WO2007022021A1 - Linearly expanding spine cage for enhanced spinal fusion - Google Patents

Linearly expanding spine cage for enhanced spinal fusion Download PDF

Info

Publication number
WO2007022021A1
WO2007022021A1 PCT/US2006/031528 US2006031528W WO2007022021A1 WO 2007022021 A1 WO2007022021 A1 WO 2007022021A1 US 2006031528 W US2006031528 W US 2006031528W WO 2007022021 A1 WO2007022021 A1 WO 2007022021A1
Authority
WO
WIPO (PCT)
Prior art keywords
lec
bone
cage
expansion
linearly
Prior art date
Application number
PCT/US2006/031528
Other languages
French (fr)
Inventor
R. Thomas Grotz
Original Assignee
Innvotec Surgical Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innvotec Surgical Inc. filed Critical Innvotec Surgical Inc.
Publication of WO2007022021A1 publication Critical patent/WO2007022021A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/446Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages having a circular or elliptical cross-section substantially parallel to the axis of the spine, e.g. cylinders or frustocones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • A61B2017/0256Joint distractors for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2817Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30153Convex polygonal shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30507Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a threaded locking member, e.g. a locking screw or a set screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30537Special structural features of bone or joint prostheses not otherwise provided for adjustable
    • A61F2002/3055Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30593Special structural features of bone or joint prostheses not otherwise provided for hollow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • A61F2002/30616Sets comprising a plurality of prosthetic parts of different sizes or orientations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30975Designing or manufacturing processes made of two halves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2002/448Joints for the spine, e.g. vertebrae, spinal discs comprising multiple adjacent spinal implants within the same intervertebral space or within the same vertebra, e.g. comprising two adjacent spinal implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4625Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use
    • A61F2002/4627Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use with linear motion along or rotating motion about the instrument axis or the implantation direction, e.g. telescopic, along a guiding rod, screwing inside the instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0019Angular shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00976Coating or prosthesis-covering structure made of proteins or of polypeptides, e.g. of bone morphogenic proteins BMP or of transforming growth factors TGF

