WO2007055937A1 - Stationary exercise apparatus - Google Patents

Stationary exercise apparatus Download PDF

Info

Publication number
WO2007055937A1
WO2007055937A1 PCT/US2006/042129 US2006042129W WO2007055937A1 WO 2007055937 A1 WO2007055937 A1 WO 2007055937A1 US 2006042129 W US2006042129 W US 2006042129W WO 2007055937 A1 WO2007055937 A1 WO 2007055937A1
Authority
WO
WIPO (PCT)
Prior art keywords
end portion
guider
coupled
exercise apparatus
stationary exercise
Prior art date
Application number
PCT/US2006/042129
Other languages
French (fr)
Inventor
Hung-Mao Liao
Bill W. Baier
Mark J. Kannel
Donald E. Stiemke
Darian P. Johnston
Addison J. Pettis
Original Assignee
Johnson Health Tech. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39580428&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007055937(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from CNB2005101155180A external-priority patent/CN100467090C/en
Priority claimed from CN200610103811XA external-priority patent/CN101112649B/en
Application filed by Johnson Health Tech. Co., Ltd. filed Critical Johnson Health Tech. Co., Ltd.
Priority to DE602006020164T priority Critical patent/DE602006020164D1/en
Priority to EP06826952A priority patent/EP1951384B1/en
Publication of WO2007055937A1 publication Critical patent/WO2007055937A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0002Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms
    • A63B22/001Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms by simultaneously exercising arms and legs, e.g. diagonally in anti-phase
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/22Resisting devices with rotary bodies
    • A63B21/225Resisting devices with rotary bodies with flywheels
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4027Specific exercise interfaces
    • A63B21/4033Handles, pedals, bars or platforms
    • A63B21/4034Handles, pedals, bars or platforms for operation by feet
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0015Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0015Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements
    • A63B22/0023Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements the inclination of the main axis of the movement path being adjustable, e.g. the inclination of an endless band
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/04Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable multiple steps, i.e. more than one step per limb, e.g. steps mounted on endless loops, endless ladders
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/06Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
    • A63B22/0664Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/06Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
    • A63B22/0664Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement
    • A63B2022/067Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement with crank and handles being on opposite sides of the exercising apparatus with respect to the frontal body-plane of the user, e.g. the crank is behind and handles are in front of the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/06Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
    • A63B22/0664Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement
    • A63B2022/0676Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement with crank and handles being on the same side of the exercising apparatus with respect to the frontal body-plane of the user, e.g. crank and handles are in front of the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/20Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising
    • A63B22/201Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising for moving a support element in reciprocating translation, i.e. for sliding back and forth on a guide track
    • A63B22/205Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising for moving a support element in reciprocating translation, i.e. for sliding back and forth on a guide track in a substantially vertical plane, e.g. for exercising against gravity
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/09Adjustable dimensions

