WO2007000799A1 - コンタクタ、該コンタクタを備えたコンタクトストラクチャ、プローブカード、試験装置、コンタクトストラクチャ製造方法、及び、コンタクトストラクチャ製造装置 - Google Patents

コンタクタ、該コンタクタを備えたコンタクトストラクチャ、プローブカード、試験装置、コンタクトストラクチャ製造方法、及び、コンタクトストラクチャ製造装置 Download PDF

Info

Publication number
WO2007000799A1
WO2007000799A1 PCT/JP2005/011748 JP2005011748W WO2007000799A1 WO 2007000799 A1 WO2007000799 A1 WO 2007000799A1 JP 2005011748 W JP2005011748 W JP 2005011748W WO 2007000799 A1 WO2007000799 A1 WO 2007000799A1
Authority
WO
WIPO (PCT)
Prior art keywords
contactor
contact
substrate
contact structure
contact substrate
Prior art date
Application number
PCT/JP2005/011748
Other languages
English (en)
French (fr)
Inventor
Tetsuya Kuitani
Tadao Saito
Yoshihiro Abe
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to DE112005000233T priority Critical patent/DE112005000233T5/de
Priority to PCT/JP2005/011748 priority patent/WO2007000799A1/ja
Priority to KR1020077027263A priority patent/KR100975904B1/ko
Priority to JP2006517884A priority patent/JP4171513B2/ja
Priority to US11/426,090 priority patent/US7764152B2/en
Publication of WO2007000799A1 publication Critical patent/WO2007000799A1/ja
Priority to US12/818,503 priority patent/US8097475B2/en
Priority to US13/325,799 priority patent/US8241929B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07342Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being at an angle other than perpendicular to test object, e.g. probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the contactor, contact structure including the contactor, probe card, test device, contact structure manufacturing method, and contact structure manufacturing device
  • the present invention relates to an electrical circuit (hereinafter also referred to as an IC) such as an integrated circuit formed on a semiconductor wafer, a semiconductor chip, a semiconductor component package, a printed circuit board, or the like.
  • IC electrical circuit
  • Contactor for establishing electrical connection with the IC by contacting with a contact target part such as a pad, electrode or lead provided on the IC, contact structure (contact structure) including the contactor,
  • the present invention relates to a probe card, a test apparatus, a contact structure manufacturing method, and a contact structure manufacturing apparatus.
  • a large number of semiconductor integrated circuit elements are fabricated on a silicon wafer or the like, and then completed as electronic components through various processes such as dicing, wire bonding, and packaging. For these ICs, an operation test is performed before shipment, and this IC test is performed both in the finished product state and in the wafer state.
  • the silicon finger contactor is formed by applying a semiconductor manufacturing technique such as photolithography to a silicon substrate.
  • a semiconductor manufacturing technique such as photolithography
  • a 54.7 ° slope depending on the crystal plane of silicon is formed by performing anisotropic etching on the silicon substrate.
  • a silicon finger contactor is mounted on the probe substrate with a predetermined angle using this slope.
  • IC test using a probe card having a plurality of such silicon finger contactors When performing the test, the probe card is brought close to the semiconductor wafer, and the silicon finger contactor is brought into contact with the pad of the IC under test. Then, the silicon finger contactor is further moved (overdriven) toward the pad, and the tip of the silicon finger contactor rubs the pad (scrubbing), thereby removing the aluminum oxide layer formed on the pad, Electrical contact with the IC under test is established.
  • the silicon finger contactor on the probe substrate first contacts the IC pad due to variations in the height of the silicon finger contactor.
  • the silicon finger contactor that is in contact will be overdriven.
  • the silicon finger contactor that first contacts the pad.
  • the amount of scrub of the silicon finger contactor is larger than the amount of overdrive (that is, the scrub amount Z is increased). Therefore, for example, if the IC pad size is reduced, the tip of the silicon finger contactor may protrude from the pad, deform, or be damaged.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-249722
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-159642
  • Patent Document 3 International Publication No. 03Z071289 Pamphlet
  • the present invention relates to a contactor capable of preventing miscontact with a contact object, a contact structure equipped with the contactor, a probe card, a test apparatus, a contact structure manufacturing method, and a contact structure manufacturing apparatus.
  • a contactor that comes into contact with a contact target part, a base part having a step, a support part having a rear end side provided on the base part, and a front end side projecting the base part force, and A conductive portion formed on the surface and in electrical contact with the contact target portion.
  • a contactor that defines a predetermined inclination angle between the surface of the contact substrate and the support portion by contact of a corner portion of the step formed on the contact portion with the surface of the contact substrate on which the contactor is mounted. Is provided (see claim 1).
  • a step is formed in the base portion of the contactor, and the contactor is mounted in an inclined state on the contact substrate using the step.
  • the contactor can be mounted on the contact substrate at a desired angle by controlling the ratio between the length of the step and the depth. For example, even if the IC pad is downsized, miscontact with the pad is possible. Can be prevented.
  • the “rear end side” in the contactor refers to the side in contact with the contact substrate.
  • the “tip side” in the contactor refers to the side that contacts the contact target part of the DUT.
  • the step has a shape such that the height on the rear end side is relatively lower than the height on the front end side of the base portion. It is preferable.
  • the base portion is formed with a plurality of steps in a step shape (see claim 2).
  • the support portion has an insulating layer on a surface on which the conductive portion is formed (see claim 3).
  • the insulating layer is made of SiO
  • it is composed of two parts (see claim 4).
  • the plurality of contactors according to any one of claims 1 to 4, a contact substrate on which the plurality of contactors are mounted,
  • the contactor includes a plurality of the support portions, and the plurality of support portions are provided with a contact structure disposed at a predetermined interval on a single base portion (claim 5). reference).
  • the contactor is preferably bonded to the contact substrate using an ultraviolet curable adhesive, a temperature curable adhesive, or a thermoplastic adhesive. (See claim 6).
  • the contact substrate is provided with a plurality of connection traces on the surface thereof, and is electrically connected to the conductive portion of the contactor corresponding to each connection trace force. I prefer to speak (see claim 7).
  • connection trace provided on the contact substrate and the conductor portion of the contactor are connected by a bonding wire (see claim 8).
  • the DUT is an electric circuit formed on a semiconductor wafer, and the contact substrate has the following formula (1):
  • a contact structure according to any one of claims 5 to 8 having a thermal expansion rate ( ⁇ 1) that satisfies the requirement is provided (see claim 9).
  • ⁇ ⁇ is the thermal expansion coefficient of the contact substrate
  • Atl is the rising temperature of the contact substrate at the time of testing
  • a2 is the thermal expansion coefficient of the semiconductor wafer.
  • a t2 is the rising temperature of the semiconductor wafer during the test.
  • the contact substrate is designed so as to satisfy the above formula (1), thereby ensuring a distance that does not affect the impedance between the contact structure and the semiconductor wafer, and at the same time a contact in a high temperature state. Align substrate and semiconductor wafer expansion.
  • the contact substrate includes a core portion having a core insulating layer including a carbon fiber material, a first insulating layer including a glass cloth, and a first wiring. And having at least one first laminated wiring part laminated on the core part, a second insulating layer, and a second wiring pattern, and laminated on the first laminated wiring part It is preferable that at least one second laminated wiring portion is provided (see claim 11). [0025] Thereby, the thermal expansion of the contact substrate can be kept low, so that the difference between the thermal expansion amount of the outer substrate and the thermal expansion amount of the semiconductor wafer at a high temperature can be reduced.
  • the second laminated wiring portion is a build-up layer (see claim 12).
  • test head to which the contact structure according to any one of claims 5 to 12 is attached;
  • a test apparatus is provided that includes a tester for testing a test article (see claim 14).
  • the DUT is an electric circuit formed on a semiconductor wafer
  • the contact structure is a probe height surface formed by tips of the plurality of contactors. Force It is preferably mounted on the test head so as to be substantially parallel to the surface of the semiconductor wafer (see claim 15).
  • a method of manufacturing a contact structure for establishing electrical connection with the DUT when testing the DUT A supply step of supplying an SOI wafer; and a base portion forming step of forming an etching mask pattern on the lower surface of the SOI wafer and etching the lower surface to form a base portion of the contactor having a step.
  • An etching mask pattern is formed on the upper surface of the SOI wafer, an etching process is performed on the upper surface, an etching mask pattern is formed on the lower surface of the SOI wafer, and an etching process is performed on the lower surface.
  • the SiO layer of the SOI wafer is removed.
  • a contact structure manufacturing method comprising: a mounting step for mounting the contactor on the contact substrate such that a corner portion of the step formed on the contact portion contacts the surface of the contact substrate. Claim 16).
  • the surface of the insulating layer is preferably covered with a conductive material (see claim 17).
  • an etching process is performed on the lower surface of the SOI wafer by using a DRIE (Deep Reactive Ion Etching) method. Also in the supporting portion forming step, it is preferable that an etching process is performed on the upper surface of the SOI wafer by using the DRIE method (see claim 18).
  • DRIE Deep Reactive Ion Etching
  • the SOI wafer has two Si layers and one SiO layer laminated between the two Si layers.
  • the base portion forming step it is preferable to form a step in the base portion by controlling an edging time (see claim 19).
  • the SOI wafer has three Si layers and two SiO layers stacked between the three Si layers, respectively.
  • the lower SiO layer is edged.
  • the base portion is bonded to the surface of the contact substrate with an adhesive, and the contactor is connected to the contactor. It is preferable to have a placement step of placing the substrate on the substrate at a predetermined inclination and a connection step of connecting a connection trace provided on the contact substrate to the contactor (see claim 21).
  • connection trace provided on the contact substrate and the conductive portion of the contactor are connected by a bonding wire. It is preferred (see claim 22).
  • a contact structure manufacturing method for manufacturing a contact structure for establishing an electrical connection with the DUT when testing the DUT A device for applying an adhesive to a predetermined position of a contact substrate.
  • a contact structure manufacturing apparatus provided with a restricting means for restricting relative fine movement of the contactor with respect to the attracting surface (see claim 23).
  • the restricting means for restricting the fine movement of the contactor is provided on the suction surface of the suction means for placing the contactor at a predetermined position where the adhesive on the contact substrate is applied.
  • the suction surface is preferably an inclined surface having an inclination angle substantially the same as an attachment angle of the contactor with respect to the contact substrate (see claim 24).
  • the restricting means preferably includes a stepped portion formed on the suction surface (see claim 25). Further, it is preferable that a rear end of the contactor is engaged with the stepped portion (see claim 26).
  • it further comprises detection means for detecting a relative position of the contactor with respect to the contact substrate, and the moving means is based on a detection result of the detection means. It is preferable to move the contactor so that the contactor does not press the contact substrate (see claim 27).
  • a probe card for establishing an electrical connection with the DUT when testing the DUT the DUT A contactor that contacts a plurality of nodes provided on an object, and a contact substrate on which the contactor is mounted.
  • the contactor has a predetermined number as a unit, each of which is elastically deformable.
  • a plurality of scale support portions and a single base portion provided with the one unit support portion, and a predetermined inclination of the support portion with respect to the contact substrate on a rear end side of the base portion A step that defines an angle is formed, and the base portion is A probe card is provided that is bonded to the contact substrate on the rear end side so that the arrangement of one unit of the support portion corresponds to the arrangement of the plurality of pads (see claim 28).
  • the contactor includes a conductive portion that is formed on at least one surface of the support portion and electrically contacts the pad at a tip portion thereof.
  • the contact substrate is preferably provided with a connection trace on the surface thereof and a bonding wire for electrically connecting the conductive portion and the connection trace (refer to claim 29).
  • the contact substrate may be made of a substrate material that exhibits thermal expansion corresponding to thermal expansion of the semiconductor wafer that is the device under test. Preferred (see claim 30).
  • the probe card according to any one of claims 28 to 30, a test head mounted with the probe card, and the test are provided. And a tester for performing the test of the DUT via a test pad (see claim 31).
  • FIG. 1 is a schematic diagram showing a test apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing a connection relationship between a test head and a probe card used in the test apparatus of FIG.
  • FIG. 3 is a cross-sectional view of the probe card according to the first embodiment of the present invention.
  • FIG. 4 is a partial bottom view of the probe card shown in FIG.
  • FIG. 5 is a partial cross-sectional view taken along line VV in FIG.
  • FIG. 6 is a cross-sectional view showing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 7 is a plan view of the silicon finger contactor shown in FIG.
  • FIG. 8 is a view showing a state where the silicon finger contactor shown in FIG. 6 is mounted on a probe substrate.
  • FIG. 9 is a cross-sectional view showing a silicon finger contactor in a second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a first step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a second step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing a third step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 13 is a cross-sectional view showing a fourth step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 14 is a cross-sectional view showing a fifth step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 15A is a cross-sectional view showing a sixth step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 15B is a plan view showing a sixth step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 16 is a cross-sectional view showing a seventh step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 17 is a cross-sectional view showing an eighth step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 18 is a cross-sectional view showing a ninth step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 19 is a cross-sectional view showing a tenth step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 20 is a cross-sectional view showing an eleventh step for manufacturing the silicon finger contactor according to the first embodiment of the present invention.
  • FIG. 21 is a cross-sectional view showing a twelfth step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 22 is a cross-sectional view showing a thirteenth step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 23 is a cross-sectional view showing a fourteenth step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 24 is a cross-sectional view showing a fifteenth step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 25 is a cross-sectional view showing a sixteenth step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 26 is a cross-sectional view showing a seventeenth step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 27 is a cross-sectional view showing an eighteenth step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 28 is a cross-sectional view showing a nineteenth step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 29 is a cross-sectional view showing a 20th step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 30 is a cross-sectional view showing a twenty-first step for manufacturing the silicon finger contactor in the first embodiment of the present invention.
  • FIG. 31A is a plan view (No. 1) showing a silicon wafer and its cutting position for simultaneously manufacturing a large number of silicon finger contactors in the first embodiment of the present invention.
  • FIG. 31B is a plan view (No. 2) showing a silicon wafer for simultaneously manufacturing a number of silicon finger contactors in the first embodiment of the present invention and its cutting position.
  • FIG. 31C is a plan view (No. 3) showing the silicon wafer and its cutting position for simultaneously manufacturing a large number of silicon finger contactors in the first embodiment of the present invention.
  • FIG. 32 is a cross-sectional view showing a silicon finger contactor in a third embodiment of the present invention.
  • FIG. 33 shows the overall configuration of the probe card manufacturing apparatus according to the embodiment of the present invention.
  • FIG. 34 is an enlarged view of a portion XXXIV in FIG. 33 in a state where the silicon finger contactor is not gripped.
  • FIG. 35 is an enlarged view of a portion XXXIV in FIG. 33 in a state where the silicon finger contactor is gripped.
  • FIG. 1 is a schematic diagram illustrating a test apparatus according to an embodiment of the present invention
  • FIG. 2 is a conceptual diagram illustrating a connection relationship between a test head and a probe card used in the test apparatus of FIG.
  • the test apparatus 1 includes a tester 60 (test apparatus main body) having a test head 10 and a wafer prober 70.
  • the test head 10 is connected to the tester 60 via a cable bundle 61.
  • the test head 10 and the wafer prober 70 are mechanically positioned by, for example, a manipulator 80 and a drive motor 81, and are mechanically and electrically connected to each other.
  • the semiconductor wafer 200 to be tested is automatically supplied to the test position on the test head 10 by the wafer processor 70.
  • the semiconductor wafer 200 to be tested transmits and receives a test signal generated by the tester 60.
  • An output signal corresponding to the test signal is also sent to the tester 60 for the IC force of the semiconductor wafer 200 to be tested, where it is compared with the expected value, and the IC on the semiconductor wafer 200 to be tested functions normally. Is verified.
  • the interface unit 20 includes a relay board 21, a coaxial cable 22, and a frog ring 23.
  • a large number of printed circuit boards 11 corresponding to the test channels are provided in the test head 10. This large number of printed circuit boards 11 corresponds to the number of test channels of the tester 60.
  • Each of these printed circuit boards 11 has a connector 12 for connection with a corresponding contact terminal 21a on the relay board 21.
  • a frog ring 23 is provided on the relay board 21 in order to accurately determine the contact position with the wafer prober 70.
  • the frog ring 23 has a number of connection pins 23a such as ZIF connectors and pogo pins. These connections The pin 23a is connected to the contact terminal 21a on the relay board 21 via the coaxial cable 22.
  • the test head 10 is disposed on the wafer prober 70 and is mechanically and electrically connected to the wafer prono 70 via the interface unit 20.
  • the semiconductor wafer 200 to be tested is held on the chuck 71.
  • the probe card 30 is provided above the semiconductor wafer 200 to be tested.
  • the probe card 30 has a number of silicon finger contactors 50 for making contact with each pad 210 (see FIG. 3) of the IC on the semiconductor wafer 200 under test during testing.
  • connection terminal (not shown) of the probe card 30 is electrically connected to a connection pin 23 a provided on the frog ring 23.
  • connection pins 23 a are connected to contact terminals 21 a of the relay board 21, and the contact terminals 21 a are connected to the printed circuit board 11 of the test head 10 via the coaxial cable 22.
  • the printed circuit board 11 is connected to the tester 60 via a cable bundle 61 having, for example, several hundred internal cables.
  • the silicon finger contactor 50 is in contact with the surface of the semiconductor wafer 200 on the chuck 71, and a test signal is applied to the semiconductor wafer 200.
  • the output signal is received.
  • the output signal (response signal) from the semiconductor wafer 200 to be tested is compared with the expected value in the tester 60, and whether or not the IC on the semiconductor wafer 200 functions correctly is verified.
  • FIG. 3 is a cross-sectional view of the probe card according to the first embodiment of the present invention
  • FIG. 4 is a partial bottom view of the probe card shown in FIG. 3
  • FIG. 5 is a partial cross-sectional view taken along line VV in FIG. 6 is a cross-sectional view showing the silicon finger contactor according to the first embodiment of the present invention
  • FIG. 7 is a plan view of the silicon finger contactor shown in FIG. 6,
  • FIG. 8 is a view of mounting the silicon finger contactor shown in FIG. It is a figure which shows the state which carried out.
  • the probe card 30 includes a probe substrate 40 composed of a multilayer wiring board and a plurality of silicon mounted on the lower surface of the probe substrate 40.
  • a finger contactor 50 and a stiffener 35 to which the probe board 40 is attached are provided.
  • the probe substrate 40 constituting the probe card 30 will be described.
  • the probe substrate 40 in the present embodiment has a base substrate 41 having a laminated structure composed of a core portion 42 and a multilayer wiring portion 43, and is laminated on both surfaces of the base substrate 41. And a built-up portion 44 formed.
  • the base substrate 41 is formed with through-hole vias 4 la extending in the thickness direction.
  • the core part 42 is made of a carbon fiber reinforced resin (CFRP) plate material, and includes a CFRP part 42a and an insulating resin part 42b.
  • CFRP portion 42a is composed of a carbon fiber material and a synthetic resin material that encapsulates and hardens the carbon fiber material.
  • the carbon fiber material is a carbon fiber cloth woven by carbon fiber yarns in which carbon fibers are bundled, and is oriented so as to extend in the surface spreading direction of the core portion 42.
