WO2007039133A1 - Zweikomponenten-systeme für die herstellung flexibler beschichtungen - Google Patents

Zweikomponenten-systeme für die herstellung flexibler beschichtungen Download PDF

Info

Publication number
WO2007039133A1
WO2007039133A1 PCT/EP2006/009203 EP2006009203W WO2007039133A1 WO 2007039133 A1 WO2007039133 A1 WO 2007039133A1 EP 2006009203 W EP2006009203 W EP 2006009203W WO 2007039133 A1 WO2007039133 A1 WO 2007039133A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating systems
component coating
groups
systems according
polyisocyanates
Prior art date
Application number
PCT/EP2006/009203
Other languages
English (en)
French (fr)
Inventor
Michael Mager
Meike Niesten
Malte Homann
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to AT06777194T priority Critical patent/ATE554117T1/de
Priority to BRPI0616849-3A priority patent/BRPI0616849A2/pt
Priority to EP06777194A priority patent/EP1937742B1/de
Priority to ES06777194T priority patent/ES2383224T3/es
Priority to JP2008533896A priority patent/JP5275032B2/ja
Priority to AU2006299127A priority patent/AU2006299127B2/en
Priority to PL06777194T priority patent/PL1937742T3/pl
Priority to CA 2624312 priority patent/CA2624312C/en
Publication of WO2007039133A1 publication Critical patent/WO2007039133A1/de
Priority to IL190075A priority patent/IL190075A0/en
Priority to NO20081898A priority patent/NO20081898L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7837Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4866Polyethers having a low unsaturation value
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/12Polyurethanes from compounds containing nitrogen and active hydrogen, the nitrogen atom not being part of an isocyanate group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]

Definitions

  • the present invention relates to two-component coating systems for the production of flexible coatings.
  • the coating systems comprise polyurethane prepolymers with allophanate structures and amino-functional polyaspartic esters as hardeners.
  • Polyurethane or polyurea based two-component coating systems are known and used in the art. As a rule, they contain a liquid polyisocyanate component and a liquid isocyanate-reactive component. Reaction of polyisocyanates with amines as an isocyanate-reactive component gives rise to highly crosslinked polyurea coatings. However, primary amines and isocyanates usually react very quickly with one another. Typical pot or gel times are often only a few seconds to a few minutes.
  • a method known from the literature for reducing the reactivity is the use of prepolymers with a low NCO content.
  • NCO-functional prepolymers in combination with amines, flexible polyurea coatings can be produced.
  • US-A-3 428 610 and US-A-4 463 126 disclose the preparation of polyurethane / polyurea elastomers by curing NCO-functional prepolymers with aromatic diamines. These are preferably di-primary aromatic diamines which, in the ortho position to each amino group, have at least one alkyl substituent with 2-3 carbon atoms and optionally also in further ortho positions to the amino groups methyl substituents, such as diethyltoluyldiamine (DETDA).
  • DETDA diethyltoluyldiamine
  • NCO prepolymers are cured at room temperature with hindered di-primary aromatic diamines.
  • a disadvantage of such systems is that the aromatic diamines tend to have a strong yellowing.
  • EP-A 403 921 and US-A 5 126 170 disclose the formation of polyurea coatings by reaction of polyaspartic esters with Polyisocyanates.
  • Polyaspartic acid esters have a low viscosity and a reduced reactivity with polyisocyanates and can therefore be used for the production of solvent-free coating compositions with extended pot lives.
  • An additional advantage of polyaspartic acid esters is that the products are colorless.
  • colorless aliphatic polyisocyanate prepolymers based on polyether polyols harden extremely slowly with polyaspartic esters and the coatings often have a sticky surface.
  • the invention therefore relates to two-component coating systems, at least containing
  • X is an n-valent organic radical which is removed by removal of the primary
  • R 1 , R 2 are identical or different organic radicals which are inert under the reaction conditions to isocyanate groups and
  • n is an integer of at least 2.
  • Suitable aliphatic and cycloaliphatic polyisocyanates Al are di- or triisocyanates such as butane diisocyanate, pentane diisocyanate, hexane diisocyanate (hexamethylene diisocyanate, HDI), 4-isocyanatomethyl-l, 8-octane diisocyanate (triisocyanatononane, TIN) or cyclic systems such as 4,4 '-Methylenbis (cyclohexylisocyanate), 3,5,5-trimethyl-l-isocyanato-3-isocyanato methylcyclohexane (isophorone diisocyanate, BPDI) and ⁇ . ⁇ '-diisocyanato-l, 3-dimethylcyclohexane
  • di- or triisocyanates such as butane diisocyanate, pentane diisocyanate, hexane diisocyanate (hex
  • Hexane diisocyanate (hexamethylene diisocyanate, HDI), 4,4'-methylenebis (cyclohexyl isocyanate) and / or 3,5,5-trimethyl-1-isocyanato-3-isocyanatomethylcyclohexane (isophorone diisocyanate, IPDI) are preferably used in components A1) and A3) ) used as polyisocyanates.
  • a most preferred polyisocyanate is HDI.
  • Al) and A3) are preferably used polyisocyanates of the same type.
  • polyhydroxy compounds of component A2) it is possible to use all polyhydroxy compounds known to the person skilled in the art which preferably have an average OH functionality of greater than or equal to 1.5, it being necessary for at least one of the compounds contained in A2) to be a polyether polyol.
  • Suitable polyhydroxyl compounds which can be used in A2) are low molecular weight diols (for example 1,2-ethanediol, 1,3- or 1,2-propanediol, 1,4-butanediol), triols (for example glycerol, trimethylolpropane) and tetraols (for example pentaerythritol), polyetherpolyols , Polyester polyols, polycarbonate polyols and polythioether polyols. Preference is given in A2) used exclusively as polyhydroxy compounds of the above type polyether-based. - A -
  • the polyetheipolyols used in A2) preferably have number-average molecular weights M n of 300 to 20,000 g / mol, particularly preferably 1000 to 12,000 g / mol, very particularly preferably 2,000 to 6,000 g / mol.
  • they preferably have an average OH functionality of> 1.9, particularly preferably> 1.95.
  • Such polyether polyols are accessible in a manner known per se by alkoxylation of suitable starter molecules with base catalysis or use of double metal cyanide compounds (DMC compounds).
  • DMC compounds double metal cyanide compounds
  • Particularly suitable polyether polyols of component A2) are those of the abovementioned type having an unsaturated end group content of less than or equal to 0.02 meq / gram of polyol (meq / g), preferably less than or equal to 0.015 meq / g, more preferably less than or equal to 0.01 meq / g (method of determination ASTM D2849-69).
  • Such polyether polyols can be prepared in a conventional manner by alkoxylation of suitable starter molecules, in particular using double metal cyanide catalysts (DMC catalysis). This is e.g. in US-A 5,158,922 (e.g., Example 30) and EP-A-0
  • Suitable starter molecules for the preparation of polyether polyols are, for example, simple, low molecular weight polyols, water, organic polyamines having at least two N-H bonds or any mixtures of such starter molecules.
  • Alkylene oxides which are suitable for the alkoxylation are, in particular, ethylene oxide and / or propylene oxide, which can be used in any order or also in a mixture in the alkoxylation.
  • Preferred starter molecules for the preparation of polyether polyols by alkoxylation, in particular by the DMC process are in particular simple polyols such as ethylene glycol, propylene glycol 1, 3 and butanediol 1, 4, hexanediol 1, 6, neopentyl glycol, 2-ethylhexanediol l, 3, glycerol, trimethylolpropane, pentaerythritol and low molecular weight, hydroxyl-containing esters of such polyols with dicarboxylic acids of the exemplary type mentioned below or low molecular weight ethoxylation or propoxylation of such simple polyols or any mixtures of such modified or unmodified alcohols.
  • simple polyols such as ethylene glycol, propylene glycol 1, 3 and butanediol 1, 4, hexanediol 1, 6, neopentyl glycol, 2-ethylhexanedio
  • the preparation of the polyurethane prepolymers containing isocyanate groups as an intermediate is carried out by reacting the polyhydroxy compounds of component A2) with excess amounts of the polyisocyanates from Al). The reaction is generally carried out at temperatures of 20 to
  • the allophanatization is then then carried out by reacting the polyurethane prepolymers containing isocyanate groups with polyisocyanates A3), which may be the same or different from those of component Al), with suitable catalysts A4) being added for allophanatization.
  • polyisocyanates A3) which may be the same or different from those of component Al
  • suitable catalysts A4 being added for allophanatization.
  • the acid additives of component A5) are added and excess polyisocyanate, e.g. removed by thin film distillation or extraction from the product.
  • the molar ratio of the OH groups of the compounds of component A2) to the NCO groups of the polyisocyanates of Al) and A3) is preferably 1: 1.5 to 1:20, particularly preferably 1: 2 to 1:15, very particularly preferably 1: 2 to 1:10.