Definitions

  • the present invention relates generally to the field of medical devices for stabilizing the vertebral motion segment. More particularly, the present invention relates to a linearly expanding spine cage (LEC), and a method for providing improved spinal intervertebral body distraction and fusion.
  • LEC linearly expanding spine cage
  • a conventional spine cage or implant 101 is characterized by a cylindrical body comprising a plurality of threads 104 provided on the exterior surface for contact with adjacent vertebral segments or endplates 102a and 102b, which are shown as blocks for clarity.
  • Conventional spine cage 101 is typically inserted in tandem between vertebral segments 102a and 102b.
  • Such existing devices for interbody stabilization such as conventional spine cage or implant 101, have important and significant limitations. These limitations include an inability to expand and distract the endplates. Separation of the endplates serves to create lordosis within the spine.
  • Current devices for interbody stabilization include static spacers composed of titanium, PEEK, a high performance thermoplastic polymer produced by VICTREX, (Victrex USA Inc., 3 A Caledon Court; Greenville, SC 29615), carbon fiber, or resorbable polymers. Current interbody spacers do not improve interbody lordosis and can contribute to the formation of a kyphotic segment and the clinical problem of "flatback syndrome.” .
  • Another problem with conventional devices for interbody stabilization includes poor interface between bone and biomaterial.
  • Conventional static interbody spacers form a weak interface between bone and biomaterial.
  • the surface of such implants is typically provided with a series of circumferential threads or grooves 104, such threads are uniform and are in parallel with applied horizontal vectors or side to side motion. That is, the threads offer no resistance to movement applied to either side 106 of the endplates (as opposed to force applied to the front or back.
  • nonunion is common in allograft, titanium, and polymer spacers, due to motion between the implant and host bone.
  • Conventional devices typically do not expand between adjacent vertebrae.
  • interbody spacers Another problem of conventional interbody spacers is their large diameter requiring wide exposure.
  • Existing devices used for interbody spacers include structural allograft, threaded cages, cylindrical cages, and boomerang-shaped cages.
  • Conventional devices have significant limitation with regard to safety and efficacy.
  • safety of the interbody spacers injury to neural elements may occur with placement from an anterior or posterior approach.
  • a conventional spine cage lacks the ability to expand linearly in a vertical direction without also changing position or expanding laterally, thus working against stable fixation.
  • an expanding spine cage that is capable of insertion with minimal invasion into a smaller aperture.
  • Such a minimally sized spine cage advantageously could be expanded by instrumental force application. Due to the small size of the cage, the nerves can be anatomically separated from the cage proximity, thus allowing a greater level of safety during the surgical procedure.
  • Such an expandable implant would permit a more narrow exposure in the space outside of the vertebral body, with expansion inside of the interbody space.
  • interbody implants have limited space available for bone graft. Adequate bone graft or bone graft substitute is critical for a solid interbody arthrodesis. It would be desirable to providean expandable interbody cage will provide a large volume of bone graft material to be placed within the interbody space. Additionally, conventional interbody implants lack the ability to stabilize endplates completely and prevent them from moving. Therefore, what is also needed is an expanding spine cage wherein the vertebral endplates are subject to forces that both distract them apart, and hold them from moving. Such an interbody cage would be capable of stabilization of the motion segment, thereby reducing micro-motion, and discouraging pseudo arthrosis (incomplete fusion) and pain.
  • a spine cage or implant that is capable of increasing its expansion diameter to a calculated degree. Such a spine cage would permit restoration of normal spinal alignment after surgery and hold the spine segments together rigidly, mechanically, until healing occurs. What is also needed is an expanding cage or implant that is capable of holding vertebral or joint sections with increased pullout strength to minimize the chance of implant subsidence in the healing period.
  • An aspect of the invention comprises a linearly expanding spine cage (LEC) comprising two halves joined along a common longitudinal axis to form a cylinder with a minimized diameter in its unexpended state that is equal to the diameter of an insertion groove cut in adjacent vertebral bodies.
  • LEC linearly expanding spine cage
  • the LEC is thus conformably engaged between the endplates of adjacent vertebra to effectively distract the intervertebral area, restore space for neural elements, stabilize the motion segment and eliminate pathologic segmental motion.
  • the LEC enhances spinal arthrodesis by creating a rigid spine segment.
  • the LEC provides a significant advantage by enabling a comparatively large quantity of bone growth enhancing agents to be contained within its interior and communicated directly to adjacent bone over a maximized surface area due to a perforated design with apertures dispersed through multiple rows of corrugations, ridges, points, troughs or other features for bone engagement provided on radial surfaces of LEC halves. Importantly, this results in fixation forces greater than adjacent bone and soft tissue failure forces.
  • the cage height increases to hold the vertebrae, while the width remains stable so as to decrease impingement upon a second cage, or upon soft tissue structures in the immediate vicinity (neural elements).
  • the cages may be inserted in parallel, or obliquely to accommodate located anatomy, and to adjust deformities such as scoliosis, kyphosis, and spondylolisthesis.
  • the clinical goals of the LEC and method for its insertion reduce pain, improve function, and permit early mobilization of the patient after fusion surgery. Since the LEC pullout forces are greater than vertebral body failure forces, patients can mobilize more quickly than was previously possible. Once healing (fusion or arthrodesis) does occur, the implants become incorporated and their role becomes quiescent.
  • the present LEC provides more internal to external graft bone space exposure, easier insertion, less risk of insertional damage to nerve roots and other tissue, and thus a substantially improved immediate and long term result.
  • the specialized exterior on the outside of the LEC seeks to balance multiple projections, tines, or other bone engaging features that will hold firmly adjacent bone to prevent prosthetic extrusion, while being sufficiently rounded so as to avoid injuring nearby nerve or vascular structures. Bone ingrowth is encouraged by the perforated design of the LEC and the exterior corrugations that greatly increase the surface area of the LEC that conformably engages adjacent vertebral bone. By avoiding a square or rectangular configuration, the LEC is less prone toward subsidence.
  • Figure 1 is a perspective view of a conventional non-expanding cylindrical spine cage, resembling products in current use.
  • Figure 2 is a perspective view of two cannulas inserted between vertebrae for placement of a spine cage and a cutting tool according to an aspect of the invention.
  • Figure 3 is the perspective view of Figure 2 with an upper vertebra removed for clarity.
  • Figure 4 is a perspective view of an insertion tool for positioning a spine cage between vertebrae according to an aspect of the invention.
  • FIG. 5 is a perspective view of a linearly expanding spine cage (LEC) according to an aspect of the invention.
  • LEC linearly expanding spine cage
  • Figure 6 A is a perspective view of the interior of a first half of the LEC of Figure 5 according to an aspect of the invention.
  • Figure 6B is a perspective view of the interior of a second half of the LEC of.
  • Figure 5 according to an aspect of the invention
  • Figure 7 is a perspective view of the LEC of Figure 5 showing the expansion mechanism according to an aspect of the invention.
  • Figure 8 is a perspective interior view of the LEC of Figure 5 showing the expansion mechanism according to an aspect of the invention.
  • Figure 9 is a stylized view of the LEC showing linear expansion into corresponding grooves in bone according to an aspect of the invention.
  • Figure 1OA is a stylized cross-sectional view of the placement of two LECs between vertebral structures for adjustment of spinal alignment according to an aspect of the invention.
  • Figure 1OB is a stylized cross-sectional view of the vertical expansion of a first LEC relative to a second LEC for adjustment of spinal alignment according to an aspect of the invention.
  • Figure 1OC is perspective view showing how the angle of the expansion wedge in the LEC can be selected to impart varying degrees of expansion to the LEC for a full range of adjustment of spinal alignment according to an aspect of the invention.
  • vertebral segments 202a and 202b are shown with an 8 mm gap representing an average intervertebral space 204.
  • the vertebral segments 202a and 202b are shown as blocks for clarity. A complete discectomy is performed prior to the insertion of the LEC.
  • the intervertebral disc occupying space 204 will be removed using standard techniques including rongeur, curettage, and endplate preparation to bleeding subchondral bone.
  • the posterior longitudinal ligament will be divided to permit expansion of the intervertebral space.
  • the intervertebral space 204 will be distracted to 10 mm using a rotating spatula (Not shown. This is a device that looks like a wide screw driver that can be placed into the disc space horizontally and turned 90 degrees to separate the endplates).
  • one or two 10mm cage cannulas 206 are inserted between the vertebral segments 202a and 202b. It will be appreciated that the present cannulas can be made smaller than conventional cannulas due to the expanding nature of the 10 mm spine cage and thereby minimize trauma to nerve roots in the spinal column.
  • Each cannula has a fork 208 on the front end which is 10mm tall. The fork properly levels the vertebrae for operation.
  • Each cannula also has four spikes 210 which tap into the vertebrae above and below thereby preventing bone movement during the operation. For clarity, only the two top spikes are shown. Additional spikes may be added if needed.
  • the spiked tips 210 of the insertion cannulas advantageously stabilize the working surfaces of the vertebral segments to a high degree such that all bone movement and misalignment is substantially prevented during the operation.
  • a narrow cannula in place, the neural and vascular elements are protected and a safe working channel is created for endplate preparation and cage placement. Insertion of the cage follows tapping of the endplates, or vertebral segments.
  • a 10mm diameter motorized cutting tool 212 is inserted through a cannula.
  • Cutting tool bit 214 is attached to the distal end of motorized cutting tool 212.
  • the cutting bit is shaped like a hole saw which will cut and capture bone debris.
  • the non-cutting end of the cutting tool bit may be provided with a depth marking to indicate the depth of the cut.
  • a limiter such as a hard stop or "step off can be added to prevent cutting too deeply.
  • the vertebral surface will have a radial or rounded cut 216 acting as a base for stabilized, conformable receipt of a 10 mm diameter spine cage.
  • Figure 5 shows two such radial cuts or grooves 216 made by cutting tool 212 for placement of a spine cage.
  • a tap with a fixed end point may be adequate to make a path for the cage to be inserted.
  • the LEC cage 218 is, for example, only on average about 10mm in width -the same diameter as the groove 216 made by cutting tool 212. This is critical because conventional cages are 14-16mm high and wide, making them quite difficult to insert. Such conventional cages require large cannulas for insertion and subject nerve roots to trauma and injury. Mispositioning such a cage by as little as 3 mm can severely injure a nerve root.
  • the present LEC cage can expand to a greater dimension without requiring so much space in insertion.
  • this enables the present cannula to be much smaller than a conventional cannula. This safeguards the nerve roots and minimizes trauma.
  • the 10 mm limitation is an example only.
  • the cannula can be made as small as possible to take advantage of the unique expandable attributes of the LEC.
  • the LEC can expand linearly to a vertical height by approximately 30 -40 per cent.
  • the LEC is characterized by expansion ranges of, for example, from 7mm up to 10 mm; from 9mm up to 12 mm; or 12 mm up to about 16 mm. Due to the wide expansion range, a cannula advantageously can be as small as possible for insertion of the smaller LEC in its unexpanded state.
  • an insertion tool 220 is provided in the cannula through its distal opening.
  • the cannula in Figure 4 has been removed for clarity.
  • the insertion tool is provided with a fork end 222 that conformably holds, for example, a 10 mm LEC for insertion into precut groove 216.
  • the interior surface of the cannula advantageously matches or closely conforms to the exterior profile of the insertion tool and LEC, thereby properly orienting the LEC and preventing the LEC from rotating in the cannula. This further aids in precise placement of the LEC without injury to nearby nerve roots.
  • Wing sections 224 act as a means for stabilizing and perfectly aligning the two halves of LEC 218 during the expansion process as will be explained infra.
  • the wings of the LEC help to orient the LEC properly between the vertebrae.
  • the insertion tool 220 also has depth markings 226 to indicate depth of insertion. A hard stop also can be added to prevent over travel.
  • cylindrical cage 218 comprises two halves, an upper half 218a and a lower half 218b wherein the radial surface of each upper and lower half conformably engages with the corresponding surface of radial cut 216 in each vertebral segment 202a and 202b. (202a is omitted for clarity) in which the LEC 218 is positioned.
  • This is possible due to the minimized shape of the non-expanded spine cage which enables its radius to be substantially the same as that of cutting head 214 and cut or groove 216.
  • This minimized diameter of the LEC further aids in precise placement of the LEC without injury to nearby nerve roots.
  • each half 218a, 218b of the LEC 218 is provided with a series of parallel longitudinally extending ridges 238 disposed along the longitudinal axis of each bone contacting exterior surface of each LEC half 218a, 218b.
  • These parallel longitudinal extending ridges are characterized by a substantially pyramidal cross section (see Figures 6A and 6B) and form multiple rows of rigid engagement surfaces providing strong frictional engagement against slippery bone surfaces, extending the length of the LEC.
  • the parallel ridges are disposed orthogonally with respect to lateral or rotational forces applied to the vertebrae. Due to the plurality of the ridges and depth of their pyramidal cross sections, the ridges strongly resist applied rotational forces.
  • the multiple engagement surfaces provided by the ridges 238 also effectively increase the surface area of the LEC 218 in contact with the radial groove 216 in the bone.
  • the multiple engagement surfaces provided by the ridges 238 strongly lock the LEC in substantially invariant engagement with corresponding vertebral segments 102a and 102b by force from expansion of each LEC half with a corresponding vertebral body or segment.
  • each LEC half 218a, 218b similarly provides a maximized surface area for bone engagement and fixation.
  • the surface configuration of the LEC prevents the LEC from rotating in the groove in the vertebral surface. This further enhances stable fixation of the LEC with he bone and prevents rollover and misalignment.
  • the cylindrical configuration of the LEC and matching radius of grooves 216 provide initially a 360° mating surface or bone to implant interface. This effectively doubles pullout forces with respect to the surface contact currently available in spinal reconstruction.
  • the LEC is capable of withstanding at least 2000 Newtons (force pounds) in the perioperative period.
  • a person In sitting, a person is capable of withstanding typically 1200 Newtons; when standing 800N, and when forward bending and heavy lifting up to 10,000N of intervertebral body force.
  • Titanium is a preferential material for the LEC that achieves at least a 2000 Newton pullout force in the perioperative period.
  • the present LEC provides substantially immediate bone to implant fixation that is stabilized against rotational forces. This achieves an accelerated bone to implant fixation time without joint immobilization.
  • the LEC can be used for large animals; for example horses or large dogs such as 200 Ib. mastiffs, which cannot follow instructions regarding limiting activities after injury and repair.
  • the cannula spikes 210 are removed from the vertebrae and the LEC is expanded. Pulling the cannula out slightly removes the spikes from the vertebrae and allows the vertebrae to be spread.
  • LEC 218 comprises an upper half cylinder 218a and a lower, complementary cylinder half 218b.
  • the cylinder halves 218a, 218b are joined along a longitudinal axis to define a cylinder, the LEC, with an interior space for holding a quantity of bone growth enhancing agents as will be explained.
  • Cylinder halves 218a, 218b also each comprise an integral, expansion alignment structure or generally U shaped wing 224a, 224b integrally formed with each respective LEC half.
  • the upper wing 224a extends tangentially generally downward from the surface of the first cylindrical half 218a.