Definitions

  • This application is a continuation-in part of Application No. 11/434/541 filed May 15, 2006, the disclosure of which is incorporated by referenced herein.
  • This invention relates to stationary exercise apparatus, and more particularly to stationary exercise apparatus with adjustable components to vary the footpath and enhance exercise intensity of a user.
  • Patent 6,168,552 also discloses a stationary exercise apparatus having a linear track for changing the incline of the stationary exercise apparatus.
  • U.S. Patent 6,440,042 discloses a stationary exercise apparatus having a curved track for adjusting the incline of the stationary exercise apparatus. [0005] Nonetheless, there is still a need for an exercise apparatus that can increase varieties of exercise and enhance exercise intensity of a user.
  • a stationary exercise apparatus in accordance with present invention includes a frame having a base, first and second supporting members coupled to the frame to rotate about an axis, a guider assembly coupled to the base , and first and second pedals coupled to the first and second supporting members. While operating the stationary exercise apparatus, the first and second pedals move along a closed path that can have a variety of shapes to vary the exercise experience and intensity.
  • the present invention provides: a user of the stationary exercise apparatus with a benefit of high exercise intensity; an inclined foot path; a variable stride length; better gluteus exercise; and a more compact and succinct appearance.
  • FIG. 1 is a perspective view of a stationary exercise apparatus according to a preferred embodiment of the present invention.
  • FIG. 2 is a side view of the stationary exercise apparatus of Fig. 1 in a rotating position of a low incline condition
  • FIG. 3 is a top view of the stationary exercise apparatus of Fig. 1;
  • Fig. 4 is a back view of the stationary exercise apparatus of Fig. 1;
  • FIG. 5 is a side view of the stationary exercise apparatus of Fig. 1 in another rotating position of the low incline condition;
  • Fig. 6 is a side view of the stationary exercise apparatus of Fig. 1 in a rotating position of a high incline condition
  • Fig. 7 is a side view of the stationary exercise apparatus of Fig. 1 in another rotating position of the high incline condition demonstrating better gluteus exercise of a user
  • Fig. 8 are toe and heel path profiles of the stationary exercise apparatus of
  • Fig. 1 in a relatively low incline condition
  • Fig. 9 are toe and heel path profiles of the stationary exercise apparatus of
  • Fig. 1 in a relatively high incline condition
  • FIG. 10 is a perspective view of a stationary exercise apparatus according to another embodiment of the present invention.
  • FIG. 11 is a side view of the stationary exercise apparatus of Fig. 10;
  • Fig. 12 is a top view of the stationary exercise apparatus of Fig. 10;
  • Fig. 13 is a back view of the stationary exercise apparatus of Fig. 10;
  • FIG. 14 is a perspective view of a third embodiment of a stationary exercise device in accordance with the present invention.
  • Fig. 15 is a side view of the stationary exercise apparatus of Fig. 14;
  • FIG. 16 is atop view of the stationary exercise apparatus of Fig. 14;
  • FIG. 17 is a left side perspective view of a fourth embodiment of a stationary exercise device inf ⁇ ccordance with the present invention.
  • Fig. 18 is a right side perspective view of the stationary exercise apparatus of
  • Fig. 19 is a left side view of the stationary exercise apparatus of Fig. 17 in a relatively low incline condition
  • Fig. 20 is a left side view of the stationary exercise apparatus of Fig. 17 in a relatively high incline condition;
  • Fig.21 is a left side perspective view of the stationary exercise apparatus of
  • Fig. 22 is a left side view of the guide assembly of the stationary exercise apparatus of Fig. 17 in a relatively low incline condition
  • Fig. 23 is a left side view of the guide assembly of the stationary exercise apparatus of Fig. 17 in a relatively high incline condition
  • Fig. 24 is a left side view of an alternative embodiment of the guide assembly of the stationary exercise apparatus of Fig. 17 in a relatively high incline condition;
  • Fig. 25 are toe and heel path profiles of the stationary exercise apparatus of
  • Fig. 26 are toe and heel path profiles of the stationary exercise apparatus of
  • the stationary exercise apparatus 100 has a frame 110 generally comprising a base 111, a front portion 112, a rear portion 108, and side portions 113.
  • the base 111 is substantially a horizontal frame adapted to stably rest on a ground, floor or other similar supporting surface.
  • the front portion 112 is fixed on the base 111, and preferably includes a post 114 and a standard 115.
  • the side portions 113 are respectively mounted on the left and right sides of the base portion 111.
  • a fixed handle assembly 180 and a console 190 are mounted on or near the upper end of the standard 115. Left and right cranks 132 (Fig.
  • the left and right cranks 132 could be replaced by a pair of disks, flywheels, or other device rotating about the first axis 134.
  • the left and right cranks 132 and the first axis 134 can also be replaced by a pair of closed tracks circulating about a virtual axis, as opposed to an axis defined by a wheel axle.
  • the frame 110 may further comprise a pulley 133 and a resistance member 135 which is controlled by using the console 190 to vary operating resistance for a user.
  • the frame 110 further comprises a moving assembly 141 mounted on the side portions 113 respectively.
  • the moving assembly 141 has first and second moving members 142, in a generally upright position, and a lateral link 143 (Fig. 4) connecting the first and second moving members 142 to one another.
  • the first and second moving members 142 are joined to the side portions 113 via a second axis 144 so that the upper end portions of the first and second moving members 142 can be adjusted by pivoting the first and second moving members 142 about the second axis 144.
  • the preferred embodiment of the adjusting assembly 145 generally includes a motor 146, a screw rod 147, and a screw tube 148.
  • the motor 146 has one end connected to the base portion 111 and the other end connected to one end of the screw rod 147.
  • the other end of the screw rod 117 is connected to one end of the screw tube 148.
  • the other end of the screw tube 148 is connected to the moving assembly 141 so that the effective length of the screw rod 147 and the screw tube 148 combination is adjustable to move the lower end of the first and second moving members 142 fore and aft.
  • the upper ends of the first and second moving members 142 are pivoted in the opposite direction about the second axis 144.
  • the upper end portions of the first and second moving members 142 are adjustable anywhere between a first position as shown in Fig. 2 and a second position as shown in Fig. 6.
  • the adjusting assembly 145 could be any manual or automatic mechanical, electromechanical, hydraulic, or pneumatic device and be within the scope of the invention.
  • the adjusting assembly 145 is illustrated as being mounted on the right side of the exercise device 100, but both moving members 142 are adjusted because a lateral link 143 (Fig. 4) transfers the force to the left side moving member 143.
  • the stationary exercise apparatus 100 comprises first and second swing members 149a/149b, each of the swing members 149a/149b having an upper portion 150 and a lower portion 151.
  • the upper portions 150 of the first and second swing members 149a/149b can be coupled to the frame 110 via a swing axis 159 for swinging motion relative to the frame.
  • the upper portions 150 of the first and second swing members 149a/149b are respectively pivoted to the first and second moving members 142 via the swing axis 159 so that the swing axis 159 can be adjusted forward or backward anywhere between the first position shown in Fig. 2 and the second position shown in Fig. 6.
  • the stationary exercise apparatus 100 comprises first and second supporting members 120a/120b, each of the first and second supporting members 120a/120b having a first end portion 153 and a second end portion 154.
  • the first end portions 153 of the first and second supporting members 120a/120b are respectively coupled to the frame 110 to rotate about the first axis 134.
  • the first end portions 153 of the first and second supporting members 120a/120b are respectively pivoted to the left and right cranks 132 to rotate about the first axis 134.
  • the stationary exercise apparatus 100 further comprises first and second control links 160a/160b respectively pivotally connected to the first and second supporting members 120a/120b.
  • Each of the first and second control links 160a/160b has a first end portion 155 and a second end portion 156.
  • the first end portions 155 of the first and second control links 160a/160b are movably coupled to the frame 110.
  • the first end portions 155 of the first and second control links 160a/160b are respectively connected to first and second handle links 171a/171b. More specifically, each of the first and second handle links 171a/171b has lower and upper end portions.
  • the lower end portions 157 of the first and second handle links 171a/171b are respectively pivoted to the first end portions 155 of the first and second control links 160a/ 160b and the upper end portions 158 of the first and second handle links 171a/171b are pivoted to the frame 110 so that, the first and second handle links 171a/171b can guide the first end portions 155 of the first and second control links 160a/160b in a reciprocating path.
  • the frame 110 can include a pair of tracks allowing the first end portions 155 of the first and second control links 160a/160b movably coupled to the tracks via rollers or sliders.
  • the stationary exercise apparatus 100 includes first and second pedals 150a/150b respectively coupled to the first and second supporting members 120a/120b.
  • the first and second pedals 150a/150b are indirectly connected to the first and second supporting members 120a/120b. More specifically, the first and second pedals 150a/150b are respectively attached to the second end portions 156 of the first and second control links 160a/160b which are pivotally connected to the first and second supporting members 120a/120b.
  • rear end portions 158 of the first and second pedals 150a/150b are directed by the first and second supporting members 120a/120b to move along a second closed path 198 (Figs. 2, 5, and 6) while the first end portions 153 of the first and second supporting members 120a/120b rotating about the first axis 134.
  • the first and second pedals 150a/150b can also be directly attached to the first and second supporting members 120a/ 120b, similar to the teaching of U.S. Patent 5,685,804.
  • the reciprocating path 190 of the first and second swing members 149a/149b has a rear end 192, a front end 194, and a middle point 196.
  • the middle point 196 is substantially the middle point between the rear end 192 and the front end 194.
  • the second end portion of the second support member 120b is being at the rear end 192 of the reciprocating path 190 while the first end of the second supporting member 120b is being approximately at the rearmost position during rotating about the first axis 134.
  • Fig. 2 the reciprocating path 190 of the first and second swing members 149a/149b has a rear end 192, a front end 194, and a middle point 196.
  • the middle point 196 is substantially the middle point between the rear end 192 and the front end 194.
  • the second end portion of the second support member 120b is being at the rear end 192 of the reciprocating path 190 while the first end of the second supporting member 120b is being approximately at the rearmost position during rotating about the first axis 134.
  • the second end of the second support member 120b is being at the front end 194 of the reciprocating path 190 while the first end of the second supporting member 120b is being approximately at the foremost position during rotating about the rotating axis 134.
  • the reciprocating path 190 is substantially arcuate because of the swing motion of the first and second swing members 149a/149b, but the present invention is not limited to an arcuate reciprocating path. It should be noticed that relative positions between the swing axis 159 and the reciprocating path 190 can cause different exercise intensity of the stationary exercise apparatus 100. [0041] More specifically, the positions of the swing axis 159 can determine incline levels of both the reciprocating path 190 and the second closed path 198.
  • the swing axis 159 is substantially vertically above the middle point 196 of the reciprocating path 190, the incline level of both the reciprocating path 190 and the second closed path 198 are substantially horizontal. If the swing axis 159 is positioned rearwardly in view of an orientation of an operating user, the incline levels of both the reciprocating path 190 and the second closed path 198 are increased. A higher incline level of the second closed path 198 creates higher exercise intensity of a user. As shown in Fig. 2, the swing axis 159 is positioned slightly in back of the middle point 196 of the reciprocating path 190 so that the second closed path 198 is slightly inclined and the exercise intensity is enhanced.
  • the swing axis 159 can be re-positioned farther toward the rear. As shown in Fig. 6, the swing axis 159 is in back of the rear end 192 of the reciprocating path 190 and both the reciprocating path 190 and the second closed path 198 are in a relatively high incline level so that the exercise intensity of the stationary exercise apparatus 100 is further increased.
  • the adjusting assembly 145 can be controlled via the console 199 to vary the incline level of the second closed path 198 and to adjust the exercise intensity of the stationary exercise apparatus 100.
  • the upper portions 150 of the first and second swing members 149a/149b are coupled to the moving assembly 141 of the frame 110.
  • the adjusting assembly 145 is connected between the lateral link 143 (Fig. 5) of the moving assembly 141 and the frame 110. Therefore, a user can electronically actuate the adjusting assembly 145 to vary the position of the swing axis 159 and adjust the incline level of the second closed path 198.
  • the (lateral) link 143 could be omitted in some embodiments, not shown in the figures.
  • two adjusting assemblies 145 are directly connected to the first and second moving members 142 respectively.
  • the benefit of omitting the (lateral) link 143 is that the height of the first and second pedal 150a/150b could be lower because of less interference between the (lateral) link 143 and the second end portions of the first and second supporting members 120a/120b.
  • the incline level of the stationary exercise apparatus 100 is not limited to an electronically adjustment. Some manual adjustments, such as pin and holes combinations, levers, cranks and the like are also within the scope of the present invention.
  • Fig. 5 shows the swing axis 159 is positioned to the rear of the middle point 196 of the reciprocating path 190 and the second closed path 198 is in a low incline level.
  • Fig. 6 shows the swing axis 159 is positioned to the rear of the rear end 192 of the reciprocating path 190 and the second closed path 198 is in a higher incline level.
  • the incline level of the second closed path 198 could also be non-adjustable.
  • the side portions 113 of the frame 110 extend upwardly and the first and second swing members 149a/149b are directly pivoted to the side portions 113 of the frame 110.
  • the second closed path 198 when the swing axis 159 is positioned slightly in back of the middle point 196, the second closed path 198 is in the low incline level, not flat, such as shown in Fig. 5.
  • the second closed path 198 When the swing axis 159 is positioned in back of the rear end 192 of the reciprocating path 190, the second closed path 198 would be in the high incline level as shown in Fig. 6.
  • Both the low and high incline level of the stationary exercise apparatus 100 can enhance exercise intensity of a user, comparing to a more horizontal incline level.
  • a user respectively steps on the first and second pedals 150a/150b and grabs on the fixed handle assembly 180 or a pair of moving handles 172a/172b.
  • the first end portions 153 of the first and second supporting members 120a/120b rotate along a substantially arcuate path about the first axis 134 and the second ends of the first and second supporting members 120a/120b move along the reciprocating path 190. Therefore, rear end portions of the first and second pedals 150a/150b move along the second closed path 198.
  • the positions of the swing axis 159 are relative to some geometry parameters of the second closed path 198 and have great effects on the exercise intensity of a user of the stationary exercise apparatus 100.
  • Figs. 8 and 9 show the path information and geometry parameters while the swing axis 159 is slightly in back of the middle point 196 as shown in Fig. 5.
  • Fig. 9 shows the path information and geometry parameters while the swing axis 159 is to the rear of the rear end 192.
  • the second closed path 198 is represented by eight correspondent points, a ⁇ h.
  • the correspondent points a and e are the foremost and rearmost positions of the first ends of the first and second supporting members 120a/120b during rotating about the first axis 134. Each point is separated in an equal angle of forty-five degrees relative to the angle of rotation about the first axis 134.
  • a stride length SL2 constituted by the correspondent points a and e is also one of the geometry parameters of the second closed path 198, in addition to the incline level.
  • the stride length SL2 is substantially the stride length of the heel portion of a user because the second closed path 198 is the moving path of the rear ends of the pedals 150a/150b and the heel portion of a user is approximate to the rear ends of the pedals 150a/150b. Stride length is also relative to exercise intensity. A longer stride length generally results in higher exercise intensity.
  • a third closed path 197 is the moving path of the front ends of the pedals 150a/150b.
  • a stride length SL3 may also substantially represent the stride length of the toe portion of a user.
  • Fig. 8 shows the orientation of the pedals 150a/150b.
