WO2007069309A1 - Gas turbine - Google Patents

Gas turbine Download PDF

Info

Publication number
WO2007069309A1
WO2007069309A1 PCT/JP2005/022940 JP2005022940W WO2007069309A1 WO 2007069309 A1 WO2007069309 A1 WO 2007069309A1 JP 2005022940 W JP2005022940 W JP 2005022940W WO 2007069309 A1 WO2007069309 A1 WO 2007069309A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
gas turbine
air
burner
flow rate
Prior art date
Application number
PCT/JP2005/022940
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Dodo
Susumu Nakano
Hiroyuki Shiraiwa
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2005/022940 priority Critical patent/WO2007069309A1/en
Priority to JP2007550041A priority patent/JPWO2007069309A1/en
Publication of WO2007069309A1 publication Critical patent/WO2007069309A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/32Control of fuel supply characterised by throttling of fuel
    • F02C9/34Joint control of separate flows to main and auxiliary burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels

Definitions

  • the present invention relates to a gas turbine apparatus, and more particularly to a gas turbine apparatus suitable for use with a fuel whose calorific value varies.
  • a gas turbine combustor used in a gas turbine apparatus employs a premixed combustion method in which fuel and air are mixed and supplied in a combustor component called a premixer before flowing into a combustion chamber.
  • a premixed combustion type combustor combustion air and fuel can be mixed and burned in advance so that the fuel becomes leaner than the stoichiometric mixture ratio, so there is no local high temperature region and the flame temperature is low. Nitrogen oxide (Nx) emissions are low.
  • a regenerative gas turbine apparatus that recovers exhaust heat from turbine exhaust and improves thermal efficiency by preheating the compressor discharge air with a regenerative heat exchanger and sending it to the combustor in order to improve power generation efficiency.
  • many regenerative gas turbines called small micro turbines have a regeneration efficiency exceeding 90%.
  • the combustor inlet air temperature becomes higher than 600 ° C, so that the fuel self-ignition exceeds the ignition point temperature or the flame in the combustion chamber is preliminarily generated. There is a high risk of backfire that flows back into the mixer.
  • Patent Document 1 International Publication WO2005 / 059442A1
  • An object of the present invention is to provide a gas turbine apparatus capable of performing stable combustion without being blown out or overheated in a gas turbine apparatus using a fuel with a variable calorific value as a main fuel and a fuel with a stable calorific value as an auxiliary fuel. Is to provide.
  • the present invention provides a gas turbine device that uses a fuel with a variable calorific value as a main fuel, and uses a fuel with a stable calorific value as an auxiliary fuel, Fuel and air so as to dam the first panner flame at the axial position in the combustor corresponding to the tip of the flame of the first panner and the first panner that jets fuel and air into the combustion chamber
  • a combustor provided with a second burner for generating a circulating flow of fuel and air in the combustion chamber, and a fuel with a stable calorific value at a predetermined flow rate calculated by the gas turbine air flow rate.
  • a control means for changing the flow rate of fuel supplied to the second burner is provided.
  • the control means further calculates an operating rotational speed at which the required load can be output from the required load and the intake air temperature signal to obtain a predetermined rotational speed increase rate. Therefore, the operation speed calculation controller that generates the reference operation speed command value and the reference value of the turbine outlet temperature with reference to the turbine outlet gas temperature signal are used to calculate the correction amount for the operating speed. And a correction operation speed control calculator for generating an operation speed correction amount command value, and adding the reference operation speed command value and the operation speed correction amount command value to obtain the operation speed command value. This is what happens.
  • the present invention provides a gas turbine device that uses a fuel with a variable calorific value as a main fuel and a fuel with a stable calorific value as an auxiliary fuel.
  • Fuel and air are ejected at the axial position in the combustor corresponding to the tip of the flame of the first panner and the first panner that ejects fuel and air so as to dampen the first panner flame.
  • a combustor provided with a second burner that generates a circulating flow of fuel and air in the combustion chamber, and a fuel with a stable calorific value calculated by the gas turbine air flow rate is supplied to the first burner.
  • the fuel whose fluctuating calorific value is supplied is supplied to the second burner, and supplied to the second burner by a correction amount calculated using the difference between the reference value of the turbine outlet gas temperature and the actual turbine outlet gas temperature. Control hand to change the fuel flow rate In which it was to obtain Bei the.
  • FIG. 1 is an overall configuration diagram showing a configuration of a gas turbine apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a longitudinal section showing a configuration of a combustor used in the gas turbine apparatus according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of a result of a chemical reaction simulation performed on a slow combustion reaction of a lean air-fuel mixture in the gas turbine apparatus according to the first embodiment of the present invention.
  • FIG. 4 An amount capable of obtaining a combustion efficiency of 99% or more when the residence time in the secondary combustion region is 35 ms in the combustor used in the gas turbine apparatus according to the first embodiment of the present invention. It is explanatory drawing of the conditions of ratio and mixing average temperature.
  • FIG. 5 is an explanatory diagram of the operating rotational speed at which the required load can be output in the case of each intake air temperature in the gas turbine apparatus according to the first embodiment of the present invention.
  • FIG. 6 is an explanatory diagram regarding the flow rate of auxiliary fuel with a stable calorific value to be supplied in the case of each intake air temperature in the gas turbine apparatus according to the first embodiment of the present invention.
  • FIG. 7 is an overall configuration diagram showing a configuration of a gas turbine apparatus according to a second embodiment of the present invention.
  • FIG. 8 is an overall configuration diagram showing a configuration of a gas turbine apparatus according to a third embodiment of the present invention.
  • FIG. 1 is an overall configuration diagram showing a configuration of a gas turbine apparatus according to a first embodiment of the present invention.
  • the gas turbine apparatus shown in the present embodiment includes a generator / motor 2 controlled and driven by a power converter 1, a compressor 3 and a turbine 6 directly connected to a generator Z motor 2, and a turbine 6
  • This is a regenerative gas turbine device comprising a regenerative heat exchanger 4 and a combustor 5 for exchanging heat between the exhaust gas and the high pressure air discharged from the compressor 3 to preheat the high pressure air.
  • the generator / motor 2, the compressor 3 and the turbine 6 are electrically controlled in accordance with the operation speed command value 43 obtained from the operation speed calculation controller 31 and started according to a predetermined speed schedule. Driven. Air 11 is compressed after intake air temperature is measured by intake thermometer 7.
  • the combustor inlet air temperature meter 8 measures the combustor inlet air temperature, and then flows into the combustor 5.
  • the combustor 5 includes an auxiliary fuel 12 responsible for raising the temperature at startup and ensuring combustion stability during load operation, and a main fuel 13 for generating a load, respectively, and an auxiliary fuel flow rate adjusting valve 21 and a main fuel flow rate adjusting valve. These fuels react with the above-mentioned high-temperature preheated air to become higher-temperature combustion gas and flow into the turbine 6.
  • the high-temperature combustion gas that has flowed into the turbine 6 drives the turbine, and after the turbine outlet thermometer 9 measures the turbine outlet combustion gas temperature, the regenerative heat exchanger 4 exchanges heat with the high-pressure air, and finally exhausts. It is discharged out of the system as gas 14.
  • the control device is roughly divided into an operation speed calculation controller 31, an auxiliary fuel flow rate calculation controller 33, and a main fuel flow rate calculation controller 34.
  • the operation speed, auxiliary fuel flow rate It is responsible for controlling the fuel flow rate.
  • the operation rotational speed calculation controller 31 is an operation capable of outputting the required load 40 from the required load 40 and the intake air temperature signal 46 using an expression obtained by functionalizing the atmospheric temperature characteristic and the rotational speed characteristic of the gas turbine device.
  • the engine speed is calculated, and the engine speed command value 43 is generated according to the predetermined speed increase rate.
  • the power converter 1 adjusts the current and voltage based on the operation speed command value 43 so that the speed of the generator / motor 2 becomes a predetermined speed, and the actual speed is changed to the actual speed. Output as signal 44.
  • the auxiliary fuel flow rate calculation controller 33 is based on the gas turbine air flow rate calculated from the actual rotational speed signal 44 obtained from the power converter 1 and the intake air temperature signal 46, and the combustor inlet air temperature signal 47.
  • the flow rate of the auxiliary fuel 12 having a stable calorific value to be supplied is obtained, and the opening degree of the auxiliary fuel flow rate adjustment valve 21 is controlled by the auxiliary fuel flow rate input command 49.
  • the main fuel flow rate calculation controller 34 includes a reference main fuel flow rate calculator 35 and a corrected main fuel flow rate calculator 36, and the reference main fuel flow rate calculators 35 and 36 respectively obtain the reference main fuel flow rate calculators 35 and 36.
  • the opening amount of the main fuel flow rate adjusting valve 22 is controlled based on the main fuel flow rate input command value 52 by adding the amount input command 50 and the main fuel flow rate correction command 51.
  • the reference main fuel flow rate calculator 35 is a main fuel to be supplied from the gas turbine bin air flow rate calculated from the actual rotational speed signal 44 obtained from the power converter 1 and the intake air temperature signal 46 and the combustor inlet air temperature signal 47. 13 standards
  • the basic flow rate input command 50 is output.
  • the corrected main fuel flow rate calculator 36 calculates the main fuel flow rate to be corrected from the deviation between the actual gas turbine output signal 45 obtained from the power converter 1 and the required load 40, and outputs the main fuel flow rate input correction command 51.
  • FIG. 2 is a longitudinal section showing the configuration of the combustor used in the gas turbine apparatus according to the first embodiment of the present invention.
  • the combustor includes a combustor liner 103 having a circular cross section that forms a combustion chamber 102, a liner cap 104 that closes the upstream side of the combustor liner 103, and an activation starter formed at the center of the liner cap 104.
  • a plurality of second partners 108 formed so as to penetrate through the peripheral wall of the combustor liner 103.
  • the starter pan 105 is a burner that takes charge of the start-up and warm-up operation from gas turbine ignition and partial load operation up to 80%, for example, and is supplied with the auxiliary fuel 12 having a stable calorific value.
  • the starter pan 105 is formed concentrically with the combustor liner 103, and has a downstream end located in the center of the liner cap 104 at its center and an upstream end extending through the center of the end cover 106. It has a fuel nozzle 109 for starting.
  • a first fuel injection hole 110 is provided at the downstream end of the startup fuel nozzle 109, and a first air introduction tube 111 concentric with the startup fuel nozzle 109 is formed on the outer periphery of the startup fuel nozzle 109 with a gap.
  • the swirl vane 112 is provided in this gap.
  • the downstream side of the first air introduction tube 111 opens from the liner cap 104 to the combustor liner 103, and the upstream side is closed by the end cover 106.
  • a first air introduction hole 113 is provided near the end cover 106 of the first air introduction cylinder 111.
  • the combustor liner 103 is connected to a transition piece (not shown) on the downstream side via an elastic seal member 114, and guides high-temperature combustion gas generated in the combustion chamber to the turbine 6.
  • a transition piece not shown
  • the gas temperature distribution at the combustor outlet is smoothed.
  • a dilution air hole 115 is provided for this purpose.
  • a stopper for fixing the position of the combustor liner 103 and a film cooling slot for ensuring reliability are complicated, and the illustration is omitted.
  • the plurality of second burners 108 are provided so as to penetrate through the second air introduction hole 116 provided in the peripheral wall of the combustor liner 103 and the peripheral wall of the outer cylinder 107 facing the second air introduction hole 116, respectively.
  • the second fuel nozzle 117 is also supplied with the main fuel 13 whose calorific value fluctuates.
  • Combustion air is compressed by the compressor 3 and heated by the regenerative heat exchanger 4, and is guided leftward in the figure from the gap between the combustor liner 103 and the outer cylinder 107 on the right side in the figure.
  • the A part of the guided combustion air passes through the dilution hole 115 and the second air introduction hole 116 and is introduced into the combustion chamber 102 in the combustor liner 103, and the rest from the first air introduction hole 113.
  • the air is injected from the liner cap 104 into the combustion chamber 102.
  • a circulation area is formed on the downstream side of
  • the auxiliary fuel 12 having a stable calorific value is ejected from the starting fuel nozzle 109 into the combustion chamber 102, and the main fuel 13 having a fluctuating calorific value is introduced from the second fuel nozzle 117 into the combustion chamber 102. Erupted. All fuel is injected directly into the combustion chamber, and there is no mixture of fuel and air outside the combustion chamber.
  • the starter pan 105 affects the combustion stability of the entire combustor and is used in a wide range from ignition to start-up to a partial load of 80%.
  • a diffusion combustion method is adopted. ing.
  • the main fuel 13 having a variable calorific value is injected radially from the second fuel nozzle 117 installed at the same position into the air ejected from the secondary air introduction hole 116 into the combustion chamber 102.
  • the main fuel 13 immediately after being injected from the second fuel nozzle 117 has a large flow velocity of the air injected through the second air introduction hole 116 and a strong shearing with the surrounding combustion gas, so that the combustion reaction does not occur.