  • a plurality of carbon fiber materials having such a configuration are embedded in a synthetic resin material in a state of being laminated in the thickness direction.
  • a carbon fiber mesh or a carbon fiber nonwoven fabric may be used in place of the carbon fiber cloth.
  • Examples of synthetic resin materials that contain carbon fiber materials include polysulfone, polyethersulfone, polyphenylsulfone, polyphthalamide, polyamideimide, polyketone, polyacetal, polyimide, polycarbonate, and modified polyphenylene ether.
  • the insulating resin portion 42b is for ensuring electrical insulation between the carbon fiber material of the CFRP portion 42a and the through-hole via 41a.
  • Examples of the material constituting the insulating resin portion 42a include the above-described synthetic resin materials such as polysulfone and polyethersulfone.
  • the multilayer wiring portion 43 is a portion in which wiring is multilayered by a so-called batch stacking method, and has a stacked structure of an insulating layer 42a and a wiring pattern 42b.
  • the insulating layer 42a is formed by using a pre-predder obtained by impregnating a glass cloth with a synthetic resin material, and the synthetic resin material is cured.
  • Examples of the synthetic resin material for the insulating layer 42a include the above-described synthetic resin materials such as polysulfone and polyethersulfone.
  • the wiring pattern 42b is made of copper, for example, and has a desired shape. The wiring patterns 42b are electrically connected to each other through through-hole vias 41a.
  • the build-up portion 44 is a portion in which wiring is multilayered by a so-called build-up method, and has a laminated structure of an insulating layer 44a and a wiring pattern 44b.
  • the insulating layer 44a include the above-described synthetic resin materials such as polysulfone and polyethersulfone.
  • the wiring pattern 44b is made of copper, for example, and has a desired shape.
  • the wiring patterns 44b are electrically connected to each other through vias 44e.
  • a connection terminal (not shown) to which the connection pin 23a of the frog ring 23 is connected is formed on the uppermost wiring pattern 44b of the built-up portion 44.
  • the build-up portion 44 has a force in which a dotted pattern 44c is formed in a layer different from the wiring pattern 44b.
  • the dummy ground pattern 44d is formed so as to fill the space between the wiring patterns 44b.
  • the pattern density of the inner layer of the probe substrate 40 can be made uniform, and variations in the plate thickness of the probe substrate 40, warpage, and the like can be prevented.
  • the ground pattern 44c and the dummy ground pattern 44d are illustrated.
  • the through-hole via 41a mutually connects the wiring structure provided on both sides of the base substrate 41, that is, the wiring structure by the wiring pattern 43b of the multilayer wiring part 43 and the wiring pattern 44b of the build-up part 44.
  • the through-hole via 41a is formed by performing a copper plating process on the inner peripheral surface of the through-hole 4 lb formed so as to penetrate the base substrate 41.
  • a through-hole via may be formed by filling the through-hole 41b with a conductive paste containing silver powder or copper powder.
  • an SVH Surface Via Hole
  • two multilayer wiring parts 20 are laminated on the outside of the core part 42 so as to face each other, and further, the outer sides of the two multilayer wiring parts 43 respectively.
  • the probe substrate 40 is configured by laminating the two buildup portions 44 so as to face each other.
  • the probe substrate 40 in the present embodiment has a coefficient of thermal expansion (oc 1 that satisfies the following formula (1):
  • ⁇ ⁇ is the coefficient of thermal expansion of the probe substrate 40
  • Atl is the temperature rise of the probe substrate 40 during the test
  • a2 is the coefficient of thermal expansion of the semiconductor wafer 300 to be tested.
  • a t2 is the rising temperature of the semiconductor wafer 300 under test during the test.
  • ⁇ tl and ⁇ t2 satisfy the following expressions (2) and (3), respectively.
  • T1 is the temperature of the probe substrate 40 at the time of testing (test set temperature)
  • T2 is the temperature of the semiconductor wafer 200 under test at the time of testing
  • Tr is room temperature It is. Since T2 is determined by the radiant heat from the semiconductor wafer 200 to be tested and the heat transfer from the silicon finger contactor 50, it should be calculated based on the number of silicon finger contactors 50 mounted on the probe substrate 40. I can do it.
  • the probe substrate 40 has a thermal expansion coefficient satisfying the above equation (1), the expansion amounts of the probe base 30 plate and the semiconductor wafer 200 to be tested can be made uniform in a high temperature state. As a result, the difference between the thermal expansion amount of the probe substrate 40 and the thermal expansion amount of the semiconductor wafer 200 to be tested can be reduced. Accordingly, misalignment is prevented as a result of greatly reducing the displacement between the silicon finger contact 50 and the IC pad. In addition, by reducing the difference in thermal expansion, it is possible to test a large number of ICs at the same time by disposing silicon finger contacts 50 in a wider range with respect to the semiconductor wafer 200 to be tested. A large number of simultaneous measurements can be secured.
  • the silicon finger contactor 50 in the present embodiment is provided with a base portion 51 having a step 52 and a rear end side provided in the base portion 51, and the front end side also projects the force of the base portion 51.
  • the “rear end side” in the silicon finger contactor 50 refers to the side in contact with the probe substrate 40 (left side in FIG. 6).
  • the “tip side” in the silicon finger contactor 50 refers to the side (the right side in FIG. 6) in contact with the IC node 210 formed on the semiconductor wafer 200 to be tested.
  • the silicon finger contactor 50 is manufactured on a silicon substrate using a semiconductor manufacturing technique such as photolithography, and as shown in FIG.
  • the support portion 53 is provided in a finger shape (comb shape).
  • the support portions 53 can operate independently of each other.
  • it is easy to manufacture even a narrow pitch IC pad and can be handled as a unit module. Therefore, it can be easily mounted on the probe card and can be easily disposed at an accurate position.
  • the contactor 50 using the semiconductor manufacturing technique, it is easy to make the pitch between the plurality of support portions 53 equal to the pitch between the pads 210 of the semiconductor wafer 200 to be tested. I can do it.
  • the contactor 50 can be reduced in size by using semiconductor manufacturing technology, a probe card with good waveform quality can be realized even when the operable frequency range of the probe card 30 is 500 MHz or more.
  • the number of contacts mounted on the probe card 30 can be increased to, for example, 2000 or more, and the number of simultaneous measurements can be increased.
  • the step 52 formed in the base portion 51 of the silicon finger contactor 50 has a height on the rear end side relatively to the height on the front end side in the base portion 51. It has a shape that lowers.
  • the step 52 has a depth H and a length L.
  • An insulating layer 53 a for electrically insulating the conductive layer 54 from other parts of the silicon finger contactor 50 is formed on the upper surface of the support portion 53.
  • This insulating layer 53a is, for example, Si
  • a conductive portion 54 is formed on the surface of the insulating layer 53a.
  • the material constituting the conductive part 54 and These are nickel, aluminum, copper, gold, nickel cobalt, nickel palladium, rhodium, nickel gold, iridium, and other depositable materials. Note that it is preferable that the tip of the conductive portion 54 has a sharp shape. Thereby, the scrubbing effect at the time of contact between the silicon finger contactor 50 and the pad 210 can be enhanced.
  • the silicon finger contactor 50 configured as described above is mounted on the probe substrate 40 so as to face the IC pad 210 formed on the semiconductor wafer 200 to be tested, as shown in FIG. ing.
  • FIG. 3 shows only two silicon finger contactors 50. Actually, a large number of silicon finger contactors 50 are arranged on the probe substrate 40.
  • each silicon finger contactor 50 is bonded to the probe substrate 40 so that the corners 52a and 52b of the step 52 formed on the base portion 51 are in contact with the surface of the probe substrate 40. It has been.
  • the adhesive that bonds the silicon finger contactor 50 and the probe substrate 40 include an ultraviolet curable adhesive, a temperature curable adhesive, and a thermoplastic adhesive. Since the base portion 51 has a large area, sufficient adhesive strength can be obtained.
  • the silicon finger contactor 50 is mounted on the probe substrate 40 using the step 52 formed on the base portion 51, the silicon finger contactor 50 is stepped with respect to the probe substrate 40. It is inclined at an angle of
  • the silicon finger contactor 50 is placed on the probe substrate 40, for example, 54.7 ° or less. It can be easily mounted at the desired precise angle ⁇ 8. As a result, the ratio of the scrub amount to the overdrive amount of the silicon finger contactor 50 to be contacted first (the scrub amount Z overdrive amount) can be reduced. In addition, miscontact with the pad 210 can be prevented.
  • the tilt angle ⁇ of the silicon finger contactor 50 with respect to the probe substrate 40 is preferably as small as possible. However, if the angle j8 is too low, the angle provided on the probe substrate 40 is reduced. There is a risk of hitting a sensor.
  • connection trace 40 a is provided on the lower surface of the probe substrate 40.
  • the connection trace 40a is electrically connected to the conductive portion 54 of the silicon finger contactor 50 via a bonding wire 40b. Further, the connection trace 40 a is electrically connected to a via 44 e provided in the lowermost layer of the buildup portion 44 on the lower side of the probe substrate 40.
  • a solder ball may be used to electrically connect the connection trace 40e and the conductive portion 44!
  • the probe substrate 40 to which the silicon finger contactor 50 is attached is attached to the stiffener 35.
  • a probe height surface PL force composed of the tips of all the silicon finger contactors 50 mounted on the probe substrate 40 with a shim or the like interposed between the probe substrate 40 and the stiffener 35
  • the probe substrate 40 is attached to the stiffener 35 so as to be substantially parallel to the surface 200a of the 200. Thereby, the variation in the height direction of the silicon finger contactor 50 mounted on the probe substrate 40 can be suppressed.
  • the silicon finger contactor 50 on the probe substrate 40 and the semiconductor wafer 200 to be tested Connect mechanically and electrically to the upper pad 210 and force.
  • a signal path is formed from the node 210 to a connection terminal (not shown) formed on the top of the probe substrate 40.
  • the narrow pitch of the silicon finger contactor 50 is fanned out (enlarged) at a large interval via the connection trace 40a and the wiring patterns 43b and 44b of the probe substrate 40.
  • the silicon finger contactor 50 comes into contact with the pad 210, the silicon finger contactor 50 is mounted so as to be inclined with respect to the probe substrate 40, so that the long support portion 53 is deformed by inertia. Due to this elastic deformation, the tip of the conductive portion 54 scrapes off (scrubs) the metal oxide film formed on the surface of the pad 210, and electrical connection between the silicon finger contactor 50 and the pad 210 is established.
  • the length, width, and thickness of the support portion 53 are determined based on the required pressing force to the pad 210 and the required amount of elastic deformation.
  • FIG. 9 is a cross-sectional view showing a silicon finger contactor in the second embodiment of the present invention.
  • a plurality of steps 52 ′ are formed in a step shape.
  • the support points of the silicon finger contactor 50 mounted on the probe substrate 40 are increased, so that the mounting stability of the silicon finger contactor 50 to the probe substrate 40 is improved.
  • FIGS. 10 to 30 are views showing respective steps for manufacturing the silicon finger contactor according to the first embodiment of the present invention
  • FIGS. 31A to 31C are a plurality of silicon fingers in the first embodiment of the present invention. It is a top view which shows the silicon wafer for manufacturing a contactor simultaneously, and its cutting position.
  • the silicon finger contactors 50 are formed on the silicon substrate 55 as a large number of pairs using a semiconductor manufacturing technique such as photolithography, and then each pair of the contactors 50 is separated.
  • SOI wafers 55 are prepared in the first step shown in FIG.
  • This SOI wafer 55 has two upper and lower Si layers 55a and one SiO (dioxide-silicon) layer 55b laminated between the two Si layers 55a. 2 layers S
  • the SiO layer 55b of the SOI wafer 55 is used when the support 53 is formed.
  • SiO dioxide dioxide
  • Recon layer 57 is formed. This SiO layer 57 is formed when the step 52 is formed on the base 51.
  • a resist layer 56 a is formed on the SiO layer 57 in the third step shown in FIG. This
  • a photoresist film is formed on the SiO layer 57, and this
  • a resist layer 56a is formed on a part of the SiO layer 57 by exposing to ultraviolet light and curing (solidifying) with the photomask overlaid on the photoresist film.
  • This resist layer 56a is used as an edging mask pattern in the next fourth step. I can.
  • a resist layer 56 b is formed on the upper surface of the SOI wafer 55.
  • This resist layer 56b is formed in a finger shape (comb shape) on the upper surface of the SOI wafer 55 as shown in FIG. 15B in the same manner as in the third step described above.
  • an etching process is performed on the upper Si layer 55 a of the SOI wafer 55.
  • An example of this etching process is DRIE (Deep Reactive Ion Etching).
  • DRIE Deep Reactive Ion Etching
  • the upper Si layer 55a of the SOI wafer 55 is formed in a finger shape (comb shape).
  • an SiO layer 53 a is formed on the upper surface of the SOI wafer 55.
  • the SiO layer 53a functions as an insulating layer of the support portion 53.
  • a resist layer 56c is formed on part of the lower surface of the SOI wafer 55 and on the SiO layer 57 in the same manner as in the third step described above. .
  • an etching process is performed on the lower Si layer 55a of the SOI wafer 55.
  • the same DRIE method as in the seventh step can be mentioned.
  • the lower Si layer 55a is removed by the depth h.
  • This depth h is set by controlling the edging time in DRIE.
  • a seed layer 54 a made of gold and titanium is formed on the SiO 2 layer 53 a formed on the upper surface of the SOI wafer 55. This sea
  • Examples of the method for forming the deposited layer 54a include vacuum deposition, sputtering, and vapor deposition.
  • a resist layer 56d is formed on part of 54a.
  • a nickel cobalt film 54b is formed on the seed layer 54a by subjecting nickel cobalt to a plating treatment.
  • the resist layer 56d is removed in a sixteenth step shown in FIG.
  • a resist layer 56e is formed on part of the nickel cobalt film 54b in the same manner as in the third step described above.
  • a gold plating film 54c is formed on the nickel cobalt film 54b by performing a gold plating process.
  • the resist layer 56e is removed in a nineteenth step shown in FIG.
  • an etching process is performed on the Si layer 55a on the lower side of the SOI wafer 55 in the 21st step shown in FIG. Do.
  • the DRIE method similar to the seventh step can be mentioned.
  • the lower Si layer 55a is further removed by the depth H, and the step 52 of the base portion 51 is formed.
  • This depth H is set by controlling the edging time in DRIE.
  • the silicon finger contactor 50 is completed. At this time, the SiO layer 5 of the SOI wafer 55 5
  • the SOI wafer 55 on which the silicon finger contactor 50 is manufactured as described above is cut by dicing, for example, along the AA line, BB line, and CC line shown in FIG. 31A.
  • the cut SOI wafer 55 is cut into smaller pieces as necessary for each group of silicon finger contactors 50 as shown in FIG. 31B. That is, as shown in FIG. 31C, as shown in FIG. 31B, the SOI wafer 55 is further cut by DD and EE lines so that a predetermined number of silicon finger contactors 50 are provided in each group as shown in FIG. 31C. .
  • an adhesive is applied to a predetermined position of the probe substrate 40, the silicon finger contactor 50 manufactured as described above is placed at the predetermined position, and the silicon finger contactor 50 is placed on the probe substrate 40. Glue.
  • the silicon finger contactor 50 is mounted on the probe substrate 40 so that the corners 52 a and 52 b of the step 52 formed on the base portion 51 are in contact with the surface of the probe substrate 40.
  • the silicon finger contactor 50 can be attached to the probe substrate 40 at an inclination angle ⁇ corresponding to the ratio between the depth H and the length L of the step 52.
  • connection trace 41a provided on the probe substrate 40 and the conductive portion 54 of the silicon finger contactor 50 are connected by the bonding wire 41b, whereby the probe card 30 according to the present embodiment is completed.
  • FIG. 32 is a cross-sectional view showing a silicon finger contactor in a third embodiment of the present invention.
  • a silicon finger contactor 50 "according to a third embodiment of the present invention includes three Si layers 55a and two SiO layers 55b stacked between the three Si layers, respectively. Have 3
  • the lower SiO layer 55b of the SOI wafer is used as an edging stopper.
  • the depth H of the step 52 can be set with high accuracy.
  • the SiO layer 55b below the SOI wafer is removed.
  • a probe card manufacturing apparatus according to an embodiment of the present invention will be described below.
  • FIG. 33 is a schematic diagram showing the overall configuration of the probe card manufacturing apparatus according to the embodiment of the present invention.
  • FIG. 34 is an enlarged view of the portion XXXIV in FIG. 33 in a state where the silicon finger contactor is not gripped.
  • Fig. 14 is an enlarged view of a part XXXIV in Fig. 33 with the silicon finger contactor held.
  • the probe card manufacturing apparatus 100 is an apparatus for mounting the silicon finger contactor 50 manufactured according to the above-described FIGS. 10 to 31C on the probe substrate 40.
  • the probe card manufacturing apparatus 100 includes an adsorption unit 131 that adsorbs and holds the silicon finger contactor 50, and an application unit 132 that applies adhesive 45 to a predetermined position of the probe substrate 40.
  • a measurement unit 134 for measuring the relative height of the silicon finger contactor 50 with respect to the probe substrate 40, a camera unit 140 for recognizing the position and orientation of the probe substrate 40 and the silicon finger contactor 50, and the silicon finger contactor 50
  • a moving stage 150 for moving the probe substrate 40 relative to the probe board 40.
  • the adsorption unit 131 has an adsorption surface 131a at the tip thereof for contacting and adsorbing the upper surface of the silicon finger contactor 50.
  • the suction surface 131a is composed of an inclined surface having an angle substantially the same as the mounting angle / 3 of the silicon finger contactor 50 with respect to the probe substrate 40.
  • One end of a passage 131b penetrating the suction unit 131 is opened on the suction surface 131a.
  • the other end of the passage 131b communicates with the vacuum pump 120 as shown in FIG.
  • the suction surface 131a is formed with a step portion 13lc that engages the rear end of the silicon finger contactor 50.
  • the silicon finger contactor 50 held by the suction unit 131 can be positioned and bonded to a predetermined position on the probe substrate 40 with high accuracy, thereby preventing miscontact during testing.
  • the stepped portion 131c is not formed on one suction surface 131a
  • the surface tension of the adhesive 45 resists the suction force of the suction unit 131
  • the silicon finger contactor 50 sucks.
  • the silicon finger contactor 50 may be adhered to the probe substrate 40 while sliding along the surface 131a and being displaced from a predetermined position.
  • the coating unit 132 is a syringe that pushes the ultraviolet curable adhesive onto the probe substrate 40.
  • the application unit 132 includes an ultraviolet irradiation unit 133 for curing the adhesive 45 applied on the probe substrate 40.
  • the measurement unit 134 has a non-contact type distance measurement sensor using, for example, a laser. The distance measuring sensor can measure the distance between the silicon finger unit 50 held by the suction unit 131 and the probe substrate 40, that is, the height of the silicon finger unit 50 with respect to the probe substrate 40. .
  • the suction unit 131, the coating unit 132, and the measurement unit 134 described above are attached to the lifting head 130.
  • the lifting head 130 is supported by a gantry 110 provided so as to surround the moving stage 150 on which the probe substrate 40 is held, and can be moved up and down in the Z-axis direction with respect to the moving stage 150.
  • the camera unit 140 has, for example, a CCD camera provided so as to be able to image the lower part.
  • the camera unit 40 is attached to the gantry 110 independently of the lifting head 130 and is movable in the XY directions.
  • the moving stage 150 has a chuck (not shown) that can hold the probe substrate 40, and can move the probe substrate 40 in the X-axis direction and the Y-axis direction.
  • the probe substrate 40 can be rotated in the ⁇ direction around the Z axis.
  • the probe card 30 is manufactured as follows.
  • the camera unit 140 images the probe substrate 40 held on the moving stage 150 and recognizes the relative position of the probe substrate 40 with respect to the lifting head 130. Then, the moving stage 150 moves so that the predetermined position of the probe substrate 40 faces the discharge port of the coating unit 132, and then the elevating head 130 is lowered in the Z-axis direction.
  • the camera unit 140 images the silicon finger contactor 50 gripped by the suction head 131, and the position and orientation of the silicon finger contactor 50 are captured. Recognize
  • the moving stage 150 moves so that the silicon finger contactor 50 held by the suction unit 131 is positioned above a predetermined position of the probe substrate 40, and then the lifting head 130 is moved in the Z-axis direction. To descend.
  • the silicon finger against the measurement unit 134 force probe board 40 Measure the height of 50.
  • the measurement unit 134 stops the descent of the elevating head 130 in the Z-axis direction.
  • the silicon finger contactor 50 can be prevented from being pressed against the probe substrate 40.
  • the silicon finger contactor 50 slides along the inclination of the suction surface 131a by the pressing force, so that the silicon finger contactor 50 is displaced from a predetermined position.
  • the silicon finger contactor 50 may be adhered to the probe substrate 40.
  • the moving stage 150 moves so that the tip of the ultraviolet irradiation unit 133 faces the predetermined position. Thereafter, ultraviolet rays are called from the ultraviolet irradiation unit 133, the adhesive 45 is hardened, and the silicon finger contactor 50 is bonded to a predetermined position on the probe substrate 40.
  • a number of silicon finger contactors 50 are mounted on one probe substrate 40 by repeating the above procedure for each group of silicon finger contactors 50 as shown in FIG. 31C.