  • Zinc (II) compounds are preferably used as catalysts in A4), these being particularly preferably zinc soaps of longer-chain, branched or unbranched, aliphatic carboxylic acids.
  • Preferred zinc (II) soaps are those based on 2-ethylhexanoic acid and the linear, aliphatic C 4 - to C 3 o-carboxylic acids.
  • Very particularly preferred compounds of component A4) are Zn ( ⁇ ) bis (2-ethylhexanoate), Zn (II) bis (n-octoate), Zn (H) bis (stearate) or mixtures thereof.
  • allophanatization catalysts are typically used in amounts of from 5 ppm up to 5% by weight, based on the total reaction mixture. Preference is given to using 5 to 500 ppm of the catalyst, more preferably 20 to 200 ppm.
  • stabilizing additives may also be used before, during or after the allophanatization.
  • These may be acidic additives such as Lewis acids (electron deficient compounds) or Broensted acids (protic acids) or compounds which release such acids upon reaction with water.
  • inorganic or organic acids or else neutral compounds such as acid halides or esters which react with water to give the corresponding acids.
  • acid halides or esters which react with water to give the corresponding acids.
  • Mentioned here are in particular hydrochloric acid, phosphoric acid, phosphoric acid esters, benzoyl chloride, isophthalic acid dichloride, p-toluenesulfonic acid, formic acid, acetic acid, dichloroacetic acid and 2-chloropropionic acid.
  • the abovementioned acidic additives can also be used for deactivating the allophanatization catalyst. They also improve the stability of the invention produced allophanates, for example, during thermal stress during the Dünn Anlagendestrllation or after production during storage of the products.
  • the acidic additives are usually added at least in such an amount that the molar ratio of acidic centers of the acidic additive and the catalyst is at least 1: 1. Preferably, however, an excess of the acidic additive is added.
  • acidic additives are preferably organic acids, such as carboxylic acids or acid halides, such as benzoyl chloride or isophtalyl dichloride.
  • the Dünn Anlagendesüllation is the preferred method and is usually carried out at temperatures of 100 to 160 0 C and a pressure of 0.01 to 3 mbar.
  • the residual monomer content is then preferably less than 1 wt .-%, more preferably less than 0.5 wt .-% (diisocyanate).
  • inert solvents are to be understood as those which do not react with the educts under the given reaction conditions. Examples are ethyl acetate, butyl acetate, methoxypropyl acetate, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, aromatic or (cyclo) aliphatic hydrocarbon mixtures or any mixtures of such solvents.
  • the reactions according to the invention are preferably carried out solvent-free.
  • the addition of the components involved can be carried out either in the preparation of the isocyanate group-containing prepolymers or in allophanatization in any order.
  • the polyisocyanates of components Al) and A3) are initially charged in a suitable reaction vessel and, if appropriate with stirring, heated to 40 to 100 0 C. After reaching the desired temperature, the polyhydroxy compounds of component A2) are then added with stirring and stirred until the theoretical NCO content of the polyurethane prepolymer to be expected according to the selected stoichiometry is reached or slightly undershot. Now, the Allophanati- s mecanicskatalysator A4) is added and the reaction mixture while heated to 50 and 100 0 C until the desired NCO content is reached or slightly below. To
  • the reaction mixture is cooled or fed directly to the thin film distillation.
  • the excess polyisocyanate at temperatures of 100 to 16O 0 C and a pressure of 0.01 to 3 mbar to a residual monomer content of less than 1%, preferably less than 0.5%, separated.
  • further stabilizer may optionally be added.
  • Q 1 1 , and J Q independently of one another are the radical of a linear and / or cyclic aliphatic diisocyanate of the type mentioned, preferably - (CH 2 V,
  • R 3 and R 4 independently of one another are hydrogen or a C 1 -C 4 -alkyl radical, R 3 and R 4 preferably being hydrogen and / or methyl groups and in each repeat unit k the meaning of R 3 and R 4 being different,
  • the number average molecular weight of the underlying structure of the polyether is 300 to 20,000 g / mol and m is 1 or 3.
  • Q is the radical of a linear and / or cyclic aliphatic diisocyanate of the type mentioned, preferably - (CH 2 ) 6 -,
  • R 3 and R 4 independently of one another are hydrogen or a C 1 -C 4 -alkyl radical, where R 3 and R 4 are preferably hydrogen and / or methyl groups, where in each repeat unit m the meaning of R 3 and R 4 may be different,
  • k is equal to as many monomer units that the number average molecular weight of the underlying polyether is from 300 to 20,000 g / mol
  • m 1 or 3.
  • the allophanates used according to the invention in A) typically have number-average molecular weights of from 700 to 50,000 g / mol, preferably from 1500 to 8000 g / mol, and particularly preferably
  • the allophanates used according to the invention in A) typically have viscosities at 23 ° C. of 500 to 100,000 mPas, preferably 500 to 50,000 mPas and particularly preferably from 1,000 to 7,500 mPas, very particularly preferably from 1,000 to 3,500 mPas.
  • the group X in formula (I) of the polyaspartic esters of component B) is preferably based on an n-valent polyamine selected from the group consisting of ethylenediamine, 1,2-diaminopropane, 1, 4-diaminobutane, 1, 6-diaminohexane, 2,5-diamino-2,5-dimethylhexane, 2,2,4- and / or 2,4,4-trimethyl-1,6-diaminohexane, 1,11-diaminoundecane, 1,1-diaminododecane, 1-amino -S ⁇ S-trimethyl-S-aminomethyl-cyclohexane, 2,4- and / or 2,6-hexahydrotoluylenediamine,
  • the group X is based on 1, 4-diaminobutane, 1,6-diaminohexane, 2,2,4- and / or 2,4,4-trimethyl-1,6-diaminohexane, 1-amino-3,3, 5-trimethyl-5-aminomethylcyclohexane, 4,4'-diamino-dicyclohexylmethane or 3,3'-dimethyl-4,4'-diamino-dicyclohexylmethane.
  • radicals R 1 and R 2 inert under the reaction conditions with respect to isocyanate groups means that these radicals do not contain groups with Zerewitinoff-active hydrogen (CH-acidic compounds, see Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart), such as OH,
  • R 1 and R 2 are independently C 1 to C, 0 alkyl radicals, particularly preferably methyl or ethyl radicals.
  • n in formula (I) is an integer from 2 to 6, more preferably 2 to 4.
  • amino-functional polyaspartic esters B) are prepared in a manner known per se by reacting the corresponding primary polyamines of the formula
  • Suitable polyamines are the diamines mentioned above as the basis for the group X.
  • suitable maleic or fumaric acid esters are dimethyl maleate, diethyl maleate, dibutyl maleate and the corresponding fumaric acid esters.
  • the preparation of the amino-functional polyaspartic esters B) from the starting materials mentioned is preferably carried out within the temperature range from 0 to 100 0 C, the starting materials are used in proportions such that each primary amino group at least one, preferably exactly one olefinic double bond is omitted, wherein to the reaction optionally used in excess starting materials can be separated by distillation.
  • the reaction can be carried out in bulk or in the presence of suitable solvents such as methanol, ethanol, propanol or dioxane or mixtures of such solvents.
  • the ratio of free or blocked amino groups to free NCO groups is preferably 0.5: 1 to 1.5: 1, more preferably 1: 1 to 1.5: 1.
  • the individual components are mixed together.
  • the coating compositions mentioned can be applied to surfaces by known techniques such as spraying, dipping, flooding, rolling, brushing or pouring. After this
  • the coatings then cure under ambient conditions or at higher temperatures, for example 40 to 200 0 C.
  • the abovementioned coating compositions can be applied, for example, to metals, plastics, ceramics, glass and natural substances, it being possible for the abovementioned substrates to have previously been subjected to any necessary pretreatment.
  • the NCO contents were determined by back-titration of excess di-n-butylamine with hydrochloric acid.
  • the viscosities were determined using a Haake rotational viscometer at 23 ° C.
  • Pot life is the time within which the compositions could still be processed into a film
  • the allophanate-containing prepolymers 1 and 2 are based on the same basic building blocks. Due to their good compatibility, high functionality and good flexibility properties non-sticky, flexible, tough and clear films were obtained within 24 hours. With allophanate 1, on the other hand, a very rapid curing took place, but brittle films were obtained so that no mechanical properties could be determined.
  • the prepolymers 1, 3 and 4 were mixed at room temperature with the amino-functional polyaspartic esters 1, wherein an NCO / NH ratio of 1:05 was maintained. After mixing, the clear compositions were finally cast into 3 mm thick films. The composition and the curing behavior of the films are summarized in Table 2.