  • Fig. 7 and 9 show the stride length SL2, stride length SL3, pedal orientation 151, second closed path 198, and third closed path 197 while the swing axis 159 is in back of the rear end 192 of the arcuate path 190. As shown in Fig.
  • the first and second control links 160a/160b are respectively pivoted to the first and second supporting members 120a/120b via pivot axes 161.
  • the incline level of the second closed path 198 of Fig. 9 is increased by 17 degrees compared to the incline level of Fig. 8, but the incline level of the third closed path 197 of Fig. 9 is only increased by 11 degrees. That is, the incline level of the second closed path 198 is increased more than the incline level of the third closed path 197 while the swing axis 159 is being adjusted backwardly.
  • the stride length SL2 of Fig. 9 is increased by about 15 percent compared to the stride length SL2 as shown in Fig. 8, but the stride length SL3 of Fig.
  • a stationary exercise apparatus 200 comprises a frame 210 having a base portion 211 adapted to rest on a surface.
  • the frame 210 further comprises a front portion 212 extending upwardly from the base portion 211, a side portion 214 extending longitudinally rearward from the front portion 212, and a rear portion 213 connecting the side portion 214 and the base portion 211.
  • the stationary exercise apparatus 200 further has first and second supporting members 220, each of the supporting members 220 having a first end portion and a second end portion. The first end portions of the first and second supporting members 220 are respectively pivoted to a pair of rotating members 233 in order to rotate about a first axis 234.
  • the second end portions of the first and second supporting members 220 are respectively connected to the lower portions of first and second swing members 249.
  • the upper portions of the first and second swing members 249 are coupled to the side portion 214 of the frame 210 via a swing axis 259. More specifically, the upper portions of the first and second swing members 249 are pivotally connected to left and right moving assemblies 241.
  • Each of the left and right moving assemblies 241 respectively comprises third and fourth moving members 242.
  • Each of the third and fourth moving members 242 is connected to left and right adjusting assemblies 245 (Fig. 11) so that the moving assemblies 241 could be driven by the adjusting assemblies 245.
  • Each of the left and right moving assemblies 241 further includes an optional roller 243.
  • the rollers 243 are respectively engaged on the side portion 214 for increasing stability and smoothness of movement of the moving assemblies 241 along the side portion 214.
  • each of the adjusting assemblies 245 includes a motor 246 mounted on one portion of the frame 210, a screw rod 247, and a screw member 248.
  • the screw rod 247 has one end connected to the motor 246 and a portion adapted for movement of the screw member 248.
  • the adjusting assembly 245 could be any manual or automatic mechanical, electromechanical, hydraulic, or pneumatic device and be within the scope of the invention.
  • the upper “ " portions of the first and second swing members 249 are respectively pivoted to the third and fourth moving members 242. But, the upper portions of the first and second swing members 249 can also be directly pivoted to the screw members 248 of the adjusting assemblies 245. Therefore, actuating of the motor 246 can cause rotation of the screw rod 247 to change the positions of both the third and fourth moving member 242 and the swing axis 259.
  • the stationary exercise apparatus 200 also comprises a pair of pedals 250 respectively coupled to the supporting members 220.
  • the stationary exercise apparatus 200 also has a pair of control links 260 respectively pivoted to the supporting members 220 and a pair of handle links 271 coupled to the frame 210 for guiding the control links 260.
  • Figs. 14 through 16 illustrate an embodiment similar to the embodiment illustrated in Figs. 1 though 9.
  • This third embodiment of a stationary exercise apparatus 300 includes a frame 310 having a base 311, a front portion 312, a rear portion 308, and side portions 313.
  • the frame 310 may also include a post 314 and a standard 315.
  • a handle assembly 380 and a console 390 are also provided as described above in relation to the first and second embodiments.
  • the third embodiment of the exercise apparatus 300 includes rotating members 333 that rotate about a first axis 334, similar to those described and illustrated in relation to the second embodiment 200 (Figs. 10 through 13).
  • An optional resistance member 135 is also provided.
  • the third embodiment of the exercise apparatus 300 also includes first and second supporting members 320a/320b, each having a first end portion 353 rotatably joined to the rotating members 333 and a second end portion 354.
  • the second end portions 354 are respectively joined to swing members 349a/349b.
  • the swing members 349a/349b are joined to the frame side portions 313 in a manner substantially similar to that described above in relation to the first embodiment 100.
  • a moving assembly 341 including first and second moving member 342 that are defined by an upper portion 343 and a lower portion 355 joined at an elbow 356, so that the upper portion 343 and the lower portion 355 are at an angle to one another as illustrated.
  • the first and second moving members 342 are joined to the side portions 313 via a second axis 344 to pivot as described above.
  • An optional adjusting assembly 345 is provided on each side of this embodiment.
  • the adjusting assembly 345 activates the moving assembly 341 about the second axis 344.
  • the adjusting assembly includes a motor 346, a screw rod 347, and a threaded nut, sleeve, or tube 348.
  • the motor 346 is connected to the base 311 and to the screw rod 347.
  • the screw rod 347 is generally upright and angled slightly forward.
  • the screw rod 347 is threaded through the tube 348, which is pivotally mounted on the lower portion 355 of the moving members 342.
  • the motor 346 can be activated automatically or manually from the console 390 to rotate the screw rod 347, which in turn raises or lowers the tube 348 along the screw rod 347.
  • the moving member 342 pivots about the second axis 344.
  • a manually operated adjusting assembly could also be used, as described above.
  • the swing members 349a/349b are illustrated as arcuate in shape so that the support members 320a/320b need not extend rearwardly as far as those illustrated in previous embodiments. Otherwise, the operation of the swing member 349a/349b and the support members 320a/320b are essentially as described above.
  • First and second pedals 350a/350b are respectfully coupled to the first and second supporting members 320a/320b, either directly or indirectly.
  • first and second control links 360a/360b which are pivotally connected to the support members 320a/320b.
  • the pedals 350a/350b are joined to the control links 360a/360b and move in a second closed path when the support members 320a/320b move as described above.
  • Handle links 37 la/371b are illustrated for this embodiment, and as with the above embodiments, may be substituted by tracks, rollers, sliders, and the like to provide support for the moving first end portions of the control links 360a/360b. Any such device is referred to herein as a "handle link" regardless of whether it actually serves as a handle for a user.
  • Figs. 17 through 21 illustrate an embodiment having substantial portion similar to the embodiments illustrated in Figs. 1 though 16.
  • This fourth embodiment of a stationary exercise apparatus 400 includes a frame 410 having a base and a rear portion 425 (Fig. 20).
  • the frame 410 may also include a front portion having a post 412 and a standard 413.
  • the fourth embodiment of the exercise apparatus 400 includes rotating members 418 that rotate about a first axis 441, similar to those described and illustrated in relation to the second embodiment 200 (Figs. 10 through 13).
  • An optional resistance assembly 450 is also provided.
  • the fourth embodiment of the exercise apparatus 400 also includes first and second supporting members 460, each having a first end portion 461 rotatably joined to the rotating members 418 and a second end portion 463.
  • the second end portion is coupled with some rollers or sliders for reciprocating movement on a surface such as a track surface.
  • the second end portions 463 of the first and second supporting members 460 are respectively reciprocated on a guider assembly 423 which is coupled to the rear portion 425 of the base 411. There is more detail description of the guider assembly 423 hereinafter.
  • the guider assembly 423 comprises a guider 420 coupled to the rear portion 425 of the base 411 and a moving member 434 movably coupled between the guider 420 and the base 411.
  • the guider 420 has a first end portion 421, and a second end portion 422 pivotally connected to the base 411.
  • a reciprocating path 426 is defined between the first and second end portions 421/422 of the guider 420.
  • the guider 420 is a linear track to define the reciprocating path 426 substantially parallel to the surface of the guider 420.
  • the guider 420 could be a curved track (not shown), the reciprocating path 426 is a virtual linear line connecting first and second ends of the curved track.
  • An incline angle 428 is defined by the reciprocating path 426 and the base 411 in both linear and curved track embodiments. More specifically, the incline angle 428 is defined by the reciprocating path 426 and the top horizontal surface of the base 411, or a ground surface on which the base 411 rests.
  • Figs. 22 through 24 illustrate detailed views of the guider assembly 423 and an alternative embodiment of the guider assembly 423.
  • the guider 420 is in a relatively low incline condition and the incline angle 428 defined by the guider 420 and the base 411 is about 5 degrees.
  • the moving member 434 has a first end portion 436 pivotally connected to the base 411, and a second end portion 437 movably coupled to the guider 420.
  • the second end portion 437 of the moving member 434 is selectively coupled to the guider 420 close to a middle position between the first and second end portions 421/422 of the guider 420.
  • the moving member 434 is inclined further upwardly, and the incline angle 428 is increased to about 22 degrees.
  • the exercise apparatus 400 is in a relatively high incline condition when the incline angle 428 is about 22 degrees.
  • An optional adjusting assembly 430 is provided under the guider 420 in the embodiment shown in Figs. 22 and 23.
  • the adjusting assembly 430 activates the moving member 434 electronically to vary the incline angle 428.
  • the adjusting assembly 430 includes a motor 432, a screw rod 431, and a threaded nut, sleeve, or tube 433.
  • the motor 432 is connected to the screw rod 431 for driving the screw rod 431.
  • the screw rod 431 is mounted under the guider 420 in an orientation generally parallel to the reciprocating path 426.
  • the screw rod 431 is threaded through the tube 433, which is pivotally mounted on the second end portion 437 of the moving member 434.
  • the motor 432 can be activated automatically or manually from the console 414 to rotate the screw rod 431, which in turn pushes or pulls the tube 433 along the screw rod 431.
  • the second end portion 437 of the moving member 434 is movably coupled between the guider 420 and the base 411.
  • a manually operated adjusting assembly could also be used, as described above.
  • the guider assembly 423' shown in Fig. 24 is an alternative embodiment of the guider assembly 423 shown in Figs. 22 and 23.
  • the guider assembly 423 ' also includes a guider 420' coupled to the base 411, and a moving member 434' having a first end portion 436' movably coupled to the base 411, and a second end portion 437' pivotally connected to the guider 420'.
  • the first end portion 436' of the moving member 434' is selectively coupled to the base 411 and the second end portion 437' is pivotally connected to the guider 420' close to a middle position of the guider 420'.
  • the middle position is between first second end portions 4217422' of the guider 420'.
  • adjusting assembly 430' mounted on the base 411. Similar to what has been described previously; the adjusting assembly 430' can also activate the moving member 434' to vary the incline angle 428.
  • the guider assembly 423' shown in Figs. 24.
  • the screw rod 431 ' could be replaced by a bracket mounting on the base 411 with several receiving notches positioned substantially horizontally. Then, the first end portion 436' of the moving member 434' could selectively be coupled to one of the receiving notches by manual operation of a user in order to vary the incline angle 428.
  • the moving member 434' comprises a pair of telescopic tubes which can be contracted or expanded to each other when the incline angle 428 is decreased or increased.
  • both first and second end portions 4367437' of the moving member 434' are pivotally connected to the base 411 and the guider 420'.
  • the telescopic tubes could be selectively locked to each other for different incline angles of the guider 420'.
  • the embodiments shown in Figs. 17 through 24 further have a following advantages. Substantial portions of both the moving member 434 and adjusting assembly 430 could be hidden by the base 411 and guider 420 when the incline angle 428 is in the condition of Figs. 19 or 22, the relative low incline condition. Therefore, appearance of the stationary exercise apparatus 400 is more compact and succinct in the relative low incline condition. Further, the positioning of the adjusting assembly 430 under the guider 420 permits a more compact appearance, while allowing for efficient transfer of mechanical force from the adjusting assembly 430 to the guider 420. Also, in a preferred embodiment, the base 411 can include an access hatch (not illustrated) to permit ready access to the adjusting assembly 430 and the guider 420.
  • first and second pedals 490 are respectfully coupled to the first and second supporting members 460, either directly or indirectly • as described above.
  • Each of the pedals 490 respectively has a front end portion 491 and a rear end portion 492.
  • first and second control links 480 which are pivotally connected to the supporting members 460.
  • the pedals 490 are joined to the control links 480 and move in a second closed loop path 498 and a third closed loop path 497 when the supporting members 460 move as described above.
  • Handle links 470 are illustrated for this embodiment, and as with the above embodiments, may be substituted by tracks, rollers, sliders, and the like to provide support for the moving first end portions 481 of the control links 480. Any such device is referred to herein as a "handle link" regardless of whether it actually serves as a handle for a user.
  • Figs. 25 and 26 are path profiles and information of the stationary exercise apparatus 400 when the guider 420 is in the relatively low and high incline conditions.
  • the points a and e also correspond to the foremost and rearmost positions when the first ends of the first and second supporting members 460 are rotating about the first axis 441.
  • second and third closed loop paths 498/497 respectively represent the moving paths of the heel and toe portions of a user of the stationary exercise apparatus 400; stride lengths SL4 and SL5 respectively represent the stride lengths of the heel and toe portions of a user of the stationary exercise apparatus 400 similar to the description of Fig. 9.
  • Stride length is relative to exercise intensity and a longer stride length generally results in higher exercise intensity.
  • Fig. 25 and 26 are path profiles and information of the stationary exercise apparatus 400 when the guider 420 is in the relatively low and high incline conditions.
  • the points a and e also correspond to the foremost and rearmost positions when the first ends of the first and second supporting members 460 are rotating about the first
  • the stride length SL4 is substantially same as the stride length SL5. But, comparing the stride length SL4 with the stride length SL5 in Fig. 26, the stride length SL4 is longer than the stride length SL5 when the stationary exercise apparatus 400 is in the relatively high incline condition. That is, the length of the stride length SL4 is greater than the length of the stride length SL5 when the guider 420 is adjusted from a relatively low incline condition to a relatively high incline condition. Therefore, the heel portion and gluteus portion of a user are having higher exercise intensity when the stationary exercise apparatus 400 is in the relatively high incline condition.
  • the orientation of the pedals 490 can be simply illustrated by a pedal orientation 451 as shown in Figs. 25 and 26, a connection between the front and rear ends of the pedals 490.
  • One important character of the pedal orientation 451, in the foremost position a, is that the steepness of the pedal orientation 451 is increased forwardly when the guider 420 is adjusted from the relatively low incline condition to the relative high incline condition. That is, in the foremost position a, the rear end portion 492 is moved upwardly at a faster rate than the front end portion 491 of the pedals 490 when the guider 420 is adjusted from the relatively low incline condition to the relatively high incline condition.
  • the rear end portion 492 is moved higher than the front end portion 491 of the pedals 490 when the incline angle 428 is increased. Since the steepness, in the foremost position a, of the pedal orientation 451 is more obvious in the relatively high incline condition, the heel portion of a user is elevated more than the toe portion of a user, therefore the gluteus of the user could be more fully exercised as described above.
  • the previously described embodiments of the present invention have many advantages, including: (a) to provide a user of the stationary exercise apparatus with a benefit of high exercise intensity; (b) to provide a user of the stationary exercise apparatus with a benefit of an inclined foot path; (c) to provide a user of the stationary exercise apparatus with a benefit of an increased stride length; and (d) to provide a user of the stationary exercise apparatus with a benefit of better gluteus exercise; (e) to provide the stationary exercise apparatus with a more compact and succinct appearance.
  • the present invention does not require that all the advantageous features and all the advantages need to be incorporated into every embodiment thereof.