Abstract

 プローブカード(30)は、被試験半導体ウェハに設けられたパッドに接触する複数のシリコンフィンガコンタクタ(50)と、当該複数のシリコンフィンガコンタクタ(50)を表面に搭載したプローブ基板(40)と、を備え、シリコンフィンガコンタクタ(50)は、段差(52)が形成されたベース部(51)と、後端側がベース部(51)に設けられ、先端側がベース部(51)から突出している支持部(53)と、支持部(53)の表面に形成された導電部(54)と、を有し、シリコンフィンガコンタクタ(50)は、ベース部(51)に形成された段差(52)の角部(52a、52b)がプローブ基板(40)の表面に接触するように、プローブ基板(40)に搭載されている。

Description

明 細 書
コンタクタ、該コンタクタを備えたコンタクトストラクチャ、プローブカード、試 験装置、コンタクトストラクチャ製造方法、及び、コンタクトストラクチャ製造装置 技術分野
[0001] 本発明は、半導体ウェハ、半導体チップ、半導体部品パッケージ又はプリント基板 等に形成された集積回路等の電気回路 (以下、代表的に ICとも称する。)のテスト〖こ 際して、当該 ICに設けられたパッドや電極或いはリードのような接触対象部と接触し て ICとの電気的な接続を確立するためのコンタクタ (接触子)、該コンタクタを備えた コンタクトストラクチャ (接触構造)、プローブカード、試験装置、コンタクトストラクチャ 製造方法、及び、コンタクトストラクチャ製造装置に関する。
背景技術
[0002] 半導体集積回路素子は、シリコンウェハ等に多数造り込まれた後、ダイシング、ワイ ャボンディング及びパッケージング等の諸工程を経て電子部品として完成する。こう した ICにあっては、出荷前に動作テストが行われ、この ICテストは、完成品の状態で もウェハ状態でも行われる。
[0003] ウェハ状態の被試験 ICのテスト〖こ際して、当該被試験 ICとの電気的な接続を確保 するためのプローブとして、両端に傾斜を有するベース部と、後端側がベース部に設 けられ、先端側がベース部から突出しているビーム部と、ビーム部の表面に形成され た導電部と、を有するもの(以下、単に「シリコンフィンガコンタクタ」とも称する。)が従 来力も知られている(例えば、特許文献 1乃至 3参照)。
[0004] このシリコンフィンガコンタクタは、例えばフォトリソグラフィのような半導体製造技術 をシリコン基板に施すことにより形成されている。特に、ベース部の両端に傾斜を形 成する際には、シリコン基板に対して異方性エッチングを行うことにより、シリコンの結 晶面に依存した 54. 7° の斜面が形成されている。そして、この斜面を利用して、所 定角度を付与した状態でシリコンフィンガコンタクタがプローブ基板上に搭載されて いる。
[0005] このようなシリコンフィンガコンタクタを複数備えたプローブカードを用いて ICテスト を行う際には、プローブカードを半導体ウェハに接近させ、シリコンフィンガコンタクタ を被試験 ICのパッドに接触させる。そして、シリコンフィンガコンタクタをパッドに向か つてさらに移動 (オーバードライブ)させて、シリコンフィンガコンタクタの先端がパッド を擦る (スクラブ)こと〖こより、当該パッド上に形成された酸化アルミ層が除去され、被 試験 ICとの電気的な接触が確立される。
[0006] このシリコンフィンガコンタクタとパッドとの接触の際、シリコンフィンガコンタクタの高 さ方向のバラツキにより、プローブ基板上のあるシリコンフィンガコンタクタが ICのパッ ドに最初に接触してから、当該プローブ基板上に設けられた全てのシリコンフィンガコ ンタクタが ICのパッドに接触が完了するまでに、当該最初に接触したシリコンフィンガ コンタクタは余分にオーバードライブすることとなる。
[0007] ここで、シリコンフィンガコンタクタのベース部に形成された傾斜の角度は、上述のよ うに 54. 7° と比較的急な角度となっているため、パッドに最初に接触したシリコンフ インガコンタクタのオーバードライブ量に対して、当該シリコンフィンガコンタクタのスク ラブ量が大きくなる(即ち、スクラブ量 Zオーバードライブ量が大きくなる)。そのため、 例えば ICのパッドサイズが小型化すると、シリコンフィンガコンタクタの先端がパッドか らはみ出してしまったり、変形したり破損する可能性がある。
特許文献 1:特開 2000— 249722号公報
特許文献 2:特開 2001— 159642号公報
特許文献 3 :国際公開第 03Z071289号パンフレット
発明の開示
[0008] 本発明は、接触対象物とのミスコンタクトを防止可能なコンタクタ、該コンタクタを備 えたコンタクトストラクチャ、プローブカード、試験装置、コンタクトストラクチャ製造方法 、及び、コンタクトストラクチャ製造装置に関する。
[0009] (1)上記目的を達成するために、本発明によれば、被試験物のテストに際して前記 被試験物との電気的な接続を確立するために、前記被試験物に設けられた接触対 象部に接触するコンタクタであって、段差が形成されたベース部と、後端側が前記べ ース部に設けられ、先端側が前記ベース部力 突出している支持部と、前記支持部 の表面に形成され、前記接触対象部に電気的に接触する導電部と、を有し、前記べ ース部に形成された前記段差の角部が、前記コンタクタを搭載するコンタクト基板の 表面に接触することにより、前記コンタクト基板の表面と前記支持部との間で所定の 傾斜角度を規定するコンタクタが提供される (請求項 1参照)。
[0010] 本発明では、コンタクタのベース部に段差を形成し、この段差を利用して、コンタクト 基板上に、傾斜した状態でコンタクタを搭載する。これにより、段差の長さと深さの比 を制御することにより、コンタクタをコンタクト基板に所望の角度で搭載することが出来 るので、例えば ICのパッドが小型化しても、当該パッドとのミスコンタクトを防止するこ とが出来る。
[0011] なお、本発明において、コンタクタにおける「後端側」とは、コンタクト基板に接触す る側を指す。これに対し、コンタクタにおける「先端側」とは、被試験物の接触対象部 に接触する側を指す。
[0012] 上記発明にお 、ては特に限定されな 、が、前記段差は、前記ベース部の先端側の 高さに対して後端側の高さが相対的に低くなるような形状を有することが好ましい。
[0013] 上記発明においては特に限定されないが、前記ベース部には複数の前記段差が 階段状に形成されて 、ることが好ま ヽ (請求項 2参照)。
[0014] これにより、コンタクト基板上に搭載されたコンタクタの支持点が増えるので、コンタ タト基板に対するコンタクタの取付安定性が向上する。
[0015] 上記発明においては特に限定されないが、前記支持部は、前記導電部が形成され る側の表面に絶縁層を有することが好ましい (請求項 3参照)。前記絶縁層は、 SiO
2 カゝら構成されて ヽることが好ま 、 (請求項 4参照)。
[0016] (2)上記目的を達成するために、本発明によれば、請求項 1〜4の何れかに記載の 複数の前記コンタクタと、前記複数のコンタクタを表面に搭載したコンタクト基板と、を 備え、前記コンタクタは、複数の前記支持部を有し、前記複数の支持部は、単一の前 記ベース部上に所定間隔で配設されているコンタクトストラクチャが提供される(請求 項 5参照)。
[0017] 上記発明においては特に限定されないが、前記コンタクタは、紫外線硬化型接着 剤、温度硬化型接着剤、又は、熱可塑性接着剤を用いて前記コンタクト基板に接着 されて 、ることが好ま 、(請求項 6参照)。 [0018] 上記発明においては特に限定されないが、前記コンタクト基板は、その表面に複数 の接続トレースが設けられており、前記各接続トレース力 対応する前記コンタクタの 前記導電部に電気的に接続されて ヽることが好ま 、(請求項 7参照)。
[0019] 上記発明においては特に限定されないが、前記コンタクト基板に設けられた前記接 続トレースと前記コンタクタの前記導線部とがボンディングワイヤにより接続されてい ることが好ま Uヽ (請求項 8参照)。
[0020] (3)上記目的を達成するために、本発明によれば、前記被試験物は、半導体ゥ ハ上に形成された電気回路であり、前記コンタクト基板は、下記式(1)を満たす熱膨 張率( α 1)を有する請求項 5〜8の何れかに記載のコンタクトストラクチャが提供され る (請求項 9参照)。
[0021] a l = α 2 Χ A t2/ A tl … 式(1)
但し、上記式(1)において、 α ΐは前記コンタクト基板の熱膨張率であり、 A tlは試 験時における前記コンタクト基板の上昇温度であり、 a 2は前記半導体ウェハの熱膨 張率であり、 A t2は試験時における前記半導体ウェハの上昇温度である。
[0022] 本発明では、上記式(1)を満たすようにコンタクト基板を設計することにより、コンタ タトストラクチャと半導体ウェハとの間にインピーダンスに影響を与えない距離を確保 しつつ、高温状態におけるコンタクト基板と半導体ウェハの膨張量を揃える。
[0023] これにより、高温状態におけるコンタクト基板の熱膨張量と半導体ウェハの熱膨張 量との差を小さくすることが出来、ノッド等の接触対象部とのミスコンタクトが防止され る。また、熱膨張量の差が小さくなることにより、半導体ウェハに対してより広い範囲で 同時に試験を行うことが可能となり、より多くの同時測定数を確保することが可能とな る。
[0024] 上記発明においては特に限定されないが、前記コンタクト基板は、カーボンフアイ バ材を包含するコア絶縁層を有するコア部と、ガラスクロスを包含する第 1の絶縁層、 及び、第 1の配線パターンを有し、前記コア部に積層されている少なくとも一つの第 1 の積層配線部と、第 2の絶縁層、及び、第 2の配線パターンを有し、前記第 1の積層 配線部に積層されている少なくとも一つの第 2の積層配線部と、を備えていることが 好ましい (請求項 11参照)。 [0025] これにより、コンタクト基板の熱膨張を低く抑えることが出来るので、高温状態にお けるコンタ外基板の熱膨張量と半導体ウェハの熱膨張量との差を小さくすることが出 来る。
[0026] 上記発明にお 、ては特に限定されな 、が、前記第 2の積層配線部はビルドアップ 層であることが好ま ヽ (請求項 12参照)。
[0027] (4)上記目的を達成するために、本発明によれば、請求項 5〜 12の何れかに記載 のコンタクトストラクチャが装着されたテストヘッドと、前記テストヘッドを介して、前記 被試験物の試験を実施するテスタと、を備えた試験装置が提供される (請求項 14参 照)。
[0028] 上記発明においては特に限定されないが、前記被試験物は、半導体ウェハ上に形 成された電気回路であり、前記コンタクトストラクチャは、前記複数のコンタクタの先端 により構成されるプローブ高さ面力 前記半導体ウェハの表面に対して実質的に平 行となるように、前記テストヘッドに装着されて 、ることが好ま 、(請求項 15参照)。
[0029] これにより、コンタクト基板上に装着されたコンタクタの高さ方向のバラツキを抑える ことが出来る。
[0030] (5)上記目的を達成するために、本発明によれば、被試験物のテストに際して前記 被試験物との電気的な接続を確立するためのコンタクトストラクチャの製造方法であ つて、 SOIウェハを供給する供給ステップと、前記 SOIウェハの下部表面にエツチン グマスクパターンを形成し、当該下部表面にエッチング処理を施すことにより、段差を 有するコンタクタのベース部を形成するベース部形成ステップと、前記 SOIウェハの 上部表面にエッチングマスクパターンを形成し、当該上部表面にエッチング処理を施 し、さらに、前記 SOIウェハの下部表面にエッチングマスクパターンを形成し、当該下 部表面にエッチング処理を施すと共に、前記 SOIウェハが有する SiO層を除去する
2
ことにより、前記コンタクタの支持部を形成する支持部形成ステップと、前記支持部の 上部表面を導電性材料で被覆することにより、前記コンタクタの導電部を形成する導 電部形成ステップと、前記ベース部に形成された前記段差の角部が前記コンタクト基 板の表面に接触するように、前記コンタクタを前記コンタクト基板上に搭載する搭載ス テツプと、を備えたコンタクトストラクチャ製造方法が提供される(請求項 16)。 [0031] 上記発明にお 、ては特に限定されな 、が、前記支持部形成ステップにお 、て、前 記 SOIウェハの上部表面にエッチング処理を施した後に、絶縁層を構成する SiO層
2 を前記 SOIウェハの上部表面に形成し、前記導電部形成ステップにおいて、前記絶 縁層の表面を導電性材料で被覆することが好ま ヽ (請求項 17参照)。
[0032] 上記発明にお ヽては特に限定されな 、が、前記ベース部形成ステップにお 、て、 DRIE (Deep Reactive Ion Etching)法を用いて前記 SOIウェハの下部表面にエツ チング処理を施し、前記支持部形成ステップにおいても、 DRIE法を用いて前記 SOI ウェハの上部表面にエッチング処理を施すことが好ましい(請求項 18参照)。
[0033] 上記発明においては特に限定されないが、前記 SOIウェハは、 2層の Si層と、当該 2層の Si層の間に挟まれて積層された 1層の SiO層と、を有する 2層 SOIウェハであ
2
り、前記ベース部形成ステップにおいて、エッジング時間を制御することにより、前記 ベース部に段差を形成することが好ましい (請求項 19参照)。
[0034] 上記発明においては特に限定されないが、前記 SOIウェハは、 3層の Si層と、当該 3層の Si層の間にそれぞれ挟まれて積層された 2層の SiO層と、を有する 3層 SOIゥ
2
ェハであり、前記ベース部形成ステップにおいて、下側の前記 SiO層をエッジングス
2
トツパとして用い、前記支持部形成ステップにおいて、前記 2層の SiO層を除去する
2
ことが好ま ヽ (請求項 20参照)。
[0035] 上記発明にお 、ては特に限定されな 、が、前記搭載ステップにお 、て、前記べ一 ス部を前記コンタクト基板の表面に接着剤により接合して、前記コンタクタを前記コン タクト基板に所定の傾斜で配置する配置ステップと、前記コンタクト基板に設けられた 接続トレースを前記コンタクタに接続する接続ステップと、を有することが好ましい(請 求項 21参照)。
[0036] 上記発明にお 、ては特に限定されな 、が、前記接続ステップにお 、て、前記コンタ タト基板に設けられた前記接続トレースと前記コンタクタの前記導電部とをボンディン グワイヤにより接続することが好ましい (請求項 22参照)。
[0037] (6)上記目的を達成するために、本発明によれば、被試験物のテストに際して前記 被試験物との電気的な接続を確立するためのコンタクトストラクチャを製造するコンタ タトストラクチャ製造装置であって、コンタクト基板の所定位置に接着剤を塗布する塗 布手段と、コンタクタを吸着して把持する吸着手段と、前記コンタクタに対して前記コ ンタクト基板を相対移動させる移動手段と、を備え、前記吸着手段は、前記コンタクタ に接触して吸着する吸着面を有し、前記吸着面には、当該吸着面に対する前記コン タクタの相対的な微動を規制する規制手段が設けられているコンタクトストラクチャ製 造装置が提供される (請求項 23参照)。
