WO2007055207A1 - Process and equipment for charging ethylene carbonate containing material - Google Patents

Process and equipment for charging ethylene carbonate containing material Download PDF

Info

Publication number
WO2007055207A1
WO2007055207A1 PCT/JP2006/322189 JP2006322189W WO2007055207A1 WO 2007055207 A1 WO2007055207 A1 WO 2007055207A1 JP 2006322189 W JP2006322189 W JP 2006322189W WO 2007055207 A1 WO2007055207 A1 WO 2007055207A1
Authority
WO
WIPO (PCT)
Prior art keywords
filling
raw material
pipe
particles
ethylene carbonate
Prior art date
Application number
PCT/JP2006/322189
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Niizuma
Tomohisa Iinuma
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Priority to JP2007544145A priority Critical patent/JPWO2007055207A1/en
Publication of WO2007055207A1 publication Critical patent/WO2007055207A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only

Definitions

  • the present invention relates to a method for filling an ethylene carbonate-containing material into a filling container and a filling apparatus therefor, specifically, a stripping solution for removing an organic film adhering to a substrate surface such as an electronic device substrate.
  • a method for filling an ethylene carbonate-containing material with reduced particles (fine particles) and a filling apparatus useful as a stripping solution for removing a photoresist film used for semiconductor wafers, liquid crystal substrates, etc. (Filling system)
  • a method of using a stripping solution for removing a photoresist film used for microfabrication of an oxide film or a polysilicon film.
  • the stripping solution inorganic materials such as caustic soda and caustic potash are used. Strong alkaline aqueous solution, mixture of sulfuric acid and hydrogen peroxide, IPA (isopropyl alcohol), organic solvent such as NMP (N-methylpyrrolidone), monoethanolamine, organic such as TMAH (tetramethylammonium hydride) Basic substances and the like have been used.
  • ethylene carbonate hereinafter referred to as “EC”
  • Z or propylene carbonate are used (see JP-A-2001-345304, JP-A-2003-330206, JP-A-2003-305418).
  • EC is a solid at room temperature with a melting point as high as 36 ° C
  • filling is performed in advance by heating the EC to a liquid state.
  • sampling is performed. It sometimes solidified in the piping and could not be sampled.
  • the number of particles could not be measured.
  • Powerful solidification of EC can be achieved by heating the sampling pipe, sampling container, measurement pipe, etc., or adding EC to a second component with a known number of particles (for example, propylene carbonate) to make a mixture. Can be prevented.
  • a mixed liquid there is no need to heat pipes, etc., but the number of particles in EC is calculated based on the measured value, the number of particles in the second component, and the amount of added force. It is necessary to measure the number of particles every time, and it is troublesome, and if the second component is neglected, the measured value fluctuates.
  • the present invention measures the number of particles in an EC-containing raw material in a solid state at a handling environment temperature, for example, room temperature, simply, accurately and with good reproducibility, and uses an EC-containing material with excellent quality for products.
  • Method for stably filling containers such as containers, and this EC-containing material It is an object of the present invention to provide a filling device (filling system).
  • an EC-containing raw material storage unit that is a receiving tank of a manufacturing facility such as EC, and an outlet product of the EC-containing raw material storage unit.
  • An apparatus comprising: a filling pipe connected to the inlet of a filling container such as a container, and a particle measuring pipe branched from the filling pipe and connected to a device for measuring the number of particles When the liquid EC-containing raw material is passed through, the particle measurement pipes are heated to prevent solidification of the EC-containing raw material, and a particle measurement value with less fluctuation is obtained. It was found that the EC-containing material suggested in the measurement value could be filled into the filling container, and the present invention was completed.
  • a method of filling an EC-containing material into a filling container in which an EC-containing raw material is passed from an EC-containing raw material storage section to a filling pipe, and then branched from the middle of the filling pipe and heated.
  • the EC-containing raw material is continuously passed in-line to the particle measurement pipe, and the number of particles in the EC-containing raw material is measured by a particle measuring device connected to the particle measurement pipe. Filling the EC-containing material with the EC-containing material from the outlet of the filling pipe when the number of particles of 0.2 m or more reaches a reference value or less.
  • the inside of the particle measurement pipe is cleaned by introducing an inert gas and Z or water into the particle measurement pipe, and then the particle measurement pipe.
  • EC-containing raw material storage section for storing the EC-containing raw material, a filling container for filling the EC-containing material, and the EC-containing raw material are passed from the EC-containing raw material storage section to the filling container.
  • a liquid filling pipe a pipe for passing through the apparatus for measuring the number of particles in the EC-containing raw material, a particle measuring pipe branched from the middle of the filling pipe and heated;
  • a device for measuring the number of particles in the EC-containing raw material comprising: a particle measuring device connected to an outlet of the particle measurement pipe.
  • the EC-containing raw material that is in a solid state at a handling and environmental temperature, for example, room temperature is branched from the filling pipe and heated to measure the particle.
  • the number of particles is controlled by the in-line method introduced and measured in the particle measuring device, and then filled into the filling container from the filling pipe.
  • a number of EC-containing materials can be easily filled without consolidation. Since the EC-containing material in the filling container has controlled physical properties, it is useful as an organic coating that adheres to the surface of a substrate such as an electronic device substrate, particularly as a stripping solution for removing the resist coating.
  • the number of particles in the EC-containing raw material can be measured easily, accurately and with good reproducibility, and the EC-containing material having excellent quality can be used as a filling container such as a product container. It can be filled stably.
  • an EC-containing material filling device is disposed in the resist film peeling apparatus, so that the EC-containing material being used can be actually used when the resist film peeling apparatus is in operation. Useful for liquid management.
  • FIG. 1 is a schematic view showing an example of an EC-containing material filling apparatus according to the present invention.
  • FIG. 2 is a schematic view showing another example of the EC-containing material filling device of the present invention.
  • FIG. 3 is a schematic view showing a particle measurement system according to a conventional method.
  • the EC-containing material filling method of the present invention (hereinafter also referred to as “the filling method of the present invention”) is a method of filling an EC-containing material into a filling container, and the EC-containing raw material is stored in the EC-containing raw material storage. Then, the EC-containing raw material is continuously passed inline to the particle measurement pipe branched from the middle of the filling pipe and heated, and then passed through the filling pipe. The number of particles in the EC-containing raw material is measured by a particle measuring device connected to a pipe, and when the number of particles of 0.2 m or more reaches a reference value or less, the EC-containing material is The filling container is filled from the outlet of the filling pipe.
  • the material to be filled in the filling container that is, the material stored in the EC-containing raw material storage unit is an EC-containing raw material that is in a solid state at a handling environment temperature, for example, normal temperature. Therefore, the EC-containing raw material may be EC alone or a mixture containing EC and other components and in a solid state (the content of EC is usually 50% by mass or more, preferably 60% by mass) Above, particularly preferably 70% by mass or more).
  • the number of particles in the EC-containing raw material is preferably measured by a particle measuring device whose target is a liquid sample.
  • the number of particles (fine particles of 0.2 m or more) in a liquid EC-containing raw material is usually 100 or less Z milliliters.
  • the particle measuring device is preferably a light scattering type measuring device because it can measure the number of particles in a non-contact and non-destructive manner.
  • the following filling device is used for filling the EC-containing material.
  • the EC-containing material filling apparatus of the present invention includes an EC-containing raw material storage section for storing EC-containing raw materials, and a filling container for filling the EC-containing materials. And passing the EC-containing raw material from the EC-containing raw material storage unit to the filling container.
  • a liquid filling pipe a pipe for passing through the apparatus for measuring the number of particles in the EC-containing raw material, a particle measuring pipe branched from the middle of the filling pipe and heated;
  • a device for measuring the number of particles in the EC-containing raw material comprising: a particle measuring device connected to an outlet of the particle measuring pipe.
  • FIG. 1 A schematic diagram of the filling apparatus of the present invention is shown in FIG. That is, the filling apparatus in FIG. 1 includes an EC-containing raw material storage unit 9 for storing EC-containing raw materials, a filling container 33 for filling the EC-containing materials, the EC-containing raw materials, and the EC-containing raw materials.
  • Filling pipe 12 for passing the liquid from the storage unit 9 to the filling container 33, and for particle measurement that branches from the middle of the filling pipe 12 and is heated and passes the EC-containing raw material to the particle measuring device 18.
  • a pipe 14 and a particle measuring device 18 for measuring the number of particles in the EC-containing raw material into which the outlet force of the particle measuring pipe 14 is also introduced.
  • the filling device of the present invention includes a liquid feed pump 10 for stably feeding the EC-containing raw material from the EC-containing raw material storage unit 9 in the filling pipe 12, and the particle measuring pipe 14.
  • a plurality of valves 11a, l ib, 13a, 13b, 16, 243 ⁇ 4_27, 3 ⁇ 4ffiU nore br Noreb 23 may be provided.
  • the piping may be heated not only for the filling pipe 12 but also for other pipes such as the filling pipe 12 from the EC-containing raw material storage unit 9 to the filling container 33. Therefore, the filling device of the present invention can be provided with a pipe heating means, for example, a means such as winding a self-controlling electric heater around the pipe.
  • the EC-containing raw material storage unit 9 may be a receiving tank (having an EC-containing raw material inside) of a manufacturing facility such as EC, and a container (EC inside) It may contain)
  • a liquid feed pump 10 can be provided to feed the EC-containing raw material from the EC-containing raw material storage unit.
  • the liquid feed pump 10 can adjust the flow rate of the EC-containing raw material, but can also be performed by a valve 11a disposed on the downstream side thereof. After the number of particles in the EC-containing raw material reaches the reference value, the filling pipe 12 is filled and filled into the filling container 33. Further, in the filling pipe 12 between the outlet of the EC-containing raw material storage unit 9 and the inlet of the particle measuring pipe 14, the diameter is large.
  • a filter part 28 that excludes particles, foreign matters, and the like can be provided.
  • a filtration device including a filter having a mesh opening of 0.2 / zm polypropylene, polytetrafluoroethylene, etc.
  • the mesh opening, the core material, and the like are appropriately selected according to the purpose.
  • a preferable filtration device is a cartridge type in which the filter can be easily replaced and arranged.
  • the filling device of the present invention includes a pipe branched from the middle of the filling pipe 12. That is, a particle measuring pipe 14 connected to the particle measuring device 18 is provided. Thereby, between the EC-containing raw material storage unit 9 and the particle measuring device 18, it is possible to measure the number of particles with good accuracy in-line without mixing of particles with external force.
  • the filling apparatus of the present invention can prevent contamination of the working environment and the like where the EC-containing raw material is not diffused to the outside.
  • One of the features of the present invention is that when the EC-containing raw material is passed, the particle measurement pipe 14 is not heated to prevent it from solidifying before reaching the particle measurement device 18.