Abstract

Die vorliegende Erfindung betrifft Zweikomponenten-Beschichtungssysteme für die Herstellung von flexiblen Beschichtungen. Die Beschichtungssysteme umfassen Polyurethan-Prepolymere mit Allophanatstrukturen sowie aminofunktionelle Polyasparaginsäureester als Härter.

Description

Zweikomponenten-Svsteme für die Herstellung flexibler Beschichtungen
Die vorliegende Erfindung betrifft Zweikomponenten-Beschichtungssysteme für die Herstellung von flexiblen Beschichtungen. Die Beschichtungssysteme umfassen Polyurethanprepolymere mit Allophanatstrukturen sowie aminofunktionelle Polyasparaginsäureester als Härter.
Zweikomponenten-Beschichtungssysteme auf Polyurethan- oder Polyharnstoff-Basis sind bekannt und werden in der Technik eingesetzt. In der Regel enthalten sie eine flüssige Polyiso- cyanatkomponente und eine flüssige isocyanatreaktive Komponente. Durch Reaktion von Polyiso- cyanaten mit Aminen als isocyanatreaktive Komponente entstehen stark vernetzte Polyharnstoff- Beschichtungen. Primäre Amine und Isocyanate reagieren jedoch meistens sehr schnell mitein- ander. Typische Topf- oder Gelierzeiten betragen oft nur einige Sekunden bis wenige Minuten.
Deshalb können solche Polyharnstoff- Beschichtungen nicht manuell, sondern nur mit speziellen Spritzapparaturen appliziert werden. Solche Beschichtungen besitzen jedoch ausgezeichnete physikalische Eigenschaften.
' Eine aus der Literatur bekannte Methode, die Reaktivität zu reduzieren, ist die Verwendung von Prepolymeren mit niedrigen NCO-Gehalt. Durch den Einsatz von NCO-funktionellen Prepoly- meren in Kombination mit Aminen können flexible Polyharnstoffbeschichtungen hergestellt werden.
US-A 3 428 610 und US-A 4 463 126 offenbaren die Herstellung von Polyurethan/ Polyharnstoff- Elastomeren durch Aushärtung von NCO-funktionellen Prepolymeren mit aromatischen Diaminen. Bevorzugt sind dies di-primäre aromatische Diamine, welche in ortho-Position zu jeder Amino- gruppe mindestens einen Alkylsubstituenten mit 2-3 Kohlenstoffatomen und gegebenenfalls außerdem in weiteren ortho-Positionen zu den Aminogruppen Methylsubstituenten aufweisen, wie zum Beispiel Diethyltoluyldiamin (DETDA).
US-A 4 463 126 beschreibt ein Verfahren zur Herstellung von lösemittelfreien elastischen Beschichtungen, bei dem auf Isophorondiisocyanat (IPDI) und Polyetherpolyolen basierende
NCO-Prepolymere bei Raumtemperatur mit sterisch gehinderten di-primären aromatischen Diaminen ausgehärtet werden.
Von Nachteil ist bei solchen Systemen, dass die aromatischen Diamine zu starker Vergilbung neigen.
Eine weitere Möglichkeit, die Reaktion zwischen Polyisocyanaten und Aminen zu verzögern, ist die Verwendung von sekundären Aminen. EP-A 403 921 und US-A 5 126 170 offenbaren die Bildung von Polyharnstoff-Beschichtungen durch Reaktion von Polyasparaginsäureestern mit Polyisocyanaten. Polyasparaginsäureester besitzen eine niedrige Viskosität und eine verringerte Reaktivität gegenüber Polyisocyanaten und können daher zur Herstellung lösemittelfreier Beschichtungsmittel mit verlängerten Topfzeiten eingesetzt werden. Zusätzlicher Vorteil von Polyasparaginsäureestern ist, dass die Produkte farblos sind.
Farblose, aliphatische Polyisocyanatprepolymere auf Basis von Polyetherpolyolen härten hingegen extrem langsam mit Polyasparaginsäureestern und die Beschichtungen besitzen oft eine klebrige Oberfläche.
Aufgabe der vorliegenden Erfindung war es daher nun zweikomponentige Beschichtungsmittel zur Herstellung von Polyhamstoffbeschichtungen bereitzustellen, die ausreichend lange Topfzeiten aufweisen, um auch eine manuelle Applikation zu ermöglichen und mit denen sich klare gleichzeitig farblose, flexible Beschichtungen mit guten anwendungstechnischen Daten wie Elastizität und Härte herstellen lassen.
Gelöst wurde diese Aufgabe nun durch die Kombination spezieller Allophanatpolyisocyanate mit Polyasparaginsäureestern.
Gegenstand der Erfindung sind daher Zweikomponenten-Beschichtungssysteme, wenigstens enthaltend
A) ein Polyisocyanatprepolymer, das über Allophanatgruppen gebundene Polyethergruppen aufweist und
B) aminofunktionellen Polyasparaginsäureester der allgemeinen Formel (I)
(I)
Figure imgf000003_0001
in der
X für einen n-wertigen organischen Rest steht, der durch Entfernung der primären
Aminogruppen eines n-wertigen Polyamins erhalten wird,
R1 , R2 für gleiche oder verschiedene organische Reste stehen, die unter den Reaktionsbedingungen gegenüber Isocyanatgruppen inert sind und
n für eine ganze Zahl von mindestens 2 steht. Die in Komponente A) eingesetzten Allophanate sind erhältlich, indem
Al) ein oder mehrere aliphatische und/oder cycloaliphatische Polyisocyanate mit
A2) einer oder mehreren Polyhydroxyverbindungen, wobei wenigstens eine ein Polyetherpolyol ist, zu einem NCO-funktionellen Polyurethanprepolymer umgesetzt werden und dessen so gebildete
Urethangruppen dann anschließend unter Zugabe von
A3) Polyisocyanaten, welche verschieden von denen aus Al ) sein können und
A4) Katalysatoren
A5) gegebenenfalls Stabilisatoren
teilweise oder vollständig allophanatisiert werden.
Beispiele für geeignete aliphatische und cycloaliphatische Polyisocyanate Al) sind Di- oder Triisocyanate wie Butandiisocyanat, Pentandiisocyanat, Hexandiisocyanat (Hexamethylendiiso- cyanat, HDI), 4-Isocyanatomethyl-l ,8-octandiisocyanat (Triisocyanatononan, TIN) oder cyclische Systeme, wie 4,4'-Methylenbis(cyclohexylisocyanat), 3,5,5-Trimethyl-l-isocyanato-3-isocyanato- methylcyclohexan (Isophorondiisocyanat, BPDI) sowie ω.ω'-Diisocyanato-l,3-dimethylcyclohexan
(H6XDI).
Bevorzugt werden in den Komponenten Al) und A3) Hexandiisocyanat (Hexamethylen- diisocyanat, HDI), 4,4'-Methylenbis(cyclohexylisocyanat) und/oder 3,5,5-Trimethyl-l-isocyanato- 3-isocyanatomethylcyclohexan (Isophorondiisocyanat, IPDI) als Polyisocyanate eingesetzt. Ein ganz besonders bevorzugtes Polyisocyanat ist HDI.
Bevorzugt werden in Al) und A3) Polyisocyanate des gleichen Typs eingesetzt.
Als Polyhydroxyverbindungen der Komponente A2) können alle dem Fachmann bekannten Polyhydroxyverbindungen eingesetzt werden, welche bevorzugt eine mittlere OH-Funktionalität von größer oder gleich 1 ,5 aufweisen, wobei wenigstens eine der in A2) enthaltenen Verbindungen ein Polyetherpolyol sein muss.
Geeignete in A2) einsetzbare Polyhydroxyverbindungen sind niedermolekulare Diole (z.B. 1,2- Ethandiol, 1,3- bzw. 1,2 Propandiol, 1 ,4-Butandiol), Triole (z.B. Glycerin, Trimethylolpropan) und Tetraole (z.B. Pentaerythrit), Polyetherpolyole, Polyesterpolyole, Polycarbonatpolyole sowie Polythioetherpolyole. Bevorzugt werden in A2) ausschließlich als Polyhydroxyverbindungen Substanzen der vorstehend genannten Art auf Polyetherbasis eingesetzt. - A -
Bevorzugt weisen die in A2) eingesetzten Polyetheipolyole zahlenmittlere Molekulargewichte Mn von 300 bis 20.000 g/mol, besonders bevorzugt 1000 bis 12000 g/mol, ganz besonders bevorzugt 2.000 bis 6.000 g/mol auf.
Femer besitzen sie bevorzugt eine mittlere OH-Funktionalität von > 1,9, besonders bevorzugt > 1,95.
Solche Polyetheipolyole sind in an sich bekannter Weise durch Alkoxylierung von geeigneten Starter-Molekülen unter Basenkatalyse oder Einsatz von Doppelmetallcyanidverbindungen (DMC- Verbindungen) zugänglich.
Besonders geeignete Polyetherpolyole der Komponente A2) sind solche der vorstehend genannten Art mit einem Gehalt an ungesättigten Endgruppen von kleiner oder gleich 0,02 Milliäquivalenten pro Gramm Polyol (meq/g), bevorzugt kleiner oder gleich 0,015 meq/g, besonders bevorzugt kleiner oder gleich 0,01 meq/g (Bestimmungsmethode ASTM D2849-69).
Derartige Polyetherpolyole sind in an sich bekannter Weise durch Alkoxylierung von geeigneten Starter-Molekülen, insbesondere unter Verwendung von Doppelmetallcyanid-Katalysatoren (DMC-Katalyse) herstellbar. Dies ist z.B. in der US-A 5 158 922 (z.B. Beispiel 30) und EP-A 0
654 302 (S. 5, Z. 26 bis S. 6, Z. 32) beschrieben.
Geeignete Starter-Moleküle für die Herstellung von Polyetherpolyolen sind beispielsweise einfache, niedermolekulare Polyole, Wasser, organische Polyamine mit mindestens zwei N-H-Bin- dungen oder beliebige Gemische derartiger Starter-Moleküle. Für die Alkoxylierung geeignete Alkylenoxide sind insbesondere Ethylenoxid und/oder Propylenoxid, die in beliebiger Reihenfolge oder auch im Gemisch bei der Alkoxylierung eingesetzt werden können.
Bevorzugte Starter-Moleküle zur Herstellung von Polyetherpolyolen durch Alkoxylierung, insbesondere nach dem DMC-Verfahren, sind insbesondere einfache Polyole wie Ethylenglykol, Propylenglykol-1 ,3- und Butandiol-1 ,4, Hexandiol-1 ,6, Neopentylglykol, 2-Ethylhexandiol-l,3, Glyzerin, Trimethylolpropan, Pentaerythrit sowie niedermolekulare, Hydroxylgruppen aufweisende Ester derartiger Polyole mit Dicarbonsäuren der nachstehende beispielhafte genannten Art oder niedermolekulare Ethoxylierungs- oder Propoxylierungsprodukte derartiger einfacher Polyole oder beliebige Gemische derartiger modifizierter oder nicht modifizierter Alkohole.
Die Herstellung der isocyanatgruppenhaltigen Polyurethanprepolymere als Zwischenstufe erfolgt durch Umsetzung der Polyhydroxyverbindungen der Komponente A2) mit überschüssigen Mengen der Polyisocyanate aus Al). Die Umsetzung erfolgt im Allgemeinen bei Temperaturen von 20 bis
