifurcated stent with surface area gradient
WO2007102974A1 (en) Bifurcation stent with uniform side branch projection

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2601903

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2008513470

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006740138

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU