WO2007046297A1 - セメント添加材及びセメント組成物 - Google Patents

セメント添加材及びセメント組成物 Download PDF

Info

Publication number
WO2007046297A1
WO2007046297A1 PCT/JP2006/320449 JP2006320449W WO2007046297A1 WO 2007046297 A1 WO2007046297 A1 WO 2007046297A1 JP 2006320449 W JP2006320449 W JP 2006320449W WO 2007046297 A1 WO2007046297 A1 WO 2007046297A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
gypsum
mass
calcium carbonate
cement additive
Prior art date
Application number
PCT/JP2006/320449
Other languages
English (en)
French (fr)
Inventor
Hiroshi Hirao
Kazuo Yamada
Kiyoshi Koibuchi
Nobukazu Nito
Original Assignee
Taiheiyo Cement Corporation
Dc Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corporation, Dc Co., Ltd. filed Critical Taiheiyo Cement Corporation
Priority to JP2007540946A priority Critical patent/JP4392765B2/ja
Priority to US11/990,982 priority patent/US8133317B2/en
Priority to CN2006800387272A priority patent/CN101291888B/zh
Priority to KR1020087009618A priority patent/KR101313015B1/ko
Publication of WO2007046297A1 publication Critical patent/WO2007046297A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/10Acids or salts thereof containing carbon in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S106/00Compositions: coating or plastic
    • Y10S106/01Fly ash

