WO2007083408A1 - Light source unit, lighting apparatus using the light source unit, and display using the lighting apparatus - Google Patents

Light source unit, lighting apparatus using the light source unit, and display using the lighting apparatus Download PDF

Info

Publication number
WO2007083408A1
WO2007083408A1 PCT/JP2006/314655 JP2006314655W WO2007083408A1 WO 2007083408 A1 WO2007083408 A1 WO 2007083408A1 JP 2006314655 W JP2006314655 W JP 2006314655W WO 2007083408 A1 WO2007083408 A1 WO 2007083408A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
led
group
source unit
Prior art date
Application number
PCT/JP2006/314655
Other languages
French (fr)
Japanese (ja)
Inventor
Keiji Hayashi
Kentarou Kamada
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007083408A1 publication Critical patent/WO2007083408A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs

Definitions

  • the present invention relates to a light source unit, a lighting device using the same, and a display device using the same.
  • a liquid crystal display device uses a non-self-luminous liquid crystal panel as a display panel, a backlight is required as an external light source.
  • a light source of knock light it is common to use a cold cathode tube, which is a discharge tube. Recently, it has been proposed to use an LED (Light Emitting Diode) for the purpose of improving color reproducibility. Yes.
  • Patent Document 1 An example of a backlight using an LED as a light source is described in Patent Document 1.
  • This type of backlight is roughly composed of a box-shaped case with an open surface on the side of the liquid crystal panel, a substrate housed in the case, and a number of LEDs installed on the substrate.
  • the LEDs are point light sources, the LEDs are arranged, for example, in a lattice pattern on the surface of the substrate so that the luminance distribution of the entire knock light is uniform.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2002-311412
  • each lighting circuit has a dimming function to control the brightness and chromaticity of the group of LEDs.
  • the present invention has been completed based on the above-described circumstances, and an object thereof is to make the unevenness near the boundary between regions less noticeable.
  • the light source unit of the present invention is a light source belonging to each area by grouping a number of light sources arranged in a predetermined plane and these light source groups in association with a plurality of areas set in the plane.
  • a lighting circuit for lighting a group, and among the light source group, for the light source existing near the boundary of each region, the central axis of the light emitted from the light source cover is tilted toward the adjacent region side. Yes.
  • the light source group grouped corresponding to each region in the surface is turned on by each corresponding lighting circuit. At this time, there may be a difference in the light emission state of the light source group of each group.
  • the light source existing in the vicinity of the boundary of each region in the light source group is configured such that the central axis of the light to which the light source power is irradiated is inclined to the adjacent region side. It is possible to increase the overlapping range with the irradiation area by the light source group of the group that performs. As a result, blurring around the boundary of each region can be blurred.
  • the light source is a point-like light emitting element.
  • a point light emitting element is used as the light source, the number of light sources to be used is likely to increase as compared with the case where a linear light source is used, which is particularly effective.
  • the light sources arranged facing the boundary lines of the regions are inclined toward the adjacent region side. As a result, unevenness that occurs near the boundary It can be blurred.
  • Each light source is installed on a substrate, and an inclined mounting surface is formed on the light source mounting surface of the substrate so that the light source existing near the boundary of each region can be mounted in an inclined posture.
  • the configuration is as follows. This makes it possible to tilt the central axis of light in the light source without changing the structure of the light source itself.
  • the light source existing in the vicinity of the boundary between the regions includes a light emitter that emits light, and a lens disposed on the irradiation side with respect to the light emitter, and the lens has an asymmetric shape.
  • the central axis is inclined.
  • the center axis of the light in the light source can be tilted by making the lens shape asymmetrical.
  • the light source located in the vicinity of the boundary between the regions includes a light emitter that emits light, and a reflector that is disposed on the opposite side of the light emitter from the irradiation side and reflects light.
  • the central axis is inclined by making the reflector asymmetrical.
  • the central axis of the light in the light source can be tilted by making the shape of the reflector asymmetrical.
  • Each area is set to divide the surface into a lattice shape, and the light source existing in the vicinity of the boundary forming a lattice shape between the areas is the light emitted from the light source.
  • the central axis is inclined toward the adjacent area.
  • the lighting circuit includes a light receiving element that receives light emitted from the light source, and based on a signal from the light receiving element, a light emission state of the light source group belonging to each group But It has a light control function for driving the light source group so as to be uniform between the groups.
