WO2007015876A1 - Cardiac valve annulus restraining device - Google Patents

Cardiac valve annulus restraining device Download PDF

Info

Publication number
WO2007015876A1
WO2007015876A1 PCT/US2006/027893 US2006027893W WO2007015876A1 WO 2007015876 A1 WO2007015876 A1 WO 2007015876A1 US 2006027893 W US2006027893 W US 2006027893W WO 2007015876 A1 WO2007015876 A1 WO 2007015876A1
Authority
WO
WIPO (PCT)
Prior art keywords
restraining device
anchor members
flexible
mitral valve
flexible restraining
Prior art date
Application number
PCT/US2006/027893
Other languages
French (fr)
Inventor
Nareak Douk
Original Assignee
Medtronic Vascular, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Vascular, Inc. filed Critical Medtronic Vascular, Inc.
Priority to JP2008523960A priority Critical patent/JP2009502324A/en
Priority to EP06787744A priority patent/EP1922031A1/en
Publication of WO2007015876A1 publication Critical patent/WO2007015876A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2445Annuloplasty rings in direct contact with the valve annulus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2466Delivery devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/243Deployment by mechanical expansion
    • A61F2/2433Deployment by mechanical expansion using balloon catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0004Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
    • A61F2250/001Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable for adjusting a diameter