Definitions

  • the present invention relates to a cement additive mainly made from industrial waste and a cement composition containing the cement additive.
  • Patent Document 1 JP-A-5-116996
  • the unhydrated CA reacts with ettringite to produce monosulfate.
  • the present invention has been made in view of such a situation, and can effectively use industrial waste, suppress the production of monosulfate in the hardened cementitious material, and is durable. It is an object of the present invention to provide a cement additive capable of producing a hardened cementitious material having good (sulfate resistance) and a cement composition containing the cement additive.
  • the present invention provides a cement additive characterized by containing industrial waste and having an action of suppressing the formation of monosulfate in a hardened cementitious material ( Invention 1).
  • invention 1 industrial waste can be effectively used, and the production of monosulfate in the cementitious cured product can be suppressed, and the resulting cementitious cured product of sulfuric acid can be obtained. Salt swelling can be prevented and durability (sulfate resistance) can be improved.
  • the cement additive is composed of calcium carbonate, gypsum, and coal ash and Z or blast furnace slag powder (Invention 2), or the coal ash and the industrial waste.
  • Invention 2 Contains Z or blast furnace slag powder and as industrial waste and not Z or industrial waste !, calcium carbonate and gypsum as industrial waste and not Z or industrial waste I prefer it (Invention 3).
  • the calcium ash is not included, the blast furnace slag powder is included, and the calcium carbonate is 6 to 160 parts by mass with respect to 100 parts by mass of the blast furnace slag powder. It is preferable that 5 to 150 parts by mass of gypsum (anhydrous equivalent) is blended, and that the amount of calcium carbonate blended is larger than the amount of gypsum blended (Invention 4).
  • the amount of calcium carbonate added is larger than the amount of gypsum!
  • Japanese CA reacts with CO, which also produces calcium carbonate, producing monocarbonate.
  • generation of the monosulfate in a cementitious hardening body can be suppressed.
  • the durability (sulfate resistance) of the hardened cementitious material can be improved, and the strength development of the hardened cementitious material can also be improved.
  • the mixing ratio (mass) of the gypsum and the calcium carbonate The standard) is preferably 1: 1: 1 to 15 (Invention 5).
  • the mixing ratio of gypsum and calcium carbonate is within the above range, the production of monosulfate in the hardened cementitious body can be more effectively suppressed.
  • At least the coal ash is contained, and the calcium carbonate is contained in an amount of 0.5 to 160 masses per 100 mass parts of the total amount of the coal ash and the blast furnace slag powder. It is preferable that 5 to 150 parts by mass of the gypsum (in terms of anhydride) is blended (Invention 6).
  • Al O contained in coal ash is more CaO than Al O contained in blast furnace slag powder.
  • the reaction rate of is low. Therefore, according to the above invention (Invention 6), even when the amount of calcium carbonate in the cement additive is the same as or less than the amount of gypsum, It is possible to effectively suppress the formation of sulfate, improve the durability (sulfate resistance) of the hardened cementitious material, and improve the strength development of the hardened cementitious material. Can do.
  • the cement additive of the above invention (Invention 6) may or may not contain blast furnace slag powder as long as it contains at least coal ash.
  • the blending ratio (mass basis) of the gypsum and the calcium carbonate is preferably 1: 0.1 to 15 (Invention 7).
  • the blending ratio of gypsum and calcium carbonate is within the above range. Monosulfate production can be more effectively suppressed.
  • the present invention provides a cement composition comprising the cement additive of the above invention (Inventions 1 to 8) (Invention 9).
  • a cement composition comprising the cement additive of the above invention (Inventions 1 to 8) (Invention 9).
  • Invention 9 By curing the cement composition of this invention (Invention 9), it is possible to effectively suppress the formation of monosulfate in the obtained cementitious hardened body, and the sulfate resistance and strength development of the hardened cementitious body can be achieved. The property can be improved.
  • such a cement composition can suppress the alkali aggregate reaction of the obtained cementitious hardened body, and can improve the acid resistance and metaseawater resistance of the cementitious hardened body. can do.
  • the cement composition containing a cement additive containing at least coal ash can reduce heat of hydration when the cement composition is cured.
  • the cement additive of the present invention it is possible to effectively use industrial waste, and to produce a hardened cementitious material with good durability (sulfate resistance).
  • the cement composition of the present invention it is possible to effectively suppress the formation of monosulfate in the hardened cementitious material obtained by curing the cement composition, and the durability (sulfate resistance) ) Can be produced.
  • FIG. 1 is a graph showing the results of an adiabatic temperature test.
  • FIG. 2 is a graph showing the results of an alkali aggregate reaction test.
  • FIG. 3 is a graph showing the results of an acid resistance test.
  • the cement additive of the present invention contains industrial waste and has an action of suppressing the production of monosulfate in the cementitious hardened body.
  • This cement additive preferably contains calcium carbonate, gypsum, and coal ash and Z or blast furnace slag powder.
  • Coal ash and blast furnace slag powder are industrial wastes themselves, but calcium carbonate and gypsum may be included as industrial wastes or non-industrial wastes, respectively.
  • calcium carbonate for example, industrial calcium carbonate powder, limestone powder, and the like can be used, but it is preferable to use limestone powder because it is inexpensive.
  • Limestone powder is produced by crushing limestone, which is a natural raw material (drying / classifying as necessary).
  • pulverized products such as shells and corals mainly composed of calcium carbonate, or processed products thereof can be used.
  • the Blaine specific surface area of calcium carbonate is preferably 2000-10000 cm 2 Zg. If the Blaine specific surface area is less than 2000 cm 2 Zg, the reactivity of calcium carbonate is small, and the strength development and durability of the hardened cementitious material may be reduced. Also If the specific surface area exceeds 10,000 cm 2 / g, it is difficult to obtain and the fluidity and workability of the hardened cementitious material may be reduced.
  • Examples of gypsum include dihydrate gypsum, hemihydrate gypsum, anhydrous gypsum, and the like. These may be used alone, or two or more types may be appropriately mixed and used. As this gypsum, flue gas desulfurization gypsum, waste gypsum board, phosphate gypsum, etc. as industrial waste may be used, or naturally produced gypsum may be used.
  • Blaine specific surface area of the gypsum forces s preferably 2000 ⁇ 8000cm 2 Zg. If the specific surface area of the brain is less than 2000 cm 2 Zg, the strength development and durability of the hardened cementitious material with low gypsum reactivity may be reduced. In addition, when the specific surface area of the brain exceeds 8000 cm 2 Zg, it is difficult to obtain, and the fluidity and workability of the hardened cementitious material may be reduced.
  • coal ash for example, industrial waste such as fly ash and clean power ash can be used. These may be used alone or in appropriate combination of two or more.
  • Blaine specific surface area of the coal ash forces s preferably 2000 ⁇ 7000cm 2 Zg. If the specific surface area of the brain is less than 2000 cm 2 Zg, the strength development and durability of the cementitious hardened body with low coal ash reactivity may be reduced. In addition, when the specific surface area of the brain exceeds 7000 cm 2 Zg, it is difficult to obtain, and the fluidity and workability of the hardened cementitious material may be reduced.
  • blast furnace slag powder examples include powdered granulated slag obtained by water-cooling and crushing blast furnace slag by-produced when producing pig iron in the blast furnace, Industrial waste such as powdered slow-cooled slag can be used
  • the blast furnace slag powder preferably has a Blaine specific surface area of 3000-10000 cm 2 Zg. If the Blaine specific surface area is less than 3000 cm 2 Zg, the strength development and durability of the hardened cementitious material may be reduced, which reduces the reactivity of the blast furnace slag powder. In addition, when the specific surface area of the brain exceeds 10,000 cm 2 / g, it is difficult to obtain, and the fluidity and workability of the hardened cementitious material may be reduced.
  • the cement additive of the present invention may contain either one or both of coal ash and blast furnace slag powder. When coal ash and blast furnace slag powder are contained, the blending ratio (mass basis) is preferably 1: 0.1 to 10, and more preferably 1: 0.5 to 4.
  • the preferred ratio of each raw material in such cement additive is as follows. Examples include calcium in an amount of 6 to 160 parts by mass, gypsum (in terms of anhydride) in an amount of 5 to 150 parts by mass, and the amount of calcium carbonate added is greater than the amount of gypsum.
  • a cement additive with a strong composition can suppress the formation of monosulfate in the hardened cementitious material, prevent sulfated swelling of the hardened cementitious material, and good strength development of the hardened cementitious material Can be.
  • blast furnace slag powder with a high Al O content is used as a raw material for cement additives.
  • the blending amount as appropriate, for example, by increasing the blending ratio of calcium carbonate and gypsum to the blast furnace slag powder.
  • the blending amount of calcium carbonate is less than 6 parts by mass, the durability of the cementitious hardened body may be reduced, and if it exceeds 160 parts by weight, strength development of the cementitious hardened body is reduced. In addition, there is a possibility that the content of the blast furnace slag powder becomes too small to achieve the object of the present invention.
  • the blending amount of calcium carbonate is more preferably 10 to 160 parts by mass, further preferably 15 to 160 parts by mass, and particularly preferably 15 to 60 parts by mass with respect to 100 parts by mass of the blast furnace slag powder.
  • the blending amount of gypsum is less than 5 parts by mass, the initial strength of the cementitious cured body may be lowered, and the durability of the cementitious cured body may be reduced. If it exceeds, the strength development may be reduced with the expansion of the cementitious hardened body, and the content of the blast furnace slag powder may be too small to achieve the object of the present invention.
  • the blending amount of gypsum is more preferably 10 to 50 parts by mass with respect to 100 parts by mass of blast furnace slag powder.