  • a light receiving element force signal is output to the lighting circuit based on the light emission state of the light source group, and based on this signal, each lighting circuit controls each light source group to equalize the light emission state between the groups. Plan. Therefore, it is possible to suppress the occurrence of unevenness near the boundary.
  • a plurality of light receiving elements are provided corresponding to each group. Thereby, the light emission state of each light source group can be detected individually by the light receiving element provided for each group.
  • the lighting circuit sequentially emits the light source groups belonging to each group, detects the light emission amount of each light source group by the light receiving element, and causes the light receiving element to emit the detected value.
  • the light source group is controlled based on a signal corrected according to the distance between the light source group. As a result, the number of light receiving elements can be reduced compared with the case where the light receiving elements are arranged for each group, thereby reducing the cost.
  • the light receiving element is configured to be attached to an optical member disposed facing the irradiation side with respect to each light source.
  • the light emitting state of the light source group can be satisfactorily detected by the light receiving element attached to the optical member.
  • An illumination device including the light source unit and a case for housing the light source unit.
  • a display device including the illumination device and a display panel is provided.
  • unevenness in the vicinity of the boundary between adjacent regions can be made inconspicuous.
  • FIG. 1 is a cross-sectional view of a liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 6 is an enlarged sectional view of a main part of an LED unit according to Embodiment 2 of the present invention.
  • FIG. 7 is an enlarged cross-sectional view of a main part of an LED unit according to Embodiment 3 of the present invention.
  • FIG. 8 is a block diagram of a dimming / lighting circuit according to Embodiment 4 of the present invention.
  • FIG. 10 is an enlarged cross-sectional view of the main part of the LED unit according to another embodiment (2).
  • FIG. 11 is an enlarged main part of the LED unit according to the other embodiment (4).
  • Sectional view [FIG. 12] An enlarged plan view of the main part of an LED unit according to another embodiment (5)
  • FIG. 13 An enlarged plan view of the main part of an LED unit according to another embodiment (6)
  • FIG. 15 is a plan view of an LED unit according to another embodiment (12).
  • FIG. 16 is a plan view of an LED unit according to another embodiment (13).
  • FIG. 17 is an enlarged cross-sectional view of the main part of an LED unit according to another embodiment (15).
  • Embodiment 1 of the present invention will be described with reference to FIGS.
  • an LED unit 15 used for the backlight 12 of the liquid crystal display device 10 is illustrated.
  • the upper side shown in Fig. 1 is the front side, and the lower side is the back side.
  • the liquid crystal display device 10 roughly includes a horizontally long liquid crystal panel 11 (substantially rectangular) and a backlight 12 which is an external light source, and these are the display area of the liquid crystal display device 10. Is integrally held by a bezel 13 formed in a frame shape surrounding the frame. Among these, the liquid crystal panel 11 is bonded to a pair of transparent (translucent) glass substrates 1 la with a predetermined gap therebetween, and an optical characteristic is applied in accordance with voltage application between the two glass substrates 11a. It is configured to contain 1 lb of liquid crystal, a substance that changes its properties.
  • switching elements for example, TFTs
  • pixel electrodes connected to source lines and gate lines orthogonal to each other are provided in a matrix.
  • the other glass substrate 11a is provided with a counter electrode facing the pixel electrode, and R (red), G (green), and B (blue) color filters corresponding to each pixel are provided in a matrix.
  • polarizing plates 1 lc are attached to the outer surfaces of both glass substrates 1 la, respectively.
  • the backlight 12 is roughly a rectangular, substantially box-shaped case 14 with an open top surface (the liquid crystal panel 11 side), an LED unit 15 disposed in the case 14, and the opening side of the case 14 And a plurality of optical members 16 attached to.
  • the case 14 is made of metal and has a configuration in which the side portion 14b is raised from the periphery of the bottom portion 14a having a substantially rectangular shape.
  • the side portion 14b is connected to the bottom portion 14a with an obtuse inclination angle, and the case 14 has a shape in which the front opening is expanded toward the opening side.
  • Each optical member 16 is placed on a receiving portion 14c provided in the opening of the case 14 in a stacked state, and is held by a frame 17 attached to the case 14 from the front side.
  • the frame 17 is made of metal and has a liquid crystal display It is formed in a frame shape surrounding the display area of the device 10.
  • Each optical member 16 is laminated in the order of a diffusion plate, a diffusion sheet, a lens sheet, and a brightness enhancement sheet from the lower side (back side) shown in FIG. 1 and is sandwiched between the case 14 and the frame 17 It is supposed to be retained.
  • the light emitted from each LED 19 passes through each optical member 16 so as to be converted into a planar shape and efficiently irradiated onto the liquid crystal panel 11.
  • the LED unit 15 includes a substrate 18 housed in a case 14, an LED 19 that is a large number of light sources installed on the substrate 18, and a dimming lighting circuit 20 that can illuminate and dim the LEDs 19 group. Prepare.
  • a large number of LEDs 19 are arranged in the short side direction and the long side direction (vertical direction) of the liquid crystal panel 11 and the case 14. In a grid pattern along the direction and the horizontal direction).
  • the spacing between the LEDs 19 is set to be approximately equal, and the surface density of the LED 19 group with respect to the surface of the substrate 18 (the ratio of the distribution of LED 19 per unit area) is substantially uniform.
  • Conductive paths (not shown) connected to the connection terminals of the LEDs 19 are arranged on the surface of the substrate 18 in a predetermined pattern.
  • a plurality of support portions 21 for supporting the optical member 16 are provided at positions where the mounting force of the LED 19 is removed from the surface of the substrate 18.
  • the support portion 21 is a columnar body having a circular cross section that protrudes toward the optical member 16 and has a tapered shape. The intervals between the support portions 21 are set to be approximately equal.
  • the LED 19 is a light emitting element (point light source) having a dot shape, and roughly includes a light emitting unit incorporating a chip (semiconductor element) as a light emitter, and a connection terminal derived from the light emitting unit force. . Within the light emitting section, there are three types of chips: R light emission (red light emission), G light emission (green light emission), and B light emission (blue light emission). Three pairs of connection terminals are provided for each chip. ing. With this LED 19, the emission color is white as a whole by emitting light from three chips with different emission colors. In addition, three conductive paths on the substrate 18 corresponding to each connection terminal pair are arranged.
  • the light irradiation area from the LED 19 spreads in a substantially conical shape having a predetermined angle range with the chip as the apex, and is cut along a plane orthogonal to the irradiation direction.
  • the cross section at the time is set to be almost circular.
  • the central axis A (shown by the alternate long and short dash line in FIG. 3) passing through the center of the area irradiated with light from the LED 19 is a plane in which the LED mounting surface 18a of the substrate 18 is horizontal (the surface direction of the optical member 16 and the liquid crystal panel 11).
  • the above-described substrate 18 is separated from each other corresponding to a plurality of regions 22 that divide the bottom portion 14a of the case 14 (a region where all the LEDs 19 are disposed). Then, the LED 19 group mounted on each substrate 18 corresponding to each region 22 is grouped, and the grouped LED 19 group power is turned on by a different (independent) dimming lighting circuit 20. It has become so.
  • Each substrate 18 corresponding to each region 22 is formed in a horizontally long rectangular shape so as to divide the bottom portion 14a of the case 14 into a lattice shape, and the boundary line 23 between the regions 22 14 extends along the vertical and horizontal directions at the bottom 14a and has a lattice shape (indicated by a two-dot chain line in FIGS. 2 and 4).
  • the bottom portion 14a of the case 14 is divided into nine regions 22 (substrate 18), that is, three vertically and three horizontally.
  • the dimming / lighting circuit 20 is configured as follows. As shown in FIG. 5, the dimming / lighting circuit 20 includes a power source 24 connected to one end side of the LED 19 group connected in series with each other, a transistor 25 connected to the other end side of the LED 19 group, and a transistor 25 A light receiving signal processing circuit 27 connected to the driving circuit 26, and a light receiving element 28 connected to the light receiving signal processing circuit 27.
  • the light receiving element 28 is configured to have a filter that decomposes the received white light into R, G, and B. Then, the LED 19 group emits white light, and the light is detected by the light receiving element 28 having the above-described configuration, and the R, G, B light emitting elements in the LED 19 group are detected based on the light receiving amounts of R, G, B.
  • the amount of current to be supplied by the drive circuit 26 the brightness and chromaticity of the LED 19 group are controlled, and the brightness and chromaticity between the LED 19 groups are made uniform.
  • the R, G, and B light emitting elements in the LED group 19 are sequentially turned on for each color, and light of each color is sequentially detected by the broadband light receiving element 28.
  • the drive circuit 26 adjusts the amount of current supplied to the R, G, and B light emitting elements in the LED 19 group based on the received light amounts of the R, G, and B, so that the luminance of the LED 19 group is adjusted.
  • the brightness and chromaticity between the LED19 groups are made uniform by controlling the chromaticity.
  • the light receiving element 28 is attached to the surface facing the LED 19 in the optical member 16 that is disposed facing the LED 19 and the irradiation side (opposite the case 14) (diffuse plate).
  • One is provided corresponding to each region 22 and is installed at the approximate center position of each region 22 (indicated by a one-dot chain line in FIG. 2).
  • the LED 19 existing near the boundary of each region 22 is tilted toward the adjacent region 22 side with the central axis A of the irradiated light.
  • the bottom 14a of the case 14 or the optical member 16 In contrast to the horizontal plane 29 that is substantially parallel to the horizontal plane 29, the inclined mounting surface 30 that is inclined with respect to the horizontal plane 29 is formed in the portion where the LED 19 facing the boundary line 23 between the adjacent areas 22 is mounted.
  • the central axis A of light in the LED 19 mounted on the inclined mounting surface 30 is inclined relative to the central axis A of light in the LED 19 mounted on the horizontal plane 29.
  • the inclined mounting surface 30 is formed in a portion of the peripheral edge of each substrate 18 facing the adjacent substrate 18, that is, a portion facing the boundary line 23 between the adjacent regions 22, 29 From the side (opposite side of the adjacent region 22) to the edge side (adjacent region 22 side), it is formed with a slope that becomes a downward gradient with 4 forces.
  • the inclined mounting surface 30 is formed over the entire periphery of the portion of the periphery of the substrate 18 facing the boundary line 23, and is formed as an inclined surface continuous along the short side direction or the long side direction of the substrate 18.
  • the LED 19 mounted there, that is, the LED 19 facing the boundary line 23 is all inclined with the central axis A of the light inclined. Accordingly, in each LED 19 group mounted on each substrate 18, each LED 19 facing the boundary line 23 is tilted toward the region 22 side where the light central axes A are adjacent to each other.
  • the inclination angles of the inclined mounting surfaces 30 are set to be substantially the same, the inclination angles of the central axis A of the light of each LED 19 mounted thereon are also substantially the same.
  • the central axis A of the light in each LED 19 facing the boundary line 23 intersects the central axis A of the light of the LED 19 facing the boundary line 23 in the LED 19 group of adjacent duplications.
  • the center axis A of each LED 19 that is mounted on each inclined mounting surface 30 and adjacent to each other is located between the optical member 16 and the substrate 18 (center in FIG. 3) in the vertical direction, and is horizontal. It almost coincides with the boundary line 23 in the direction.
  • each LED 19 mounted on each inclined mounting surface 30 intersects the lower surface of the optical member 16 closest to the LED 19 (the surface facing the LED 19) is relative to the group to which the LED 19 belongs.
  • the LED 19 group belonging to the adjacent group is set to enter the irradiation region side.
  • the subscript AB is added to the sign of the boundary line between the areas 22A and 22B
  • the subscript AC is added to the sign of the boundary line between the areas 22A and 22C
  • the boundary line between the areas 22C and 22D If the subscript CD is added to the code of the above, and the subscript BD is added to the code of the boundary line between the region 22B and the region 22D, and they are collectively referred to without distinction, the subscript shall not be added.
  • the arrow line shown in FIG. 4 represents the tilt direction of each LED 19.
  • the inclined mounting surface 30A facing the boundary line 23AB of the board 18A on the upper left side of the figure is formed over the entire length of the board 18A, and the LED 19A mounted on the inclined mounting surface 30A is all of the irradiated light.
  • the center axis A is inclined to the region 22B side.
  • the inclined mounting surface 30A facing the boundary line 23AC of the board 18A is formed on the short side portion of the board 18A except for the mounting part of the LED 19A (corner position) facing both the boundary line 23AB and the boundary line 23AC.
  • the LED 19A mounted here is in a posture in which the central axis A of the irradiated light is inclined toward the region 22C.
  • the inclined mounting surface 30B facing the boundary line 23BD of the board 18B in the upper left of the figure is formed over the entire short side portion of the board 18B, and the LED 19B mounted here is all irradiated light
  • the center axis A is inclined to the region 22D side.