Definitions

  • This invention relates generally to medical devices for treating mitral valve regurgitation, and particularly to a cardiac valve annulus restraining system and method of using the same.
  • Heart valves such as the mitral, tricuspid, aortic and pulmonic valves, are sometimes damaged by disease or by aging, resulting in problems with the proper functioning of the valve.
  • Heart valve problems take one of two forms: stenosis, in which a valve does not open completely or the opening is too small, resulting in restricted blood flow; or insufficiency, in which blood leaks backward across a valve when it should be closed.
  • Valve replacement may be required in severe cases to restore cardiac function.
  • repair or replacement requires open-heart surgery with its attendant risks, expense, and extended recovery time. Open-heart surgery also requires cardiopulmonary bypass with risk of thrombosis, stroke, and infarction.
  • Mitral valve insufficiency results from various types of cardiac disease. Any one or more of the mitral valve structures, i.e., the anterior or posterior leaflets, the chordae, the papillary muscles or the annulus may be compromised by damage from disease or injury, causing the mitral valve insufficiency. In cases where there is mitral valve insufficiency, there is some degree of annular dilatation resulting in mitral valve regurgitation. Mitral valve regurgitation occurs as the result of the leaflets being moved away from each other by the dilated annulus. Thus, without correction, the mitral valve insufficiency may lead to disease progression and/or further enlargement and worsening of the insufficiency.
  • correction of the regurgitation may not require repair of the valve leaflets themselves, but simply a reduction in the size of the annulus.
  • a variety of techniques have been used to reduce the diameter of the mitral annulus and eliminate or reduce valvular regurgitation in patients with incompetent valves.
  • Valve replacement can be performed through open-heart surgery, open chest surgery, or percutaneously.
  • the native valve is removed and replaced with a prosthetic valve, or a prosthetic valve is placed over the native valve.
  • the valve replacement may be a mechanical or biological valve prosthesis.
  • the open chest and percutaneous procedures avoid opening the heart and cardiopulmonary bypass.
  • the valve replacement may result in a number of complications including a risk of endocarditis.
  • mechanical valve replacement requires subsequent anticoagulation treatment to prevent thromboembolisms.
  • valve repair techniques including quadrangular segmental resection of a diseased posterior leaflet, transposition of posterior leaflet chordae to the anterior leaflet, valvuloplasty with plication and direct suturing of the native valve, substitution, reattachment or shortening of chordae tendinae, and annuloplasty in which the effective size of the valve annulus is contracted by attaching a prosthetic annuloplasty ring to the endocardial surface of the heart around the valve annulus.
  • the annuloplasty techniques may be used in conjunction with other repair techniques.
  • Annuloplasty rings are sometimes sutured along the posterior mitral leaflet adjacent to the mitral annulus in the left atrium. The rings either partially or completely encircle the valve, and may be rigid, or flexible but non-elastic. All of these procedures require cardiopulmonary bypass, though some less, or minimally invasive techniques for valve repair and replacement are being developed.
  • mitral valve repair and replacement can successfully treat many patients with mitral valve insufficiency, techniques currently in use are attended by significant morbity and mortality.
  • Most valve repair and replacement procedures require a thoracotomy, to gain access to the patient's thoracic cavity.
  • Surgical intervention within the heart frequently requires isolation of the heart and coronary blood vessels from the remainder of the arterial system and arrest of cardiac function.
  • Open chest techniques with large sternum openings are used. Those patients undergoing such techniques often have scarring retraction, tears or fusion of valve leaflets, as well as disorders of the subvalvular apparatus.
  • a prosthesis is transvenously advanced into the coronary sinus and deployed within the coronary sinus to reduce the diameter of the mitral valve annulus.
  • the prosthesis then undergoes a change within the coronary sinus that causes it to assume a reduced radius of curvature, and as a result, to reduce the circumference of the mitral valve annulus. This may be accomplished in an open procedure or by percutaneously accessing the venous system by one of the internal jugular, subclavian or femoral veins.
  • the coronary sinus implant provides a less invasive treatment alternative
  • the placement of the prosthesis within the coronary sinus may be problematic for a number of reasons.
  • the coronary sinus is not accessible.
  • the coronary sinus on a particular individual may not wrap around the heart far enough to allow enough encircling of the mitral valve.
  • leaving a device in the coronary sinus may result in the formation of thrombus, which may break off and pass into the right atrium, right ventricle and ultimately the lungs causing a pulmonary embolism.
  • Another disadvantage is that the coronary sinus is sometimes used for placement of a pacing lead, which may be precluded with the placement of the prosthesis in the coronary sinus.
  • One aspect of the present invention provides a system for treating mitral valve regurgitation comprising a delivery catheter and a flexible restraining device.
  • the restraining device comprises a flexible member having a plurality of anchor members, and adjustment members attached to the end portions of the flexible member.
  • the restraining device has an elongated essentially linear configuration for catheter delivery to a location adjacent a mitral valve annulus and an arcuate configuration, which it assumes after it is deployed from a delivery catheter.
  • the barbs move from a delivery position to a deployment position and engage with the mitral valve annulus.
  • the adjustment member the radius of the flexible restraining members is adjusted causing a corresponding change in the shape of the mitral valve annulus.
  • the device includes a flexible restraining member having a plurality of anchor members extending from the flexible restraining member and at least one adjustment member attached to the end portions of the flexible restraining member.
  • the barbs move from a delivery position to a deployment position and engage the annulus of the mitral valve.
  • the radius of the flexible restraining member can then be adjusted via the adjustment members, causing the shape of the mitral valve annulus to change, and regurgitation to be reduced.
  • Another aspect of the invention provides a method for treating mitral valve regurgitation.
  • the method comprises using a catheter to deliver a flexible restraining device having shape-memory barbs adjacent to a location adjacent a mitral valve, deploying the flexible restraining device from the distal tip of the catheter, and moving the barbs from a delivery position to a deployment position in response to the deployment of the flexible device from the catheter.
  • the method further comprises positioning the flexible device against the annulus of the mitral valve, inserting the anchor members into the annulus, and altering the radius of an arcuate portion of the flexible member.
  • the mitral valve annulus is reshaped in response to the altering of the radius of the arcuate portion of the flexible member.
  • FIG. 1 is a cross sectional schematic view of a heart showing the location of the mitral valve
  • FIG. 2 is a view of a flexible restraining device having a flexible member and movable barbs in a deployment position, in accordance with the present invention
  • FIG. 3 is a view of a flexible restraining device having movable barbs in a delivery position, in accordance with the present invention
  • FlG. 4 is a view of a flexible restraining device in an elongated delivery configuration, in accordance with the present invention.
  • FIG. 5 is a side view of a flexible restraining device in an elongated configuration inside the distal portion of a delivery catheter, in accordance with one aspect of the invention
  • FIG. 6 is a schematic view illustrating the placement of the flexible restraining device adjacent to the mitral valve, in accordance with one aspect of the invention.
  • FIG. 7 is a schematic view of a delivery system for the flexible restraining devices, in accordance with one aspect of the invention.
  • FIG. 8 is a view of a wireform in an elongated configuration, in accordance with one aspect of the invention.
  • FIG. 9 is a side view of a delivery catheter for delivering a wireform adjacent to the mitral valve, in accordance with one aspect of the invention.
  • FIG. 10 is a flow diagram of a method of treating mitral valve regurgitation in accordance with one aspect of the invention.
  • FIG. 1 shows a cross-sectional view of heart 1 having tricuspid valve 2 and tricuspid valve annulus 3.
  • Mitral valve 4 is adjacent mitral valve annulus 5.
  • Mitral valve 4 is a bicuspid valve having anterior cusp 7 and posterior cusp 6.
  • Anterior cusp 7 and posterior cusp 6 are often referred to, respectively, as the anterior and posterior leaflets.
  • FIG. 2 portrays a flexible restraining device 100 for treating mitral valve regurgitation.
  • Restraining device 100 includes a flexible member 102 that is depicted in the figure in an arcuate shape that the member will assume upon delivery to a location adjacent a mitral valve.
  • Flexible member 102 is made of a flexible, biocompatible material that has "shape memory" so that flexible member 102 can be extended into an elongated configuration and inserted into a delivery catheter, but will assume a curved shape and dimensions when deployed adjacent to the mitral valve annulus.
  • flexible member 102 comprises nitinol, a biocompatible material that gives flexible member 102 the needed flexibility and shape memory.
  • flexible member 102 may include chemical machining, forming or heat setting of nitinol.
  • the surface of flexible member 102 should be hemocompatible, and cause minimal blood clotting or hemolysis when exposed to flowing blood.
  • flexible member 102 comprises a flexible, nitinol ring with a cover.
  • the cover is composed of a polyester fiber. Dacron ® , polyester fiber (E.I. Du Pont De Nemours & Co., Inc.) is a material known in the art to have the necessary hemocompatible properties and may be used in the cardiovascular system.
  • flexible member 102 The size and shape of flexible member 102 are selected to fit the configuration of the mitral valve annulus.
  • flexible member 102 is circular in shape except for a small gap 104.
  • Adjustment members 110 Extending from each of ends 106 and 108 of flexible member 102 are flexible adjustment members 110.
  • the adjustment members 110 are firmly attached to ends 106 and 108 of flexible member 102 and comprise a filament, string, wire, cord or cable.
  • flexible member 102 comprises a hollow flexible tube and adjustment member 110 is a single wire extending through the interior lumen of flexible member 102, and protruding from ends 106 and 108 as shown in FIG. 2.
  • adjustment members 1 10 are used to draw ends 106 and 108 of flexible member 102 toward each other, and reshape restraining device 100 by reducing gap 104, and changing the radius of flexible member 102.
  • adjustment wire 1 10 may then be twisted around each other to maintain gap 104 at a reduced size.
  • adjustment member 1 10 comprises a filament or other highly flexible material
  • the ends of adjustment member 110 are drawn toward each other and knotted, or held in place with a locking assembly, such as a clamp lock, or any other appropriate device.
  • a plurality of anchor members comprising barbs or prongs 1 12, are disposed about the exterior surface of flexible member 102, and are used to attach flexible member 102 to the mitral valve annulus.
  • anchor members 112 are formed by laser cutting the wall of flexible member 102 in such a manner as to create sharp pointed portions in a plurality of locations. These sharp pointed portions may then be shaped into anchoring barbs 112, and then manipulated so that they are oriented at an angle of 45-90 degrees in relation to the surface of flexible member 102, and heat set in this open position, as seen in FIG. 2.
  • anchor members 112 are flexible, and may be pressed back into the planer surface of flexible member 102 to assume a closed position as shown in FIG. 3. In this closed position, anchor members 112 form part of the smooth exterior surface of flexible member 102, and facilitate delivery of device 100 via catheter.
  • FIG. 5 is a side view of the distal portion of system 500 for treating mitral valve regurgitation using minimally invasive surgical techniques, in accordance with the present invention.
  • Flexible restraining device 100 is contained within a sheath 502 forming a delivery chamber in the distal portion of delivery catheter 504.
  • Delivery catheter 504 is flexible, and configured so that it can be inserted into the cardiovascular system of a patient.
  • Such catheters are well known in the art and are, for example, between 5 and 12 French in diameter.
  • Appropriate catheters are made of flexible biocompatible materials such as polyurethane, polyethylene, nylon and polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • distal sheath 502 may have greater lateral flexibility than the tubular body of catheter 504.
  • an inflatable balloon is attached to the distal portion of catheter 504, and connected by a lumen to a reservoir of liquid at the proximal end of catheter 504.
  • Flexible member 102 of restraining device 100 is opened to its elongated configuration, and anchor members 112 are in the closed, delivery position, forming a smooth exterior surface, as shown in FIG. 4.
  • Restraining device 100 is then placed within the lumen of catheter 504 near catheter distal tip 506.
  • a deployment device such as delivery member 508.
  • the delivery member 508 is made from a flexible material and it is used to deploy restraining device 100 by pushing it from catheter distal tip 506.
  • the delivery member is a hollow member having an enlarged end portion that is adapted such that an end of the restraining device can fit therein during delivery and the be easily deployed therefrom.
  • the adjustment members extending from the ends of the restraining device are routed into the delivery member during deployment of the restraining device.
  • the delivery member 508 may be withdrawn from catheter 504.
  • the interior surface of catheter 504 is coated with a lubricious material such as silicone, polytetrafluoroethylene (PTFE), or a hydrophilic coating.
  • PTFE polytetrafluoroethylene
  • the lubricious interior surface of catheter 504 facilitates the longitudinal movement of delivery member 508 and deployment of restraining device 100.
  • sheath 502 is retractable (not shown), as is well known in the art. Sheath 502 is retracted by the physician operator to deploy device 100 from delivery catheter 504.
  • delivery member 508 or a holding means may be used to maintain device 100 in a fixed position near catheter distal tip 506 until device 100 is deployed from the catheter.
  • distal tip 506 of delivery catheter 504 containing device 100 is inserted into the vascular system of the patient.
  • catheter 504 may be inserted into the subclavian vein, through superior vena cava 8, and into right atrium 9.
  • catheter tip 506 may be inserted through the femoral vein into the common iliac vein, through inferior vena cava 10, and into right atrium 9.
  • transeptal wall 11 between right atrium 9 and left atrium 12 is punctured with a guide wire or other puncturing device and distal tip 506 of delivery catheter 504 is advanced through the septal perforation and into left atrium 12 and placed in proximity to annulus 5 of mitral valve 4.
  • Another possible delivery path would be through the femoral artery into the aorta, through the aortic valve into the left ventricle, and then through the mitral valve into left atrium 12.
  • Yet another possible path would be through the left or right pulmonary vein directly into left atrium 12.
  • the placement procedure, using any of these vascular routes, is preferably performed using fluoroscopic or echocardiographic guidance.
  • FIGS. 7 and 8 illustrate an embodiment of a delivery system 700 having a wireform that can be used as a guide for delivering at least one embodiment of the annulus restraining devices described herein.
  • FIG. 7 illustrates an approach route in which catheters and/or guidewires are inserted into the femoral vein and passed through the common iliac vein, inferior vena cava 10, and into right atrium 9. Regardless of the route to right atrium 9, atrial septum 11 can be punctured with a guide wire or other puncturing device so that the annulus restraining device can be positioned in left atrium 12.
  • a puncture catheter in one embodiment, can be configured and used to pierce the wall of atrial septum 11.
  • the delivery systems may also include a dilator catheter for providing a larger diameter pathway for delivering annulus reduction delivery system.
  • delivery system 700 comprises wireform 705 having pre-shaped annular portion 710, proximal portion 740 and stabilizer portion 750.
  • Wireform 705 may be composed of biocompatible metal, polymer or combinations thereof.
  • wireform 705 is pre-shaped and sized to fit the anatomy of a particular patient.
  • pre-shaped annular portion 710 comprises nitinol.
  • pre-shaped annular portion 710 comprises a section of tubular braid, either with or without a central monofilament core extending there through.
  • Pre-shaped annular portion 710 provides a rail or guide for positioning an annulus reduction delivery system or device around and within the annulus 5 of mitral valve 4.
  • FIG. 8 illustrates wireform 705 in a straight configuration as it may appear either during manufacture and before annular portion 710 is shaped, or as wireform 705 may temporarily appear during delivery to a cardiac valve through a delivery catheter.
  • Wireform stabilizer portion 750 extends distally from pre-shaped annular portion 710 and, in one embodiment, extends through the mitral valve 4 and into left ventricle 14. A stabilizer portion 750 traverses left ventricle 14 to rest on or near the apex of left ventricle 14 adjacent papillary muscles 13 to provide stability for wireform annular portion 710 during placement of an annulus restraining device. Stabilizer portion 750 may comprise a material that is relatively soft at distal tip 760 forming a pigtail or spiral shape as is known in the art. In another embodiment, stabilizing portion 750 extends from annular portion 710 in a superior direction to rest against an upper portion of left atrium 12 to provide stability. In another embodiment, wireform 705 does not include stabilizing portion 750. Delivery system 700 provides a pathway to and around mitral valve annulus 5 for delivering and positioning an annulus restraining device for implantation.
  • FIG. 9 illustrates delivery catheter 900 for delivering wireform 705 having a pre-shaped annular portion 710.
  • Delivery catheter 900 includes proximal section 910, restraining section 920 and soft distal tip 930.
  • Delivery catheter 900 comprises a flexible, biocompatible polymeric material such as polyurethane, polyethylene, nylon, or polytetrafluroethylene (PTFE).
  • restraining section 920 has sufficient stiffening capabilities to maintain pre-shaped annular portion 710 in a straightened delivery configuration.
  • a braided metallic or polymeric material is embedded in the wall of restraining section 920.
  • metallic or polymeric rods are embedded in the wall of restraining section 920.
  • wireform 705 is inserted into delivery catheter 900. Delivery catheter 900 is then advanced to the target valve as described above. In one embodiment, distal end 935 is positioned within left atrium 12 and wireform 705 is pushed out of delivery catheter 900 to form delivery system 700 as seen in FIG. 7. In another embodiment, distal end 935 is advanced through mitral valve 4 and positioned adjacent papillary muscle 13. Delivery catheter 900 is then retracted while wireform 705 is held stationary. As delivery catheter 900 is retracted, delivery system 700 forms as seen in FIG. 7.
  • delivery system 700 may be used to guide a suitable delivery catheter for annulus restraining device 100 to mitral valve annulus 5.
  • FIG.10 is a flowchart illustrating method 1000 for treating mitral valve regurgitation, in accordance with one aspect of the invention.
  • the distal tip of delivery catheter 504 containing flexible restraining device 100 is advanced through the vascular system of the patient, passed through right atrium 9 and into left atrium 12, adjacent to mitral valve annulus 5 (Block 1002).
  • wireform 705 is first delivered adjacent to the mitral valve of the patient using a delivery catheter such as catheter 900 .
  • delivery system 700 takes the form seen in FIG. 7, and provides a guide for a delivery catheter suitable for annulus restraining device 100, such as delivery catheter 504.
  • the restraining device is deployed adjacent to mitral valve annulus 5 from the delivery catheter (Block 1004). If a catheter such as catheter 504 is used, the flexible tip 506 is moved along the surface of mitral valve annulus 5, and used to direct the placement of restraining device 100. If delivery system 700 is used, the distal tip of a suitable catheter is guided along wireform 705. In either case, a deployment device, such as delivery member 508 within delivery catheter 504 is used to deploy restraining device 100 by pushing it from distal tip 506 of delivery catheter 504 and laying flexible restraining device 100 along mitral valve annulus 5. In yet another embodiment, sheath 502 is retracted to deploy restraining device 100.
  • Restraining device 100 is positioned so that anchor members 112 on the surface of restraining device 100 are facing the surface of mitral valve annulus 5. As restraining device 100 is extruded from distal tip 506 of delivery catheter 504, flexible member 102 of device 100 will assume a curved, nearly circular configuration commensurate with mitral valve annulus 5. In addition anchor members 112 assume a deployment configuration, in which they extend away from the surface of flexible member 102 at a predetermined angle (Block 1006).
  • an inflatable balloon is then extended from distal tip 506 of delivery catheter 504 immediately adjacent to the surface of restraining device 100.
  • the balloon may either be attached to distal portion 502 of delivery catheter 504, or it may be mounted on a separate catheter that is passed through delivery catheter 504. In either case, the balloon is inflated against restraining device 100 in order to push flexible member 102 against the surface of mitral valve annulus 5, with sufficient force to cause barbs 112 to penetrate mitral valve annulus 5, and to anchor restraining device 100 securely in place (Block 1008).
  • adjustment member 110 is manipulated so that the radius of flexible member 102 and the underlying mitral valve annulus are reduced by the desired amount (Block 1010).
  • flexible rod 508, used to deploy the restraining device 100 is withdrawn from the catheter, forceps are advanced through the catheter, and the tip of the forceps is placed adjacent to restraining device 100, which is attached to mitral valve annulus 5. Next, the forceps are used to grasp the adjustment elements 110, which in this embodiment are wires.
  • Adjustment wires 1 10 are drawn together, and twisted around each other, causing the length of adjustment members 110 to be reduced, and ends 106 and 108 of flexible member 102 to be drawn toward each other, reducing the size of gap 104. In this embodiment, adjustment wires 1 10 remain twisted around each other, and maintain gap 104 at a fixed size.
  • a locking assembly such as a clamp lock or any other appropriate device may be used to maintain the length of adjustment members 1 10.
  • mitral valve annular ring 5 The circumference of mitral valve annular ring 5 is modified sufficiently so that anterior and posterior leaflets 7 and 6 close during ventricular contraction, and regurgitation of blood is reduced (Block 1012). Improvement in the valve closure can be evaluated by checking for decreased pressure in left atrium 12. Finally, delivery catheter 504 is withdrawn from the body of the patient.