  • the air ejected from the second air introduction holes 116 at three circumferential directions collides with each other in the vicinity of the central axis of the combustion chamber 102 to form a stagnation region, and upstream and downstream of the second air introduction holes 116. Each forms a circulation region. In these circulating flow regions, the flow velocity is reduced, and the condition that the propagating flame can be sufficiently maintained is maintained. Therefore, the fuel ejected from the second fuel nozzle 117 starts a combustion reaction in the circulating flow. At this time, since the fuel injected from the second fuel nozzle and the air injected from the second air introduction hole are a lean mixture at the time of starting the reaction, they depended on the diffusion of heat to the mixture. It adopts a reaction mode controlled by a slow oxidation reaction, and realizes low NOx combustion that does not produce a local high temperature part.
  • the combustor has the first burner (starter burner) 105 that ejects fuel and air into the combustion chamber, and the combustion corresponding to the flame tip of the first burner. And a second burner 108 for injecting fuel and air into the combustion chamber to generate a circulating flow of fuel and air so as to block the first burner flame at an axial position in the chamber.
  • the mixed flow of fuel and air ejected from the burner collides in the combustion chamber, generates a circulatory flow with strong turbulence, and mixes with the combustion gas from the first burner in contact with a wide contact area. Slow combustion without generating a local high-temperature region in the combustion chamber can be performed, and stable combustion can be performed without causing backfire or self-ignition.
  • FIG. 3 is an explanatory diagram of a result of a chemical reaction simulation performed on the slow combustion reaction of the lean air-fuel mixture in the gas turbine apparatus according to the first embodiment of the present invention.
  • the horizontal axis shows the distance from the second air introduction hole 116 to the dilution hole 115 normalized by the total length of the combustor liner 103. That is, in the configuration of the combustor shown in FIG. 2, when the total length of the combustor liner shown in FIG. 2 is L and the distance from the second air introduction hole 116 to the dilution hole 115 is X, the configuration shown in FIG. The horizontal axis shows X / L. In the combustor 5 shown in FIG. 2, the position of the dilution hole 115 corresponds to the position of 0.668. [0035] FIG.
  • FIG. 3 shows a predicted distribution diagram by reaction calculation of the carbon monoxide concentration and the combustion gas temperature in the axial direction of the combustor shown in FIG.
  • the lower curve shows the change in combustion gas temperature Tg (° C) along the combustion gas flow direction in the combustor
  • the upper curve shows the carbon monoxide concentration along the combustion gas flow direction. Shown as an indicator of reaction.
  • the lean air-fuel mixture formed by the fuel and air from the second burner 108 is mixed with the combustion gas of the starting paner 105 in the stagnation region near the central axis of the combustor liner 103, and the lean air-fuel mixture with an average mixing temperature of 866 ° C is mixed. It becomes.
  • this lean air-fuel mixture gradually generates heat and rises in temperature while the fuel is slowly oxidized to generate carbon monoxide, and heat generation occurs rapidly after the carbon monoxide concentration reaches the maximum value. As a result, the carbon monoxide concentration decreases.
  • the residence time required during this time is about 30 ms when the mixing average temperature of the combustor 5 shown in Fig. 2 is 866 ° C.
  • a combustion efficiency of 99% or more is obtained when the residence time in the secondary combustion region is 35 ms.
  • the conditions of the equivalent ratio and the mixing average temperature will be described.
  • FIG. 4 shows an equivalence ratio and a mixing average in which a combustion efficiency of 99% or more is obtained when the residence time in the secondary combustion region is 35 ms in the combustor used in the gas turbine apparatus according to the first embodiment of the present invention. It is explanatory drawing of the conditions of temperature.
  • FIG. 4 shows the equivalent ratio defined by the fuel and air from the second burner 108 and the second burner 108 when the residence time in the region from the second air introduction hole 116 to the dilution hole 115 is 35 ms.
  • the average mixing temperature of the fuel and air from the fuel and the combustion gas from the starting burner 105 is shown under the conditions for obtaining a high combustion efficiency of 99% or more.
  • combustion efficiency will be ensured, but if the mixing average temperature is increased too much or the equivalence ratio is increased, the reaction will proceed rapidly and NOx emissions will increase. Further, if the residence time is made longer, combustion efficiency can be obtained even at an equivalent ratio that is leaner than the conditions shown in FIG. 3, but this is not preferable because the length of the combustor 5 becomes longer and the combustor becomes larger.
  • the equivalence ratio defined by the fuel and air from the second burner 108 is determined from the combustible component molar flow rate of the main fuel 13 ejected from the second fuel nozzle 117 and the second air introduction hole 116. It is a value defined only by the ratio of the oxygen molar flow rate in the jetted air. Even if the component composition of the main fuel 13 supplied to the second burner 108 changes and the calorific value per unit flow rate fluctuates, the calorific value of the main fuel 13 supplied to the second burner 108 per hour If the sum is constant, the molar flow rate of combustible components in the main fuel 13 supplied at that time is constant, and the equivalent ratio defined by the fuel and air from the second burner 108 does not change.
  • the average mixing temperature Tmix required to obtain high combustion efficiency for a lean mixture with an equivalence ratio ⁇ defined by the fuel and air from the second burner 108 is equal to the fuel from the second burner 108.
  • the fuel flow rate from the second burner 108 is small compared to the air flow rate of the starter burner 105 and the second burner, so the mixing average temperature Tmix is It is determined by the air flow rate of the starter pan 105, the flow rate of the auxiliary fuel 12 supplied to the starter panner, and the air flow rate ejected from the second air introduction hole 116.
  • the second burner 108 has a constant equivalence ratio ⁇ defined by the fuel and air from the second burner 108.
  • the value is the value, the fuel flow rate of the auxiliary fuel 12 to be supplied to the starting burner 105 necessary for obtaining high combustion efficiency becomes a certain value.
  • the auxiliary fuel flow rate calculation controller 33 includes the actual turbine speed signal 44 obtained from the power converter 1 and the gas turbine air flow rate calculated from the intake air temperature signal 46, and the combustor inlet.
  • the flow rate of the auxiliary fuel 12 having a stable calorific value to be supplied is obtained from the air temperature signal 47, and the opening degree of the auxiliary fuel flow rate adjusting valve 21 is controlled by the auxiliary fuel flow rate input command 49.
  • the reference main fuel flow rate calculator 35 of the main fuel flow rate calculation controller 34 is a gas turbine air flow rate calculated from the actual rotational speed signal 44 obtained from the power converter 1 and the intake air temperature signal 46, and the combustor inlet.
  • the standard flow rate of the main fuel 13 to be supplied is calculated from the air temperature signal 47 and output as the reference main fuel flow rate input command 50.
  • the corrected main fuel flow rate calculator 36 calculates the main fuel flow rate to be corrected for the deviation force between the actual gas turbine output signal 45 obtained from the power converter 1 and the required load 40, and the main fuel flow rate input correction command. 51 is output. Further, by adding the reference main fuel flow rate input command 50 and the main fuel flow rate input correction command 51 obtained from the respective main fuel flow rate calculators 35 and 36, the main fuel flow rate control valve 22 To control the opening degree.
  • fuel with fluctuating calorific value is used as the main fuel
  • fuel with stable calorific value is used as the auxiliary fuel
  • stable combustion that satisfies the required load can be performed, and N0x emissions are reduced. It will be able to burn less
  • FIG. 5 is an explanatory diagram of the operating rotational speed at which the required load can be output in the case of each intake air temperature in the gas turbine apparatus according to the first embodiment of the present invention.
  • FIG. 5 shows the operation rotational speed at which the required load 40 can be output in the gas turbine apparatus shown in the present embodiment at the intake air temperature—10 ° C, 5 ° C, 15 ° C, 25 ° C, 40 ° C. Show the case.
  • the horizontal axis shows the operating speed normalized by the rated speed
  • the vertical axis shows the load that can be output, normalized by the rated output.
  • FIG. 4 is an explanatory diagram regarding the flow rate of auxiliary fuel with a stable calorific value to be supplied in the case of each intake air temperature in the gas turbine apparatus according to the first embodiment.
  • FIG. 6 shows the amount of auxiliary fuel 12 with a stable calorific value to be supplied to the starter pan 105 when the intake air temperature is 10 ° C, 5 ° C, 15 ° C, 25 ° C, and 40 ° C.
  • the auxiliary fuel injection command value 49 is shown as a function of the engine speed.
  • the horizontal axis shows the operating speed normalized by the rated speed
  • the vertical axis shows the auxiliary fuel injection command value 49.
  • stable combustion satisfying the required load can be performed using the fuel whose fever amount fluctuates as the main fuel and the fuel whose calorific value is stable as the auxiliary fuel, In addition, the amount of NOx emissions is low and combustion can be performed.
  • FIG. 7 is an overall configuration diagram showing the configuration of the gas turbine apparatus according to the second embodiment of the present invention.
  • the same reference numerals as those in FIG. 1 denote the same parts.
  • the basic apparatus configuration of the present embodiment is almost the same as that of the embodiment shown in FIG. 1, and a compressor 3 directly connected to a generator / motor 2 controlled and driven by a power converter 1. And a regenerative gas turbine device comprising a regenerative heat exchanger 4 and a combustor 5 for exchanging heat between the exhaust gas of the turbine 6, the exhaust gas of the turbine 6 and the high pressure air discharged from the compressor 3 and preheating the high pressure air.
  • the operation speed calculation controller 31 is an operation that can output the required load 40 from the required load 40 and the intake air temperature signal 46, using an expression obtained by functionalizing the atmospheric temperature characteristic and the rotational speed characteristic of the gas turbine device. Calculate the rotation speed and generate the reference operation rotation speed command value 41 according to the predetermined rotation speed increase rate.
  • a correction operation rotational speed control calculator 32 is provided. Compensation operation The rotational speed control calculator 32 refers to the turbine outlet gas temperature signal 48 to calculate a correction amount for the operating speed based on the deviation from the reference value of the turbine outlet temperature, and calculates the operating speed correction amount command value 42. appear. Then, the operation speed command value 43 is generated by adding the reference operation speed command value 41 and the operation speed correction amount command value 42.
  • the temperature of the combustion gas flowing into the regenerative heat exchanger 4 can be adjusted to the optimum operating condition of the regenerative heat exchanger.
  • stable combustion satisfying the required load can be performed by using the fuel whose calorific value fluctuates as the main fuel and using the fuel whose calorific value is stable as the auxiliary fuel, In addition, combustion with low NOx emissions is possible. In addition, reliability can be improved.
  • FIG. 8 is an overall configuration diagram showing the configuration of the gas turbine apparatus according to the third embodiment of the present invention.
  • the same reference numerals as those in FIG. 1 denote the same parts.
  • the compressor 3 and the turbine 6 directly connected to the generator / motor 2 controlled and driven by the power converter 1, the gas turbine device including the combustor 5, and the exhaust gas. 14
  • This is a so-called combined heat and power facility consisting of a waste heat recovery device 10 that recovers waste heat from 4 and uses it externally.
  • the corrected main fuel flow rate calculation controller 36 does not calculate the deviation force correction amount between the actual gas turbine output signal 45 obtained from the power converter 1 and the required load 40. Based on the deviation from the turbine outlet temperature reference value with reference to the turbine outlet gas temperature signal 48, the main fuel flow rate to be corrected is calculated and the main fuel flow rate input correction command 51 is output as shown in FIG. Different from the embodiment of FIG.
  • the output of the gas turbine device is determined by the air flow rate of the gas turbine device and the temperature of the turbine inlet. Therefore, by adjusting the turbine outlet gas temperature to the target value, the output of the gas turbine device is controlled.
  • the main fuel flow rate input correction command 51 is calculated from the deviation between the actual gas turbine output signal 45 obtained from the power converter 1 and the required load 40, and the turbine outlet gas temperature signal 48 is referred to. Therefore, calculating the correction amount from the deviation from the reference value of the turbine outlet temperature is almost equivalent, and the control configuration of this embodiment can be made cheaper.
  • stable combustion satisfying the required load can be performed by using the fuel whose calorific value fluctuates as the main fuel and using the fuel whose calorific value is stable as the auxiliary fuel.
  • the combustor shown in Fig. 2 it is possible to perform combustion with a small amount of N0x emissions. Further, the apparatus cost can be reduced.
  • the first panner operated by the fuel having a stable calorific value is stable with respect to the gas turbine air flow rate supplied to the combustor.
  • the fuel is supplied to satisfy the gas turbine output, so the calorific value fluctuates. Regardless of the combustible component concentration of the fuel, it is stable without blowing off or overheating, and the amount of N0x emission is low and combustion. Can be performed.

Abstract

A gas turbine employing as a main fuel a fuel having a variable heating value and as an auxiliary fuel a fuel having a stabilized heating value in which stabilized combustion free from blow-off and overheat is ensured. A combustor (5) comprises a first burner (105) for injecting fuel and air into a combustion chamber, and a second burner (108) for injecting fuel and air to the axial position in the combustor corresponding to the distal end of flame of the first burner such that the flame of the first burner is intercepted thus producing a circulation flow of fuel and air in the combustion chamber. An auxiliary fuel flow rate operation controller (33) and a main fuel flow rate operation controller (34) supply fuel having a stabilized heating value to the first burner at a predetermined flow rate calculated by the air flow rate of gas turbine, supply fuel having a variable heating value to the second burner, and then vary the flow rate of fuel supplied to the second burner based on a correction amount calculated by using the difference between a required gas turbine output and an actual gas turbine output.