  • the amount of calcium carbonate is the same as or less than the amount of gypsum, It may be difficult to suppress the formation of monosulfate in the hardened cementitious material, and the durability (sulfate resistance) of the hardened cementitious material may be reduced.
  • the mixing ratio (mass basis) of gypsum and calcium carbonate is preferably 1: 1.1-15, and particularly preferably 1: 1.3: LO. When the blending ratio of gypsum and calcium carbonate is within the above range, the production of monosulfate in the cementitious cured product can be more effectively suppressed.
  • each raw material in the cement additive to be produced is as follows.
  • the blending ratio is the total amount of coal ash and blast furnace slag powder.
  • calcium carbonate is 0.5 to 160 parts by mass
  • gypsum anhydrous equivalent
  • Al O contained in coal ash is compared to Al O contained in blast furnace slag, etc.
  • the reaction rate with CaO is low, even if the amount of calcium carbonate is the same as or less than the amount of gypsum, it is possible to suppress the formation of monosulfate in the cementitious hardened body.
  • the durability (sulfate resistance) of the hardened cementitious material can be improved. Thereby, the strength development property of a cementitious hardened body can be made favorable.
  • coal ash which is an industrial by-product (industrial waste)
  • Al O in the blast furnace slag powder are included.
  • the blending amount When used as a raw material, it is preferable to adjust the blending amount appropriately, for example, by increasing the blending ratio of calcium carbonate and gypsum.
  • the compounding capacity of calcium carbonate is less than 0.5 parts by mass, the durability of the hardened cementitious material may be reduced.
  • the content of coal ash and blast furnace slag powder may be too small to achieve the object of the present invention.
  • the blending amount of calcium carbonate is more preferably 2.5 to 160 parts by mass, further preferably 5 to 70 parts by mass, and particularly preferably 10 to 100 parts by mass of the total amount of coal ash and blast furnace slag powder. 60 parts by mass.
  • the blending amount of gypsum is less than 5 parts by mass, the initial strength of the cementitious hardened body may be lowered, and the durability of the cementitious hardened body may be reduced. If it exceeds 1, the strength development may decrease with the expansion of the cementitious hardened body, and the content of coal ash or blast furnace slag powder becomes too small, and the object of the present invention cannot be achieved. There is a fear.
  • the blending amount of gypsum is more preferably 5 to 70 parts by weight, particularly preferably 10 to 50 parts by weight with respect to 100 parts by weight of the total amount of coal ash and blast furnace slag powder.
  • the mixing ratio (mass basis) of calcium carbonate and gypsum in the cement additive to be produced is not particularly limited. It is preferable that the blending amount of gypsum and the blending amount of gypsum are substantially the same amount.
  • the blending ratio (mass basis) of gypsum and calcium carbonate is preferably 1: 0.1-15, more preferably 1: 0.3-10 1: 0.5-5 More preferably.
  • the cement additive of the present invention described above includes calcium carbonate, gypsum, coal ash and Z or blast furnace slag powder, as well as various slags such as urban waste molten slag, steelmaking slag, sewage sludge molten slag; It may further contain various incineration ash such as Tokyo garbage incineration ash
  • the cement additive of the present invention is put into a mixer together with cement, aggregate, water reducing agent and water by a conventional method and kneaded, and the kneaded product is subjected to underwater curing, steam curing, etc. A cured product is obtained.
  • the cementitious cured body obtained in this manner is based on the action of suppressing the formation of monosulfate of the cement additive of the present invention, so that the formation of monosulfate in the cured body is suppressed, and thereby sulfate. Swelling is prevented and durability (sulfuric acid resistance) is improved.
  • the cement additive of the present invention can be added to cement to form a cement composition.
  • the cement to which the cement additive of the present invention can be added is not particularly limited, and can be added to any cement.
  • various Portland cements such as ordinary Portland cement, early-strength Portland cement, medium-heated Portland cement, low-heat Portland cement; various mixed cements such as blast furnace cement and fly ash cement; Tokyo municipal waste incineration ash and Z or sewage sludge Examples include pulverized products and gypsum and strong cement (eco-cement) produced from incinerated ash. It is preferable to use eco-cement as the cement because the percentage of waste used can be increased.
  • the amount of the cement additive of the cement composition is der 90 mass 0/0 or less Particularly preferred is 5 to 70% by mass. If the blending amount of the cement additive in the cement composition exceeds 90% by mass, the strength development and durability of the resulting cementitious hardened body may be reduced. As described above, according to the cement additive of the present invention and the cement composition containing the cement additive, it is possible to use a large amount of industrial waste.
  • the cement additive of the present invention and the cement composition containing the cement additive can improve the sulfate resistance of the obtained cementitious hardened body, and Alkali aggregate reaction in the hardened cementitious body can be suppressed, and permeation of chloride ions can be suppressed.
  • the cement additive of the present invention and the cement composition containing the cement additive can improve the acid resistance of the cementitious hardened material obtained by curing the cement composition.
  • a cement composition containing a cement additive containing at least coal ash can also reduce heat of hydration.
  • the obtained specimen was subjected to standard water curing (20 ° C) for 3 months, and then the compressive strength was measured. In addition, the presence or absence of monosulfate in the specimen after curing for 3 months was examined by X-ray diffraction.
  • the cementitious hardened body using the cement additive of Comparative Example 1 has low sulfate resistance due to the decrease in strength after curing with an aqueous magnesium sulfate solution.
  • the cementitious hardened body was expanded (sulfate expansion), and as a result of X-ray diffraction, it was confirmed that monosulfate was formed.
  • Example 5 The cement additives of Examples 5 to 15 and Comparative Examples 2 to 4 and ordinary Portland cement (manufactured by Taiheiyo Cement, Blaine specific surface area: 3300 cm 2 / g) were charged into a mixer and air-kneaded (dry mitas). .
  • Table 3 shows the amount of cement added to ordinary Portland cement.
  • Comparative Example 5 is ordinary Portland cement with no cement additive added.
  • Example 5 79.0 0.0 5.0 16.0 25.0 0.0269
  • Example 6 72.0 0.0 13.0 15.0 25.0 0.0335
  • Example 7 63.0 0.0 5.0 32.0 25.0 0.0321
  • Example 8 79.0 0.0 5.0 16.0 50.0 0.0162
  • Example 9 0.0 72.0 13.0 15.0 40.0 0.0350
  • Example 10 39.6 39.6 4.8 16.0 25.0 0.0341
  • Example 11 34.3 34.3 15.4 16.0 25.0 0.0296
  • Example 12 83.1 0.0 13.0 3.9 25.0 0.0345
  • Example 13 80.5 0.0 13.0 6.5 25.0 0.0342
  • Example 14 41.6 41.5 13.0 3.9 25.0 0.0356
  • Example 15 40.3 40.2 13.0 6.5 25.0 0.0348
  • Example 2 0.0 0.0 100.0 0.0 2.1 0.1079 Comparative Example 3 73.5 0.0 26.5 0.0 25.0 0.0852 Comparative Example 4 0.0 79.8 20.2 0.0 0.0 0.0751 Comparative Example 5 0.0 0.0
  • the 6-month expansion amount of the ordinary Portland cement to which the cement additive of Examples 5 to 15 was added was the same as that of the ordinary Portland cement to which the cement additive of Comparative Examples 2 to 4 was added. It was confirmed that the expansion amount of the normal Portland cement of Comparative Examples 2 to 5 was 1Z2 or less of the 6-month expansion amount of the normal Portland cement of Comparative Example 5, which was less than the 6-month expansion amount of Comparative Portland cement. From this, it was confirmed that the cement additive of Examples 5 to 15 can improve the durability (sulfate resistance) of the cementitious cured body by adding to the cement.
  • Example 6 and Example 9 ordinary Portland cement to which the cement additive was added, and Comparative Example 5 ordinary Portland cement, moderately heated Portland cement (manufactured by Taiheiyo Cement, Blaine specific surface area: 3200 cm 2 Zg, Comparative Example 6)
  • a compressive strength test was performed on the cementitious cured bodies obtained by curing each according to JIS-A1108. The dimensions of the specimen were set to ⁇ 10 X 20cm.
  • the cementitious hardened body obtained by curing ordinary portland cement to which the cement additive of Example 6 and Example 9 was added had a cement additive added to it. It was confirmed that the compressive strength was the same as that of Portland cement (Comparative Example 5) and moderately hot Portland cement (Comparative Example 6). From this, it was confirmed that the hardened cementitious material obtained by curing the ordinary Portland cement to which the cement-added caro material of Example 6 and Example 9 was added had excellent strength development.
  • the hardened cementitious material obtained by curing ordinary portland cement to which the cement additive of Example 6 and Example 9 was added is the ordinary Portland cement of Comparative Example 5 and Comparative Example 6 Suppresses the self-shrinking strain compared to medium-heated Portland cement. Confirmed to get.
  • Example 6 0.001 0.005 0.008 0.009 0.010 0.020
  • Example 9 0.008 0.010 0.025 0.028 0.035 0.038 Comparative Example 5 0.020 0.090 0.210 0.300 0.330 0.340 Comparative Example 6 0.015 0.080 0.190 0.250 0.290 0.310 [0068]
  • the hardened cementitious material obtained by curing the ordinary Portland cement of Comparative Example 5 and the intermediate port of Comparative Example 6 has a coefficient of expansion at the age of 3 months.
  • the cementitious hardened material obtained by curing ordinary Portland cement added with the cement additive of Example 6 and Example 9 is considered to be harmful.
  • the expansion rate was less than 0.1% even at 6 months of age, and it was determined to be harmless. From this result, it was confirmed that the cement additive of Example 6 and Example 9 can suppress the alkali aggregate reaction in the hardened cementitious material obtained by curing the cement to which the cement additive was added. It was.
  • the erosion depth was determined by immersing in a 5% aqueous sulfuric acid solution and measuring the radius of the specimen after a predetermined age.
  • the ordinary portland cement to which the cement additive of Example 6 and Example 9 was added may have superior acid resistance as compared to the ordinary Portland cement of Comparative Example 5. confirmed.
  • the cement additive and the cement composition of the present invention are useful for the effective use of industrial waste and are useful for the production of a hardened cementitious material having good durability (sulfate resistance).