  • the lower wing 224b extends upward from the radial surface of second cylindrical half 218b, immediately adjacent the first wing.
  • the wings form complementary U-shaped end pieces that lock together the upper and lower portions 218a, 218b of the LEC, holding the LEC 218 together in the closed position while the LEC is inserted in its non expanded state into the substantially congruent groove 216 in a vertebral segment.
  • the complementary adjacent sides of the wings 224a, 224b slidably move against each other in opposite directions during expansion.
  • the wings provide complementary contacting surfaces for equalizing force distribution in each respective LEC half such that the halves expand equally in opposite directions.
  • the wings work cooperatively to control expansion in a linear direction and to maintain the alignment of respective halves of the cage during expansion process. When the LEC is in its fully expanded state, the wings cooperate to neutralize or block natural potentially deforming compression and shear forces.
  • the wings thus provide controlled linear expansion of the two halves of the LEC and maintain each half in their predetermined alignment with the vertebral groove 216 during and after expansion.
  • the controlled expansion stabilization and alignment provided by the wings also is provided by side walls 225a, 225b that define expansion slot 244 in the sides of the LEC halves.
  • the wings are optional.
  • the expansion slot 244 in turn conformably receives the angled sides of expansion wedge 242.
  • the sides or sidewalls 225a, 225b of the LEC halves 218a, 218b may be angled to form different dimensions for the expansion slot 244, into which the expansion wedge 242 advances.
  • the U shaped parallel sides of the expansion wedge 242 advance into the slot 244, they slide conformably against the sidewalls, holding the sidewalls of the LEC halves from both sides, thereby stabilizing the linear expansion of the LEC halves vertically.
  • the expansion mechanism is as follows.
  • a rotary screwdriver or equivalent rotary driver 240 is inserted through an aperture in the center of the insertion tool 220 for making contact with an expansion means in the interior of the LEC 218.
  • the distal end of the rotary driver makes contact with the head of a screw 246.
  • Screw 246 operatively cooperates with nut 248 provided in the interior of the LEC.
  • the driver rotates the head of screw 246, the screw head 246 pushes against the base of expansion wedge 242.
  • the wedged shaped, angled side portion 250 of expansion wedge 242 moves forward into a receiving slot 244.
  • Receiving slot 244 is defined by the sides 225a, 225b of respective LEC halves 218a, 218b in the side of the cage 218.
  • Figure 8 shows a means for expanding the LEC linearly and generally orthogonally with respect to an axis of insertion.
  • the exact angle of expansion can be predetermined by using an expansion wedge having a specific angle and height.
  • the expansion means also maintains the original diameter or radial dimension of each LEC half that remains in conformable contact with the bone, and thus does not interfere with the substantially immediate fixation achieved between the bone and multiple rows of corrugations or frictional engagement surfaces 238 provided on the radial surfaces of each LEC half 218a, 218b.
  • Means are provided for translating a rotary motion into a linear, vertical motion that expands the LEC vertically with respect to its axis of insertion, or at a desired angle determined by the angle of the expansion wedge to provide a full range of spinal correction.
  • the expansion wedge 242 advances forward on an angled surface in expansion slot 244 defined by side walls 225b, 225a and provided on each side of the LEC. The forward movement of the expansion wedge simultaneously expands each cage half 218a, 218b at a predetermined angle, while maintaining the integrity of the sidewalls of the LEC during expansion for enclosing the bone growth enhancing material contained within the LEC.
  • expansion wedge 242 moves forward into the receiving slot 244, and expands the halves of the cage 218 in a linear direction.
  • the expansion wedge 242 moves all the way forward in the slot 244 and at the point of full expansion, comes to rest in a conformable end receiving space 252.
  • one of an assortment of expansion wedges having different angles and /or heights for the sides of the expansion wedge 242 may be selected for insertion into the slot 244 for imparting a full range of desired spinal correction. This is done by simply selecting an expansion wedge characterized by a desired height and angulation of one or both sides.
  • the expansion wedge 242 advances forward into the receiving slot 244 of the LEC 218 and the LEC expands linearly in a vertical direction at an angle predetermined by the angle and height of wedge 242. Once fully expanded, the ends of the expansion wedge 242 are trapped conformably within the receiving slot 244 and an end receiving space 252 defined by wings 224a, 224b of the LEC. This locks expansion wedge 242 in place and prevents the expansion wedge 242 from deforming and buckling outward during expansion and thereafter.
  • the side slot 244 and end receiving space 252 also provide a substantially smooth interface between the expansion wedge and exterior of the LEC
  • the driver in combination with the screw and the expansion wedge provide a means for translating an applied rotational force into a precisely determined linear vector for expanding the halves LEC 218 vertically along the vertical axis of the entire spine, rather than uniformly (that is, without increasing diameter, which would take up more space inside the vertebral body surfaces).
  • multiple rows of corrugations or factional engagement surfaces 238 extend along the longitudinal axis of each LEC half 218a, 218b.
  • Multiple rows of corrugations or frictional engagement surfaces provide external protuberances or bone engaging ridges on the surface of each LEC half 218a, 218b. This effectively maximizes the surface area of the LEC that remains in contact with the bone.
  • the LEC halves 218a, 218b are expanded vertically in a linear direction in accordance with the rotation of the driver 240 and screw 246.
  • the precise linear height can be directly determined by the rotation of the driver or by the use of an expansion wedge of a known size and angle.
  • the expansion process presses the LEC halves 218a, 218b, strongly into the predrilled vertebral bone grooves 216, thereby securing the adjacent vertebrae to enhance stability during arthrodesis (fusion) healing.
  • Slots or apertures 254 in Figures 6A and 6B are provided through the exterior surface and extend into the interior of each LEC half 218a, 218b.
  • the slots 254 act as sites for internal bone graft material egress, and increase contact areas between the internal bone graft material and the external boney prepared endplates.
  • the maximized surface area of corrugations or bone-engaging surfaces are provided with the series of apertures 254 which provide channels for bone in-growth.
  • the surface area for communicating bone graft material from the interior of the LEC to the bone is effectively increased, and the LEC provides a maximized surface area of bone fixation as compared to conventional devices utilizing smooth or threaded surfaces.
  • the effectively maximized surface area also increases avenues for feed through of bone growth enhancing agents in the cylinder to facilitate bone fusion and ingrowth into the LEC with resulting fixation forces greater than adjacent bone and soft tissue failure forces.
  • bone engaging surfaces of LEC 218 can be provided with a coating such as hydroxyapatite, bone morphogenic protein and or certain enzyme substances that have the propensity to enable bone osteo-inductive and osteo- conductive principles for better healing responses.
  • a coating such as hydroxyapatite, bone morphogenic protein and or certain enzyme substances that have the propensity to enable bone osteo-inductive and osteo- conductive principles for better healing responses.
  • morphogenic proteins and enzyme substances for promoting bone growth are advantageously contained in the hollow interior of LEC 218. These substances communicate with the bone-engaging surfaces through the slots 254 that act as conduits for bone in growth.
  • the LEC and its slots 254 are also designed to permit suture free fusion.
  • the slots 254 provide apertures and curvature angles in the areas intended for bone egress between the interior bone graft or bone substitute products, and the outer vertebral bone interface (the interface between vertebral segments 202a, 202b and bone engagement surfaces of LEC 218) involved in the fusion process can be used by a surgeon to pull the interspinal ligament, or other structures through the LEC, thus creating an intentional immediate interface or padding to avert interspinal nerve injuries.
  • the LEC Since the LEC is inserted in a closed or non-expanded state, its interior may advantageously contain bone graft material, bone growth enhancing agents, medication or other agents that promote healing.
  • the expansion wedge 242 progressively moves forward along the sides of the LEC as previously explained. This advantageously keeps the sides of the LEC substantially sealed while simultaneously allowing the LEC to expand in a vertical direction.
  • medication and bone graft enhancing material contained within the interior of the LEC remain therein during the expansion process.
  • the slots provide egress zones for absorption of bone growth enhancers, such as bone morphogenic proteins or other enzyme substances contained within the interior of the LEC.
  • the slots 254 also provide areas for bone in growth thus promoting stable healing. As healing advances, pullout forces are greater than vertebral body failure forces, and patients can mobilize more quickly. Once healing (fusion or arthrodesis) does occur, the implants become incorporated and their role becomes quiescent.
  • Figure 9 is a representation showing the LEC being expanded.
  • the LEC halves 318a, 318b expand linearly to a height 30 -40 percent greater than the original diameter of the LEC.
  • the height increases to hold the vertebrae 202a, 202b while the width remains stable so as to decrease impingement upon a second cage, or upon neural elements or soft tissue structures in the immediate vicinity.
  • the top and bottom surfaces of LEC halves 318a and 318b are in contact with and fit conformably into the congruent surfaces of groove 216 provided in the vertebrae 202a, 202b since the radius of the unexpanded LEC is substantially the same as the radius of the cutting tool that formed groove 216.
  • the expanded LEC is securely set in groove 216 between two vertebral bodies 202a, 202b. Since the force of fixation is greater than the bone failure strengths, early patient mobilization after surgery is feasible. Force to failure will be approximately 4000 Newtons.
  • LECs 918a, 918b are used for fusion through an anterior approach, though the surgeon can use any insertional vector including a posterior approach.
  • LECs 918a, 918b may be inserted in parallel or obliquely to accommodate located anatomy and to adjust deformities such as scoliosis, kyphosis, and spondylolisthesis.
  • two LECs 918a, 918b are provided, one on each end of a vertebral body or endplate 220b in an intervertebral space 920. This enables linear expansion into vertebral endplates 220a, 220b which enhances fixation. By increasing fixation forces, earlier mobilization of the patient is encouraged, reducing the need for multiple fixation operations, and all associated risks (anesthesia, surgery complications) are decreased.
  • the LEC enables selective adjustment of spinal alignment. Due to the known angulation and height of the sides of the expansion wedge, and known radius of the driver and screw, it is possible to expand either LEC 918a or 918b vertically and linearly to a predetermined height H 1 , H 2 .
  • angular correction can be made for scoliosis by elevating or expanding either the medial or lateral side of the cage by dialing in or adjusting an amount of expansion to correct a problem with the natural spine angulation as noted on an AP (anterior/posterior) X ray plane.
  • This adjustment is accomplished by selecting particular sized or expansion wedges as they relate to the cage recipient site. Once the expansion wedge is contained inside the cage, during intraoperative assembly, a preplanned selected cant or angular variation from pure linear expansion is realized. The amount of selected cant is calculated to coordinate with the scoliotic curve, so as to facilitate realignment toward normal
  • the LEC anterior cage
  • the LEC anterior cage
  • the shape of the linear expansion can be selected or dialed in depending on a selection by the surgeon before or during surgery to adjust alignment so as to: (a) maintain or correct for lumbar lordosis, thereby avoiding the "flat back syndrome"; (b) create more physiologic right or left bending angles to deal with scoliosis in complex reconstruction or salvage cases; (c) fill perceived or actual gaps in spinal bone encountered during surgery such as induced by trauma or by osteo-porotic collapse.
  • the present LEC enables three dimensional correction of spinal malalignments, and maintenance of natural curvatures.
  • the present LEC may provide a cure for scoliosis or other forms of spinal misalignment.
  • Structural interbody support of the anterior column of the spine has clear biomechanical and clinical benefits compared with conventional posterior/lateral arthodesis. Biomechanically, interbody support improves the stability of the anterior column of the spine and permits load sharing with the region of the spinal motion segment that is exposed to highest loads improving stiffness and reducing rates of implant failure.
  • interbody structural support enhances the rate of successful arthrodesis and is associated with improved clinical outcomes.
  • the present LEC may be placed from an anterior approach to the spine or from a posterior or transforaminal approach.
  • the posterior or transforaminal approach is popular because it permits circumferencial arthrodesis of the spine in a single surgery, eliminating the morbidity of a separate anterior approach.
  • anterior only surgery is unreliable due to inadequate initial stabilization of the spinal motion segment.
  • With a linearly expandable cage such as the present LEC and consequent rigid interbody fixation, the need for posterior augmentation is advantageously eliminated. Since the LEC expands into the vertebrae with greater fixation forces, the requirements for additional stabilization procedures will be reduced.
  • a smaller fusion cage such as the LEC, the surgeon can better approach the destination with less tissue dissection and consequently less injury to nerve roots and soft tissues around the spine.
  • the present linearly expandable cage 218 provides options for achieving total lordosis correction. This is achieved by using an assortment of pre selected expansion elements 242 wherein wedge shaped angled surface 250 (referred to here as a wedge for clarity) is characterized by an angle such as, for example a, b, or any convenient angle, for imparting a desired lordotic curvature.
  • a wedge for clarity
  • a physician imparts a desired lordotic curvature by simply selecting different wedges characterized by different sizes and angles, such as angle a or b as shown.
  • the angle and height of the wedge 250 determines the angle of correction and the fully extended height of expansion of cage 218.
  • the final extent of expansion of the cage occurs when expansion lock 262 (a projection provided on the distal end of the wedge 250) slides into engagement with and is locked in place by a corresponding recess 264 provided in the surface of the cage 218 that defines the end of travel for the wedge in the receiving slot 244.
  • expansion lock 262 a projection provided on the distal end of the wedge 250
  • a corresponding recess 264 provided in the surface of the cage 218 that defines the end of travel for the wedge in the receiving slot 244.
  • Expansion wedges 242 could be chosen to have angled surfaces 250, such as angle a or b in Figure 1OC, that correspond to 4mm increments as follows: 0 degrees; 4 degrees for providing 0-8 degrees of correction, then wedge angles of 0 degrees and 12 degrees. This would provide total lordosis options of 0, 4, 8, 12, 16, 20 and 28 degrees.
  • the foregoing features now make it possible to expand a 10 mm spine cage to 20 mm (more commonly to between 10 and 17 mm), while correcting trapezoidally for lordosis, kyphosis or even scoliosis requirements.
  • the foregoing flexibility the ability to predetermine height of expansion and degree of spinal correction by pre selecting expansion wedges having different sizes and angles, and inserting two expansion wedges in parallel provides an anatomically correct range of spinal correction in three dimensions.
  • the device permits a posterior (single stage) operation to create the lordosis that may normally require a combined anterior and posterior approach.
  • the anterior-based linear cage may permit a single stage surgery if a physician adds a permanent staple to the position of the cannula set screws to provide tension anteriorly.
  • the reason that stand-alone anterior cages are inadequate and require posterior support is that the approach disrupts the anterior tension band (the anterior longitudinal ligament and disc annulus).
  • equivalent fixation features can be provided for stabilizing the cage within the bone.
  • Other configurations for the overlapping wing portions of the LEC halves may be utilized to provide interlocking capability and maintain linear expansion.
  • compositions of additives such as various types of biogenic materials for enhancing bone growth can be added to the interior portion of the LEC.
  • Other materials for construction of the LEC may be substituted for Titanium without departing from the scope of the invention.