1400C, bevorzugt bei 40 bis 100°C, gegebenenfalls unter der Verwendung von aus der Polyurethanchemie an sich bekannten Katalysatoren wie beispielsweise Zinn-Seifen, z.B. Dibutylzinndilaurat, oder tertiären Aminen, z.B. Triethylamin oder Diazabicyclooctan.
Die Allophanatisierung erfolgt dann anschließend durch Umsetzung der isocyanatgruppenhaltigen Polyurethanprepolymere mit Polyisocyanaten A3), welche gleich oder verschieden zu denen der Komponente Al) sein können, wobei geeignete Katalysatoren A4) zur Allophanatisierung zugesetzt werden. Typischerweise werden anschließend zur Stabilisierung die sauren Additive der Komponente A5) zugesetzt und überschüssiges Polyisocyanat, z.B. durch Dünnschichtdestillation oder Extraktion aus dem Produkt entfernt.
Das Molverhältnis der OH-Gruppen der Verbindungen der Komponente A2) zu den NCO-Gruppen der Polyisocyanate aus Al) und A3) beträgt bevorzugt 1 : 1,5 bis 1 : 20, besonders bevorzugt 1 : 2 bis 1 : 15, ganz besonders bevorzugt 1 : 2 bis 1 : 10.
Bevorzugt werden in A4) als Katalysatoren Zink(II)-Verbindungen eingesetzt, wobei dies besonders bevorzugt Zink-Seifen längerkettiger, verzweigter oder unverzweigter, aliphatischer Carbonsäuren sind. Bevorzugte Zink(II)-Seifen sind solche auf Basis von 2-Ethylhexansäure sowie den linearen, aliphatischen C4- bis C3o-Carbonsäuren. Ganz besonders bevorzugte Verbindungen der Komponente A4) sind Zn(π)bis(2-ethylhexanoat), Zn(II)bis(n-oktoat), Zn(H)bis(stearat) oder deren Mischungen.
Diese Allophanatisierungskatalysatoren werden typischerweise in Mengen von 5 ppm bis zu bis 5 Gew.-%, bezogen auf die gesamte Reaktionsmischung, eingesetzt. Bevorzugt werden 5 bis 500 ppm des Katalysators, besonders bevorzugt 20 bis 200 ppm, eingesetzt.
Gegebenenfalls können vor, während oder nach der Allophanatisierung auch stabilisierend wirkende Zusätze verwendet werden. Dies können saure Additive wie Lewis-Säuren (Elektronen- mangelverbindungen) oder Broenstedt-Säuren (Protonensäuren) oder solche Verbindungen sein, welche unter Reaktion mit Wasser derartige Säuren freisetzen.
Dies sind beispielsweise anorganische oder organische Säuren oder auch neutrale Verbindungen wie Säurehalogenide oder Ester sein, welche mit Wasser zu den entsprechenden Säuren reagieren. Genannt seien hier insbesondere Salzsäure, Phosphorsäure, Phosphorsäureester, Benzoylchlorid, Isophtalsäuredichlorid, p-Toluolsulfonsäure, Ameisensäure, Essigsäure, DichJoressigsäure und 2- Chlorpropionsäure.
Die vorgenannten sauren Additive können auch zur Deaktivierung des Allophanatisierungs- katalysators eingesetzt werden. Sie verbessern darüber hinaus die Stabilität der erfindungsgemäß hergestellten Allophanate, z.B. bei thermischer Belastung während der Dünnschichtdestrllation oder auch nach der Herstellung bei Lagerung der Produkte.
Die sauren Additive werden in der Regel mindestens in einer solchen Menge zugegeben, dass das Molverhältnis der sauren Zentren des sauren Additivs und des Katalysators mindestens 1 :1 beträgt. Vorzugsweise wird jedoch ein Überschuss des sauren Additivs zugesetzt.
Sofern überhaupt saure Additive verwendet werden sind dies bevorzugt organische Säuren wie Carbonsäuren oder Säurehalogenide wie Benzoylchlorid oder Isophtalyldichlorid.
Soll überschüssiges Diisocyanat abgetrennt werden, ist die Dünnschichtdesüllation das bevorzugte Verfahren und wird in der Regel bei Temperaturen von 100 bis 160 0C und einem Druck von 0,01 bis 3 mbar durchgeführt. Der Restmonomergehalt beträgt danach bevorzugt weniger als 1 Gew.-%, besonders bevorzugt weniger als 0,5 Gew.-% (Diisocyanat).
Die gesamten Verfahrensschritte können gegebenenfalls in Anwesenheit inerter Lösungsmittel durchgeführt werden. Als inerte Lösungsmittel sind dabei solche zu verstehen, die unter den gegebenen Reaktionsbedingungen nicht mit den Edukten reagieren. Beispiele sind Ethylacetat, Butylacetat, Methoxypropylacetat, Methylethylketon, Methylisobutylketon, Toluol, Xylol, aromatische oder (cyclo-) aliphatische Kohlenwasserstoffgemische oder beliebige Gemische derartiger Lösungsmittel. Bevorzugt werden die erfindungsgemäßen Umsetzungen jedoch lösemittelfrei durchgeführt-.
Die Zugabe der beteiligten Komponenten kann sowohl bei der Herstellung der isocyanatgrup- penhaltigen Prepolymere als auch bei Allophanatisierung in beliebiger Reihenfolge erfolgen.
Bevorzugt ist jedoch die Zugabe des Polyetherpolyols A2) zum vorgelegten Polyisocyanat der Komponenten Al) und A3) und schließlich die Zugabe des Allophanatisierungskatalysators A4).
In einer bevorzugten Ausführungsform der Erfindung werden die Polyisocyanate der Komponenten Al) und A3) in einem geeigneten Reaktionsgefäß vorgelegt und, gegebenenfalls unter Rühren, auf 40 bis 1000C erwärmt. Nach Erreichen der gewünschten Temperatur werden unter Rühren dann die Polyhydroxyverbindungen der Komponente A2) zugegeben und solange gerührt, bis der theoretische NCO-Gehalt des nach der gewählten Stöchiometrie zu erwartenden Polyurethanprepolymers erreicht oder geringfügig unterschritten ist. Jetzt wird der Allophanati- sierungskatalysator A4) zugegeben und die Reaktionsmischung solange auf 50 und 1000C erwärmt, bis der gewünschte NCO-Gehalt erreicht oder geringfügig unterschritten ist. Nach
Zugabe von sauren Additiven als Stabilisatoren wird das Reaktionsgemisch abgekühlt oder direkt der Dünnschichtdestillation zugeführt. Dabei wird das überschüssige Polyisocyanat bei Temperaturen von 100 bis 16O0C und einem Druck von 0,01 bis 3 mbar bis auf einen Restmonomergehalt von weniger als 1 %, bevorzugt weniger als 0,5 %, abgetrennt. Nach der Dünnschichtdestillation kann gegebenenfalls weiterer Stabilisator zugegeben werden.
Solche in den beanspruchten Zweikomponenten-Beschichtungssystemen eingesetzte Allophanate entsprechen typischerweise der allgemeinen Formel (II),
Figure imgf000008_0001
worin
Q 11 , u._ndJ Q unabhängig voneinander der Rest eines linearen und/oder cyclischen aliphatischen Diisocyanats der genannten Art, bevorzugt -(CH2V, sind,
R3 und R4 unabhängig voneinander Wasserstoff oder ein Ci-C4-Alkylrest sind, wobei R3 und R4 bevorzugt Wasserstoff und/oder Methylgruppen sind und in jeder Wiederholungseinheit k die Bedeutung von R3 und R4 verschieden sein kann,
der Rest eines Starter-Moleküls der genannten Art mit einer Funktionalität von 2 bis 6 ist, und somit
eine Zahl von 2 bis 6 ist, welche durch Verwendung von verschiedenen Starter-Molekülen selbstverständlich auch keine ganze Zahl sein muss, sowie
bevorzugt so vielen Monomereinheiten entspricht, dass das zahlenmittlere Molekulargewicht des der Struktur zugrunde liegenden Polyethers 300 bis 20.000 g/mol beträgt und m 1 oder 3 ist.
Vorzugsweise werden Allophanate erhalten, welche der allgemeinen Formel (IH) entsprechen,
Figure imgf000009_0001
worin
Q für den Rest eines linearen und/oder cyclischen aliphatischen Diisocyanats der genannten Art, bevorzugt -(CH2)6-, steht,
R3 und R4 unabhängig voneinander für Wasserstoff oder für einen Ci-C4-Alkylrest stehen, wobei R3 und R4 bevorzugt Wasserstoff und/oder Methylgruppen sind wobei in jeder Wiederholungseinheit m die Bedeutung von R3 und R4 verschieden sein kann,
Y für den Rest eines difunktionellen Starter-Moleküls der genannten Art steht und
k so vielen Monomereinheiten entspricht, dass das zahlenmittlere Molekulargewicht des der Struktur zugrunde liegenden Polyethers 300 bis 20.000 g/mol beträgt und
m gleich 1 oder 3 ist.
Da zur Herstellung der Allophanate der Formel (H) und (IH) in der Regel Polyole auf Basis von polymerisiertem Ethylenoxid, Propylenoxid oder Tetrahydrofuran eingesetzt werden, so ist in den Formeln (II) und (HT) im Falle von m = 1 besonders bevorzugt wenigstens ein Rest von R3 und R4 Wasserstoff, im Falle von m = 3 sind R3 und R4 Wasserstoff.
Die erfindungsgemäß in A) eingesetzten Allophanate haben typischerweise zahlenmittlere Moleku- largewichte von 700 bis 50.000 g/mol, bevorzugt 1500 bis 8.000 g/mol und besonders bevorzugt
1.500 bis 4.000 g/mol.
Die erfindungsgemäß in A) eingesetzten Allophanate haben typischerweise Viskositäten bei 230C von 500 bis 100.000 mPas, bevorzugt 500 bis 50.000 mPas und besonders bevorzugt von 1.000 bis 7.500 mPas, ganz besonders bevorzugt von 1.000 bis 3.500 mPas. Die Gruppe X in Formel (I) der Polyasparaginsäureester der Komponente B) basiert bevorzugt auf einem n-wertigen Polyamin ausgewählt aus der Gruppe bestehend aus Ethylendiamin, 1,2-Di- aminopropan, 1 ,4-Diaminobutan, 1 ,6-Diaminohexan, 2,5-Diamino-2,5-dimethylhexan, 2,2,4- und/oder 2,4,4-Trimethyl-l,6-diaminohexan, 1 , 11 -Diaminoundecan, 1 , 12-Diaminododecan, 1- Amino-S^S-trimethyl-S-amnomethyl-cyclohexan, 2,4-und/oder 2,6-Hexahydrotoluylendiamin,
2,4' -und/oder 4,4'-Diamino-dicyclohexylmethan, 3,3'-Dimethyl-4,4'-diamino-dicyclohexyl- methan, 2,4,4'-Triamino-5-methyl-dicyclohexylmethan und Polyetheφolyaminen mit aliphatisch gebundenen primären Aminogruppen mit einem zahlenmittleren Molekulargewicht Mn von 148 bis 6000 g/mol. Besonders bevorzugt basiert die Gruppe X auf 1 ,4-Diaminobutan, 1 ,6-Diaminohexan, 2,2,4- und/oder 2,4,4-Trimethyl-l,6-diaminohexan, l-Amino-3,3,5-trimethyl-5-aminomethyl-cyclohexan, 4,4'-Diamino-dicyclohexylmethan oder 3,3'-Dimethyl-4,4'-diamino-dicyclohexylmethan.
In Bezug auf die Reste R1 und R2 bedeutet „unter den Reaktionsbedingungen gegenüber Isocyanatgruppen inert", dass diese Reste keine Gruppen mit Zerewitinoff-aktivem Wasserstoff (CH-acide Verbindungen; vgl. Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart) wie OH,