[0038] 本発明では、コンタクト基板上の接着剤が塗布された所定位置にコンタクタを載置 する吸着手段の吸着面に、コンタクタの微動を規制する規制手段を設ける。これによ り、コンタクト基板上の所定位置に対してコンタクタを高精度で位置決めして接着する ことが出来るので、テスト時のミスコンタクトの防止を図ることが出来る。
[0039] 上記発明においては特に限定されないが、前記吸着面は、前記コンタクト基板に対 する前記コンタクタの取付角度と実質的に同一の傾斜角度を有する傾斜面であるこ とが好ましい (請求項 24参照)。また、前記規制手段は、前記吸着面に形成された段 差部を含むことが好ましい (請求項 25参照)。さらに、前記段差部には、前記コンタク タの後端が係合することが好まし ヽ (請求項 26参照)。
[0040] 上記発明にお 、て特に限定されな 、が、前記コンタクト基板に対する前記コンタク タの相対位置を検出する検出手段をさらに備え、前記移動手段は、前記検出手段の 検出結果に基づいて、前記コンタクタが前記コンタクト基板を押圧しないように、前記 コンタクタを移動させることが好ま 、 (請求項 27参照)。
[0041] これにより、吸着手段がコンタクタを移動させてコンタクト基板上に載置する際に、コ ンタクタがコンタクト基板を押圧し、吸着手段の吸着面に対してコンタクタが微動して ズレてしまうのを防止することが出来る。
[0042] (7)上記目的を達成するために、本発明によれば、被試験物のテストに際して前記 被試験物との電気的な接続を確立するためのプローブカードであって、前記被試験 物に設けられた複数のノ ッドに接触するコンタクタと、前記コンタクタを表面に搭載す るコンタクト基板と、を備え、前記コンタクタは、所定複数個を一単位とし、それぞれが 弾性変形可能な長尺の複数の支持部と、前記一単位の支持部が設けられた単一の ベース部と、を有し、前記ベース部の後端側には、前記コンタクト基板に対する前記 支持部の所定の傾斜角度を規定する段差が形成されており、前記ベース部は、前記 一単位の支持部の配列が前記複数のパッドの配列に対応するように、前記後端側で 前記コンタクト基板に接合されているプローブカードが提供される (請求項 28参照)。
[0043] 上記発明にお 、ては特に限定されな 、が、前記コンタクタは、前記支持部の少なく とも一面に形成され、その先端部位で前記パッドに電気的に接触する導電部を有し 、前記コンタクト基板は、その表面に接続トレースが設けられており、前記導電部と前 記接続トレースとの間を電気的に接続するボンディングワイヤを備えていることが好ま しい(請求項 29参照)。
[0044] 上記発明にお 、ては特に限定されな 、が、前記コンタクト基板は、前記被試験物で ある半導体ウェハの熱膨張に対応した熱膨張を示す基板材料から構成されているこ とが好ま ヽ(請求項 30参照)。
[0045] (8)上記目的を達成するために、本発明によれば、請求項 28〜30の何れかに記 載のプローブカードと、前記プローブカードが装着されたテストヘッドと、前記テストへ ッドを介して、前記被試験物の試験を実施するテスタと、を備えた試験装置が提供さ れる(請求項 31参照)。
図面の簡単な説明
[0046] [図 1]図 1は、本発明の第 1実施形態に係る試験装置を示す概略図である。
[図 2]図 2は、図 1の試験装置に用いられるテストヘッド及びプローブカードの接続関 係を示す概念図である。
[図 3]図 3は、本発明の第 1実施形態に係るプローブカードの断面図である。
[図 4]図 4は、図 3に示すプローブカードの部分底面図である。
[図 5]図 5は、図 3の V-V線に沿った部分断面図である。
[図 6]図 6は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを示す断面図 である。
[図 7]図 7は、図 6に示すシリコンフィンガコンタクタの平面図である。
[図 8]図 8は、図 6に示すシリコンフィンガコンタクタをプローブ基板に搭載した状態を 示す図である。
[図 9]図 9は、本発明の第 2実施形態におけるシリコンフィンガコンタクタを示す断面図 である。 [図 10]図 10は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 1工程を示す断面図である。
[図 11]図 11は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 2工程を示す断面図である。
[図 12]図 12は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 3工程を示す断面図である。
[図 13]図 13は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 4工程を示す断面図である。
[図 14]図 14は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 5工程を示す断面図である。
[図 15A]図 15Aは、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造 するための第 6工程を示す断面図である。
[図 15B]図 15Bは、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造 するための第 6工程を示す平面図である。
[図 16]図 16は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 7工程を示す断面図である。
[図 17]図 17は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 8工程を示す断面図である。
[図 18]図 18は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 9工程を示す断面図である。
[図 19]図 19は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 10工程を示す断面図である。
[図 20]図 20は、本発明の第 1実施形態に係るシリコンフィンガコンタクタを製造するた めの第 11工程を示す断面図である。
[図 21]図 21は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 12工程を示す断面図である。
[図 22]図 22は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 13工程を示す断面図である。 [図 23]図 23は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 14工程を示す断面図である。
[図 24]図 24は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 15工程を示す断面図である。
[図 25]図 25は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 16工程を示す断面図である。
[図 26]図 26は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 17工程を示す断面図である。
[図 27]図 27は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 18工程を示す断面図である。
[図 28]図 28は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 19工程を示す断面図である。
[図 29]図 29は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 20工程を示す断面図である。
[図 30]図 30は、本発明の第 1実施形態におけるシリコンフィンガコンタクタを製造する ための第 21工程を示す断面図である。
[図 31A]図 31Aは、本発明の第 1実施形態における多数のシリコンフィンガコンタクタ を同時に製造するためのシリコンウェハとその切断位置を示す平面図(その 1)である
[図 31B]図 31Bは、本発明の第 1実施形態における多数のシリコンフィンガコンタクタ を同時に製造するためのシリコンウェハとその切断位置を示す平面図(その 2)である
[図 31C]図 31Cは、本発明の第 1実施形態における多数のシリコンフィンガコンタクタ を同時に製造するためのシリコンウェハとその切断位置を示す平面図(その 3)である
[図 32]図 32は、本発明の第 3実施形態におけるシリコンフィンガコンタクタを示す断 面図である。
[図 33]図 33は、本発明の実施形態に係るプローブカード製造装置に全体の構成を 示す概略図である。
[図 34]図 34は、シリコンフィンガコンタクタを把持していない状態の図 33の XXXIV部 の拡大図である。
[図 35]図 35は、シリコンフィンガコンタクタを把持した状態の図 33の XXXIV部の拡大 図である。
発明を実施するための最良の形態
[0047] 以下、本発明の実施形態を図面に基づいて説明する。
[0048] 図 1は本発明の実施形態に係る試験装置を示す概略図、図 2は図 1の試験装置に 用いられるテストヘッド及びプローブカードの接続関係を示す概念図である。
[0049] 本実施形態に係る試験装置 1は、図 1に示すように、テストヘッド 10を有するテスタ 60 (試験装置本体)、及び、ウェハプローバ 70を備えている。テストヘッド 10は、ケー ブル束 61を介して、テスタ 60に接続されている。テストヘッド 10とウェハプローバ 70 は、例えばマニピュレータ 80及び駆動モータ 81により機械的に位置決めされ、互い に機械的且つ電気的に接続されている。被試験半導体ウェハ 200は、ウェハプロ一 ノ 70によって、テストヘッド 10上のテスト位置に自動的に供給される。
[0050] テストヘッド 10上で、被試験半導体ウェハ 200は、テスタ 60が発するテスト信号を 授受する。そして、そのテスト信号に対する出力信号が、被試験半導体ウェハ 200の IC力もテスタ 60に送信され、そこで、期待値と比較され、被試験半導体ウェハ 200上 の ICが正常に機能して 、る力否かが検証される。
[0051] 図 1及び図 2において、テストヘッド 10とウェハプローバ 70とは、インターフェース部 20を介して接続されている。インターフェース部 20は、中継ボード 21と、同軸ケープ ル 22と、フロッグリング 23と、で構成されている。テストヘッド 10内には、テストチャン ネルに対応する多数のプリント回路基板 11が設けられている。この多数のプリント回 路基板 11は、テスタ 60のテストチャンネルの数に対応している。これらのプリント回路 基板 11は、中継ボード 21上の対応するコンタクト端子 21aと接続するために、それぞ れコネクタ 12を有している。また、ウェハプローバ 70に対する接触位置を正確に決定 するために、フロッグリング 23が中継ボード 21上に備え付けられている。フロッグリン グ 23は、 ZIFコネクタゃポゴピンのような接続ピン 23aを多数有している。これら接続 ピン 23aは、同軸ケーブル 22を介して、中継ボード 21上のコンタクト端子 21aに接続 されている。
[0052] また、図 2に示すように、テストヘッド 10は、ウェハプローバ 70上に配置され、インタ 一フェース部 20を介して、ウェハプローノ 70に機械的且つ電気的に接続される。ゥ ェハプローバ 70において、被試験半導体ウェハ 200は、チャック 71上に保持される。 プローブカード 30は、被試験半導体ウエノ、 200の上方に設けられている。プローブ カード 30は、テスト時に、被試験半導体ウェハ 200上の ICの各パッド 210 (図 3参照) と接触するために、多数のシリコンフィンガコンタクタ 50を有している。
[0053] プローブカード 30の接続端子 (不図示)は、フロッグリング 23に設けられた接続ピン 23aに電気的に接続されている。これら接続ピン 23aは、中継ボード 21のコンタクト端 子 21aに接続され、そのコンタクト端子 21aは、同軸ケーブル 22を介して、テストへッ ド 10のプリント回路基板 11に接続されている。さらに、プリント回路基板 11は、例え ば数百の内部ケーブルを有するケーブル束 61を介してテスタ 60に接続されている。
[0054] 以上のような構成の試験装置 1では、チャック 71上の半導体ウェハ 200の表面に、 シリコンフィンガコンタクタ 50が接触し、半導体ウェハ 200にテスト信号を印加し、且 つ、半導体ウェハ 200からの出力信号を受信する。被試験半導体ウェハ 200からの 出力信号 (応答信号)は、テスタ 60において期待値と比較され、半導体ウェハ 200上 の ICが正しく機能して 、る力否かが検証される。
[0055] 図 3は本発明の第 1実施形態に係るプローブカードの断面図、図 4は図 3に示すプ ローブカードの部分底面図、図 5は図 3の V-V線に沿った部分断面図、図 6は本発明 の第 1実施形態におけるシリコンフィンガコンタクタを示す断面図、図 7は図 6に示す シリコンフィンガコンタクタの平面図、図 8は図 6に示すシリコンフィンガコンタクタをプ ローブ基板に搭載した状態を示す図である。
[0056] 本発明の第 1実施形態に係るプローブカード 30は、図 3に示すように、多層配線基 板で構成されるプローブ基板 40と、プローブ基板 40の下部表面に搭載された複数 のシリコンフィンガコンタクタ 50と、プローブ基板 40が下部に取り付けられるスティフ ナ 35と、を備えて ヽる。
[0057] 先ず、プローブカード 30を構成するプローブ基板 40について説明する。 [0058] 本実施形態におけるプローブ基板 40は、同図に示すように、コア部 42及び多層配 線部 43から構成される積層構造を有するベース基板 41と、当該ベース基板 41の両 面に積層形成されたビルドアップ部 44と、を備えている。ベース基板 41には、その厚 み方向に延びて 、るスルーホールビア 4 laが形成されて!、る。
[0059] コア部 42は、カーボンファイバ強化榭脂(CFRP)の板材からカ卩ェされたものであり 、 CFRP部 42a及び絶縁榭脂部 42bを有する。 CFRP部 42aは、カーボンファイバ材 と、これを包容して硬化している合成樹脂材料と、力 構成されている。
[0060] カーボンファイバ材は、カーボンファイバを束ねたカーボンファイバ糸により織られ たカーボンファイバクロスであり、コア部 42の面広がり方向に展延するように配向して いる。このような構成の複数のカーボンファイバ材が、その厚み方向に積層された状 態で、合成樹脂材料に埋設されている。なお、カーボンファイバ材として、カーボンフ アイバクロスに代えて、カーボンファイバメッシュ又はカーボンファイバ不織布を用い ても良い。
[0061] カーボンファイバ材料を包容する合成樹脂材料としては、例えば、ポリサルホン、ポ リエーテルサルホン、ポリフエ二ルサルホン、ポリフタルアミド、ポリアミドイミド、ポリケト ン、ポリアセタール、ポリイミド、ポリカーボネート、変性ポリフエ-レンエーテル、ポリフ ェ-レンオキサイド、ポリブチレンテレフタレート、ポリアタリレート、ポリスルホン、ポリフ ェ-レンスルフイド、ポリエーテルエーテルケトン、テトラフルォロエチレン、エポキシ、 シァネートエステル、ビスマレイミド等を挙げることが出来る。