Description

明 細 書  Specification
ガスタービン装置  Gas turbine equipment
技術分野  Technical field
[0001] 本発明は、ガスタービン装置に係り、特に、発熱量が変動する燃料を用いる場合に 好適なガスタービン装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a gas turbine apparatus, and more particularly to a gas turbine apparatus suitable for use with a fuel whose calorific value varies.
背景技術  Background art
[0002] ガスタービン装置に用いるガスタービン用燃焼器では、燃料と空気を燃焼室に流入 する前に予混合器と呼ばれる燃焼器部品内で混合して供給する予混合燃焼方式を 採用しているものが多い。予混合燃焼方式の燃焼器では、燃焼用空気と燃料を予め 量論混合比より燃料希薄になるよう混合して力 燃焼させることができるので、局所的 な高温領域がなく火炎温度も低くなるので窒素酸化物 (N〇x)排出量が少ない。  [0002] A gas turbine combustor used in a gas turbine apparatus employs a premixed combustion method in which fuel and air are mixed and supplied in a combustor component called a premixer before flowing into a combustion chamber. There are many things. In a premixed combustion type combustor, combustion air and fuel can be mixed and burned in advance so that the fuel becomes leaner than the stoichiometric mixture ratio, so there is no local high temperature region and the flame temperature is low. Nitrogen oxide (Nx) emissions are low.
[0003] しかし、近年は、発電効率向上のため圧縮機吐出空気を再生熱交換器によって予 熱し燃焼器に送ることで、タービン排気の排熱を回収し熱効率の向上を図る再生式 ガスタービン装置が普及し、特に小型のマイクロタービンと称される再生式ガスタービ ンでは 90%を超える再生効率を持つものも多レ、。このような再生式ガスタービンでは 、燃焼器入口空気温度が 600°Cを上回る高温になるため、燃料の発火点温度を超 ぇ予混合器内で自発火したり、あるいは燃焼室内の火炎が予混合器内に逆流する 逆火などの危険が高い。  In recent years, however, a regenerative gas turbine apparatus that recovers exhaust heat from turbine exhaust and improves thermal efficiency by preheating the compressor discharge air with a regenerative heat exchanger and sending it to the combustor in order to improve power generation efficiency. In particular, many regenerative gas turbines called small micro turbines have a regeneration efficiency exceeding 90%. In such a regenerative gas turbine, the combustor inlet air temperature becomes higher than 600 ° C, so that the fuel self-ignition exceeds the ignition point temperature or the flame in the combustion chamber is preliminarily generated. There is a high risk of backfire that flows back into the mixer.
[0004] 一方、燃料を空気と混合せずに燃焼室に流入させ燃焼室内で空気と混合させる拡 散燃焼方式の燃焼器では、火炎の位置が燃料と空気が混合する過程に大きく依存 し、量論混合比近傍の混合気が形成されている領域に保持されるため、局所的に非 常に高温な領域が発生し N〇x排出量が多い。特に燃焼器入口空気温度が高い再 生式ガスタービンの場合、火炎温度が非常に高くなるため指数関数的に N〇x排出 量が増大する。  [0004] On the other hand, in a diffuse combustion type combustor in which fuel flows into a combustion chamber without being mixed with air and mixed with air in the combustion chamber, the position of the flame greatly depends on the process of mixing the fuel and air, Since the air-fuel mixture in the vicinity of the stoichiometric mixture ratio is maintained in the region where the air-fuel mixture is formed, a very high temperature region is generated locally, resulting in a large amount of N0x emissions. In particular, in the case of a regenerative gas turbine with a high combustor inlet air temperature, the flame temperature becomes very high, so the Nx emission increases exponentially.
[0005] このような燃焼器入口の空気温度が高い場合にも安定で NOx排出量が低い燃焼 を行わせることができるガスタービン用燃焼器としては、例えば、本出願人による国際 公開公報 WO2005/059442A1に記載のものが知られている。 [0006] 特許文献 1:国際公開公報 WO2005/059442A1 [0005] As a combustor for a gas turbine capable of performing stable combustion with low NOx emission even when the air temperature at the combustor inlet is high, for example, an international publication WO2005 / The one described in 059442A1 is known. [0006] Patent Document 1: International Publication WO2005 / 059442A1
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しかしながら、国際公開公報 WO2005/059442A1記載のものは、単一の発熱 量の安定した燃料を用いる場合についての構成を示したものであり、例えば汚泥消 化ガスなどの発熱量が変動する燃料を用いる場合にっレ、ては開示してレ、なレ、。例え ば、下水処理場で発生する汚泥などを乾燥発酵処理して得られる汚泥消化ガスなど の燃料は、季節による湿度の変化や汚泥の性質の変化により、燃料中の可燃成分濃 度が変化し、発熱量が変動する。このように発熱量が変動する燃料を利用したガスタ 一ビン装置では、燃料の発熱量の変動に対応して所定の性能を維持できるように燃 料流量を調整する制御を行う必要がある。 [0007] However, the one described in International Publication No. WO2005 / 059442A1 shows a configuration in the case of using a single fuel having a stable calorific value, and the calorific value of, for example, sludge degassing gas varies. If you use fuel, please disclose it. For example, fuel such as sludge digestion gas obtained by dry fermentation of sludge generated at a sewage treatment plant changes the concentration of combustible components in the fuel due to seasonal changes in humidity and sludge properties. The calorific value fluctuates. In such a gas turbine device that uses fuel whose calorific value fluctuates, it is necessary to perform control to adjust the fuel flow rate so that predetermined performance can be maintained in response to fluctuations in the calorific value of the fuel.
[0008] 一般的に燃料の発熱量が変動する場合には、発熱量の変動による吹き消えや過 熱を防止するため、発熱量の安定した別の燃料を補助燃料として併用する方法が知 られている。しかしながら、発熱量の変動する主燃料と、発熱量の安定した補助燃料 を用いた場合にも、安定し N〇xの排出量が少ない燃焼を行わせるためには、主燃料 と補助燃料を適切に分配する制御が必要である。 [0008] Generally, when the calorific value of a fuel fluctuates, a method of using another fuel with a stable calorific value as an auxiliary fuel is known in order to prevent blow-out and overheating due to fluctuations in the calorific value. ing. However, when using the main fuel with a variable calorific value and the auxiliary fuel with a stable calorific value, the main fuel and the auxiliary fuel must be properly Control to distribute to
[0009] 本発明の目的は、発熱量が変動する燃料を主燃料とし、発熱量が安定した燃料を 補助燃料として用いるガスタービン装置において、吹き消えや過熱のない安定した 燃焼を行えるガスタービン装置を提供することにある。 [0009] An object of the present invention is to provide a gas turbine apparatus capable of performing stable combustion without being blown out or overheated in a gas turbine apparatus using a fuel with a variable calorific value as a main fuel and a fuel with a stable calorific value as an auxiliary fuel. Is to provide.
課題を解決するための手段  Means for solving the problem
[0010] (1)上記目的を達成するために、本発明は、発熱量の変動する燃料を主燃料とし、 発熱量の安定した燃料を補助燃料として用レ、るガスタービン装置であって、燃焼室 内に燃料と空気を噴出する第 1のパーナと、第 1のパーナの火炎の先端部分に相当 する燃焼器内の軸方向位置に、第 1のパーナ火炎を堰きとめるように燃料と空気を噴 出して燃焼室内に燃料と空気の循環流を生ぜしめる第 2のパーナとを設けた燃焼器 と、ガスタービン空気流量によって算出される所定流量の発熱量の安定した燃料を 前記第 1のパーナに供給し、発熱量が変動する燃料を前記第 2のパーナに供給し、 所要のガスタービン出力と実際のガスタービン出力の差を用いて算出される補正量 により第 2のパーナに供給する燃料流量を変化させる制御手段を備えるようにしたも のである。 [0010] (1) In order to achieve the above object, the present invention provides a gas turbine device that uses a fuel with a variable calorific value as a main fuel, and uses a fuel with a stable calorific value as an auxiliary fuel, Fuel and air so as to dam the first panner flame at the axial position in the combustor corresponding to the tip of the flame of the first panner and the first panner that jets fuel and air into the combustion chamber A combustor provided with a second burner for generating a circulating flow of fuel and air in the combustion chamber, and a fuel with a stable calorific value at a predetermined flow rate calculated by the gas turbine air flow rate. A correction amount calculated by using the difference between the required gas turbine output and the actual gas turbine output by supplying fuel to the second burner and supplying the fuel whose fluctuating calorific value fluctuates. Thus, a control means for changing the flow rate of fuel supplied to the second burner is provided.
かかる構成により、発熱量が変動する燃料を主燃料とし、発熱量が安定した燃料を 補助燃料として用いるガスタービン装置において、吹き消えや過熱のない安定した 燃焼を行えるものとなる。  With such a configuration, in a gas turbine apparatus that uses a fuel with a variable calorific value as a main fuel and a fuel with a stable calorific value as an auxiliary fuel, it is possible to perform stable combustion without blowing off or overheating.
[0011] (2)上記(1)において、好ましくは、前記制御手段は、さらに、要求負荷と吸気温度 信号から、要求負荷を出力できる運転回転数を算出して、所定の回転数上昇率にし たがって基準運転回転数指令値を発生する運転回転数演算制御器と、タービン出 口ガス温度信号を参照してタービン出口温度の基準値との偏差に基づいて運転回 転数の補正量を算出し、運転回転数補正量指令値を発生する補正運転回転数制御 演算器とを備え、前記基準運転回転数指令値と前記運転回転数補正量指令値を加 算して運転回転数指令値を発生するようにしたものである。 [0011] (2) In the above (1), preferably, the control means further calculates an operating rotational speed at which the required load can be output from the required load and the intake air temperature signal to obtain a predetermined rotational speed increase rate. Therefore, the operation speed calculation controller that generates the reference operation speed command value and the reference value of the turbine outlet temperature with reference to the turbine outlet gas temperature signal are used to calculate the correction amount for the operating speed. And a correction operation speed control calculator for generating an operation speed correction amount command value, and adding the reference operation speed command value and the operation speed correction amount command value to obtain the operation speed command value. This is what happens.
[0012] (3)上記目的を達成するために、本発明は、発熱量の変動する燃料を主燃料とし、 発熱量の安定した燃料を補助燃料として用いるガスタービン装置であって、燃焼室 内に燃料と空気を噴出する第 1のパーナと、第 1のパーナの火炎の先端部分に相当 する燃焼器内の軸方向位置に、第 1のパーナ火炎を堰きとめるように燃料と空気を噴 出して燃焼室内に燃料と空気の循環流を生ぜしめる第 2のパーナとを設けた燃焼器 と、ガスタービン空気流量によって算出される所定流量の発熱量の安定した燃料を 前記第 1のパーナに供給し、発熱量が変動する燃料を前記第 2のパーナに供給し、 タービン出口ガス温度の基準値と実際のタービン出口ガス温度の差を用いて算出さ れる補正量により前記第 2のパーナに供給する燃料流量を変化させる制御手段を備 えるようにしたものである。  [0012] (3) In order to achieve the above object, the present invention provides a gas turbine device that uses a fuel with a variable calorific value as a main fuel and a fuel with a stable calorific value as an auxiliary fuel. Fuel and air are ejected at the axial position in the combustor corresponding to the tip of the flame of the first panner and the first panner that ejects fuel and air so as to dampen the first panner flame. A combustor provided with a second burner that generates a circulating flow of fuel and air in the combustion chamber, and a fuel with a stable calorific value calculated by the gas turbine air flow rate is supplied to the first burner. Then, the fuel whose fluctuating calorific value is supplied is supplied to the second burner, and supplied to the second burner by a correction amount calculated using the difference between the reference value of the turbine outlet gas temperature and the actual turbine outlet gas temperature. Control hand to change the fuel flow rate In which it was to obtain Bei the.
かかる構成により、発熱量が変動する燃料を主燃料とし、発熱量が安定した燃料を 補助燃料として用いるガスタービン装置において、吹き消えや過熱のない安定した 燃焼を行えるものとなる。  With such a configuration, in a gas turbine apparatus that uses a fuel with a variable calorific value as a main fuel and a fuel with a stable calorific value as an auxiliary fuel, it is possible to perform stable combustion without blowing off or overheating.
発明の効果  The invention's effect
[0013] 本発明によれば、発熱量が変動する燃料を主燃料としても、燃焼が安定した燃焼を 行えるものとなる。 図面の簡単な説明 [0013] According to the present invention, even when a fuel whose calorific value fluctuates is used as a main fuel, combustion with stable combustion can be performed. Brief Description of Drawings
[図 1]本発明の第 1の実施形態によるガスタービン装置の構成を示す全体構成図で ある。 FIG. 1 is an overall configuration diagram showing a configuration of a gas turbine apparatus according to a first embodiment of the present invention.
[図 2]本発明の第 1の実施形態によるガスタービン装置に用レ、る燃焼器の構成を示す 縦断面である。  FIG. 2 is a longitudinal section showing a configuration of a combustor used in the gas turbine apparatus according to the first embodiment of the present invention.
[図 3]本発明の第 1の実施形態によるガスタービン装置における希薄混合気の緩慢 燃焼反応について化学反応シミュレーションを行った結果の説明図である。  FIG. 3 is an explanatory diagram of a result of a chemical reaction simulation performed on a slow combustion reaction of a lean air-fuel mixture in the gas turbine apparatus according to the first embodiment of the present invention.