  • the inclined mounting surface 30B facing the boundary line 23AB of the board 18B is formed on the long side portion of the board 18B except for the mounting part of the LED 19B (at the corner position) facing both the boundary line 23AB and the boundary line 23BD.
  • the LED 19B mounted here has a posture in which the central axis A of the irradiated light is inclined toward the region 22A.
  • the inclined mounting surface 30C facing the boundary line 23AC is formed over the entire short side portion of the board 18C, and the LED 19C mounted here is all irradiated light
  • the center axis A is inclined to the region 22A side.
  • the inclined mounting surface 30C facing the boundary line 23CD of the substrate 18C is formed on the long side portion of the substrate 18C except for the mounting portion of the LED 19C (at the corner) facing both the boundary line 23AC and the boundary line 23CD.
  • the LED 19C mounted here is in a posture in which the central axis A of the irradiated light is inclined toward the region 22D.
  • the inclined mounting surface 30D facing the boundary line 23CD is formed over the entire length of the side of the board 18D, and the LED 19D mounted here is all of the irradiated light.
  • the center axis A is inclined to the region 22C side.
  • the inclined mounting surface 30D facing the boundary line 23BD of the substrate 18D is formed on the short side portion of the substrate 18D except for the mounting portion of the LED 19D (at the corner position) facing both the boundary line 23BD and the boundary line 23CD.
  • the LED 19D mounted here is in a posture in which the central axis A of the irradiated light is inclined toward the region 22B.
  • the four LEDs 19 which are arranged at the corner positions of the respective substrates 18 and face the two boundary lines 23 have the center axis A of the light adjacent to the region 22 in the counterclockwise direction. Tilt to In addition, by changing the inclined mounting surface 30, it is possible to set the four LEDs 19 facing the two boundary lines 23 to be inclined to the adjacent region 22 side in the clockwise direction.
  • each LED 19 group is turned on by the corresponding dimming lighting circuit 20, and the display drive circuit (source wiring, gate wiring, etc.) of the liquid crystal panel 11 is turned on. To supply signals necessary for external circuit force display.
  • each LED 19 The light emitted from each LED 19 is applied to the liquid crystal panel 11 in a state of being converted into uniform planar light in the process of sequentially passing through each optical member 16.
  • the liquid crystal l ib in the liquid crystal panel 11 changes its alignment state as a signal is applied to each wiring and a voltage (electric field) is applied.
  • the polarization state of the light passing therethrough is changed, so that a predetermined image is displayed on the liquid crystal panel 11.
  • the temperature distribution of the base plate 18 of the backlight 12 and the case 14 may be biased.
  • a temperature difference occurs, which may cause a difference in the average brightness and average chromaticity of the LED19 group in each region 22.
  • the dimming / lighting circuit 20 controls the LED 19 group of each group individually by feedback control and adjusts the light emission state of the LED 19 group, thereby causing a difference in luminance and chromaticity that occurs between the LED 19 groups of each group. Is to be eliminated as much as possible.
  • the brightness and chromaticity of the LEDs 19 of each group for example, due to various reasons such as the sensitivity of each light receiving element 28 arranged in each region 22 varies. In other words, a slight difference may occur in the light emission state, and it is difficult to completely eliminate it.
  • the difference between the brightness and chromaticity of each LED19 group Therefore, there is a concern that unevenness is noticeable, such as uneven luminance (brightness / darkness unevenness) and color unevenness appearing as stripes near the boundary between adjacent regions 22.
  • each LED 19 near the boundary of each region 22 in the grouped LED 19 group is centered on the light irradiated by the inclined mounting surface 30.
  • the axis A is inclined to the adjacent region 22 side.
  • the LEDs 19 facing each boundary line 23 between the regions 22 and facing (adjacent) each other are inclined with the center axis A of the light toward the other region 22 side. Therefore, regarding the overlapping range of the irradiation area of the LED 19 whose central axis A is inclined and the irradiation area of the LED 19 group belonging to the adjacent group, each LED 19 facing the boundary line 23 is assumed to have another LED 19 (boundary line).
  • the light central axis A in the LED 19 can be expanded by an inclination.
  • the overlapping range of the irradiation areas of the LED 19 groups belonging to the adjacent groups is expanded in this way, even if a difference in the light emission state occurs between the LED 19 groups, the adjacent areas are adjacent in the vicinity of the boundary.