Abstract

 セメント添加材は、産業廃棄物とセメント質硬化体中のモノサルフェートの生成を抑制する作用を有しており、具体的には、炭酸カルシウム、石膏、並びに石炭灰及び/又は高炉スラグ粉末を含有する。これにより、産業廃棄物の有効利用を図ることができるとともに、セメント質硬化体中のモノサルフェートの生成を抑制することができ、耐久性(耐硫酸塩性)が良好なセメント質硬化体を製造することができる。

Description

セメント添加材及びセメント組成物
技術分野
[0001] 本発明は、主に産業廃棄物を原料とするセメント添加材、及び当該セメント添加材 を含むセメント組成物に関する。
背景技術
[0002] 近年、産業廃棄物や一般廃棄物の有効利用を図るベぐこれらの廃棄物を原料に したセメント混和材等が開発されている。従来、このようなセメント混和材として、高炉 スラグ粉末 100質量部に対して、 10〜: LOO質量部の石膏 (無水物換算)及び 5〜50 質量部の炭酸カルシウムを配合したもの、具体的には、高炉スラグ粉末と、石膏と、 炭酸カルシウムとを 20 : 7 : 3, 20 : 5 : 5, 17 : 10 : 3, 15 : 10 : 5, 30 : 10 : 5で配合(質 量基準)したものが知られて ヽる (特許文献 1参照)。
特許文献 1 :特開平 5— 116996号公報
発明の開示
発明が解決しょうとする課題
[0003] セメントの水和反応においては、まず、石膏中の SO 2_がセメント中の未水和の C
4 3
A (3CaO -Al O )と反応して、エトリンガイト(トリサルフェート)が生成される。その反
2 3
応により液相中の so 2_がすべて消費されると、炭酸カルシウムからもたらされる CO
4 2 が未水和の C Aと反応してモノカーボネートが生成される。そして、 COと未水和の C
3 2
Aとの反応により COがすべて消費された時点で未水和の C Aが硬化体中に残存
3 2 3
していると、その未水和の C Aがエトリンガイトと反応してモノサルフェートが生成され
3
る。
[0004] 本発明者は、このモノサルフェートが、セメント質硬化体の硫酸塩膨張を引き起こす ことを見出した。上記特許文献 1記載のセメント混和材を使用したセメント質硬化体は 、セメント質硬化体中における炭酸カルシウム量が不足しているため、セメント質硬化 体中にてモノサルフェートが生成され、したがって、そのセメント混和材を使用したセ メント質硬化体は、硫酸塩膨張を引き起こすおそれがある。セメント質硬化体が硫酸 塩膨張を引き起こすと、セメント質硬化体の耐久性が著しく低下する。
[0005] 本発明は、このような実状に鑑みてなされたものであり、産業廃棄物の有効利用を 図ることができるとともに、セメント質硬化体中のモノサルフェートの生成を抑制し、耐 久性 (耐硫酸塩性)が良好なセメント質硬化体を製造することのできるセメント添加材 及び当該セメント添加材を含むセメント組成物を提供することを目的とする。
課題を解決するための手段
[0006] 上記課題を解決するために、本発明は、産業廃棄物を含有し、セメント質硬化体中 のモノサルフェートの生成を抑制する作用を有することを特徴とするセメント添加材を 提供する (発明 1)。
[0007] 上記発明(発明 1)によれば、産業廃棄物の有効利用を図ることができるとともに、セ メント質硬化体中のモノサルフェートの生成を抑制し、得られるセメント質硬化体の硫 酸塩膨張を防止して耐久性 (耐硫酸塩性)を良好なものとすることができる。
[0008] 上記発明(発明 1)においては、セメント添加材カ 炭酸カルシウム、石膏、並びに 石炭灰及び Z又は高炉スラグ粉末からなること (発明 2)、あるいは前記産業廃棄物と しての石炭灰及び Z又は高炉スラグ粉末と、前記産業廃棄物としての及び Z又は前 記産業廃棄物ではな!、炭酸カルシウムと、前記産業廃棄物としての及び Z又は前記 産業廃棄物ではな 、石膏とを含有することが好まし ヽ (発明 3)。
[0009] 上記発明(発明 2, 3)においては、前記石炭灰を含まず、前記高炉スラグ粉末を含 み、前記高炉スラグ粉末 100質量部に対し、前記炭酸カルシウムが 6〜160質量部、 前記石膏 (無水物換算)が 5〜150質量部配合されており、かつ、前記炭酸カルシゥ ムの配合量が前記石膏の配合量よりも多 、ことが好ま ヽ (発明 4)。
[0010] 上記発明(発明 4)によれば、炭酸カルシウムの配合量が石膏の配合量よりも多!、こ とで、石膏中の SO 2_がすべて消費された後にセメント質硬化体中に残存する未水
4
和の C Aが炭酸カルシウム力ももたらされる COと反応し、モノカーボネートを生成す
3 2
るため、セメント質硬化体中のモノサルフェートの生成を抑制することができる。これ により、セメント質硬化体の耐久性 (耐硫酸塩性)を良好なものとすることができ、セメ ント質硬化体の強度発現性も良好なものとすることができる。
[0011] 上記発明(発明 4)においては、前記石膏と前記炭酸カルシウムとの配合比 (質量 基準)が、 1 : 1. 1〜15であることが好ましい (発明 5)。力かる発明(発明 5)のように、 石膏と炭酸カルシウムとの配合比が上記範囲内にあることにより、セメント質硬化体中 のモノサルフェートの生成をより効果的に抑制することができる。
[0012] また、上記発明(発明 2, 3)においては、少なくとも前記石炭灰を含み、前記石炭灰 及び前記高炉スラグ粉末の合計量 100質量部に対し、前記炭酸カルシウムが 0. 5〜 160質量部、前記石膏 (無水物換算)が 5〜150質量部配合されていることが好まし い (発明 6)。
[0013] 石炭灰中に含まれる Al Oは、高炉スラグ粉末等に含まれる Al Oに比して CaOと
2 3 2 3
の反応率が低い。したがって、上記発明(発明 6)によれば、セメント添加材中におけ る炭酸カルシウムの配合量が石膏の配合量と同量又はそれよりも少ない場合であつ ても、セメント質硬化体中のモノサルフェートの生成を効果的に抑制することができる とともに、セメント質硬化体の耐久性 (耐硫酸塩性)を良好にすることができ、セメント 質硬化体の強度発現性を良好なものとすることができる。なお、上記発明(発明 6)の セメント添加材には、少なくとも石炭灰が含まれていればよぐ高炉スラグ粉末が含ま れていてもよいし、含まれていなくてもよい。
[0014] 上記発明(発明 6)においては、前記石膏と前記炭酸カルシウムとの配合比 (質量 基準)が、 1 : 0. 1〜15であることが好ましい (発明 7)。力かる発明(発明 7)のように、 セメント添加材に少なくとも石炭灰が含まれている場合には、石膏と炭酸カルシウムと の配合比が上記範囲内にあることにより、セメント質硬化体中のモノサルフェートの生 成をより効果的に抑制することができる。
[0015] 上記発明(発明 2〜7)においては、前記炭酸カルシウムとして石灰石粉末を含有 することが好ましい (発明 8)。
[0016] 本発明は、上記発明(発明 1〜8)のセメント添加材を含むことを特徴とするセメント 組成物を提供する (発明 9)。かかる発明(発明 9)のセメント組成物を硬化させること で、得られるセメント質硬化体中のモノサルフェートの生成を効果的に抑制することが でき、セメント質硬化体の耐硫酸塩性や強度発現性を良好なものとすることができる。 また、このようなセメント組成物は、得られるセメント質硬化体のアルカリ骨材反応を抑 制することができるとともに、セメント質硬化体の耐酸性及び而海水性を良好なものに することができる。さらに、少なくとも石炭灰を含有するセメント添加材を含むセメント 組成物は、当該セメント組成物の硬化時の水和熱を低減することができる。
発明の効果
[0017] 本発明のセメント添加材によれば、産業廃棄物の有効利用を図ることができるととも に、耐久性 (耐硫酸塩性)が良好なセメント質硬化体を製造することができる。また、 本発明のセメント組成物によれば、当該セメント組成物を硬化させて得られるセメント 質硬化体中のモノサルフェートの生成を効果的に抑制することができ、耐久性 (耐硫 酸塩性)が良好なセメント質硬化体を製造することができる。
図面の簡単な説明
[0018] [図 1]図 1は、断熱温度試験の結果を示すグラフである。
[図 2]図 2は、アルカリ骨材反応試験の結果を示すグラフである。
[図 3]図 3は、耐酸性試験の結果を示すグラフである。
発明を実施するための最良の形態
[0019] 以下、本発明のセメント添加材及びセメント組成物について説明する。
本発明のセメント添加材は、産業廃棄物を含有し、セメント質硬化体中のモノサル フェートの生成を抑制する作用を有するものである。このセメント添加材は、炭酸カル シゥム、石膏、並びに石炭灰及び Z又は高炉スラグ粉末を含有することが好ましい。 石炭灰及び高炉スラグ粉末は、それ自体産業廃棄物であるが、炭酸カルシウム及び 石膏は、それぞれ産業廃棄物として含まれていてもよいし、産業廃棄物ではないもの として含まれていてもよい。
[0020] 炭酸カルシウムとしては、例えば、工業用炭酸カルシウム粉末、石灰石粉末等を使 用することができるが、石灰石粉末を使用するのが安価であり好ましい。石灰石粉末 は、天然原料である石灰石を粉砕して (必要に応じて、乾燥'分級を行って)製造され るものである。また、その他の炭酸カルシウムとして、炭酸カルシウムを主成分とする 貝殻、サンゴ等の粉砕物又はその加工物を使用することもできる。
[0021] 炭酸カルシウムのブレーン比表面積は、 2000〜10000cm2Zgであることが好まし い。ブレーン比表面積が 2000cm2Zg未満では、炭酸カルシウムの反応性が小さく 、セメント質硬化体の強度発現性及び耐久性が低下するおそれがある。また、ブレー ン比表面積が 10000cm2/gを超えるものは、入手が困難であるうえ、セメント質硬化 体の流動性や作業性が低下するおそれがある。
[0022] 石膏としては、例えば、二水石膏、半水石膏、無水石膏等が挙げられ、これらを単 独で使用してもよいし、 2種以上を適宜混合して使用してもよい。この石膏として、産 業廃棄物としての排煙脱硫石膏、廃石膏ボード、リン酸石膏等を使用してもよいし、 天然に産出される石膏を使用してもよい。
[0023] 石膏のブレーン比表面積は、 2000〜8000cm2Zgであること力 s好ましい。ブレー ン比表面積が 2000cm2Zg未満では、石膏の反応性が小さぐセメント質硬化体の 強度発現性及び耐久性が低下するおそれがある。また、ブレーン比表面積が 8000c m2Zgを超えるものは、入手が困難であるうえ、セメント質硬化体の流動性や作業性 が低下するおそれがある。
[0024] 石炭灰としては、例えば、フライアッシュ、クリン力アッシュ等の産業廃棄物を使用す ることができる。これらは単独で使用してもよいし、 2種以上を適宜混合して使用して ちょい。
[0025] 石炭灰のブレーン比表面積は、 2000〜7000cm2Zgであること力 s好ましい。ブレ ーン比表面積が 2000cm2Zg未満であると、石炭灰の反応性が小さぐセメント質硬 化体の強度発現性及び耐久性が低下するおそれがある。また、ブレーン比表面積が 7000cm2Zgを超えるものは、入手が困難であるうえ、セメント質硬化体の流動性や 作業性が低下するおそれがある。
[0026] 高炉スラグ粉末としては、例えば、高炉で銑鉄を製造する際に副生する高炉スラグ を溶融状態で水冷'破砕して得られる水砕スラグを粉末状にしたものや、徐冷 '破砕 して得られる徐冷スラグを粉末状にしたもの等の産業廃棄物を使用することができる