NH oder SH aufweisen.
Bevorzugt sind R1 und R2 unabhängig voneinander C1 bis C,0-Alkylreste, besonders bevorzugt Methyl oder Ethylreste.
Für den Fall, dass X auf 2,4,4 '-Triarnino-5-methyl-dicyclohexylrnethan basiert, sind bevorzugt R1 = R2 = Ethyl.
Bevorzugt ist n in Formel (I) eine ganze Zahl von 2 bis 6, besonders bevorzugt 2 bis 4.
Die Herstellung der aminofunktionellen Polyasparaginsäureester B) erfolgt in an sich bekannter Weise durch Umsetzung der entsprechenden primären Polyamine der Formel
X-[NH2Jn mit Malein- oder Fumarsäureestera der allgemeinen Formel
R10OC-CH=CH-COOR2
Geeignete Polyamine sind die oben als Basis für die Gruppe X genannten Diamine.
Beispiele geeigneter Malein- oder Fumarsäureester sind Maleinsäuredimethylester, Maleinsäure- diethylester, Maleinsäuredibutylester und die entsprechenden Fumarsäureester. Die Herstellung der aminorunktionellen Polyasparaginsäureester B) aus den genannten Ausgangsmaterialien erfolgt bevorzugt innerhalb des Temperaturbereichs von 0 bis 1000C, wobei die Ausgangsmaterialien in solchen Mengenverhältnissen eingesetzt werden, dass auf jede primäre Aminogruppe mindestens eine, vorzugsweise genau eine olefinische Doppelbindung entfällt, wobei im Anschluss an die Umsetzung gegebenenfalls im Überschuss eingesetzte Ausgangsmaterialien destillativ abgetrennt werden können. Die Umsetzung kann in Substanz oder in Gegenwart geeigneter Lösungsmittel wie Methanol, Ethanol, Propanol oder Dioxan oder Gemischen derartiger Lösungsmittel erfolgen.
In den erfindungsgemäßen Zweikomponenten-Beschichtungssystemen beträgt das Verhältnis von freien oder blockierten Aminogruppen zu freien NCO-Gruppen bevorzugt 0,5 : 1 bis 1 ,5 : 1, besonders bevorzugt 1 :1 bis 1,5:1.
Zur Herstellung der erfindungsgemäßen Zweikomponenten-Beschichtungssystemen werden die Einzelkomponenten miteinander vermischt.
Die genannten Beschichtungsmittel können mit den an sich bekannten Techniken wie Sprühen, Tauchen, Fluten, Rollen, Streichen oder Gießen auf Oberflächen appliziert werden. Nach dem
Ablüften gegebenenfalls vorhandener Lösungsmittel, härten die Beschichtungen dann bei Umgebungsbedingungen oder auch bei höheren Temperaturen von beispielsweise 40 bis 2000C.
Die genannten Beschichtungsmittel können beispielsweise auf Metalle, Kunststoffe, Keramik, Glas sowie Naturstoffe aufgebracht werden, wobei die genannten Substrate zuvor einer gegebenenfalls notwendigen Vorbehandlung unterzogen worden sein können.
Beispiele:
Die Bestimmung der NCO-Gehalte erfolgte durch Rücktitration von im Überschuss zugesetztem Di-n-butylamin mit Salzsäure. Die Viskositäten wurden mit einem Rotationsviskosimeter der Firma Haake bei 23°C bestimmt.
Soweit nicht anders angegeben, beziehen sich alle Prozentangaben auf das Gewicht.
Herstellunfi Prepolymer 1
Zu 2520,7 g 1,6-Hexandiisocyanat wurden zunächst 90 mg Isophtalsäuredichlorid gegeben, danach wurde die Mischung unter Rühren auf 1000C erwärmt. Nun wurden innerhalb von 3 Stunden 1978,5 g eines Polypropylenglycols zugegeben, welcher mittels DMC -Katalyse (Basen- frei) hergestellt worden war (Gehalt ungesättigter Gruppen < 0,01 meq/g, Molgewicht 2000 g/mol, OH-
Zahl 56, theoretische Funktionalität T). Die Reaktionsmischung wurde danach solange auf 1000C erwärmt, bis ein NCO-Gehalt von 26,1 % erreicht war. Nun wurde die Temperatur auf 900C vermindert und die Reaktionsmischung nach Zugabe von 360 mg Zink(II)bis(2-ethylhexanoat) solange gerührt, bis der NCO-Gehalt bei 24,3 % lag. Nach Zugabe von 360 mg Isophtal- säuredichlorid wurde das überschüssige 1 ,6-Hexandiisocyanat bei 0,5 mbar und 140°C mittels
Dünnschichtdestillation entfernt.
Es wurde ein klares, farbloses Produkt mit einem NCO-Gehalt von 5,9 %, einer Viskosität von 2070 mPas (230C) und einem Restgehalt an freiem HDI von < 0,03 % erhalten.
Herstellung Prepolymer 2
Zu 1003,4 g 1 ,6-Hexandiisocyanat wurden zunächst 40 mg Isophtalsäuredichlorid gegeben, danach wurde die Mischung unter Rühren auf 1000C erwärmt. Nun wurden innerhalb von 3 Stunden 796,3 g eines Polytetramethylglycols (= Polytetrahydrofuran, Molgewicht 2000 g/mol, OH-Zahl 56, theoretische Funktionalität 2). Die Reaktionsmischung wurde danach solange auf 1000C erwärmt, bis ein NCO-Gehalt von 26,0 % erreicht war. Nun wurde die Temperatur auf 900C ver- mindert und die Reaktionsmischung nach Zugabe von 140 mg Zink(II)bis(2-ethylhexanoat) solange gerührt, bis der NCO-Gehalt bei 24,2 % lag. Nach Zugabe von 140 mg Isophtalsäuredichlorid wurde das überschüssige 1 ,6-Hexandiisocyanat bei 0,5 mbar und 1400C mittels Dünnschichtdestillation entfernt.
Es wurde ein klares, farbloses Produkt mit einem NCO-Gehalt von 5,9 %, einer Viskosität von 17300 mPas (230C) und einem Restgehalt an freiem HDI von 0,06 % erhalten. Herstellune Prepolvmer 3
Zu 77,3 g 1,6-Hexandiisocyanat wurden zunächst 4 mg Isophtalsäuredichlond gegeben, danach wurde die Mischung unter Rühren auf 1000C erwärmt. Nun wurden innerhalb von 3 Stunden 122,7 g eines Polypropylenglycols zugegeben, welcher mittels DMC-Katalyse (Basen- frei) hergestellt worden war (Gehalt ungesättigter Gruppen < 0,01 meq/g, Molgewicht 4000 g/mol, OH-
Zahl 28, theoretische Funktionalität 2). Die Reaktionsmischung wurde danach solange auf 1000C erwärmt, bis ein NCO-Gehalt von 18,0 % erreicht war. Nun wurde die Temperatur auf 9O0C vermindert und die Reaktionsmischung nach Zugabe von 20 mg Zink(Η)bis(2-ethylhexanoat) solange gerührt, bis der NCO-Gehalt bei 16,7 % lag. Nach Zugabe von 20 mg Isophtal- säuredichlorid wurde das überschüssige 1,6-Hexandiisocyanat bei 0,7 mbar und 1400C mittels
Dünnschichtdestillation entfernt.
Es wurde ein klares, farbloses Produkt mit einem NCO-Gehalt von 3,2 %, einer Viskosität von 3189 mPas (23°C) und einem Restgehalt an freiem HDI von < 0,03 % erhalten.
Herstellung Prepolvmer 4 ("VergleichsbeispieD
Bei 100 0C wurden unter Rühren zu 321,4 g 1,6-Hexandiisocyanat innerhalb von 5 Stunden 378,4 g eines Polypropylenglykols zugegeben, welcher mittels DMC-Katalyse (basenfrei) hergestellt worden war (Gehalt ungesättigter Gruppen < 0,01 meq/g, Molgewicht 2000 g/mol, OH-Zahl 56, theoretische Funktionalität 2). Danach wurde die Mischung unter Rühren auf solange auf 1000C erwärmt, bis ein NCO-Gehalt von 20,7 % erreicht war. Nach Zugabe von 140 mg Dibutylphosphat wurde schließlich noch das überschüssige 1,6-Hexandiisocyanat bei 0,5 mbar und 14O0C mittels
Dünnschichtdestillation entfernt.
Es wurde ein klares, farbloses Produkt mit einem NCO-Gehalt von 3,15 %, einer Viskosität von 1596 mPas (23°C) und einem Restgehalt an freiem HDI von < 0,03 % erhalten.
Allophanat 1 (Vergleichsbeispiel)
Es wurde ein auf einem primären Alkohol gestartetes Allophanat auf Basis HDI mit einem NCO-
Gehalt von 19,7 % und einer Viskosität von 415 mPas (23°C) eingesetzt.
Herstellung Polyasparaginsäureester 1
344 g (2 mol) Maleinsäurediethylester wurden bei 5O0C unter Rühren zu 210 g (2 Äq.) 4,4'- Diaminodicyclohexylmethan getropft. Nach vollständiger Zugabe ließ man 90 h bei 600C unter N2- Atmosphäre nachrühren und entwässerte während der letzten beiden Stunden bei 1 mbar. Es wurde ein flüssiges Produkt mit einem Äquivalentgewicht von 277 g erhalten. Herstellung Polyasparaginsäureester 2
344 g (2 mol) Maleinsäurediethylester wurden bei 5O0C unter Rühren zu 238 g (2 Äq.) 3,3'- Dimethyl-4,4'-diarmnodicyclohexylmethan getropft. Nach vollständiger Zugabe ließ man 90 h bei 600C unter N2-Atmosphäre nachrühren und entwässerte während der letzten beiden Stunden bei 1 mbar. Es wurde ein flüssiges Produkt mit einem Äquivalentgewicht von 291 g erhalten.
Herstellung Beschichtungen
Die Prepolymere 1 und 2, sowie das Allophanat 1 (Vergleichsbeispiel) wurden bei Raumtemperatur mit den aminoftmktionellen Polyasparaginsäureestern 1 bzw. 2 gemischt, wobei ein NCO/NH Verhältnis von 1 ,05 : 1 eingehalten wurde. Mit einem 150 μm Rakel wurden danach entsprechende Filme auf eine Glasplatte aufgetragen. Die Zusammensetzung und Eigenschaften der Beschichtungen sind in der Tabelle 1 zusammengefasst.
Tabelle 1 : Beispiele 1 bis 6 - Zusammensetzungen und Eigenschaften der Filme
Figure imgf000014_0001
n.b. nicht bestimmt; Topfzeit ist die Zeit, innerhalb welcher die Zusammensetzungen noch zu einem Film verarbeitet werden konnte
Die allophanatgruppenhaltigen Prepolymere 1 und 2 basieren auf den prinzipiell gleichen Bausteinen. Aufgrund ihrer guten Verträglichkeit, hohen Funktionalität und guten flexibüisierenden Eigenschaften wurden innerhalb von 24 h nicht-klebrige, flexible, zähe und klare Filme erhalten. Mit dem Allophanat 1 hingegen, erfolgte zwar eine sehr rasche Aushärtung, aber es wurden so spröde Filme erhalten , dass keine mechanischen Eigenschaften bestimmt werden konnten.
Aushärteversuche
Die Prepolymere 1, 3 und 4 (Vergleichsbeispiel) wurden bei Raumtemperatur mit dem aminofunktionellen Polyasparaginsäureestern 1 gemischt, wobei ein NCO/NH Verhältnis von 1 ,05 : 1 eingehalten wurde. Nach dem Mischen wurden die klaren Zusammensetzungen schließlich zu 3 mm dicken Filmen gegossen. Die Zusammensetzung und das Aushärteverhalten der Filme sind in der Tabelle 2 zusammengefasst.
Tabelle 2: Beispiele 7 bis 9
Figure imgf000015_0001
Während die allophanatgruppenhaltigen Prepolymere 1 und 3 nach 24 h klare, flexible und klebfreie Filme ergaben, so zeigte das Prepolymer 4 (ohne Allophanatgruppen) keine vollständige Aushärtung (gleicher NCO-Gehalt wie Prepolymer 3).