Abstract

A catheter based system for treating mitral valve regurgitation includes a restraining device (100) having a flexible member (102) , a plurality of movable anchor members (112) attached to the outer surface of the flexible member, and an adjustment filament (110) attached to the ends of the flexible member. One embodiment of the invention includes a method for attaching a flexible restraining device to the annulus of a mitral valve, and adjusting the length of the adjustment filament attached to the flexible member of the restraining device, thereby reshaping the mitral valve annulus so that the anterior and posterior leaflets of the mitral valve close during ventricular contraction.

Description

CARDIAC VALVE ANNULUS RESTRAINING DEVICE
TECHNICAL FIELD
[0001] This invention relates generally to medical devices for treating mitral valve regurgitation, and particularly to a cardiac valve annulus restraining system and method of using the same.
BACKGROUND OF THE INVENTION
[0002] Heart valves, such as the mitral, tricuspid, aortic and pulmonic valves, are sometimes damaged by disease or by aging, resulting in problems with the proper functioning of the valve. Heart valve problems take one of two forms: stenosis, in which a valve does not open completely or the opening is too small, resulting in restricted blood flow; or insufficiency, in which blood leaks backward across a valve when it should be closed. Valve replacement may be required in severe cases to restore cardiac function. In common practice, repair or replacement requires open-heart surgery with its attendant risks, expense, and extended recovery time. Open-heart surgery also requires cardiopulmonary bypass with risk of thrombosis, stroke, and infarction.
[0003] Mitral valve insufficiency results from various types of cardiac disease. Any one or more of the mitral valve structures, i.e., the anterior or posterior leaflets, the chordae, the papillary muscles or the annulus may be compromised by damage from disease or injury, causing the mitral valve insufficiency. In cases where there is mitral valve insufficiency, there is some degree of annular dilatation resulting in mitral valve regurgitation. Mitral valve regurgitation occurs as the result of the leaflets being moved away from each other by the dilated annulus. Thus, without correction, the mitral valve insufficiency may lead to disease progression and/or further enlargement and worsening of the insufficiency. In some instances, correction of the regurgitation may not require repair of the valve leaflets themselves, but simply a reduction in the size of the annulus. A variety of techniques have been used to reduce the diameter of the mitral annulus and eliminate or reduce valvular regurgitation in patients with incompetent valves.
[0004] Current surgical procedures to correct mitral regurgitation in humans include a number of mitral valve replacement and repair techniques. Valve replacement can be performed through open-heart surgery, open chest surgery, or percutaneously. The native valve is removed and replaced with a prosthetic valve, or a prosthetic valve is placed over the native valve. The valve replacement may be a mechanical or biological valve prosthesis. The open chest and percutaneous procedures avoid opening the heart and cardiopulmonary bypass. However, the valve replacement may result in a number of complications including a risk of endocarditis. Additionally, mechanical valve replacement requires subsequent anticoagulation treatment to prevent thromboembolisms.
[0005] As an alternative to valve replacement, various valve repair techniques have been used including quadrangular segmental resection of a diseased posterior leaflet, transposition of posterior leaflet chordae to the anterior leaflet, valvuloplasty with plication and direct suturing of the native valve, substitution, reattachment or shortening of chordae tendinae, and annuloplasty in which the effective size of the valve annulus is contracted by attaching a prosthetic annuloplasty ring to the endocardial surface of the heart around the valve annulus. The annuloplasty techniques may be used in conjunction with other repair techniques. Annuloplasty rings are sometimes sutured along the posterior mitral leaflet adjacent to the mitral annulus in the left atrium. The rings either partially or completely encircle the valve, and may be rigid, or flexible but non-elastic. All of these procedures require cardiopulmonary bypass, though some less, or minimally invasive techniques for valve repair and replacement are being developed.
[0006] Although mitral valve repair and replacement can successfully treat many patients with mitral valve insufficiency, techniques currently in use are attended by significant morbity and mortality. Most valve repair and replacement procedures require a thoracotomy, to gain access to the patient's thoracic cavity. Surgical intervention within the heart frequently requires isolation of the heart and coronary blood vessels from the remainder of the arterial system and arrest of cardiac function. Open chest techniques with large sternum openings are used. Those patients undergoing such techniques often have scarring retraction, tears or fusion of valve leaflets, as well as disorders of the subvalvular apparatus.
[0007] Recently, other surgical procedures have been provided to reduce the mitral valve annulus using a less invasive surgical technique. According to this method, a prosthesis is transvenously advanced into the coronary sinus and deployed within the coronary sinus to reduce the diameter of the mitral valve annulus. The prosthesis then undergoes a change within the coronary sinus that causes it to assume a reduced radius of curvature, and as a result, to reduce the circumference of the mitral valve annulus. This may be accomplished in an open procedure or by percutaneously accessing the venous system by one of the internal jugular, subclavian or femoral veins.
[0008] While the coronary sinus implant provides a less invasive treatment alternative, the placement of the prosthesis within the coronary sinus may be problematic for a number of reasons. Sometimes the coronary sinus is not accessible. The coronary sinus on a particular individual may not wrap around the heart far enough to allow enough encircling of the mitral valve. Also, leaving a device in the coronary sinus may result in the formation of thrombus, which may break off and pass into the right atrium, right ventricle and ultimately the lungs causing a pulmonary embolism. Another disadvantage is that the coronary sinus is sometimes used for placement of a pacing lead, which may be precluded with the placement of the prosthesis in the coronary sinus.
[0009] Therefore, it would be desirable to provide a method and device for reducing cardiac valve regurgitation that use minimally invasive surgical techniques, and would overcome the limitations and disadvantages inherent in the devices described above.
SUMMARY OF THE INVENTION
[00010] One aspect of the present invention provides a system for treating mitral valve regurgitation comprising a delivery catheter and a flexible restraining device. The restraining device comprises a flexible member having a plurality of anchor members, and adjustment members attached to the end portions of the flexible member. The restraining device has an elongated essentially linear configuration for catheter delivery to a location adjacent a mitral valve annulus and an arcuate configuration, which it assumes after it is deployed from a delivery catheter. When the restraining device is deployed from the delivery catheter, the barbs move from a delivery position to a deployment position and engage with the mitral valve annulus. Using the adjustment member, the radius of the flexible restraining members is adjusted causing a corresponding change in the shape of the mitral valve annulus.
[00011] Another aspect of the invention provides a device for treating mitral valve regurgitation. The device includes a flexible restraining member having a plurality of anchor members extending from the flexible restraining member and at least one adjustment member attached to the end portions of the flexible restraining member. When the device is deployed from a delivery catheter, the barbs move from a delivery position to a deployment position and engage the annulus of the mitral valve. The radius of the flexible restraining member can then be adjusted via the adjustment members, causing the shape of the mitral valve annulus to change, and regurgitation to be reduced.
[00012] Another aspect of the invention provides a method for treating mitral valve regurgitation. The method comprises using a catheter to deliver a flexible restraining device having shape-memory barbs adjacent to a location adjacent a mitral valve, deploying the flexible restraining device from the distal tip of the catheter, and moving the barbs from a delivery position to a deployment position in response to the deployment of the flexible device from the catheter. The method further comprises positioning the flexible device against the annulus of the mitral valve, inserting the anchor members into the annulus, and altering the radius of an arcuate portion of the flexible member. The mitral valve annulus is reshaped in response to the altering of the radius of the arcuate portion of the flexible member.
[00013] The present invention is illustrated by the accompanying drawings of various embodiments and the detailed description given below. The drawings should not be taken to limit the invention to the specific embodiments, but are for explanation and understanding. The detailed description and drawings are merely illustrative of the invention rather than limiting, the scope of the invention being defined by the appended claims and equivalents thereof. The drawings are not to scale. The foregoing aspects and other attendant advantages of the present invention will become more readily appreciated by the detailed description taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[00014] FIG. 1 is a cross sectional schematic view of a heart showing the location of the mitral valve;
[00015] FIG. 2 is a view of a flexible restraining device having a flexible member and movable barbs in a deployment position, in accordance with the present invention;
[00016] FIG. 3 is a view of a flexible restraining device having movable barbs in a delivery position, in accordance with the present invention;
[00017] FlG. 4 is a view of a flexible restraining device in an elongated delivery configuration, in accordance with the present invention;
[00018] FIG. 5 is a side view of a flexible restraining device in an elongated configuration inside the distal portion of a delivery catheter, in accordance with one aspect of the invention;
[00019] FIG. 6 is a schematic view illustrating the placement of the flexible restraining device adjacent to the mitral valve, in accordance with one aspect of the invention;
[00020] FIG. 7 is a schematic view of a delivery system for the flexible restraining devices, in accordance with one aspect of the invention;
[00021] FIG. 8 is a view of a wireform in an elongated configuration, in accordance with one aspect of the invention;
[00022] FIG. 9 is a side view of a delivery catheter for delivering a wireform adjacent to the mitral valve, in accordance with one aspect of the invention;
[00023] FIG. 10 is a flow diagram of a method of treating mitral valve regurgitation in accordance with one aspect of the invention. DETAILED DESCRIPTION
[00024] Throughout this specification, like numbers refer to like structures.
[00025] Referring to the drawings, FIG. 1 shows a cross-sectional view of heart 1 having tricuspid valve 2 and tricuspid valve annulus 3. Mitral valve 4 is adjacent mitral valve annulus 5. Mitral valve 4 is a bicuspid valve having anterior cusp 7 and posterior cusp 6. Anterior cusp 7 and posterior cusp 6 are often referred to, respectively, as the anterior and posterior leaflets.
[00026] FIG. 2 portrays a flexible restraining device 100 for treating mitral valve regurgitation. Restraining device 100 includes a flexible member 102 that is depicted in the figure in an arcuate shape that the member will assume upon delivery to a location adjacent a mitral valve. Flexible member 102 is made of a flexible, biocompatible material that has "shape memory" so that flexible member 102 can be extended into an elongated configuration and inserted into a delivery catheter, but will assume a curved shape and dimensions when deployed adjacent to the mitral valve annulus. In one embodiment of the invention, flexible member 102 comprises nitinol, a biocompatible material that gives flexible member 102 the needed flexibility and shape memory. Fabrication of flexible member 102 may include chemical machining, forming or heat setting of nitinol. In addition, the surface of flexible member 102 should be hemocompatible, and cause minimal blood clotting or hemolysis when exposed to flowing blood. In one embodiment of the invention, flexible member 102 comprises a flexible, nitinol ring with a cover. In one embodiment, the cover is composed of a polyester fiber. Dacron®, polyester fiber (E.I. Du Pont De Nemours & Co., Inc.) is a material known in the art to have the necessary hemocompatible properties and may be used in the cardiovascular system.
[00027] The size and shape of flexible member 102 are selected to fit the configuration of the mitral valve annulus. In one embodiment of the invention, flexible member 102 is circular in shape except for a small gap 104.
[00028] Extending from each of ends 106 and 108 of flexible member 102 are flexible adjustment members 110. In one embodiment of the invention, the adjustment members 110 are firmly attached to ends 106 and 108 of flexible member 102 and comprise a filament, string, wire, cord or cable. In another embodiment of the invention, flexible member 102 comprises a hollow flexible tube and adjustment member 110 is a single wire extending through the interior lumen of flexible member 102, and protruding from ends 106 and 108 as shown in FIG. 2. In either embodiment, adjustment members 1 10 are used to draw ends 106 and 108 of flexible member 102 toward each other, and reshape restraining device 100 by reducing gap 104, and changing the radius of flexible member 102. The ends of adjustment wire 1 10 may then be twisted around each other to maintain gap 104 at a reduced size. In other embodiments in which adjustment member 1 10 comprises a filament or other highly flexible material, the ends of adjustment member 110 are drawn toward each other and knotted, or held in place with a locking assembly, such as a clamp lock, or any other appropriate device.