[0027] 高炉スラグ粉末のブレーン比表面積は、 3000〜10000cm2Zgであることが好まし い。ブレーン比表面積が 3000cm2Zg未満であると、高炉スラグ粉末の反応性が小 さぐセメント質硬化体の強度発現性及び耐久性が低下するおそれがある。また、ブ レーン比表面積が 10000cm2/gを超えるものは、入手が困難であるうえ、セメント質 硬化体の流動性や作業性が低下するおそれがある。 [0028] 本発明のセメント添加材は、石炭灰及び高炉スラグ粉末のうちいずれか一方を含 有していてもよいし、両方を含有していてもよい。石炭灰と高炉スラグ粉末とを含有す る場合、その配合比(質量基準)は、 1 : 0. 1〜10であることが好ましぐ特に 1 : 0. 5 〜4であることが好ましい。
[0029] 本発明のセメント添加材が石炭灰を含まず、高炉スラグ粉末を含む場合、かかるセ メント添加材における各原料の好まし 、配合比としては、高炉スラグ粉末 100質量部 に対し、炭酸カルシウムが 6〜160質量部、石膏 (無水物換算)が 5〜150質量部で あり、かつ、炭酸カルシウムの配合量が石膏の配合量よりも多い配合が挙げられる。 力かる組成を有するセメント添加材は、セメント質硬化体中のモノサルフェートの生成 を抑制し、セメント質硬化体の硫酸塩膨張を防止することができるとともに、セメント質 硬化体の強度発現性も良好なものとすることができる。
[0030] なお、産業副産物 (産業廃棄物)である高炉スラグ粉末中の Al Oの含有量は多様
2 3
である。そのため、 Al Oの含有量が多い高炉スラグ粉末をセメント添加材の原料と
2 3
して使用する場合は、高炉スラグ粉末に対する炭酸カルシウム及び石膏の配合比を 高くする等、適宜配合量を調整することが好ましい。
[0031] 炭酸カルシウムの上記配合量が 6質量部未満であると、セメント質硬化体の耐久性 が低下するおそれがあり、 160質量部を超えると、セメント質硬化体の強度発現性が 低下するおそれがあり、また、高炉スラグ粉末の含有量が少なくなりすぎて本発明の 目的を達成できないおそれがある。炭酸カルシウムの配合量は、高炉スラグ粉末 10 0質量部に対し、より好ましくは 10〜160質量部、さらに好ましくは 15〜160質量部、 特に好ましくは 15〜60質量部である。
[0032] また、石膏の上記配合量が 5質量部未満であると、セメント質硬化体の初期強度が 低下するうえに、セメント質硬化体の耐久性も低下するおそれがあり、 150質量部を 超えると、セメント質硬化体の膨張に伴い強度発現性が低下するおそれがあり、また 、高炉スラグ粉末の含有量が少なくなりすぎて本発明の目的を達成できないおそれ がある。石膏の配合量は、高炉スラグ粉末 100質量部に対し、より好ましくは 10〜50 質量部である。
[0033] また、炭酸カルシウムの配合量力 石膏の配合量と同量、又はそれよりも少ないと、 セメント質硬化体中のモノサルフェートの生成を抑制することが困難になり、セメント 質硬化体の耐久性 (耐硫酸塩性)が低下するおそれがある。石膏と炭酸カルシウムと の配合比(質量基準)は、 1 : 1. 1〜15であることが好ましぐ特に 1 : 1. 3〜: LOである ことが好ましい。石膏と炭酸カルシウムとの配合比が上記範囲内にあることにより、セ メント質硬化体中のモノサルフェートの生成をより効果的に抑制することができる。
[0034] 本発明のセメント添加材が少なくとも石炭灰を含む場合、カゝかるセメント添加材にお ける各原料の好まし 、配合比としては、石炭灰及び高炉スラグ粉末の合計量 100質 量部に対し、炭酸カルシウムが 0. 5〜160質量部、石膏 (無水物換算)が 5〜150質 量部である。石炭灰中に含まれる Al Oは、高炉スラグ等に含まれる Al Oに比して
2 3 2 3
CaOとの反応率が低 、ため、炭酸カルシウムの配合量が石膏の配合量と同量又は それよりも少量であっても、セメント質硬化体中のモノサルフェートの生成を抑制する ことができ、セメント質硬化体の耐久性 (耐硫酸塩性)を良好なものとすることができる 。これにより、セメント質硬化体の強度発現性を良好なものとすることができる。
[0035] なお、産業副産物 (産業廃棄物)である石炭灰及び高炉スラグ粉末中の Al Oの含
2 3 有量は多様であり、特に石炭灰は、炭種や燃焼方式等によって組成が大きく変化す る。そのため、 Al Oの含有量が多い石炭灰及び高炉スラグ粉末をセメント添加材の
2 3
原料として使用する場合は、それらに対する炭酸カルシウム及び石膏の配合比を高 くする等、適宜配合量を調整することが好ましい。
[0036] 炭酸カルシウムの配合量力 0. 5質量部未満であると、セメント質硬化体の耐久性 が低下するおそれがあり、 160質量部を超えると、セメント質硬化体の強度発現性が 低下するおそれがあり、また、石炭灰や高炉スラグ粉末の含有量が少なくなりすぎて 本発明の目的を達成できないおそれがある。炭酸カルシウムの配合量は、石炭灰及 び高炉スラグ粉末の合計量 100質量部に対し、より好ましくは 2. 5〜160質量部、さ らに好ましくは 5〜70質量部、特に好ましくは 10〜60質量部である。
[0037] また、石膏の配合量が、 5質量部未満であると、セメント質硬化体の初期強度が低 下する上に、セメント質硬化体の耐久性も低下するおそれがあり、 150質量部を超え ると、セメント質硬化体の膨張に伴い強度発現性が低下するおそれがあり、また、石 炭灰や高炉スラグ粉末の含有量が少なくなりすぎて、本発明の目的を達成できない おそれがある。石膏の配合量は、石炭灰及び高炉スラグ粉末の合計量 100質量部 に対し、より好ましくは 5〜70質量部、特に好ましくは 10〜50質量部である。
[0038] 本発明のセメント添加材が少なくとも石炭灰を含む場合、カゝかるセメント添加材にお ける炭酸カルシウムと石膏との配合比 (質量基準)は、特に限定されるものではない 力 炭酸カルシウムの配合量と石膏の配合量とが略同量であることが好ましい。石膏 と炭酸カルシウムとの配合比(質量基準)は、 1 : 0. 1〜15であることが好ましぐ 1 : 0 . 3〜10であることがより好ましぐ 1 : 0. 5〜5であることがさらに好ましい。石膏と炭酸 カルシウムとの配合比が上記範囲内にあることにより、セメント質硬化体中のモノサル フェートの生成をより効果的に抑制することができる。
[0039] 以上説明した本発明のセメント添加材は、炭酸カルシウム、石膏、並びに石炭灰及 び Z又は高炉スラグ粉末とともに、都巿ゴミ溶融スラグ、製鋼スラグ、下水汚泥溶融ス ラグ等の各種スラグ;都巿ゴミ焼却灰等の各種焼却灰等をさらに含有していてもよい
[0040] 本発明のセメント添加材を、常法によりセメント、骨材、減水剤及び水とともにミキサ 一に投入して混練し、その混練物を水中養生や蒸気養生等をすることで、セメント質 硬化体が得られる。このようにして得られたセメント質硬化体は、本発明のセメント添 加材のモノサルフェートの生成を抑制する作用に基づき、その硬化体中におけるモノ サルフェートの生成が抑制され、それによつて硫酸塩膨張が防止されて耐久性 (耐硫 酸塩'性)が良好なものとなる。
[0041] 本発明のセメント添加材は、セメントに添加してセメント組成物とすることができる。
本発明のセメント添加材を添加し得るセメントとしては、特に限定されるものではなぐ いかなるセメントにも添加することができる。具体的には、普通ポルトランドセメント、早 強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種 ポルトランドセメント;高炉セメント、フライアッシュセメント等の各種混合セメント;都巿 ゴミ焼却灰及び Z又は下水汚泥焼却灰を原料として製造した焼成物の粉砕物と石 膏と力らなるセメント(ェコセメント)等が挙げられる。セメントとしてェコセメントを用い れば、廃棄物の使用割合を高めることができるため好まし 、。
[0042] セメント組成物中のセメント添加材の配合量 (セメント内割)は、 90質量0 /0以下であ ることが好ましぐ特に 5〜70質量%であることが好ましい。セメント組成物におけるセ メント添加材の配合量が 90質量%を超えると、得られるセメント質硬化体の強度発現 性や耐久性が低下するおそれがある。このように、本発明のセメント添加材及び当該 セメント添加材を含むセメント組成物によれば、産業廃棄物を大量に使用することが 可能である。
[0043] 本発明のセメント添加材及び当該セメント添加材を含むセメント組成物は、上述した ように、得られるセメント質硬化体の耐硫酸塩性を良好なものにすることができるととも に、当該セメント質硬化体におけるアルカリ骨材反応を抑制したり、塩化物イオンの 浸透を抑制したりすることもできる。また、本発明のセメント添加材及び当該セメント添 加材を含むセメント組成物は、当該セメント組成物を硬化させて得られるセメント質硬 化体における耐酸性を良好なものにすることもできる。さらに、少なくとも石炭灰を含 有するセメント添加材を含むセメント組成物は、水和熱を低減することもできる。なお 、アルカリ骨材反応の抑制は、セメント添加材に含有される石炭灰及び高炉スラグ〖こ よるアルカリイオンの固定、組織の緻密化等によるものと考えられ、塩ィ匕物イオンの浸 透抑制は、セメント添加材に含有される石炭灰及び高炉スラグ中の Al O〖こよる塩ィ匕
2 3 物イオンの固定、組織の緻密化等によるものと考えられる。
実施例
[0044] 以下、実施例により本発明を具体的に説明するが、本発明は下記の実施例に何ら 限定されるものではない。
[0045] 〔実施例 1〜4,比較例 1〕
[1]セメント添加材の調製
表 1に示す配合割合により、石灰石粉末 (ブレーン比表面積: 5300cm2Zg,炭酸 カルシウム含有量: 97質量%)、無水石膏 (ブレーン比表面積: 6000cm2Zg)、石炭 灰 (ブレーン比表面積: 4500cm2/g, Al O含有量: 20質量%)及び高炉スラグ粉
2 3
末 (ブレーン比表面積: 4800cm2Zg, Al O
2 3含有量: 15質量0 /0)を配合し、セメント 添加材を調製した (実施例 1〜4,比較例 1)。
[0046] [表 1] 配合割合 (質量%) セメントへの
石灰石粉末 石膏 石炭灰 高炉スラグ 添加量 (質量%) 実施例 1 15 10 一 75 30 実施例 2 15 10 40 35 30 実施例 3 15 10 75 ― 30 実施例 4 15 10 ― 75 40 比較例 1 10 23 ― 67 30
[0047] [2]モルタル試験
実施例:!〜 4、比較例 1の各セメント添加材と、普通ポルトランドセメント(太平洋セメ ント社製,ブレーン比表面積: 3300cm2/g)とをミキサーに投入し、空練 (ドライミック ス)を行った。普通ポルトランドセメントへのセメント添加材の添カ卩量(セメント内割)は 、表 1に示す通りである。
[0048] 上記セメントとセメント添加材との混合物を使用して、 JIS—R5201に準じて圧縮強 度測定用の供試体を作製した。
(1)得られた供試体を 3ヶ月間標準水中養生(20°C)した後、圧縮強度を測定した。 また、 3ヶ月間養生した後の供試体中のモノサルフェートの有無を、 X線回折で調べ た。
[0049] (2)得られた供試体を 7日間標準水中養生(20°C)し、次いで、材齢 3ヶ月まで 10% 硫酸マグネシウム水溶液中で養生した後、圧縮強度を測定した。さらに、養生後の供 試体を目視観察した。