[0062] 絶縁榭脂部 42bは、 CFRP部 42aのカーボンファイバ材とスルーホールビア 41aと の間の電気的絶縁を確保するためのものである。絶縁榭脂部 42aを構成する材料と して、例えばポリサルホンやポリエーテルサルホン等の上述した合成樹脂材料を挙げ ることが出来る。
[0063] 多層配線部 43は、所謂、一括積層法により配線が多層化された部位であり、絶縁 層 42a及び配線パターン 42bによる積層構造を有する。絶縁層 42aは、ガラスクロス に合成樹脂材料を含浸させてなるプリプレダを用いて形成されたものであって、当該 合成樹脂材料は硬化されている。絶縁層 42aを合成樹脂材料としては、例えばポリ サルホンやポリエーテルサルホン等の上述した合成樹脂材料を挙げることが出来る。 配線パターン 42bは、例えば銅により構成されており、各々所望の形状を有している 。この配線パターン 42bは、スルーホールビア 41aによって相互に電気的に接続され ている。
[0064] ビルドアップ部 44は、所謂、ビルドアップ法により配線が多層化された部位であり、 絶縁層 44a及び配線パターン 44bによる積層構造を有する。絶縁層 44aは、例えば ポリサルホンやポリエーテルサルホン等の上述した合成樹脂材料を挙げることが出来 る。配線パターン 44bは、例えば銅により構成されており、各々所望の形状を有して いる。この配線パターン 44bは、ビア 44eにより相互に電気的に接続されている。ビル トアップ部 44の最上位の配線パターン 44bには、フロッグリング 23の接続ピン 23aが 接続される接続端子 (不図示)が形成されている。
[0065] このビルドアップ部 44には、図 5に示すように、配線パターン 44bと異なる層にダラ ンドパターン 44cが形成されている力 本実施形態では、これにカ卩えて、接地されて V、るダミーグランドパターン 44dが配線パターン 44bの間を埋めるように形成されて!ヽ る。これにより、プローブ基板 40の内層のパターン密度の均一化を図ることが出来、 プローブ基板 40の板厚のバラツキや反り等を防止することが出来る。なお、図 3には 、グランドパターン 44c及びダミーグランドパターン 44dは図示されて!ヽな!、。
[0066] スルーホールビア 41aは、ベース基板 41の両側に設けられている配線構造、即ち 、多層配線部 43の配線パターン 43b及びビルドアップ部 44の配線パターン 44bによ る配線構造を、相互に電気的に接続するためのものである。スルーホールビア 41aは 、ベース基板 41を貫通するように形成されたスルーホール 4 lbの内周面を銅メツキ処 理することにより形成されている。なお、この銅メツキに代えて、或いは、この銅メツキ に加えて、銀粉末や銅粉末を含有する導電ペーストをスルーホール 41bに充填する ことによりスルーホールビアを形成しても良い。なお、スルーホールビア 4 laとして、貫 通形態の他に、 SVH (Surface Via Hole)形態を適用しても良い。
[0067] 本実施形態では、図 3に示すように、コア部 42の外側に、 2つの多層配線部 20が 相対するように積層されており、さらに当該 2つの多層配線部 43のそれぞれの外側 に、 2つのビルドアップ部 44が相対するように積層されてプローブ基板 40が構成され ている。 [0068] このようにプローブ基板 40の層構成を上下対称とすることにより、プローブ基板 40 自体が有する反りを小さくすることが出来る。
[0069] また、本実施形態におけるプローブ基板 40は、下記式(1)を満たす熱膨張率( oc 1
)を有している。
[0070] a l = a 2 X A t2/ A tl … 式(1)
但し、上記式(1)において、 α ΐはプローブ基板 40の熱膨張率であり、 A tlは試験 時におけるプローブ基板 40の上昇温度であり、 a 2は被試験半導体ウェハ 300の熱 膨張率であり、 A t2は試験時における被試験半導体ウェハ 300の上昇温度である。 なお、 Δ tl及び Δ t2はそれぞれ下記式(2)及び(3)を満たす。
[0071] A tl =Tl -Tr … 式(2)
A t2 =T2 -Tr … 式(3)
但し、上記式(2)及び(3)において、 T1は試験時におけるプローブ基板 40の温度 (テスト設定温度)であり、 T2は試験時における被試験半導体ウェハ 200の温度であ り、 Trは室温である。なお、 T2は、被試験半導体ウェハ 200からの輻射熱、及び、シ リコンフィンガコンタクタ 50からの伝熱により決まるので、プローブ基板 40上に搭載さ れたシリコンフィンガコンタクタ 50の本数に基づいて算出することが出来る。
[0072] この上記式(1)を満たす熱膨張係数をプローブ基板 40が有することにより、高温状 態におけるプローブ基 30板と被試験半導体ウェハ 200の膨張量を揃えることが出来 る。その結果として、高温状態におけるプローブ基板 40の熱膨張量と被試験半導体 ウェハ 200の熱膨張量との差を小さくすることが出来る。従って、シリコンフィンガコン タクト 50と ICのパッドとの位置ずれが大幅に低減される結果、ミスコンタクトが防止さ れる。また、熱膨張量の差が小さくなることにより、被試験半導体ウェハ 200に対して より広い範囲にシリコンフィンガコンタクト 50を配設して、多数の ICを同時に試験を行 うことが可能となり、より多くの同時測定数を確保することが可能となる。
[0073] 次に、プローブカード 30のシリコンフィンガコンタクタ 50について説明する。
[0074] 本実施形態におけるシリコンフィンガコンタクタ 50は、図 6に示すように、段差 52が 形成されたベース部 51と、後端側がベース部 51に設けられ、先端側がベース部 51 力も突出している支持部 53と、支持部 53の表面に形成された導電部 54と、を有して いる。
[0075] なお、本実施形態において、シリコンフィンガコンタクタ 50における「後端側」とは、 プローブ基板 40に接触する側(図 6において左側)を指す。これに対し、シリコンフィ ンガコンタクタ 50における「先端側」とは、被試験半導体ウェハ 200に形成された IC のノ ッド 210に接触する側(図 6にお ヽて右側)を指す。
[0076] このシリコンフィンガコンタクタ 50は、後述するように、シリコン基板にフォトリソグラフ ィ等の半導体製造技術を用いて製造されており、図 7に示すように、一つのベース部 51に対して複数の支持部 53がフィンガ状 (櫛状)に設けられている。このように、空間 を空けて支持部 53同士を配置することにより、各支持部 53がそれぞれ互いに独立し て動作することが可能となっている。また、一つのベース部 51上に複数個の支持部 5 3が固定される結果、狭ピッチの ICのパッドでも製作が容易であり、単位モジュールと して取り扱うことができる。従って、プローブカードへの実装が容易であり、且つ、容易 に正確な位置に配設できる。
[0077] また、半導体製造技術を用いてコンタクタ 50を製造することにより、複数の支持部 5 3の間のピッチを、被試験半導体ウェハ 200のパッド 210間のピッチと同等にすること が容易に出来る。
[0078] さらに、半導体製造技術を用いることにより、コンタクタ 50を小型化することが出来る ので、プローブカード 30の動作可能な周波数範囲を 500MHz以上でも波形品質の 良 ヽプローブカードが実現出来る。
[0079] また、コンタクタ 50の小型化により、プローブカード 30に搭載されるコンタクトの数を 例えば 2000以上に増大することが出来、同時測定数を増加させることが出来る。
[0080] このシリコンフィンガコンタクタ 50のベース部 51に形成された段差 52は、図 6に示 すように、ベース部 51において先端側の高さに対して後端側の高さが相対的に低く なるような形状を有している。この段差 52は、深さ H及び長さ Lを有している。
[0081] 支持部 53の上面には、シリコンフィンガコンタクタ 50の他の部分から導電層 54を電 気的に絶縁するための絶縁層 53aが形成されている。この絶縁層 53aは、例えば Si
O層やボロンドープ層力 構成されている。
2
[0082] この絶縁層 53aの表面に導電部 54が形成されている。導電部 54を構成する材料と しては、ニッケル、アルミニウム、銅、金、ニッケルコバルト、ニッケルパラジウム、ロジ ゥム、ニッケル金、イリジウム、その他のデポジット可能な材料である。なお、導電部 5 4の先端を鋭利な形状とすることが好ましい。これにより、シリコンフィンガコンタクタ 50 とパッド 210との接触時のスクラビング効果を高めることが出来る。
[0083] 以上のような構成のシリコンフィンガコンタクタ 50は、図 3に示すように、被試験半導 体ウェハ 200に形成された ICのパッド 210に対向するように、プローブ基板 40に装 着されている。なお、図 3には、 2つのシリコンフィンガコンタクタ 50しか示していない 力 実際には、多数のシリコンフィンガコンタクタ 50がプローブ基板 40上に配列され ている。
[0084] 各シリコンフィンガコンタクタ 50は、図 8に示すように、ベース部 51に形成された段 差 52の角部 52a、 52bがプローブ基板 40の表面に接触するように、プローブ基板 40 に接着されて 、る。シリコンフィンガコンタクタ 50とプローブ基板 40を接着する接着剤 としては、例えば、紫外線硬化型接着剤、温度硬化型接着剤、又は、熱可塑性接着 剤等を挙げることが出来る。なお、ベース部 51は広い面積であるため、十分な接着 強度が得られる。
[0085] 本実施形態では、ベース部 51に形成された段差 52を利用して、プローブ基板 40 上にシリコンフィンガコンタクタ 50を搭載するので、シリコンフィンガコンタクタ 50が、 プローブ基板 40に対して、段差 52の深さ H及び長さ Lの比に応じた角度 |8に傾斜し ている。
[0086] 即ち、本実施形態に係るプローブカード 30では、段差 52の深さ Hと長さ Lの比を制 御することにより、シリコンフィンガコンタクタ 50をプローブ基板 40に、例えば 54. 7° 以下の所望の正確な角度 ι8で搭載することが容易に出来る。これにより、最初に接 触するシリコンフィンガコンタクタ 50のオーバードライブ量に対するスクラブ量の比 (ス クラブ量 Zオーバードライブ量)を小さくすることが出来るので、被試験半導体ウェハ 200のパッド 210が小型化しても、当該パッド 210とのミスコンタクトを防止することが 出来る。
[0087] なお、プローブ基板 40に対するシリコンフィンガコンタクタ 50の傾斜角度 βは、小さ いほど好ましいが、この角度 j8が低すぎると、プローブ基板 40上に設けられたコンデ ンサ等に当たるおそれがある。
[0088] 図 3及び図 4に示すように、プローブ基板 40の下面には、接続トレース 40aが設けら れている。この接続トレース 40aには、ボンディングワイヤ 40bを介して、シリコンフィン ガコンタクタ 50の導電部 54へ電気的に接続されている。さらに、この接続トレース 40 aは、プローブ基板 40の下側のビルドアップ部 44の最下層に設けられたビア 44eに 電気的に接続されている。なお、ボンディングワイヤ 40bの代わりに、ソルダボールを 用 、て接続トレース 40eと導電部 44とを電気的に接続しても良!、。
[0089] 図 3に示すように、シリコンフィンガコンタクタ 50が装着されたプローブ基板 40は、ス ティフナ 35に取り付けられている。この際、プローブ基板 40とスティフナ 35との間に シム等を介装させて、プローブ基板 40に装着された全てのシリコンフィンガコンタクタ 50の先端により構成されるプローブ高さ面 PL力 被試験半導体ウェハ 200の表面 2 00aに対して実質的に平行となるように調整して、プローブ基板 40がスティフナ 35に 取り付けられている。これにより、プローブ基板 40に装着されたシリコンフィンガコンタ クタ 50の高さ方向のバラツキを抑えることが出来る。
[0090] 以上のような構成のプローブカード 30を用いたテストでは、当該プローブカード 30 上に被試験半導体ウェハ 200が移動すると、プローブ基板 40上のシリコンフィンガコ ンタクタ 50と、被試験半導体ウェハ 200上のパッド 210と力 相互に機械的及び電気 的に接続する。その結果として、ノッド 210からプローブ基板 40の最上位に形成され た接続端子 (不図示)に至る信号路が形成される。なお、シリコンフィンガコンタクタ 5 0の狭いピッチは、接続トレース 40a、プローブ基板 40の配線パターン 43b、 44bを 介して、大きな間隔にファンアウト(拡大)されて 、る。
[0091] シリコンフィンガコンタクタ 50がパッド 210に接触する際、シリコンフィンガコンタクタ 50がプローブ基板 40に対して傾斜して搭載されているので、長尺の支持部 53が弹 性変形する。この弾性変形により、導電部 54の先端が、パッド 210の表面に形成され た金属酸ィ匕膜を削り取り(スクラビング)、シリコンフィンガコンタクタ 50とパッド 210との 電気的な接続が確立される。ここで、支持部 53の長さ、幅及び厚みは、必要とするパ ッド 210への押圧力、及び必要とする弾性変形量に基づいて決定される。
[0092] 図 9は本発明の第 2実施形態におけるシリコンフィンガコンタクタを示す断面図であ る。
[0093] 本発明の第 2実施形態におけるシリコンフィンガコンタクタ 50'は、複数の段差 52' が階段状に形成されている。これにより、プローブ基板 40上に搭載されたシリコンフィ ンガコンタクタ 50の支持点が増えるので、プローブ基板 40に対するシリコンフィンガ コンタクタ 50の取付安定性が向上する。
[0094] 以下に、本実施形態に係るプローブカード 30の製造方法の一例について説明す る。
[0095] 図 10〜図 30は本発明の第 1実施形態に係るシリコンフィンガコンタクタを製造する ための各工程を示す図、図 31A〜図 31Cは本発明の第 1実施形態における多数の シリコンフィンガコンタクタを同時に製造するためのシリコンウェハとその切断位置を 示す平面図である。
[0096] 本実施形態では、フォトリソグラフィ等の半導体製造技術を用いて、シリコンフィンガ コンタクタ 50を、多数の対としてシリコン基板 55上に形成し、その後、コンタクタ 50の 各対を分離する。
[0097] 本実施形態に係る製造方法では、図 10に示す第 1工程において、先ず、 SOIゥェ ノ、 55を準備する。この SOIウェハ 55は、上下の 2層の Si層 55aと、当該 2層の Si層 5 5aの間に挟まれて積層された 1層の SiO (二酸ィ匕シリコン)層 55bと、を有する 2層 S
2
OIウェハである。この SOIウェハ 55が有する SiO層 55bは、支持部 53を形成する際
2
に、エッジングストッパとして機能する。