[00029] A plurality of anchor members, comprising barbs or prongs 1 12, are disposed about the exterior surface of flexible member 102, and are used to attach flexible member 102 to the mitral valve annulus. In one embodiment of the invention, anchor members 112 are formed by laser cutting the wall of flexible member 102 in such a manner as to create sharp pointed portions in a plurality of locations. These sharp pointed portions may then be shaped into anchoring barbs 112, and then manipulated so that they are oriented at an angle of 45-90 degrees in relation to the surface of flexible member 102, and heat set in this open position, as seen in FIG. 2. However, anchor members 112 are flexible, and may be pressed back into the planer surface of flexible member 102 to assume a closed position as shown in FIG. 3. In this closed position, anchor members 112 form part of the smooth exterior surface of flexible member 102, and facilitate delivery of device 100 via catheter.
[00030] Flexible member 102 can be transformed from its curved, nearly circular configuration (FIG. 2, 3) into an elongated, substantially linear configuration (FIG. 4). The two ends 106, 108 may be moved in opposite directions until device 100 is in an elongated, substantially linear configuration. Because flexible member 102 comprises a shape-memory material, such as nitinol, device 100 will spontaneously revert to an unconstrained, flexible or curved configuration (FIG. 2) when free to do so. [00031] FIG. 5 is a side view of the distal portion of system 500 for treating mitral valve regurgitation using minimally invasive surgical techniques, in accordance with the present invention. Flexible restraining device 100 is contained within a sheath 502 forming a delivery chamber in the distal portion of delivery catheter 504. Delivery catheter 504 is flexible, and configured so that it can be inserted into the cardiovascular system of a patient. Such catheters are well known in the art and are, for example, between 5 and 12 French in diameter. Appropriate catheters are made of flexible biocompatible materials such as polyurethane, polyethylene, nylon and polytetrafluoroethylene (PTFE). In order to facilitate passage through the vascular system, distal sheath 502 may have greater lateral flexibility than the tubular body of catheter 504. In one embodiment of the invention, an inflatable balloon is attached to the distal portion of catheter 504, and connected by a lumen to a reservoir of liquid at the proximal end of catheter 504.
[00032] Flexible member 102 of restraining device 100 is opened to its elongated configuration, and anchor members 112 are in the closed, delivery position, forming a smooth exterior surface, as shown in FIG. 4. Restraining device 100 is then placed within the lumen of catheter 504 near catheter distal tip 506. Within the lumen of catheter 504, and proximal to restraining device 100 is a deployment device, such as delivery member 508. The delivery member 508 is made from a flexible material and it is used to deploy restraining device 100 by pushing it from catheter distal tip 506. In the depicted embodiment, the delivery member is a hollow member having an enlarged end portion that is adapted such that an end of the restraining device can fit therein during delivery and the be easily deployed therefrom. In the depicted embodiment, the adjustment members extending from the ends of the restraining device are routed into the delivery member during deployment of the restraining device. After restraining device 100 is deployed, the delivery member 508 may be withdrawn from catheter 504. In one embodiment of the invention, the interior surface of catheter 504 is coated with a lubricious material such as silicone, polytetrafluoroethylene (PTFE), or a hydrophilic coating. The lubricious interior surface of catheter 504 facilitates the longitudinal movement of delivery member 508 and deployment of restraining device 100. [00033] In another embodiment of the invention, sheath 502 is retractable (not shown), as is well known in the art. Sheath 502 is retracted by the physician operator to deploy device 100 from delivery catheter 504. In this embodiment, delivery member 508 or a holding means may be used to maintain device 100 in a fixed position near catheter distal tip 506 until device 100 is deployed from the catheter.
[00034] To deliver restraining device 100 adjacent to mitral valve 4 (FIG. 1 ), distal tip 506 of delivery catheter 504 containing device 100 is inserted into the vascular system of the patient. As shown in FIG. 6, catheter 504 may be inserted into the subclavian vein, through superior vena cava 8, and into right atrium 9. Alternatively, catheter tip 506 may be inserted through the femoral vein into the common iliac vein, through inferior vena cava 10, and into right atrium 9. Next, transeptal wall 11 between right atrium 9 and left atrium 12 is punctured with a guide wire or other puncturing device and distal tip 506 of delivery catheter 504 is advanced through the septal perforation and into left atrium 12 and placed in proximity to annulus 5 of mitral valve 4. Another possible delivery path would be through the femoral artery into the aorta, through the aortic valve into the left ventricle, and then through the mitral valve into left atrium 12. Yet another possible path would be through the left or right pulmonary vein directly into left atrium 12. The placement procedure, using any of these vascular routes, is preferably performed using fluoroscopic or echocardiographic guidance.
[00035] While the devices described herein can be delivered to a position adjacent a mitral valve annulus in a manner described above, other delivery systems and means can also be used. FIGS. 7 and 8 illustrate an embodiment of a delivery system 700 having a wireform that can be used as a guide for delivering at least one embodiment of the annulus restraining devices described herein. FIG. 7 illustrates an approach route in which catheters and/or guidewires are inserted into the femoral vein and passed through the common iliac vein, inferior vena cava 10, and into right atrium 9. Regardless of the route to right atrium 9, atrial septum 11 can be punctured with a guide wire or other puncturing device so that the annulus restraining device can be positioned in left atrium 12. In one embodiment of a delivery system for the devices, a puncture catheter, as is well known in the art, can be configured and used to pierce the wall of atrial septum 11. The delivery systems may also include a dilator catheter for providing a larger diameter pathway for delivering annulus reduction delivery system.
[00036] Referring to FIG. 7, delivery system 700 comprises wireform 705 having pre-shaped annular portion 710, proximal portion 740 and stabilizer portion 750. Wireform 705 may be composed of biocompatible metal, polymer or combinations thereof. In one embodiment, wireform 705 is pre-shaped and sized to fit the anatomy of a particular patient. In one embodiment, pre-shaped annular portion 710 comprises nitinol. In another embodiment, pre-shaped annular portion 710 comprises a section of tubular braid, either with or without a central monofilament core extending there through. Pre-shaped annular portion 710 provides a rail or guide for positioning an annulus reduction delivery system or device around and within the annulus 5 of mitral valve 4. FIG. 8 illustrates wireform 705 in a straight configuration as it may appear either during manufacture and before annular portion 710 is shaped, or as wireform 705 may temporarily appear during delivery to a cardiac valve through a delivery catheter.
[00037] Wireform stabilizer portion 750 extends distally from pre-shaped annular portion 710 and, in one embodiment, extends through the mitral valve 4 and into left ventricle 14. A stabilizer portion 750 traverses left ventricle 14 to rest on or near the apex of left ventricle 14 adjacent papillary muscles 13 to provide stability for wireform annular portion 710 during placement of an annulus restraining device. Stabilizer portion 750 may comprise a material that is relatively soft at distal tip 760 forming a pigtail or spiral shape as is known in the art. In another embodiment, stabilizing portion 750 extends from annular portion 710 in a superior direction to rest against an upper portion of left atrium 12 to provide stability. In another embodiment, wireform 705 does not include stabilizing portion 750. Delivery system 700 provides a pathway to and around mitral valve annulus 5 for delivering and positioning an annulus restraining device for implantation.
[00038] FIG. 9 illustrates delivery catheter 900 for delivering wireform 705 having a pre-shaped annular portion 710. Delivery catheter 900 includes proximal section 910, restraining section 920 and soft distal tip 930. Delivery catheter 900 comprises a flexible, biocompatible polymeric material such as polyurethane, polyethylene, nylon, or polytetrafluroethylene (PTFE). Additionally, restraining section 920 has sufficient stiffening capabilities to maintain pre-shaped annular portion 710 in a straightened delivery configuration. In one embodiment, a braided metallic or polymeric material is embedded in the wall of restraining section 920. In another embodiment metallic or polymeric rods are embedded in the wall of restraining section 920.
[00039] In operation, wireform 705 is inserted into delivery catheter 900. Delivery catheter 900 is then advanced to the target valve as described above. In one embodiment, distal end 935 is positioned within left atrium 12 and wireform 705 is pushed out of delivery catheter 900 to form delivery system 700 as seen in FIG. 7. In another embodiment, distal end 935 is advanced through mitral valve 4 and positioned adjacent papillary muscle 13. Delivery catheter 900 is then retracted while wireform 705 is held stationary. As delivery catheter 900 is retracted, delivery system 700 forms as seen in FIG. 7.
[00040] Once delivery system 700 is placed as seen in FIG. 7, delivery system 700 may be used to guide a suitable delivery catheter for annulus restraining device 100 to mitral valve annulus 5.
[00041] FIG.10 is a flowchart illustrating method 1000 for treating mitral valve regurgitation, in accordance with one aspect of the invention. As described in FIG.6, the distal tip of delivery catheter 504 containing flexible restraining device 100 is advanced through the vascular system of the patient, passed through right atrium 9 and into left atrium 12, adjacent to mitral valve annulus 5 (Block 1002). If a device such as delivery system 700 is used, wireform 705 is first delivered adjacent to the mitral valve of the patient using a delivery catheter such as catheter 900 . As delivery system 700 is extruded from catheter 900, delivery system 700 takes the form seen in FIG. 7, and provides a guide for a delivery catheter suitable for annulus restraining device 100, such as delivery catheter 504.
[00042] Next, the restraining device is deployed adjacent to mitral valve annulus 5 from the delivery catheter (Block 1004). If a catheter such as catheter 504 is used, the flexible tip 506 is moved along the surface of mitral valve annulus 5, and used to direct the placement of restraining device 100. If delivery system 700 is used, the distal tip of a suitable catheter is guided along wireform 705. In either case, a deployment device, such as delivery member 508 within delivery catheter 504 is used to deploy restraining device 100 by pushing it from distal tip 506 of delivery catheter 504 and laying flexible restraining device 100 along mitral valve annulus 5. In yet another embodiment, sheath 502 is retracted to deploy restraining device 100.
[00043] Restraining device 100 is positioned so that anchor members 112 on the surface of restraining device 100 are facing the surface of mitral valve annulus 5. As restraining device 100 is extruded from distal tip 506 of delivery catheter 504, flexible member 102 of device 100 will assume a curved, nearly circular configuration commensurate with mitral valve annulus 5. In addition anchor members 112 assume a deployment configuration, in which they extend away from the surface of flexible member 102 at a predetermined angle (Block 1006).
[00044] In one embodiment of the invention, an inflatable balloon is then extended from distal tip 506 of delivery catheter 504 immediately adjacent to the surface of restraining device 100. The balloon may either be attached to distal portion 502 of delivery catheter 504, or it may be mounted on a separate catheter that is passed through delivery catheter 504. In either case, the balloon is inflated against restraining device 100 in order to push flexible member 102 against the surface of mitral valve annulus 5, with sufficient force to cause barbs 112 to penetrate mitral valve annulus 5, and to anchor restraining device 100 securely in place (Block 1008).
[00045] Once restraining device 100 is secured to mitral valve annulus 5 by anchor members 112, adjustment member 110 is manipulated so that the radius of flexible member 102 and the underlying mitral valve annulus are reduced by the desired amount (Block 1010). In one embodiment of the invention, flexible rod 508, used to deploy the restraining device 100 is withdrawn from the catheter, forceps are advanced through the catheter, and the tip of the forceps is placed adjacent to restraining device 100, which is attached to mitral valve annulus 5. Next, the forceps are used to grasp the adjustment elements 110, which in this embodiment are wires. Adjustment wires 1 10 are drawn together, and twisted around each other, causing the length of adjustment members 110 to be reduced, and ends 106 and 108 of flexible member 102 to be drawn toward each other, reducing the size of gap 104. In this embodiment, adjustment wires 1 10 remain twisted around each other, and maintain gap 104 at a fixed size. In another embodiment, a locking assembly, such as a clamp lock or any other appropriate device may be used to maintain the length of adjustment members 1 10. By drawing ends 106 and 108 of flexible member 102 together, the circumference of flexible member 102 is reduced, and, because restraining device 100 is securely fastened to annular ring 5 of mitral valve 4 (Block 1012), the circumference of annular ring 5 is reduced correspondingly. The circumference of mitral valve annular ring 5 is modified sufficiently so that anterior and posterior leaflets 7 and 6 close during ventricular contraction, and regurgitation of blood is reduced (Block 1012). Improvement in the valve closure can be evaluated by checking for decreased pressure in left atrium 12. Finally, delivery catheter 504 is withdrawn from the body of the patient.
[00046] While the invention has been described with reference to particular embodiments, it will be understood by one skilled in the art that variations and modifications may be made in form and detail without departing from the spirit and scope of the invention.