結果を表 2に示す。
[0050] [表 2]
Figure imgf000012_0001
表 2に示すように、実施例 1〜4のセメント添加材を使用したセメント質硬化体は、強 度発現性が良好であることが確認された。また、硫酸マグネシウム水溶液中で養生し ても水中養生と同等の強度を発現できることから、耐硫酸塩性も良好であることが確 認された。さらに、 X線回折の結果、セメント質硬化体中においてモノサルフェートが 生成していなかつたため、実施例 1〜4のセメント添加材は、硬化体中のモノサルフエ ートの生成を抑制する作用を有することが確認された。
[0052] 一方、比較例 1のセメント添加材を使用したセメント質硬化体は、硫酸マグネシウム 水溶液で養生したところ強度が落ちたため、耐硫酸塩性が低いということができる。ま た、 目視観察の結果、セメント質硬化体が膨張 (硫酸塩膨張)していることが確認され 、 X線回折の結果、モノサルフェートが生成していることが確認された。
[0053] 〔実施例 5〜15,比較例 2〜5〕
[1]セメント添加材の調製
表 3に示す配合割合により、石灰石粉末 (ブレーン比表面積: 5300cm2Zg,炭酸 カルシウム含有量: 97質量%)、無水石膏 (ブレーン比表面積: 6000cm2Zg)、石炭 灰 (ブレーン比表面積: 4500cm2/g, Al O含有量: 20質量%)及び高炉スラグ粉
2 3
末 (ブレーン比表面積: 4800cm2Zg, Al O含有量: 15質量0 /0)を配合し、セメント
2 3
添加材を調製した (実施例 5〜15,比較例 2〜4)。
[0054] [2]セメント組成物の調製
実施例 5〜 15及び比較例 2〜4のセメント添加材と普通ポルトランドセメント(太平洋 セメント社製,ブレーン比表面積: 3300cm2/g)とをミキサーに投入し、空練 (ドライミ ッタス)を行った。普通ポルトランドセメントへの各セメント添加材の添カ卩量(セメント内 割)は、表 3に示す通りである。なお、比較例 5は、セメント添加材を添加していない普 通ポルトランドセメントである。
[0055] [3]耐硫酸塩試験
実施例 5〜 15及び比較例 2〜4のセメント添加材のそれぞれを添加した普通ポルト ランドセメント、並びに比較例 5の普通ポルトランドセメントについて、 ASTM— C101 2に準じて、 6ヶ月膨張量を測定した。
結果を表 3に示す。
[0056] [表 3] 配合割合 (質量%) セメントへの
6ヶ月膨張量 (%) 石炭灰 高炉スラグ 石膏 石灰石粉末 添加量 (質量%)
実施例 5 79.0 0.0 5.0 16.0 25.0 0.0269 実施例 6 72.0 0.0 13.0 15.0 25.0 0.0335 実施例 7 63.0 0.0 5.0 32.0 25.0 0.0321 実施例 8 79.0 0.0 5.0 16.0 50.0 0.0162 実施例 9 0.0 72.0 13.0 15.0 40.0 0.0350 実施例 10 39.6 39.6 4.8 16.0 25.0 0.0341 実施例 11 34.3 34.3 15.4 16.0 25.0 0.0296 実施例 12 83.1 0.0 13.0 3.9 25.0 0.0345 実施例 13 80.5 0.0 13.0 6.5 25.0 0.0342 実施例 14 41.6 41.5 13.0 3.9 25.0 0.0356 実施例 15 40.3 40.2 13.0 6.5 25.0 0.0348 比較例 2 0.0 0.0 100.0 0.0 2.1 0.1079 比較例 3 73.5 0.0 26.5 0.0 25.0 0.0852 比較例 4 0.0 79.8 20.2 0.0 40.0 0.0751 比較例 5 0.0 0.0 0.0 0.0 0.0 0.9716
[0057] 表 3に示すように、実施例 5〜 15のセメント添加材を添加した普通ポルトランドセメン トの 6ヶ月膨張量は、比較例 2〜4のセメント添加材を添加した普通ポルトランドセメン ト及び比較例 5の普通ポルトランドセメントの 6ヶ月膨張量に比して少なぐ比較例 2〜 5の普通ポルトランドセメントの 6ヶ月膨張量の 1Z2以下の膨張量を示すことが確認さ れた。このことから、実施例 5〜15のセメント添加材は、セメントに添加することでセメ ント質硬化体の耐久性 (耐硫酸塩性)を良好なものとすることができることが確認され た。
[0058] [4]圧縮強度試験
実施例 6及び実施例 9のセメント添加材を添加した普通ポルトランドセメント、並びに 比較例 5の普通ポルトランドセメント、中庸熱ポルトランドセメント(太平洋セメント社製 ,ブレーン比表面積: 3200cm2Zg,比較例 6)のそれぞれを硬化させて得られたセ メント質硬化体について、 JIS—A1108に準じて圧縮強度試験を行った。なお、供試 体の寸法は、 φ 10 X 20cmとした。
結果を表 4に示す。
[0059] [表 4] 圧縮強度 (MPa)
材齢 7日 材齢 28日 材齢 91日
実施例 6 22.9 37.0 47.2
実施例 9 27.4 40.6 49.0
比較例 5 28.9 37.0 44.2
比較例 6 14.8 35.8 46.0
[0060] 表 4に示すように、実施例 6及び実施例 9のセメント添加材を添加した普通ポルトラ ンドセメントを硬化させてなるセメント質硬化体は、セメント添加材を添加して 、な 、普 通ポルトランドセメント(比較例 5)や中庸熱ポルトランドセメント (比較例 6)と同等の圧 縮強度を示すことが確認された。このことから、実施例 6及び実施例 9のセメント添カロ 材を添加した普通ポルトランドセメントを硬化させて得られるセメント質硬化体は、優 れた強度発現性を有することが確認された。
[0061] [5]自己収縮試験
実施例 6及び実施例 9のセメント添加材を添加した普通ポルトランドセメント、並びに 比較例 5の普通ポルトランドセメント、比較例 6の中庸熱ポルトランドセメントのそれぞ れを硬化させて得られたセメント質硬化体について、 日本コンクリート工学協会「セメ ントペースト、モルタル及びコンクリートの自己収縮及び自己膨張試験方法 (案)」に 準じて自己収縮試験を行った。なお、供試体の寸法は、 100 X 100 X 400mmとした 結果を表 5に示す。
[0062] [表 5]
Figure imgf000015_0001
表 5に示すように、実施例 6及び実施例 9のセメント添加材を添加した普通ポルトラ ンドセメントを硬化させて得られたセメント質硬化体は、比較例 5の普通ポルトランドセ メント及び比較例 6の中庸熱ポルトランドセメントに比して、自己収縮ひずみを抑制し 得ることが確認された。
[0064] [6]断熱温度試験
実施例 6のセメント添加材を添加した普通ポルトランドセメント、比較例 5の普通ポル トランドセメント、及び比較例 6の中庸熱ポルトランドセメントのそれぞれを使用して作 製したコンクリート(単位セメント量: 300kg/m3)について、 日本コンクリート工学協 会「コンクリートの断熱温度上昇試験方法 (案)」に準じて断熱温度試験を行った。な お、供試体の寸法は φ 40 X 40cmとし、測定開始温度は 20°Cとした。また、試験機 は、空気循環式試験機を使用した。
結果を図 1に示す。
[0065] 図 1に示すように、実施例 6のセメント添加材を添加した普通ポルトランドセメントは、 優れた断熱温度特性を示すことが確認され、特に、比較例 6の中庸熱ポルトランドセ メントよりも優れた断熱温度特性を示すことが確認された。このことから、実施例 6のセ メント添加材は、セメント組成物の硬化時に生じる水和熱を低減し得ることが確認され た。
[0066] [7]アルカリ骨材反応試験
実施例 6及び実施例 9のセメント添加材を添加した普通ポルトランドセメント、並びに 比較例 5の普通ポルトランドセメント、比較例 6の中庸熱ポルトランドセメントのそれぞ れを硬化させて得られたセメント質硬化体にっ 、て、 JIS -A1146 2001 (骨材の アルカリシリカ反応性試験方法 (モルタルバー法))に準じて、アルカリ骨材反応試験 を行った。なお、当該アルカリ骨材反応試験において、測定した供試体の材齢は、 1 ヶ月、 2ヶ月、 3ヶ月、 4ヶ月、 5ヶ月及び 6ヶ月とした。
結果を表 6及び図 2に示す。
[0067] [表 6] 膨張率 (%)
材齢 1ヶ月 材齢 2ヶ月 材齢 3ヶ月 材齢 4ヶ月 材齢 5ヶ月 材齢 6ヶ月 実施例 6 0.001 0.005 0.008 0.009 0.010 0.020 実施例 9 0.008 0.010 0.025 0.028 0.035 0.038 比較例 5 0.020 0.090 0.210 0.300 0.330 0.340 比較例 6 0.015 0.080 0.190 0.250 0.290 0.310 [0068] 表 6及び図 2に示すように、比較例 5の普通ポルトランドセメント及び比較例 6の中庸 熱ポルトランドセメントを硬化させて得られたセメント質硬化体は、材齢 3ヶ月で膨張 率が 0. 1%を超え、有害であると判定されたのに対し、実施例 6及び実施例 9のセメ ント添加材を添加した普通ポルトランドセメントを硬化させて得られたセメント質硬化 体は、材齢 6ヶ月でも膨張率が 0. 1%未満であり、無害であると判定された。この結 果から、実施例 6及び実施例 9のセメント添加材は、当該セメント添加材を添加したセ メントを硬化させて得られるセメント質硬化体におけるアルカリ骨材反応を抑制し得る ことが確認された。
[0069] [8]凝結試験
実施例 6及び実施例 9のセメント添加材を添加した普通ポルトランドセメント、並びに 比較例 5の普通ポルトランドセメント、比較例 6の中庸熱ポルトランドセメントのそれぞ れのセメント組成物を硬化させて得られたセメント質硬化体について、 JIS—A1147 に準じて、凝結試験を行った。
結果を表 7に示す。
[0070] [表 7]
Figure imgf000017_0001
[0071] 表 7に示すように、実施例 6及び実施例 9のセメント添加材を添加した普通ポルトラ ンドセメントの凝結時間は、セメント添加材を添加して 、な 、普通ポルトランドセメント (比較例 5)及び中庸熱ポルトランドセメント (比較例 6)の凝結時間と同等であることが 確認された。
[0072] [9]耐酸性試験
実施例 6及び実施例 9のセメント添加材を添加した普通ポルトランドセメント、並びに 比較例 5の普通ポルトランドセメントを用いて、水セメント比が 40質量0 /0のセメントぺ 一ストを調製した。得られたセメントペーストを φ 5 X 10cmの型枠を用いて成型し、 2 0°Cで 1日間湿空養生後、脱型し、材齢 28日まで 20°Cで水中養生して円柱状の供 試体を作製した。当該円柱状の供試体の上面と下面にエポキシ榭脂を塗布した後、
5%硫酸水溶液に浸漬し、所定材齢経過後の供試体の半径を測定して、侵食深さを 求めた。
結果を図 3に示す。
[0073] 図 3に示すように、実施例 6及び実施例 9のセメント添加材を添加した普通ポルトラ ンドセメントは、比較例 5の普通ポルトランドセメントに比して優れた耐酸性を有するこ とが確認された。
産業上の利用可能性
[0074] 本発明のセメント添加材及びセメント組成物は、産業廃棄物の有効利用に有用で あるとともに、耐久性 (耐硫酸塩性)が良好なセメント質硬化体の製造に有用である。