Abstract

A linearly expanding spine cage (218) has a minimized diameter in its unexpanded state that is equal to the diameter of an insertion groove cut into adjacent vertebral bodies. The cage conformably engages between the endplates of adjacent vertebrae and is expanded by a U-shaped expansion wedge (242) which engages the sidewalls of the spine cage. Angular deformities can be corrected, and natural curvatures maintained. The cage enhances spinal arthrodesis by creating a rigid spine segment. Expanding linearly (vertically, along the vertical axis of the adjacent spine) rather than uniformly, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces. The cage width remains stable, so as to decrease impingement upon a second cage, or upon soft tissue structures in the immediate vicinity, including neural or vascular elements.

Description

LINEARLY EXPANDING SPINE CAGE FOR ENHANCED SPINAL FUSION Technical Field
The present invention relates generally to the field of medical devices for stabilizing the vertebral motion segment. More particularly, the present invention relates to a linearly expanding spine cage (LEC), and a method for providing improved spinal intervertebral body distraction and fusion.
Background Art
Inability To Expand And Distract Endplates
Referring to Figure 1, a conventional spine cage or implant 101 is characterized by a cylindrical body comprising a plurality of threads 104 provided on the exterior surface for contact with adjacent vertebral segments or endplates 102a and 102b, which are shown as blocks for clarity. Conventional spine cage 101 is typically inserted in tandem between vertebral segments 102a and 102b.
Such existing devices for interbody stabilization, such as conventional spine cage or implant 101, have important and significant limitations. These limitations include an inability to expand and distract the endplates. Separation of the endplates serves to create lordosis within the spine. Current devices for interbody stabilization include static spacers composed of titanium, PEEK, a high performance thermoplastic polymer produced by VICTREX, (Victrex USA Inc., 3 A Caledon Court; Greenville, SC 29615), carbon fiber, or resorbable polymers. Current interbody spacers do not improve interbody lordosis and can contribute to the formation of a kyphotic segment and the clinical problem of "flatback syndrome." . Separation of the endplates increases space available for the neural elements, specifically the neural foramen. Existing static cages do not reliably improve space for the neural elements. Therefore, what is needed is an expanding cage that will increase space for neural elements centrally and in the neural foramen.
Poor Interface Between Bone and Biomaterial
Another problem with conventional devices for interbody stabilization includes poor interface between bone and biomaterial. Conventional static interbody spacers form a weak interface between bone and biomaterial. Although the surface of such implants is typically provided with a series of circumferential threads or grooves 104, such threads are uniform and are in parallel with applied horizontal vectors or side to side motion. That is, the threads offer no resistance to movement applied to either side 106 of the endplates (as opposed to force applied to the front or back. Thus, nonunion is common in allograft, titanium, and polymer spacers, due to motion between the implant and host bone. Conventional devices typically do not expand between adjacent vertebrae.
Therefore, what is needed is a way to expand an implant to develop immediate fixation forces that can exceed the ultimate strength at healing. Such an expandable implant ideally will maximize stability of the interface and enhance stable fixation. The immediate fixation of such an expandable interbody implant advantageously will provide stability that is similar to that achieved at the time of healing. Such an implant would have valuable implications in enhancing early post-operative rehabilitation for the patient.
Large Diameter Devices Require Wide Exposure Of Neural Structures
Another problem of conventional interbody spacers is their large diameter requiring wide exposure. Existing devices used for interbody spacers include structural allograft, threaded cages, cylindrical cages, and boomerang-shaped cages. Conventional devices have significant limitation with regard to safety and efficacy. Regarding safety of the interbody spacers, injury to neural elements may occur with placement from an anterior or posterior approach. A conventional spine cage lacks the ability to expand linearly in a vertical direction without also changing position or expanding laterally, thus working against stable fixation.
The risks to neural elements are primarily due to the disparity between the large size of the cage required to adequately support the interbody space, and the small space available for insertion of the device, especially when placed from a posterior or transforminal approach. Existing cylindrical interbody implants are characterized by a width that is equal to their height. Therefore, implantation requires a wide exposure and potential compromise of vascular and neural structures. Given the proximity of nerve roots and vascular structures to the insertion site, and the solid, relatively large size of conventional hollow devices, such constraints predispose a patient to foraminal (nerve passage site) violation, and possible neural and vascular injury.
Therefore, what is needed is an expanding spine cage that is capable of insertion with minimal invasion into a smaller aperture. Such a minimally sized spine cage advantageously could be expanded by instrumental force application. Due to the small size of the cage, the nerves can be anatomically separated from the cage proximity, thus allowing a greater level of safety during the surgical procedure. Such an expandable implant would permit a more narrow exposure in the space outside of the vertebral body, with expansion inside of the interbody space.
What is also needed is a smaller expanding spine cage that is easier to operatively insert in a patient with minimized trauma in contrast to conventional, relatively large devices that create needless trauma to nerve roots in the confined space of the vertebral region.
Limited Capacity For Interbody Bone Formation
Existing interbody implants have limited space available for bone graft. Adequate bone graft or bone graft substitute is critical for a solid interbody arthrodesis. It would be desirable to providean expandable interbody cage will provide a large volume of bone graft material to be placed within the interbody space. Additionally, conventional interbody implants lack the ability to stabilize endplates completely and prevent them from moving. Therefore, what is also needed is an expanding spine cage wherein the vertebral endplates are subject to forces that both distract them apart, and hold them from moving. Such an interbody cage would be capable of stabilization of the motion segment, thereby reducing micro-motion, and discouraging pseudo arthrosis (incomplete fusion) and pain.
Ideally, what is needed is a spine cage or implant that is capable of increasing its expansion diameter to a calculated degree. Such a spine cage would permit restoration of normal spinal alignment after surgery and hold the spine segments together rigidly, mechanically, until healing occurs. What is also needed is an expanding cage or implant that is capable of holding vertebral or joint sections with increased pullout strength to minimize the chance of implant subsidence in the healing period.
It would also be desirable if such a cage could expand linearly (vertically, along the vertical axis of the entire spine) rather than uniformly which would take up more space inside the vertebral body surfaces.
Disclosure of Invention
An aspect of the invention comprises a linearly expanding spine cage (LEC) comprising two halves joined along a common longitudinal axis to form a cylinder with a minimized diameter in its unexpended state that is equal to the diameter of an insertion groove cut in adjacent vertebral bodies. The LEC is thus conformably engaged between the endplates of adjacent vertebra to effectively distract the intervertebral area, restore space for neural elements, stabilize the motion segment and eliminate pathologic segmental motion. The LEC enhances spinal arthrodesis by creating a rigid spine segment.
The LEC provides a significant advantage by enabling a comparatively large quantity of bone growth enhancing agents to be contained within its interior and communicated directly to adjacent bone over a maximized surface area due to a perforated design with apertures dispersed through multiple rows of corrugations, ridges, points, troughs or other features for bone engagement provided on radial surfaces of LEC halves. Importantly, this results in fixation forces greater than adjacent bone and soft tissue failure forces.
By expanding linearly (vertically, along the vertical axis of the entire spine) rather than uniformly (which would take up more space inside the vertebral body surfaces), the cage height increases to hold the vertebrae, while the width remains stable so as to decrease impingement upon a second cage, or upon soft tissue structures in the immediate vicinity (neural elements).
Generally, two LECs are used for fusion through the anterior approach - though the surgeon can choose any insertional vector. The cages may be inserted in parallel, or obliquely to accommodate located anatomy, and to adjust deformities such as scoliosis, kyphosis, and spondylolisthesis.
The clinical goals of the LEC and method for its insertion reduce pain, improve function, and permit early mobilization of the patient after fusion surgery. Since the LEC pullout forces are greater than vertebral body failure forces, patients can mobilize more quickly than was previously possible. Once healing (fusion or arthrodesis) does occur, the implants become incorporated and their role becomes quiescent.
The present LEC provides more internal to external graft bone space exposure, easier insertion, less risk of insertional damage to nerve roots and other tissue, and thus a substantially improved immediate and long term result. The specialized exterior on the outside of the LEC seeks to balance multiple projections, tines, or other bone engaging features that will hold firmly adjacent bone to prevent prosthetic extrusion, while being sufficiently rounded so as to avoid injuring nearby nerve or vascular structures. Bone ingrowth is encouraged by the perforated design of the LEC and the exterior corrugations that greatly increase the surface area of the LEC that conformably engages adjacent vertebral bone. By avoiding a square or rectangular configuration, the LEC is less prone toward subsidence.
Brief Description of Drawings
The drawings are heuristic for clarity. The foregoing and other features, aspects and advantages of the invention will become better understood with reference to the following descriptions, appended claims and accompanying drawings in which:
Figure 1 is a perspective view of a conventional non-expanding cylindrical spine cage, resembling products in current use.
Figure 2 is a perspective view of two cannulas inserted between vertebrae for placement of a spine cage and a cutting tool according to an aspect of the invention.
Figure 3 is the perspective view of Figure 2 with an upper vertebra removed for clarity.
Figure 4 is a perspective view of an insertion tool for positioning a spine cage between vertebrae according to an aspect of the invention.
Figure 5 is a perspective view of a linearly expanding spine cage (LEC) according to an aspect of the invention.
Figure 6 A is a perspective view of the interior of a first half of the LEC of Figure 5 according to an aspect of the invention.
Figure 6B is a perspective view of the interior of a second half of the LEC of. Figure 5 according to an aspect of the invention
Figure 7 is a perspective view of the LEC of Figure 5 showing the expansion mechanism according to an aspect of the invention.
Figure 8 is a perspective interior view of the LEC of Figure 5 showing the expansion mechanism according to an aspect of the invention.
Figure 9 is a stylized view of the LEC showing linear expansion into corresponding grooves in bone according to an aspect of the invention.
Figure 1OA is a stylized cross-sectional view of the placement of two LECs between vertebral structures for adjustment of spinal alignment according to an aspect of the invention.
Figure 1OB is a stylized cross-sectional view of the vertical expansion of a first LEC relative to a second LEC for adjustment of spinal alignment according to an aspect of the invention. Figure 1OC is perspective view showing how the angle of the expansion wedge in the LEC can be selected to impart varying degrees of expansion to the LEC for a full range of adjustment of spinal alignment according to an aspect of the invention.
Mode(s) For Carrying Out the Invention
Referring to Figure 2, vertebral segments 202a and 202b are shown with an 8 mm gap representing an average intervertebral space 204. The vertebral segments 202a and 202b are shown as blocks for clarity. A complete discectomy is performed prior to the insertion of the LEC.
As is well understood by one skilled in the art, the intervertebral disc occupying space 204 will be removed using standard techniques including rongeur, curettage, and endplate preparation to bleeding subchondral bone. The posterior longitudinal ligament will be divided to permit expansion of the intervertebral space.
The intervertebral space 204 will be distracted to 10 mm using a rotating spatula (Not shown. This is a device that looks like a wide screw driver that can be placed into the disc space horizontally and turned 90 degrees to separate the endplates).
Referring to Figure 2 through Figure 5, one or two 10mm cage cannulas 206 are inserted between the vertebral segments 202a and 202b. It will be appreciated that the present cannulas can be made smaller than conventional cannulas due to the expanding nature of the 10 mm spine cage and thereby minimize trauma to nerve roots in the spinal column. Each cannula has a fork 208 on the front end which is 10mm tall. The fork properly levels the vertebrae for operation. Each cannula also has four spikes 210 which tap into the vertebrae above and below thereby preventing bone movement during the operation. For clarity, only the two top spikes are shown. Additional spikes may be added if needed.
It will be appreciated that the spiked tips 210 of the insertion cannulas advantageously stabilize the working surfaces of the vertebral segments to a high degree such that all bone movement and misalignment is substantially prevented during the operation. With a narrow cannula in place, the neural and vascular elements are protected and a safe working channel is created for endplate preparation and cage placement. Insertion of the cage follows tapping of the endplates, or vertebral segments. Referring to Figure 3 and Figure 4, a 10mm diameter motorized cutting tool 212 is inserted through a cannula. Cutting tool bit 214 is attached to the distal end of motorized cutting tool 212. The cutting bit is shaped like a hole saw which will cut and capture bone debris. This tool may not be necessary in the setting of an adequate discectomy. The non-cutting end of the cutting tool bit may be provided with a depth marking to indicate the depth of the cut. A limiter, such as a hard stop or "step off can be added to prevent cutting too deeply.
Once the cutting tool is removed, the vertebral surface will have a radial or rounded cut 216 acting as a base for stabilized, conformable receipt of a 10 mm diameter spine cage. Figure 5 shows two such radial cuts or grooves 216 made by cutting tool 212 for placement of a spine cage. However, a tap with a fixed end point may be adequate to make a path for the cage to be inserted.
An important aspect of the invention is that the LEC cage 218 is, for example, only on average about 10mm in width -the same diameter as the groove 216 made by cutting tool 212. This is critical because conventional cages are 14-16mm high and wide, making them quite difficult to insert. Such conventional cages require large cannulas for insertion and subject nerve roots to trauma and injury. Mispositioning such a cage by as little as 3 mm can severely injure a nerve root.
In contrast, the present LEC cage can expand to a greater dimension without requiring so much space in insertion. As set forth above, this enables the present cannula to be much smaller than a conventional cannula. This safeguards the nerve roots and minimizes trauma. The 10 mm limitation is an example only. Thus, the cannula can be made as small as possible to take advantage of the unique expandable attributes of the LEC.
As will be explained in greater detail infra, the LEC can expand linearly to a vertical height by approximately 30 -40 per cent. The LEC is characterized by expansion ranges of, for example, from 7mm up to 10 mm; from 9mm up to 12 mm; or 12 mm up to about 16 mm. Due to the wide expansion range, a cannula advantageously can be as small as possible for insertion of the smaller LEC in its unexpanded state.
Referring to Figure 4, an insertion tool 220 is provided in the cannula through its distal opening. The cannula in Figure 4 has been removed for clarity. The insertion tool is provided with a fork end 222 that conformably holds, for example, a 10 mm LEC for insertion into precut groove 216. It will be appreciated that the interior surface of the cannula advantageously matches or closely conforms to the exterior profile of the insertion tool and LEC, thereby properly orienting the LEC and preventing the LEC from rotating in the cannula. This further aids in precise placement of the LEC without injury to nearby nerve roots.
Referring to Figure 4, as the insertion tool 220 is pushed toward the vertebrae 202b, the fork end 222 of the LEC insertion tool pushes on the wing sections 224a, 224b of the LEC cage thereby moving the LEC forward into position. Wing sections 224 act as a means for stabilizing and perfectly aligning the two halves of LEC 218 during the expansion process as will be explained infra. The wings of the LEC help to orient the LEC properly between the vertebrae. The insertion tool 220 also has depth markings 226 to indicate depth of insertion. A hard stop also can be added to prevent over travel.
Referring to Figures 5, 6A, and 6B, it will be appreciated that cylindrical cage 218 comprises two halves, an upper half 218a and a lower half 218b wherein the radial surface of each upper and lower half conformably engages with the corresponding surface of radial cut 216 in each vertebral segment 202a and 202b. (202a is omitted for clarity) in which the LEC 218 is positioned. This is possible due to the minimized shape of the non-expanded spine cage which enables its radius to be substantially the same as that of cutting head 214 and cut or groove 216. This minimized diameter of the LEC further aids in precise placement of the LEC without injury to nearby nerve roots.
Referring again to Figures 5, 6A, and 6B, each half 218a, 218b of the LEC 218 is provided with a series of parallel longitudinally extending ridges 238 disposed along the longitudinal axis of each bone contacting exterior surface of each LEC half 218a, 218b. These parallel longitudinal extending ridges are characterized by a substantially pyramidal cross section (see Figures 6A and 6B) and form multiple rows of rigid engagement surfaces providing strong frictional engagement against slippery bone surfaces, extending the length of the LEC. The parallel ridges are disposed orthogonally with respect to lateral or rotational forces applied to the vertebrae. Due to the plurality of the ridges and depth of their pyramidal cross sections, the ridges strongly resist applied rotational forces. The multiple engagement surfaces provided by the ridges 238 also effectively increase the surface area of the LEC 218 in contact with the radial groove 216 in the bone. The multiple engagement surfaces provided by the ridges 238 strongly lock the LEC in substantially invariant engagement with corresponding vertebral segments 102a and 102b by force from expansion of each LEC half with a corresponding vertebral body or segment.
It will be appreciated that providing other equivalent bone engaging features such as a multiplicity of pointed surfaces, corrugations or points extending over bone contacting surfaces of each LEC half 218a, 218b similarly provides a maximized surface area for bone engagement and fixation.
When seated in position, the surface configuration of the LEC prevents the LEC from rotating in the groove in the vertebral surface. This further enhances stable fixation of the LEC with he bone and prevents rollover and misalignment.
The cylindrical configuration of the LEC and matching radius of grooves 216 provide initially a 360° mating surface or bone to implant interface. This effectively doubles pullout forces with respect to the surface contact currently available in spinal reconstruction. Thus, the LEC is capable of withstanding at least 2000 Newtons (force pounds) in the perioperative period. In sitting, a person is capable of withstanding typically 1200 Newtons; when standing 800N, and when forward bending and heavy lifting up to 10,000N of intervertebral body force. Titanium is a preferential material for the LEC that achieves at least a 2000 Newton pullout force in the perioperative period.
The foregoing features enable the LEC to expand into the vertebrae with greater fixation forces than would be currently possible with known conventional devices. Thus, the requirements for additional stabilization procedures are reduced. This means that instead of achieving spine fusion by a series of conventional operative procedures, given the immediate solid fixation that accrues from the present LEC, operative procedures may be reduced in number, potentially to one operation. This advantageously would save the patient from pain, and the risks attendant with multiple anesthesias.
Due to the enhanced fixation and lateral stability, healing time is greatly reduced. Typically, once tissue is reconnected to bone, patients are only 30-40 per cent healed after three -four weeks; 60-70 per cent by six weeks; are 85 per cent healed by 12 weeks; and 100 per cent healed in about a year. This means, even though skin healing occurs, such superficial healing masks the long term need for joint immobilization to allow complete healing to occur. Such need for long-term immobilization has negative impacts on patients, their family, their employer, their livelihood and their future.
In contrast, the present LEC provides substantially immediate bone to implant fixation that is stabilized against rotational forces. This achieves an accelerated bone to implant fixation time without joint immobilization.
Due to the substantially immediate bone fixation, lateral stability and elimination of the need for immobilization, the LEC can be used for large animals; for example horses or large dogs such as 200 Ib. mastiffs, which cannot follow instructions regarding limiting activities after injury and repair.