  • the EC-containing material is filled into the filling container 33 when the number of particles having a diameter of 0 or more, measured using the particle measuring device 18, reaches a reference value or less. It is.
  • the temperature of the EC-containing raw material by heating the particle measurement pipe 14 is preferably in the range of 40 ° C to 80 ° C.
  • the heating temperature is less than 40 ° C, the EC-containing raw material may solidify inside the particulate measurement pipe 14 and inside the particle measuring device 18.
  • 80 ° C if the particle measuring device 18 uses a semiconductor sensor, the life of the sensor will be shortened.
  • the particle measuring pipe 14 before the particle measuring apparatus 18 and the drain pipe after the particle measuring apparatus 18 are heated. It is only possible to prevent the EC-containing raw material from solidifying in the particle measuring device 18.
  • the number power of particles of 0.2 m or more in the EC containing raw material is usually 80 Z milliliters or less, preferably 50 Z milliliters or less. And do the power. If an EC-containing material with a particle power of more than 100 milliliters of Z is used as a resist coating stripping solution, the productivity of electronic device substrates and the like may be reduced.
  • the EC-containing raw material that is the material to be filled in the filling container 33 is liquefied by heating in the EC-containing raw material storage unit 9.
  • the pipe for filling 12 and the pipe for particle measurement up to just before the particle measuring device 18 14 Purge the EC-containing material.
  • the valves lla, 13a, 13b and 23 opened and the valves 16, 20 and 27 closed the EC-containing raw material in the EC-containing raw material storage unit 9 is transferred by the liquid feed pump 10.
  • the liquid is passed through the filling pipe 12, and then, the liquid is passed from the filling pipe 12 toward the particle measuring device 18 and discharged from the bypass line 26.
  • the valve 23 is closed, the valves 16 and 24 and the flow rate control valve 17 are opened, and the EC-containing material is introduced into the particle measuring device 18.
  • the introduction rate of the EC-containing raw material is within the specified range. Therefore, the flow rate of the EC-containing raw material is adjusted by adjusting the opening of the valves lla, 13a, 13b and 16 and the flow control valve 17 while observing the indicated value of the pressure gauge 15 and the indicated value of the flowmeter 19. Is controlled.
  • a flow rate control valve 17 is installed in the particle measurement pipe 14, preferably in front of the particle measurement device 18, so It is possible to control the flow rate of the EC-containing raw material to be introduced.
  • the EC-containing raw material flow in the particle measurement pipe 14 is as follows.
  • the flow rate of the EC-containing raw material is controlled so that the amount fluctuation is preferably within ⁇ 10%.
  • the flow control valve 17 is a control valve linked to the indicated value of the flow meter 19, or a manual-single dollar valve that can adjust the minute flow rate, and the indicated value of the flow meter 19 This can be done by manual adjustment.
  • the pressure is preferably less than the pressure resistance of the particle measuring device!
  • the measured value of the number of particles is a value when the number of parts measured by the particle measuring device 18 is continuously monitored and the numerical value is stabilized.
  • the nozzle 13a is closed, the valve 27 is opened, and the EC-containing raw material is filled 12 Then, filling of the EC-containing material into the filling container 33 is started.
  • the valve 16 is closed again, the valve 23 is opened, and the EC containing material is purged.
  • the filling container 33 may have a shape, size, etc. according to the purpose. Before filling with the EC-containing material, the filling may be started in a state filled with an inert gas such as nitrogen gas, or the initial EC-containing material from which the outlet force of the filling pipe 12 is also discharged is used. After the washing, filling may be started.
  • an inert gas such as nitrogen gas
  • Another feature of the present invention is that in order to facilitate reuse of the filling apparatus of the present invention when filling of the EC-containing material is completed and when continuous measurement of the number of particles is interrupted and stopped.
  • the inside of the particle measuring pipe 14 is cleaned. That is, after the EC-containing raw material stops flowing, an inert gas such as nitrogen gas and water such as Z or ultrapure water are introduced from upstream of the particle measurement pipe 14 to measure the particle.
  • the inside of pipe 14 is cleaned.
  • the filling device of the present invention can include an inert gas supply device 31 and a water supply device (ultra pure water supply device) 32 (see FIG. 1).
  • nitrogen gas is supplied from the inert gas supply device 31, and the EC-containing raw material remaining inside the particle measurement pipe 14 and the particle measurement device 18 is removed. Blow and then above the water supply device 32 Residue can be removed by supplying pure water or the like.
  • the operation is stopped by the operation, the residual EC-containing material solidified by the temperature drop of the particle measurement pipe 14 expands in volume when remelted by reheating, and the particle measurement pipe 14 and the particle Damage to the sensor of the measuring device 18 can be prevented beforehand.
  • the inert gas or the ultrapure water it is preferable to hold the inert gas or the ultrapure water in a state in which the EC-containing raw material in the particle measurement pipe 14 is removed after the inside of the particle measurement pipe 14 is cleaned. When refilling of the material is resumed, it is preferable to again pass the liquid into the particle measurement pipe 14, that is, purge the EC-containing raw material.
  • the specific operation is as follows. That is, after filling the filling container 33, the operation of the liquid feed pump 10 is stopped, the valve 13a is closed, and the flow of the EC-containing raw material to the particle measuring device 18 is stopped. Thereafter, when introducing an inert gas such as high purity nitrogen gas, the valves 20 and 21 are opened, and when introducing ultrapure water or the like, the valves 20 and 22 are opened. Both inert gas and ultrapure water can be introduced simultaneously. As a normal operation, first, valves 22 and 23 are closed, valves 20, 21 and 24 are opened, and high-purity nitrogen gas is supplied to remain in the particle measurement pipe 14 and the particle measurement device 18. Eject the EC-containing material and blow the piping.
  • an inert gas such as high purity nitrogen gas
  • the completion of the blow is determined by confirming that no liquid has come out from the outlet of the particle measuring device 18. Thereafter, the valves 21 and 23 are closed, the valves 22 and 24 are opened, and ultrapure water or the like is passed through the same line to clean the inside of the particle measuring pipe 14 and the particle measuring apparatus 18.
  • the valve 29 and the EC-containing raw material as shown in FIG. It is necessary to use a device further equipped with an EC-containing material circulation pipe 30 to be sent to the storage unit 9. it can.
  • a device further equipped with an EC-containing material circulation pipe 30 in order to measure the number of particles in the EC-containing raw material, a part of the EC-containing raw material is passed through the particle measuring device 18, and the remaining EC-containing raw material is used for circulating the EC-containing raw material. It is a device that can return the filtered EC-containing raw material to the EC-containing raw material storage unit 9 through the pipe 30.
  • Examples 1 and 2 below using the filling apparatus shown in FIG. 1, after measuring particles only for EC (hereinafter referred to as “EC raw material”), the EC material is used as a filling container. Filled.
  • the filling device shown in Fig. 1 includes an EC-containing raw material storage unit 9 (tank installed in the EC manufacturing device) in which EC raw material heated to 60 ° C and liquefied is stored, and this EC-containing raw material storage EC feed from EC 9 at a flow rate of 5m 3 Z, feed container 33 for filling EC material, EC feed from EC containing feed stock 9 A filling pipe 12 (diameter 1 inch) for passing liquid to the filling container 33 and a filter part 28 (before opening of the filling pipe 12 made of polytetrafluoroethylene having a mesh size of 0.2 m).
  • a particle measuring device that measures the number of particles in the EC raw material introduced 18 (manufactured by Lion) -28 type ").
  • a conversion joint is used from the particle measurement pipe 14 to the introduction port of the particle measurement device 18, and the introduction port has a diameter of mm.
  • the filling pipe 12 is heated to about 80 ° C. by steam tracing, and the particle measuring pipe 14 is heated to about 70 ° C. by rolling a ribbon heater.
  • Example 1 Nonreb 13a, 13b, 16, 20, 24 and 27, flow control valve 17, bypass valve 23, pressure gauge 15, flow meter 19, bypass Line 26, an inert gas supply device 31 (supplying high-purity nitrogen gas) used for cleaning the particle measurement pipe 14, and a water supply device 32 (supplying ultrapure water) are provided.
  • Example 1 Nonreb 13a, 13b, 16, 20, 24 and 27, flow control valve 17, bypass valve 23, pressure gauge 15, flow meter 19, bypass Line 26, an inert gas supply device 31 (supplying high-purity nitrogen gas) used for cleaning the particle measurement pipe 14, and a water supply device 32 (supplying ultrapure water) are provided.
  • Example 1 Example 1
  • the flow rate control valve 17 was adjusted so that the EC raw material flowing in the particle measurement pipe 14 would have a flow rate of 10 ml Z with a flow meter. As a result, the fluctuation force of the flow rate of the EC raw material in the particle measurement pipe 14 was within 10%. Thereafter, the number of particles detected by the particle measuring device 18 was taken in every minute, and changes in measured values were monitored. After starting continuous measurement, after about 10 to 15 minutes have passed since the start of liquid flow through the piping due to the solidification of the EC raw material, the number of particles became almost steady, and the measured values shown in Table 1 Got.
  • valve 13a was closed, valve 27 was opened, and EC raw material was passed through filling pipe 12. The EC material was filled into a filling container 33.
  • Example 2 After completion of filling in Example 1, the operation of the liquid feed pump 10 was stopped, and liquid feeding of the EC raw material was stopped. After that, the valve 13a is closed, the valves 20 and 21 are opened, and high purity nitrogen gas is vented from the inert gas supply device 31 so that the residual EC in the particle measurement pipe 14 and the particulate measurement device 18 are retained. Expelled raw materials. After confirming that the EC raw material flow was stopped, the valve 21 was closed, the valve 22 was opened, and ultrapure water was passed through the water supply device 32.
  • the EC raw material was again processed in the same procedure as described in Example 1. The liquid was passed through. Next, in the same manner as in Example 1, the valves 20, 23 and 27 were closed, the valves 13a, 13b and 16, and the flow control valve 17 were opened, the EC raw material was fed, and the particle value was measured. . As a result, the measured values shown in Table 2 were obtained. From Table 1 and Table 2, it was confirmed that there was reproducibility by repeated measurement.
  • Samples of EC raw materials for batch measurement were sampled from the EC-containing raw material storage unit 9 of the filling device shown in FIG. 1, and the number of particles in the EC raw material was measured using the system shown in FIG. The number of particles was measured with a notch type measuring device (“KS-58 type” manufactured by Rion). Details are shown below.
  • the measurement sample bottle 1 containing the EC raw material is placed in the water in the clean bench. It was immersed in one bath 2 and heated to 60 ° C (see Fig. 3). Similarly, a ribbon heater was wound around the introduction pipe 4 and the drain pipe 6 to heat and keep the temperature at about 60 ° C. Thereafter, the EC raw material was introduced into the particle measuring device 3 with a syringe sampler 5 at an injection speed of 10 ml Z, and the number of particles was measured. The results are shown in Table 3. In addition, the number of particles shown in Table 4 was obtained by changing the date from the start of the EC raw material sampler to particle measurement.
  • represents the standard deviation.
  • CV (%) is a coefficient of variation and is calculated using the following formula.
  • PC industrial propylene carbonate
  • the number of particles in the EC was calculated from the measured values in the mixture raw material, the measured values in the PC, and the EC content ratio in the mixed raw material, and the results shown in Table 5 were obtained.
  • the number of particles was as shown in Table 6. In all cases, the true value can be determined because the reproducibility of the measured values is large even though the same product tank (EC containing raw material storage unit 9) is also sampled EC (EC raw material). I helped.
  • an EC-containing material with reduced particles can be stably filled and stored in a container for filling, so that it can be used for electronic devices such as semiconductor wafers and liquid crystal substrates.