Claims

請求の範囲
[1] 産業廃棄物を含有し、セメント質硬化体中のモノサルフェートの生成を抑制する作 用を有することを特徴とするセメント添加材。
[2] 炭酸カルシウム、石膏、並びに石炭灰及び Z又は高炉スラグ粉末力 なることを特 徴とする請求項 1に記載のセメント添加材。
[3] 前記産業廃棄物としての石炭灰及び Z又は高炉スラグ粉末と、
前記産業廃棄物としての及び Z又は前記産業廃棄物ではない炭酸カルシウムと、 前記産業廃棄物としての及び Z又は前記産業廃棄物ではない石膏と を含有することを特徴とする請求項 1に記載のセメント添加材。
[4] 前記石炭灰を含まず、前記高炉スラグ粉末を含み、
前記高炉スラグ粉末 100質量部に対し、前記炭酸カルシウムが 6〜160質量部、前 記石膏 (無水物換算)が 5〜150質量部配合されており、かつ、前記炭酸カルシウム の配合量が前記石膏の配合量よりも多いことを特徴とする請求項 2又は 3に記載のセ メント添加材。
[5] 前記石膏と前記炭酸カルシウムとの配合比 (質量基準)が、 1: 1. 1〜15であること を特徴とする請求項 4に記載のセメント添加材。
[6] 少なくとも前記石炭灰を含み、
前記石炭灰及び前記高炉スラグ粉末の合計量 100質量部に対し、前記炭酸カル シゥムが 0. 5〜160質量部、前記石膏 (無水物換算)が 5〜 150質量部配合されて いることを特徴とする請求項 2又は 3に記載のセメント添加材。
[7] 前記石膏と前記炭酸カルシウムとの配合比 (質量基準)が、 1 : 0. 1〜15であること を特徴とする請求項 6に記載のセメント添加材。
[8] 前記炭酸カルシウムとして石灰石粉末を含有することを特徴とする請求項 2〜7の
V、ずれかに記載のセメント添加材。
[9] 請求項 1〜8のいずれかに記載のセメント添加材を含むことを特徴とするセメント組 成物。
PCT/JP2006/320449 2005-10-17 2006-10-13 セメント添加材及びセメント組成物 WO2007046297A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007540946A JP4392765B2 (ja) 2005-10-17 2006-10-13 セメント添加材及びセメント組成物
US11/990,982 US8133317B2 (en) 2005-10-17 2006-10-13 Cement additive and cement composition
CN2006800387272A CN101291888B (zh) 2005-10-17 2006-10-13 水泥添加剂以及水泥组合物
KR1020087009618A KR101313015B1 (ko) 2005-10-17 2006-10-13 시멘트 첨가재료 및 시멘트 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005301301 2005-10-17
JP2005-301301 2005-10-17

Publications (1)

Publication Number Publication Date
WO2007046297A1 true WO2007046297A1 (ja) 2007-04-26

Family

ID=37962392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320449 WO2007046297A1 (ja) 2005-10-17 2006-10-13 セメント添加材及びセメント組成物

Country Status (6)

Country Link
US (1) US8133317B2 (ja)
JP (1) JP4392765B2 (ja)
KR (1) KR101313015B1 (ja)
CN (1) CN101291888B (ja)
TW (1) TWI393690B (ja)
WO (1) WO2007046297A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208971A (ja) * 2008-02-29 2009-09-17 Taiheiyo Cement Corp 耐硫酸性セメント添加材及び耐硫酸性セメント組成物
JP2009227549A (ja) * 2008-03-25 2009-10-08 Taiheiyo Cement Corp セメント添加材及びセメント組成物
US20120010331A1 (en) * 2009-06-09 2012-01-12 Takemoto Yushi Kabushiki Kaisha Concrete compositions using blast-furnace slag compositions
JP2012091949A (ja) * 2010-10-25 2012-05-17 Shinnittetsu Koro Cement Kk 水硬性物質
JP2012158510A (ja) * 2011-01-12 2012-08-23 Taiheiyo Cement Corp 石炭灰混合セメント組成物
JP2013047154A (ja) * 2011-08-29 2013-03-07 Dc Co Ltd 高炉セメント組成物
US8440016B2 (en) 2008-08-25 2013-05-14 Nippon Steel & Sumitomo Metal Corporation Sulfate resistant ground granulated blast furnace slag, sulfate resistant cement, and method of production of same
JP2013139367A (ja) * 2012-01-06 2013-07-18 Taisei Corp セメント系混合材
JP2016005997A (ja) * 2014-06-20 2016-01-14 宇部興産株式会社 セメント組成物及びその製造方法
JP2016183057A (ja) * 2015-03-25 2016-10-20 太平洋セメント株式会社 セメント組成物