[0098] 次で、図 11に示す第 2工程において、 SOIウェハ 55の下部表面に SiO (二酸化シ
2 リコン)層 57を形成する。この SiO層 57は、ベース部 51に段差 52を形成する際にェ
2
ッジングマスクパターンとして機能する。
[0099] 次に、図 12に示す第 3工程において、 SiO層 57上にレジスト層 56aを形成する。こ
2
の工程では、特に図示しないが、先ず、 SiO層 57にフォトレジスト膜を形成し、この
2
フォトレジスト膜上にフォトマスクを重ねた状態で紫外線を露光してキュア (凝固)させ ることにより、 SiO層 57上の一部にレジスト層 56aが形成される。なお、フォトレジスト
2
膜において紫外線が露光されな力つた部分は溶解して、 SiO層 57上力も洗い流さ
2
れる。このレジスト層 56aは、次の第 4工程においてエッジングマスクパターンとして用 いられる。
[0100] 次に、図 13に示す第 4工程において、 SOIウェハ 55の下部に形成された SiO層 5
2
7に、例えば、 RIE (Reactive Ion Etching)等の手法を用いてエッチング処理を行う 。このエッチング処理が完了したら、図 14に示す第 5工程においてレジスト層 56aを 除去する。
[0101] 次に、図 15Aに示す第 6工程において、 SOIウェハ 55の上部表面にレジスト層 56b を形成する。このレジスト層 56bは、上述の第 3工程と同様の要領で、図 15Bに示す ように、 SOIウェハ 55の上部表面にフィンガ状 (櫛状)に形成される。
[0102] 次に、図 16に示す第 7工程において、 SOIウェハ 55の上側の Si層 55aに対してェ ツチング処理を行う。このエッチング処理の手法としては、 DRIE (Deep Reactive Io n Etching)法を挙げることが出来る。このエッチング処理により、 SOIウェハ 55の上 側の Si層 55aがフィンガ状(櫛状)に形成される。この際、 SOIウェハ 55の SiO層 55
2 bがエッチングストッパとして機能する。このエッチング処理が完了したら、図 17に示 す第 8工程において、レジスト層 56bを除去する。
[0103] 次に、図 18に示す第 9工程において、 SOIウェハ 55の上部表面に SiO層 53aを形
2 成する。この SiO層 53aは、支持部 53の絶縁層として機能する。
2
[0104] 次に、図 19に示す第 10工程において、上述の第 3工程と同様の要領で、 SOIゥェ ハ 55の下部表面上の一部及び SiO層 57上にレジスト層 56cを形成する。
2
[0105] 次に、図 20に示す第 11工程において、 SOIウェハ 55の下側の Si層 55aに対して エッチング処理を行う。このエッチング処理の具体的な手法としては、第 7工程と同様 の DRIE法を挙げることが出来る。このエッチング処理により、下側の Si層 55aが深さ hだけ除去される。この深さ hは、 DRIEにおけるエッジング時間を制御することにより 設定される。このエッチング処理が完了したら、図 21に示す第 12工程においてレジ スト層 56cを除去する。
[0106] 次に、図 22に示す第 13工程において、 SOIウェハ 55の上部表面に形成された Si O層 53aの上部に、金及びチタンから構成されるシード層 54aを成膜する。このシー
2
ド層 54aを成膜する手法としては、真空蒸着、スパッタリング、気相デポジション等を 挙げることが出来る。 [0107] 次に、図 23に示す第 14工程において、上述の第 3工程と同様の要領で、シード層
54aの一部の上にレジスト層 56dを形成する。
[0108] 次に、図 24に示す第 15工程において、シード層 54a上にニッケルコバルトをメツキ 処理することによりニッケルコバルト膜 54bを成膜する。このメツキ処理が完了したら、 図 25に示す第 16工程においてレジスト層 56dを除去する。
[0109] 次に、図 26に示す第 17工程において、上述の第 3工程と同様の要領で、ニッケル コバルト膜 54bの一部の上にレジスト層 56eを形成する。
[0110] 次に、図 27に示す第 18工程において、ニッケルコバルト膜 54b上に金をメツキ処理 することにより金メッキ膜 54cを成膜する。このメツキ処理が完了したら、図 28に示す 第 19工程においてレジスト層 56eを除去する。
[0111] 次に、図 29に示す第 20工程においてシード層 43aの先端部を除去したら、図 30 に示す第 21工程において、 SOIウェハ 55の下側の Si層 55aに対してエッチング処 理を行う。このエッチング処理の具体的な方法としては、第 7工程と同様の DRIE法を 挙げることが出来る。この際、 SOIウェハ 55の下部表面に形成された SiO層 57、及
2 び、 SOIウェハ 55の SiO層 55bがエッチングストッパとして機能する。このエッチング
2
処理により、下側の Si層 55aがさらに深さ Hだけ除去され、ベース部 51の段差 52が 形成される。この深さ Hは、 DRIEにおけるエッジング時間を制御することにより設定 される。
[0112] 次に、第 22工程において、 SOIウェハ 55の下部表面に形成された SiO層 57、及
2 び、 SOIウェハ 55が有する SiO層 55bがドライエッチングにより除去され、図 6に示
2
すシリコンフィンガコンタクタ 50が完成する。この際、 SOIウェハ 55が有する SiO層 5
2
5bの除去により、支持部 53同士の間に空間が形成される。
[0113] 次に、以上のようにシリコンフィンガコンタクタ 50が製造された SOIウェハ 55を、例 えば、図 31Aに示す A-A線、 B-B線、 C-C線でダイシングにより切断する。その切断 された SOIウェハ 55を、図 31Bに示すように、シリコンフィンガコンタクタ 50のグルー プ毎に、必要に応じてさらに小さく切断する。即ち、図 31Cに示すように、各グループ に所定の数のシリコンフィンガコンタクタ 50が具備されるように、図 31Bに示すように、 SOIウェハ 55をさらに D- D線、 E- E線で切り取る。 [0114] 次に、プローブ基板 40の所定位置に接着剤を塗布し、以上のように製造されたシリ コンフィンガコンタクタ 50を当該所定位置に載置し、シリコンフィンガコンタクタ 50をプ ローブ基板 40に接着する。この際、ベース部 51に形成された段差 52の角部 52a、 5 2bがプローブ基板 40の表面に接触するように、シリコンフィンガコンタクタ 50をプロ ーブ基板 40に搭載する。これにより、段差 52の深さ Hと長さ Lの比に応じた傾斜角度 βで、シリコンフィンガコンタクタ 50をプローブ基板 40に取り付けられる。
[0115] そして、プローブ基板 40に設けられた接続トレース 41aと、シリコンフィンガコンタク タ 50の導電部 54とを、ボンディングワイヤ 41bにより接続することにより、本実施形態 に係るプローブカード 30が完成する。
[0116] 図 32は本発明の第 3実施形態におけるシリコンフィンガコンタクタを示す断面図で ある。
[0117] 本発明の第 3実施形態に係るシリコンフィンガコンタクタ 50"は、 3層の Si層 55aと、 当該 3層の Si層の間にそれぞれ挟まれて積層された 2層の SiO層 55bと、を有する 3
2
層 SOIウェハを基として構成されて 、る。
[0118] 本実施形態では、ベース部 51"の段差 52を形成する際に、エッジング時間を制御 する代わりに、当該 SOIウェハが有する下側の SiO層 55bをエッジングストッパとして
2
用いることにより、段差 52の深さ Hを高精度に設定することが出来る。
[0119] なお、本実施形態では、支持部 53を形成するために SOIウェハの下部表面から Si 層 55aをエッチング処理するのに際して、当該 SOIウェハの下側の SiO層 55bを除
2
去する必要がある。
[0120] 以下に、本発明の実施形態に係るプローブカード製造装置について説明する。
[0121] 図 33は本発明の実施形態に係るプローブカード製造装置の全体の構成を示す概 略図、図 34はシリコンフィンガコンタクタを把持していない状態の図 33の XXXIV部の 拡大図、図 35はシリコンフィンガコンタクタを把持した状態の図 33の XXXIV部の拡大 図である。
[0122] 本発明の実施形態に係るプローブカード製造装置 100は、上述の図 10〜図 31C により製造されたシリコンフィンガコンタクタ 50をプローブ基板 40上に搭載するため の装置である。 [0123] このプローブカード製造装置 100は、図 33に示すように、シリコンフィンガコンタクタ 50を吸着して把持する吸着ユニット 131と、プローブ基板 40の所定位置に接着剤 4 5を塗布する塗布ユニット 132と、プローブ基板 40に対するシリコンフィンガコンタクタ 50の相対的な高さを測定する測定ユニット 134と、プローブ基板 40やシリコンフィン ガコンタクタ 50の位置や姿勢を認識するためのカメラユニット 140と、シリコンフィンガ コンタクタ 50に対してプローブ基板 40を相対移動させる移動ステージ 150と、を備え ている。
[0124] 吸着ユニット 131は、シリコンフィンガコンタクタ 50の上面を接触して吸着するため の吸着面 131aをその先端に有している。この吸着面 131aは、図 34に示すように、 プローブ基板 40に対するシリコンフィンガコンタクタ 50の取付角度 /3と実質的に同一 の角度を有する傾斜面で構成されて!、る。
[0125] この吸着面 131aには、吸着ユニット 131を貫通する通路 131bの一端が開口して いる。この通路 131bの他端は、図 33に示すように、真空ポンプ 120に連通している
[0126] また、本実施形態では、吸着面 131aには、図 34及び図 35に示すように、シリコン フィンガコンタクタ 50の後端が係合する段差部 13 lcが形成されて 、る。
[0127] これにより、吸着ユニット 131に把持されたシリコンフィンガコンタクタ 50が、当該吸 着面 131aに対して微動するのを規制することが可能となっている。その結果として、 プローブ基板 40上の所定位置に対してシリコンフィンガコンタクタ 50を高精度で位 置決めして接着することが出来るので、テスト時のミスコンタクトの防止を図ることが出 来る。
[0128] これに対し、一方の吸着面 131aに段差部 131cが形成されていない場合には、接 着剤 45の表面張力が吸着ユニット 131の吸着力を抗して、シリコンフィンガコンタクタ 50が吸着面 131aに沿って滑り、所定位置からズレた状態でシリコンフィンガコンタク タ 50がプローブ基板 40に接着されるおそれがある。
[0129] 図 33に戻り、塗布ユニット 132は、紫外線硬化型接着剤をプローブ基板 40上に押 し出すシリンジである。この塗布ユニット 132は、プローブ基板 40上に塗布された接 着剤 45を硬化させるための紫外線照射ユニット 133を備えている。 [0130] 測定ユニット 134は、例えばレーザ等を用いた非接触式の距離測定センサを有し ている。距離測定センサは、吸着ユニット 131に把持されたシリコンフィンガユニット 5 0とプローブ基板 40との間の距離、即ち、プローブ基板 40に対するシリコンフィンガ ユニット 50の高さを測定することが可能となっている。
[0131] 以上の吸着ユニット 131、塗布ユニット 132及び測定ユニット 134は、昇降ヘッド 13 0に取り付けられている。この昇降ヘッド 130は、プローブ基板 40が保持された移動 ステージ 150を囲むように設けられた架台 110に支持されており、移動ステージ 150 に対して Z軸方向に昇降可能となって 、る。
[0132] カメラユニット 140は、例えば、下方を撮像可能なように設けられた CCDカメラを有 している。このカメラユニット 40は、昇降ヘッド 130とは独立して架台 110に取り付けら れており、 XY方向に移動可能となっている。
[0133] 移動ステージ 150は、プローブ基板 40を把持可能なチャック(不図示)を有しており 、そのプローブ基板 40を X軸方向及び Y軸方向に移動させることが可能になってい ると共に、 Z軸を中心とした Θ方向に当該プローブ基板 40を回転させることが可能と なっている。
[0134] 以上のような構成のプローブカード製造装置 100では、以下のようにプローブカー ド 30が製造される。
[0135] 先ず、カメラユニット 140が移動ステージ 150上に保持されたプローブ基板 40を撮 像し、昇降ヘッド 130に対するプローブ基板 40の相対位置を認識する。そして、プロ ーブ基板 40の所定位置が塗布ユニット 132の吐出口に対して対向するように移動ス テージ 150が移動し、その後、昇降ヘッド 130が Z軸方向に下降する。
[0136] 塗布ユニット 132がプローブ基板 40上の所定位置に接着剤 45を塗布したら、吸着 ヘッド 131に把持されたシリコンフィンガコンタクタ 50をカメラユニット 140が撮像して 、シリコンフィンガコンタクタ 50の位置及び姿勢を認識する。
[0137] 次に、吸着ユニット 131に把持されたシリコンフィンガコンタクタ 50がプローブ基板 4 0の所定位置の上方に位置するように移動ステージ 150が移動し、その後、昇降へッ ド 130が Z軸方向に下降する。
[0138] この下降の際、測定ユニット 134力 プローブ基板 40に対するシリコンフィンガュ- ット 50の高さを測定している。そして、プローブ基板 40に対するシリコンフィンガコン タクタ 50の高さがゼロとなったら、測定ユニット 134は、昇降ヘッド 130の Z軸方向へ の下降を停止させる。これにより、シリコンフィンガコンタクタ 50がプローブ基板 40〖こ 対して押圧されるのを防止することが出来る。これに対し、シリコンフィンガコンタクタ 5 0がプローブ基板 40に対して押圧されると、その押圧力により、シリコンフィンガコンタ クタ 50が吸着面 131aの傾斜に沿って滑るため、所定位置からズレた状態でシリコン フィンガコンタクタ 50がプローブ基板 40に接着されるおそれがある。
[0139] シリコンフィンガコンタクタ 50がプローブ基板 40上の所定位置に載置されたら、紫 外線照射ユニット 133の先端が当該所定位置に対向するように、移動ステージ 150 が移動する。その後、紫外線照射ユニット 133より紫外線が称されて、接着剤 45が硬 化し、シリコンフィンガコンタクタ 50がプローブ基板 40上の所定位置に接着される。
[0140] 以上の手順を図 31Cに示すようなシリコンフィンガコンタクタ 50のグループ毎に繰り 返すことにより、一つのプローブ基板 40上に多数のシリコンフィンガコンタクタ 50が搭 載される。
[0141] なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたも のであって、本発明を限定するために記載されたものではない。したがって、上記の 実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や 均等物をも含む趣旨である。