Abstract

The invention aims at providing a process for stably charging a high-quality ethylene carbonate containing material by determining the number of particles contained in the material which particles are solid at atmospheric temperature in handling (e.g., at ordinary temperatures) with high reproducibility easily and accurately; and equipment for charging the material. The process comprises passing an ethylene carbonate containing material from a material storage vessel through a charging pipe and then through a pipe for measuring particles, which pipe is a branch separated from the charging pipe at a midway point and is heated, continuously in line, determining the number of particles contained in the material with a particle measuring instrument connected to the pipe for measuring particles, and charging the material into a storage vessel through an outlet of the charging pipe when the number of particles of 0.2μm or larger has reached a level below the reference value.

Description

明 細 書  Specification
エチレンカーボネート含有材料の充填方法及びその充填装置  Filling method and filling apparatus for ethylene carbonate-containing material
技術分野  Technical field
[0001] 本発明は、エチレンカーボネート含有材料を充填用容器に充填する方法及びその 充填装置に関し、具体的には、電子デバイス用基板等の基体表面上に付着する有 機被膜を除去する剥離液として用いられ、特に、半導体用ウェハー、液晶用基板等 に使用されたフォトレジスト被膜を除去する剥離液として有用な、パーティクル (微小 粒子)が低減されたエチレンカーボネート含有材料の充填方法及びその充填装置( 充填システム)に関する。  TECHNICAL FIELD [0001] The present invention relates to a method for filling an ethylene carbonate-containing material into a filling container and a filling apparatus therefor, specifically, a stripping solution for removing an organic film adhering to a substrate surface such as an electronic device substrate. In particular, a method for filling an ethylene carbonate-containing material with reduced particles (fine particles) and a filling apparatus useful as a stripping solution for removing a photoresist film used for semiconductor wafers, liquid crystal substrates, etc. (Filling system)
背景技術  Background art
[0002] 従来、酸ィ匕膜やポリシリコン膜の微細加工に使用したフォトレジスト被膜の除去には 、剥離液を使用する方法が知られており、この剥離液として、苛性ソーダ、苛性カリ等 の無機強アルカリ水溶液、硫酸及び過酸化水素の混合物、 IPA (イソプロピルアルコ 一ル)、 NMP (N—メチルピロリドン)等の有機溶剤、モノエタノールァミン、 TMAH ( テトラメチルアンモ -ゥムハイドライド)等の有機塩基物質等が用いられてきた。  Conventionally, a method of using a stripping solution has been known for removing a photoresist film used for microfabrication of an oxide film or a polysilicon film. As the stripping solution, inorganic materials such as caustic soda and caustic potash are used. Strong alkaline aqueous solution, mixture of sulfuric acid and hydrogen peroxide, IPA (isopropyl alcohol), organic solvent such as NMP (N-methylpyrrolidone), monoethanolamine, organic such as TMAH (tetramethylammonium hydride) Basic substances and the like have been used.
しかし、これらの剥離液を用いた剥離方法では、剥離液自体の火災危険性や有害 性が無視できないば力りでなぐ溶解したレジスト被膜が蓄積し、レジスト被膜の剥離 能力が低下するため、繰り返し使用が制限されるという問題点があった。  However, in the stripping method using these stripping solutions, if the fire hazard and harmfulness of the stripping solution itself cannot be ignored, the dissolved resist film accumulates with force, and the stripping ability of the resist coating is reduced. There was a problem that use was restricted.
近年、剥離液の繰り返し使用性を改善するため、処理液をオゾン酸化してレジスト 被膜を分解する方法が提案されており、カゝかる方法においては、処理液としてェチレ ンカーボネート(以下、「EC」という。)及び Z又はプロピレンカーボネートが使用され ている(特開 2001— 345304号公報、特開 2003— 330206号公報、特開 2003— 305418号公報参照)。  In recent years, in order to improve the reusability of the stripping solution, a method of decomposing a resist film by oxidizing the processing solution with ozone has been proposed. In this method, ethylene carbonate (hereinafter referred to as “EC”) is used as the processing solution. And Z or propylene carbonate are used (see JP-A-2001-345304, JP-A-2003-330206, JP-A-2003-305418).
[0003] 上記用途には、微小粒子 (パーティクル)が低減された ECを使用する必要があり、 EC製造設備で製造した ECを製品用容器に充填し貯蔵する場合、この容器カゝらレジ スト被膜の剥離装置に供給するタンクに充填する場合、及び、レジスト被膜の剥離装 置が稼動しているときに装置内を循環させて使用する場合に、 EC中に含まれるパー ティクルを測定し、管理する必要がある。このためには、パーティクル数の測定方法 が正確であることを要するが、従来の測定方法は、図 3に示すシステム、即ち、測定 用サンプル瓶 1と、導入配管 4及び 6と、パーティクル測定装置 3と、シリンジサンブラ 一 5と、を備えるシステムを用い、予め、 EC貯蔵部力も ECを測定用サンプル瓶 1にサ ンプリングしておき、シリンジサンプラー 5を用いた吸引により、液状の ECを配管 2に 通液させ、その後、パーティクル測定装置 3に導入することよりパーティクルの数を測 定するものであった。この方法によると、測定用サンプル瓶 1へのサンプリング後にパ 一ティクル数を測定するため、測定用サンプル瓶 1の内面や配管 2の開口部の汚染 によりパーティクル数が増加する危険性があり、サンプリングやパーティクル測定時の タイムラグによって、パーティクル数が確定された ECが充填できず、無駄になること かあつた。 [0003] For the above-mentioned applications, it is necessary to use EC with reduced fine particles (particles). When the EC produced in the EC production facility is filled and stored in a product container, the container container and the resist are stored. When filling the tank to be supplied to the coating stripping device, or when circulating through the device when the resist coating stripping device is in operation, the par It is necessary to measure and manage the tickle. For this purpose, the method for measuring the number of particles needs to be accurate, but the conventional measuring method is based on the system shown in FIG. 3, that is, the measuring sample bottle 1, the introduction pipes 4 and 6, and the particle measuring device. 3 and a syringe sampler 1, EC storage force is sampled in advance into the measurement sample bottle 1 and liquid EC is piped by suction using the syringe sampler 5 2 Then, the number of particles was measured by introducing the solution into the particle measuring apparatus 3 and then introducing it into the particle measuring apparatus 3. According to this method, since the number of particles is measured after sampling into the measurement sample bottle 1, there is a risk that the number of particles will increase due to contamination of the inner surface of the measurement sample bottle 1 and the opening of the pipe 2. As a result, the EC with a fixed number of particles could not be filled and wasted due to the time lag when measuring particles.
[0004] 一方、 ECは融点が 36°Cと高ぐ常温で固体であるため、充填は、予め、 ECを加温 して液体状態にして行われる力 パーティクル測定用 ECのサンプリング時に、サンプ リング配管中で固化し、サンプリングできなくなることがあった。また、パーティクル測 定時において、サンプリング用容器の内部、及び、サンプリング用容器力も測定装置 までの配管内で固化すると、パーティクル数が測定不能となった。  [0004] On the other hand, since EC is a solid at room temperature with a melting point as high as 36 ° C, filling is performed in advance by heating the EC to a liquid state. When sampling the EC for particle measurement, sampling is performed. It sometimes solidified in the piping and could not be sampled. Also, when measuring particles, if the inside of the sampling container and the sampling container force were solidified in the pipe to the measuring device, the number of particles could not be measured.
力かる ECの固化は、サンプリング配管、サンプリング用容器、測定配管等を加温し たり、パーティクル数が既知の第二成分 (例えば、プロピレンカーボネート)に ECを添 カロして混合液にすることによって防止できる。混合液にする場合は、配管加温等の必 要はなくなるが、 EC中のパーティクル数は、その測定値及び第二成分のパーテイク ル数と添加量力 計算によって算出するため、第二成分中のパーティクル数を毎回 測定する必要があり面倒な上に、第二成分の管理を怠ると測定値が変動する等の問 題点が生じた。  Powerful solidification of EC can be achieved by heating the sampling pipe, sampling container, measurement pipe, etc., or adding EC to a second component with a known number of particles (for example, propylene carbonate) to make a mixture. Can be prevented. In the case of using a mixed liquid, there is no need to heat pipes, etc., but the number of particles in EC is calculated based on the measured value, the number of particles in the second component, and the amount of added force. It is necessary to measure the number of particles every time, and it is troublesome, and if the second component is neglected, the measured value fluctuates.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明は、取り扱い環境温度、例えば、常温で、固体状態である EC含有原料中の パーティクルの数を簡単、正確且つ再現性良く測定し、品質の優れた EC含有材料 を、製品用容器等の充填用容器に安定的に充填する方法、及び、この EC含有材料 の充填装置 (充填システム)を提供することを課題とするものである。 [0005] The present invention measures the number of particles in an EC-containing raw material in a solid state at a handling environment temperature, for example, room temperature, simply, accurately and with good reproducibility, and uses an EC-containing material with excellent quality for products. Method for stably filling containers such as containers, and this EC-containing material It is an object of the present invention to provide a filling device (filling system).
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは、上記課題を解決するために鋭意検討した結果、 EC等の製造設備 の受槽等である EC含有原料貯蔵部と、この EC含有原料貯蔵部の出口カゝら製品用 容器等の充填用容器の入口までに接続された充填用配管と、この充填用配管の途 中から分岐し且つパーティクルの数を測定する装置に接続されたパーティクル測定 用配管と、を備える装置において、液状の EC含有原料を通液する際に、パーテイク ル測定用配管を加温することにより、 EC含有原料の固結を防止するとともに、変動の 少ないパーティクル測定値が得られ、同時に、この測定値に示唆された EC含有材料 を充填用容器に充填できたことを見出し、本発明を完成させた。  [0006] As a result of intensive studies to solve the above problems, the present inventors have found that an EC-containing raw material storage unit that is a receiving tank of a manufacturing facility such as EC, and an outlet product of the EC-containing raw material storage unit. An apparatus comprising: a filling pipe connected to the inlet of a filling container such as a container, and a particle measuring pipe branched from the filling pipe and connected to a device for measuring the number of particles When the liquid EC-containing raw material is passed through, the particle measurement pipes are heated to prevent solidification of the EC-containing raw material, and a particle measurement value with less fluctuation is obtained. It was found that the EC-containing material suggested in the measurement value could be filled into the filling container, and the present invention was completed.
[0007] 即ち、本発明は、以下に示される。 [0007] That is, the present invention is described below.
1. EC含有材料を充填用容器に充填する方法であって、 EC含有原料を EC含有原 料貯蔵部から充填用配管に通液し、その後、該充填用配管の途中から分岐し且つ 加温されたパーティクル測定用配管に、上記 EC含有原料を連続的にインラインで通 液し、上記パーティクル測定用配管に接続されたパーティクル測定装置により、上記 EC含有原料中のパーティクルの数を測定し、次いで、 0. 2 m以上のパーティクル の数が基準値以下に達した時点で、上記 EC含有材料を上記充填用配管の出口か ら上記充填用容器に充填することを特徴とする EC含有材料の充填方法。  1. A method of filling an EC-containing material into a filling container, in which an EC-containing raw material is passed from an EC-containing raw material storage section to a filling pipe, and then branched from the middle of the filling pipe and heated. The EC-containing raw material is continuously passed in-line to the particle measurement pipe, and the number of particles in the EC-containing raw material is measured by a particle measuring device connected to the particle measurement pipe. Filling the EC-containing material with the EC-containing material from the outlet of the filling pipe when the number of particles of 0.2 m or more reaches a reference value or less. Method.
2.上記パーティクル測定用配管における上記 EC含有原料の流量の変動が ± 10% 以内になるように、上記 EC含有原料の流量を制御しながら、上記 EC含有原料中の パーティクルの数を測定する上記 1に記載の EC含有材料の充填方法。  2. Measure the number of particles in the EC-containing material while controlling the flow rate of the EC-containing material so that the fluctuation of the flow rate of the EC-containing material in the particle measurement pipe is within ± 10%. The method for filling EC-containing material according to 1.