Claims

CLAIMS:
1. A system for treating mitral valve regurgitation, the system comprising: a catheter; a flexible restraining device having a plurality of anchor members extendable therefrom,; the anchor members being integrally formed with or fixedly attached to the flexible restraining device; the anchor members shaped for penetration into the annulus of a mitral valve the anchor members being movable from a delivery configuration to a deployment configuration; and an adjustment member extending from end portions of the flexible restraining device.
2. The system of claim 1 wherein the flexible restraining device has an elongated, essentially linear configuration and an arcuate configuration; the flexible restraining device has an inner surface and an outer surface and the anchor members are positionable in a catheter delivery configuration, in which the anchor members are parallel to the outer surface of the flexible restraining device; and the anchor members are positionable in a deployment configuration, in which the anchor members extend radially from flexible restraining device and when the device is deployed from a catheter the anchor members extend to the deployment configuration..
3. The system of claim 1 wherein the flexible restraining device and anchor members comprise a shape memory alloy.
4. The system of claim 1 wherein the flexible restraining device " and anchor members comprise nitinol.
5. The system of claim 1 further comprising means for seating the flexible restraining device against the annulus of a mitral valve and implanting the anchor members into the annulus.
6. The system of claim 1 wherein the catheter comprises: an outer sheath; a delivery chamber within the sheath at a distal end of the catheter; and a deployment device positioned within the delivery chamber, wherein when the system is delivered to a location adjacent to a mitral valve, the flexible restraining device is deployed from the delivery chamber and positioned in a supra-annular position adjacent to the annulus of the mitral valve.
7. The system of claim 6 further wherein the catheter further comprises an inflatable balloon attached thereto and when the balloon is inflated, the flexible restraining device is seated against the annulus of the mitral valve.
8. The system of claim 1 wherein the adjustment member is selected from the group consisting of a string, a wire, a cord, a filament, and a cable.
9. The system of claim 8 wherein the flexible restraining device is a generally tubular member and the adjustment member is routed through the restraining device such that the ends of the adjustment member extend from the ends of the restraining device, and wherein when the restraining device is in an arcuate configuration, the adjustment member may be used to draw the ends of the flexible restraining device toward each other and maintain the ends of the restraining device in a fixed position.
10. A device for treating mitral valve regurgitation comprising: a flexible restraining device having a plurality of anchor members extending therefrom; the anchor members being integrally formed with or fixedly attached to the flexible restraining device; the anchor members being movable from a delivery configuration to a deployment configuration; and an adjustment member extending from end portions of the flexible restraining device.
1 1. The device of claim 10 wherein the flexible restraining device has an inner surface, an outer surface, an arcuate configuration and an elongated, essentially linear configuration; the anchor members are positionable in a catheter delivery configuration, in which the anchor members lie on the outer surface of the flexible restraining device; and the anchor members are positionable in a deployment configuration, in which the anchor members extend radially from flexible restraining device and when the device is deployed from a catheter the anchor members extend to the deployment configuration.
12 The device of claim 10 wherein the adjustment member is selected from the group consisting of a string, a wire, a cord, a filament, and a cable.
13 The device of claim 10 wherein the flexible restraining device is a generally tubular member and the adjustment member is routed through the restraining device such that the ends of the adjustment member extend from the ends of the restraining device, and wherein when the restraining device is in an arcuate configuration, the adjustment member may be used to draw the ends of the flexible restraining device toward each other and maintain the ends of the restraining device in a fixed position.
14 The device of claim 13 further comprising means for securing the ends of the adjustment members such the ends of the restraining device can be maintained in a fixed position.
15. The device of claim 10 wherein the flexible restraining device and anchor members comprise a shape memory alloy.
16. The system of claim 12 wherein the flexible restraining device and anchor members comprise nitinol.
17. A method of treating mitral valve regurgitation, the method comprising: delivering a flexible restraining device, having shape-memory anchor members, to a location adjacent a mitral valve via a catheter; deploying the flexible restraining device from the distal tip of the catheter thereby causing the flexible restraining device to assume an arcuate configuration; moving the anchor members from a delivery to a deployment configuration responsive to the deployment of the flexible restraining device; positioning the flexible restraining device against an annulus of the mitral valve; inserting the anchor members into the annulus; altering the shape of the flexible restraining device by altering the radius of the arcuate configuration; and reshaping the annulus in response to the altering of the radius of the arcuate configuration the flexible restraining device.
18. The method of claim 17 wherein inserting the shape memory anchor members into the annulus further comprises inflating a balloon to exert force on the flexible ring, and causing the anchor members to penetrate the annulus.
19. The method of claim 17 wherein altering the radius of an arcuate configuration of the flexible restraining device further comprises drawing the ends of the device toward each other when the device is in the arcuate configuration.
20. The method of claim 17 wherein reshaping the annulus of the mitral valve reduces mitral valve regurgitation.
PCT/US2006/027893 2005-07-28 2006-07-19 Cardiac valve annulus restraining device WO2007015876A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008523960A JP2009502324A (en) 2005-07-28 2006-07-19 Heart valve annulus suppressor
EP06787744A EP1922031A1 (en) 2005-07-28 2006-07-19 Cardiac valve annulus restraining device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/193,674 2005-07-28
US11/193,674 US20070027533A1 (en) 2005-07-28 2005-07-28 Cardiac valve annulus restraining device