Claims

請求の範囲
Cl] 被試験物のテストに際して前記ネ; ^験物との電気的な接続を確立するために、前 記被試験物に設けられた接触対象部に接触するコンタクタであって、
段差が形成されたベース部と、
後端側が前記ベース部に設けられ、先端側が前記べ一ス部力 突出して!/、る支持 部と、
前記支持部の表面に形成され、前記接触対象部に電気的に接触する導電部と、を 有し、
前記ベース部に形成された前記段差の角部が、前記コンタクタを搭載するコンタク ト基板の表面に接触することにより、前記コンタ外基板の表面と前記支持部との間で 所定の傾斜角度を規定するコンタクタ。
[2] 前記ベース部には複数の前記段差が階段状に形成されてレ、る請求項 1記載のコン タクタ。
[3] 前記支持部は、前記導電部が形成される側の表面に絶縁層を有する請求項 1又は 2記載のコンタクタ。
[4] 前記絶縁層は、 SiO力 構成されている請求項 3記載のコンタクタ。
2
[5] 請求項 1〜4の何れかに記載の複数の前記コンタクタと、
前記複数のコンタクタを表面に搭載したコンタクト基板と、を備え、
前記コンタクタは、複数の前記支持部を有し、
前記複数の支持部は、単一の前記ベース部上に所定間隔で配設されてレ、るコンタ クトストラクチャ。
[6] 前記コンタクタは、紫外線硬化型接着剤、温度硬化型接着剤、又は、熱可塑性接 着剤を用いて前記コンタ外基板に接着されている請求項 5記載のコンタクトストラク チヤ。
[7] 前記コンタクト基板は、その表面に複数の接続トレースが設けられており、
前記各接続ト kースが、対応する前記コンタクタの前記導電部に電気的に接続され ている請求項 5又は 6記載のコンタクトストラクチャ。
[8] 前記コンタクト基板に設けられた前記接続トレースと前記コンタクタの前記導電部と 訂正された用紙 (規則 91) がボンディングワイヤにより接続されている請求項 7記載のコンタクトストラクチャ。
[9] 前記被試験物は、半導体ウェハ上に形成された電気回路であり、
前記コンタクト基板は、下記式(1)を満たす熱膨張率(ひ 1)を有する請求項 5〜8の 何れかに記載のコンタクトストラクチャ。
a l = a 2 X A t2/ A tl … 式(1)
但し、上記式(1)において、 α ΐは前記コンタクト基板の熱膨張率であり、 A tlは試 験時における前記コンタクト基板の上昇温度であり、 a 2は前記半導体ウェハの熱膨 張率であり、 A t2は試験時における前記半導体ウェハの上昇温度である。
[10] 半導体ウェハ上に形成された電気回路のテストに際して前記電気回路との電気的 な接続を確立するためのコンタクトストラクチャであって、
前記電気回路に設けられた接触対象部に接触する複数のコンタクタと、 前記複数のコンタクタを表面に搭載したコンタクト基板と、を備え、
前記コンタクト基板は、下記式(1)を満たす熱膨張率(ひ 1)を有するコンタクトストラ クチャ。
a l = a 2 X A t2/ A tl … 式(1)
但し、上記式(1)において、 α ΐは前記コンタクト基板の熱膨張率であり、 A tlは試 験時における前記コンタクト基板の上昇温度であり、 a 2は前記半導体ウェハの熱膨 張率であり、 A t2は試験時における前記半導体ウェハの上昇温度である。
[11] 前記コンタクト基板は、
カーボンファイバ材を包含するコア絶縁層を有するコア部と、
ガラスクロスを包含する第 1の絶縁層、及び、第 1の配線パターンを有し、前記コア 部に積層されている少なくとも一つの第 1の積層配線部と、
第 2の絶縁層、及び、第 2の配線パターンを有し、前記第 1の積層配線部に積層 されている少なくとも一つの第 2の積層配線部と、を備えた請求項 9又は 10記載のコ ンタク卜ストラクチャ。
[12] 前記第 2の積層配線部はビルドアップ層である請求項 11記載のコンタクトストラクチ ャ。
[13] 請求項 5〜12の何れかに記載のコンタクトストラクチャを有するプローブカード。
[14] 請求項 5〜12の何れかに記載のコンタクトストラクチャが装着されたテストヘッドと、 前記テストヘッドを介して、前記被試験物の試験を実施するテスタと、を備えた試験 装置。
[15] 前記被試験物は、半導体ウェハ上に形成された電気回路であり、
前記コンタクトストラクチャは、前記複数のコンタクタの先端により構成されるプロ一 ブ高さ面が、前記半導体ウェハの表面に対して実質的に平行となるように、前記テス トヘッドに装着されている請求項 14記載の試験装置。
[16] 被試験物のテストに際して前記被試験物との電気的な接続を確立するためのコン タクトストラクチャの製造方法であって、
SOIウェハを供給する供給ステップと、
前記 SOIウェハの下部表面にエッチングマスクパターンを形成し、当該下部表面に エッチング処理を施すことにより、段差を有するコンタクタのベース部を形成するべ一 ス部形成ステップと、
前記 SOIウェハの上部表面にエッチングマスクパターンを形成し、当該上部表面に エッチング処理を施し、さらに、前記 SOIウェハの下部表面にエッチングマスクパター ンを形成し、当該下部表面にエッチング処理を施すと共に、前記 SOIウェハが有する SiO層を除去することにより、前記コンタクタの支持部を形成する支持部形成ステツ
2
プと、
前記支持部の上部表面を導電性材料で被覆することにより、前記コンタクタの導電 部を形成する導電部形成ステップと、
前記ベース部に形成された前記段差の角部が前記コンタクト基板の表面に接触す るように、前記コンタクタを前記コンタクト基板上に搭載する搭載ステップと、を備えた コンタクトストラクチャ製造方法。
[17] 前記支持部形成ステップにおいて、前記 SOIウェハの上部表面にエッチング処理 を施した後に、絶縁層を構成する SiO層を前記 SOIウェハの上部表面に形成し、
2
前記導電部形成ステップにお ヽて、前記絶縁層の表面を導電性材料で被覆する 請求項 16記載のコンタクトストラクチャ製造方法。
[18] 前記ベース部形成ステップにおいて、 DRIE (Deep Reactive Ion Etching)法を用 いて前記 SOIウェハの下部表面にエッチング処理を施し、
前記支持部形成ステップにお 、ても、 DRIE法を用いて前記 SOIウェハの上部表 面にエッチング処理を施す請求項 16又は 17記載のコンタクトストラクチャ製造方法。
[19] 前記 SOIウェハは、 2層の Si層と、当該 2層の Si層の間に挟まれて積層された 1層 の SiO層と、を有する 2層 SOIウェハであり、
2
前記ベース部形成ステップにおいて、エッジング時間を制御することにより、前記べ ース部に段差を形成する請求項 16〜 18の何れかに記載のコンタクトストラクチャ製 造方法。
[20] 前記 SOIウェハは、 3層の Si層と、当該 3層の Si層の間にそれぞれ挟まれて積層さ れた 2層の SiO層と、を有する 3層 SOIウェハであり、
2
前記ベース部形成ステップにおいて、下側の前記 SiO層をエッジングストッパとし
2
て用い、
前記支持部形成ステップにおいて、前記 2層の SiO層を除去する請求項 16〜18
2
の何れかに記載のコンタクトストラクチャ製造方法。
[21] 前記搭載ステップにおいて、
前記ベース部を前記コンタクト基板の表面に接着剤により接合して、前記コンタクタ を前記コンタクト基板に所定の傾斜で配置する配置ステップと、
前記コンタクト基板に設けられた接続トレースを前記コンタクタに接続する接続ステ ップと、を有する請求項 16〜20の何れかに記載のコンタクトストラクチャ製造方法。
[22] 前記接続ステップにおいて、前記コンタクト基板に設けられた前記接続トレースと前 記コンタクタの前記導電部とをボンディングワイヤにより接続する請求項 21記載のコ ンタクトストラクチャ製造方法。
[23] 被試験物のテストに際して前記被試験物との電気的な接続を確立するためのコン タクトストラクチャを製造するコンタクトストラクチャ製造装置であって、
コンタクト基板の所定位置に接着剤を塗布する塗布手段と、
コンタクタを吸着して把持する吸着手段と、
前記コンタクタに対して前記コンタクト基板を相対移動させる移動手段と、を備え、 前記吸着手段は、前記コンタクタに接触して吸着する吸着面を有し、 前記吸着面には、当該吸着面に対する前記コンタクタの相対的な微動を規制する 規制手段が設けられているコンタクトストラクチャ製造装置。
[24] 前記吸着面は、前記コンタクト基板に対する前記コンタクタの取付角度と実質的に 同一の傾斜角度を有する傾斜面である請求項 23記載のコンタクトストラクチャ製造方 法。
[25] 前記規制手段は、前記吸着面に形成された段差部を含む請求項 23又は 24記載 のコンタクトストラクチャ製造装置。
[26] 前記段差部には、前記コンタクタの後端が係合する請求項 25記載のコンタクトスト ラクチャ製造装置。
[27] 前記コンタクト基板に対する前記コンタクタの相対位置を検出する検出手段をさら に備え、
前記移動手段は、前記検出手段の検出結果に基づいて、前記コンタクタが前記コ ンタクト基板を押圧しないように、前記コンタクタを移動させる請求項 23〜26の何れ かに記載のコンタクトストラクチャ製造装置。
[28] 被試験物のテストに際して前記被試験物との電気的な接続を確立するためのプロ ーブカードであって、
前記被試験物に設けられた複数のパッドに接触するコンタクタと、
前記コンタクタを表面に搭載するコンタクト基板と、を備え、
前記コンタクタは、
所定複数個を一単位とし、それぞれが弾性変形可能な長尺の複数の支持部と、 前記一単位の支持部が設けられた単一のベース部と、を有し、
前記ベース部の後端側には、前記コンタクト基板に対する前記支持部の所定の傾 斜角度を規定する段差が形成されており、
前記ベース部は、前記一単位の支持部の配列が前記複数のパッドの配列に対応 するように、前記後端側で前記コンタクト基板に接合されて ヽるプローブカード。
[29] 前記コンタクタは、前記支持部の少なくとも一面に形成され、その先端部位で前記 パッドに電気的に接触する導電部を有し、
前記コンタクト基板は、その表面に接続トレースが設けられており、 前記導電部と前記接続トレースとの間を電気的に接続するボンディングワイヤを備 えた請求項 28記載のプローブカード。
[30] 前記コンタ外基板は、前記被試験物である半導体ウェハの熱膨張に対応した熱膨 張を示す基板材料カゝら構成されている請求項 28又は 29記載のプローブカード。
[31] 請求項 28〜30の何れかに記載のプローブカードと、
前記プローブカードが装着されたテストヘッドと、
前記テストヘッドを介して、前記被試験物の試験を実施するテスタと、
を備えた試験装置。
PCT/JP2005/011748 2005-06-27 2005-06-27 コンタクタ、該コンタクタを備えたコンタクトストラクチャ、プローブカード、試験装置、コンタクトストラクチャ製造方法、及び、コンタクトストラクチャ製造装置 WO2007000799A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE112005000233T DE112005000233T5 (de) 2005-06-27 2005-06-27 Kontaktstück, Kontaktanordnung mit Kontaktstücken, Probenkarte, Prüfgerät und Verfahren und Gerät zur Herstellung der Kontaktanordnung
PCT/JP2005/011748 WO2007000799A1 (ja) 2005-06-27 2005-06-27 コンタクタ、該コンタクタを備えたコンタクトストラクチャ、プローブカード、試験装置、コンタクトストラクチャ製造方法、及び、コンタクトストラクチャ製造装置
KR1020077027263A KR100975904B1 (ko) 2005-06-27 2005-06-27 콘택터, 그 콘택터를 구비한 콘택트 스트럭처, 프로브카드, 시험 장치, 콘택트 스트럭처 제조방법, 및 콘택트스트럭처 제조장치
JP2006517884A JP4171513B2 (ja) 2005-06-27 2005-06-27 コンタクタ、該コンタクタを備えたコンタクトストラクチャ、プローブカード、及び、試験装置
US11/426,090 US7764152B2 (en) 2005-06-27 2006-06-23 Contactor, contact structure provided with contactors, probe card, test apparatus, method of production of contact structure, and production apparatus of contact structure
US12/818,503 US8097475B2 (en) 2005-06-27 2010-06-18 Method of production of a contact structure
US13/325,799 US8241929B2 (en) 2005-06-27 2011-12-14 Contactor, contact structure, probe card, and test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/011748 WO2007000799A1 (ja) 2005-06-27 2005-06-27 コンタクタ、該コンタクタを備えたコンタクトストラクチャ、プローブカード、試験装置、コンタクトストラクチャ製造方法、及び、コンタクトストラクチャ製造装置