3.上記 EC含有材料の充填を完了した後、上記パーティクル測定用配管に、不活性 ガス及び Z又は水を導入することにより、上記パーティクル測定用配管内を洗浄し、 次いで、該パーティクル測定用配管内の EC含有原料を除去した状態で上記不活性 ガス又は上記水を保持し、充填再開時には改めて上記パーティクル測定用配管内 に EC含有原料を通液する上記 1に記載の EC含有材料の充填方法。  3. After the filling of the EC-containing material is completed, the inside of the particle measurement pipe is cleaned by introducing an inert gas and Z or water into the particle measurement pipe, and then the particle measurement pipe The method for filling an EC-containing material according to 1 above, wherein the inert gas or the water is retained in a state where the EC-containing raw material is removed, and the EC-containing raw material is again passed through the particle measurement pipe when filling is resumed. .
4. EC含有原料を貯蔵する EC含有原料貯蔵部と、 EC含有材料を充填するための 充填用容器と、上記 EC含有原料を、該 EC含有原料貯蔵部から該充填用容器へ通 液する充填用配管と、上記 EC含有原料中のパーティクル数を測定する装置へ通液 する配管であって、上記充填用配管の途中から分岐し且つ加温されているパーティ クル測定用配管と、上記 EC含有原料中のパーティクル数を測定する装置であって、 上記パーティクル測定用配管の出口に接続されたパーティクル測定装置と、を備え ることを特徴とする、 EC含有材料の充填装置。 4. EC-containing raw material storage section for storing the EC-containing raw material, a filling container for filling the EC-containing material, and the EC-containing raw material are passed from the EC-containing raw material storage section to the filling container. A liquid filling pipe, a pipe for passing through the apparatus for measuring the number of particles in the EC-containing raw material, a particle measuring pipe branched from the middle of the filling pipe and heated; A device for measuring the number of particles in the EC-containing raw material, comprising: a particle measuring device connected to an outlet of the particle measurement pipe.
発明の効果  The invention's effect
[0008] 本発明の EC含有材料の充填方法によれば、取り扱 、環境温度、例えば、常温で、 固体状態である EC含有原料を、充填用配管から分岐し且つ加温されたパーテイク ル測定用配管に通液し、その後、パーティクル測定装置に導入及び測定したインラ イン方式でパーティクルの数を管理し、次いで、充填用配管から充填用容器へ充填 させること〖こより、変動が小さく正確なパーティクル数を持った、 EC含有材料を、固結 させることなく容易に充填することができる。充填用容器内の EC含有材料は、物性が 管理されているため、電子デバイス用基板等の基体表面上に付着する有機被膜、特 に、レジスト被膜を除去する剥離液として有用である。  [0008] According to the EC-containing material filling method of the present invention, the EC-containing raw material that is in a solid state at a handling and environmental temperature, for example, room temperature, is branched from the filling pipe and heated to measure the particle. The number of particles is controlled by the in-line method introduced and measured in the particle measuring device, and then filled into the filling container from the filling pipe. A number of EC-containing materials can be easily filled without consolidation. Since the EC-containing material in the filling container has controlled physical properties, it is useful as an organic coating that adheres to the surface of a substrate such as an electronic device substrate, particularly as a stripping solution for removing the resist coating.
本発明の EC含有材料の充填装置によれば、 EC含有原料中のパーティクルの数 が簡単、正確且つ再現性良く測定され、品質の優れた EC含有材料を、製品用容器 等の充填用容器に安定的に充填することができる。  According to the EC-containing material filling apparatus of the present invention, the number of particles in the EC-containing raw material can be measured easily, accurately and with good reproducibility, and the EC-containing material having excellent quality can be used as a filling container such as a product container. It can be filled stably.
また、本発明を利用し、レジスト被膜の剥離装置内に、 EC含有材料の充填装置を 配設することで、レジスト被膜の剥離装置が稼働しているときに使用中の EC含有材 料の実液管理に有用である。  Further, by utilizing the present invention, an EC-containing material filling device is disposed in the resist film peeling apparatus, so that the EC-containing material being used can be actually used when the resist film peeling apparatus is in operation. Useful for liquid management.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]本発明の EC含有材料の充填装置の一例を示す概略図である。  FIG. 1 is a schematic view showing an example of an EC-containing material filling apparatus according to the present invention.
[図 2]本発明の EC含有材料の充填装置の他の例を示す概略図である。  FIG. 2 is a schematic view showing another example of the EC-containing material filling device of the present invention.
[図 3]従来の方法によるパーティクル測定システムを示す概略図である。  FIG. 3 is a schematic view showing a particle measurement system according to a conventional method.
符号の説明  Explanation of symbols
[0010] 1 ;測定用サンプル瓶 [0010] 1; Sample bottle for measurement
2 ;ウォーターバス  2; water bath
3 ;パーティクルカウンター 4;導入配管 3; Particle counter 4; Introduction piping
5;シリンジサンプラー 5; Syringe sampler
6;ドレイン配管 6; Drain piping
7; EC含有原料  7; Raw material containing EC
8;クリーンベンチ  8; Clean bench
9; EC含有原料貯蔵部 9; EC-containing raw material storage
10;送液ポンプ 10; liquid pump
11a;バルブ  11a; valve
lib;バルブ lib; valve
12;充填用配管  12; Piping for filling
13a;バルブ  13a; valve
13b;バルブ  13b; valve
14;パーティクル測定用配管 15;圧力計  14; Pipe for particle measurement 15; Pressure gauge
16;バルブ16; valve
7;流量制御用バルブ 8;パーティクルカウンター 9;流量計 7; Valve for flow control 8; Particle counter 9; Flow meter
0;バルブ 0; valve
1;バノレブ 1; Vanolev
2;バルブ 2; Valve
3;バイパスバルブ 3; Bypass valve
4;バルブ 4; valve
5 ;EC含有原料循環用配管 6;バイパスライン 5; Pipe for recycling EC-containing raw materials 6; Bypass line
7;バルブ 7; valve
8;フィルタ一部 8; Filter part
9;バノレブ 30 ;EC含有原料循環用配管 9; Banolev 30; EC-containing material circulation pipe
31 ;不活性ガス供給装置  31; inert gas supply device
32 ;水供給装置  32; water supply device
33 ;充填用容器  33; container for filling
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明について詳しく説明する。  [0011] Hereinafter, the present invention will be described in detail.
本発明の EC含有材料の充填方法 (以下、「本発明の充填方法」ともいう。)は、 EC 含有材料を充填用容器に充填する方法であって、 EC含有原料を、 EC含有原料貯 蔵部から充填用配管に通液し、その後、上記充填用配管の途中から分岐し且つ加 温されたパーティクル測定用配管に、上記 EC含有原料を連続的にインラインで通液 し、上記パーティクル測定用配管に接続されたパーティクル測定装置により、上記 E C含有原料中のパーティクルの数を測定し、次いで、 0. 2 m以上のパーティクルの 数が基準値以下に達した時点で、上記 EC含有材料を上記充填用配管の出口から 上記充填用容器に充填することを特徴とする。  The EC-containing material filling method of the present invention (hereinafter also referred to as “the filling method of the present invention”) is a method of filling an EC-containing material into a filling container, and the EC-containing raw material is stored in the EC-containing raw material storage. Then, the EC-containing raw material is continuously passed inline to the particle measurement pipe branched from the middle of the filling pipe and heated, and then passed through the filling pipe. The number of particles in the EC-containing raw material is measured by a particle measuring device connected to a pipe, and when the number of particles of 0.2 m or more reaches a reference value or less, the EC-containing material is The filling container is filled from the outlet of the filling pipe.
[0012] 上記充填用容器に充填しょうとする材料、即ち、上記 EC含有原料貯蔵部に収容さ れている材料は、取り扱い環境温度、例えば、常温で、固体状態である EC含有原料 である。従って、この EC含有原料は、 EC単独であってよいし、 EC及び他の成分を 含み且つ固体状態である混合物 (ECの含有割合は、通常、 50質量%以上、好まし くは 60質量%以上、特に好ましくは 70質量%以上)であってもよい。上記 EC含有原 料におけるパーティクルの数は、好ましくは、液体試料を測定対象とするパーテイク ル測定装置により測定される。液状ィ匕した EC含有原料中のパーティクル (0. 2 m 以上の微小粒子)の数は、通常、 100個 Zミリリットル以下である。尚、上記パーテイク ル測定装置としては、非接触及び非破壊でパーティクルの数を測定できることから、 光散乱式測定装置が好まし 、。  [0012] The material to be filled in the filling container, that is, the material stored in the EC-containing raw material storage unit is an EC-containing raw material that is in a solid state at a handling environment temperature, for example, normal temperature. Therefore, the EC-containing raw material may be EC alone or a mixture containing EC and other components and in a solid state (the content of EC is usually 50% by mass or more, preferably 60% by mass) Above, particularly preferably 70% by mass or more). The number of particles in the EC-containing raw material is preferably measured by a particle measuring device whose target is a liquid sample. The number of particles (fine particles of 0.2 m or more) in a liquid EC-containing raw material is usually 100 or less Z milliliters. The particle measuring device is preferably a light scattering type measuring device because it can measure the number of particles in a non-contact and non-destructive manner.
[0013] 本発明において、上記 EC含有材料を充填するために、以下の充填装置を用いる。  In the present invention, the following filling device is used for filling the EC-containing material.
本発明の EC含有材料の充填装置 (以下、「本発明の充填装置」という。)は、 EC含 有原料を貯蔵する EC含有原料貯蔵部と、上記 EC含有材料を充填するための充填 用容器と、上記 EC含有原料を、上記 EC含有原料貯蔵部から上記充填用容器へ通 液する充填用配管と、上記 EC含有原料中のパーティクル数を測定する装置へ通液 する配管であって、上記充填用配管の途中から分岐し且つ加温されているパーティ クル測定用配管と、上記 EC含有原料中のパーティクル数を測定する装置であって、 上記パーティクル測定用配管の出口に接続されたパーティクル測定装置と、を備え ることを特徴とする。 The EC-containing material filling apparatus of the present invention (hereinafter referred to as “the filling apparatus of the present invention”) includes an EC-containing raw material storage section for storing EC-containing raw materials, and a filling container for filling the EC-containing materials. And passing the EC-containing raw material from the EC-containing raw material storage unit to the filling container. A liquid filling pipe, a pipe for passing through the apparatus for measuring the number of particles in the EC-containing raw material, a particle measuring pipe branched from the middle of the filling pipe and heated; A device for measuring the number of particles in the EC-containing raw material, comprising: a particle measuring device connected to an outlet of the particle measuring pipe.
[0014] 本発明の充填装置の概略図は、図 1に示される。即ち、図 1の充填装置は、 EC含 有原料を貯蔵する EC含有原料貯蔵部 9と、上記 EC含有材料を充填するための充 填用容器 33と、上記 EC含有原料を、上記 EC含有原料貯蔵部 9から充填用容器 33 へ通液する充填用配管 12と、この充填用配管 12の途中から分岐し且つ加温され且 つ上記 EC含有原料をパーティクル測定装置 18へ通液するパーティクル測定用配管 14と、このパーティクル測定用配管 14の出口力も導入された上記 EC含有原料中の パーティクルの数を測定するパーティクル測定装置 18と、を備える。尚、本発明の充 填装置は、上記 EC含有原料貯蔵部 9から EC含有原料を充填用配管 12内で安定し た送液を行うための送液ポンプ 10、及び、上記パーティクル測定用配管 14に分岐す る前の充填用配管 12の途中に位置するフィルタ一部 28に加え、複数のバルブ 11a 、 l ib, 13a, 13b、 16、 24¾_び 27、 ¾ffiU 用ノ ノレブ 17、ノ イノ スノ ノレブ 23 を 備えてもよい。尚、配管の加温は、上記充填用配管 12のみならず、上記 EC含有原 料貯蔵部 9から充填用容器 33までの充填用配管 12等の他の配管に対して行っても よい。従って、本発明の充填装置は、配管の加熱手段を備えることができ、例えば、 自己制御式電気ヒーターを配管に巻く等の手段が挙げられる。  [0014] A schematic diagram of the filling apparatus of the present invention is shown in FIG. That is, the filling apparatus in FIG. 1 includes an EC-containing raw material storage unit 9 for storing EC-containing raw materials, a filling container 33 for filling the EC-containing materials, the EC-containing raw materials, and the EC-containing raw materials. Filling pipe 12 for passing the liquid from the storage unit 9 to the filling container 33, and for particle measurement that branches from the middle of the filling pipe 12 and is heated and passes the EC-containing raw material to the particle measuring device 18. A pipe 14 and a particle measuring device 18 for measuring the number of particles in the EC-containing raw material into which the outlet force of the particle measuring pipe 14 is also introduced. The filling device of the present invention includes a liquid feed pump 10 for stably feeding the EC-containing raw material from the EC-containing raw material storage unit 9 in the filling pipe 12, and the particle measuring pipe 14. In addition to a part of the filter 28 located in the middle of the filling pipe 12 before branching to, a plurality of valves 11a, l ib, 13a, 13b, 16, 24¾_27, ¾ffiU nore br Noreb 23 may be provided. The piping may be heated not only for the filling pipe 12 but also for other pipes such as the filling pipe 12 from the EC-containing raw material storage unit 9 to the filling container 33. Therefore, the filling device of the present invention can be provided with a pipe heating means, for example, a means such as winding a self-controlling electric heater around the pipe.