Publications (1)

Publication Number Publication Date
WO2007015876A1 true WO2007015876A1 (en) 2007-02-08

Family

ID=37074927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/027893 WO2007015876A1 (en) 2005-07-28 2006-07-19 Cardiac valve annulus restraining device

Country Status (4)

Country Link
US (1) US20070027533A1 (en)
EP (1) EP1922031A1 (en)
JP (1) JP2009502324A (en)
WO (1) WO2007015876A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141665A1 (en) * 2008-05-22 2009-11-26 Prakash Punjabi Heart valve repair device
US9956078B2 (en) 2011-06-29 2018-05-01 Mitralix Ltd. Heart valve repair devices and methods
US10098738B2 (en) 2014-06-26 2018-10-16 Mitralix Ltd. Heart valve repair devices for placement in ventricle and delivery systems for implanting heart valve repair devices

Families Citing this family (240)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006134A (en) * 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8016877B2 (en) * 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US7018406B2 (en) * 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US20070043435A1 (en) * 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US6692513B2 (en) 2000-06-30 2004-02-17 Viacor, Inc. Intravascular filter with debris entrapment mechanism
US7749245B2 (en) 2000-01-27 2010-07-06 Medtronic, Inc. Cardiac valve procedure methods and devices
AU2001271667A1 (en) * 2000-06-30 2002-01-14 Viacor Incorporated Method and apparatus for performing a procedure on a cardiac valve
US6602288B1 (en) * 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
US8771302B2 (en) * 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US8623077B2 (en) 2001-06-29 2014-01-07 Medtronic, Inc. Apparatus for replacing a cardiac valve
US7544206B2 (en) 2001-06-29 2009-06-09 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
FR2826863B1 (en) 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
US7097659B2 (en) * 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US6976995B2 (en) 2002-01-30 2005-12-20 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
CO5500017A1 (en) * 2002-09-23 2005-03-31 3F Therapeutics Inc MITRAL PROTESTIC VALVE
US7393339B2 (en) * 2003-02-21 2008-07-01 C. R. Bard, Inc. Multi-lumen catheter with separate distal tips
US9579194B2 (en) * 2003-10-06 2017-02-28 Medtronic ATS Medical, Inc. Anchoring structure with concave landing zone
EP1689329A2 (en) * 2003-11-12 2006-08-16 Medtronic Vascular, Inc. Cardiac valve annulus reduction system
US20060271174A1 (en) * 2003-12-19 2006-11-30 Gregory Nieminen Mitral Valve Annuloplasty Device with Wide Anchor
US9526616B2 (en) 2003-12-19 2016-12-27 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
EP1753374A4 (en) 2004-04-23 2010-02-10 3F Therapeutics Inc Implantable prosthetic valve
US20060052867A1 (en) * 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
US8562672B2 (en) * 2004-11-19 2013-10-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
CA2588140C (en) * 2004-11-19 2013-10-01 Medtronic Inc. Method and apparatus for treatment of cardiac valves
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US8608797B2 (en) 2005-03-17 2013-12-17 Valtech Cardio Ltd. Mitral valve treatment techniques
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
EP1945142B1 (en) 2005-09-26 2013-12-25 Medtronic, Inc. Prosthetic cardiac and venous valves
US7749249B2 (en) 2006-02-21 2010-07-06 Kardium Inc. Method and device for closing holes in tissue
US20070238979A1 (en) * 2006-03-23 2007-10-11 Medtronic Vascular, Inc. Reference Devices for Placement in Heart Structures for Visualization During Heart Valve Procedures
US8075615B2 (en) * 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US20070232898A1 (en) 2006-03-31 2007-10-04 Medtronic Vascular, Inc. Telescoping Catheter With Electromagnetic Coils for Imaging and Navigation During Cardiac Procedures
US7503932B2 (en) * 2006-04-11 2009-03-17 Cardiac Dimensions, Inc. Mitral valve annuloplasty device with vena cava anchor
US20070244556A1 (en) * 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Annuloplasty Device Having a Helical Anchor and Methods for its Use
US20070244555A1 (en) * 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Annuloplasty Device Having a Helical Anchor and Methods for its Use
US7699892B2 (en) 2006-04-12 2010-04-20 Medtronic Vascular, Inc. Minimally invasive procedure for implanting an annuloplasty device
US8551161B2 (en) * 2006-04-25 2013-10-08 Medtronic Vascular, Inc. Cardiac valve annulus restraining device
US8449605B2 (en) 2006-06-28 2013-05-28 Kardium Inc. Method for anchoring a mitral valve
US11389232B2 (en) 2006-06-28 2022-07-19 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US8920411B2 (en) 2006-06-28 2014-12-30 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US9119633B2 (en) 2006-06-28 2015-09-01 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US10028783B2 (en) 2006-06-28 2018-07-24 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US11285005B2 (en) 2006-07-17 2022-03-29 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US7837610B2 (en) 2006-08-02 2010-11-23 Kardium Inc. System for improving diastolic dysfunction
US8348996B2 (en) 2006-09-19 2013-01-08 Medtronic Ventor Technologies Ltd. Valve prosthesis implantation techniques
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
EP2083901B1 (en) 2006-10-16 2017-12-27 Medtronic Ventor Technologies Ltd. Transapical delivery system with ventriculo-arterial overflow bypass
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US9974653B2 (en) 2006-12-05 2018-05-22 Valtech Cardio, Ltd. Implantation of repair devices in the heart
JP2010511469A (en) 2006-12-05 2010-04-15 バルテック カーディオ,リミティド Segmented ring placement
JP5593545B2 (en) * 2006-12-06 2014-09-24 メドトロニック シーブイ ルクセンブルク エス.アー.エール.エル. System and method for transapical delivery of a self-expanding valve secured to an annulus
US20100121433A1 (en) * 2007-01-08 2010-05-13 Millipede Llc, A Corporation Of Michigan Reconfiguring heart features
US9192471B2 (en) * 2007-01-08 2015-11-24 Millipede, Inc. Device for translumenal reshaping of a mitral valve annulus
US20100249920A1 (en) * 2007-01-08 2010-09-30 Millipede Llc Reconfiguring heart features
AU2008216670B2 (en) * 2007-02-15 2013-10-17 Medtronic, Inc. Multi-layered stents and methods of implanting
CA2677648C (en) * 2007-02-16 2015-10-27 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US20080249618A1 (en) * 2007-04-09 2008-10-09 Medtronic Vascular, Inc. Repair of Incompetent Heart Valves by Interstitial Implantation of Space Occupying Materials or Devices
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
FR2915087B1 (en) 2007-04-20 2021-11-26 Corevalve Inc IMPLANT FOR TREATMENT OF A HEART VALVE, IN PARTICULAR OF A MITRAL VALVE, EQUIPMENT INCLUDING THIS IMPLANT AND MATERIAL FOR PLACING THIS IMPLANT.
US20080269876A1 (en) * 2007-04-24 2008-10-30 Medtronic Vascular, Inc. Repair of Incompetent Heart Valves by Papillary Muscle Bulking
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
US10856970B2 (en) 2007-10-10 2020-12-08 Medtronic Ventor Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US8906011B2 (en) 2007-11-16 2014-12-09 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US9393115B2 (en) 2008-01-24 2016-07-19 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8628566B2 (en) * 2008-01-24 2014-01-14 Medtronic, Inc. Stents for prosthetic heart valves
US20090287290A1 (en) * 2008-01-24 2009-11-19 Medtronic, Inc. Delivery Systems and Methods of Implantation for Prosthetic Heart Valves
WO2009094188A2 (en) 2008-01-24 2009-07-30 Medtronic, Inc. Stents for prosthetic heart valves
US9089422B2 (en) 2008-01-24 2015-07-28 Medtronic, Inc. Markers for prosthetic heart valves
US8157853B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US9149358B2 (en) * 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
ES2903231T3 (en) 2008-02-26 2022-03-31 Jenavalve Tech Inc Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
WO2009108355A1 (en) 2008-02-28 2009-09-03 Medtronic, Inc. Prosthetic heart valve systems
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8430927B2 (en) 2008-04-08 2013-04-30 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
US8696743B2 (en) * 2008-04-23 2014-04-15 Medtronic, Inc. Tissue attachment devices and methods for prosthetic heart valves
US8312825B2 (en) * 2008-04-23 2012-11-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US7972370B2 (en) * 2008-04-24 2011-07-05 Medtronic Vascular, Inc. Stent graft system and method of use
US20090287304A1 (en) * 2008-05-13 2009-11-19 Kardium Inc. Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve
US8840661B2 (en) 2008-05-16 2014-09-23 Sorin Group Italia S.R.L. Atraumatic prosthetic heart valve prosthesis
EP2296744B1 (en) 2008-06-16 2019-07-31 Valtech Cardio, Ltd. Annuloplasty devices
US8006594B2 (en) * 2008-08-11 2011-08-30 Cardiac Dimensions, Inc. Catheter cutting tool
US8998981B2 (en) 2008-09-15 2015-04-07 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8986361B2 (en) 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
EP2379008B1 (en) 2008-12-22 2021-02-17 Valtech Cardio, Ltd. Adjustable annuloplasty devices
US8241351B2 (en) 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
US8147542B2 (en) 2008-12-22 2012-04-03 Valtech Cardio, Ltd. Adjustable repair chords and spool mechanism therefor
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US8911494B2 (en) 2009-05-04 2014-12-16 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
EP2682072A1 (en) 2008-12-23 2014-01-08 Sorin Group Italia S.r.l. Expandable prosthetic valve having anchoring appendages
US8361093B2 (en) * 2009-01-23 2013-01-29 Genesee Biomedical, Inc. Band forming apparatus
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
CN101919753A (en) * 2009-03-30 2010-12-22 卡迪万蒂奇医药公司 The nothing of prosthetic aortic valve or mitral valve is sewed up implantation method and device
US8512397B2 (en) 2009-04-27 2013-08-20 Sorin Group Italia S.R.L. Prosthetic vascular conduit
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
EP2482749B1 (en) 2009-10-01 2017-08-30 Kardium Inc. Kit for constricting tissue or a bodily orifice, for example, a mitral valve
US8808369B2 (en) * 2009-10-05 2014-08-19 Mayo Foundation For Medical Education And Research Minimally invasive aortic valve replacement
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
WO2011067770A1 (en) 2009-12-02 2011-06-09 Valtech Cardio, Ltd. Delivery tool for implantation of spool assembly coupled to a helical anchor
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
US9107749B2 (en) 2010-02-03 2015-08-18 Edwards Lifesciences Corporation Methods for treating a heart
US9226826B2 (en) * 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
IT1400327B1 (en) 2010-05-21 2013-05-24 Sorin Biomedica Cardio Srl SUPPORT DEVICE FOR VALVULAR PROSTHESIS AND CORRESPONDING CORRESPONDENT.
JP2013526388A (en) 2010-05-25 2013-06-24 イエナバルブ テクノロジー インク Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent
US9050066B2 (en) 2010-06-07 2015-06-09 Kardium Inc. Closing openings in anatomical tissue
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US8448555B2 (en) * 2010-07-28 2013-05-28 Triaxial Structures, Inc. Braided loop utilizing bifurcation technology
WO2012019052A2 (en) * 2010-08-04 2012-02-09 Micardia Corporation Percutaneous transcatheter repair of heart valves
WO2012027500A2 (en) 2010-08-24 2012-03-01 Edwards Lifesciences Corporation Flexible annuloplasty ring with select control points
US20120053680A1 (en) 2010-08-24 2012-03-01 Bolling Steven F Reconfiguring Heart Features
AU2011296361B2 (en) 2010-09-01 2015-05-28 Medtronic Vascular Galway Prosthetic valve support structure
US8940002B2 (en) 2010-09-30 2015-01-27 Kardium Inc. Tissue anchor system
US9452016B2 (en) 2011-01-21 2016-09-27 Kardium Inc. Catheter system
CA2764494A1 (en) 2011-01-21 2012-07-21 Kardium Inc. Enhanced medical device for use in bodily cavities, for example an atrium
US11259867B2 (en) 2011-01-21 2022-03-01 Kardium Inc. High-density electrode-based medical device system
US9480525B2 (en) 2011-01-21 2016-11-01 Kardium, Inc. High-density electrode-based medical device system
EP2486894B1 (en) 2011-02-14 2021-06-09 Sorin Group Italia S.r.l. Sutureless anchoring device for cardiac valve prostheses
ES2641902T3 (en) 2011-02-14 2017-11-14 Sorin Group Italia S.R.L. Sutureless anchoring device for cardiac valve prostheses
US8454656B2 (en) * 2011-03-01 2013-06-04 Medtronic Ventor Technologies Ltd. Self-suturing anchors
US9072511B2 (en) 2011-03-25 2015-07-07 Kardium Inc. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
WO2012158187A1 (en) 2011-05-17 2012-11-22 Boston Scientific Scimed, Inc. Corkscrew annuloplasty device
WO2012158258A1 (en) 2011-05-17 2012-11-22 Boston Scientific Scimed, Inc. Annuloplasty ring with piercing wire and segmented wire lumen