Once the LEC has been seated in position in radial groove 216, the cannula spikes 210 are removed from the vertebrae and the LEC is expanded. Pulling the cannula out slightly removes the spikes from the vertebrae and allows the vertebrae to be spread.
Referring to Figures 5, 6A and 6B, LEC 218 comprises an upper half cylinder 218a and a lower, complementary cylinder half 218b. The cylinder halves 218a, 218b are joined along a longitudinal axis to define a cylinder, the LEC, with an interior space for holding a quantity of bone growth enhancing agents as will be explained. Cylinder halves 218a, 218b also each comprise an integral, expansion alignment structure or generally U shaped wing 224a, 224b integrally formed with each respective LEC half. The upper wing 224a extends tangentially generally downward from the surface of the first cylindrical half 218a. The lower wing 224b extends upward from the radial surface of second cylindrical half 218b, immediately adjacent the first wing. During insertion, the wings form complementary U-shaped end pieces that lock together the upper and lower portions 218a, 218b of the LEC, holding the LEC 218 together in the closed position while the LEC is inserted in its non expanded state into the substantially congruent groove 216 in a vertebral segment.
The complementary adjacent sides of the wings 224a, 224b slidably move against each other in opposite directions during expansion. The wings provide complementary contacting surfaces for equalizing force distribution in each respective LEC half such that the halves expand equally in opposite directions. The wings work cooperatively to control expansion in a linear direction and to maintain the alignment of respective halves of the cage during expansion process. When the LEC is in its fully expanded state, the wings cooperate to neutralize or block natural potentially deforming compression and shear forces. The wings thus provide controlled linear expansion of the two halves of the LEC and maintain each half in their predetermined alignment with the vertebral groove 216 during and after expansion.
Referring to Figures 6A, 6B and 7 it is understood that the controlled expansion stabilization and alignment provided by the wings also is provided by side walls 225a, 225b that define expansion slot 244 in the sides of the LEC halves. Thus, the wings are optional. The expansion slot 244 in turn conformably receives the angled sides of expansion wedge 242. The sides or sidewalls 225a, 225b of the LEC halves 218a, 218b may be angled to form different dimensions for the expansion slot 244, into which the expansion wedge 242 advances. As the U shaped parallel sides of the expansion wedge 242 advance into the slot 244, they slide conformably against the sidewalls, holding the sidewalls of the LEC halves from both sides, thereby stabilizing the linear expansion of the LEC halves vertically.
Referring to Figures 4, 5, 7, 8 and 1OC, the expansion mechanism is as follows. A rotary screwdriver or equivalent rotary driver 240 is inserted through an aperture in the center of the insertion tool 220 for making contact with an expansion means in the interior of the LEC 218. The distal end of the rotary driver makes contact with the head of a screw 246. Screw 246 operatively cooperates with nut 248 provided in the interior of the LEC. As the driver rotates the head of screw 246, the screw head 246 pushes against the base of expansion wedge 242. And, the wedged shaped, angled side portion 250 of expansion wedge 242 moves forward into a receiving slot 244. Receiving slot 244 is defined by the sides 225a, 225b of respective LEC halves 218a, 218b in the side of the cage 218.
Figure 8 shows a means for expanding the LEC linearly and generally orthogonally with respect to an axis of insertion. The exact angle of expansion can be predetermined by using an expansion wedge having a specific angle and height. Importantly, the expansion means also maintains the original diameter or radial dimension of each LEC half that remains in conformable contact with the bone, and thus does not interfere with the substantially immediate fixation achieved between the bone and multiple rows of corrugations or frictional engagement surfaces 238 provided on the radial surfaces of each LEC half 218a, 218b.
Means are provided for translating a rotary motion into a linear, vertical motion that expands the LEC vertically with respect to its axis of insertion, or at a desired angle determined by the angle of the expansion wedge to provide a full range of spinal correction. In Figure 8 the expansion wedge 242 advances forward on an angled surface in expansion slot 244 defined by side walls 225b, 225a and provided on each side of the LEC. The forward movement of the expansion wedge simultaneously expands each cage half 218a, 218b at a predetermined angle, while maintaining the integrity of the sidewalls of the LEC during expansion for enclosing the bone growth enhancing material contained within the LEC. As the screw head 246 turns and pushes against the base of expansion wedge 242, the expansion wedge 242 moves forward into the receiving slot 244, and expands the halves of the cage 218 in a linear direction. The expansion wedge 242 moves all the way forward in the slot 244 and at the point of full expansion, comes to rest in a conformable end receiving space 252.
As will be explained further with reference to Figure 1OC, one of an assortment of expansion wedges having different angles and /or heights for the sides of the expansion wedge 242, may be selected for insertion into the slot 244 for imparting a full range of desired spinal correction. This is done by simply selecting an expansion wedge characterized by a desired height and angulation of one or both sides.
Thus, by turning the screwdriver, the expansion wedge 242 advances forward into the receiving slot 244 of the LEC 218 and the LEC expands linearly in a vertical direction at an angle predetermined by the angle and height of wedge 242. Once fully expanded, the ends of the expansion wedge 242 are trapped conformably within the receiving slot 244 and an end receiving space 252 defined by wings 224a, 224b of the LEC. This locks expansion wedge 242 in place and prevents the expansion wedge 242 from deforming and buckling outward during expansion and thereafter. The side slot 244 and end receiving space 252 also provide a substantially smooth interface between the expansion wedge and exterior of the LEC Once expansion is complete, the driver, screw, nut and LEC insertion tool are removed from the cannula, leaving only the expanded LEC locked in place.
It will be appreciated that the driver in combination with the screw and the expansion wedge provide a means for translating an applied rotational force into a precisely determined linear vector for expanding the halves LEC 218 vertically along the vertical axis of the entire spine, rather than uniformly (that is, without increasing diameter, which would take up more space inside the vertebral body surfaces). Referring to Figures 5, 6A, and 6B, multiple rows of corrugations or factional engagement surfaces 238 extend along the longitudinal axis of each LEC half 218a, 218b. Multiple rows of corrugations or frictional engagement surfaces provide external protuberances or bone engaging ridges on the surface of each LEC half 218a, 218b. This effectively maximizes the surface area of the LEC that remains in contact with the bone.
The LEC halves 218a, 218b are expanded vertically in a linear direction in accordance with the rotation of the driver 240 and screw 246. The precise linear height can be directly determined by the rotation of the driver or by the use of an expansion wedge of a known size and angle. The expansion process presses the LEC halves 218a, 218b, strongly into the predrilled vertebral bone grooves 216, thereby securing the adjacent vertebrae to enhance stability during arthrodesis (fusion) healing.
Slots or apertures 254 in Figures 6A and 6B are provided through the exterior surface and extend into the interior of each LEC half 218a, 218b. The slots 254 act as sites for internal bone graft material egress, and increase contact areas between the internal bone graft material and the external boney prepared endplates. It will be appreciated that the maximized surface area of corrugations or bone-engaging surfaces are provided with the series of apertures 254 which provide channels for bone in-growth. Thus, the surface area for communicating bone graft material from the interior of the LEC to the bone is effectively increased, and the LEC provides a maximized surface area of bone fixation as compared to conventional devices utilizing smooth or threaded surfaces. The effectively maximized surface area also increases avenues for feed through of bone growth enhancing agents in the cylinder to facilitate bone fusion and ingrowth into the LEC with resulting fixation forces greater than adjacent bone and soft tissue failure forces.
An additional advantage of the multiple rows of bone engaging surfaces or corrugations 238 is to provide a maximized surface area of enhanced bone fusion for a minimal sized implant. Thus, bone engaging surfaces of LEC 218 can be provided with a coating such as hydroxyapatite, bone morphogenic protein and or certain enzyme substances that have the propensity to enable bone osteo-inductive and osteo- conductive principles for better healing responses. Alternatively, such morphogenic proteins and enzyme substances for promoting bone growth are advantageously contained in the hollow interior of LEC 218. These substances communicate with the bone-engaging surfaces through the slots 254 that act as conduits for bone in growth. The LEC and its slots 254 are also designed to permit suture free fusion. The slots 254 provide apertures and curvature angles in the areas intended for bone egress between the interior bone graft or bone substitute products, and the outer vertebral bone interface (the interface between vertebral segments 202a, 202b and bone engagement surfaces of LEC 218) involved in the fusion process can be used by a surgeon to pull the interspinal ligament, or other structures through the LEC, thus creating an intentional immediate interface or padding to avert interspinal nerve injuries.
Since the LEC is inserted in a closed or non-expanded state, its interior may advantageously contain bone graft material, bone growth enhancing agents, medication or other agents that promote healing. During the expansion process the expansion wedge 242 progressively moves forward along the sides of the LEC as previously explained. This advantageously keeps the sides of the LEC substantially sealed while simultaneously allowing the LEC to expand in a vertical direction. Thus, medication and bone graft enhancing material contained within the interior of the LEC remain therein during the expansion process.
As the exterior of the LEC presses into the adjacent bone by the force of vertical expansion, the slots provide egress zones for absorption of bone growth enhancers, such as bone morphogenic proteins or other enzyme substances contained within the interior of the LEC. The slots 254 also provide areas for bone in growth thus promoting stable healing. As healing advances, pullout forces are greater than vertebral body failure forces, and patients can mobilize more quickly. Once healing (fusion or arthrodesis) does occur, the implants become incorporated and their role becomes quiescent.
Figure 9 is a representation showing the LEC being expanded. The LEC halves 318a, 318b expand linearly to a height 30 -40 percent greater than the original diameter of the LEC. The height increases to hold the vertebrae 202a, 202b while the width remains stable so as to decrease impingement upon a second cage, or upon neural elements or soft tissue structures in the immediate vicinity. It is understood that the top and bottom surfaces of LEC halves 318a and 318b are in contact with and fit conformably into the congruent surfaces of groove 216 provided in the vertebrae 202a, 202b since the radius of the unexpanded LEC is substantially the same as the radius of the cutting tool that formed groove 216. When the expansion is at a maximum, that is, the LEC is in the folly expanded state, the driver, in combination with the screw, are removed through the insertion tool and the insertion tool is detached from the cage. U shaped expansion wedge 242 has been drawn all the way into its end receiving space 252 in the interior of the LEC and locks the cage in its linearly expanded position.
Once detached from the insertion tool, the expanded LEC is securely set in groove 216 between two vertebral bodies 202a, 202b. Since the force of fixation is greater than the bone failure strengths, early patient mobilization after surgery is feasible. Force to failure will be approximately 4000 Newtons.
Referring to Figures 1OA and 1OB, generally, two LECs 918a, 918b are used for fusion through an anterior approach, though the surgeon can use any insertional vector including a posterior approach. LECs 918a, 918b may be inserted in parallel or obliquely to accommodate located anatomy and to adjust deformities such as scoliosis, kyphosis, and spondylolisthesis. Typically, two LECs 918a, 918b are provided, one on each end of a vertebral body or endplate 220b in an intervertebral space 920. This enables linear expansion into vertebral endplates 220a, 220b which enhances fixation. By increasing fixation forces, earlier mobilization of the patient is encouraged, reducing the need for multiple fixation operations, and all associated risks (anesthesia, surgery complications) are decreased.
The LEC enables selective adjustment of spinal alignment. Due to the known angulation and height of the sides of the expansion wedge, and known radius of the driver and screw, it is possible to expand either LEC 918a or 918b vertically and linearly to a predetermined height H1, H2.
Referring to Figure 1OA, angular correction can be made for scoliosis by elevating or expanding either the medial or lateral side of the cage by dialing in or adjusting an amount of expansion to correct a problem with the natural spine angulation as noted on an AP (anterior/posterior) X ray plane. This adjustment is accomplished by selecting particular sized or expansion wedges as they relate to the cage recipient site. Once the expansion wedge is contained inside the cage, during intraoperative assembly, a preplanned selected cant or angular variation from pure linear expansion is realized. The amount of selected cant is calculated to coordinate with the scoliotic curve, so as to facilitate realignment toward normal
For correction of lordosis (as seen on a lateral X-ray view, naturally noted in both the lumbar and cervical regions of the spine), the LEC (anterior cage) can be expanded so that it widens or expands more anterior linearly symmetrically than posterior, thus creating a trapezoidal construct that fills in the disc space more naturally, both expanding into the vertebral endplates, and filling the normally wider anterior space in such a manner that the "flat back syndrome" is eliminated. This promotes fusion in a normal or physiologic alignment.
Referring to Figures 1OA and 1OB, the shape of the linear expansion can be selected or dialed in depending on a selection by the surgeon before or during surgery to adjust alignment so as to: (a) maintain or correct for lumbar lordosis, thereby avoiding the "flat back syndrome"; (b) create more physiologic right or left bending angles to deal with scoliosis in complex reconstruction or salvage cases; (c) fill perceived or actual gaps in spinal bone encountered during surgery such as induced by trauma or by osteo-porotic collapse.
It will be appreciated that due to the placement of the two LECs, one on each side of a vertebral body, it is now possible to adjust spinal alignment as shown in Figure 1OB by expanding a first LEC 918a to a greater predetermined height H1 necessary to bring the two vertebral endplates 220a and 220b into normal alignment. The ability to linearly expand each spine cage to a predetermined height with improved stability and substantially immediate fixation makes it now possible to impart normal lordosis to a spinal column.
The present LEC enables three dimensional correction of spinal malalignments, and maintenance of natural curvatures. Thus, the present LEC may provide a cure for scoliosis or other forms of spinal misalignment. Structural interbody support of the anterior column of the spine has clear biomechanical and clinical benefits compared with conventional posterior/lateral arthodesis. Biomechanically, interbody support improves the stability of the anterior column of the spine and permits load sharing with the region of the spinal motion segment that is exposed to highest loads improving stiffness and reducing rates of implant failure.
Clinically, interbody structural support enhances the rate of successful arthrodesis and is associated with improved clinical outcomes. The present LEC may be placed from an anterior approach to the spine or from a posterior or transforaminal approach. The posterior or transforaminal approach is popular because it permits circumferencial arthrodesis of the spine in a single surgery, eliminating the morbidity of a separate anterior approach. Currently, anterior only surgery is unreliable due to inadequate initial stabilization of the spinal motion segment. With a linearly expandable cage such as the present LEC and consequent rigid interbody fixation, the need for posterior augmentation is advantageously eliminated. Since the LEC expands into the vertebrae with greater fixation forces, the requirements for additional stabilization procedures will be reduced. By starting with a smaller fusion cage, such as the LEC, the surgeon can better approach the destination with less tissue dissection and consequently less injury to nerve roots and soft tissues around the spine.
Referring to Figure 1OC, it will be appreciated that the present linearly expandable cage 218 provides options for achieving total lordosis correction. This is achieved by using an assortment of pre selected expansion elements 242 wherein wedge shaped angled surface 250 (referred to here as a wedge for clarity) is characterized by an angle such as, for example a, b, or any convenient angle, for imparting a desired lordotic curvature. A physician imparts a desired lordotic curvature by simply selecting different wedges characterized by different sizes and angles, such as angle a or b as shown.
As the expansion element 242 is drawn into receiving slot 244 during he expansion process, the angle and height of the wedge 250 determines the angle of correction and the fully extended height of expansion of cage 218. The final extent of expansion of the cage occurs when expansion lock 262 (a projection provided on the distal end of the wedge 250) slides into engagement with and is locked in place by a corresponding recess 264 provided in the surface of the cage 218 that defines the end of travel for the wedge in the receiving slot 244. It will be appreciated that two corresponding sets of projections 262 and corresponding recesses 264 are provided on the upper and lower surfaces of the wedge and receiving slot for locking engagement to strongly lock the cage in position in its fully expanded state. Only one set is shown for clarity
The advantages of inserting two parallel cages as shown in Figures 1OA and 1OB over a single cage are: ease of access/ability to differentially distract in the medial/lateral plane. Selecting various sizes and angles for the sides of the expansion wedge enable predetermined expansion of the LEC halves linearly and vertically; either symmetrically vertically or offset vertically when wedge sides vary in angulation. This enables the LEC to be linear in one plane and either parallel and oblong or trapezoidal in another plane.
Expansion wedges 242 could be chosen to have angled surfaces 250, such as angle a or b in Figure 1OC, that correspond to 4mm increments as follows: 0 degrees; 4 degrees for providing 0-8 degrees of correction, then wedge angles of 0 degrees and 12 degrees. This would provide total lordosis options of 0, 4, 8, 12, 16, 20 and 28 degrees.
It is advantageous to have an assortment of heights and angles for the expansion wedge. This enables a physician to pre select, before surgery, a desired reconstructive change size to be implanted in a vertebrae in accordance with actual size vertebral segments shown in X rays. The base 270 of the expansion wedge 242 should be 3mm thick, assuming a 20mm long cage, since lordotic endplates are 3mm posterior dimension and anterior height=4.4mm (=tan (wedge angle)/(20 +(3/tan(wedge angle)). Expansion wedges should be available in 2mm height increments.
In accordance with an aspect of the invention the foregoing features now make it possible to expand a 10 mm spine cage to 20 mm (more commonly to between 10 and 17 mm), while correcting trapezoidally for lordosis, kyphosis or even scoliosis requirements. The foregoing flexibility- the ability to predetermine height of expansion and degree of spinal correction by pre selecting expansion wedges having different sizes and angles, and inserting two expansion wedges in parallel provides an anatomically correct range of spinal correction in three dimensions.
An important advantage of the expandable cage is that the device permits a posterior (single stage) operation to create the lordosis that may normally require a combined anterior and posterior approach. The anterior-based linear cage may permit a single stage surgery if a physician adds a permanent staple to the position of the cannula set screws to provide tension anteriorly. The reason that stand-alone anterior cages are inadequate and require posterior support is that the approach disrupts the anterior tension band (the anterior longitudinal ligament and disc annulus).
By stapling across the implant vertically it is possible to create an anterior plate or tension band that will reconstitute the anterior column stability in extension, enabling a physician to avoid a posterior approach. These staples (two in parallel in vertical orientation) can be placed in the position of the prongs from the insertion canula.
While the invention has been described in connection with what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments and alternatives as set forth above, but on the contrary is intended to cover various modifications and equivalent arrangements included within the scope of the following claims.
For example, equivalent fixation features can be provided for stabilizing the cage within the bone. Other configurations for the overlapping wing portions of the LEC halves may be utilized to provide interlocking capability and maintain linear expansion.
Also, other compositions of additives, such as various types of biogenic materials for enhancing bone growth can be added to the interior portion of the LEC. Other materials for construction of the LEC may be substituted for Titanium without departing from the scope of the invention.
As one skilled in the art will readily appreciate from the disclosure of the present invention, processes, machines, compositions of matter, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Therefore, persons of ordinary skill in this field are to understand that all such equivalent processes, arrangements and modifications are to be included within the scope of the following claims.