Publications (1)

Publication Number Publication Date
WO2007000799A1 true WO2007000799A1 (ja) 2007-01-04

Family

ID=37595063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011748 WO2007000799A1 (ja) 2005-06-27 2005-06-27 コンタクタ、該コンタクタを備えたコンタクトストラクチャ、プローブカード、試験装置、コンタクトストラクチャ製造方法、及び、コンタクトストラクチャ製造装置

Country Status (5)

Country Link
US (3) US7764152B2 (ja)
JP (1) JP4171513B2 (ja)
KR (1) KR100975904B1 (ja)
DE (1) DE112005000233T5 (ja)
WO (1) WO2007000799A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232722A (ja) * 2007-03-19 2008-10-02 Advantest Corp コンタクタの実装方法及びコンタクタ実装装置
WO2008120547A1 (ja) * 2007-04-03 2008-10-09 Advantest Corporation コンタクタ及びコンタクタの製造方法
WO2008120575A1 (ja) * 2007-04-03 2008-10-09 Advantest Corporation コンタクタの実装方法
WO2008120587A1 (ja) * 2007-04-03 2008-10-09 Advantest Corporation コンタクタ、プローブカード及びコンタクタの製造方法
WO2008123075A1 (ja) * 2007-03-27 2008-10-16 Advantest Corporation 貫通エッチング方法及びコンタクタ製造方法
WO2009013809A1 (ja) * 2007-07-24 2009-01-29 Advantest Corporation コンタクタ、プローブカード及びコンタクタの実装方法。
WO2011148540A1 (ja) * 2010-05-28 2011-12-01 株式会社アドバンテスト プローブ構造体、プローブ装置、プローブ構造体の製造方法、および試験装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537400B2 (ja) * 2004-07-23 2010-09-01 株式会社アドバンテスト 電子部品ハンドリング装置の編成方法
WO2007000799A1 (ja) * 2005-06-27 2007-01-04 Advantest Corporation コンタクタ、該コンタクタを備えたコンタクトストラクチャ、プローブカード、試験装置、コンタクトストラクチャ製造方法、及び、コンタクトストラクチャ製造装置
KR100717909B1 (ko) * 2006-02-24 2007-05-14 삼성전기주식회사 니켈층을 포함하는 기판 및 이의 제조방법
JP5100750B2 (ja) * 2007-07-03 2012-12-19 株式会社アドバンテスト プローブ、プローブカード及びプローブの製造方法
JP4584972B2 (ja) * 2007-10-17 2010-11-24 山一電機株式会社 プローブコンタクトの製造方法およびプローブコンタクト
DE102008051853B4 (de) * 2008-10-17 2010-07-15 Pac Tech-Packaging Technologies Gmbh Vorrichtung zur Platzierung und Kontaktierung von Prüfkontakten
KR101108726B1 (ko) * 2010-01-26 2012-02-29 삼성전기주식회사 수평도 조절부재
JP5378590B2 (ja) * 2010-02-26 2013-12-25 三菱電機株式会社 プリント配線板の製造方法およびプリント配線板
KR101767381B1 (ko) * 2010-12-30 2017-08-11 삼성전자 주식회사 인쇄회로기판 및 이를 포함하는 반도체 패키지
US9891273B2 (en) * 2011-06-29 2018-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Test structures and testing methods for semiconductor devices
US9523715B2 (en) 2012-04-13 2016-12-20 Formfactor, Inc. Wiring substrate with filled vias to accommodate custom terminals
US9000793B2 (en) 2012-11-15 2015-04-07 Advantest America, Inc. Fine pitch probes for semiconductor testing, and a method to fabricate and assemble same
US10266402B2 (en) 2012-11-20 2019-04-23 Formfactor, Inc. Contactor devices with carbon nanotube probes embedded in a flexible film and processes of making such
US9678109B2 (en) * 2014-01-09 2017-06-13 Taiwan Semiconductor Manufacturing Co., Ltd. Probe card
JPWO2015151809A1 (ja) * 2014-03-31 2017-04-13 株式会社村田製作所 積層配線基板およびこれを備えるプローブカード
US10191108B2 (en) * 2015-11-19 2019-01-29 Globalfoundries Inc. On-chip sensor for monitoring active circuits on integrated circuit (IC) chips
TWI603410B (zh) * 2016-06-14 2017-10-21 豪威科技股份有限公司 用於重組晶圓之測試系統及其方法
US10739381B2 (en) 2017-05-26 2020-08-11 Tektronix, Inc. Component attachment technique using a UV-cure conductive adhesive
US10893605B2 (en) * 2019-05-28 2021-01-12 Seagate Technology Llc Textured test pads for printed circuit board testing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145215A (ja) * 1997-11-11 1999-05-28 Mitsubishi Electric Corp 半導体検査装置およびその制御方法
JP2000292443A (ja) * 1999-04-08 2000-10-20 Sony Corp プローブカード作製方法
WO2003062837A1 (fr) * 2002-01-25 2003-07-31 Advantest Corporation Carte sonde
JP2004087856A (ja) * 2002-08-27 2004-03-18 Fujitsu Ltd 多層配線基板
JP2005518105A (ja) * 2002-02-19 2005-06-16 株式会社アドバンテスト シリコンフィンガーコンタクタを有するコンタクトストラクチャ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2632136B2 (ja) * 1994-10-17 1997-07-23 日本電子材料株式会社 高温測定用プローブカード
US6420884B1 (en) 1999-01-29 2002-07-16 Advantest Corp. Contact structure formed by photolithography process
US6232669B1 (en) * 1999-10-12 2001-05-15 Advantest Corp. Contact structure having silicon finger contactors and total stack-up structure using same
US6441629B1 (en) * 2000-05-31 2002-08-27 Advantest Corp Probe contact system having planarity adjustment mechanism
US6677771B2 (en) * 2001-06-20 2004-01-13 Advantest Corp. Probe contact system having planarity adjustment mechanism
US20040119485A1 (en) 2002-12-20 2004-06-24 Koch Daniel J. Probe finger structure and method for making a probe finger structure
WO2007000799A1 (ja) * 2005-06-27 2007-01-04 Advantest Corporation コンタクタ、該コンタクタを備えたコンタクトストラクチャ、プローブカード、試験装置、コンタクトストラクチャ製造方法、及び、コンタクトストラクチャ製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145215A (ja) * 1997-11-11 1999-05-28 Mitsubishi Electric Corp 半導体検査装置およびその制御方法
JP2000292443A (ja) * 1999-04-08 2000-10-20 Sony Corp プローブカード作製方法
WO2003062837A1 (fr) * 2002-01-25 2003-07-31 Advantest Corporation Carte sonde
JP2005518105A (ja) * 2002-02-19 2005-06-16 株式会社アドバンテスト シリコンフィンガーコンタクタを有するコンタクトストラクチャ
JP2004087856A (ja) * 2002-08-27 2004-03-18 Fujitsu Ltd 多層配線基板

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232722A (ja) * 2007-03-19 2008-10-02 Advantest Corp コンタクタの実装方法及びコンタクタ実装装置
WO2008123075A1 (ja) * 2007-03-27 2008-10-16 Advantest Corporation 貫通エッチング方法及びコンタクタ製造方法
JPWO2008120575A1 (ja) * 2007-04-03 2010-07-15 株式会社アドバンテスト コンタクタの実装方法
WO2008120587A1 (ja) * 2007-04-03 2008-10-09 Advantest Corporation コンタクタ、プローブカード及びコンタクタの製造方法
WO2008120575A1 (ja) * 2007-04-03 2008-10-09 Advantest Corporation コンタクタの実装方法
WO2008120547A1 (ja) * 2007-04-03 2008-10-09 Advantest Corporation コンタクタ及びコンタクタの製造方法
KR101104290B1 (ko) 2007-04-03 2012-01-12 가부시키가이샤 아드반테스트 콘택터의 실장방법
US8441271B2 (en) 2007-04-03 2013-05-14 Advantest Corporation Contactor and method of production of contactor
WO2009013809A1 (ja) * 2007-07-24 2009-01-29 Advantest Corporation コンタクタ、プローブカード及びコンタクタの実装方法。
US8237461B2 (en) 2007-07-24 2012-08-07 Advantest Corporation Contactor, probe card, and method of mounting contactor
JP5011388B2 (ja) * 2007-07-24 2012-08-29 株式会社アドバンテスト コンタクタ、プローブカード及びコンタクタの実装方法。
WO2011148540A1 (ja) * 2010-05-28 2011-12-01 株式会社アドバンテスト プローブ構造体、プローブ装置、プローブ構造体の製造方法、および試験装置
JP2011247792A (ja) * 2010-05-28 2011-12-08 Advantest Corp プローブ構造体、プローブ装置、プローブ構造体の製造方法、および試験装置

Also Published As

Publication number Publication date
US8241929B2 (en) 2012-08-14
US20100304559A1 (en) 2010-12-02
KR100975904B1 (ko) 2010-08-16
US8097475B2 (en) 2012-01-17
JP4171513B2 (ja) 2008-10-22
DE112005000233T5 (de) 2007-10-04
KR20080003004A (ko) 2008-01-04
US20120112781A1 (en) 2012-05-10
US7764152B2 (en) 2010-07-27
US20070013390A1 (en) 2007-01-18
JPWO2007000799A1 (ja) 2009-01-22

Similar Documents

Publication Publication Date Title
WO2007000799A1 (ja) コンタクタ、該コンタクタを備えたコンタクトストラクチャ、プローブカード、試験装置、コンタクトストラクチャ製造方法、及び、コンタクトストラクチャ製造装置
JP4647139B2 (ja) コンタクトストラクチャ
JP4560292B2 (ja) シリコンフィンガーコンタクタを有するコンタクトストラクチャ
US6861858B2 (en) Vertical probe card and method for using the same
WO2006009061A1 (ja) プローブカセット、半導体検査装置および半導体装置の製造方法
JP2008504559A (ja) パターン化された導電層を有する基板
KR20050014885A (ko) 프로브 카드 조립체 및 웨이퍼 레벨 스프링을 갖는패키지를 위한 조립 구조 및 제조 공정
JP4343256B1 (ja) 半導体装置の製造方法
JP2001284420A (ja) コンタクトストラクチャとその製造方法
US6359454B1 (en) Pick and place mechanism for contactor
TWI484192B (zh) Probe card, inspection device and inspection method
US20100126289A1 (en) Method of mounting contactor
KR100819821B1 (ko) 콘택터, 그 콘택터를 구비한 콘택트 스트럭처, 프로브카드, 시험 장치, 콘택트 스트럭처 제조방법, 및 콘택트스트럭처 제조장치
US20210251086A1 (en) Manufacturing method of conductive member
JPH0348171A (ja) 混成集積回路板の電気的特性検査を行う方法
JP2008232722A (ja) コンタクタの実装方法及びコンタクタ実装装置
JPH09159694A (ja) Lsiテストプローブ装置
JP3898363B2 (ja) ウエハ一括コンタクトボード用多層配線基板、該多層配線基板に接続するコネクタ、及びそれらの接続構造、並びに検査装置
JP2004245669A (ja) プローブカード及びその製造方法、プローブ装置、プローブ試験方法、半導体装置の製造方法
JP2004245671A (ja) プローブカード及びその製造方法、プローブ装置、プローブ試験方法、半導体装置の製造方法
KR100915326B1 (ko) 전기 검사 장치의 제조 방법
JP4492976B2 (ja) 半導体装置
KR100805217B1 (ko) 프로브 카드
KR20090057208A (ko) 프로브 기판 조립체
JPH04240744A (ja) 多層配線基板の検査方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2006517884

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020067009097

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120050002330

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067009097

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
RET De translation (de og part 6b)

Ref document number: 112005000233

Country of ref document: DE

Date of ref document: 20071004

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 05765166

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607