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9365451B2 (en) 2009-09-24 2016-06-14 Ash Improvement Technology Inc. Cement additives produced by combustion of coal with clay and slag
AU2010298223B2 (en) * 2009-09-24 2015-11-05 Ash Improvement Technology, Inc. Production of cement additives from combustion products of hydrocarbon fuels and strength enhancing metal oxides
US8961684B2 (en) 2009-09-24 2015-02-24 Ash Improvement Technology Inc. Production of coal combustion products for use in cementitious materials
AR082207A1 (es) * 2010-07-15 2012-11-21 Lafarge Sa Un aglomerante cementicio, una composicion cementica fraguable, y un metodo de cementacion que los emplea
US20120280069A1 (en) * 2011-05-06 2012-11-08 Pike Sr Clinton Wesley Method and apparatus for increasing the surface area of a milled product
EP2725001B1 (en) * 2011-06-27 2019-10-02 Taiheiyo Cement Corporation Phosphate fertilizer, and method for producing phosphate fertilizer
JP5965193B2 (ja) * 2012-04-06 2016-08-03 ニチハ株式会社 無機質板
KR101993493B1 (ko) * 2012-05-30 2019-06-26 다이헤이요 세멘토 가부시키가이샤 시멘트 품질 또는 제조 조건의 예측 방법
KR101317749B1 (ko) * 2012-11-22 2013-10-15 강남훈 석유정제 탈황석고를 함유하는 콘크리트용 고로슬래그 조성물
JP6554256B2 (ja) 2015-10-20 2019-07-31 ヒルティ アクチエンゲゼルシャフト 留付けシステムとその使用
WO2017067951A1 (en) 2015-10-20 2017-04-27 Hilti Aktiengesellschaft Use of a calcium sulfate comprising 2-k mortar system based on aluminous cement in anchoring applications to increase load values and reduce shrinkage
EP3572388A1 (en) 2015-10-20 2019-11-27 Hilti Aktiengesellschaft Two-component mortar system based on aluminous cement and use thereof
CA3054011A1 (en) 2017-04-07 2018-10-11 Hilti Aktiengesellschaft Use of amorphous calcium carbonate in a fire-resistant inorganic mortar system based on aluminous cement to increase load values at elevated temperatures
JP6278147B1 (ja) * 2017-04-28 2018-02-14 住友大阪セメント株式会社 混合セメント
KR102283086B1 (ko) 2019-06-18 2021-07-28 아세아시멘트(주) 칼라 견출시멘트 조성물 및 견출면을 이용한 미세먼지 저감 방법
CN110526659B (zh) * 2019-08-21 2021-12-03 山东新大地环保建材有限公司 自流平砂浆和制备方法
CN110818292A (zh) * 2019-10-16 2020-02-21 承德金隅水泥有限责任公司 一种钒钛渣代替矿渣生产普通硅酸盐水泥
CN111825354B (zh) * 2020-06-29 2021-10-29 山东莒州浮来山水泥有限公司 基于双碱法脱硫废物的矿渣粉活性剂及其制备方法、应用
CN114105510B (zh) * 2021-12-31 2022-11-11 山东泰山钢铁集团有限公司 一种利用冶金固废生产水泥添加剂的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421554A (ja) * 1990-05-14 1992-01-24 Taisei Corp 耐硫酸塩性モルタル・コンクリートの配合方法
JPH05116996A (ja) * 1991-10-24 1993-05-14 Nippon Steel Chem Co Ltd セメント混和材及びセメント硬化体の製造方法
JPH0753245A (ja) * 1993-08-18 1995-02-28 Nkk Corp フェライト相高含有水硬性混和材料、その製造方法及び その水硬性混和材料を用いた混合セメント
JPH0834644A (ja) * 1994-07-25 1996-02-06 Hisamitsu Tsuyuki 耐酸性低発熱型コンクリート混和材
JPH09255327A (ja) * 1996-03-18 1997-09-30 Sekisui Chem Co Ltd カルシウムアルミネート前駆体、及び、セメント組成物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425049B2 (ja) * 1972-01-28 1979-08-25
JPS6197154A (ja) 1984-10-15 1986-05-15 第一セメント株式会社 低発熱型混合セメント組成物
US4992102A (en) * 1988-08-08 1991-02-12 Barbour Ronald L Synthetic class C fly ash and use thereof as partial cement replacement in general purpose concrete
JPH08268744A (ja) 1995-03-30 1996-10-15 Onoda:Kk 低発熱型無収縮充填材
US20030164119A1 (en) * 2002-03-04 2003-09-04 Basil Naji Additive for dewaterable slurry and slurry incorporating same
AR033610A1 (es) * 2001-03-02 2003-12-26 James Hardie Int Finance Bv Metodo y aparato para formar una placa de material laminado por salpicado.
EP1456147A1 (en) * 2001-11-30 2004-09-15 The University of Western Australia Particulate additive for dispersing admixtures in hydraulic cements
US20030233962A1 (en) * 2002-06-21 2003-12-25 Dongell Jonathan E. Pozzolan modified portland cement compositions and admixtures therefor
US7048784B2 (en) * 2003-01-22 2006-05-23 Taiheiyo Cement Corporation Method and system for treating exhaust gas from cement manufacturing equipment
KR100403831B1 (ko) * 2003-03-26 2003-11-01 주식회사한국포조텍 콘크리트 균열방지용 수축저감제와 이를 이용한 콘크리트조성물
JP4176668B2 (ja) 2004-03-25 2008-11-05 太平洋セメント株式会社 コンクリート
US20060201395A1 (en) * 2005-03-08 2006-09-14 Barger Gregory S Blended fly ash pozzolans

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421554A (ja) * 1990-05-14 1992-01-24 Taisei Corp 耐硫酸塩性モルタル・コンクリートの配合方法
JPH05116996A (ja) * 1991-10-24 1993-05-14 Nippon Steel Chem Co Ltd セメント混和材及びセメント硬化体の製造方法
JPH0753245A (ja) * 1993-08-18 1995-02-28 Nkk Corp フェライト相高含有水硬性混和材料、その製造方法及び その水硬性混和材料を用いた混合セメント
JPH0834644A (ja) * 1994-07-25 1996-02-06 Hisamitsu Tsuyuki 耐酸性低発熱型コンクリート混和材
JPH09255327A (ja) * 1996-03-18 1997-09-30 Sekisui Chem Co Ltd カルシウムアルミネート前駆体、及び、セメント組成物

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208971A (ja) * 2008-02-29 2009-09-17 Taiheiyo Cement Corp 耐硫酸性セメント添加材及び耐硫酸性セメント組成物
JP2009227549A (ja) * 2008-03-25 2009-10-08 Taiheiyo Cement Corp セメント添加材及びセメント組成物
US8440016B2 (en) 2008-08-25 2013-05-14 Nippon Steel & Sumitomo Metal Corporation Sulfate resistant ground granulated blast furnace slag, sulfate resistant cement, and method of production of same
US20120010331A1 (en) * 2009-06-09 2012-01-12 Takemoto Yushi Kabushiki Kaisha Concrete compositions using blast-furnace slag compositions
JP2012091949A (ja) * 2010-10-25 2012-05-17 Shinnittetsu Koro Cement Kk 水硬性物質
JP2012158510A (ja) * 2011-01-12 2012-08-23 Taiheiyo Cement Corp 石炭灰混合セメント組成物
JP2013047154A (ja) * 2011-08-29 2013-03-07 Dc Co Ltd 高炉セメント組成物
JP2013139367A (ja) * 2012-01-06 2013-07-18 Taisei Corp セメント系混合材
JP2016005997A (ja) * 2014-06-20 2016-01-14 宇部興産株式会社 セメント組成物及びその製造方法
JP2016183057A (ja) * 2015-03-25 2016-10-20 太平洋セメント株式会社 セメント組成物

Also Published As

Publication number Publication date
TW200722400A (en) 2007-06-16
TWI393690B (zh) 2013-04-21
CN101291888B (zh) 2011-08-17
KR101313015B1 (ko) 2013-10-01
US20090151604A1 (en) 2009-06-18
JP4392765B2 (ja) 2010-01-06
CN101291888A (zh) 2008-10-22
US8133317B2 (en) 2012-03-13
KR20080055937A (ko) 2008-06-19
JPWO2007046297A1 (ja) 2009-04-23

Similar Documents

Publication Publication Date Title
JP4392765B2 (ja) セメント添加材及びセメント組成物
JP5091519B2 (ja) ジオポリマー組成物及びその製造方法
JP5818579B2 (ja) 中性化抑制型早強セメント組成物
JP5931317B2 (ja) 水硬性組成物および該水硬性組成物を用いたコンクリート
JP5732690B2 (ja) 水硬性組成物および該水硬性組成物を用いたコンクリート
CN113277759B (zh) 一种钛矿渣基固废胶凝材料及其制备方法
KR102158524B1 (ko) 연약지반용 친환경 고화재 조성물
JP2020055696A (ja) ジオポリマー組成物、並びにそれを用いたモルタル及びコンクリート
TWI624445B (zh) 水泥組成物
JP6030438B2 (ja) 吹付け材料、およびそれを用いた吹付け工法
JP2009227549A (ja) セメント添加材及びセメント組成物
JP2007186360A (ja) セメント組成物
JP6985177B2 (ja) 水硬性組成物及びコンクリート
JP2008179527A (ja) 石炭灰粉末高含有セメント組成物用混和材、並びにこれを含有する石炭灰粉末高含有セメント組成物および吹付材料
JP2009184895A (ja) セメント添加材及びセメント組成物
JP2002068804A (ja) コンクリート組成物
KR102140060B1 (ko) 연약지반 개량용 고화재 조성물
JP2007131477A (ja) フライアッシュセメント組成物及びそれを用いたコンクリート成形品
JP5350770B2 (ja) セメント組成物
JP7364074B2 (ja) ジオポリマー硬化体の製造方法及びジオポリマー組成物の製造方法
JP7384230B2 (ja) ジオポリマー硬化体の製造方法及びジオポリマー組成物の製造方法
JP2019059651A (ja) 水硬性粉末組成物
JP2010030862A (ja) セメント添加材及びセメント組成物
JP2009208971A (ja) 耐硫酸性セメント添加材及び耐硫酸性セメント組成物
JP2003176164A (ja) 高性能コンクリート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680038727.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007540946

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12008500540

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 11990982

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087009618

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06811737

Country of ref document: EP

Kind code of ref document: A1