[0015] 上記 EC含有原料貯蔵部 9は、 EC等の製造設備の受槽(内部に EC含有原料を有 する)であってよ!ヽし、この受槽カゝら移送された容器(内部に EC含有原料を有する) であってもよい。上記 EC含有原料貯蔵部から EC含有原料を送液するために、送液 ポンプ 10を備えることができる。この送液ポンプ 10は、 EC含有原料の流量を調節す ることができるが、その下流側に配設されたバルブ 11aによって行うこともできる。上 記 EC含有原料中のパーティクルの数が基準値に達した後、充填用配管 12内を通 液させ、充填用容器 33に充填する。また、上記 EC含有原料貯蔵部 9の出口と、上記 パーティクル測定用配管 14の入口との間の充填用配管 12において、径の大きな、 パーティクル、夾雑物等を排除するフィルタ一部 28を備えることができる。このフィル ター部 28は、例えば、目開き 0. 2 /z mのフィルター(ポリプロピレン製、ポリ四フツイ匕 エチレン製等)を備える濾過装置を用いることができる。尚、目開き、コア材等は、目 的に応じて、適宜、選択される。また、好ましい濾過装置は、フィルターの交換及び配 設が容易なカートリッジ型のものである。 [0015] The EC-containing raw material storage unit 9 may be a receiving tank (having an EC-containing raw material inside) of a manufacturing facility such as EC, and a container (EC inside) It may contain) A liquid feed pump 10 can be provided to feed the EC-containing raw material from the EC-containing raw material storage unit. The liquid feed pump 10 can adjust the flow rate of the EC-containing raw material, but can also be performed by a valve 11a disposed on the downstream side thereof. After the number of particles in the EC-containing raw material reaches the reference value, the filling pipe 12 is filled and filled into the filling container 33. Further, in the filling pipe 12 between the outlet of the EC-containing raw material storage unit 9 and the inlet of the particle measuring pipe 14, the diameter is large. A filter part 28 that excludes particles, foreign matters, and the like can be provided. As the filter unit 28, for example, a filtration device including a filter having a mesh opening of 0.2 / zm (polypropylene, polytetrafluoroethylene, etc.) can be used. Note that the mesh opening, the core material, and the like are appropriately selected according to the purpose. A preferable filtration device is a cartridge type in which the filter can be easily replaced and arranged.
[0016] 本発明においては、充填用容器 33に充填する前に、上記充填用配管 12内を通液 される EC含有原料内のパーティクルの数を測定する必要がある。そのために、本発 明の充填装置は、上記充填用配管 12の途中より分岐した配管を備える。即ち、パー ティクル測定装置 18に接続しているパーティクル測定用配管 14が配設されている。 これにより、上記 EC含有原料貯蔵部 9から上記パーティクル測定装置 18の間におい て、外界力ものパーティクルの混入がなくインラインで精度良 、パーティクル数の測 定が可能となる。 In the present invention, before the filling container 33 is filled, it is necessary to measure the number of particles in the EC-containing raw material that is passed through the filling pipe 12. For this purpose, the filling device of the present invention includes a pipe branched from the middle of the filling pipe 12. That is, a particle measuring pipe 14 connected to the particle measuring device 18 is provided. Thereby, between the EC-containing raw material storage unit 9 and the particle measuring device 18, it is possible to measure the number of particles with good accuracy in-line without mixing of particles with external force.
また、本発明の充填装置では、 EC含有原料が外部に放散することがなぐ作業環 境等への汚染も防ぐことができる。  In addition, the filling apparatus of the present invention can prevent contamination of the working environment and the like where the EC-containing raw material is not diffused to the outside.
[0017] 本発明の特徴の 1つは、 EC含有原料を通液したときに、パーティクル測定装置 18 に達するまでに固化するのを防止するため、パーティクル測定用配管 14を加温しな 力 Sら通液し、パーティクル測定装置 18を用いて測定された、径が 0. 以上のパ 一ティクルの数が基準値以下に達した時点で、上記 EC含有材料を充填用容器 33に 充填することである。  [0017] One of the features of the present invention is that when the EC-containing raw material is passed, the particle measurement pipe 14 is not heated to prevent it from solidifying before reaching the particle measurement device 18. The EC-containing material is filled into the filling container 33 when the number of particles having a diameter of 0 or more, measured using the particle measuring device 18, reaches a reference value or less. It is.
上記パーティクル測定用配管 14の加熱による EC含有原料の温度は、 40°C〜80 °Cの範囲にあることが好ましい。加熱温度が 40°C未満では、 EC含有原料が、パーテ イタル測定用配管 14の内部及びパーティクル測定装置 18の内部で固化する場合が ある。 80°Cを超えると、パーティクル測定装置 18が半導体センサーを使用している 場合には、センサーの寿命低下につながる。尚、パーティクル測定装置 18における センサーが検知するセル長がわずかである場合は、パーティクル測定装置 18の前ま でのパーティクル測定用配管 14と、パーティクル測定装置 18の後のドレイン用配管 とを加温するだけで、パーティクル測定装置 18内での EC含有原料の固化を防止す ることがでさる。 また、 EC含有材料を上記充填用容器 33に充填する場合には、上記 EC含有原料 中における 0. 2 m以上のパーティクルの数力 通常、 80個 Zミリリットル以下、好ま しくは 50個 Zミリリットル以下となって力も行う。上記パーティクルの数力 100個 Zミ リリットルを超えて ヽる EC含有材料をレジスト被膜の剥離液等として用いると、電子デ バイス用基板等の生産性が低下する場合がある。 The temperature of the EC-containing raw material by heating the particle measurement pipe 14 is preferably in the range of 40 ° C to 80 ° C. When the heating temperature is less than 40 ° C, the EC-containing raw material may solidify inside the particulate measurement pipe 14 and inside the particle measuring device 18. Above 80 ° C, if the particle measuring device 18 uses a semiconductor sensor, the life of the sensor will be shortened. In addition, when the cell length detected by the sensor in the particle measuring device 18 is very small, the particle measuring pipe 14 before the particle measuring apparatus 18 and the drain pipe after the particle measuring apparatus 18 are heated. It is only possible to prevent the EC-containing raw material from solidifying in the particle measuring device 18. In addition, when filling the EC containing material into the above-mentioned filling container 33, the number power of particles of 0.2 m or more in the EC containing raw material is usually 80 Z milliliters or less, preferably 50 Z milliliters or less. And do the power. If an EC-containing material with a particle power of more than 100 milliliters of Z is used as a resist coating stripping solution, the productivity of electronic device substrates and the like may be reduced.
[0018] 以下、具体的な操作手順を、図面 (図 1)を用いて説明する。 [0018] A specific operation procedure will be described below with reference to the drawing (Fig. 1).
本発明にお ヽて、上記充填用容器 33に充填しょうとする材料である EC含有原料 は、 EC含有原料貯蔵部 9内において、加熱により液状となっている。  In the present invention, the EC-containing raw material that is the material to be filled in the filling container 33 is liquefied by heating in the EC-containing raw material storage unit 9.
EC含有原料内のパーティクルの数を測定する前に、配管内の EC含有原料を一様 なものとするために、充填用配管 12、及び、パーティクル測定装置 18の直前までの パーティクル測定用配管 14に EC含有原料をパージする。この操作は、バルブ l la、 13a、 13b及び 23を開放し、且つ、バルブ 16、 20及び 27を閉じた状態で、上記 EC 含有原料貯蔵部 9内の EC含有原料を、送液ポンプ 10により充填用配管 12内に通 液させ、その後、充填用配管 12から、パーティクル測定装置 18の方へ通液させ、バ ィパスライン 26から排出させる。パーティクル測定装置 18の直前までの配管内を EC 含有原料によりパージさせることで、ノ レブ開閉操作で発生する可能性のあるパー ティクルを除去又は低減することができる。  Before measuring the number of particles in the EC-containing raw material, in order to make the EC-containing raw material in the pipe uniform, the pipe for filling 12 and the pipe for particle measurement up to just before the particle measuring device 18 14 Purge the EC-containing material. In this operation, with the valves lla, 13a, 13b and 23 opened and the valves 16, 20 and 27 closed, the EC-containing raw material in the EC-containing raw material storage unit 9 is transferred by the liquid feed pump 10. The liquid is passed through the filling pipe 12, and then, the liquid is passed from the filling pipe 12 toward the particle measuring device 18 and discharged from the bypass line 26. By purging the inside of the pipe up to just before the particle measuring device 18 with the EC-containing material, it is possible to remove or reduce particles that may be generated by the opening and closing operation of the nozzle.
次に、パーティクル測定装置 18によりパーティクル数を測定するために、バルブ 23 を閉じ、バルブ 16及び 24並びに流量制御用バルブ 17を開放して、パーティクル測 定装置 18に EC含有原料を導入し、パーティクルの数を測定する。パーティクルの数 の測定原理は、パーティクル測定装置 18の種類によって異なるので、 EC含有原料 の導入速度は、規定された範囲内とする。従って、上記 EC含有原料の流速は、圧力 計 15の指示値、及び、流量計 19の指示値を見ながらバルブ l la、 13a、 13b及び 1 6並びに流量制御用バルブ 17の開度を調整することにより、制御される。  Next, in order to measure the number of particles by the particle measuring device 18, the valve 23 is closed, the valves 16 and 24 and the flow rate control valve 17 are opened, and the EC-containing material is introduced into the particle measuring device 18. Measure the number of Since the principle of measuring the number of particles varies depending on the type of particle measuring device 18, the introduction rate of the EC-containing raw material is within the specified range. Therefore, the flow rate of the EC-containing raw material is adjusted by adjusting the opening of the valves lla, 13a, 13b and 16 and the flow control valve 17 while observing the indicated value of the pressure gauge 15 and the indicated value of the flowmeter 19. Is controlled.
[0019] 本発明の他の特徴は、前述のように、上記パーティクル測定用配管 14における、 好ましくは上記パーティクル測定装置 18の前に流量制御用バルブ 17を設置し、ノ 一ティクル測定装置 18に導入する EC含有原料の流量を制御することができることで ある。具体的には、上記パーティクル測定用配管 14における上記 EC含有原料の流 量の変動が、好ましくは ± 10%以内になるように、上記 EC含有原料の流量を制御す る。かかる制御は、上記流量制御用バルブ 17を、流量計 19の指示値と連動したコン トロールバルブとすること、又は、微少流量の調節が可能な手動-一ドルバルブとし て、流量計 19の指示値に応じ、手動調整することで可能である。尚、上記 EC含有原 料の流量が設定流量の ± 10%を超えて変動すると、パーティクル数の測定値が大き く変化し、真値が得られない場合がある。また、圧力は、上記パーティクル測定装置 の耐圧以下であることが好まし!/、。 [0019] Another feature of the present invention is that, as described above, a flow rate control valve 17 is installed in the particle measurement pipe 14, preferably in front of the particle measurement device 18, so It is possible to control the flow rate of the EC-containing raw material to be introduced. Specifically, the EC-containing raw material flow in the particle measurement pipe 14 is as follows. The flow rate of the EC-containing raw material is controlled so that the amount fluctuation is preferably within ± 10%. For this control, the flow control valve 17 is a control valve linked to the indicated value of the flow meter 19, or a manual-single dollar valve that can adjust the minute flow rate, and the indicated value of the flow meter 19 This can be done by manual adjustment. Note that if the flow rate of the EC-containing material fluctuates by more than ± 10% of the set flow rate, the measured value of the number of particles may change greatly, and the true value may not be obtained. The pressure is preferably less than the pressure resistance of the particle measuring device!