[図 4]本発明の第 1の実施形態によるガスタービン装置に用レ、る燃焼器における、第 2次燃焼領域での滞留時間を 35msとした時に 99 %以上の燃焼効率が得られる当 量比と混合平均温度の条件の説明図である。 [Fig. 4] An amount capable of obtaining a combustion efficiency of 99% or more when the residence time in the secondary combustion region is 35 ms in the combustor used in the gas turbine apparatus according to the first embodiment of the present invention. It is explanatory drawing of the conditions of ratio and mixing average temperature.
[図 5]本発明の第 1の実施形態によるガスタービン装置におけるそれぞれの吸気温度 の場合に要求負荷を出力できる運転回転数についての説明図である。  FIG. 5 is an explanatory diagram of the operating rotational speed at which the required load can be output in the case of each intake air temperature in the gas turbine apparatus according to the first embodiment of the present invention.
[図 6]本発明の第 1の実施形態によるガスタービン装置におけるそれぞれの吸気温度 の場合に供給するべき発熱量の安定した補助燃料の流量についての説明図である FIG. 6 is an explanatory diagram regarding the flow rate of auxiliary fuel with a stable calorific value to be supplied in the case of each intake air temperature in the gas turbine apparatus according to the first embodiment of the present invention.
[図 7]本発明の第 2の実施形態によるガスタービン装置の構成を示す全体構成図で ある。 FIG. 7 is an overall configuration diagram showing a configuration of a gas turbine apparatus according to a second embodiment of the present invention.
[図 8]本発明の第 3の実施形態によるガスタービン装置の構成を示す全体構成図で ある。  FIG. 8 is an overall configuration diagram showing a configuration of a gas turbine apparatus according to a third embodiment of the present invention.
符号の説明 Explanation of symbols
1 · ' ·電力変換器  1 · '· Power converter
2· ' ·発電機/モータ  2 · '· Generator / Motor
3· · ·圧縮機  3 · · · compressor
4· ' · ·再生熱交換器  4 · '· · Regenerative heat exchanger
5· · ·燃焼器  5 · · · Combustor
6 · タービン  6 · Turbine
7· ' · ·吸気温度計  7 '' · · Intake thermometer
8- · ·燃焼器入口空気温度計 …タービン出口燃焼ガス温度計1·· •空気8- · · Combustor inlet air thermometer … Turbine outlet combustion gas thermometer 1 •• Air
2·· •補助燃料2 ... Auxiliary fuel
3-· •主燃料3- · Main fuel
4-· -排気ガス4-exhaust gas
1-· -補助燃料流量調整弁1- · -Auxiliary fuel flow control valve
2-· -主燃料流量調整弁2- · -Main fuel flow control valve
1-· -運転回転数演算制御器2-· -補正運転回転数制御演算器3-· -補助燃料流量演算制御器4-· -主燃料流量演算制御器5-· -基準主燃料流量演算器6·· •補正主燃料流量演算器0·· •要求負荷1- · -Operating speed calculation controller 2 -Corrected operating speed control calculator 3 -Auxiliary fuel flow rate calculation controller 4 -Main fuel flow rate calculation controller 5 -Standard reference fuel flow rate calculation 6 • Corrected main fuel flow rate calculator 0 • Required load
1·· •基準運転回転数指令値2·· •運転回転数補正量指令値3·· •運転回転数指令値1 • Reference operation speed command value 2 • Operation speed correction amount command value 3 • Operation speed command value
4·· •実回転数信号4 • Actual speed signal
5·· •実ガスタービン出力信号6·· •吸気温度信号5 ... Actual gas turbine output signal 6 ... Intake air temperature signal
7·· •燃焼器入口空気温度信号8-· -タービン出口ガス温度信号9-· -補助燃料流量投入指令0-· -基準主燃料流量投入指令1-· -主燃料流量投入補正指令2-· -主燃料流量投入指令値02 …燃焼室7-Combustor inlet air temperature signal 8--Turbine outlet gas temperature signal 9--Auxiliary fuel flow rate input command 0--Reference main fuel flow rate input command 1--Main fuel flow rate input correction command 2- · -Main fuel flow rate input command value 02… Combustion chamber
03 …燃焼器ライナー 104· ' ·ライナーキャップ 03… Combustor liner 104 · 'Liner cap
105· · ·起動用パーナ  105 · · · Starter
106· ' ·エンドカノく一  106 · '· End Kano Kuichi
107- ·■外筒  107-
108- ' -第 2パーナ  108- '-2nd Pana
109- · ·起動用燃料ノズル  109- · · Fuel nozzle for starting
110- · ·第 1燃料噴出孔  110- · · 1st fuel injection hole
111 - · ·第 1空気導入筒  111-· · 1st air inlet tube
112- · ·旋回翼  112-
113- · ·第 1空気導入孔  113- · · 1st air introduction hole
114- ' -弾性シール部材  114- '-Elastic seal member
115- · ·希釈孔  115-
116· · ·第 2空気導入孔  116 ··· Second air introduction hole
117· ' ·第 2燃料ノズル  117 '' Second fuel nozzle
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、図 1〜図 6を用いて、本発明の第 1の実施形態によるガスタービン装置の構 成及び動作にっレ、て説明する。  Hereinafter, the configuration and operation of the gas turbine apparatus according to the first embodiment of the present invention will be described with reference to FIGS.
最初に、図 1を用いて、本実施形態によるガスタービン装置の構成について説明す る。  First, the configuration of the gas turbine apparatus according to the present embodiment will be described with reference to FIG.
図 1は、本発明の第 1の実施形態によるガスタービン装置の構成を示す全体構成 図である。  FIG. 1 is an overall configuration diagram showing a configuration of a gas turbine apparatus according to a first embodiment of the present invention.
[0017] 本実施形態に示すガスタービン装置は、電力変換器 1により制御 *駆動される発電 機/モータ 2と、発電機 Zモータ 2に直結された圧縮機 3およびタービン 6と、タービ ン 6の排気ガスと圧縮機 3の吐出高圧空気の間で熱交換を行い高圧空気の予熱を行 う再生熱交換器 4と、燃焼器 5とからなる再生式ガスタービン装置である。発電機/モ ータ 2、圧縮機 3およびタービン 6は、運転回転数演算制御器 31から得られる運転回 転数指令値 43に従って電気的に制御され、所定の回転数スケジュールに従って起 動'負荷運転される。空気 11は吸気温度計 7により吸気温度を測定された後、圧縮 機 3に入り高圧空気となった後、再生熱交換器 4で高温に予熱され、燃焼器入口空 気温度計 8により燃焼器入口空気温度を計測された後、燃焼器 5に流入する。燃焼 器 5には、起動時の昇温と負荷運転時の燃焼安定性確保を担う補助燃料 12と、負荷 を発生するための主燃料 13がそれぞれ補助燃料流量調整弁 21および主燃料流量 調整弁 22を介して供給されており、これらの燃料が前述の高温予熱空気と反応して 更に高温の燃焼ガスとなり、タービン 6に流入する。タービン 6に流入した高温燃焼ガ スはタービンを駆動した後、タービン出口温度計 9でタービン出口燃焼ガス温度を計 測された後、再生熱交換器 4で高圧空気と熱交換し最終的に排気ガス 14として系外 に排出される。 [0017] The gas turbine apparatus shown in the present embodiment includes a generator / motor 2 controlled and driven by a power converter 1, a compressor 3 and a turbine 6 directly connected to a generator Z motor 2, and a turbine 6 This is a regenerative gas turbine device comprising a regenerative heat exchanger 4 and a combustor 5 for exchanging heat between the exhaust gas and the high pressure air discharged from the compressor 3 to preheat the high pressure air. The generator / motor 2, the compressor 3 and the turbine 6 are electrically controlled in accordance with the operation speed command value 43 obtained from the operation speed calculation controller 31 and started according to a predetermined speed schedule. Driven. Air 11 is compressed after intake air temperature is measured by intake thermometer 7. After entering the machine 3 and becoming high-pressure air, it is preheated to a high temperature by the regenerative heat exchanger 4, the combustor inlet air temperature meter 8 measures the combustor inlet air temperature, and then flows into the combustor 5. The combustor 5 includes an auxiliary fuel 12 responsible for raising the temperature at startup and ensuring combustion stability during load operation, and a main fuel 13 for generating a load, respectively, and an auxiliary fuel flow rate adjusting valve 21 and a main fuel flow rate adjusting valve. These fuels react with the above-mentioned high-temperature preheated air to become higher-temperature combustion gas and flow into the turbine 6. The high-temperature combustion gas that has flowed into the turbine 6 drives the turbine, and after the turbine outlet thermometer 9 measures the turbine outlet combustion gas temperature, the regenerative heat exchanger 4 exchanges heat with the high-pressure air, and finally exhausts. It is discharged out of the system as gas 14.
[0018] 制御装置は大きく分けて、運転回転数演算制御器 31と、補助燃料流量演算制御 器 33と、主燃料流量演算制御器 34とからなり、それぞれ運転回転数,補助燃料流 量,主燃料流量の制御を担っている。  [0018] The control device is roughly divided into an operation speed calculation controller 31, an auxiliary fuel flow rate calculation controller 33, and a main fuel flow rate calculation controller 34. The operation speed, auxiliary fuel flow rate, It is responsible for controlling the fuel flow rate.
[0019] 運転回転数演算制御器 31は、要求負荷 40と吸気温度信号 46から、ガスタービン 装置の大気温度特性および回転数特性を関数化した式を用いて、要求負荷 40を出 力できる運転回転数を算出して、所定の回転数上昇率にしたがって運転回転数指 令値 43を発生する。電力変換器 1は、運転回転数指令値 43に基づいて発電機/モ ータ 2の回転数を所定の回転数となるよう電流および電圧を調整するとともに、実際 の運転回転数を実回転数信号 44として出力する。  [0019] The operation rotational speed calculation controller 31 is an operation capable of outputting the required load 40 from the required load 40 and the intake air temperature signal 46 using an expression obtained by functionalizing the atmospheric temperature characteristic and the rotational speed characteristic of the gas turbine device. The engine speed is calculated, and the engine speed command value 43 is generated according to the predetermined speed increase rate. The power converter 1 adjusts the current and voltage based on the operation speed command value 43 so that the speed of the generator / motor 2 becomes a predetermined speed, and the actual speed is changed to the actual speed. Output as signal 44.
[0020] 補助燃料流量演算制御器 33は、電力変換器 1から得られる実回転数信号 44と吸 気温度信号 46から算出されるガスタービン空気流量と、燃焼器入口空気温度信号 4 7とから供給するべき発熱量の安定した補助燃料 12の流量を求め、補助燃料流量投 入指令 49により補助燃料流量調整弁 21の開度を制御する。  [0020] The auxiliary fuel flow rate calculation controller 33 is based on the gas turbine air flow rate calculated from the actual rotational speed signal 44 obtained from the power converter 1 and the intake air temperature signal 46, and the combustor inlet air temperature signal 47. The flow rate of the auxiliary fuel 12 having a stable calorific value to be supplied is obtained, and the opening degree of the auxiliary fuel flow rate adjustment valve 21 is controlled by the auxiliary fuel flow rate input command 49.
[0021] 主燃料流量演算制御器 34は、基準主燃料流量演算器 35と、補正主燃料流量演 算器 36とを備え、それぞれの主燃料流量演算器 35, 36から得られる基準主燃料流 量投入指令 50と主燃料流量投入補正指令 51を加算して主燃料流量投入指令値 5 2により、主燃料流量調整弁 22の開度を制御する。基準主燃料流量演算器 35は、 電力変換器 1から得られる実回転数信号 44と吸気温度信号 46から算出されるガスタ 一ビン空気流量と、燃焼器入口空気温度信号 47から供給するべき主燃料 13の標準 的な流量を算出し、基準主燃料流量投入指令 50として出力する。補正主燃料流量 演算器 36は、電力変換器 1から得られる実ガスタービン出力信号 45と要求負荷 40と の偏差から補正すべき主燃料流量を算出し、主燃料流量投入補正指令 51を出力す る。 [0021] The main fuel flow rate calculation controller 34 includes a reference main fuel flow rate calculator 35 and a corrected main fuel flow rate calculator 36, and the reference main fuel flow rate calculators 35 and 36 respectively obtain the reference main fuel flow rate calculators 35 and 36. The opening amount of the main fuel flow rate adjusting valve 22 is controlled based on the main fuel flow rate input command value 52 by adding the amount input command 50 and the main fuel flow rate correction command 51. The reference main fuel flow rate calculator 35 is a main fuel to be supplied from the gas turbine bin air flow rate calculated from the actual rotational speed signal 44 obtained from the power converter 1 and the intake air temperature signal 46 and the combustor inlet air temperature signal 47. 13 standards The basic flow rate input command 50 is output. The corrected main fuel flow rate calculator 36 calculates the main fuel flow rate to be corrected from the deviation between the actual gas turbine output signal 45 obtained from the power converter 1 and the required load 40, and outputs the main fuel flow rate input correction command 51. The
[0022] 次に、図 2を用いて、本実施形態によるガスタービン装置に用レ、る燃焼器 5の構成 について説明する。  Next, the configuration of the combustor 5 used in the gas turbine apparatus according to the present embodiment will be described with reference to FIG.
図 2は、本発明の第 1の実施形態によるガスタービン装置に用いる燃焼器の構成を 示す縦断面である。  FIG. 2 is a longitudinal section showing the configuration of the combustor used in the gas turbine apparatus according to the first embodiment of the present invention.
[0023] 本燃焼器は燃焼室 102を形成する断面円形をなす燃焼器ライナー 103と、この燃 焼器ライナー 103の上流側を塞ぐライナーキャップ 104と、このライナーキャップ 104 の中心に形成した起動用パーナ(第 1のバーナー) 105と、この起動用パーナ 105の 上流側に設けたエンドカバー 106と、このエンドカバー 106に一端側固定され他端 側が前記燃焼器ライナー 103の外周側に隙間を介して延在する外筒 107と、前記燃 焼器ライナー 103の周壁を貫通して形成された複数の第 2パーナ 108を有している。  [0023] The combustor includes a combustor liner 103 having a circular cross section that forms a combustion chamber 102, a liner cap 104 that closes the upstream side of the combustor liner 103, and an activation starter formed at the center of the liner cap 104. A burner (first burner) 105, an end cover 106 provided on the upstream side of the starting burner 105, and one end fixed to the end cover 106 and the other end on the outer peripheral side of the combustor liner 103 via a gap. And a plurality of second partners 108 formed so as to penetrate through the peripheral wall of the combustor liner 103.