Claims

Patentansprüche
1. Zweikomponenten-Beεchichtungssysteme, wenigstens enthaltend
A) ein Polyisocyanat-Prepolymer, das über Allophanatgruppen gebundene Polyethergruppen aufweist und
B) aminofunktionellen Polyasparaginsäureester der allgemeinen Formel (I)
Figure imgf000016_0001
in der
X für einen n-wertigen organischen Rest steht, der durch Entfernung der primären Aminogruppen eines n-wertigen Polyamins erhalten wird,
R1 , R2 für gleiche oder verschiedene organische Reste stehen, die unter den
Reaktionsbedingungen gegenüber Isocyanatgruppen inert sind und
n für eine ganze Zahl von mindestens 2 steht.
2. Zweikomponenten-Beschichtungssysteme gemäß Anspruch 1 , dadurch gekennzeichnet, dass die in A) eingesetzten Allophanate hergestellt werden, indem
Al) ein oder mehrere aliphatische und/oder cycloaliphatische Polyisocyanate mit
A2) einer oder mehreren Polyhydroxyverbindungen, wobei wenigstens eine ein Polyetherpolyol ist,
zu einem NCO-funktionellen Polyurethan-Prepolymer umgesetzt werden und dessen so gebildete Urethangruppen dann anschließend unter Zugabe von
A3) Polyisocyanaten, welche verschieden von denen aus Al) sein können und
A4) Katalysatoren und
A5) gegebenenfalls Stabilisatoren
teilweise oder vollständig allophanatisiert werden.
3. Zweikomponenten-Beschichtungssysteme gemäß Anspruch 2, dadurch gekennzeichnet, dass bei der Herstellung der in A) eingesetzten Allophanate in den Komponenten Al) und A3) Hexandiisocyanat (Hexamethylendiisocyanat, HDI), 4,4'-Methylenbis(cyclohexyliso- cyanat) und/oder 3,5,5-Trimethyl-l-isocyanato-3-isocyanatomethylcyclohexan (Isophoron- diisocyanat, IPDI) als Polyisocyanate eingesetzt werden.
4. Zweikomponenten-Beschichtungssysteme gemäß Anspruch 2 oder 3, dadurch gekennzeichnet, dass in Al ) und A3) Polyisocyanate vom gleichen Typ eingesetzt werden.
5. Zweikomponenten-Beschichtungssysteme gemäß einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass zur Allophanatisierung in A4) als Katalysatoren Zink(II)-Verbin- düngen eingesetzt werden.
6. Zweikomponenten-Beschichtungssysteme gemäß Anspruch 5, dadurch gekennzeichnet, dass als Zink(II)-Verbindungen Zink(II)bis(2-ethylhexanoat), Zn(II)bis(n-oktoat), Zn(II)bis(stearat) oder deren Mischungen verwendet werden.
7. Zweikomponenten-Beschichtungssysteme gemäß einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass in A2) ausschließlich Polyetherpolyole eingesetzt werden, wobei diese zahlenmittlere Molekulargewichte M1, von 2.000 bis 6.000 g/mol, eine mittlere OH- Funktjonalität von > 1,95 und einen Grad an ungesättigten Endgruppen von kleiner oder gleich 0,01 meq/g nach ASTM D2849-69 aufweisen.
8. Zweikomponenten-Beschichtungssysteme gemäß einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass das Molverhältnis der OH-Gruppen der Verbindungen der
Komponente A2) zu den NCO-Gruppen der Polyisocyanate aus Al) und A3) 1 : 2 bis 1 : 10 beträgt.
9. Zweikomponenten-Beschichtungssysteme gemäß einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass in A5) als Stabilisatoren anorganische oder organische Säuren, Säurehalogenide oder Ester eingesetzt werden.
10. Beschichtungen erhältlich aus Zweikomponenten-Beschichtungssystemen gemäß einem der Ansprüche 1 bis 9.
11. Substrate beschichtet mit Beschichtungen gemäß Anspruch 10.
PCT/EP2006/009203 2005-10-04 2006-09-22 Zweikomponenten-systeme für die herstellung flexibler beschichtungen WO2007039133A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AT06777194T ATE554117T1 (de) 2005-10-04 2006-09-22 Zweikomponenten-systeme für die herstellung flexibler beschichtungen
BRPI0616849-3A BRPI0616849A2 (pt) 2005-10-04 2006-09-22 sistemas bicomponente para a fabricação de revestimentos flexìveis
EP06777194A EP1937742B1 (de) 2005-10-04 2006-09-22 Zweikomponenten-systeme für die herstellung flexibler beschichtungen
ES06777194T ES2383224T3 (es) 2005-10-04 2006-09-22 Sistemas de dos componentes para la producción de recubrimientos flexibles
JP2008533896A JP5275032B2 (ja) 2005-10-04 2006-09-22 軟質塗膜を製造するための二成分系
AU2006299127A AU2006299127B2 (en) 2005-10-04 2006-09-22 Two-component systems for producing flexible coatings
PL06777194T PL1937742T3 (pl) 2005-10-04 2006-09-22 Systemy dwukomponentowe do wytwarzania powłok elastycznych
CA 2624312 CA2624312C (en) 2005-10-04 2006-09-22 Two-component systems for producing flexible coatings
IL190075A IL190075A0 (en) 2005-10-04 2008-03-11 Two-component systems for producing flexible coatings
NO20081898A NO20081898L (no) 2005-10-04 2008-04-21 Tokomponentsystemer for fremstilling av fleksible belegg

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005047562.0 2005-10-04
DE102005047562A DE102005047562A1 (de) 2005-10-04 2005-10-04 Zweitkomponenten-Systeme für die Herstellung flexibler Beschichtungen

Publications (1)

Publication Number Publication Date
WO2007039133A1 true WO2007039133A1 (de) 2007-04-12

Family

ID=37387257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/009203 WO2007039133A1 (de) 2005-10-04 2006-09-22 Zweikomponenten-systeme für die herstellung flexibler beschichtungen

Country Status (15)

Country Link
US (1) US7927704B2 (de)
EP (1) EP1937742B1 (de)
JP (1) JP5275032B2 (de)
KR (1) KR20080064822A (de)
CN (1) CN101277988A (de)
AT (1) ATE554117T1 (de)
AU (1) AU2006299127B2 (de)
BR (1) BRPI0616849A2 (de)
CA (1) CA2624312C (de)
DE (1) DE102005047562A1 (de)
ES (1) ES2383224T3 (de)
IL (1) IL190075A0 (de)
NO (1) NO20081898L (de)
PL (1) PL1937742T3 (de)
WO (1) WO2007039133A1 (de)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009076516A2 (en) * 2007-12-11 2009-06-18 Campbell Matthew T Articles formed from aligned fiber cured in a polyaspartic acid urethane matrix
WO2009141058A1 (de) * 2008-05-20 2009-11-26 Bayer Materialscience Ag Polyharnstoffzusammensetzung
DE102009007194A1 (de) 2009-02-03 2010-08-05 Bayer Materialscience Ag Flexible Beschichtungen
DE102009007228A1 (de) 2009-02-03 2010-08-05 Bayer Materialscience Ag Beschichtungen
WO2011061314A1 (de) 2009-11-23 2011-05-26 Basf Se Katalysatoren für polyurethanbeschichtungsmassen
WO2011124710A1 (de) 2010-04-09 2011-10-13 Basf Se Durch energieeintrag reparable beschichtungen
JP2011529509A (ja) * 2008-07-30 2011-12-08 バイエル マテリアルサイエンス アクチエンゲゼルシャフト ポリイソシアネートを基礎とするポリマー素子を有する電気機械変換器
CN101469246B (zh) * 2007-12-27 2011-12-21 上海涂料有限公司技术中心 聚天冬氨酸酯聚脲防水涂料的制备方法
WO2012000944A1 (en) 2010-06-29 2012-01-05 Bayer Materialscience Ag Aliphatic polyurea coating, the method for preparing the same and the use thereof
DE102010031682A1 (de) 2010-07-20 2012-01-26 Bayer Materialscience Ag Bindemittelkombinationen für konstruktive Trinkwasserrohrbeschichtungen
WO2013060809A2 (de) 2011-10-28 2013-05-02 Basf Se Verfahren zur herstellung von in lösungsmitteln flockulationsstabilen polyisocyanaten von (cyclo)aliphatischen diisocyanaten
WO2013060614A1 (de) 2011-10-28 2013-05-02 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
US8586697B2 (en) 2010-04-09 2013-11-19 Basf Se Coatings repairable by introduction of energy
US9617402B2 (en) 2011-10-28 2017-04-11 Basf Se Process for preparing polyisocyanates which are flocculation-stable in solvents from (cyclo)aliphatic diisocyanates
EP3305863A1 (de) 2016-10-07 2018-04-11 Basf Se Verfahren zur herstellung von in lösungsmitteln flockulationsstabilen polyisocyanaten von (cyclo)aliphatischen diisocyanaten
EP3305824A1 (de) 2016-10-07 2018-04-11 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
US9963538B2 (en) 2013-01-07 2018-05-08 Basf Se Catalysts for polyurethane coating compounds
EP3336117A1 (de) 2017-09-20 2018-06-20 Basf Se Verfahren zur herstellung von in lösungsmitteln flockulationsstabilen polyisocyanaten von (cyclo)aliphatischen diisocyanaten
EP3336118A1 (de) 2017-09-20 2018-06-20 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
EP3431521A1 (de) 2017-07-20 2019-01-23 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
WO2020016292A1 (en) 2018-07-20 2020-01-23 Covestro Deutschland Ag A coating composition
CN110734693A (zh) * 2018-07-20 2020-01-31 科思创德国股份有限公司 一种涂料组合物
EP3626755A1 (de) 2018-09-24 2020-03-25 Covestro Deutschland AG Beschichtungszusammensetzung
US10696776B2 (en) 2015-09-07 2020-06-30 Basf Se Water-emulsifiable isocyanates with improved properties
WO2022002808A1 (en) 2020-06-29 2022-01-06 Covestro Deutschland Ag Polyether-modified polyisocyanate composition
WO2022002679A1 (en) 2020-06-29 2022-01-06 Covestro Deutschland Ag Two-component coating composition
EP3988596A1 (de) 2020-10-26 2022-04-27 Covestro Deutschland AG Polyethermodifizierte polyisocyanatzusammensetzung
EP3988597A1 (de) 2020-10-26 2022-04-27 Covestro Deutschland AG Zweikomponentige beschichtungszusammensetzung
WO2022128925A1 (en) 2020-12-18 2022-06-23 Basf Se Color-stable curing agent compositions comprising polyisocyanates of (cyclo)aliphatic diisocyanates
WO2023110504A1 (en) 2021-12-15 2023-06-22 Basf Se Water-emulsifiable isocyanates with improved properties