US8523940B2 (en) * 2011-05-17 2013-09-03 Boston Scientific Scimed, Inc. Annuloplasty ring with anchors fixed by curing polymer
US9402721B2 (en) 2011-06-01 2016-08-02 Valcare, Inc. Percutaneous transcatheter repair of heart valves via trans-apical access
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US9918840B2 (en) 2011-06-23 2018-03-20 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US8858623B2 (en) * 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
EP3656434B1 (en) 2011-11-08 2021-10-20 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
ES2523223T3 (en) 2011-12-29 2014-11-24 Sorin Group Italia S.R.L. A kit for the implantation of prosthetic vascular ducts
USD777925S1 (en) 2012-01-20 2017-01-31 Kardium Inc. Intra-cardiac procedure device
USD777926S1 (en) 2012-01-20 2017-01-31 Kardium Inc. Intra-cardiac procedure device
US9839519B2 (en) * 2012-02-29 2017-12-12 Valcare, Inc. Percutaneous annuloplasty system with anterior-posterior adjustment
US9180008B2 (en) 2012-02-29 2015-11-10 Valcare, Inc. Methods, devices, and systems for percutaneously anchoring annuloplasty rings
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
US9011515B2 (en) 2012-04-19 2015-04-21 Caisson Interventional, LLC Heart valve assembly systems and methods
US9445899B2 (en) 2012-08-22 2016-09-20 Joseph M. Arcidi Method and apparatus for mitral valve annuloplasty
US10543088B2 (en) 2012-09-14 2020-01-28 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US10849755B2 (en) 2012-09-14 2020-12-01 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
WO2014052818A1 (en) 2012-09-29 2014-04-03 Mitralign, Inc. Plication lock delivery system and method of use thereof
WO2014064694A2 (en) 2012-10-23 2014-05-01 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
EP2928538B1 (en) * 2012-12-07 2018-11-21 Valcare, Inc. Devices for percutaneously anchoring annuloplasty rings
EP2948103B1 (en) 2013-01-24 2022-12-07 Cardiovalve Ltd Ventricularly-anchored prosthetic valves
EP2961351B1 (en) 2013-02-26 2018-11-28 Mitralign, Inc. Devices for percutaneous tricuspid valve repair
WO2014132260A1 (en) * 2013-02-28 2014-09-04 Mor Research Applications Ltd. Adjustable annuloplasty apparatus
US9687346B2 (en) 2013-03-14 2017-06-27 Edwards Lifesciences Corporation Multi-stranded heat set annuloplasty rings
CN105263443B (en) 2013-03-14 2017-11-14 心肺医疗股份有限公司 Sutureless valve prosthesis delivery apparatus and its application method
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
US9724195B2 (en) 2013-03-15 2017-08-08 Mitralign, Inc. Translation catheters and systems
EP3804646A1 (en) 2013-03-15 2021-04-14 Valcare, Inc. Systems for delivery of annuloplasty rings
US9629718B2 (en) 2013-05-03 2017-04-25 Medtronic, Inc. Valve delivery tool
US10813751B2 (en) 2013-05-22 2020-10-27 Valcare, Inc. Transcatheter prosthetic valve for mitral or tricuspid valve replacement
EP3003187B1 (en) 2013-05-24 2023-11-08 Valcare, Inc. Heart and peripheral vascular valve replacement in conjunction with a support ring
US11058417B2 (en) 2013-06-28 2021-07-13 Valcare, Inc. Device, system, and method to secure an article to a tissue
US9801710B2 (en) * 2013-07-09 2017-10-31 Edwards Lifesciences Corporation Collapsible cardiac implant and deployment system and methods
JP6563394B2 (en) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド Radially foldable frame for an artificial valve and method for manufacturing the frame
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
US9050188B2 (en) 2013-10-23 2015-06-09 Caisson Interventional, LLC Methods and systems for heart valve therapy
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
FR3023704B1 (en) * 2014-07-15 2016-08-26 Mustapha Ladjali DEVICE FOR ENDOVASCULAR TREATMENT OF A CARDIAC VALVE FOR PERCUTANE VALVE REPLACEMENT
US9180005B1 (en) 2014-07-17 2015-11-10 Millipede, Inc. Adjustable endolumenal mitral valve ring
US9801719B2 (en) * 2014-08-15 2017-10-31 Edwards Lifesciences Corporation Annulus rings with suture clips
EP3191025B1 (en) * 2014-09-08 2020-12-09 Medtentia International Ltd Oy Annuloplasty implant
US10195030B2 (en) 2014-10-14 2019-02-05 Valtech Cardio, Ltd. Leaflet-restraining techniques
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
CN106999178B (en) 2014-12-02 2019-12-24 4科技有限公司 Eccentric tissue anchor
EP3232941B1 (en) 2014-12-19 2023-11-08 Meacor, Inc. Surgical system
EP3253333B1 (en) 2015-02-05 2024-04-03 Cardiovalve Ltd Prosthetic valve with axially-sliding frames
EP3256077B1 (en) 2015-02-13 2024-03-27 Boston Scientific Scimed, Inc. Valve replacement using rotational anchors
US20160256269A1 (en) 2015-03-05 2016-09-08 Mitralign, Inc. Devices for treating paravalvular leakage and methods use thereof
JP6785786B2 (en) 2015-03-19 2020-11-18 ケーソン・インターヴェンショナル・エルエルシー Systems and methods for heart valve treatment
CN114515173A (en) 2015-04-30 2022-05-20 瓦尔泰克卡迪欧有限公司 Valvuloplasty techniques
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
DE102015107242B4 (en) * 2015-05-08 2022-11-03 Highlife Sas System for implanting an implant around a peripheral tissue structure in a heart and method for placing and delivering an implant on a guidewire of such a system
EP3539509B1 (en) 2015-06-01 2021-07-07 Edwards Lifesciences Corporation Cardiac valve repair devices configured for percutaneous delivery
US10335275B2 (en) 2015-09-29 2019-07-02 Millipede, Inc. Methods for delivery of heart valve devices using intravascular ultrasound imaging
EP3377000B1 (en) 2015-11-17 2023-02-01 Boston Scientific Scimed, Inc. Implantable device and delivery system for reshaping a heart valve annulus
WO2017117370A2 (en) 2015-12-30 2017-07-06 Mitralign, Inc. System and method for reducing tricuspid regurgitation
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
WO2017117388A1 (en) 2015-12-30 2017-07-06 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US10357365B2 (en) * 2016-03-07 2019-07-23 Serca Biomedical, LLC Annuloplasty repair devices, systems and methods
EP3454795B1 (en) 2016-05-13 2023-01-11 JenaValve Technology, Inc. Heart valve prosthesis delivery system for delivery of heart valve prosthesis with introducer sheath and loading system
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
GB201611910D0 (en) 2016-07-08 2016-08-24 Valtech Cardio Ltd Adjustable annuloplasty device with alternating peaks and troughs
WO2018029680A1 (en) 2016-08-10 2018-02-15 Mitraltech Ltd. Prosthetic valve with concentric frames
CN107753153B (en) 2016-08-15 2022-05-31 沃卡尔有限公司 Device and method for treating heart valve insufficiency
CR20190069A (en) 2016-08-26 2019-05-14 Edwards Lifesciences Corp Heart valve docking coils and systems
US10722359B2 (en) 2016-08-26 2020-07-28 Edwards Lifesciences Corporation Heart valve docking devices and systems
CN106236325B (en) 2016-09-26 2018-10-16 上海纽脉医疗科技有限公司 Artificial mitral valve forming ring conveyer and artificial mitral valve forming ring transport system
US10420565B2 (en) 2016-11-29 2019-09-24 Abbott Cardiovascular Systems Inc. Cinch and post for tricuspid valve repair
US10548614B2 (en) * 2016-11-29 2020-02-04 Evalve, Inc. Tricuspid valve repair system
HRP20230241T1 (en) 2016-12-16 2023-04-14 Edwards Lifesciences Corporation Deployment systems and tools for delivering an anchoring device for a prosthetic valve
JP7094965B2 (en) 2017-01-27 2022-07-04 イエナバルブ テクノロジー インク Heart valve imitation
US10548731B2 (en) 2017-02-10 2020-02-04 Boston Scientific Scimed, Inc. Implantable device and delivery system for reshaping a heart valve annulus
US10952852B2 (en) 2017-02-24 2021-03-23 Abbott Cardiovascular Systems Inc. Double basket assembly for valve repair
US10390953B2 (en) 2017-03-08 2019-08-27 Cardiac Dimensions Pty. Ltd. Methods and devices for reducing paravalvular leakage
CN108618871A (en) 2017-03-17 2018-10-09 沃卡尔有限公司 Bicuspid valve with multi-direction anchor portion or tricuspid valve repair system
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
USD890333S1 (en) 2017-08-21 2020-07-14 Edwards Lifesciences Corporation Heart valve docking coil
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US11135062B2 (en) * 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
CN110013356B (en) 2018-01-07 2023-08-01 苏州杰成医疗科技有限公司 Heart valve prosthesis delivery system
CN111655200B (en) 2018-01-24 2023-07-14 爱德华兹生命科学创新(以色列)有限公司 Contraction of annuloplasty structures
WO2019145941A1 (en) 2018-01-26 2019-08-01 Valtech Cardio, Ltd. Techniques for facilitating heart valve tethering and chord replacement
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
JP7109657B2 (en) 2018-05-23 2022-07-29 コーシム・ソチエタ・ア・レスポンサビリタ・リミタータ heart valve prosthesis
CN108478310A (en) * 2018-06-08 2018-09-04 倪鸣 A kind of tricuspid valve forming ring of adjustable length and angle
CA3106104A1 (en) 2018-07-12 2020-01-16 Valtech Cardio, Ltd. Annuloplasty systems and locking tools therefor
WO2020117842A1 (en) 2018-12-03 2020-06-11 Valcare, Inc. Stabilizing and adjusting tool for controlling a minimally invasive mitral / tricuspid valve repair system
US11534303B2 (en) 2020-04-09 2022-12-27 Evalve, Inc. Devices and systems for accessing and repairing a heart valve
CN114173713A (en) 2019-07-15 2022-03-11 沃卡尔有限公司 Transcatheter bioprosthetic member and support structure
CN114786621A (en) 2019-10-29 2022-07-22 爱德华兹生命科学创新(以色列)有限公司 Annuloplasty and tissue anchoring techniques
CN114727866A (en) * 2019-12-03 2022-07-08 波士顿科学国际有限公司 Percutaneous sling for accessing papillary muscles
JP2023554000A (en) 2020-12-14 2023-12-26 カーディアック・ディメンションズ・プロプライエタリー・リミテッド Modular preloaded medical implants and delivery systems
CN113558826B (en) * 2021-08-12 2022-11-29 上海御瓣医疗科技有限公司 Transcatheter heart valve annuloplasty system
CN114452038B (en) * 2021-09-28 2023-10-03 上海翰凌医疗器械有限公司 Mitral valve forming ring with cladding substrate
WO2023235620A1 (en) * 2022-06-04 2023-12-07 The Board Of Trustees Of The Leland Stanford Junior University Adjustable aortic annuloplasty rings for symmetric annulus reduction and methods for use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062263A2 (en) * 2001-02-05 2002-08-15 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
WO2004112585A2 (en) * 2003-06-20 2004-12-29 Medtronic Vascular, Inc. Valve annulus reduction system
WO2005025644A2 (en) * 2003-09-04 2005-03-24 Guided Delivery Systems, Inc. Delivery devices and mehods for heart valve repair
WO2005046488A2 (en) * 2003-11-12 2005-05-26 Medtronic Vascular, Inc. Cardiac valve annulus reduction system
WO2005058206A1 (en) * 2003-12-16 2005-06-30 Edwards Lifesciences Ag Device for changing the shape of the mitral annulus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1584307A3 (en) * 1999-04-23 2005-10-19 St.Jude Medical ATG, Inc. Artificial heart valve with attachment fingers
FR2799364B1 (en) * 1999-10-12 2001-11-23 Jacques Seguin MINIMALLY INVASIVE CANCELING DEVICE
US6569198B1 (en) * 2000-03-31 2003-05-27 Richard A. Wilson Mitral or tricuspid valve annuloplasty prosthetic device
US6805711B2 (en) * 2000-06-02 2004-10-19 3F Therapeutics, Inc. Expandable medical implant and percutaneous delivery
ATE381291T1 (en) * 2000-06-23 2008-01-15 Viacor Inc AUTOMATIC ANNUAL FOLDING FOR MITRAL VALVE REPAIR
US6419696B1 (en) * 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US6619291B2 (en) * 2001-04-24 2003-09-16 Edwin J. Hlavka Method and apparatus for catheter-based annuloplasty
US6764510B2 (en) * 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US7572289B2 (en) * 2004-01-27 2009-08-11 Med Institute, Inc. Anchoring barb for attachment to a medical prosthesis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062263A2 (en) * 2001-02-05 2002-08-15 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
WO2004112585A2 (en) * 2003-06-20 2004-12-29 Medtronic Vascular, Inc. Valve annulus reduction system
WO2005025644A2 (en) * 2003-09-04 2005-03-24 Guided Delivery Systems, Inc. Delivery devices and mehods for heart valve repair
WO2005046488A2 (en) * 2003-11-12 2005-05-26 Medtronic Vascular, Inc. Cardiac valve annulus reduction system
WO2005058206A1 (en) * 2003-12-16 2005-06-30 Edwards Lifesciences Ag Device for changing the shape of the mitral annulus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141665A1 (en) * 2008-05-22 2009-11-26 Prakash Punjabi Heart valve repair device
US9956078B2 (en) 2011-06-29 2018-05-01 Mitralix Ltd. Heart valve repair devices and methods
US11039924B2 (en) 2011-06-29 2021-06-22 Mitralix Ltd. Heart valve repair devices and methods
US10098738B2 (en) 2014-06-26 2018-10-16 Mitralix Ltd. Heart valve repair devices for placement in ventricle and delivery systems for implanting heart valve repair devices
US10864079B2 (en) 2014-06-26 2020-12-15 Mitralix Ltd. Heart valve repair devices for placement in ventricle and delivery systems for implanting heart valve repair devices