[0024] 起動用パーナ 105は、ガスタービン着火から起動 '暖機運転および例えば 80%ま での部分負荷運転を担うパーナであり、発熱量の安定した補助燃料 12を供給される 。起動用パーナ 105は、燃焼器ライナー 103と同心的に形成され、その中央部には 下流端がライナーキャップ 104の中央に位置し、上流端がエンドカバー 106の中心 部を貫通して延在する起動用燃料ノズル 109を有している。起動用燃料ノズル 109 の下流端には、第 1燃料噴出孔 110が設けられ、起動用燃料ノズル 109の外周には 、起動用燃料ノズル 109と同心の第 1空気導入筒 111が隙間をもって形成され、この 隙間に旋回翼 112が設けられている。第 1空気導入筒 111の下流側はライナーキヤ ップ 104から燃焼器ライナー 103に開口し、上流側はエンドカバー 106で塞がれてい る。そして、第 1空気導入筒 111のエンドカバー 106寄りに第 1空気導入孔 113が設 けられている。  [0024] The starter pan 105 is a burner that takes charge of the start-up and warm-up operation from gas turbine ignition and partial load operation up to 80%, for example, and is supplied with the auxiliary fuel 12 having a stable calorific value. The starter pan 105 is formed concentrically with the combustor liner 103, and has a downstream end located in the center of the liner cap 104 at its center and an upstream end extending through the center of the end cover 106. It has a fuel nozzle 109 for starting. A first fuel injection hole 110 is provided at the downstream end of the startup fuel nozzle 109, and a first air introduction tube 111 concentric with the startup fuel nozzle 109 is formed on the outer periphery of the startup fuel nozzle 109 with a gap. The swirl vane 112 is provided in this gap. The downstream side of the first air introduction tube 111 opens from the liner cap 104 to the combustor liner 103, and the upstream side is closed by the end cover 106. A first air introduction hole 113 is provided near the end cover 106 of the first air introduction cylinder 111.
[0025] 燃焼器ライナー 103は、下流側が弾性シール部材 114を介して図示しなレ、トランジ ッシヨンピースに連結されており、燃焼室内で発生した高温燃焼ガスをタービン 6に導 レ、ている。燃焼器ライナー 103の下流側には、燃焼器出口のガス温度分布を平滑に するための希釈空気孔 115が設けられている。このほか実際には、燃焼器ライナー 1 03の位置を固定するストッパや、信頼性を確保するためのフィルム冷却スロットが設 けられている力 煩雑になるため図示は省略している。 The combustor liner 103 is connected to a transition piece (not shown) on the downstream side via an elastic seal member 114, and guides high-temperature combustion gas generated in the combustion chamber to the turbine 6. On the downstream side of the combustor liner 103, the gas temperature distribution at the combustor outlet is smoothed. A dilution air hole 115 is provided for this purpose. In addition, in reality, a stopper for fixing the position of the combustor liner 103 and a film cooling slot for ensuring reliability are complicated, and the illustration is omitted.
[0026] 複数の第 2パーナ 108は、燃焼器ライナー 103の周壁に設けた第 2空気導入孔 11 6と、第 2空気導入孔 116にそれぞれ対向する外筒 107の周壁を貫通するように設け た第 2燃料ノズル 117とから構成されており、発熱量の変動する主燃料 13を供給され ている。 [0026] The plurality of second burners 108 are provided so as to penetrate through the second air introduction hole 116 provided in the peripheral wall of the combustor liner 103 and the peripheral wall of the outer cylinder 107 facing the second air introduction hole 116, respectively. The second fuel nozzle 117 is also supplied with the main fuel 13 whose calorific value fluctuates.
[0027] 燃焼用空気は、圧縮機 3により圧縮され、再生熱交換器 4により昇温された状態で、 図中右側の燃焼器ライナー 103と外筒 107との隙間から図中左向きに案内される。 案内された燃焼用空気の一部は、希釈孔 115、および第 2空気導入孔 116を通過し て燃焼器ライナー 103内の燃焼室 102に導入され、残りは第 1空気導入孔 113から 第 1空気導入筒 111に入り旋回翼 112により所定の旋回を与えられた後、ライナーキ ヤップ 104から燃焼室 102内に噴出される。第 1空気導入孔 113から第 1空気導入筒 111に入り旋回翼 112により旋回を与えられた高温高圧の空気は燃焼室 102に流入 した後、外周側に急拡大するので、起動用燃料ノズル 109の下流側に循環流領域を 形成する。  [0027] Combustion air is compressed by the compressor 3 and heated by the regenerative heat exchanger 4, and is guided leftward in the figure from the gap between the combustor liner 103 and the outer cylinder 107 on the right side in the figure. The A part of the guided combustion air passes through the dilution hole 115 and the second air introduction hole 116 and is introduced into the combustion chamber 102 in the combustor liner 103, and the rest from the first air introduction hole 113. After entering the air introduction cylinder 111 and given a predetermined swirl by the swirl vanes 112, the air is injected from the liner cap 104 into the combustion chamber 102. The high-temperature and high-pressure air that enters the first air introduction tube 111 from the first air introduction hole 113 and is swirled by the swirl vanes 112 flows into the combustion chamber 102 and then rapidly expands to the outer peripheral side. A circulation area is formed on the downstream side of
[0028] さらに、発熱量の安定した補助燃料 12は、起動用燃料ノズル 109から燃焼室 102 内に噴出し、発熱量の変動する主燃料 13は、第 2燃料ノズル 117から燃焼室 102内 に噴出される。全ての燃料は直接燃焼室に向けて噴射されており、燃焼室外で燃料 と空気が混在することがないため、自発火あるいは逆火は発生しない。  [0028] Further, the auxiliary fuel 12 having a stable calorific value is ejected from the starting fuel nozzle 109 into the combustion chamber 102, and the main fuel 13 having a fluctuating calorific value is introduced from the second fuel nozzle 117 into the combustion chamber 102. Erupted. All fuel is injected directly into the combustion chamber, and there is no mixture of fuel and air outside the combustion chamber.
[0029] 起動用パーナ 105は、燃焼器全体の燃焼安定性を左右する上、着火'起動から 80 %までの部分負荷までの広範囲で使用されるため、本実施形態では拡散燃焼方式 を採用している。  [0029] The starter pan 105 affects the combustion stability of the entire combustor and is used in a wide range from ignition to start-up to a partial load of 80%. In this embodiment, a diffusion combustion method is adopted. ing.
[0030] 一方、第 2次空気導入孔 116から燃焼室 102内に噴出する空気には、同位置に設 置した第 2燃料ノズル 117から放射状に、発熱量の変動する主燃料 13が噴射される 。但し、第 2燃料ノズル 117から噴射された直後の主燃料 13は、第 2空気導入孔 116 力 噴射される空気の流速が大きくまた周囲の燃焼ガスとの剪断が強いために、燃 焼反応が始まってもすぐに火炎が吹き消えてしまレ、、第 2次燃料ノズノレ近傍では火炎 保持しないので第 2燃料ノズル 117や燃焼器ライナー 103壁面近傍には局所的な高 温領域が現れないので信頼性確保の観点から有利である。 [0030] On the other hand, the main fuel 13 having a variable calorific value is injected radially from the second fuel nozzle 117 installed at the same position into the air ejected from the secondary air introduction hole 116 into the combustion chamber 102. The However, the main fuel 13 immediately after being injected from the second fuel nozzle 117 has a large flow velocity of the air injected through the second air introduction hole 116 and a strong shearing with the surrounding combustion gas, so that the combustion reaction does not occur. Even if it starts, the flame will blow out immediately, near the secondary fuel nozure Since it is not held, a local high temperature region does not appear in the vicinity of the wall surface of the second fuel nozzle 117 or the combustor liner 103, which is advantageous from the viewpoint of ensuring reliability.
[0031] また、周方向 3箇所の第 2空気導入孔 116から噴出した空気は、燃焼室 102中心 軸近傍で互いに衝突して淀み領域を形成し、第 2空気導入孔 116の上流と下流にそ れぞれ循環流領域を形成する。これらの循環流領域内では流速は低下しおり、充分 に伝播火炎が維持できる条件となるため、第 2燃料ノズル 117から噴出された燃料は 、循環流内で燃焼反応を開始する。この際、反応を開始する時点では第 2燃料ノズ ノレから噴射された燃料と第 2空気導入孔から噴射された空気は希薄混合気となって いるため、混合気への熱の拡散に依存した緩慢な酸化反応に律速される反応形態 をとり、局所高温部を生じない低 NOx燃焼を実現する。  In addition, the air ejected from the second air introduction holes 116 at three circumferential directions collides with each other in the vicinity of the central axis of the combustion chamber 102 to form a stagnation region, and upstream and downstream of the second air introduction holes 116. Each forms a circulation region. In these circulating flow regions, the flow velocity is reduced, and the condition that the propagating flame can be sufficiently maintained is maintained. Therefore, the fuel ejected from the second fuel nozzle 117 starts a combustion reaction in the circulating flow. At this time, since the fuel injected from the second fuel nozzle and the air injected from the second air introduction hole are a lean mixture at the time of starting the reaction, they depended on the diffusion of heat to the mixture. It adopts a reaction mode controlled by a slow oxidation reaction, and realizes low NOx combustion that does not produce a local high temperature part.
[0032] 以上のように、本実施形態の燃焼器は、燃焼室内に燃料と空気を噴出する第 1の パーナ(起動用バーナー) 105と、第 1のパーナの火炎の先端部分に相当する燃焼 器内の軸方向位置に、第 1のパーナ火炎を堰きとめるように燃料と空気を噴出して燃 焼室内に燃料と空気の循環流を生ぜしめる第 2のパーナ 108とを備え、第 2のバー ナから噴出した燃料と空気の混合流は燃焼室内で衝突し、強い乱れを伴った循環流 を生じ、第 1のパーナからの燃焼ガスと広い接触面積で接触しながら混合することに より、燃焼室内に局所的な高温領域を発生させることのない緩慢な燃焼を行うことが でき、逆火や自発火を発生させることなく安定した燃焼を行うことができるものである。  [0032] As described above, the combustor according to the present embodiment has the first burner (starter burner) 105 that ejects fuel and air into the combustion chamber, and the combustion corresponding to the flame tip of the first burner. And a second burner 108 for injecting fuel and air into the combustion chamber to generate a circulating flow of fuel and air so as to block the first burner flame at an axial position in the chamber. The mixed flow of fuel and air ejected from the burner collides in the combustion chamber, generates a circulatory flow with strong turbulence, and mixes with the combustion gas from the first burner in contact with a wide contact area. Slow combustion without generating a local high-temperature region in the combustion chamber can be performed, and stable combustion can be performed without causing backfire or self-ignition.
[0033] 次に、図 3を用いて、本実施形態によるガスタービン装置に用いる燃焼器における 希薄混合気の緩慢燃焼反応について化学反応シミュレーションを行った結果につい て説明する。  Next, the results of a chemical reaction simulation performed on the slow combustion reaction of the lean air-fuel mixture in the combustor used in the gas turbine apparatus according to the present embodiment will be described with reference to FIG.
図 3は、本発明の第 1の実施形態によるガスタービン装置における希薄混合気の緩 慢燃焼反応について化学反応シミュレーションを行った結果の説明図である。  FIG. 3 is an explanatory diagram of a result of a chemical reaction simulation performed on the slow combustion reaction of the lean air-fuel mixture in the gas turbine apparatus according to the first embodiment of the present invention.
[0034] 図 3において、横軸は第 2空気導入孔 116から希釈孔 115までの距離を燃焼器ライ ナー 103の全長で規格化したものである。すなわち、図 2に示した燃焼器の構成に おいて、図 2に示す燃焼器ライナーの全長を Lとし、第 2空気導入孔 116から希釈孔 115までの距離を Xとしたとき、図 3の横軸は、 X/Lを示している。なお、図 2に示す 燃焼器 5では、希釈孔 115の位置が 0. 668の位置にあたる。 [0035] 図 3は、図 2に示した燃焼器の軸方向での一酸化炭素濃度および燃焼ガス温度の 反応計算による予測分布図を示している。図 3において、下側の曲線は、燃焼器内 の燃焼ガス流通方向に沿う燃焼ガス温度 Tg (°C)の変化を示し、上側の曲線は、燃 焼ガス流通方向に沿う一酸化炭素濃度を、反応の指標として示している。第 2パーナ 108からの燃料と空気により形成された希薄混合気は、燃焼器ライナー 103中心軸 近傍の淀み領域で起動用パーナ 105の燃焼ガスと混合し、混合平均温度 866°Cの 希薄混合気となる。この希薄混合気は上述のように緩慢に燃料が酸化されて一酸化 炭素を発生しながら徐々に発熱 ·温度上昇していき、一酸化炭素濃度が極大値に達 した後に急速に熱発生が行われて一酸化炭素濃度が低下する。この間に必要な滞 留時間は図 2に示す燃焼器 5の混合平均温度 866°Cの場合で約 30ms程度である。 In FIG. 3, the horizontal axis shows the distance from the second air introduction hole 116 to the dilution hole 115 normalized by the total length of the combustor liner 103. That is, in the configuration of the combustor shown in FIG. 2, when the total length of the combustor liner shown in FIG. 2 is L and the distance from the second air introduction hole 116 to the dilution hole 115 is X, the configuration shown in FIG. The horizontal axis shows X / L. In the combustor 5 shown in FIG. 2, the position of the dilution hole 115 corresponds to the position of 0.668. [0035] FIG. 3 shows a predicted distribution diagram by reaction calculation of the carbon monoxide concentration and the combustion gas temperature in the axial direction of the combustor shown in FIG. In Fig. 3, the lower curve shows the change in combustion gas temperature Tg (° C) along the combustion gas flow direction in the combustor, and the upper curve shows the carbon monoxide concentration along the combustion gas flow direction. Shown as an indicator of reaction. The lean air-fuel mixture formed by the fuel and air from the second burner 108 is mixed with the combustion gas of the starting paner 105 in the stagnation region near the central axis of the combustor liner 103, and the lean air-fuel mixture with an average mixing temperature of 866 ° C is mixed. It becomes. As described above, this lean air-fuel mixture gradually generates heat and rises in temperature while the fuel is slowly oxidized to generate carbon monoxide, and heat generation occurs rapidly after the carbon monoxide concentration reaches the maximum value. As a result, the carbon monoxide concentration decreases. The residence time required during this time is about 30 ms when the mixing average temperature of the combustor 5 shown in Fig. 2 is 866 ° C.