Claims

CLAIMSI claim:
1. A linearly expanding spine cage (LEC) for insertion through a cannula along an axis of insertion in a radial groove cut in the bone of adjacent first and second vertebral bodies and for providing immediate fixation and stabilization thereof comprising; a first half cylindrical shell having a radial surface for conformable engagement in the groove cut in the first vertebral body, a second half cylindrical shell, complementary with respect to the first half cylindrical shell, including a radial surface for conformable engagement in the groove cut in the second vertebral body, the first and second cylindrical shells being joined in an unexpanded state along a longitudinal axis in common with the axis of insertion, such that the half cylindrical shells define a cylinder with an interior space for holding a quantity of bone growth enhancing agents, and the radius of the cylinder in its unexpanded state is less than the radius of the cannula and substantially equal to the radial groove cut in the vertebral bodies; and expansion means for expanding the first and second cylindrical shells linearly and orthogonally to the axis of insertion while maintaining constant fixation between the radial surfaces and conformably engaged vertebral bodies.
2. A linearly expanding spine cage as in claim 1 wherein the first and second radial surfaces further comprise multiple rows of corrugations or bone engaging ridges extending in parallel along the longitudinal axis of each LEC half to provide maximized surface area for bone engagement and fixation.
3. A linearly expanding spine cage as in claim 1 wherein the first and second radial surfaces further comprise a multiplicity of radially extending pointed surfaces, projections, or like features that provide a maximized surface area for bone engagement and fixation.
4. A linearly expanding spine cage as in claim 1 wherein the first and second radial surfaces are provided with a plurality of slots or through holes for maximized feed through of bone growth enhancing agents contained in the interior of the LEC to facilitate bone ingrowth through the slots for enhanced bone fixation, such that fixation forces are greater than adjacent bone and soft tissue failure forces.
5. A linearly expanding spine cage as in claim 1 wherein the expansion means further comprises a U shaped expansion wedge comprising first and second angled sides joined by a base, the angled sides adapted for advancement between the two halves of the LEC upon application of force to the base, such that advancement of the wedge expands the LEC halves linearly in accordance with the angle imparted by the wedge, while bone engaging surfaces remain fixed.
6. A linearly expanding spine cage as in claim 5 wherein height and angle of expansion of the LEC are predetermined by selecting an expansion wedge having sides of a desired height and angle to provide a complete range of spinal correction.
7. A spine cage linearly expandable between adjacent vertebral segments in a vertical direction, the spine cage characterized in its non-expanded state by a minimized longitudinal radius substantially equal to the radius of a cutting head for minimally invasive insertion in a radial groove cut by the cutting head in first and second adjacent vertebral segments comprising: a first half cylinder comprising a radial surface including a plurality of corrugations or rows of bone engaging projections for increasing surface area and enhancing fixation with the corresponding radial cut in the first vertebral segment, and having a pair of sidewalls extending tangentially from each side of the radial surface, with a portion of each sidewall defining a first angled surface; and a second half cylinder comprising a radial surface including a plurality of corrugations or rows of bone engaging projections for increasing surface area and enhancing fixation with the corresponding radial cut in the second vertebral segment and having a pair of sidewalls extending tangentially from each side of the radial surface, defining a second angled surface, such that the first and second angled surfaces form an angled slot on each side of the cage; an expansion means comprising first and second angled wedges joined by a base, the wedges being adapted for slidable advancement into the slot, such that upon application of force to the base, the wedges move forward in the slot, expanding the first and second halves in a desired linear direction according to the angle and height of each wedge, while facilitating locking engagement between the radial surfaces and adjacent vertebral segments by force from expansion of each radial surface with a corresponding vertebral body.
8. A linearly expanding spine cage as in claim 7, wherein bone engaging surfaces of the spine cage are provided with a coating such as hydroxyapatite, bone morphogenic protein and or certain enzyme substances that have the propensity to enable bone osteo-inductive and osteo-conductive effects for an improved healing response.
9. A method for correcting spinal deformities using a linearly expanding spine cage (LEC), being linear in one plane and either parallel and oblong or trapezoidal in another, the LEC comprising two halves joined in an unexpanded state along a common longitudinal axis to form a cylinder having a diameter equal to an insertion bore cut in adjacent vertebral bodies, the LEC including a wedge for expanding the LEC halves linearly and vertically at a desired angle with respect to a spinal column comprising: determining a desired change in height and angle of alignment in any of three dimensions of a first and second adjacent vertebral body; selecting one or more expansion wedges, each wedge comprising angled sides joined by a base wherein the sides of the selected wedge are characterized by an appropriate angle for achieving the desired correction; cutting one or more insertion bores through adjacent vertebral bodies such that each bore extends transversely with respect to the spine; inserting the LEC with corresponding selected expansion wedge into the one or more bores such that each half of the LEC conformably engages a corresponding half of the bore in the adjacent vertebral bodies; advancing the expansion wedge into the LEC to impart desired vertical height and angle of correction while maintaining fixed conformable engagement between each LEC half and corresponding vertebral body.
10. A method for correcting spinal deformities according to claim 9 further comprising the step of varying angulation of the angled sides of the expansion wedge to impart linear symmetrical vertical expansion or offset vertical expansion to the LEC halves for effecting a desired angle of correction to a spinal column in any of three dimensions.
11. A method for correcting spinal deformities using a linearly expanding spine cage (LEC) as in claim 9 further comprising the step of providing a series of bone engaging features, such as ridges, corrugations, points, or the like extending over the surface of each LEC half to provide a maximized bone engaging surface area for enhanced bone fusion and to facilitate locking engagement by force from expansion of each LEC half with its corresponding engaged vertebral body.
12. A method for correcting spinal deformities using a linearly expanding spine cage (LEC) as in claim 9 further comprising the step of: providing a series of slots or apertures extending through the bone engaging surface of each LEC half to facilitate bone ingrowth into the LEC.
13. A method for correcting spinal deformities using a linearly expanding spine cage (LEC) as in claim 9 further comprising the step of providing a quantity of bone growth enhancing agents in the cylinder formed by the LEC halves to facilitate bone fusion and ingrowth into the LEC with fixation forces greater than adjacent bone and soft tissue failure forces.
PCT/US2006/031528 2005-08-12 2006-08-11 Linearly expanding spine cage for enhanced spinal fusion WO2007022021A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/202,725 US7722674B1 (en) 2005-08-12 2005-08-12 Linearly expanding spine cage for enhanced spinal fusion
US11/202,725 2005-08-12

Publications (1)

Publication Number Publication Date
WO2007022021A1 true WO2007022021A1 (en) 2007-02-22

Family

ID=37441356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/031528 WO2007022021A1 (en) 2005-08-12 2006-08-11 Linearly expanding spine cage for enhanced spinal fusion

Country Status (2)

Country Link
US (2) US7722674B1 (en)
WO (1) WO2007022021A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722674B1 (en) 2005-08-12 2010-05-25 Innvotec Surgical Inc. Linearly expanding spine cage for enhanced spinal fusion
US7799056B2 (en) 2007-12-31 2010-09-21 Warsaw Orthopedic, Inc. Bone fusion device and methods
JP2011520580A (en) * 2008-05-26 2011-07-21 ロペス、 ルドルフ モルゲンシュテルン Intervertebral implants and placement instruments
US7985231B2 (en) 2007-12-31 2011-07-26 Kyphon Sarl Bone fusion device and methods
US8795365B2 (en) 2008-03-24 2014-08-05 Warsaw Orthopedic, Inc Expandable devices for emplacement in body parts and methods associated therewith
US10292833B2 (en) 2013-11-27 2019-05-21 Howmedica Osteonics Corp. Structurally supporting insert for spinal fusion cage