Abstract

A stationary exercise device having variable footpaths is disclosed. The exercise device includes a frame, a pair of supporting members that have a first end to rotate about an axis and a second end to move along a reciprocating path, a pair of pedals joined to the supporting members, and a guider assembly for adjusting an incline angle of the reciprocating path.

Description

STATIONARY EXERCISE APPARATUS
BACKGROUND OF THE INVENTION
[0001] This application is a continuation-in part of Application No. 11/434/541 filed May 15, 2006, the disclosure of which is incorporated by referenced herein. [0002] This invention relates to stationary exercise apparatus, and more particularly to stationary exercise apparatus with adjustable components to vary the footpath and enhance exercise intensity of a user.
[0003] Stationary exercise apparatus have been popular for several decades. Early exercise apparatus typically had a single mode of operation, and exercise intensity was varied by increasing apparatus speed. More recently, enhancing exercise intensity in some apparatus has been made by adjusting the moving path of user's feet, such as by adjusting the incline or stride length of user's foot path. [0004] U.S. Patent 5,685,804 discloses two mechanisms for adjusting the incline of a stationary exercise apparatus, one of them having a linear track which can be adjusted and the other having a length adjusting swing arm . The swing arm lower end can be moved upwardly for a high incline foot path. U.S. Patent 6,168,552 also discloses a stationary exercise apparatus having a linear track for changing the incline of the stationary exercise apparatus. U.S. Patent 6,440,042 discloses a stationary exercise apparatus having a curved track for adjusting the incline of the stationary exercise apparatus. [0005] Nonetheless, there is still a need for an exercise apparatus that can increase varieties of exercise and enhance exercise intensity of a user. SUMMARY OF THE INVENTION
[0006] A stationary exercise apparatus in accordance with present invention includes a frame having a base, first and second supporting members coupled to the frame to rotate about an axis, a guider assembly coupled to the base , and first and second pedals coupled to the first and second supporting members. While operating the stationary exercise apparatus, the first and second pedals move along a closed path that can have a variety of shapes to vary the exercise experience and intensity. The present invention provides: a user of the stationary exercise apparatus with a benefit of high exercise intensity; an inclined foot path; a variable stride length; better gluteus exercise; and a more compact and succinct appearance.
BRIEF DESCRIPTION OF THE DRAWINGS
I [0007] Fig. 1 is a perspective view of a stationary exercise apparatus according to a preferred embodiment of the present invention;
[0008] Fig. 2 is a side view of the stationary exercise apparatus of Fig. 1 in a rotating position of a low incline condition;
[0009] Fig. 3 is a top view of the stationary exercise apparatus of Fig. 1;
[0010] Fig. 4 is a back view of the stationary exercise apparatus of Fig. 1;
[0011] Fig. 5 is a side view of the stationary exercise apparatus of Fig. 1 in another rotating position of the low incline condition;
[0012] Fig. 6 is a side view of the stationary exercise apparatus of Fig. 1 in a rotating position of a high incline condition; [0013] Fig. 7 is a side view of the stationary exercise apparatus of Fig. 1 in another rotating position of the high incline condition demonstrating better gluteus exercise of a user;
[0014] Fig. 8 are toe and heel path profiles of the stationary exercise apparatus of
Fig. 1 in a relatively low incline condition;
[0015] Fig. 9 are toe and heel path profiles of the stationary exercise apparatus of
Fig. 1 in a relatively high incline condition;
[0016] Fig. 10 is a perspective view of a stationary exercise apparatus according to another embodiment of the present invention;
[0017] Fig. 11 is a side view of the stationary exercise apparatus of Fig. 10;
[0018] Fig. 12 is a top view of the stationary exercise apparatus of Fig. 10;
[0019] Fig. 13 is a back view of the stationary exercise apparatus of Fig. 10;
[0020] Fig. 14 is a perspective view of a third embodiment of a stationary exercise device in accordance with the present invention;
[0021] Fig. 15 is a side view of the stationary exercise apparatus of Fig. 14;
[0022] Fig. 16 is atop view of the stationary exercise apparatus of Fig. 14;
[0023] Fig. 17 is a left side perspective view of a fourth embodiment of a stationary exercise device inføccordance with the present invention;
[0024] Fig. 18 is a right side perspective view of the stationary exercise apparatus of
Fig. 17;
[0025] Fig. 19 is a left side view of the stationary exercise apparatus of Fig. 17 in a relatively low incline condition;
[0026] Fig. 20 is a left side view of the stationary exercise apparatus of Fig. 17 in a relatively high incline condition; [0027] Fig.21 is a left side perspective view of the stationary exercise apparatus of
Fig. 17 in a relatively high incline condition;
[0028] Fig. 22 is a left side view of the guide assembly of the stationary exercise apparatus of Fig. 17 in a relatively low incline condition;
[0029] Fig. 23 is a left side view of the guide assembly of the stationary exercise apparatus of Fig. 17 in a relatively high incline condition;
[0030] Fig. 24 is a left side view of an alternative embodiment of the guide assembly of the stationary exercise apparatus of Fig. 17 in a relatively high incline condition;
[0031] Fig. 25 are toe and heel path profiles of the stationary exercise apparatus of
Fig. 17 in a relatively low incline condition; and
[0032] Fig. 26 are toe and heel path profiles of the stationary exercise apparatus of
Fig. 17 in a relatively high incline condition.
DESCRIPTION OF THE PREFERRED EMBODIMENTS [0033] Referring now specifically to the figures, in which identical or similar parts are designated by the same reference numerals throughout, a detailed description of the present invention is given. It should be understood that the following detailed description relates to the best presently known embodiment of the invention. However, the present invention can assume numerous other embodiments, as will become apparent to those skilled in the art, without departing from the appended claims.
[0034] Now referring to Fig. 1, a stationary exercise apparatus 100 is illustrated therein. The stationary exercise apparatus 100 has a frame 110 generally comprising a base 111, a front portion 112, a rear portion 108, and side portions 113. The base 111 is substantially a horizontal frame adapted to stably rest on a ground, floor or other similar supporting surface. The front portion 112 is fixed on the base 111, and preferably includes a post 114 and a standard 115. The side portions 113 are respectively mounted on the left and right sides of the base portion 111. A fixed handle assembly 180 and a console 190 are mounted on or near the upper end of the standard 115. Left and right cranks 132 (Fig. 2) are each pivoted to one portion of the frame 110 defining a first axis 134 and in the illustrated embodiment, the first axis 134 is at or near the front portion of the frame 110. The left and right cranks 132 could be replaced by a pair of disks, flywheels, or other device rotating about the first axis 134. The left and right cranks 132 and the first axis 134 can also be replaced by a pair of closed tracks circulating about a virtual axis, as opposed to an axis defined by a wheel axle. The frame 110 may further comprise a pulley 133 and a resistance member 135 which is controlled by using the console 190 to vary operating resistance for a user.
[0035] Now referring to Figs. 1 and 2, the frame 110 further comprises a moving assembly 141 mounted on the side portions 113 respectively. In a preferred embodiment of the present invention as shown in Fig. 1, the moving assembly 141 has first and second moving members 142, in a generally upright position, and a lateral link 143 (Fig. 4) connecting the first and second moving members 142 to one another. The first and second moving members 142 are joined to the side portions 113 via a second axis 144 so that the upper end portions of the first and second moving members 142 can be adjusted by pivoting the first and second moving members 142 about the second axis 144. There is an optional adjusting assembly 145 mounted between the moving assembly 141 and the frame 110 for adjusting the moving assembly 141 about the second axis 144. The preferred embodiment of the adjusting assembly 145 generally includes a motor 146, a screw rod 147, and a screw tube 148. The motor 146 has one end connected to the base portion 111 and the other end connected to one end of the screw rod 147. The other end of the screw rod 117 is connected to one end of the screw tube 148. The other end of the screw tube 148 is connected to the moving assembly 141 so that the effective length of the screw rod 147 and the screw tube 148 combination is adjustable to move the lower end of the first and second moving members 142 fore and aft. As the lower ends move, the upper ends of the first and second moving members 142 are pivoted in the opposite direction about the second axis 144. The upper end portions of the first and second moving members 142 are adjustable anywhere between a first position as shown in Fig. 2 and a second position as shown in Fig. 6. Although described and illustrated as a screw adjusting mechanism, the adjusting assembly 145 could be any manual or automatic mechanical, electromechanical, hydraulic, or pneumatic device and be within the scope of the invention. The adjusting assembly 145 is illustrated as being mounted on the right side of the exercise device 100, but both moving members 142 are adjusted because a lateral link 143 (Fig. 4) transfers the force to the left side moving member 143.
[0036] Referring to Figs. 2 and 4, the stationary exercise apparatus 100 comprises first and second swing members 149a/149b, each of the swing members 149a/149b having an upper portion 150 and a lower portion 151. The upper portions 150 of the first and second swing members 149a/149b can be coupled to the frame 110 via a swing axis 159 for swinging motion relative to the frame. In the preferred embodiment of the present invention, the upper portions 150 of the first and second swing members 149a/149b are respectively pivoted to the first and second moving members 142 via the swing axis 159 so that the swing axis 159 can be adjusted forward or backward anywhere between the first position shown in Fig. 2 and the second position shown in Fig. 6. Different positions of the swing axis 159 cause different exercise intensity of the stationary exercise apparatus 100. [0037] Now referring to Figs. 2, 4 and 5, the stationary exercise apparatus 100 comprises first and second supporting members 120a/120b, each of the first and second supporting members 120a/120b having a first end portion 153 and a second end portion 154. The first end portions 153 of the first and second supporting members 120a/120b are respectively coupled to the frame 110 to rotate about the first axis 134. In the preferred embodiment of the present invention, the first end portions 153 of the first and second supporting members 120a/120b are respectively pivoted to the left and right cranks 132 to rotate about the first axis 134. As mentioned previously, the left and right cranks 132 may be replaced by flywheels or disks and the like. The second end portions 154 of the first and second supporting members 120a/120b are respectively pivoted to the lower portions of the first and second swing members 149a/149b so that the second end portions 154 of the first and second supporting members 120a/120b may be moved along a reciprocating path 190 (as shown in Figs. 2 and 5) while the first end portions 153 of the first and second supporting members 120a/120b are being rotated about the first axis 134. [0038] Referring to Figs. 1 through 6, the stationary exercise apparatus 100 further comprises first and second control links 160a/160b respectively pivotally connected to the first and second supporting members 120a/120b. Each of the first and second control links 160a/160b has a first end portion 155 and a second end portion 156. The first end portions 155 of the first and second control links 160a/160b are movably coupled to the frame 110. In the preferred embodiment of the present invention, the first end portions 155 of the first and second control links 160a/160b are respectively connected to first and second handle links 171a/171b. More specifically, each of the first and second handle links 171a/171b has lower and upper end portions. The lower end portions 157 of the first and second handle links 171a/171b are respectively pivoted to the first end portions 155 of the first and second control links 160a/ 160b and the upper end portions 158 of the first and second handle links 171a/171b are pivoted to the frame 110 so that, the first and second handle links 171a/171b can guide the first end portions 155 of the first and second control links 160a/160b in a reciprocating path. There are several alternatives of performing the same function of the first and second handle links 171a/171b. For example, the frame 110 can include a pair of tracks allowing the first end portions 155 of the first and second control links 160a/160b movably coupled to the tracks via rollers or sliders. For simplicity, all such alternatives are referred to herein as "handle links" even when they do not serve as handles for the user. [0039] Still referring to Figs. 1 through 6, the stationary exercise apparatus 100 includes first and second pedals 150a/150b respectively coupled to the first and second supporting members 120a/120b. In the preferred embodiment of the present invention, the first and second pedals 150a/150b are indirectly connected to the first and second supporting members 120a/120b. More specifically, the first and second pedals 150a/150b are respectively attached to the second end portions 156 of the first and second control links 160a/160b which are pivotally connected to the first and second supporting members 120a/120b. Therefore, rear end portions 158 of the first and second pedals 150a/150b are directed by the first and second supporting members 120a/120b to move along a second closed path 198 (Figs. 2, 5, and 6) while the first end portions 153 of the first and second supporting members 120a/120b rotating about the first axis 134. The first and second pedals 150a/150b can also be directly attached to the first and second supporting members 120a/ 120b, similar to the teaching of U.S. Patent 5,685,804. It should be noticed that both indirect and direct connections between the first and second pedals 150a/150b and the first and second supporting members 120a/120b can cause the rear end portions of the first and second pedals 150a/150b to move along similar closed paths, and are within the scope of the present invention.