[0036] 次に、図 4を用いて、本実施形態によるガスタービン装置に用レ、る燃焼器における 、第 2次燃焼領域での滞留時間を 35msとした時に 99%以上の燃焼効率が得られる 当量比と混合平均温度の条件について説明する。  Next, with reference to FIG. 4, in the combustor used in the gas turbine apparatus according to the present embodiment, a combustion efficiency of 99% or more is obtained when the residence time in the secondary combustion region is 35 ms. The conditions of the equivalent ratio and the mixing average temperature will be described.
図 4は、本発明の第 1の実施形態によるガスタービン装置に用いる燃焼器における 、第 2次燃焼領域での滞留時間を 35msとした時に 99%以上の燃焼効率が得られる 当量比と混合平均温度の条件の説明図である。  FIG. 4 shows an equivalence ratio and a mixing average in which a combustion efficiency of 99% or more is obtained when the residence time in the secondary combustion region is 35 ms in the combustor used in the gas turbine apparatus according to the first embodiment of the present invention. It is explanatory drawing of the conditions of temperature.
[0037] 図 4は、第 2空気導入孔 116から希釈孔 115までの領域の滞留時間を 35msとした 時に、第 2パーナ 108からの燃料と空気で定義される当量比と、第 2パーナ 108から の燃料および空気と起動用パーナ 105からの燃焼ガスの混合平均温度について、 9 9%以上の高燃焼効率が得られる条件を示してレ、る。図 4に示す近似直線の右上側 の条件、すなわち混合平均温度 Tmixと当量比 Φについて  FIG. 4 shows the equivalent ratio defined by the fuel and air from the second burner 108 and the second burner 108 when the residence time in the region from the second air introduction hole 116 to the dilution hole 115 is 35 ms. The average mixing temperature of the fuel and air from the fuel and the combustion gas from the starting burner 105 is shown under the conditions for obtaining a high combustion efficiency of 99% or more. About the condition on the upper right side of the approximate line shown in Fig. 4, that is, the mixing average temperature Tmix and the equivalent ratio Φ
Φ≥0. 001034567 X Tmix+ 1. 27181  Φ≥0. 001034567 X Tmix + 1. 27181
であれば燃焼効率が確保されるが、あまり極端に混合平均温度を高くしたり当量比を 大きくしたりすると反応が急速に進行して NOx排出量が増加する。また、滞留時間を 長く取れば図 3に示す条件より希薄な当量比でも燃焼効率が得られるが、燃焼器 5の 長さが長くなり、燃焼器が大型化するので好ましくない。  If this is the case, combustion efficiency will be ensured, but if the mixing average temperature is increased too much or the equivalence ratio is increased, the reaction will proceed rapidly and NOx emissions will increase. Further, if the residence time is made longer, combustion efficiency can be obtained even at an equivalent ratio that is leaner than the conditions shown in FIG. 3, but this is not preferable because the length of the combustor 5 becomes longer and the combustor becomes larger.
[0038] ここで、第 2パーナ 108からの燃料および空気で定義される当量比は、第 2燃料ノ ズル 117から噴出される主燃料 13の可燃成分モル流量と、第 2空気導入孔 116から 噴出される空気中の酸素モル流量の比によってのみ定義される値である。また、第 2 パーナ 108に供給される主燃料 13の成分組成が変化し、単位流量あたりの発熱量 が変動した場合でも、第 2パーナ 108に供給される主燃料 13の発熱量の時間あたり の総和が一定であれば、その時間に供給された主燃料 13中の可燃成分のモル流量 は一定であり、第 2パーナ 108からの燃料と空気で定義される当量比は変化しなレ、。 Here, the equivalence ratio defined by the fuel and air from the second burner 108 is determined from the combustible component molar flow rate of the main fuel 13 ejected from the second fuel nozzle 117 and the second air introduction hole 116. It is a value defined only by the ratio of the oxygen molar flow rate in the jetted air. Even if the component composition of the main fuel 13 supplied to the second burner 108 changes and the calorific value per unit flow rate fluctuates, the calorific value of the main fuel 13 supplied to the second burner 108 per hour If the sum is constant, the molar flow rate of combustible components in the main fuel 13 supplied at that time is constant, and the equivalent ratio defined by the fuel and air from the second burner 108 does not change.
[0039] 一方、第 2パーナ 108からの燃料と空気で定義される当量比 Φの希薄混合気に対 して高燃焼効率を得るために必要な混合平均温度 Tmixは第 2パーナ 108からの燃 料および空気と起動用パーナ 105からの燃焼ガスによって定まり、第 2パーナ 108か らの燃料流量は起動用パーナ 105および第 2パーナの空気流量に比較して小さレ、 ので、混合平均温度 Tmixは起動用パーナ 105の空気流量と起動用パーナに供給さ れる補助燃料 12の流量および第 2空気導入孔 116から噴出される空気流量によつ て決定される。ここで起動用パーナに供給される補助燃料 12は発熱量の安定した燃 料であるので、第 2パーナ 108において、第 2パーナ 108からの燃料と空気で定義さ れる当量比 Φがある一定の値である場合に、高燃焼効率を得るために必要な起動用 パーナ 105に供給すべき補助燃料 12の燃料流量はある一定の値となる。  [0039] On the other hand, the average mixing temperature Tmix required to obtain high combustion efficiency for a lean mixture with an equivalence ratio Φ defined by the fuel and air from the second burner 108 is equal to the fuel from the second burner 108. The fuel flow rate from the second burner 108 is small compared to the air flow rate of the starter burner 105 and the second burner, so the mixing average temperature Tmix is It is determined by the air flow rate of the starter pan 105, the flow rate of the auxiliary fuel 12 supplied to the starter panner, and the air flow rate ejected from the second air introduction hole 116. Here, since the auxiliary fuel 12 supplied to the starting burner is a fuel with a stable calorific value, the second burner 108 has a constant equivalence ratio Φ defined by the fuel and air from the second burner 108. When the value is the value, the fuel flow rate of the auxiliary fuel 12 to be supplied to the starting burner 105 necessary for obtaining high combustion efficiency becomes a certain value.
[0040] 一般にガスタービン装置において所要の出力を得るためには、高燃焼効率が維持 されていればガスタービン運転条件で定まる空気流量に対してある一定の発熱量を 与えれば良い。すなわち、ガスタービン要求出力に対して、投入すべき燃料の発熱 量の総和は一定の値となるので、その際の第 2パーナ 108からの燃料と空気で定義 される当量比 Φは一定となる。  [0040] In general, in order to obtain a required output in the gas turbine apparatus, a certain amount of heat generation may be given to the air flow rate determined by the gas turbine operating conditions as long as high combustion efficiency is maintained. In other words, the sum of the calorific values of the fuel to be input is a constant value with respect to the required output of the gas turbine, and the equivalence ratio Φ defined by the fuel and air from the second burner 108 at that time is constant. .
[0041] したがって、本実施形態のガスタービン装置において、ある要求負荷 40が与えられ た場合に、発熱量の変動する主燃料 13と発熱量の安定した補助燃料 12を用いて、 高燃焼効率を維持して要求負荷 40を満足するため、吸気温度信号 46からガスター ビン装置の大気温度特性および回転数特性を関数化した式を用いて、要求負荷 40 を出力できる運転回転数と必要な発熱量の総和を算出し、その発熱量とガスタービ ン運転状態における空気流量から算出される第 2パーナ 108からの燃料と空気で定 義される当量比 Φに対して、図 4に示す条件を満たす混合平均温度 Tmixを与える発 熱量の安定した補助燃料 12の流量を起動用パーナ 105に供給し、要求負荷 40を 満足するまで発熱量の変動する主燃料 13を第 2パーナ 108に供給すればよい。 [0041] Therefore, in the gas turbine apparatus of the present embodiment, when a certain required load 40 is given, high combustion efficiency is achieved by using the main fuel 13 with a variable calorific value and the auxiliary fuel 12 with a stable calorific value. In order to maintain the required load 40 and maintain the required rotational speed and the required calorific value by using the function of the atmospheric temperature characteristics and rotational speed characteristics of the gas turbine unit from the intake air temperature signal 46 4 and the equivalent ratio Φ defined by the fuel and air from the second burner 108 calculated from the calorific value and the air flow rate in the gas turbine operation state, the mixture that satisfies the conditions shown in Fig. 4 Supply the flow rate of the auxiliary fuel 12 with stable heat generation that gives the average temperature Tmix to the starter pan 105 and reduce the required load 40. The main fuel 13 whose calorific value fluctuates may be supplied to the second burner 108 until it is satisfied.
[0042] そのために、本実施形態では、補助燃料流量演算制御器 33は、電力変換器 1から 得られる実回転数信号 44と吸気温度信号 46から算出されるガスタービン空気流量と 、燃焼器入口空気温度信号 47とから供給するべき発熱量の安定した補助燃料 12の 流量を求め、補助燃料流量投入指令 49により補助燃料流量調整弁 21の開度を制 御する。一方、主燃料流量演算制御器 34の基準主燃料流量演算器 35は、電力変 換器 1から得られる実回転数信号 44と吸気温度信号 46から算出されるガスタービン 空気流量と、燃焼器入口空気温度信号 47から供給するべき主燃料 13の標準的な 流量を算出し、基準主燃料流量投入指令 50として出力する。そして、補正主燃料流 量演算器 36は、電力変換器 1から得られる実ガスタービン出力信号 45と要求負荷 4 0との偏差力 補正すべき主燃料流量を算出し、主燃料流量投入補正指令 51を出 力する。さらに、それぞれの主燃料流量演算器 35, 36から得られる基準主燃料流量 投入指令 50と主燃料流量投入補正指令 51を加算して主燃料流量投入指令値 52に より、主燃料流量調整弁 22の開度を制御する。このように制御することで、発熱量が 変動する燃料を主燃料とし、発熱量が安定した燃料を補助燃料として用いて要求負 荷を満たした安定燃焼が行え、かつ N〇xの排出量が少ない燃焼を行えるものとなる [0042] Therefore, in the present embodiment, the auxiliary fuel flow rate calculation controller 33 includes the actual turbine speed signal 44 obtained from the power converter 1 and the gas turbine air flow rate calculated from the intake air temperature signal 46, and the combustor inlet. The flow rate of the auxiliary fuel 12 having a stable calorific value to be supplied is obtained from the air temperature signal 47, and the opening degree of the auxiliary fuel flow rate adjusting valve 21 is controlled by the auxiliary fuel flow rate input command 49. On the other hand, the reference main fuel flow rate calculator 35 of the main fuel flow rate calculation controller 34 is a gas turbine air flow rate calculated from the actual rotational speed signal 44 obtained from the power converter 1 and the intake air temperature signal 46, and the combustor inlet. The standard flow rate of the main fuel 13 to be supplied is calculated from the air temperature signal 47 and output as the reference main fuel flow rate input command 50. Then, the corrected main fuel flow rate calculator 36 calculates the main fuel flow rate to be corrected for the deviation force between the actual gas turbine output signal 45 obtained from the power converter 1 and the required load 40, and the main fuel flow rate input correction command. 51 is output. Further, by adding the reference main fuel flow rate input command 50 and the main fuel flow rate input correction command 51 obtained from the respective main fuel flow rate calculators 35 and 36, the main fuel flow rate control valve 22 To control the opening degree. By controlling in this way, fuel with fluctuating calorific value is used as the main fuel, fuel with stable calorific value is used as the auxiliary fuel, stable combustion that satisfies the required load can be performed, and N0x emissions are reduced. It will be able to burn less
[0043] ここで、図 5を用いて、本実施形態によるガスタービン装置におけるそれぞれの吸 気温度の場合に要求負荷を出力できる運転回転数について説明する。 Here, with reference to FIG. 5, the operation rotational speed at which the required load can be output at each intake temperature in the gas turbine apparatus according to the present embodiment will be described.
図 5は、本発明の第 1の実施形態によるガスタービン装置におけるそれぞれの吸気 温度の場合に要求負荷を出力できる運転回転数についての説明図である。  FIG. 5 is an explanatory diagram of the operating rotational speed at which the required load can be output in the case of each intake air temperature in the gas turbine apparatus according to the first embodiment of the present invention.