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047560A1 (de) * 2005-10-04 2007-04-05 Bayer Materialscience Ag Zusammensetzung zur Herstellung von Polyharnstoffbeschichtungen
GB0610272D0 (en) * 2006-05-24 2006-07-05 Auxetic Technologies Ltd A composite material
DE102009005712A1 (de) * 2009-01-22 2010-07-29 Bayer Materialscience Ag Polyurethanvergussmassen
JP5509919B2 (ja) * 2009-03-13 2014-06-04 オート化学工業株式会社 硬化性組成物およびその製造方法
JP5407626B2 (ja) * 2009-07-17 2014-02-05 オート化学工業株式会社 硬化性組成物
CA2795335A1 (en) * 2010-04-09 2011-10-13 Bayer Materialscience Llc Two-component, polyaspartic coating compositions
WO2013188176A1 (en) 2012-06-15 2013-12-19 3M Innovative Properties Company Curable polyurea forming composition, method of making, and composite article
US10683424B2 (en) * 2013-02-05 2020-06-16 Evonik Operations Gmbh Low gloss, high solids polyurea coatings
JP6479837B2 (ja) * 2014-02-13 2019-03-06 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH 2成分コーティング組成物、及びそれから製造される高耐浸食性コーティング
CN106029728B (zh) * 2014-02-25 2019-08-06 涂层国外知识产权有限公司 包含二异氰酸酯扩链的二天冬氨酸酯的涂料组合物
CN106029729B (zh) * 2014-02-25 2019-11-08 涂层国外知识产权有限公司 包含二异氰酸酯扩链的二天冬氨酸酯的涂料组合物
CN103820013A (zh) * 2014-02-28 2014-05-28 北京东方雨虹防水技术股份有限公司 重防腐喷涂聚脲涂料及其制备方法
DE102015108232A1 (de) * 2015-05-26 2016-12-01 Franken Systems Gmbh Verfahren zur feuchtigkeitsbeständigen Grundierung von mineralischen Untergründen
WO2018160932A1 (en) * 2017-03-03 2018-09-07 Cargill, Incorporated Polyaspartic ester compositions, and methods of making and using same
AU2018357957B2 (en) * 2017-10-31 2021-09-16 Line-X Llc Thin film aliphatic polyurea and system
CN111587278B (zh) * 2018-01-10 2022-09-23 亨茨曼国际有限公司 包含具有异氰酸酯官能团的配制物的聚氨酯
US11492440B2 (en) 2018-07-27 2022-11-08 Axalta Coating Systems Ip Co., Llc Clearcoat compositions and methods of forming clearcoat compositions
US11827788B2 (en) 2019-10-07 2023-11-28 Covestro Llc Faster cure polyaspartic resins for faster physical property development in coatings
CN111454413B (zh) * 2020-04-09 2022-02-18 万华化学集团股份有限公司 一种多官能度聚天门冬氨酸酯混合物及其制备方法和用途
US20220089901A1 (en) * 2020-09-24 2022-03-24 Covestro Llc Clear coating compositions having low solvent content
CN116120821B (zh) * 2022-11-28 2023-09-29 广州市斯洛柯高分子聚合物有限公司 一种双组份抗涂鸦材料组合物及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0000194A1 (de) * 1977-07-02 1979-01-10 Bayer Ag Verfahren zur Herstellung von Isocyanatgruppen aufweisenden Allophanaten und ihre Verwendung zur Herstellung von Lackierungen
EP0403921A2 (de) * 1989-06-23 1990-12-27 Bayer Ag Verfahren zur Herstellung von Überzügen
DE19644932A1 (de) * 1996-04-26 1997-10-30 Bayer Ag Polyallophanatpolyisocyanate
EP0959087A1 (de) 1998-05-22 1999-11-24 Bayer Aktiengesellschaft Wasserdispergierbare Polyether-modifizierte Polyisocyanatgemische
DE19858818A1 (de) 1998-12-21 2000-06-29 Bayer Ag Wäßrige reaktive Spachtelmassen (II)
US6183870B1 (en) * 1999-02-09 2001-02-06 Bayer Corporation Coating compositions containing polyisocyanates and aspartate-terminated urea/urethane prepolymers
WO2004033517A1 (de) 2002-10-07 2004-04-22 Bayer Materialscience Ag Zweikomponente-systeme für die herstellung elastischer beschichtungen

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB994890A (en) 1961-12-18 1965-06-10 Ici Ltd New organic polyisocyanates and their manufacture
GB1064841A (en) 1963-02-04 1967-04-12 Ici Ltd Manufacture of polymers containing biuret and urea groups
US3567692A (en) 1963-02-04 1971-03-02 Ici Ltd Polymeric materials produced by interacting polyisocyanate and water in the presence of polyaldimine or polyketimine
US3357785A (en) 1963-10-08 1967-12-12 Merck & Co Inc Shrinkproofing wool through serial impregnation with a diisocyanate having one or two terminal ester groups and a diamine
DE1240654B (de) 1965-05-14 1967-05-18 Bayer Ag Verfahren zur Herstellung vernetzter Kunststoffe nach dem Isocyanat-Polyadditions-Verfahren
FR2007605A1 (de) 1968-05-01 1970-01-09 Ajinomoto Kk
JPS5210917B1 (de) 1968-12-27 1977-03-26
US3932359A (en) * 1969-12-25 1976-01-13 Kyowa Hakko Kogyo Co., Ltd. Polyurethanes based on amino-acids or derivatives thereof
DE2009179C3 (de) 1970-02-27 1974-07-11 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von Allophanatpoly isocy anaten
JPS4938038B1 (de) 1970-04-17 1974-10-15
JPS4948477B1 (de) 1970-05-20 1974-12-21
DE2725318A1 (de) 1977-06-04 1978-12-14 Bayer Ag Verfahren zur herstellung von allophanatgruppen aufweisenden polyisocyanaten
DE3203490A1 (de) 1982-02-03 1983-08-11 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von ueberzuegen
US4810820A (en) 1987-08-12 1989-03-07 Mobay Corporation Process for the production of polyisocyanates containing allophanate groups
US5236741A (en) 1989-06-23 1993-08-17 Bayer Aktiengesellschaft Process for the production of polyurethane coatings
US5124427A (en) 1991-01-22 1992-06-23 Miles Inc. Polyisocyanates containing allophanate and isocyanurate groups, a process for their production and their use in two-component coating compositions
US5235018A (en) * 1991-07-22 1993-08-10 Miles Inc. Polyisocyanates containing allophanate and isocyanurate groups, a process for their production and their use in two-component coating compositions
US5214086A (en) 1991-09-04 1993-05-25 Basf Corporation Coating compositions which may be ambient cured
US5243012A (en) * 1992-06-10 1993-09-07 Miles Inc. Polyurea coating compositions having improved pot lives
DE4327853A1 (de) * 1993-08-19 1995-02-23 Bayer Ag Verfahren zur Herstellung von Überzügen
US5466771A (en) 1993-12-21 1995-11-14 Bayer Corporation Coating compositions based on aldimines and polyisocyanates containing allophanate groups
EP0667362A1 (de) * 1994-02-09 1995-08-16 Bayer Corporation Polyharnstoff-Beschichtungszusammensetzungen mit verlängerter Verarbeitungszeit
DE4415778A1 (de) * 1994-05-05 1995-11-09 Bayer Ag Verfahren zur Herstellung von Überzügen
DE4416321A1 (de) 1994-05-09 1995-11-16 Bayer Ag Verfahren zur Herstellung von Allophanatgruppen aufweisenden lichtechten Polyisocyanaten
US5516873A (en) * 1994-07-11 1996-05-14 Bayer Corporation Polyisocyanate/polyamine mixtures and their use for the production of polyurea coatings
US5489704A (en) * 1994-08-29 1996-02-06 Bayer Corporation Polyisocyanate/polyamine mixtures and their use for the production of polyurea coatings
US5523376A (en) 1994-12-21 1996-06-04 Bayer Corporation Coating compositions based on aldimines and polyisocyanates containing uretdione groups
US5736604A (en) * 1996-12-17 1998-04-07 Bayer Corporation Aqueous, two-component polyurea coating compositions
US5859163A (en) * 1997-08-22 1999-01-12 Bayer Corporation Allophanate group-containing polyisocyanates improved compatibility with aldimines
DE19822842A1 (de) * 1998-05-22 1999-11-25 Bayer Ag 2K-PUR-Korrosionsschutz-Decklack
TW510916B (en) 1998-12-21 2002-11-21 Bayer Ag Aqueous reacitve filler compositions
EP1038897A3 (de) * 1999-03-23 2001-10-04 Air Products And Chemicals, Inc. Polyaspartatester die zusätzliche Isocyanatreaktive Funktionalität enthalten für Sprühpolyharnstoffbeschichtungen
JP2005046686A (ja) * 2003-07-31 2005-02-24 Canon Inc ポリウレア塗膜の形成方法
JP2005052703A (ja) * 2003-08-07 2005-03-03 Canon Inc ポリウレア塗膜の形成方法
US20050101754A1 (en) * 2003-11-12 2005-05-12 Slack William E. Stable liquid, allophanate-modified diphenylmethane diisocyanate trimers, prepolymers thereof, and processes for their preparation
DE102004034271A1 (de) * 2004-07-15 2006-02-09 Bayer Materialscience Ag Wasserlösliche Aspartate
DE102005020269A1 (de) * 2005-04-30 2006-11-09 Bayer Materialscience Ag Bindemittelgemische aus Polyasparaginsäureestern und sulfonatmodifizierten Polyisocyanaten