[0040] Now referring to Figs. 2 and 5, the reciprocating path 190 of the first and second swing members 149a/149b has a rear end 192, a front end 194, and a middle point 196. The middle point 196 is substantially the middle point between the rear end 192 and the front end 194. As shown in Fig. 2, the second end portion of the second support member 120b is being at the rear end 192 of the reciprocating path 190 while the first end of the second supporting member 120b is being approximately at the rearmost position during rotating about the first axis 134. As also shown in Fig. 5, the second end of the second support member 120b is being at the front end 194 of the reciprocating path 190 while the first end of the second supporting member 120b is being approximately at the foremost position during rotating about the rotating axis 134. In the preferred embodiment of the present invention, the reciprocating path 190 is substantially arcuate because of the swing motion of the first and second swing members 149a/149b, but the present invention is not limited to an arcuate reciprocating path. It should be noticed that relative positions between the swing axis 159 and the reciprocating path 190 can cause different exercise intensity of the stationary exercise apparatus 100. [0041] More specifically, the positions of the swing axis 159 can determine incline levels of both the reciprocating path 190 and the second closed path 198. If the swing axis 159 is substantially vertically above the middle point 196 of the reciprocating path 190, the incline level of both the reciprocating path 190 and the second closed path 198 are substantially horizontal. If the swing axis 159 is positioned rearwardly in view of an orientation of an operating user, the incline levels of both the reciprocating path 190 and the second closed path 198 are increased. A higher incline level of the second closed path 198 creates higher exercise intensity of a user. As shown in Fig. 2, the swing axis 159 is positioned slightly in back of the middle point 196 of the reciprocating path 190 so that the second closed path 198 is slightly inclined and the exercise intensity is enhanced. In order to obtain higher exercise intensity, the swing axis 159 can be re-positioned farther toward the rear. As shown in Fig. 6, the swing axis 159 is in back of the rear end 192 of the reciprocating path 190 and both the reciprocating path 190 and the second closed path 198 are in a relatively high incline level so that the exercise intensity of the stationary exercise apparatus 100 is further increased. [0042] In a preferred embodiment of the present invention, the adjusting assembly 145 can be controlled via the console 199 to vary the incline level of the second closed path 198 and to adjust the exercise intensity of the stationary exercise apparatus 100. As mentioned previously, the upper portions 150 of the first and second swing members 149a/149b are coupled to the moving assembly 141 of the frame 110. The adjusting assembly 145 is connected between the lateral link 143 (Fig. 5) of the moving assembly 141 and the frame 110. Therefore, a user can electronically actuate the adjusting assembly 145 to vary the position of the swing axis 159 and adjust the incline level of the second closed path 198. It should be noted that the (lateral) link 143 could be omitted in some embodiments, not shown in the figures. For example, two adjusting assemblies 145 are directly connected to the first and second moving members 142 respectively. The benefit of omitting the (lateral) link 143 is that the height of the first and second pedal 150a/150b could be lower because of less interference between the (lateral) link 143 and the second end portions of the first and second supporting members 120a/120b. A user may feel more comfortable in a lower operating position. It should also be noticed that the incline level of the stationary exercise apparatus 100 is not limited to an electronically adjustment. Some manual adjustments, such as pin and holes combinations, levers, cranks and the like are also within the scope of the present invention.
[0043] Fig. 5 shows the swing axis 159 is positioned to the rear of the middle point 196 of the reciprocating path 190 and the second closed path 198 is in a low incline level. Fig. 6 shows the swing axis 159 is positioned to the rear of the rear end 192 of the reciprocating path 190 and the second closed path 198 is in a higher incline level. In other embodiments of the present invention, the incline level of the second closed path 198 could also be non-adjustable. For example, the side portions 113 of the frame 110 extend upwardly and the first and second swing members 149a/149b are directly pivoted to the side portions 113 of the frame 110. In the non-adjustable embodiments, when the swing axis 159 is positioned slightly in back of the middle point 196, the second closed path 198 is in the low incline level, not flat, such as shown in Fig. 5. When the swing axis 159 is positioned in back of the rear end 192 of the reciprocating path 190, the second closed path 198 would be in the high incline level as shown in Fig. 6. Both the low and high incline level of the stationary exercise apparatus 100 can enhance exercise intensity of a user, comparing to a more horizontal incline level.
[0044] To operate the stationary exercise apparatus 100, a user respectively steps on the first and second pedals 150a/150b and grabs on the fixed handle assembly 180 or a pair of moving handles 172a/172b. The first end portions 153 of the first and second supporting members 120a/120b rotate along a substantially arcuate path about the first axis 134 and the second ends of the first and second supporting members 120a/120b move along the reciprocating path 190. Therefore, rear end portions of the first and second pedals 150a/150b move along the second closed path 198. As mentioned previously, the positions of the swing axis 159 are relative to some geometry parameters of the second closed path 198 and have great effects on the exercise intensity of a user of the stationary exercise apparatus 100. [0045] To better present the relationship between the swing axis 159 and the second closed path 198, separated path information is illustrated in Figs. 8 and 9. Fig. 8 shows the path information and geometry parameters while the swing axis 159 is slightly in back of the middle point 196 as shown in Fig. 5. Fig. 9 shows the path information and geometry parameters while the swing axis 159 is to the rear of the rear end 192.
[0046] Now referring to Fig. 8 in more detail, the second closed path 198 is represented by eight correspondent points, a ~ h. The correspondent points a and e are the foremost and rearmost positions of the first ends of the first and second supporting members 120a/120b during rotating about the first axis 134. Each point is separated in an equal angle of forty-five degrees relative to the angle of rotation about the first axis 134. A stride length SL2 constituted by the correspondent points a and e is also one of the geometry parameters of the second closed path 198, in addition to the incline level. The stride length SL2 is substantially the stride length of the heel portion of a user because the second closed path 198 is the moving path of the rear ends of the pedals 150a/150b and the heel portion of a user is approximate to the rear ends of the pedals 150a/150b. Stride length is also relative to exercise intensity. A longer stride length generally results in higher exercise intensity. A third closed path 197 is the moving path of the front ends of the pedals 150a/150b. A stride length SL3 may also substantially represent the stride length of the toe portion of a user. Because the closed paths 198 and 197 are moving paths of the rear and front ends of the pedals 150a/150b, the orientation of the pedals 150a/150b can be illustrated by a pedal orientation 151 as shown in Fig. 8. One important character of the pedal orientation 151 is that the steepness of the pedal orientation 151 is increased when the swing axis 159 is adjusted backwardly. [0047] Now referring to Figs. 7 and 9 show the stride length SL2, stride length SL3, pedal orientation 151, second closed path 198, and third closed path 197 while the swing axis 159 is in back of the rear end 192 of the arcuate path 190. As shown in Fig. 7, the first and second control links 160a/160b are respectively pivoted to the first and second supporting members 120a/120b via pivot axes 161. The incline level of the second closed path 198 of Fig. 9 is increased by 17 degrees compared to the incline level of Fig. 8, but the incline level of the third closed path 197 of Fig. 9 is only increased by 11 degrees. That is, the incline level of the second closed path 198 is increased more than the incline level of the third closed path 197 while the swing axis 159 is being adjusted backwardly. The stride length SL2 of Fig. 9 is increased by about 15 percent compared to the stride length SL2 as shown in Fig. 8, but the stride length SL3 of Fig. 9 is only increased by about 6 percent. That is, the stride length SL2 is increased more than the stride length SL3 while the swing axis 159 is being adjusted backwardly. Because both path inclination and stride length of the heel portion of a user are increased more than the toe portion, the exercise intensity of the heel portion is higher than the exercise intensity of the toe portion of a user which may also imply a higher exercise intensity of the gluteus of a user. Because the heel portion of the user is obviously elevated as shown in Fig. 7, the thigh of the user is elevated to a substantially horizontal orientation relative to the ground surface so that the gluteus of the user is fully exercised. [0048] Now referring to Figs. 10 throughl3, a second preferred embodiment of the present invention is shown. A stationary exercise apparatus 200 comprises a frame 210 having a base portion 211 adapted to rest on a surface. The frame 210 further comprises a front portion 212 extending upwardly from the base portion 211, a side portion 214 extending longitudinally rearward from the front portion 212, and a rear portion 213 connecting the side portion 214 and the base portion 211. [0049] The stationary exercise apparatus 200 further has first and second supporting members 220, each of the supporting members 220 having a first end portion and a second end portion. The first end portions of the first and second supporting members 220 are respectively pivoted to a pair of rotating members 233 in order to rotate about a first axis 234. The second end portions of the first and second supporting members 220 are respectively connected to the lower portions of first and second swing members 249. The upper portions of the first and second swing members 249 are coupled to the side portion 214 of the frame 210 via a swing axis 259. More specifically, the upper portions of the first and second swing members 249 are pivotally connected to left and right moving assemblies 241. [0050] Each of the left and right moving assemblies 241 respectively comprises third and fourth moving members 242. Each of the third and fourth moving members 242 is connected to left and right adjusting assemblies 245 (Fig. 11) so that the moving assemblies 241 could be driven by the adjusting assemblies 245. Each of the left and right moving assemblies 241 further includes an optional roller 243. The rollers 243 are respectively engaged on the side portion 214 for increasing stability and smoothness of movement of the moving assemblies 241 along the side portion 214.
[0051] As illustrated in Fig. 13, each of the adjusting assemblies 245 includes a motor 246 mounted on one portion of the frame 210, a screw rod 247, and a screw member 248. The screw rod 247 has one end connected to the motor 246 and a portion adapted for movement of the screw member 248. Although described and illustrated as a screw adjusting mechanism, the adjusting assembly 245 could be any manual or automatic mechanical, electromechanical, hydraulic, or pneumatic device and be within the scope of the invention.
[0052] In the second preferred embodiment of the present invention, the upper "" portions of the first and second swing members 249 are respectively pivoted to the third and fourth moving members 242. But, the upper portions of the first and second swing members 249 can also be directly pivoted to the screw members 248 of the adjusting assemblies 245. Therefore, actuating of the motor 246 can cause rotation of the screw rod 247 to change the positions of both the third and fourth moving member 242 and the swing axis 259.
[0053] Similar to the previous preferred embodiment of the stationary exercise apparatus 100, the stationary exercise apparatus 200 also comprises a pair of pedals 250 respectively coupled to the supporting members 220. Optionally, the stationary exercise apparatus 200 also has a pair of control links 260 respectively pivoted to the supporting members 220 and a pair of handle links 271 coupled to the frame 210 for guiding the control links 260.
[0054] Figs. 14 through 16 illustrate an embodiment similar to the embodiment illustrated in Figs. 1 though 9. This third embodiment of a stationary exercise apparatus 300 includes a frame 310 having a base 311, a front portion 312, a rear portion 308, and side portions 313. The frame 310 may also include a post 314 and a standard 315. A handle assembly 380 and a console 390 are also provided as described above in relation to the first and second embodiments. [0055] The third embodiment of the exercise apparatus 300 includes rotating members 333 that rotate about a first axis 334, similar to those described and illustrated in relation to the second embodiment 200 (Figs. 10 through 13). An optional resistance member 135 is also provided.