Families Citing this family (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793678B2 (en) 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
AU2004212942A1 (en) 2003-02-14 2004-09-02 Depuy Spine, Inc. In-situ formed intervertebral fusion device
US20040267367A1 (en) 2003-06-30 2004-12-30 Depuy Acromed, Inc Intervertebral implant with conformable endplate
US7217291B2 (en) * 2003-12-08 2007-05-15 St. Francis Medical Technologies, Inc. System and method for replacing degenerated spinal disks
US8273129B2 (en) * 2004-02-10 2012-09-25 Atlas Spine, Inc. PLIF opposing wedge ramp
US8636802B2 (en) 2004-03-06 2014-01-28 DePuy Synthes Products, LLC Dynamized interspinal implant
WO2006034436A2 (en) 2004-09-21 2006-03-30 Stout Medical Group, L.P. Expandable support device and method of use
US8409282B2 (en) 2004-10-20 2013-04-02 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8152837B2 (en) 2004-10-20 2012-04-10 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US7763074B2 (en) 2004-10-20 2010-07-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8123807B2 (en) 2004-10-20 2012-02-28 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8277488B2 (en) 2004-10-20 2012-10-02 Vertiflex, Inc. Interspinous spacer
WO2009009049A2 (en) 2004-10-20 2009-01-15 Vertiflex, Inc. Interspinous spacer
US9161783B2 (en) 2004-10-20 2015-10-20 Vertiflex, Inc. Interspinous spacer
US8123782B2 (en) 2004-10-20 2012-02-28 Vertiflex, Inc. Interspinous spacer
US9023084B2 (en) 2004-10-20 2015-05-05 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilizing the motion or adjusting the position of the spine
US8945183B2 (en) 2004-10-20 2015-02-03 Vertiflex, Inc. Interspinous process spacer instrument system with deployment indicator
US8317864B2 (en) 2004-10-20 2012-11-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9119680B2 (en) 2004-10-20 2015-09-01 Vertiflex, Inc. Interspinous spacer
US8012207B2 (en) 2004-10-20 2011-09-06 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8613747B2 (en) 2004-10-20 2013-12-24 Vertiflex, Inc. Spacer insertion instrument
US8128662B2 (en) 2004-10-20 2012-03-06 Vertiflex, Inc. Minimally invasive tooling for delivery of interspinous spacer
US8167944B2 (en) 2004-10-20 2012-05-01 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8425559B2 (en) 2004-10-20 2013-04-23 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
ATE524121T1 (en) 2004-11-24 2011-09-15 Abdou Samy DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT
EP2219538B1 (en) 2004-12-06 2022-07-06 Vertiflex, Inc. Spacer insertion instrument
US9848993B2 (en) 2005-04-12 2017-12-26 Nathan C. Moskowitz Zero-profile expandable intervertebral spacer devices for distraction and spinal fusion and a universal tool for their placement and expansion
WO2007009107A2 (en) 2005-07-14 2007-01-18 Stout Medical Group, P.L. Expandable support device and method of use
US8070813B2 (en) * 2005-09-26 2011-12-06 Coalign Innovations, Inc. Selectively expanding spine cage, hydraulically controllable in three dimensions for vertebral body replacement
US7985256B2 (en) * 2005-09-26 2011-07-26 Coalign Innovations, Inc. Selectively expanding spine cage, hydraulically controllable in three dimensions for enhanced spinal fusion
US9028550B2 (en) 2005-09-26 2015-05-12 Coalign Innovations, Inc. Selectively expanding spine cage with enhanced bone graft infusion
WO2007131002A2 (en) 2006-05-01 2007-11-15 Stout Medical Group, L.P. Expandable support device and method of use
US8845726B2 (en) 2006-10-18 2014-09-30 Vertiflex, Inc. Dilator
US8105382B2 (en) 2006-12-07 2012-01-31 Interventional Spine, Inc. Intervertebral implant
EP2155121B1 (en) 2007-04-16 2015-06-17 Vertiflex, Inc. Interspinous spacer
US8241362B2 (en) 2007-04-26 2012-08-14 Voorhies Rand M Lumbar disc replacement implant for posterior implantation with dynamic spinal stabilization device and method
US8262666B2 (en) * 2007-04-27 2012-09-11 Atlas Spine, Inc. Implantable distractor
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
US8142441B2 (en) * 2008-10-16 2012-03-27 Aesculap Implant Systems, Llc Surgical instrument and method of use for inserting an implant between two bones
US8591587B2 (en) 2007-10-30 2013-11-26 Aesculap Implant Systems, Llc Vertebral body replacement device and method for use to maintain a space between two vertebral bodies within a spine
EP2244670B1 (en) 2008-01-15 2017-09-13 Vertiflex, Inc. Interspinous spacer
CN101909548B (en) 2008-01-17 2014-07-30 斯恩蒂斯有限公司 An expandable intervertebral implant and associated method of manufacturing the same
US8088163B1 (en) 2008-02-06 2012-01-03 Kleiner Jeffrey B Tools and methods for spinal fusion
US8932355B2 (en) 2008-02-22 2015-01-13 Coalign Innovations, Inc. Spinal implant with expandable fixation
US8696751B2 (en) 2008-12-10 2014-04-15 Coalign Innovations, Inc. Adjustable distraction cage with linked locking mechanisms
US20100145455A1 (en) * 2008-12-10 2010-06-10 Innvotec Surgical, Inc. Lockable spinal implant
US8992620B2 (en) * 2008-12-10 2015-03-31 Coalign Innovations, Inc. Adjustable distraction cage with linked locking mechanisms
US8216317B2 (en) 2008-03-31 2012-07-10 Stryker Spine Spinal implant apparatus and methods
WO2009124269A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
US20100204795A1 (en) 2008-11-12 2010-08-12 Stout Medical Group, L.P. Fixation device and method
US20100211176A1 (en) 2008-11-12 2010-08-19 Stout Medical Group, L.P. Fixation device and method
US8366748B2 (en) * 2008-12-05 2013-02-05 Kleiner Jeffrey Apparatus and method of spinal implant and fusion
JP2012514703A (en) * 2008-12-31 2012-06-28 エフ. ヒメネス、オマール Flexible joint configuration incorporating flexure members
US9247943B1 (en) 2009-02-06 2016-02-02 Kleiner Intellectual Property, Llc Devices and methods for preparing an intervertebral workspace
US8628577B1 (en) 2009-03-19 2014-01-14 Ex Technology, Llc Stable device for intervertebral distraction and fusion
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
CN102510742B (en) * 2009-06-17 2015-03-25 三位一体整形有限责任公司 Expanding intervertebral device and methods of use
WO2011005788A1 (en) 2009-07-06 2011-01-13 Synthes Usa, Llc Expandable fixation assemblies
US9358125B2 (en) 2009-07-22 2016-06-07 Spinex Tec, Llc Coaxial screw gear sleeve mechanism
US10245159B1 (en) 2009-09-18 2019-04-02 Spinal Surgical Strategies, Llc Bone graft delivery system and method for using same
US20170238984A1 (en) 2009-09-18 2017-08-24 Spinal Surgical Strategies, Llc Bone graft delivery device with positioning handle
US9629729B2 (en) 2009-09-18 2017-04-25 Spinal Surgical Strategies, Llc Biological delivery system with adaptable fusion cage interface
US10973656B2 (en) 2009-09-18 2021-04-13 Spinal Surgical Strategies, Inc. Bone graft delivery system and method for using same
US9186193B2 (en) 2009-09-18 2015-11-17 Spinal Surgical Strategies, Llc Fusion cage with combined biological delivery system
US9060877B2 (en) 2009-09-18 2015-06-23 Spinal Surgical Strategies, Llc Fusion cage with combined biological delivery system
USD750249S1 (en) 2014-10-20 2016-02-23 Spinal Surgical Strategies, Llc Expandable fusion cage
US8906028B2 (en) 2009-09-18 2014-12-09 Spinal Surgical Strategies, Llc Bone graft delivery device and method of using the same
US9173694B2 (en) 2009-09-18 2015-11-03 Spinal Surgical Strategies, Llc Fusion cage with combined biological delivery system
US8062375B2 (en) * 2009-10-15 2011-11-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US8740948B2 (en) 2009-12-15 2014-06-03 Vertiflex, Inc. Spinal spacer for cervical and other vertebra, and associated systems and methods
US8636746B2 (en) 2009-12-31 2014-01-28 Spinex Tec, Llc Methods and apparatus for insertion of vertebral body distraction and fusion devices
CA2793185C (en) 2010-03-16 2019-02-12 Pinnacle Spine Group, Llc Intervertebral implants and graft delivery systems and methods
US8535380B2 (en) * 2010-05-13 2013-09-17 Stout Medical Group, L.P. Fixation device and method
US9907560B2 (en) 2010-06-24 2018-03-06 DePuy Synthes Products, Inc. Flexible vertebral body shavers
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
TW201215379A (en) 2010-06-29 2012-04-16 Synthes Gmbh Distractible intervertebral implant
EP2608747A4 (en) 2010-08-24 2015-02-11 Flexmedex Llc Support device and method for use
US20120078372A1 (en) 2010-09-23 2012-03-29 Thomas Gamache Novel implant inserter having a laterally-extending dovetail engagement feature
US8858637B2 (en) 2010-09-30 2014-10-14 Stryker Spine Surgical implant with guiding rail
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US9149286B1 (en) 2010-11-12 2015-10-06 Flexmedex, LLC Guidance tool and method for use
US9358122B2 (en) 2011-01-07 2016-06-07 K2M, Inc. Interbody spacer
US8394129B2 (en) 2011-03-10 2013-03-12 Interventional Spine, Inc. Method and apparatus for minimally invasive insertion of intervertebral implants
US8518087B2 (en) 2011-03-10 2013-08-27 Interventional Spine, Inc. Method and apparatus for minimally invasive insertion of intervertebral implants
US9700425B1 (en) 2011-03-20 2017-07-11 Nuvasive, Inc. Vertebral body replacement and insertion methods
WO2013028808A1 (en) 2011-08-23 2013-02-28 Flexmedex, LLC Tissue removal device and method
US9248028B2 (en) 2011-09-16 2016-02-02 DePuy Synthes Products, Inc. Removable, bone-securing cover plate for intervertebral fusion cage
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US9380932B1 (en) 2011-11-02 2016-07-05 Pinnacle Spine Group, Llc Retractor devices for minimally invasive access to the spine
US9445919B2 (en) * 2011-12-19 2016-09-20 Warsaw Orthopedic, Inc. Expandable interbody implant and methods of use
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US9622876B1 (en) 2012-04-25 2017-04-18 Theken Spine, Llc Expandable support device and method of use
WO2013173767A1 (en) 2012-05-18 2013-11-21 Trinity Orthopedics, Llc Articulating interbody cage and methods thereof
US9044342B2 (en) * 2012-05-30 2015-06-02 Globus Medical, Inc. Expandable interbody spacer
WO2014018098A1 (en) 2012-07-26 2014-01-30 DePuy Synthes Products, LLC Expandable implant
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US20140067069A1 (en) 2012-08-30 2014-03-06 Interventional Spine, Inc. Artificial disc
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US8663332B1 (en) 2012-12-13 2014-03-04 Ouroboros Medical, Inc. Bone graft distribution system
US9717601B2 (en) 2013-02-28 2017-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US9277928B2 (en) 2013-03-11 2016-03-08 Interventional Spine, Inc. Method and apparatus for minimally invasive insertion of intervertebral implants
WO2014159739A1 (en) 2013-03-14 2014-10-02 Pinnacle Spine Group, Llc Interbody implants and graft delivery systems
US9993353B2 (en) 2013-03-14 2018-06-12 DePuy Synthes Products, Inc. Method and apparatus for minimally invasive insertion of intervertebral implants
WO2014145995A2 (en) * 2013-03-15 2014-09-18 Spectrum Spine Ip Holdings, Llc Expandable inter-body fusion devices and methods
US9675303B2 (en) 2013-03-15 2017-06-13 Vertiflex, Inc. Visualization systems, instruments and methods of using the same in spinal decompression procedures
AU2014268740B2 (en) 2013-05-20 2018-04-26 K2M, Inc. Adjustable implant and insertion tool
US9788971B1 (en) 2013-05-22 2017-10-17 Nuvasive, Inc. Expandable fusion implant and related methods
US9801734B1 (en) 2013-08-09 2017-10-31 Nuvasive, Inc. Lordotic expandable interbody implant
US9186259B2 (en) * 2013-09-09 2015-11-17 Ouroboros Medical, Inc. Expandable trials
WO2015120165A1 (en) 2014-02-05 2015-08-13 Marino James F Anchor devices and methods of use
US10238499B2 (en) 2014-03-14 2019-03-26 Atlas Spine, Inc. Bilateral clamping spacer
US9486328B2 (en) 2014-04-01 2016-11-08 Ex Technology, Llc Expandable intervertebral cage
US8940049B1 (en) 2014-04-01 2015-01-27 Ex Technology, Llc Expandable intervertebral cage
AU2015256024B2 (en) 2014-05-07 2020-03-05 Vertiflex, Inc. Spinal nerve decompression systems, dilation systems, and methods of using the same
US20170196508A1 (en) 2014-06-25 2017-07-13 Canary Medical Inc. Devices, systems and methods for using and monitoring spinal implants
US9681961B2 (en) * 2014-08-01 2017-06-20 Warsaw Orthopedic, Inc. Surgical instrument system and method
US10034769B2 (en) 2014-08-26 2018-07-31 Atlas Spine, Inc. Spinal implant device
US9622872B2 (en) * 2014-09-23 2017-04-18 Warsaw Orthopedic, Inc. Intervertebral spinal implant and method
US9585762B2 (en) 2014-10-09 2017-03-07 K2M, Inc. Expandable spinal interbody spacer and method of use
WO2016077610A1 (en) 2014-11-12 2016-05-19 Grotz Robert Thomas Universally expanding cage
US10363142B2 (en) 2014-12-11 2019-07-30 K2M, Inc. Expandable spinal implants
US9060876B1 (en) 2015-01-20 2015-06-23 Ouroboros Medical, Inc. Stabilized intervertebral scaffolding systems
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9814602B2 (en) * 2015-05-14 2017-11-14 Globus Medical, Inc. Expandable intervertebral implants and methods of installation thereof
US9913727B2 (en) 2015-07-02 2018-03-13 Medos International Sarl Expandable implant
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
USD797290S1 (en) 2015-10-19 2017-09-12 Spinal Surgical Strategies, Llc Bone graft delivery tool
US10004608B2 (en) 2016-02-26 2018-06-26 K2M, Inc. Insertion instrument for expandable spinal implants
JP6943598B2 (en) 2016-04-07 2021-10-06 ハウメディカ・オステオニクス・コーポレイション Expandable interbody implant
US10940018B2 (en) 2016-05-20 2021-03-09 Howmedica Osteonics Corp. Expandable interbody implant with lordosis correction
JP6995789B2 (en) 2016-06-28 2022-01-17 イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー Expandable and angle adjustable intervertebral cage
JP7019616B2 (en) 2016-06-28 2022-02-15 イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー Expandable and angle adjustable intervertebral cage with range of motion joints
AU2017228529B2 (en) 2016-09-12 2022-03-10 Howmedica Osteonics Corp. Interbody implant with independent control of expansion at multiple locations
US9883953B1 (en) 2016-09-21 2018-02-06 Integrity Implants Inc. Stabilized laterovertically-expanding fusion cage systems with tensioner
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
AU2017251734B2 (en) 2016-10-26 2022-10-20 Howmedica Osteonics Corp. Expandable interbody implant with lateral articulation
US10537436B2 (en) 2016-11-01 2020-01-21 DePuy Synthes Products, Inc. Curved expandable cage
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
CN110402124B (en) 2017-01-10 2022-03-15 整体植入有限公司 Expandable intervertebral fusion device
EP3614976A4 (en) * 2017-04-24 2021-01-27 University of Maryland, Baltimore Cloward-style cervical mesh cage with lateral stabilizers
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US11896494B2 (en) 2017-07-10 2024-02-13 Life Spine, Inc. Expandable implant assembly
CN111031969A (en) 2017-07-24 2020-04-17 整体植入有限公司 Surgical implant and related methods
US10441430B2 (en) 2017-07-24 2019-10-15 K2M, Inc. Expandable spinal implants
US10709578B2 (en) 2017-08-25 2020-07-14 Integrity Implants Inc. Surgical biologics delivery system and related methods
EP3456294A1 (en) 2017-09-15 2019-03-20 Stryker European Holdings I, LLC Intervertebral body fusion device expanded with hardening material
CN111989056A (en) 2018-03-01 2020-11-24 正诚植入公司 Expandable fusion device with independent expansion system
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11497622B2 (en) 2019-03-05 2022-11-15 Ex Technology, Llc Transversely expandable minimally invasive intervertebral cage and insertion and extraction device
US11234835B2 (en) 2019-03-05 2022-02-01 Octagon Spine Llc Transversely expandable minimally invasive intervertebral cage
US11253372B2 (en) 2019-03-09 2022-02-22 Iorthopedics, Inc. Universally expanding cages
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11857432B2 (en) 2020-04-13 2024-01-02 Life Spine, Inc. Expandable implant assembly
US11602439B2 (en) 2020-04-16 2023-03-14 Life Spine, Inc. Expandable implant assembly
US11554020B2 (en) 2020-09-08 2023-01-17 Life Spine, Inc. Expandable implant with pivoting control assembly
CN113017938A (en) * 2021-03-17 2021-06-25 何伟义 Improvement of artificial intervertebral disc fusion device
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11918489B2 (en) 2021-04-02 2024-03-05 Nuvasive Inc. Expansion driver
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665122A (en) * 1995-01-31 1997-09-09 Kambin; Parviz Expandable intervertebral cage and surgical method
WO2002009626A1 (en) * 1999-07-26 2002-02-07 Advanced Prosthetic Technologies, Inc. Improved spinal surgical prosthesis
WO2002038062A2 (en) * 2000-11-13 2002-05-16 Boehm Frank H Jr Device and method for lumbar interbody fusion
EP1290985A2 (en) * 2001-08-16 2003-03-12 Iql Industrias Quirurgicas De Levante S.L. Intersomatic cage for posterior fusion surgery to the lumbar column and for surgery involving the insertion of a transforaminal implant
WO2004019829A1 (en) * 2002-08-28 2004-03-11 Sdgi Holdings, Inc. Minimally invasive expanding spacer and method
EP1481654A1 (en) * 2003-05-27 2004-12-01 Ulrich GmbH & Co. KG Intervertebral fusion implant and instrument for placement and distraction of said implant