[0044] 図 5は、本実施形態に示すガスタービン装置において、要求負荷 40を出力できる 運転回転数を吸気温度— 10°C、 5°C、 15°C、 25°C、 40°Cの場合について示す。図 5において、横軸は運転回転数を定格回転数で規格化したものであり、縦軸は出力 できる負荷を定格出力で規格化した値である。一般にガスタービン装置においては、 吸気温度が高くなると圧縮機入口空気密度の低下により、ガスタービン空気流量が 減少し、出力できる負荷が小さくなる。本実施の形態に示すガスタービン装置におい ても、吸気温度 25°Cおよび 40°Cの場合には定格出力に相当する負荷は出力できな レ、。 [0044] FIG. 5 shows the operation rotational speed at which the required load 40 can be output in the gas turbine apparatus shown in the present embodiment at the intake air temperature—10 ° C, 5 ° C, 15 ° C, 25 ° C, 40 ° C. Show the case. In Fig. 5, the horizontal axis shows the operating speed normalized by the rated speed, and the vertical axis shows the load that can be output, normalized by the rated output. In general, in a gas turbine system, when the intake air temperature increases, the compressor inlet air density decreases, and the gas turbine air flow rate decreases, and the load that can be output decreases. Even in the gas turbine apparatus shown in the present embodiment, when the intake air temperature is 25 ° C and 40 ° C, a load corresponding to the rated output cannot be output. Les.
[0045] さらに、図 6を用いて、本実施形態によるガスタービン装置におけるそれぞれの吸 気温度の場合に供給するべき発熱量の安定した補助燃料の流量について説明する 図 6は、本発明の第 1の実施形態によるガスタービン装置におけるそれぞれの吸気 温度の場合に供給するべき発熱量の安定した補助燃料の流量についての説明図で ある。  [0045] Further, the flow rate of the auxiliary fuel having a stable calorific value to be supplied in the case of the respective intake temperatures in the gas turbine apparatus according to the present embodiment will be described with reference to FIG. FIG. 4 is an explanatory diagram regarding the flow rate of auxiliary fuel with a stable calorific value to be supplied in the case of each intake air temperature in the gas turbine apparatus according to the first embodiment.
[0046] 図 6は、吸気温度— 10°C、 5°C、 15°C、 25°C、 40°Cの場合について起動用パーナ 105に供給するべき、発熱量の安定した補助燃料 12の補助燃料投入指令値 49を 回転数の関数として示している。図 6において、横軸は運転回転数を定格回転数で 規格化したものであり、縦軸は補助燃料投入指令値 49である。  [0046] FIG. 6 shows the amount of auxiliary fuel 12 with a stable calorific value to be supplied to the starter pan 105 when the intake air temperature is 10 ° C, 5 ° C, 15 ° C, 25 ° C, and 40 ° C. The auxiliary fuel injection command value 49 is shown as a function of the engine speed. In Fig. 6, the horizontal axis shows the operating speed normalized by the rated speed, and the vertical axis shows the auxiliary fuel injection command value 49.
[0047] 以上説明したように、本実施形態によれば、発熱量が変動する燃料を主燃料とし、 発熱量が安定した燃料を補助燃料として用いて要求負荷を満たした安定燃焼が行 え、かつ NOxの排出量が少なレ、燃焼を行えるものとなる。  [0047] As described above, according to the present embodiment, stable combustion satisfying the required load can be performed using the fuel whose fever amount fluctuates as the main fuel and the fuel whose calorific value is stable as the auxiliary fuel, In addition, the amount of NOx emissions is low and combustion can be performed.
[0048] 次に、図 7を用いて、本発明の第 2の実施形態によるガスタービン装置の構成につ いて説明する。  Next, the configuration of the gas turbine apparatus according to the second embodiment of the present invention will be described with reference to FIG.
図 7は、本発明の第 2の実施形態によるガスタービン装置の構成を示す全体構成 図である。なお、図 1と同一符号は、同一部分を示している。  FIG. 7 is an overall configuration diagram showing the configuration of the gas turbine apparatus according to the second embodiment of the present invention. The same reference numerals as those in FIG. 1 denote the same parts.
[0049] 本実施形態の基本的な装置構成は、図 1に示した実施形態とほぼ同一であり、電 力変換器 1により制御 ·駆動される発電機/モータ 2と直結された圧縮機 3およびター ビン 6と、タービン 6の排気ガスと圧縮機 3の吐出高圧空気の間で熱交換を行い高圧 空気の予熱を行う再生熱交換器 4と燃焼器 5からなる再生式ガスタービン装置である The basic apparatus configuration of the present embodiment is almost the same as that of the embodiment shown in FIG. 1, and a compressor 3 directly connected to a generator / motor 2 controlled and driven by a power converter 1. And a regenerative gas turbine device comprising a regenerative heat exchanger 4 and a combustor 5 for exchanging heat between the exhaust gas of the turbine 6, the exhaust gas of the turbine 6 and the high pressure air discharged from the compressor 3 and preheating the high pressure air.
[0050] 運転回転数演算制御器 31は、要求負荷 40と吸気温度信号 46から、ガスタービン 装置の大気温度特性および回転数特性を関数化した式を用いて、要求負荷 40を出 力できる運転回転数を算出して、所定の回転数上昇率にしたがって基準運転回転 数指令値 41を発生する。 [0050] The operation speed calculation controller 31 is an operation that can output the required load 40 from the required load 40 and the intake air temperature signal 46, using an expression obtained by functionalizing the atmospheric temperature characteristic and the rotational speed characteristic of the gas turbine device. Calculate the rotation speed and generate the reference operation rotation speed command value 41 according to the predetermined rotation speed increase rate.
[0051] さらに、本実施形態では、補正運転回転数制御演算器 32を備えている。補正運転 回転数制御演算器 32は、タービン出口ガス温度信号 48を参照してタービン出口温 度の基準値との偏差に基づいて運転回転数の補正量を算出し、運転回転数補正量 指令値 42を発生する。そして、基準運転回転数指令値 41と運転回転数補正量指令 値 42の加算により運転回転数指令値 43を発生する。 [0051] Further, in the present embodiment, a correction operation rotational speed control calculator 32 is provided. Compensation operation The rotational speed control calculator 32 refers to the turbine outlet gas temperature signal 48 to calculate a correction amount for the operating speed based on the deviation from the reference value of the turbine outlet temperature, and calculates the operating speed correction amount command value 42. appear. Then, the operation speed command value 43 is generated by adding the reference operation speed command value 41 and the operation speed correction amount command value 42.
[0052] 以上のように、運転回転数指令値 43をタービン出口ガス温度信号 48に基づいて 補正することで、再生熱交換器 4に流入する燃焼ガス温度を再生熱交換器の最適な 作動条件に近く保つことができ、ガスタービン装置の熱効率を高く保つ運転ができる 上に、主燃料 13の発熱量が増加した場合に過熱することを回避できるので、更に信 頼性を向上することができる。  [0052] As described above, by correcting the operation rotational speed command value 43 based on the turbine outlet gas temperature signal 48, the temperature of the combustion gas flowing into the regenerative heat exchanger 4 can be adjusted to the optimum operating condition of the regenerative heat exchanger. In addition, it is possible to keep the gas turbine device close to high temperature and to maintain high thermal efficiency, and to avoid overheating when the calorific value of the main fuel 13 increases, so that the reliability can be further improved. .
[0053] 以上説明したように、本実施形態によれば、発熱量が変動する燃料を主燃料とし、 発熱量が安定した燃料を補助燃料として用いて要求負荷を満たした安定燃焼が行 え、かつ NOxの排出量が少ない燃焼を行えるものとなる。また、信頼性を向上するこ とができる。  [0053] As described above, according to the present embodiment, stable combustion satisfying the required load can be performed by using the fuel whose calorific value fluctuates as the main fuel and using the fuel whose calorific value is stable as the auxiliary fuel, In addition, combustion with low NOx emissions is possible. In addition, reliability can be improved.
[0054] 次に、図 8を用いて、本発明の第 3の実施形態によるガスタービン装置の構成につ いて説明する。  Next, the configuration of the gas turbine apparatus according to the third embodiment of the present invention will be described with reference to FIG.
図 8は、本発明の第 3の実施形態によるガスタービン装置の構成を示す全体構成 図である。なお、図 1と同一符号は、同一部分を示している。  FIG. 8 is an overall configuration diagram showing the configuration of the gas turbine apparatus according to the third embodiment of the present invention. The same reference numerals as those in FIG. 1 denote the same parts.
[0055] 本実施形態の基本的な装置構成は、図 1若しくは図 7に示した実施形態とほぼ同 一であるが、再生熱交換器 4がなぐその代替として排気ガス 14から排熱を回収し系 外で利用するための排熱回収設備 10が設置されている。  [0055] The basic apparatus configuration of this embodiment is almost the same as that of the embodiment shown in Fig. 1 or Fig. 7, but the exhaust heat 14 is recovered from the exhaust gas 14 as an alternative to the regeneration heat exchanger 4. Waste heat recovery equipment 10 is installed for use outside the system.
[0056] 図 8に示す実施形態は、電力変換器 1により制御 ·駆動される発電機/モータ 2と直 結された圧縮機 3およびタービン 6と、燃焼器 5からなるガスタービン装置と排気ガス 1 4から排熱を回収して外部で利用する排熱回収装置 10からなる、いわゆる熱電併給 設備である。また、図 8に示す実施形態では、補正主燃料流量演算制御器 36が、電 力変換器 1から得られる実ガスタービン出力信号 45と要求負荷 40との偏差力 補正 量を算出するのではなぐタービン出口ガス温度信号 48を参照してタービン出口温 度の基準値との偏差に基づいて、補正すべき主燃料流量を算出し、主燃料流量投 入補正指令 51を出力することが図 1や図 7の実施形態と異なる。 [0057] 一般にガスタービン装置の出力は、ガスタービン装置の空気流量とタービン入口の 温度により決定されるので、タービン出口ガス温度を目標値に合致させることで、ガス タービン装置の出力を制御することができ、主燃料流量投入補正指令 51を電力変 換器 1から得られる実ガスタービン出力信号 45と要求負荷 40との偏差から補正量を 算出することと、タービン出口ガス温度信号 48を参照してタービン出口温度の基準 値との偏差から補正量を算出することはほぼ等価であり、本実施形態の方がより安価 な制御構成とすることができる。 [0056] In the embodiment shown in FIG. 8, the compressor 3 and the turbine 6 directly connected to the generator / motor 2 controlled and driven by the power converter 1, the gas turbine device including the combustor 5, and the exhaust gas. 14 This is a so-called combined heat and power facility consisting of a waste heat recovery device 10 that recovers waste heat from 4 and uses it externally. Further, in the embodiment shown in FIG. 8, the corrected main fuel flow rate calculation controller 36 does not calculate the deviation force correction amount between the actual gas turbine output signal 45 obtained from the power converter 1 and the required load 40. Based on the deviation from the turbine outlet temperature reference value with reference to the turbine outlet gas temperature signal 48, the main fuel flow rate to be corrected is calculated and the main fuel flow rate input correction command 51 is output as shown in FIG. Different from the embodiment of FIG. [0057] In general, the output of the gas turbine device is determined by the air flow rate of the gas turbine device and the temperature of the turbine inlet. Therefore, by adjusting the turbine outlet gas temperature to the target value, the output of the gas turbine device is controlled. The main fuel flow rate input correction command 51 is calculated from the deviation between the actual gas turbine output signal 45 obtained from the power converter 1 and the required load 40, and the turbine outlet gas temperature signal 48 is referred to. Therefore, calculating the correction amount from the deviation from the reference value of the turbine outlet temperature is almost equivalent, and the control configuration of this embodiment can be made cheaper.
[0058] 以上説明したように、本実施形態によれば、発熱量が変動する燃料を主燃料とし、 発熱量が安定した燃料を補助燃料として用いて要求負荷を満たした安定燃焼が行 える。また、図 2に示した燃焼器を用いることで、 N〇xの排出量が少ない燃焼を行え るものとなる。また、装置コストを低減することができる。  [0058] As described above, according to the present embodiment, stable combustion satisfying the required load can be performed by using the fuel whose calorific value fluctuates as the main fuel and using the fuel whose calorific value is stable as the auxiliary fuel. In addition, by using the combustor shown in Fig. 2, it is possible to perform combustion with a small amount of N0x emissions. Further, the apparatus cost can be reduced.
[0059] 以上説明したように、本発明の各実施形態によれば、燃焼器に供給されるガスター ビン空気流量に対して、発熱量の安定した燃料により運用される第 1のパーナが安 定して燃焼することで、所要のガスタービン出力を発生するための発熱量を第 2のバ ーナで燃焼するために必要な温度条件を実現することができ、第 2のバーナヘは所 要のガスタービン出力を満足するように燃料が供給されるので、発熱量が変動する 燃料の可燃成分濃度によらずに吹き消えや過熱のない安定し、かつ N〇xの排出量 が少なレ、燃焼を行わせることが可能となる。  [0059] As described above, according to each embodiment of the present invention, the first panner operated by the fuel having a stable calorific value is stable with respect to the gas turbine air flow rate supplied to the combustor. By burning in this way, it is possible to realize the temperature conditions necessary for burning the calorific value for generating the required gas turbine output in the second burner. The fuel is supplied to satisfy the gas turbine output, so the calorific value fluctuates. Regardless of the combustible component concentration of the fuel, it is stable without blowing off or overheating, and the amount of N0x emission is low and combustion. Can be performed.