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0000194A1 (de) * 1977-07-02 1979-01-10 Bayer Ag Verfahren zur Herstellung von Isocyanatgruppen aufweisenden Allophanaten und ihre Verwendung zur Herstellung von Lackierungen
EP0403921A2 (de) * 1989-06-23 1990-12-27 Bayer Ag Verfahren zur Herstellung von Überzügen
DE19644932A1 (de) * 1996-04-26 1997-10-30 Bayer Ag Polyallophanatpolyisocyanate
EP0959087A1 (de) 1998-05-22 1999-11-24 Bayer Aktiengesellschaft Wasserdispergierbare Polyether-modifizierte Polyisocyanatgemische
DE19858818A1 (de) 1998-12-21 2000-06-29 Bayer Ag Wäßrige reaktive Spachtelmassen (II)
US6183870B1 (en) * 1999-02-09 2001-02-06 Bayer Corporation Coating compositions containing polyisocyanates and aspartate-terminated urea/urethane prepolymers
WO2004033517A1 (de) 2002-10-07 2004-04-22 Bayer Materialscience Ag Zweikomponente-systeme für die herstellung elastischer beschichtungen

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003552B2 (en) 2007-12-11 2011-08-23 Campbell Matthew T Polyaspartic polyurethene applications in composite industry
WO2009076516A3 (en) * 2007-12-11 2009-09-03 Campbell Matthew T Articles formed from aligned fiber cured in a polyaspartic acid urethane matrix
WO2009076516A2 (en) * 2007-12-11 2009-06-18 Campbell Matthew T Articles formed from aligned fiber cured in a polyaspartic acid urethane matrix
CN101469246B (zh) * 2007-12-27 2011-12-21 上海涂料有限公司技术中心 聚天冬氨酸酯聚脲防水涂料的制备方法
WO2009141058A1 (de) * 2008-05-20 2009-11-26 Bayer Materialscience Ag Polyharnstoffzusammensetzung
JP2011529509A (ja) * 2008-07-30 2011-12-08 バイエル マテリアルサイエンス アクチエンゲゼルシャフト ポリイソシアネートを基礎とするポリマー素子を有する電気機械変換器
WO2010089033A1 (de) 2009-02-03 2010-08-12 Bayer Materialscience Ag Beschichtungen auf basis allophanatgruppen haltiger polyisocyanate
WO2010089034A1 (de) 2009-02-03 2010-08-12 Bayer Materialscience Ag Zweikomponenten-beschichtungszusammensetzungen für flexible beschichtungen
DE102009007194A1 (de) 2009-02-03 2010-08-05 Bayer Materialscience Ag Flexible Beschichtungen
DE102009007228A1 (de) 2009-02-03 2010-08-05 Bayer Materialscience Ag Beschichtungen
US8709544B2 (en) 2009-11-23 2014-04-29 Basf Se Catalysts for polyurethane coating compounds
WO2011061314A1 (de) 2009-11-23 2011-05-26 Basf Se Katalysatoren für polyurethanbeschichtungsmassen
US9040649B2 (en) 2010-04-09 2015-05-26 Basf Se Coatings repairable by introduction of energy
US8586697B2 (en) 2010-04-09 2013-11-19 Basf Se Coatings repairable by introduction of energy
WO2011124710A1 (de) 2010-04-09 2011-10-13 Basf Se Durch energieeintrag reparable beschichtungen
WO2012000944A1 (en) 2010-06-29 2012-01-05 Bayer Materialscience Ag Aliphatic polyurea coating, the method for preparing the same and the use thereof
DE102010031682A1 (de) 2010-07-20 2012-01-26 Bayer Materialscience Ag Bindemittelkombinationen für konstruktive Trinkwasserrohrbeschichtungen
WO2012010528A1 (de) 2010-07-20 2012-01-26 Bayer Materialscience Ag Bindemittelkombinationen für konstruktive trinkwasserrohrbeschichtungen
WO2013060809A2 (de) 2011-10-28 2013-05-02 Basf Se Verfahren zur herstellung von in lösungsmitteln flockulationsstabilen polyisocyanaten von (cyclo)aliphatischen diisocyanaten
WO2013060614A1 (de) 2011-10-28 2013-05-02 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
US9617402B2 (en) 2011-10-28 2017-04-11 Basf Se Process for preparing polyisocyanates which are flocculation-stable in solvents from (cyclo)aliphatic diisocyanates
US9963538B2 (en) 2013-01-07 2018-05-08 Basf Se Catalysts for polyurethane coating compounds
US10696776B2 (en) 2015-09-07 2020-06-30 Basf Se Water-emulsifiable isocyanates with improved properties
EP3305824A1 (de) 2016-10-07 2018-04-11 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
WO2018065343A1 (de) 2016-10-07 2018-04-12 Basf Se Verfahren zur herstellung von in lösungsmitteln flockulationsstabilen polyisocyanaten von (cyclo)aliphatischen diisocyanaten.
WO2018065344A1 (de) 2016-10-07 2018-04-12 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
US11807709B2 (en) 2016-10-07 2023-11-07 Basf Se Method for producing polyisocyanates of (cyclo)aliphatic diisocyanates which are flocculation-stable in solvents
US11001730B2 (en) 2016-10-07 2021-05-11 Basf Se Colour-stable curing compositions containing polyisocyanates of (cyclo)aliphatic diisocyanates
EP3305863A1 (de) 2016-10-07 2018-04-11 Basf Se Verfahren zur herstellung von in lösungsmitteln flockulationsstabilen polyisocyanaten von (cyclo)aliphatischen diisocyanaten
EP3431521A1 (de) 2017-07-20 2019-01-23 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
WO2019016097A1 (de) 2017-07-20 2019-01-24 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
WO2019057539A1 (de) 2017-09-20 2019-03-28 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
WO2019057540A1 (de) 2017-09-20 2019-03-28 Basf Se Verfahren zur herstellung von in lösungsmitteln flockulationsstabilen polyisocyanaten von (cyclo)aliphatischen diisocyanaten
US11624003B2 (en) 2017-09-20 2023-04-11 Basf Se Colour-stable curing compositions containing polyisocyanates of (cyclo)aliphatic diisocyanates
EP3336118A1 (de) 2017-09-20 2018-06-20 Basf Se Farbstabile härterzusammensetzungen enthaltend polyisocyanate (cyclo)aliphatischer diisocyanate
EP3336117A1 (de) 2017-09-20 2018-06-20 Basf Se Verfahren zur herstellung von in lösungsmitteln flockulationsstabilen polyisocyanaten von (cyclo)aliphatischen diisocyanaten
WO2020016292A1 (en) 2018-07-20 2020-01-23 Covestro Deutschland Ag A coating composition
CN110734693A (zh) * 2018-07-20 2020-01-31 科思创德国股份有限公司 一种涂料组合物
EP3626755A1 (de) 2018-09-24 2020-03-25 Covestro Deutschland AG Beschichtungszusammensetzung
WO2022002679A1 (en) 2020-06-29 2022-01-06 Covestro Deutschland Ag Two-component coating composition
WO2022002808A1 (en) 2020-06-29 2022-01-06 Covestro Deutschland Ag Polyether-modified polyisocyanate composition
EP3988596A1 (de) 2020-10-26 2022-04-27 Covestro Deutschland AG Polyethermodifizierte polyisocyanatzusammensetzung
EP3988597A1 (de) 2020-10-26 2022-04-27 Covestro Deutschland AG Zweikomponentige beschichtungszusammensetzung
WO2022128925A1 (en) 2020-12-18 2022-06-23 Basf Se Color-stable curing agent compositions comprising polyisocyanates of (cyclo)aliphatic diisocyanates
WO2023110504A1 (en) 2021-12-15 2023-06-22 Basf Se Water-emulsifiable isocyanates with improved properties

Also Published As

Publication number Publication date
JP5275032B2 (ja) 2013-08-28
US20070078255A1 (en) 2007-04-05
CA2624312C (en) 2014-03-25
NO20081898L (no) 2008-04-21
AU2006299127A1 (en) 2007-04-12
BRPI0616849A2 (pt) 2011-07-05
PL1937742T3 (pl) 2012-09-28
AU2006299127B2 (en) 2011-12-01
ATE554117T1 (de) 2012-05-15
CA2624312A1 (en) 2007-04-12
DE102005047562A1 (de) 2007-04-05
IL190075A0 (en) 2008-08-07
KR20080064822A (ko) 2008-07-09
US7927704B2 (en) 2011-04-19
ES2383224T3 (es) 2012-06-19
JP2009510238A (ja) 2009-03-12
CN101277988A (zh) 2008-10-01
EP1937742B1 (de) 2012-04-18
EP1937742A1 (de) 2008-07-02

Similar Documents

Publication Publication Date Title
EP1937742B1 (de) Zweikomponenten-systeme für die herstellung flexibler beschichtungen
EP2393859B1 (de) Zweikomponenten-beschichtungszusammensetzungen für flexible beschichtungen
EP2596037B1 (de) Bindemittelkombinationen für konstruktive trinkwasserrohrbeschichtungen
EP1551894B1 (de) Zweikomponente-systeme für die herstellung elastischer beschichtungen
EP1735363B1 (de) Verfärbungsstabile polyetherallophanate
EP2393860A1 (de) Beschichtungen auf basis allophanatgruppen haltiger polyisocyanate
EP1616889B1 (de) Wasserlösliche Aspartate
EP2283053A1 (de) Polyharnstoffzusammensetzung
EP1735273A1 (de) Verfahren zur herstellung von polyetherallophanaten unter verwendung von zink-verbindungen als katalysatoren
EP1775313B1 (de) Zusammensetzung zur Herstellung von Polyharnstoffbeschichtungen
WO2005097865A1 (de) Verfahren zur herstellung von polyisocyanat-prepolymeren mit allophanat-struktureinheiten
EP2411438B1 (de) Herstellung von polyisocyanat-prepolymeren mit allophanat-struktureinheiten und deren verwendung in formulierungen für beschichtungen, klebstoffe und dichtstoffe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680036690.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 190075

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2006777194

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2445/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006299127

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/004361

Country of ref document: MX

Ref document number: 2624312

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020087008051

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008533896

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006299127

Country of ref document: AU

Date of ref document: 20060922

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006299127

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006777194

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0616849

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080403