[0056] Similar to the embodiment illustrated in Figs. 1 to 9, the third embodiment of the exercise apparatus 300 also includes first and second supporting members 320a/320b, each having a first end portion 353 rotatably joined to the rotating members 333 and a second end portion 354. The second end portions 354 are respectively joined to swing members 349a/349b. The swing members 349a/349b are joined to the frame side portions 313 in a manner substantially similar to that described above in relation to the first embodiment 100. [0057] There is also provided a moving assembly 341 including first and second moving member 342 that are defined by an upper portion 343 and a lower portion 355 joined at an elbow 356, so that the upper portion 343 and the lower portion 355 are at an angle to one another as illustrated. The first and second moving members 342 are joined to the side portions 313 via a second axis 344 to pivot as described above.
[0058] An optional adjusting assembly 345 is provided on each side of this embodiment. The adjusting assembly 345 activates the moving assembly 341 about the second axis 344. The adjusting assembly includes a motor 346, a screw rod 347, and a threaded nut, sleeve, or tube 348. The motor 346 is connected to the base 311 and to the screw rod 347. In this embodiment, the screw rod 347 is generally upright and angled slightly forward. The screw rod 347 is threaded through the tube 348, which is pivotally mounted on the lower portion 355 of the moving members 342. In this manner, the motor 346 can be activated automatically or manually from the console 390 to rotate the screw rod 347, which in turn raises or lowers the tube 348 along the screw rod 347. As the tube 348 is raised or lowered, the moving member 342 pivots about the second axis 344. A manually operated adjusting assembly could also be used, as described above.
[0059] In this embodiment of the exercise apparatus 300, the swing members 349a/349b are illustrated as arcuate in shape so that the support members 320a/320b need not extend rearwardly as far as those illustrated in previous embodiments. Otherwise, the operation of the swing member 349a/349b and the support members 320a/320b are essentially as described above.
[0060] First and second pedals 350a/350b are respectfully coupled to the first and second supporting members 320a/320b, either directly or indirectly. To couple the pedals 350a/350b indirectly to the support members 320a/320b, there are provided first and second control links 360a/360b which are pivotally connected to the support members 320a/320b. The pedals 350a/350b are joined to the control links 360a/360b and move in a second closed path when the support members 320a/320b move as described above.
[0061] Handle links 37 la/371b are illustrated for this embodiment, and as with the above embodiments, may be substituted by tracks, rollers, sliders, and the like to provide support for the moving first end portions of the control links 360a/360b. Any such device is referred to herein as a "handle link" regardless of whether it actually serves as a handle for a user. [0062] Figs. 17 through 21 illustrate an embodiment having substantial portion similar to the embodiments illustrated in Figs. 1 though 16. This fourth embodiment of a stationary exercise apparatus 400 includes a frame 410 having a base and a rear portion 425 (Fig. 20). The frame 410 may also include a front portion having a post 412 and a standard 413. A fixed handle assembly 415 and a console 414 are also provided as described above in relation to the previous embodiments. [0063] The fourth embodiment of the exercise apparatus 400 includes rotating members 418 that rotate about a first axis 441, similar to those described and illustrated in relation to the second embodiment 200 (Figs. 10 through 13). An optional resistance assembly 450 is also provided.
[0064] Similar to the embodiment illustrated in Figs. 1 to 9, the fourth embodiment of the exercise apparatus 400 also includes first and second supporting members 460, each having a first end portion 461 rotatably joined to the rotating members 418 and a second end portion 463. Preferably, the second end portion is coupled with some rollers or sliders for reciprocating movement on a surface such as a track surface. The second end portions 463 of the first and second supporting members 460 are respectively reciprocated on a guider assembly 423 which is coupled to the rear portion 425 of the base 411. There is more detail description of the guider assembly 423 hereinafter.
[0065] Now referring to Figs. 22 and 23, the guider assembly 423 comprises a guider 420 coupled to the rear portion 425 of the base 411 and a moving member 434 movably coupled between the guider 420 and the base 411. The guider 420 has a first end portion 421, and a second end portion 422 pivotally connected to the base 411. A reciprocating path 426 is defined between the first and second end portions 421/422 of the guider 420. In the embodiment illustrated in Figs. 17 through 21, the guider 420 is a linear track to define the reciprocating path 426 substantially parallel to the surface of the guider 420. In other embodiments, the guider 420 could be a curved track (not shown), the reciprocating path 426 is a virtual linear line connecting first and second ends of the curved track. An incline angle 428 is defined by the reciprocating path 426 and the base 411 in both linear and curved track embodiments. More specifically, the incline angle 428 is defined by the reciprocating path 426 and the top horizontal surface of the base 411, or a ground surface on which the base 411 rests.
[0066] Figs. 22 through 24 illustrate detailed views of the guider assembly 423 and an alternative embodiment of the guider assembly 423. In Fig. 22, the guider 420 is in a relatively low incline condition and the incline angle 428 defined by the guider 420 and the base 411 is about 5 degrees. The moving member 434 has a first end portion 436 pivotally connected to the base 411, and a second end portion 437 movably coupled to the guider 420. In Fig. 23, the second end portion 437 of the moving member 434 is selectively coupled to the guider 420 close to a middle position between the first and second end portions 421/422 of the guider 420. In the arrangement of Fig. 23, the moving member 434 is inclined further upwardly, and the incline angle 428 is increased to about 22 degrees. The exercise apparatus 400 is in a relatively high incline condition when the incline angle 428 is about 22 degrees. [0067] An optional adjusting assembly 430 is provided under the guider 420 in the embodiment shown in Figs. 22 and 23. The adjusting assembly 430 activates the moving member 434 electronically to vary the incline angle 428. The adjusting assembly 430 includes a motor 432, a screw rod 431, and a threaded nut, sleeve, or tube 433. The motor 432 is connected to the screw rod 431 for driving the screw rod 431. In this embodiment, the screw rod 431 is mounted under the guider 420 in an orientation generally parallel to the reciprocating path 426. The screw rod 431 is threaded through the tube 433, which is pivotally mounted on the second end portion 437 of the moving member 434. In this manner, the motor 432 can be activated automatically or manually from the console 414 to rotate the screw rod 431, which in turn pushes or pulls the tube 433 along the screw rod 431. As the tube 433 is pushed or pulled, the second end portion 437 of the moving member 434 is movably coupled between the guider 420 and the base 411. A manually operated adjusting assembly could also be used, as described above.
[0068] The guider assembly 423' shown in Fig. 24 is an alternative embodiment of the guider assembly 423 shown in Figs. 22 and 23. The guider assembly 423 ' also includes a guider 420' coupled to the base 411, and a moving member 434' having a first end portion 436' movably coupled to the base 411, and a second end portion 437' pivotally connected to the guider 420'. In Fig. 24, the first end portion 436' of the moving member 434' is selectively coupled to the base 411 and the second end portion 437' is pivotally connected to the guider 420' close to a middle position of the guider 420'. The middle position is between first second end portions 4217422' of the guider 420'. There is also an optional adjusting assembly 430' mounted on the base 411. Similar to what has been described previously; the adjusting assembly 430' can also activate the moving member 434' to vary the incline angle 428. [0069] There are other alternative embodiments of the guider assembly 423' shown in Figs. 24. For example, the screw rod 431 ' could be replaced by a bracket mounting on the base 411 with several receiving notches positioned substantially horizontally. Then, the first end portion 436' of the moving member 434' could selectively be coupled to one of the receiving notches by manual operation of a user in order to vary the incline angle 428. Another example is that the moving member 434' comprises a pair of telescopic tubes which can be contracted or expanded to each other when the incline angle 428 is decreased or increased. In the embodiment of the telescopic tubes, both first and second end portions 4367437' of the moving member 434' are pivotally connected to the base 411 and the guider 420'. The telescopic tubes could be selectively locked to each other for different incline angles of the guider 420'.
[0070] In addition to the benefits described in the previous embodiments shown in Figs. 1 through 16, the embodiments shown in Figs. 17 through 24 further have a following advantages. Substantial portions of both the moving member 434 and adjusting assembly 430 could be hidden by the base 411 and guider 420 when the incline angle 428 is in the condition of Figs. 19 or 22, the relative low incline condition. Therefore, appearance of the stationary exercise apparatus 400 is more compact and succinct in the relative low incline condition. Further, the positioning of the adjusting assembly 430 under the guider 420 permits a more compact appearance, while allowing for efficient transfer of mechanical force from the adjusting assembly 430 to the guider 420. Also, in a preferred embodiment, the base 411 can include an access hatch (not illustrated) to permit ready access to the adjusting assembly 430 and the guider 420.
[0071] Now referring to Figs. 17 and 20, first and second pedals 490 are respectfully coupled to the first and second supporting members 460, either directly or indirectly as described above. Each of the pedals 490 respectively has a front end portion 491 and a rear end portion 492. To couple the pedals 490 indirectly to the support members 460, there are provided first and second control links 480 which are pivotally connected to the supporting members 460. The pedals 490 are joined to the control links 480 and move in a second closed loop path 498 and a third closed loop path 497 when the supporting members 460 move as described above. [0072] Handle links 470 are illustrated for this embodiment, and as with the above embodiments, may be substituted by tracks, rollers, sliders, and the like to provide support for the moving first end portions 481 of the control links 480. Any such device is referred to herein as a "handle link" regardless of whether it actually serves as a handle for a user.
[0073] Figs. 25 and 26 are path profiles and information of the stationary exercise apparatus 400 when the guider 420 is in the relatively low and high incline conditions. The points a and e also correspond to the foremost and rearmost positions when the first ends of the first and second supporting members 460 are rotating about the first axis 441. As described above, second and third closed loop paths 498/497 respectively represent the moving paths of the heel and toe portions of a user of the stationary exercise apparatus 400; stride lengths SL4 and SL5 respectively represent the stride lengths of the heel and toe portions of a user of the stationary exercise apparatus 400 similar to the description of Fig. 9. [0074] Stride length is relative to exercise intensity and a longer stride length generally results in higher exercise intensity. In Fig. 25, the stride length SL4 is substantially same as the stride length SL5. But, comparing the stride length SL4 with the stride length SL5 in Fig. 26, the stride length SL4 is longer than the stride length SL5 when the stationary exercise apparatus 400 is in the relatively high incline condition. That is, the length of the stride length SL4 is greater than the length of the stride length SL5 when the guider 420 is adjusted from a relatively low incline condition to a relatively high incline condition. Therefore, the heel portion and gluteus portion of a user are having higher exercise intensity when the stationary exercise apparatus 400 is in the relatively high incline condition. [0075] The orientation of the pedals 490 can be simply illustrated by a pedal orientation 451 as shown in Figs. 25 and 26, a connection between the front and rear ends of the pedals 490. One important character of the pedal orientation 451, in the foremost position a, is that the steepness of the pedal orientation 451 is increased forwardly when the guider 420 is adjusted from the relatively low incline condition to the relative high incline condition. That is, in the foremost position a, the rear end portion 492 is moved upwardly at a faster rate than the front end portion 491 of the pedals 490 when the guider 420 is adjusted from the relatively low incline condition to the relatively high incline condition. Simply speaking, in the foremost position a, the rear end portion 492 is moved higher than the front end portion 491 of the pedals 490 when the incline angle 428 is increased. Since the steepness, in the foremost position a, of the pedal orientation 451 is more obvious in the relatively high incline condition, the heel portion of a user is elevated more than the toe portion of a user, therefore the gluteus of the user could be more fully exercised as described above. [0076] The previously described embodiments of the present invention have many advantages, including: (a) to provide a user of the stationary exercise apparatus with a benefit of high exercise intensity; (b) to provide a user of the stationary exercise apparatus with a benefit of an inclined foot path; (c) to provide a user of the stationary exercise apparatus with a benefit of an increased stride length; and (d) to provide a user of the stationary exercise apparatus with a benefit of better gluteus exercise; (e) to provide the stationary exercise apparatus with a more compact and succinct appearance. The present invention does not require that all the advantageous features and all the advantages need to be incorporated into every embodiment thereof. Although the present invention has been described in considerable detail with reference to certain preferred embodiment thereof, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred embodiment contained herein.