[0020] 上記パーティクル数の測定値は、パーティクル測定装置 18により測定されたパーテ イタル数を連続的にモニターし、数値が安定したときの値とする。測定値が 0. 2 μ χη 以上のパーティクル数が基準値以下、即ち、 80個 Ζミリリットル以下に達した時点で 、ノ レブ 13aを閉じ、バルブ 27を開放し、 EC含有原料を充填用配管 12内に通液し 、充填用容器 33に EC含有材料の充填を開始する。尚、上記パーティクル測定装置 18によるパーティクル数が多い場合、再度、バルブ 16を閉じ、バルブ 23を開放して 、 EC含有原料によるパージを行う。  [0020] The measured value of the number of particles is a value when the number of parts measured by the particle measuring device 18 is continuously monitored and the numerical value is stabilized. When the number of particles with a measured value of 0.2 μχη or more reaches the reference value or less, that is, when 80 particles Ζ milliliter or less, the nozzle 13a is closed, the valve 27 is opened, and the EC-containing raw material is filled 12 Then, filling of the EC-containing material into the filling container 33 is started. When the number of particles by the particle measuring device 18 is large, the valve 16 is closed again, the valve 23 is opened, and the EC containing material is purged.
上記充填用容器 33は、 目的に応じた形状、大きさ等とすることができる。上記 EC含 有材料を充填する前に、窒素ガス等の不活性ガスを満たした状態で充填を開始して よいし、上記充填用配管 12の出口力も排出された初期の EC含有原料を用いて、共 洗いした後、充填を開始してもよい。  The filling container 33 may have a shape, size, etc. according to the purpose. Before filling with the EC-containing material, the filling may be started in a state filled with an inert gas such as nitrogen gas, or the initial EC-containing material from which the outlet force of the filling pipe 12 is also discharged is used. After the washing, filling may be started.
[0021] 本発明の他の特徴は、 EC含有材料の充填が終了した場合、並びに、パーティクル 数の連続測定を中断及び中止した場合に、本発明の充填装置を再利用し易くする ために、上記パーティクル測定用配管 14内を洗浄することである。即ち、上記 EC含 有原料の通液停止後に、上記パーティクル測定用配管 14の上流から、窒素ガス等 の不活性ガス及び Z又は超純水等の水を導入することにより、上記パーティクル測 定用配管 14内が洗浄される。この工程を行うために、本発明の充填装置は、不活性 ガス供給装置 31及び水供給装置 (超純水供給装置) 32を備えることができる(図 1参 照)。これらの装置を用いる場合、例えば、まず、不活性ガス供給装置 31から窒素ガ スを供給して、上記パーティクル測定用配管 14の内部及び上記パーティクル測定装 置 18の内部に残留した EC含有原料をブローし、その後、上記水供給装置 32から超 純水等を供給して、残存物を除去することができる。力かる操作により、運転休止時、 上記パーティクル測定用配管 14の温度低下によって固化した残存 EC含有原料が、 再加温によって再溶解する際に体積膨張して、上記パーティクル測定用配管 14や 上記パーティクル測定装置 18のセンサーを破損する被害を未然に防止することがで きる。尚、超純水等を通液する際には、パーティクル数をモニターし、超純水原液の パーティクル数と同等レベルになるまで通液することが好ましい。 [0021] Another feature of the present invention is that in order to facilitate reuse of the filling apparatus of the present invention when filling of the EC-containing material is completed and when continuous measurement of the number of particles is interrupted and stopped. The inside of the particle measuring pipe 14 is cleaned. That is, after the EC-containing raw material stops flowing, an inert gas such as nitrogen gas and water such as Z or ultrapure water are introduced from upstream of the particle measurement pipe 14 to measure the particle. The inside of pipe 14 is cleaned. In order to perform this step, the filling device of the present invention can include an inert gas supply device 31 and a water supply device (ultra pure water supply device) 32 (see FIG. 1). When using these devices, for example, first, nitrogen gas is supplied from the inert gas supply device 31, and the EC-containing raw material remaining inside the particle measurement pipe 14 and the particle measurement device 18 is removed. Blow and then above the water supply device 32 Residue can be removed by supplying pure water or the like. When the operation is stopped by the operation, the residual EC-containing material solidified by the temperature drop of the particle measurement pipe 14 expands in volume when remelted by reheating, and the particle measurement pipe 14 and the particle Damage to the sensor of the measuring device 18 can be prevented beforehand. In addition, when passing ultrapure water or the like, it is preferable to monitor the number of particles and pass it until the level is equal to the number of particles in the ultrapure water stock solution.
上記パーティクル測定用配管 14内を洗浄した後、上記パーティクル測定用配管 14 内の EC含有原料を除去した状態で上記不活性ガス又は上記超純水を保持すること が好ましぐまた、上記 EC含有材料の充填再開時には改めて上記パーティクル測定 用配管 14内に通液する、即ち、 EC含有原料のパージを行うことが好ましい。  It is preferable to hold the inert gas or the ultrapure water in a state in which the EC-containing raw material in the particle measurement pipe 14 is removed after the inside of the particle measurement pipe 14 is cleaned. When refilling of the material is resumed, it is preferable to again pass the liquid into the particle measurement pipe 14, that is, purge the EC-containing raw material.
[0022] 具体的操作は、以下のとおりである。即ち、充填用容器 33への充填を終えた後、送 液ポンプ 10の稼働を停止し、バルブ 13aを閉じて、パーティクル測定装置 18への E C含有原料の通液を停止する。その後、高純度窒素ガス等の不活性ガスを導入する 場合には、ノ レブ 20及び 21を開放し、また、超純水等を導入する場合には、バルブ 20及び 22を開放する。不活性ガス及び超純水の両方を同時に導入することもできる 。通常の操作としては、まず、バルブ 22及び 23を閉じ、バルブ 20、 21及び 24を開放 し、高純度窒素ガスを供給して、パーティクル測定用配管 14内及びパーティクル測 定装置 18内に残留している EC含有原料を追い出し、配管ブローを行う。ブロー完了 は、上記パーティクル測定装置 18の出口より液体が出なくなつたことを確認すること で判断する。その後、バルブ 21及び 23を閉じ、バルブ 22及び 24を開放して、同じラ インに超純水等を通液して、パーティクル測定用配管 14内及びパーティクル測定装 置 18内の洗浄を行う。 [0022] The specific operation is as follows. That is, after filling the filling container 33, the operation of the liquid feed pump 10 is stopped, the valve 13a is closed, and the flow of the EC-containing raw material to the particle measuring device 18 is stopped. Thereafter, when introducing an inert gas such as high purity nitrogen gas, the valves 20 and 21 are opened, and when introducing ultrapure water or the like, the valves 20 and 22 are opened. Both inert gas and ultrapure water can be introduced simultaneously. As a normal operation, first, valves 22 and 23 are closed, valves 20, 21 and 24 are opened, and high-purity nitrogen gas is supplied to remain in the particle measurement pipe 14 and the particle measurement device 18. Eject the EC-containing material and blow the piping. The completion of the blow is determined by confirming that no liquid has come out from the outlet of the particle measuring device 18. Thereafter, the valves 21 and 23 are closed, the valves 22 and 24 are opened, and ultrapure water or the like is passed through the same line to clean the inside of the particle measuring pipe 14 and the particle measuring apparatus 18.
洗浄の完了後、パーティクル測定休止時には、バルブ 20、 21、 22及び 24を閉じて 、次回の測定まで、パーティクル測定用配管 14内を超純水等で満たしておくことが 好ましい。  When the particle measurement is stopped after completion of the cleaning, it is preferable to close the valves 20, 21, 22 and 24 and fill the particle measurement pipe 14 with ultrapure water or the like until the next measurement.
[0023] また、本発明においては、 EC含有原料中のパーティクル数を測定する際の EC含 有原料の使用量は、少量でよいため、図 2に示すような、バルブ 29と、 EC含有原料 貯蔵部 9に送液する EC含有原料循環用配管 30とを更に備える装置を用いることが できる。図 2の循環装置は、 EC含有原料中のパーティクル数を測定するために、一 部の EC含有原料がパーティクル測定装置 18の方へ通液され、残りの EC含有原料 が上記 EC含有原料循環用配管 30を通して、濾過された EC含有原料を EC含有原 料貯蔵部 9に戻すことができる装置である。 [0023] In the present invention, since the amount of the EC-containing raw material used when measuring the number of particles in the EC-containing raw material may be small, the valve 29 and the EC-containing raw material as shown in FIG. It is necessary to use a device further equipped with an EC-containing material circulation pipe 30 to be sent to the storage unit 9. it can. In the circulation device of Fig. 2, in order to measure the number of particles in the EC-containing raw material, a part of the EC-containing raw material is passed through the particle measuring device 18, and the remaining EC-containing raw material is used for circulating the EC-containing raw material. It is a device that can return the filtered EC-containing raw material to the EC-containing raw material storage unit 9 through the pipe 30.
実施例 Example
以下、本発明について、実施例を挙げて具体的に説明する。尚、本発明は、これら の実施例に何ら制約されるものではな 、。  Hereinafter, the present invention will be specifically described with reference to examples. It should be noted that the present invention is not limited to these examples.
以下の実施例 1及び 2においては、図 1に示す充填装置を使用して、 ECのみ(以 下、「EC原料」という。)に対するパーティクル測定を行った後、 EC材料を充填用容 器に充填した。  In Examples 1 and 2 below, using the filling apparatus shown in FIG. 1, after measuring particles only for EC (hereinafter referred to as “EC raw material”), the EC material is used as a filling container. Filled.
図 1に示す充填装置は、 60°Cに加温されて液状化した EC原料が貯蔵された EC含 有原料貯蔵部 9 (EC製造装置に配設されたタンク)と、この EC含有原料貯蔵部 9か らの EC原料の送液を、流速 5m3Z時で行うための送液ポンプ 10と、 EC材料を充填 するための充填用容器 33と、 EC含有原料貯蔵部 9から EC原料を充填用容器 33へ 通液する充填用配管 12 (径 1インチ)と、この充填用配管 12の分岐前に配設されたフ ィルター部 28 (目開き 0. 2 mのポリ四フッ化工チレン製フィルター)と、充填用配管 12の途中力 分岐し且つ加温され且つ EC原料をパーティクル測定装置 18へ通液 するパーティクル測定用配管 14 (径 1インチ)と、このパーティクル測定用配管 14の 出口カゝら導入された EC原料中のパーティクルの数を測定するパーティクル測定装置 18 (リォン社製 —28型」)と、を備える。尚、パーティクル測定用配管 14からパー ティクル測定装置 18の導入口へは、変換継ぎ手が用いられ、導入口の径カ mmと されている。また、上記充填用配管 12は、スチームトレースにより約 80°Cに加温され ており、上記パーティクル測定用配管 14は、リボンヒーターを卷くことにより、約 70°C に加温されている。 The filling device shown in Fig. 1 includes an EC-containing raw material storage unit 9 (tank installed in the EC manufacturing device) in which EC raw material heated to 60 ° C and liquefied is stored, and this EC-containing raw material storage EC feed from EC 9 at a flow rate of 5m 3 Z, feed container 33 for filling EC material, EC feed from EC containing feed stock 9 A filling pipe 12 (diameter 1 inch) for passing liquid to the filling container 33 and a filter part 28 (before opening of the filling pipe 12 made of polytetrafluoroethylene having a mesh size of 0.2 m). Filter), and a halfway force in the filling pipe 12 is branched and heated, and the particle measurement pipe 14 (diameter 1 inch) that passes the EC raw material to the particle measuring device 18 and the outlet port of the particle measurement pipe 14 A particle measuring device that measures the number of particles in the EC raw material introduced 18 (manufactured by Lion) -28 type "). Incidentally, a conversion joint is used from the particle measurement pipe 14 to the introduction port of the particle measurement device 18, and the introduction port has a diameter of mm. The filling pipe 12 is heated to about 80 ° C. by steam tracing, and the particle measuring pipe 14 is heated to about 70 ° C. by rolling a ribbon heater.
また、この充填装置 ίま、図: Uこ示すよう【こ、ノ ノレブ 13a、 13b、 16、 20、 24及び 27、 流量制御用バルブ 17、バイパスバルブ 23、圧力計 15、流量計 19、バイパスライン 2 6、パーティクル測定用配管 14の洗浄に用いる不活性ガス供給装置 31 (高純度窒素 ガスを供給)、水供給装置 32 (超純水を供給)等を備える。 実施例 1 In addition, as shown in this figure: U, Nonreb 13a, 13b, 16, 20, 24 and 27, flow control valve 17, bypass valve 23, pressure gauge 15, flow meter 19, bypass Line 26, an inert gas supply device 31 (supplying high-purity nitrogen gas) used for cleaning the particle measurement pipe 14, and a water supply device 32 (supplying ultrapure water) are provided. Example 1
EC原料中のパーティクル数の測定前、及び、 EC材料の充填用容器 33への充填 前に、充填用配管 12から、パーティクル測定装置 18直前までのパーティクル測定用 配管 14までの配管内にお 、て、 EC原料をパージした。  Before measuring the number of particles in the EC raw material and before filling the EC material filling container 33, in the pipe from the filling pipe 12 to the particle measuring pipe 14 immediately before the particle measuring device 18, The EC raw material was purged.