  • the change in the light irradiation state between the regions 22 can be made gradual, and unevenness near the boundary can be blurred.
  • unevenness in the vicinity of the boundary between the adjacent regions 22 can be made inconspicuous, so that the display quality of the liquid crystal display device 10 can be improved.
  • the region where the central axis A of the light emitted from the LED 19 is adjacent Since it is tilted to the 22 side, the overlapping range between the irradiation area of the LED 19 and the irradiation area of the LED 19 group of the adjacent group can be increased, and unevenness occurring near the boundary can be made inconspicuous.
  • the distance between the liquid crystal panel 11 and the LED 19 group can be shortened, and the backlight 12 and the liquid crystal display device 10 can be made thinner (smaller).
  • the number and types of optical members 16 can be reduced to achieve low cost.
  • the number of LEDs 19 to be used tends to increase as compared with the case where a linear light source is used as the light source. It is effective for.
  • the LED 19 arranged facing the boundary line 23 of each region 22 has its central axis A tilted toward the adjacent region 22 side, so that unevenness generated near the boundary is prevented. You can blur more effectively.
  • each LED 19 that exists in the vicinity of the boundary of each region 22 and is lit by the dimming lighting circuit 20 that is different from each other has its central axis A tilted toward the other region 22 side. It is possible to extend the overlapping range of irradiation areas between the LED19 groups, and to blur the unevenness that occurs near the boundary more effectively.
  • each LED 19 is installed on the substrate 18, and the LED mounting surface 18a on the substrate 18 is inclined to the LED mounting surface 18a. Therefore, the central axis A of light in the LED 19 can be tilted without changing the structure of the LED 19 itself. Since only one type of LED 19 needs to be installed on each board 18, it is possible to obtain an effect that, when installing the LED 19 on the board 18, it is not necessary to distinguish the LEDs 19.
  • each region 22 is set to divide the region where all the LEDs 19 are arranged in a lattice shape, and if the boundary between the regions 22 forms a lattice shape, unevenness in the vicinity of the boundary is likely to be noticeable. However, since the LED 19 existing in the vicinity of the boundary is lit by the dimming lighting circuit 20 of the adjacent group, it is particularly effective.
  • the dimming / lighting circuit 20 includes a light receiving element 28 that receives light emitted from the LED 19, and the light emission state of the LED 19 group belonging to each group based on a signal from the light receiving element 28 is set to each group. It has a dimming function that drives the LED19 group to be uniform between Therefore, by controlling each LED 19 group based on the signal output from the light receiving element 28 based on the light emission state of each LED 19 group, the light emission state among the groups can be made uniform, and thus the boundary It is possible to suppress the occurrence of unevenness in the vicinity.
  • each LED 19 group can be individually detected by the light receiving elements 28 provided for each group.
  • the light receiving element 28 is attached to the optical member 16 arranged opposite to the irradiation side with respect to each LED 19, the light emission state of the LED 19 group can be detected well.
  • a second embodiment of the present invention will be described with reference to FIG.
  • a structure of the LED 31 facing the boundary line 23 is changed.
  • redundant description of the same structure, operation, and effects as in the first embodiment will be omitted.
  • the light emitting portions of the LEDs 19 and 31 are provided with lenses 19a and 31a for transmitting light emitted from a chip (not shown) and directing the light. Yes.
  • the lenses 19a and 31a are arranged above the chip, that is, on the irradiation side, and are formed in a substantially hemispherical shape (dome shape) surrounding (covering) the chip from above! Speak.
  • the lens 19a in each LED 19 that does not face the boundary line 23 has a symmetrical shape, and the central axis A of the irradiated light is when the LED 19 is placed on a horizontal surface. Is set to coincide with the vertical direction.
  • the lens 31a in each LE D31 arranged facing the boundary line 23 has an asymmetric shape, and when the central axis A force L ED31 of the irradiated light is placed on a horizontal surface, the lens 31a is vertical. It is set to be inclined with respect to the direction.
  • the entire surface of the LED mounting surface 18 & b, which is installed on the board 18mm on which the LEDs 19 and 31 are installed, is a horizontal plane 29 '.
  • Each LED 31 facing the boundary line 23 is mounted with the lens 31a oriented so that the center axis of the light is inclined toward the adjacent region 22 side.