Claims

1. A stationary exercise apparatus, comprising:
(a) a frame having a base, a front, and a rear portion;
(b) first and second supporting members, each supporting member having a first end portion and a second end portion, the first end portions of the first and second supporting members respectively coupled to the frame to rotate about a first axis;
(c) a guider having a first end portion and a second end portion, and a reciprocating path between the first end portion and the second end portion for engagement with the second end portion of a respective supporting member, and the second end portion of the guider coupled to the base;
(d) first and second control links respectively coupled to the first and second supporting members, each control link having a first end portion and a second end portion, the first end portions of the first and second control links movably coupled to the frame; and
(e) first and second pedals joined to the first and second control links.
2. The stationary exercise apparatus of claim 1, wherein an incline angle defined between the reciprocating path and the base is between from about 2 degrees to about 22 degrees.
3. The stationary exercise apparatus of claim 1, and further comprising a moving member selectively coupled between the guider and the base to adjust an incline angle defined by the reciprocating path and the base.
4. The stationary exercise apparatus of claim 3, wherein a user stride length is greater at a lower incline angle than the stride length at a higher incline angle.
5. The stationary exercise apparatus of claim 3, wherein the moving member comprises a first end portion and a second end portion, the first end portion of the moving member pivotally connected to the base and the second end portion of the moving member slidably coupled to the guider.
6. The stationary exercise apparatus of claim 5, wherein the guider further includes an adjusting assembly for pivoting the moving member second end portion and sliding the first end portion relative to the guider.
7. The stationary exercise apparatus of claim 6, wherein the adjusting assembly comprises: a screw rod coupled to the guider: a motor coupled to the screw rod: and a threaded tube operatively coupled to the screw rod and to the second end portion of the moving member.
8. A stationary exercise apparatus, comprising:
(a) a frame having a base, a front portion, and a rear portion;
(b) first and second supporting members, each supporting member having a first end portion and a second end portion, the first end portions of the first and second supporting members respectively coupled to the frame to rotate about a first axis;
(c) first and second pedals respectively coupled to the first and second supporting members;
(d) a guider having a first end portion and a second end portion, the second end portion of the guider coupled to the rear portion of the frame, the second end portions of the first and second supporting members respectively engaging the guider for reciprocating movement between the first and second portions of the guider; and
(e) a moving member movably coupled to the guider and to the base.
9. The stationary exercise apparatus of claim 8, wherein the moving member comprises a first end portion and a second end portion, the first end portion of the moving member pivotally connected to the base and the second end portion of the moving member slidably coupled to the guider.
10. The stationary exercise apparatus of claim 9, wherein the second end portion of the moving member is slidably coupled to a position between the first and second end portions of the guider.
11. The stationary exercise apparatus of claim 10, wherein the guider further includes an adjusting assembly.
12. The stationary exercise apparatus of claim 11, wherein the adjusting assembly comprises: a screw rod coupled to the guider; a motor coupled to the screw rod; and a screw tube coupled to the screw rod and to the second portion of the moving member.
13. The stationary exercise apparatus of claim 8, wherein the moving member comprises a first end portion and a second end portion, the first end portion of the moving member selectively slidably coupled to the base and the second end portion of the moving member pivoted to the guider.
14. The stationary exercise apparatus of claim 13, wherein the second end portion of the moving member is pivotally coupled between the first and second end portions of the guider.
15. The stationary exercise apparatus of claim 13, wherein the base further includes an adjusting assembly mounted thereon.
16. The stationary exercise apparatus of claim 15, wherein the adjusting assembly comprises: a screw rod coupled to the base; a motor coupled to the screw rod; and a screw tube having an inside portion coupled to the screw rod and to the first portion of the moving member.
17. A stationary exercise apparatus, comprising:
(a) a frame having a base, a front portion, and a rear portion;
(b) first and second supporting members, each supporting member having a first end portion and a second end portion, the first end portions of the first and second supporting members respectively coupled to the frame to rotate about a first axis;
(c) first and second pedals respectively coupled to the first and second supporting members;
(d) a guider assembly coupled to the rear portion of the frame, the second end portions of the first and second supporting members respectively reciprocated on the guider assembly substantially along a reciprocating path; and
(e) an incline angle defined by the reciprocating path and the base wherein the guide assembly is for adjusting the incline angle.
18. The stationary exercise apparatus of claim 17, wherein the guider assembly comprises a guider coupled to the rear portion of the base and a moving member movably coupled between the guider and the base.
19. The stationary exercise apparatus of claim 18, wherein the moving member comprises a first end portion and a second end portion, the first end portion of the moving member coupled to the base and the second end portion of the moving member selectively coupled to the guider.
20. The stationary exercise apparatus of claim 19, and further comprising: first and second control links respectively coupled to the first and second supporting members, each control link having a first end portion and a second end portion, the first end portions of the first and second control links movably coupled to the frame, the second end portions of the first and second control links respectively coupled to the first and second pedals, the first and second pedals moving along a second closed loop path and a third closed loop path while the first end portions of the first and second supporting members are being rotated about the first axis wherein the length of the second closed loop path is greater than the length of the third closed loop path when the incline angle is increased.
21. The stationary exercise apparatus of claim 20, wherein the first pedal comprises: a front end portion and rear end portion, the rear end portion of the first pedal being moved higher than the front end portion of the first pedal when the incline angle is increased and when the first end portion of the first supporting member is substantially at the foremost position during rotating about the first axis.
22. The stationary exercise apparatus of claim 18, wherein the moving member comprises: a first end portion and a second end portion, the first end portion of the moving member selectively coupled to the base and the second end portion of the moving member pivoted to the guider.
PCT/US2006/042129 2005-11-04 2006-10-30 Stationary exercise apparatus WO2007055937A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE602006020164T DE602006020164D1 (en) 2005-11-04 2006-10-30 STATIONARY TRAINING DEVICE
EP06826952A EP1951384B1 (en) 2005-11-04 2006-10-30 Stationary exercise apparatus

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN200510115518.0 2005-11-04
CNB2005101155180A CN100467090C (en) 2005-11-04 2005-11-04 Ellipse machine capable of adjusting slope of footplate locus
US11/434,541 2006-05-15
US11/434,541 US7682290B2 (en) 2005-11-04 2006-05-15 Stationary exercise apparatus
CN200610103811XA CN101112649B (en) 2006-07-27 2006-07-27 Elliptic sport machine with adjustable pedal track slope grade
CN200610103811.X 2006-07-27
US11/497,783 US7722505B2 (en) 2005-11-04 2006-08-02 Stationary exercise apparatus
US11/497,783 2006-08-02

Publications (1)

Publication Number Publication Date
WO2007055937A1 true WO2007055937A1 (en) 2007-05-18

Family

ID=39580428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/042129 WO2007055937A1 (en) 2005-11-04 2006-10-30 Stationary exercise apparatus

Country Status (3)

Country Link
US (7) US7722505B2 (en)
EP (1) EP1951384B1 (en)
WO (1) WO2007055937A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2452323A (en) * 2007-09-01 2009-03-04 Jin Chen Chuang Exercise machine with choice of stepping or elliptical foot motion controlled using handles
US8051752B2 (en) 2009-01-27 2011-11-08 Dyaco International, Inc. Coaxial load wheel and cranks
CN103195674A (en) * 2013-04-19 2013-07-10 程明 Pedal generator
US20130237379A1 (en) * 2012-03-06 2013-09-12 Hsuan-Fu HUANG Pedal lifting mechanism for elliptical trainer
US8734298B2 (en) 2011-01-24 2014-05-27 Dyaco International, Inc. Adjustable exercise machine
US9339684B2 (en) 2005-11-04 2016-05-17 Johnson Health Tech Co., Ltd. Stationary exercise apparatus

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10814160B2 (en) * 2005-11-04 2020-10-27 Johnson Health Tech. Co., Ltd. Stationary exercise apparatus
US20070219065A1 (en) * 2006-03-13 2007-09-20 Anderson Timothy T Climber apparatus
US20100099540A1 (en) * 2006-12-05 2010-04-22 Mary Ann Himmer Physical therapy and exercise system
US7833133B2 (en) * 2006-12-28 2010-11-16 Precor Incorporated End of travel stop for an exercise device
US7455624B2 (en) * 2007-02-23 2008-11-25 Shu-Chiung Liao Lai Low-impact exercise machine
US20080287264A1 (en) * 2007-05-14 2008-11-20 Michael Lin Track adjusting mechanism for elliptical exerciser
US7618350B2 (en) * 2007-06-04 2009-11-17 Icon Ip, Inc. Elliptical exercise machine with adjustable ramp
US7811206B2 (en) * 2007-07-06 2010-10-12 Jin Chen Chuang Elliptical exercise device
TW201427746A (en) * 2013-01-07 2014-07-16 Dyaco Int Inc Elliptical machine featuring changeable motion trajectory
USD742977S1 (en) * 2013-08-29 2015-11-10 Octane Fitness, Llc Stationary exercise machine
US9457223B2 (en) 2015-01-27 2016-10-04 Paul William Eschenbach Stride seeker elliptical exercise apparatus
US9669256B2 (en) * 2015-03-13 2017-06-06 Strength Master Fitness Tech. Co., Ltd. Gait tread simulation fitness equipment
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
US10625114B2 (en) 2016-11-01 2020-04-21 Icon Health & Fitness, Inc. Elliptical and stationary bicycle apparatus including row functionality
US10946238B1 (en) 2018-07-23 2021-03-16 Life Fitness, Llc Exercise machines having adjustable elliptical striding motion
US11673019B2 (en) 2020-03-03 2023-06-13 Nautilus, Inc. Elliptical exercise machine
US11413497B2 (en) * 2020-03-03 2022-08-16 Nautilus, Inc. Elliptical exercise machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168552B1 (en) * 1992-11-04 2001-01-02 Paul William Eschenbach Selective lift elliptical exercise apparatus
US6422977B1 (en) * 1997-06-09 2002-07-23 Paul William Eschenbach Compact elliptical exercise machine with adjustment