初め【こ、ノ ノレブ 16、 20及び 27を閉じ、ノ ノレブ l la、 13a及び 13b、並び【こ、ノ イノ スバルブ 23を開放した。その後、送液ポンプ 10を稼動させ、内部をパブリングしなが ら、 EC含有原料貯蔵部 9から EC原料をパーティクル測定用配管 14内に通液し (流 速 5m3Z時)、ノ レブ開閉に伴い発生したパーティクルを除去した。次いで、バルブ 16及び 24、並びに、流量制御用バルブ 17を開放し、バイパスバルブ 23を閉じて、 E C原料をパーティクル測定装置 18に通液した。 EC原料のパーティクル測定装置 18 への圧力は 0. 26MPaであり、パーティクル測定装置 18の許容圧力 0. 3MPa以下 であった。 At first, this was closed, and Noreb 16, 20 and 27 were closed, and Noreb lla, 13a and 13b were placed side by side. After that, while the liquid feed pump 10 is operated and the inside is published, the EC raw material is passed from the EC-containing raw material storage 9 into the particle measurement pipe 14 (at a flow rate of 5 m 3 Z), and the nozzle is opened and closed. Removed the particles that were generated. Next, the valves 16 and 24 and the flow control valve 17 were opened, the bypass valve 23 was closed, and the EC raw material was passed through the particle measuring device 18. The pressure of the EC raw material to the particle measuring device 18 was 0.26 MPa, and the allowable pressure of the particle measuring device 18 was 0.3 MPa or less.
その後、パーティクル測定用配管 14内を流れる EC原料の流速力 流量計により 1 0ミリリットル Z分となるように、流量制御バルブ 17を調整した。これにより、上記パー ティクル測定用配管 14における上記 EC原料の流量の変動力 士 10%以内となった 。その後、パーティクル測定装置 18で検出されるパーティクル数を 1分毎にとりこみ、 測定値変化をモニターした。連続測定を始めてから、 EC原料の固化による配管内閉 塞はなぐ通液開始して力ゝら約 10分〜 15分経過後、パーティクル数は、ほぼ定常状 態となり、表 1に示す測定値を得た。  After that, the flow rate control valve 17 was adjusted so that the EC raw material flowing in the particle measurement pipe 14 would have a flow rate of 10 ml Z with a flow meter. As a result, the fluctuation force of the flow rate of the EC raw material in the particle measurement pipe 14 was within 10%. Thereafter, the number of particles detected by the particle measuring device 18 was taken in every minute, and changes in measured values were monitored. After starting continuous measurement, after about 10 to 15 minutes have passed since the start of liquid flow through the piping due to the solidification of the EC raw material, the number of particles became almost steady, and the measured values shown in Table 1 Got.
[表 1] [table 1]
表 1
Figure imgf000015_0001
table 1
Figure imgf000015_0001
表 1のように、 0. 2 m以上のパーティクルの数が 50個 Zミリリットル以下になった ので、バルブ 13aを閉じ、バルブ 27を開放して、 EC原料を充填用配管 12内に通液 し、 EC材料を充填用容器 33に充填した。  As shown in Table 1, since the number of particles of 0.2 m or more became 50 Zml or less, valve 13a was closed, valve 27 was opened, and EC raw material was passed through filling pipe 12. The EC material was filled into a filling container 33.
実施例 2 実施例 1で充填終了後、送液ポンプ 10の稼働を停止し、 EC原料の送液を中止し た。その後、バルブ 13aを閉じ、バルブ 20及び 21を開放し、不活性ガス供給装置 31 から高純度窒素ガスを通気することで、パーティクル測定用配管 14内、及び、パーテ イタル測定装置 18内の残留 EC原料の追い出しを行った。パーティクル測定装置 18 の出口力もの EC原料流出が停止したことを確認後、バルブ 21を閉じ、バルブ 22を 開放し、水供給装置 32より超純水を通液した。通液した超純水の廃液におけるパー ティクル数をモニターし、このパーティクル数が超純水原液のパーティクル数と同等 であることを確認後、再度、実施例 1に記載した同様な手順で EC原料を通液した。 次いで、実施例 1と同様にして、バルブ 20、 23及び 27を閉じ、バルブ 13a、 13b及び 16、並びに、流量制御用バルブ 17を開放し、 EC原料を送液し、パーティクル値を測 定した。その結果、表 2に示す測定値を得た。表 1及び表 2から、繰り返し測定により 再現性があることを確認した。 Example 2 After completion of filling in Example 1, the operation of the liquid feed pump 10 was stopped, and liquid feeding of the EC raw material was stopped. After that, the valve 13a is closed, the valves 20 and 21 are opened, and high purity nitrogen gas is vented from the inert gas supply device 31 so that the residual EC in the particle measurement pipe 14 and the particulate measurement device 18 are retained. Expelled raw materials. After confirming that the EC raw material flow was stopped, the valve 21 was closed, the valve 22 was opened, and ultrapure water was passed through the water supply device 32. After monitoring the number of particles in the waste liquid of ultrapure water that was passed through and confirming that the number of particles was equivalent to the number of particles in the ultrapure water stock solution, the EC raw material was again processed in the same procedure as described in Example 1. The liquid was passed through. Next, in the same manner as in Example 1, the valves 20, 23 and 27 were closed, the valves 13a, 13b and 16, and the flow control valve 17 were opened, the EC raw material was fed, and the particle value was measured. . As a result, the measured values shown in Table 2 were obtained. From Table 1 and Table 2, it was confirmed that there was reproducibility by repeated measurement.
[表 2] [Table 2]
表 2
Figure imgf000016_0001
Table 2
Figure imgf000016_0001
比較例 1  Comparative Example 1
図 1に示す充填装置の EC含有原料貯蔵部 9から、バッチ測定用 EC原料のサンプ リングを行い、図 3に示すシステムを用い、 EC原料中のパーティクル数を測定した。 尚、パーティクル数の測定は、ノ ツチ式測定装置(リオン社製「KS— 58型」)により行 つた。詳細を以下に示す。  Samples of EC raw materials for batch measurement were sampled from the EC-containing raw material storage unit 9 of the filling device shown in FIG. 1, and the number of particles in the EC raw material was measured using the system shown in FIG. The number of particles was measured with a notch type measuring device (“KS-58 type” manufactured by Rion). Details are shown below.
初め【こ、ノ ノレブ 16、 20及び 27を閉じ、ノ ノレブ l la、 13a及び 13b、並び【こ、ノ イノ スバルブ 23を開放した。その後、送液ポンプ 10を稼動させ、内部をパブリングしなが ら、 EC含有原料貯蔵部 9から EC原料をパーティクル測定用配管 14に通液し、バル ブ開閉に伴い発生したパーティクルを除去した。次いで、バイパスライン 26先よりタリ ーンブース下にて、 5個のサンプル瓶にサンプリングした。  At first, this was closed, and Noreb 16, 20 and 27 were closed, and Noreb lla, 13a and 13b were placed side by side. Thereafter, the liquid feed pump 10 was operated, and while publishing the inside, the EC raw material was passed from the EC-containing raw material storage section 9 to the particle measurement pipe 14 to remove particles generated by opening and closing the valve. Next, 5 sample bottles were sampled from the 26th bypass line under the Taline booth.
その後、 EC原料が収容された測定用サンプル瓶 1を、クリーンベンチ内のウォータ 一バス 2に浸し、 60°Cに加温した(図 3参照)。また、同様に導入配管 4、ドレイン配管 6にリボンヒーターを巻き、約 60°Cに加温、保温させた。その後、シリンジサンプラー 5 により、 EC原料を 10ミリリットル Z分の注入スピードにてパーティクル測定装置 3に導 入し、パーティクル数を測定した。その結果を表 3に示す。また、 EC原料のサンプリン ダカゝらパーティクル測定操作まで、 日を変えて実施したところ、パーティクル数は表 4 の結果となった。いずれも、同じ製品タンク (EC含有原料貯蔵部 9)カゝらサンプリング した EC原料であるにもかかわらず、測定値の再現性が乏しぐ変動も大きいため、真 値を決定することができな力つた。従って、充填用容器 33に充填を開始することがで きなかった。 Then, the measurement sample bottle 1 containing the EC raw material is placed in the water in the clean bench. It was immersed in one bath 2 and heated to 60 ° C (see Fig. 3). Similarly, a ribbon heater was wound around the introduction pipe 4 and the drain pipe 6 to heat and keep the temperature at about 60 ° C. Thereafter, the EC raw material was introduced into the particle measuring device 3 with a syringe sampler 5 at an injection speed of 10 ml Z, and the number of particles was measured. The results are shown in Table 3. In addition, the number of particles shown in Table 4 was obtained by changing the date from the start of the EC raw material sampler to particle measurement. In both cases, although the EC product was sampled from the same product tank (EC-containing raw material storage unit 9), the reproducibility of the measured values is large and fluctuations are large, so the true value cannot be determined. I helped. Therefore, the filling of the filling container 33 could not be started.
尚、表 3及び表 4において、 σは標準偏差を表す。また、 CV(%)は変動係数であり 下記の式で算出される。  In Tables 3 and 4, σ represents the standard deviation. CV (%) is a coefficient of variation and is calculated using the following formula.
CV(%) = ( σ Ζパーティクル数の平均値) X 100  CV (%) = (σ Ζ average number of particles) X 100
[表 3] [Table 3]
表 3
Figure imgf000017_0001
Table 3
Figure imgf000017_0001
[表 4]  [Table 4]
表 4
Figure imgf000017_0002
Table 4
Figure imgf000017_0002
比較例 2  Comparative Example 2
クリーンブース下にて、固化防止用添加成分として使用する工業用プロピレンカー ボネート(以下、「PC」という。)を目開き 0. 1 mフィルターで濾過した(サンプル数: 5個)。その後、濾過 PC中のパーティクル数を、比較例 1と同様にして測定した。 次に、比較例 1と同様にして、ノ ツチ測定用 EC (EC原料)のサンプリングを行い、 バイパスライン 26先よりクリーンブース下にて、 5個のパーティクル数測定済み PC入 り容器に、 EC含有量が約 60質量%となるようにサンプリングした。 Under a clean booth, industrial propylene carbonate (hereinafter referred to as “PC”) used as an additive component for preventing solidification was filtered through a 0.1 m filter (number of samples: 5). Thereafter, the number of particles in the filtration PC was measured in the same manner as in Comparative Example 1. Next, in the same way as in Comparative Example 1, EC for notch measurement (EC raw material) was sampled, and 5 particles were measured in the clean booth from the bypass line 26. A sample container was sampled so that the EC content was about 60% by mass.
その後、比較例 1と同様にして、測定用サンプル瓶 1中における、 EC及び PCから なる混合物原料のパーティクル数を測定した。尚、 ECの固化による配管閉塞の心配 がないため、混合物原料、導入配管 4、並びに、ドレイン配管 6の加温は行わなかつ た。  Thereafter, in the same manner as in Comparative Example 1, the number of particles of the mixture raw material consisting of EC and PC in the measurement sample bottle 1 was measured. In addition, since there was no concern about blockage of the piping due to EC solidification, the mixture raw material, the introduction piping 4 and the drain piping 6 were not heated.
EC中のパーティクル数は、混合物原料中の測定値、 PC中の測定値、並びに、混 合物原料中の EC含有割合力も計算により算出し、表 5の結果となった。また、 EC (E C原料)のサンプリングカゝらパーティクル測定操作まで、 日を変えて実施したところ、 パーティクル数は表 6の結果となった。いずれも、同じ製品タンク (EC含有原料貯蔵 部 9)力もサンプリングした EC (EC原料)であるにもかかわらず、測定値の再現性が 乏しぐ変動も大きいため、真値を決定することができな力つた。  The number of particles in the EC was calculated from the measured values in the mixture raw material, the measured values in the PC, and the EC content ratio in the mixed raw material, and the results shown in Table 5 were obtained. In addition, when the EC (EC raw material) sampling and particle measurement operations were carried out at different days, the number of particles was as shown in Table 6. In all cases, the true value can be determined because the reproducibility of the measured values is large even though the same product tank (EC containing raw material storage unit 9) is also sampled EC (EC raw material). I helped.
[表 5]  [Table 5]
表 5 Table 5
Figure imgf000018_0001
Figure imgf000018_0001
[表 6]  [Table 6]
表 6
Figure imgf000018_0002
Table 6
Figure imgf000018_0002
産業上の利用可能性 Industrial applicability
本発明の EC含有材料の充填方法によれば、パーティクルが低減された EC含有材 料を安定して充填用容器に充填、貯蔵が可能であるので、半導体ウェハー、液晶用 基板等の電子デバイス用基板の生産性向上に貢献するば力りでなぐ EC含有原料 中のパーティクル数を測定して 、るときに、 EC含有原料が大気中に放散し環境を汚 染することも防ぐことができる。  According to the EC-containing material filling method of the present invention, an EC-containing material with reduced particles can be stably filled and stored in a container for filling, so that it can be used for electronic devices such as semiconductor wafers and liquid crystal substrates. By measuring the number of particles in the EC-containing material that contributes to improving the productivity of the substrate, it is possible to prevent the EC-containing material from being released into the atmosphere and polluting the environment.