Also Published As

Publication number Publication date
EP1922031A1 (en) 2008-05-21
US20070027533A1 (en) 2007-02-01
JP2009502324A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
US20070027533A1 (en) Cardiac valve annulus restraining device
US20200188113A1 (en) Method for stabilizing a cardiac valve annulus
US11523901B2 (en) Systems for placing a coapting member between valvular leaflets
US10463483B2 (en) Minimally invasive mitral valve replacement with brim
EP3370649B1 (en) Devices for reducing cardiac valve regurgitation
CN107690323B (en) Low profile prosthetic heart valve for replacing mitral valve
US7655040B2 (en) Cardiac valve annulus reduction system
US7695510B2 (en) Annuloplasty device having shape-adjusting tension filaments
US10226334B2 (en) Method for replacing mitral valve
EP3037064B1 (en) Minimally invasive mitral valve replacement with brim
CA2872611C (en) Systems and methods for placing a coapting member between valvular leaflets
EP2858599B1 (en) Device for percutaneous valve annuloplasty
EP2583640B1 (en) Minimally invasive replacement heart valve
US9289295B2 (en) Tissue restraining devices and methods of use
US20060282161A1 (en) Valve annulus reduction system
US20070100439A1 (en) Chordae tendinae restraining ring
US20070255396A1 (en) Chrodae Tendinae Girdle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008523960

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006787744

Country of ref document: EP