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL234581A (en) 1957-12-30
US5242343A (en) 1992-09-30 1993-09-07 Larry Miller Stationary exercise device
US6024676A (en) * 1997-06-09 2000-02-15 Eschenbach; Paul William Compact cross trainer exercise apparatus
US5573480A (en) 1995-01-25 1996-11-12 Ccs, Llc Stationary exercise apparatus
US5690589A (en) * 1995-01-25 1997-11-25 Rodgers, Jr.; Robert E. Stationary exercise apparatus
US5540637A (en) 1995-01-25 1996-07-30 Ccs, Llc Stationary exercise apparatus having a preferred foot platform orientation
US5707321A (en) * 1995-06-30 1998-01-13 Maresh; Joseph Douglas Four bar exercise machine
US5895339A (en) * 1995-06-30 1999-04-20 Maresh; Joseph D. Elliptical exercise methods and apparatus
US5685804A (en) 1995-12-07 1997-11-11 Precor Incorporated Stationary exercise device
US5562574A (en) 1996-02-08 1996-10-08 Miller; Larry Compact exercise device
US5823919A (en) 1996-03-07 1998-10-20 Eschenbach; Paul William Standup exercise machine with arm exercise
US5653662A (en) 1996-05-24 1997-08-05 Rodgers, Jr.; Robert E. Stationary exercise apparatus
US6142915A (en) * 1996-09-09 2000-11-07 Eschenbach; Paul William Standup exercise apparatus with pedal articulation
US5788610A (en) * 1996-09-09 1998-08-04 Eschenbach; Paul William Elliptical exercise machine with arm exercise
US6004244A (en) 1997-02-13 1999-12-21 Cybex International, Inc. Simulated hill-climbing exercise apparatus and method of exercising
US5836855A (en) * 1997-02-18 1998-11-17 Eschenbach; Paul William Recumbent elliptical exercise machine
US5893820A (en) 1997-04-24 1999-04-13 Maresh; Joseph D. Exercise methods and apparatus
US6135926A (en) 1997-05-27 2000-10-24 Lee; Gin Wen Striding exerciser
US6440042B2 (en) * 1997-06-09 2002-08-27 Paul William Eschenbach Pathfinder elliptical exercise machine
US5997445A (en) 1997-08-19 1999-12-07 Maresh; Joseph D. Elliptical exercise methods and apparatus
US5910072A (en) 1997-12-03 1999-06-08 Stairmaster Sports/Medical Products, Inc. Exercise apparatus
US5916065A (en) 1998-02-10 1999-06-29 Stamina Products, Inc. Multiple leg movement exercise apparatus
US6341476B2 (en) 1998-10-30 2002-01-29 The Goodyear Tire & Rubber Company Apparatus for bundling layered material
US7060004B2 (en) 2000-12-19 2006-06-13 Hai Pin Kuo Exerciser having easily adjustable mechanism
US6450925B1 (en) * 2001-07-19 2002-09-17 Hai Pin Kuo Exerciser having adjustable mechanism
US20030092532A1 (en) 2001-11-13 2003-05-15 Cybex International, Inc. Exercise device for cross training
TW543464U (en) 2002-06-21 2003-07-21 Johnson Health Tech Co Ltd Oval exercise device with adjustable stroke
US6719666B1 (en) * 2003-03-05 2004-04-13 Kun-Chuan Lo Exercising device that produces elliptical foot movement
CN2559371Y (en) 2002-07-16 2003-07-09 乔山健康科技股份有限公司 Elliptic motion exercising machine capable of regulating stroke
US7468021B2 (en) * 2002-08-06 2008-12-23 True Fitness Technology, Inc. Compact elliptical exercise machine with adjustable stride length
TW538784U (en) 2002-08-30 2003-06-21 Huang-Dung Jang Structure of walking device with adjustable left/right tilt angle for oval track thereof
CN2571426Y (en) 2002-10-08 2003-09-10 张煌东 Stepper capable of adjusting ellipse orbit
US7494447B2 (en) * 2002-11-26 2009-02-24 Paul William Eschenbach Elliptical exercise apparatus with adjustable crank
US7169087B2 (en) 2003-02-19 2007-01-30 Icon Health & Fitness, Inc. Cushioned elliptical exerciser
US7785235B2 (en) * 2003-06-23 2010-08-31 Nautilus, Inc. Variable stride exercise device
US7462134B2 (en) * 2003-06-23 2008-12-09 Nautilus, Inc. Variable stride exercise device
US7037242B2 (en) 2003-07-03 2006-05-02 Octane Fitness, Llc Angle adjustable pedals for elliptical exercisers
US7520839B2 (en) * 2003-12-04 2009-04-21 Rodgers Jr Robert E Pendulum striding exercise apparatus
US7270626B2 (en) * 2004-01-23 2007-09-18 Octane Fitness, Llc Exercise equipment with automatic adjustment of stride length and/or stride height based upon direction of foot support rotation
US20060035757A1 (en) 2004-08-16 2006-02-16 Nautilus, Inc. Exercise equipment
TW200609017A (en) 2004-09-01 2006-03-16 Johnson Health Tech Co Ltd Elliptical exerciser
TWM273359U (en) 2005-01-21 2005-08-21 Geng-Jang Jang Structure of elliptical featuring moving curve changed by elevation of underboard
US6994657B1 (en) * 2005-03-17 2006-02-07 Paul William Eschenbach Elliptical exercise machine
US7175568B2 (en) * 2005-07-14 2007-02-13 Paul William Eschenbach Elliptical exercise apparatus with articulating track
US7153239B1 (en) 2005-08-09 2006-12-26 Stearns Kenneth W Exercise methods and apparatus
TW200709827A (en) 2005-09-02 2007-03-16 Chia Ting Foundries Co Ltd Elliptical fitness device
TWM287690U (en) 2005-09-09 2006-02-21 Chiu-Hsiang Lo Ellipse exercise machine featuring adjustable inclined angle
US7267638B2 (en) 2005-10-31 2007-09-11 Leao Wang Pace-adjusting mechanism of an elliptical cross trainer
US7494448B2 (en) * 2005-11-01 2009-02-24 Paul William Eschenbach Recumbent elliptical exercise apparatus
US7654936B2 (en) 2005-11-04 2010-02-02 Johnson Health Tech. Stationary exercise apparatus
US7722505B2 (en) 2005-11-04 2010-05-25 Johnson Health Tech. Stationary exercise apparatus
CN100467090C (en) 2005-11-04 2009-03-11 乔山健康科技股份有限公司 Ellipse machine capable of adjusting slope of footplate locus
WO2007096701A2 (en) 2005-11-04 2007-08-30 Johnson Health Tech.Co., Ltd. Stationary exercise apparatus
US20070238580A1 (en) * 2006-03-29 2007-10-11 Leao Wang Pace-adjusting mechanism of an elliptical cross trainer
US20070235974A1 (en) * 2006-04-06 2007-10-11 Javier Vargas Exercise and transportation device
US7846071B2 (en) 2006-05-15 2010-12-07 Johnson Health Tech Co., Ltd. Stationary exercise apparatus
US7976435B2 (en) * 2006-05-15 2011-07-12 Johnson Health Tech Co., Ltd. Stationary exercise apparatus
US20100179034A1 (en) * 2009-01-12 2010-07-15 Leao Wang Position-limiting apparatus of a pendulum mechanism of an exercise equipment
US7841968B1 (en) * 2009-11-04 2010-11-30 Paul William Eschenbach Free path elliptical exercise apparatus
US8029416B2 (en) * 2010-01-13 2011-10-04 Paul William Eschenbach Free course elliptical exercise apparatus
US8376913B2 (en) * 2010-09-23 2013-02-19 Superweigh Enterprise Co., Ltd. Exercising device
US8734298B2 (en) * 2011-01-24 2014-05-27 Dyaco International, Inc. Adjustable exercise machine
US20130035212A1 (en) * 2011-08-01 2013-02-07 Jin Chen Chuang Stationary exercise device
US8894549B2 (en) * 2011-08-03 2014-11-25 Icon Health & Fitness, Inc. Exercise device with adjustable foot pad
US20130143720A1 (en) * 2011-12-01 2013-06-06 Jin Chen Chuang Resist device for stationary exercise device
US9457224B2 (en) * 2014-11-11 2016-10-04 Cybex International, Inc. Exercise apparatus
US10011338B2 (en) * 2015-12-07 2018-07-03 Pt Motion Works, Inc. Pivoting foot platform for elliptical apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168552B1 (en) * 1992-11-04 2001-01-02 Paul William Eschenbach Selective lift elliptical exercise apparatus
US6422977B1 (en) * 1997-06-09 2002-07-23 Paul William Eschenbach Compact elliptical exercise machine with adjustment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1951384A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9339684B2 (en) 2005-11-04 2016-05-17 Johnson Health Tech Co., Ltd. Stationary exercise apparatus
US10960261B2 (en) 2005-11-04 2021-03-30 Johnson Health Tech Co., Ltd. Stationary exercise apparatus
US11529544B2 (en) 2005-11-04 2022-12-20 Johnson Health Tech Co., Ltd. Stationary exercise apparatus
GB2452323A (en) * 2007-09-01 2009-03-04 Jin Chen Chuang Exercise machine with choice of stepping or elliptical foot motion controlled using handles
GB2452323B (en) * 2007-09-01 2011-09-14 Jin Chen Chuang Stationary exercise device
US8051752B2 (en) 2009-01-27 2011-11-08 Dyaco International, Inc. Coaxial load wheel and cranks
US8870716B2 (en) 2009-01-27 2014-10-28 Dyaco International, Inc. Coaxial load wheel and cranks
US8734298B2 (en) 2011-01-24 2014-05-27 Dyaco International, Inc. Adjustable exercise machine
US20130237379A1 (en) * 2012-03-06 2013-09-12 Hsuan-Fu HUANG Pedal lifting mechanism for elliptical trainer
CN103195674A (en) * 2013-04-19 2013-07-10 程明 Pedal generator

Also Published As

Publication number Publication date
US20120122632A1 (en) 2012-05-17
US10369403B2 (en) 2019-08-06
US20070117685A1 (en) 2007-05-24
US10960261B2 (en) 2021-03-30
US20100216605A1 (en) 2010-08-26
EP1951384A1 (en) 2008-08-06
US9339684B2 (en) 2016-05-17
US7722505B2 (en) 2010-05-25
EP1951384A4 (en) 2010-08-04
EP1951384B1 (en) 2011-02-16
US11529544B2 (en) 2022-12-20
US20160220861A1 (en) 2016-08-04
US20210213325A1 (en) 2021-07-15
US8403815B2 (en) 2013-03-26
US20190314673A1 (en) 2019-10-17
US20140073487A1 (en) 2014-03-13
US8092349B2 (en) 2012-01-10

Similar Documents

Publication Publication Date Title
US11529544B2 (en) Stationary exercise apparatus
US7682290B2 (en) Stationary exercise apparatus
US7654936B2 (en) Stationary exercise apparatus
US7972248B2 (en) Stationary exercise apparatus
US7846071B2 (en) Stationary exercise apparatus
US9808667B2 (en) Stationary exercise apparatus
US8025609B2 (en) Cross trainer exercise apparatus
US7976435B2 (en) Stationary exercise apparatus
US10532246B2 (en) Stationary exercise apparatus
US20210275866A1 (en) Exercise machines for facilitating elliptical striding motion
US7740564B2 (en) Stationary exercise apparatus
US10814160B2 (en) Stationary exercise apparatus
EP1948327B1 (en) Stationary exercise apparatus
EP2147701A1 (en) Stationary exercise apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006826952

Country of ref document: EP