Claims

請求の範囲 The scope of the claims
[1] エチレンカーボネート含有材料を充填用容器に充填する方法であって、  [1] A method of filling an ethylene carbonate-containing material into a filling container,
エチレンカーボネート含有原料をエチレンカーボネート含有原料貯蔵部から充填 用配管に通液し、  The ethylene carbonate-containing raw material is passed through the filling pipe from the ethylene carbonate-containing raw material storage section,
その後、該充填用配管の途中から分岐し且つ加温されたパーティクル測定用配管 に、上記エチレンカーボネート含有原料を連続的にインラインで通液し、上記パーテ イタル測定用配管に接続されたパーティクル測定装置により、上記エチレンカーボネ ート含有原料中のパーティクルの数を測定し、  Thereafter, the ethylene carbonate-containing raw material is continuously passed in-line into the particle measurement pipe branched from the middle of the filling pipe and heated, and the particle measurement apparatus connected to the partition measurement pipe By measuring the number of particles in the ethylene carbonate-containing raw material,
次いで、 0. 2 m以上のパーティクルの数が基準値以下に達した時点で、上記ェ チレンカーボネート含有材料を上記充填用配管の出口から上記充填用容器に充填 することを特徴とするエチレンカーボネート含有材料の充填方法。  Next, when the number of particles of 0.2 m or more reaches a reference value or less, the ethylene carbonate-containing material is filled into the filling container from the outlet of the filling pipe. Material filling method.
[2] 上記パーティクル測定用配管における上記エチレンカーボネート含有原料の流量 の変動が ± 10%以内になるように、上記エチレンカーボネート含有原料の流量を制 御しながら、上記エチレンカーボネート含有原料中のパーティクルの数を測定する請 求項 1に記載のエチレンカーボネート含有材料の充填方法。  [2] While controlling the flow rate of the ethylene carbonate-containing raw material so that the flow rate variation of the ethylene carbonate-containing raw material in the particle measurement pipe is within ± 10%, the particles of the ethylene carbonate-containing raw material The method for filling an ethylene carbonate-containing material according to claim 1, wherein the number is measured.
[3] 上記エチレンカーボネート含有材料の充填を完了した後、上記パーティクル測定 用配管に、不活性ガス及び Z又は水を導入することにより、上記パーティクル測定用 配管内を洗浄し、次いで、該パーティクル測定用配管内のエチレンカーボネート含 有原料を除去した状態で上記不活性ガス又は上記水を保持し、充填再開時には改 めて上記パーティクル測定用配管内にエチレンカーボネート含有原料を通液する請 求項 1に記載のエチレンカーボネート含有材料の充填方法。  [3] After the filling of the ethylene carbonate-containing material is completed, the inside of the particle measurement pipe is washed by introducing an inert gas and Z or water into the particle measurement pipe, and then the particle measurement is performed. The above inert gas or water is retained in a state where the ethylene carbonate-containing raw material in the piping is removed, and when the filling is resumed, the ethylene carbonate-containing raw material is again passed through the particle measuring pipe. The method for filling an ethylene carbonate-containing material according to claim 1.
[4] エチレンカーボネート含有原料を貯蔵するエチレンカーボネート含有原料貯蔵部と 、エチレンカーボネート含有材料を充填するための充填用容器と、上記エチレンカー ボネート含有原料を、該エチレンカーボネート含有原料貯蔵部力ゝら該充填用容器へ 通液する充填用配管と、上記エチレンカーボネート含有原料中のパーティクル数を 測定する装置へ通液する配管であって、上記充填用配管の途中から分岐し且つ加 温されているパーティクル測定用配管と、上記エチレンカーボネート含有原料中のパ 一ティクル数を測定する装置であって、上記パーティクル測定用配管の出口に接続 されたパーティクル測定装置と、を備えることを特徴とする、エチレンカーボネート含 有材料の充填装置。 [4] An ethylene carbonate-containing raw material storage section for storing an ethylene carbonate-containing raw material, a filling container for filling the ethylene carbonate-containing material, and the ethylene carbonate-containing raw material, A filling pipe that passes through the filling container and a pipe that passes through an apparatus for measuring the number of particles in the ethylene carbonate-containing raw material, and is branched from the middle of the filling pipe and heated. A particle measuring pipe and an apparatus for measuring the number of particles in the ethylene carbonate-containing raw material and connected to the outlet of the particle measuring pipe An apparatus for filling ethylene carbonate-containing material.
PCT/JP2006/322189 2005-11-11 2006-11-07 Process and equipment for charging ethylene carbonate containing material WO2007055207A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007544145A JPWO2007055207A1 (en) 2005-11-11 2006-11-07 Filling method and filling apparatus for ethylene carbonate-containing material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005326873 2005-11-11
JP2005-326873 2005-11-11

Publications (1)

Publication Number Publication Date
WO2007055207A1 true WO2007055207A1 (en) 2007-05-18

Family

ID=38023210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322189 WO2007055207A1 (en) 2005-11-11 2006-11-07 Process and equipment for charging ethylene carbonate containing material

Country Status (4)

Country Link
JP (1) JPWO2007055207A1 (en)
CN (1) CN101304921A (en)
TW (1) TW200724253A (en)
WO (1) WO2007055207A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501242A (en) * 2008-09-02 2012-01-19 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング How to remove pollutants
JPWO2011155407A1 (en) * 2010-06-07 2013-08-01 セントラル硝子株式会社 Chemical solution for protective film formation
US9228120B2 (en) 2010-06-07 2016-01-05 Central Glass Company, Limited Liquid chemical for forming protecting film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106733949B (en) * 2016-12-08 2019-11-12 宁波科尼管洁净科技有限公司 Pipe cleaning process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326199A (en) * 2000-05-17 2001-11-22 Hitachi Ltd Manufacturing method of semiconductor integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326199A (en) * 2000-05-17 2001-11-22 Hitachi Ltd Manufacturing method of semiconductor integrated circuit device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501242A (en) * 2008-09-02 2012-01-19 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング How to remove pollutants
JPWO2011155407A1 (en) * 2010-06-07 2013-08-01 セントラル硝子株式会社 Chemical solution for protective film formation
JP5821844B2 (en) * 2010-06-07 2015-11-24 セントラル硝子株式会社 Chemical solution for protective film formation
US9228120B2 (en) 2010-06-07 2016-01-05 Central Glass Company, Limited Liquid chemical for forming protecting film
US9748092B2 (en) 2010-06-07 2017-08-29 Central Glass Company, Limited Liquid chemical for forming protecting film

Also Published As

Publication number Publication date
JPWO2007055207A1 (en) 2009-04-30
TW200724253A (en) 2007-07-01
CN101304921A (en) 2008-11-12

Similar Documents

Publication Publication Date Title
TWI445577B (en) Systems and methods for managing fluids in a processing environment using a liquid ring pump and reclamation system
EP1512457B1 (en) Gas-dissolved water supply
US5645625A (en) Device for removing dissolved gas from a liquid
TWI362059B (en) Photoresist coating solution supply system and method for supplying photoresist coating solution using thereof, and photoresist coating system using thereof
KR101343275B1 (en) Method and Apparatus for Recycling Process Fluids
TW418357B (en) Chemical generator with controlled mixing and concentration feedback and adjustment
JP7371169B2 (en) System and method for producing a conductive liquid comprising deionized water with ammonia gas dissolved therein
TWI418398B (en) Liquid ring pumping and reclamation systems in a processing environment
US8999069B2 (en) Method for producing cleaning water for an electronic material
US6733661B2 (en) Ultrapure water producing apparatus
JPS63153825A (en) Method and apparatus for continuous recycling of extra-pure liquid for washing semiconductor wafer
WO2007055207A1 (en) Process and equipment for charging ethylene carbonate containing material
JP2010253471A (en) Apparatus for producing chemical composition using continuous mixing device
FR2761902A1 (en) ULTRA-PURE CHEMICAL DILUTION SYSTEM FOR THE MICRO-ELECTRONIC INDUSTRY
TW200531152A (en) System and method for controlling composition for lithography process in real time using near infrared spectrometer
TW201243978A (en) Real time liquid particle counter (LPC) end point detection system
TW583135B (en) Pressure vessel systems and methods for dispensing liquid chemical compositions
TWI404670B (en) Process and system for the packaging, transport, storage and withdrawal of liquid crystals
JP2001194362A (en) Method and apparatus for extracting impurities in semi conductor substrate
CN109152990A (en) For conveying the mthods, systems and devices of process gas
CN112795902B (en) Semiconductor processing equipment
JPH1177021A (en) Supplier for hydrogen-containing high-purity water
KR100970842B1 (en) Equipment and method of treating fluid using filtering membrane
TWI224243B (en) Non-water-based resist stripping liquid management apparatus and non-water-based resist stripping liquid management method
JP2018155581A (en) Device and method for measuring oxidizing agent concentration

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680041916.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007544145

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823093

Country of ref document: EP

Kind code of ref document: A1