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875595A (en) 1974-04-15 1975-04-08 Edward C Froning Intervertebral disc prosthesis and instruments for locating same
GB8620937D0 (en) * 1986-08-29 1986-10-08 Shepperd J A N Spinal implant
US4932975A (en) 1989-10-16 1990-06-12 Vanderbilt University Vertebral prosthesis
US5236460A (en) 1990-02-12 1993-08-17 Midas Rex Pneumatic Tools, Inc. Vertebral body prosthesis
WO1998020939A2 (en) 1996-11-15 1998-05-22 Advanced Bio Surfaces, Inc. Biomaterial system for in situ tissue repair
JP3509103B2 (en) * 1994-05-23 2004-03-22 スルザー スパイン−テック インコーポレイテッド Intervertebral fusion implant
US5980522A (en) * 1994-07-22 1999-11-09 Koros; Tibor Expandable spinal implants
US5653763A (en) 1996-03-29 1997-08-05 Fastenetix, L.L.C. Intervertebral space shape conforming cage device
FR2753368B1 (en) * 1996-09-13 1999-01-08 Chauvin Jean Luc EXPANSIONAL OSTEOSYNTHESIS CAGE
US6039761A (en) 1997-02-12 2000-03-21 Li Medical Technologies, Inc. Intervertebral spacer and tool and method for emplacement thereof
US6127597A (en) 1997-03-07 2000-10-03 Discotech N.V. Systems for percutaneous bone and spinal stabilization, fixation and repair
US6126689A (en) 1998-06-15 2000-10-03 Expanding Concepts, L.L.C. Collapsible and expandable interbody fusion device
FR2782632B1 (en) 1998-08-28 2000-12-29 Materiel Orthopedique En Abreg EXPANSIBLE INTERSOMATIC FUSION CAGE
FR2787018B1 (en) 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH LIQUID ENCLOSURE
BR9805340B1 (en) * 1998-12-14 2009-01-13 variable expansion insert for spinal stabilization.
US6102950A (en) * 1999-01-19 2000-08-15 Vaccaro; Alex Intervertebral body fusion device
US6454806B1 (en) 1999-07-26 2002-09-24 Advanced Prosthetic Technologies, Inc. Spinal surgical prosthesis
AU7080200A (en) 1999-08-26 2001-03-19 Sdgi Holdings, Inc. Devices and methods for implanting fusion cages
WO2001028469A2 (en) 1999-10-21 2001-04-26 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
US6764491B2 (en) 1999-10-21 2004-07-20 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
US7291150B2 (en) 1999-12-01 2007-11-06 Sdgi Holdings, Inc. Intervertebral stabilising device
EP1645248B8 (en) 2000-02-04 2010-06-16 Warsaw Orthopedic, Inc. Expandable interbody spinal fusion implant having pivotally attached blocker
US6709458B2 (en) 2000-02-04 2004-03-23 Gary Karlin Michelson Expandable push-in arcuate interbody spinal fusion implant with tapered configuration during insertion
US6716247B2 (en) 2000-02-04 2004-04-06 Gary K. Michelson Expandable push-in interbody spinal fusion implant
US6500205B1 (en) 2000-04-19 2002-12-31 Gary K. Michelson Expandable threaded arcuate interbody spinal fusion implant with cylindrical configuration during insertion
US6814756B1 (en) 2000-02-04 2004-11-09 Gary K. Michelson Expandable threaded arcuate interbody spinal fusion implant with lordotic configuration during insertion
US6821298B1 (en) * 2000-04-18 2004-11-23 Roger P. Jackson Anterior expandable spinal fusion cage system
US7018416B2 (en) 2000-07-06 2006-03-28 Zimmer Spine, Inc. Bone implants and methods
US6723128B2 (en) * 2000-10-17 2004-04-20 Chang Jong Uk Prosthetic device for correcting deformity of spine
US6666891B2 (en) 2000-11-13 2003-12-23 Frank H. Boehm, Jr. Device and method for lumbar interbody fusion
US6849093B2 (en) 2001-03-09 2005-02-01 Gary K. Michelson Expansion constraining member adapted for use with an expandable interbody spinal fusion implant and method for use thereof
US7128760B2 (en) 2001-03-27 2006-10-31 Warsaw Orthopedic, Inc. Radially expanding interbody spinal fusion implants, instrumentation, and methods of insertion
US6375682B1 (en) 2001-08-06 2002-04-23 Lewis W. Fleischmann Collapsible, rotatable and expandable spinal hydraulic prosthetic device
DE10210214B4 (en) 2002-03-02 2005-01-05 Bernd Schäfer Distractable spinal implant and tool for distraction
US6893464B2 (en) 2002-03-05 2005-05-17 The Regents Of The University Of California Method and apparatus for providing an expandable spinal fusion cage
JP4256345B2 (en) 2002-08-15 2009-04-22 コップス,ジャスティン,ケー. Intervertebral disc implant
AU2002321743A1 (en) 2002-08-19 2004-03-03 Orchid Health Care Sustained release pharmaceutical composition of a cephalosporin antibiotic
AU2003286531A1 (en) * 2002-10-21 2004-05-13 3Hbfm, Llc Intervertebral disk prosthesis
US6723126B1 (en) 2002-11-01 2004-04-20 Sdgi Holdings, Inc. Laterally expandable cage
US7419505B2 (en) 2003-04-22 2008-09-02 Fleischmann Lewis W Collapsible, rotatable, and tiltable hydraulic spinal disc prosthesis system with selectable modular components
US6981989B1 (en) 2003-04-22 2006-01-03 X-Pantu-Flex Drd Limited Liability Company Rotatable and reversibly expandable spinal hydraulic prosthetic device
US7621956B2 (en) 2003-07-31 2009-11-24 Globus Medical, Inc. Prosthetic spinal disc replacement
US7316714B2 (en) 2003-08-05 2008-01-08 Flexuspine, Inc. Artificial functional spinal unit assemblies
US7204853B2 (en) 2003-08-05 2007-04-17 Flexuspine, Inc. Artificial functional spinal unit assemblies
US7217293B2 (en) 2003-11-21 2007-05-15 Warsaw Orthopedic, Inc. Expandable spinal implant
US7211112B2 (en) * 2004-02-10 2007-05-01 Atlas Spine Spinal fusion device
US20050229433A1 (en) 2004-03-03 2005-10-20 Cachia Victor V Catheter deliverable foot implant and method of delivering the same
US7351261B2 (en) 2004-06-30 2008-04-01 Depuy Spine, Inc. Multi-joint implant
US7291158B2 (en) 2004-11-12 2007-11-06 Boston Scientific Scimed, Inc. Cutting balloon catheter having a segmented blade
US20060167547A1 (en) * 2005-01-21 2006-07-27 Loubert Suddaby Expandable intervertebral fusion implants having hinged sidewalls
US7722674B1 (en) 2005-08-12 2010-05-25 Innvotec Surgical Inc. Linearly expanding spine cage for enhanced spinal fusion
US20070050030A1 (en) 2005-08-23 2007-03-01 Kim Richard C Expandable implant device with interchangeable spacer
US8070813B2 (en) 2005-09-26 2011-12-06 Coalign Innovations, Inc. Selectively expanding spine cage, hydraulically controllable in three dimensions for vertebral body replacement
US7985256B2 (en) 2005-09-26 2011-07-26 Coalign Innovations, Inc. Selectively expanding spine cage, hydraulically controllable in three dimensions for enhanced spinal fusion
WO2007075878A2 (en) 2005-12-22 2007-07-05 Endius, Inc. Methods and devices for replacement of intervertebral discs
US7794501B2 (en) 2006-04-27 2010-09-14 Wasaw Orthopedic, Inc. Expandable intervertebral spacers and methods of use
US7708779B2 (en) 2006-05-01 2010-05-04 Warsaw Orthopedic, Inc. Expandable intervertebral spacers and methods of use
US7731752B2 (en) 2006-07-21 2010-06-08 Warsaw Orthopedic, Inc. Implant with nested members and methods of use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665122A (en) * 1995-01-31 1997-09-09 Kambin; Parviz Expandable intervertebral cage and surgical method
WO2002009626A1 (en) * 1999-07-26 2002-02-07 Advanced Prosthetic Technologies, Inc. Improved spinal surgical prosthesis
WO2002038062A2 (en) * 2000-11-13 2002-05-16 Boehm Frank H Jr Device and method for lumbar interbody fusion
EP1290985A2 (en) * 2001-08-16 2003-03-12 Iql Industrias Quirurgicas De Levante S.L. Intersomatic cage for posterior fusion surgery to the lumbar column and for surgery involving the insertion of a transforaminal implant
WO2004019829A1 (en) * 2002-08-28 2004-03-11 Sdgi Holdings, Inc. Minimally invasive expanding spacer and method
EP1481654A1 (en) * 2003-05-27 2004-12-01 Ulrich GmbH & Co. KG Intervertebral fusion implant and instrument for placement and distraction of said implant

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722674B1 (en) 2005-08-12 2010-05-25 Innvotec Surgical Inc. Linearly expanding spine cage for enhanced spinal fusion
US7799056B2 (en) 2007-12-31 2010-09-21 Warsaw Orthopedic, Inc. Bone fusion device and methods
US7985231B2 (en) 2007-12-31 2011-07-26 Kyphon Sarl Bone fusion device and methods
US8177812B2 (en) 2007-12-31 2012-05-15 Kyphon Sarl Bone fusion device and methods
US8795365B2 (en) 2008-03-24 2014-08-05 Warsaw Orthopedic, Inc Expandable devices for emplacement in body parts and methods associated therewith
JP2011520580A (en) * 2008-05-26 2011-07-21 ロペス、 ルドルフ モルゲンシュテルン Intervertebral implants and placement instruments
US10292833B2 (en) 2013-11-27 2019-05-21 Howmedica Osteonics Corp. Structurally supporting insert for spinal fusion cage
US11229527B2 (en) 2013-11-27 2022-01-25 Howmedica Osteonics Corp. Structurally supporting insert for spinal fusion cage

Also Published As

Publication number Publication date
US7722674B1 (en) 2010-05-25
US20080188941A1 (en) 2008-08-07
US7819921B2 (en) 2010-10-26

Similar Documents

Publication Publication Date Title
US7819921B2 (en) Linearly expanding spine cage for enhanced spinal fusion
US11696837B2 (en) Intervertebral implant with fixation geometry
US11660206B2 (en) Intervertebral implant
US10226356B2 (en) Universally expanding cage
US10080670B2 (en) Apparatus and method for stabilizing adjacent bone portions
JP5941048B2 (en) Independent intervertebral fusion device
WO2006042206A2 (en) Systems and methods for direct restoration of foraminal volume

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06801348

Country of ref document: EP

Kind code of ref document: A1