Claims

請求の範囲 The scope of the claims
[1] 発熱量の変動する燃料を主燃料とし、発熱量の安定した燃料を補助燃料として用 レ、るガスタービン装置であって、  [1] A gas turbine device that uses a fuel with a variable calorific value as a main fuel and a fuel with a stable calorific value as an auxiliary fuel,
燃焼室内に燃料と空気を噴出する第 1のパーナ (105)と、第 1のパーナの火炎の先 端部分に相当する燃焼器内の軸方向位置に、第 1のパーナ火炎を堰きとめるように 燃料と空気を噴出して燃焼室内に燃料と空気の循環流を生ぜしめる第 2のパーナ (1 08)とを設けた燃焼器 (5)と、  First panner (105) that jets fuel and air into the combustion chamber, and so that the first panner flame is dammed at the axial position in the combustor corresponding to the tip of the first panner flame. A combustor (5) provided with a second panner (1 08) for ejecting fuel and air to create a circulating flow of fuel and air in the combustion chamber;
ガスタービン空気流量によって算出される所定流量の発熱量の安定した燃料を前 記第 1のパーナに供給し、発熱量が変動する燃料を前記第 2のパーナに供給し、所 要のガスタービン出力と実際のガスタービン出力の差を用いて算出される補正量に より第 2のパーナに供給する燃料流量を変化させる制御手段 (33,34)を備えることを特 徴とするガスタービン装置。  A fuel with a stable calorific value calculated based on the gas turbine air flow is supplied to the first burner, and a fuel with a variable calorific value is supplied to the second burner, and the required gas turbine output And a control means (33, 34) for changing the flow rate of fuel supplied to the second burner by a correction amount calculated using a difference between the actual gas turbine output and the actual gas turbine output.
[2] 請求項 1記載のガスタービン装置において、 [2] In the gas turbine device according to claim 1,
前記制御手段は、さらに、  The control means further includes
要求負荷と吸気温度信号から、要求負荷を出力できる運転回転数を算出して、所 定の回転数上昇率にしたがって基準運転回転数指令値を発生する運転回転数演算 制御器 (41)と、  An operating speed calculation controller (41) that calculates an operating speed that can output the required load from the required load and intake air temperature signal, and generates a reference operating speed command value according to a predetermined speed increase rate;
タービン出口ガス温度信号を参照してタービン出口温度の基準値との偏差に基づ いて運転回転数の補正量を算出し、運転回転数補正量指令値を発生する補正運転 回転数制御演算器 (42)とを備え、  A correction operation speed control computing unit that calculates an operation speed correction amount based on a deviation from the turbine outlet temperature reference value with reference to the turbine outlet gas temperature signal and generates an operation speed correction amount command value ( 42)
前記基準運転回転数指令値と前記運転回転数補正量指令値を加算して運転回転 数指令値を発生することを特徴とするガスタービン装置。  A gas turbine device that generates an operation speed command value by adding the reference operation speed command value and the operation speed correction amount command value.
[3] 発熱量の変動する燃料を主燃料とし、発熱量の安定した燃料を補助燃料として用 レ、るガスタービン装置であって、 [3] A gas turbine device that uses a fuel with a variable calorific value as a main fuel and a fuel with a stable calorific value as an auxiliary fuel,
燃焼室内に燃料と空気を噴出する第 1のパーナ (105)と、第 1のパーナの火炎の先 端部分に相当する燃焼器内の軸方向位置に、第 1のパーナ火炎を堰きとめるように 燃料と空気を噴出して燃焼室内に燃料と空気の循環流を生ぜしめる第 2のパーナ (1 08)とを設けた燃焼器 (5)と、 ガスタービン空気流量によって算出される所定流量の発熱量の安定した燃料を前 記第 1のパーナに供給し、発熱量が変動する燃料を前記第 2のパーナに供給し、タ 一ビン出口ガス温度の基準値と実際のタービン出口ガス温度の差を用いて算出され る補正量により前記第 2のパーナに供給する燃料流量を変化させる制御手段 (33,34) を備えることを特徴とするガスタービン装置。 First panner (105) that jets fuel and air into the combustion chamber, and the first panner flame to be dammed in the axial position in the combustor corresponding to the leading end of the flame of the first panner A combustor (5) provided with a second panner (1 08) for ejecting fuel and air to create a circulating flow of fuel and air in the combustion chamber; A fuel with a stable calorific value calculated based on the gas turbine air flow is supplied to the first burner, and a fuel with a fluctuating calorific value is supplied to the second burner. And a control means (33, 34) for changing a flow rate of fuel supplied to the second burner by a correction amount calculated using a difference between a reference value of the turbine and an actual turbine outlet gas temperature. apparatus.
PCT/JP2005/022940 2005-12-14 2005-12-14 Gas turbine WO2007069309A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/022940 WO2007069309A1 (en) 2005-12-14 2005-12-14 Gas turbine
JP2007550041A JPWO2007069309A1 (en) 2005-12-14 2005-12-14 Gas turbine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/022940 WO2007069309A1 (en) 2005-12-14 2005-12-14 Gas turbine

Publications (1)

Publication Number Publication Date
WO2007069309A1 true WO2007069309A1 (en) 2007-06-21

Family

ID=38162632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022940 WO2007069309A1 (en) 2005-12-14 2005-12-14 Gas turbine

Country Status (2)

Country Link
JP (1) JPWO2007069309A1 (en)
WO (1) WO2007069309A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144551A (en) * 2007-12-12 2009-07-02 Hitachi Ltd Regenerative type gas turbine and fuel control method for regenerative gas turbine
JP2010285955A (en) * 2009-06-12 2010-12-24 Mitsubishi Heavy Ind Ltd Control device of gas turbine, and power generation system
EP2261487A4 (en) * 2008-11-28 2015-06-17 Mitsubishi Hitachi Power Sys Gas turbine controller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11324714A (en) * 1998-05-11 1999-11-26 Toshiba Corp Gas turbine plant and its operating method
JP2003065083A (en) * 2001-08-23 2003-03-05 Tokyo Gas Co Ltd Power generating device and its operation control method
JP2003065084A (en) * 2001-08-29 2003-03-05 Ishikawajima Harima Heavy Ind Co Ltd Gas turbine power generating device using biogas as fuel
US20030056517A1 (en) * 2001-09-26 2003-03-27 Siemens Westinghouse Power Corporation Apparatus and method for combusting low quality fuel
WO2005059442A1 (en) * 2003-12-16 2005-06-30 Hitachi, Ltd. Combustor for gas turbine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2805892B2 (en) * 1989-09-29 1998-09-30 日産自動車株式会社 Control device for gas turbine for generator
JP3178055B2 (en) * 1992-01-13 2001-06-18 株式会社日立製作所 Control device for gas turbine combustor and gas turbine
JP4126973B2 (en) * 2002-07-01 2008-07-30 株式会社Ihi Gas turbine control system
JP2005218163A (en) * 2004-01-27 2005-08-11 Kawasaki Heavy Ind Ltd Turbine generating set and its self-sustaining operation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11324714A (en) * 1998-05-11 1999-11-26 Toshiba Corp Gas turbine plant and its operating method
JP2003065083A (en) * 2001-08-23 2003-03-05 Tokyo Gas Co Ltd Power generating device and its operation control method
JP2003065084A (en) * 2001-08-29 2003-03-05 Ishikawajima Harima Heavy Ind Co Ltd Gas turbine power generating device using biogas as fuel
US20030056517A1 (en) * 2001-09-26 2003-03-27 Siemens Westinghouse Power Corporation Apparatus and method for combusting low quality fuel
WO2005059442A1 (en) * 2003-12-16 2005-06-30 Hitachi, Ltd. Combustor for gas turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144551A (en) * 2007-12-12 2009-07-02 Hitachi Ltd Regenerative type gas turbine and fuel control method for regenerative gas turbine
EP2261487A4 (en) * 2008-11-28 2015-06-17 Mitsubishi Hitachi Power Sys Gas turbine controller
JP2010285955A (en) * 2009-06-12 2010-12-24 Mitsubishi Heavy Ind Ltd Control device of gas turbine, and power generation system

Also Published As

Publication number Publication date
JPWO2007069309A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
US8689559B2 (en) Secondary combustion system for reducing the level of emissions generated by a turbomachine
JP3984314B2 (en) Power station plant operation
JP5406460B2 (en) Method and system for enabling operation within a flame holding margin
CN106762158B (en) System and method for operating a gas turbine while maintaining emissions standards
EP2722508B1 (en) Method for operating a gas turbine with sequential combustion and gas turbine for conducting said method
RU2686652C2 (en) Method for operation of combustion device for gas turbine and combustion device for gas turbine
KR101707353B1 (en) Power generation system, method for powering power generation system, and combustor
US8117823B2 (en) Method and system for increasing modified wobbe index control range
JP4409566B2 (en) Lean premixed combustion system and control method thereof
JP2009250236A (en) Control system and method for controlling load point of gas turbine engine
US9739488B2 (en) Gas turbine combustor with two kinds of gas fuel supply systems
JP2015132462A (en) Sequential combustion arrangement with dilution gas
CN105737203A (en) Swirler and pre-mixing combustor adopting same
WO2007069309A1 (en) Gas turbine
CN106468449B (en) Continuous combustion arrangement with cooling gas for dilution
JP2007046843A (en) Gas turbine combustor and method for remodeling gas turbine combustor
JP2014202475A (en) Catalytic combustion air heating system
CN114811651B (en) Electric heating stable combustion system, method and storage medium
JP2002257345A (en) Premix combustor for gas turbine and its fuel supply controller and controlling method
AU2014220107A1 (en) Device and method for controlling lean fuel intake gas turbine
JP2004308596A (en) Output control method of steam jet gas turbine
JP2016161157A (en) Gas turbine combustor, gas turbine, and operational method of the gas turbine
CN116398881A (en) Dual fuel burner system, control method thereof, and fuel cell system
JPH11182811A (en) Pressurized fluidized bed combustion plant
JP2003003865A (en) Gas turbine combustor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007550041

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05816831

Country of ref document: EP

Kind code of ref document: A1