  • the lens 31a is arranged in the vicinity of the boundary. It is possible to extend the overlapping range of the irradiation areas of each LED 19, 31 group.
  • Embodiment 3 of the present invention will be described with reference to FIG.
  • the third embodiment another example in which the structure of the LED 32 facing the boundary line 23 is changed will be described.
  • redundant description of the same structure, operation, and effect as in the first embodiment will be omitted.
  • LEDs 19 and 32 emit light
  • Fig. 7 [shown here]
  • tips 19b and 32a [on the other side, that is, on the side opposite to the irradiation side (lens side)
  • Reflectors 19c and 32b are provided for reflecting the light toward the irradiation side.
  • the reflectors 19c and 32b are formed in a substantially hemispherical shape with the most concave portions where the chips 19b and 32a are disposed.
  • the reflector 19c in each LED 19 that does not face the boundary line 23 has a symmetrical shape, and the central axis A of the emitted light is placed on the horizontal surface of the LED 19 It is set to coincide with the vertical direction.
  • the reflector 32b in each LED 32 that faces the boundary line 23 has an asymmetric shape, and the central axis A of the irradiated light is when the LED 32 is placed on a horizontal surface. It is set to be inclined with respect to the vertical direction.
  • each LED 32 facing the boundary line 23 is mounted with the reflector 32b oriented so that the center axis of the light is inclined toward the adjacent region 22 side.
  • the LED 32 in which the central axis A of the irradiated light is inclined by making the shape of the reflector 32a asymmetrical, the LEDs 19 of adjacent groups are arranged near the boundary. , The overlapping range of the irradiation areas of 32 groups can be expanded.
  • Embodiment 4 of the present invention will be described with reference to FIG.
  • a case where the number of light receiving elements 41 is changed to one is illustrated.
  • redundant description of the same structure, operation, and effects as those in the first embodiment will be omitted.
  • the dimming / lighting circuit 40 includes a light receiving element 41 that can receive light generated by the LED 19 group force belonging to each group, and a light receiving signal processing circuit 4 connected to the light receiving element 41. 2 and a drive circuit 43 connected to the received light signal processing circuit 42 and connected to the LED 19 group belonging to each group.
  • the distance between the light receiving element 41 and the LED 19 group belonging to each group is the group. May vary. Due to this difference in distance, even if the light emission state of each LED 19 group is the same, the amount of light received by the light receiving element 41 may differ depending on the group.
  • the received light signal processing circuit 42 can correct the difference in distance between the light receiving element 41 and each LED 19 group.
  • the light reception signal processing circuit 42 includes a light reception circuit 44, a CPU 45, a distance correction coefficient storage unit 46, and a correction amount storage unit 47.
  • the light receiving circuit 44 outputs a signal corresponding to the signal input from the light receiving element 41 to the CPU 45.
  • the distance correction coefficient storage unit 46 outputs a distance correction coefficient corresponding to the distance between the light receiving element 41 and each group of LEDs 19 to the CPU 45.
  • the distance correction coefficient is set for each group of LEDs 19 corresponding to the above disparity in distance.
  • each LED 19 It is set to obtain a pseudo received light amount as detected by a virtual light receiving element placed at an equidistant position with respect to the group. As a result, the shift in the amount of received light due to the difference in distance between the light receiving element 41 and the LED 19 group can be corrected.
  • the CPU 45 calculates the pseudo received light amount excluding the distance difference based on the signal from the light receiving circuit 44 and the distance correction coefficient from the distance correction coefficient storage unit 46, and sets the pseudo received light amount to the target value.
  • the amount of correction necessary to achieve the above is calculated.
  • the target value is a value at which the luminance and chromaticity between the LED 19 groups in each group become uniform.
  • the correction amount storage unit 47 stores the correction amount output from the CPU 45 in association with each group. Each correction amount is updated every time a usage time of the liquid crystal display device 10 passes a predetermined time (for example, 100 hours).
  • the correction amount corresponding to each group is updated as follows.
  • the LED 19 groups belonging to each group are caused to emit light sequentially, and each time the LED 19 group power is received by the light receiving element 41. Based on the measured received light quantity obtained by the method described above, the LED19 group The pseudo received light amount and the correction amount are sequentially calculated, and the obtained correction amount is stored in the correction amount storage unit 47 in association with the group.
  • the drive circuit 43 that turns on the LEDs 19 belonging to each group adjusts the amount of current supplied to each LED 19 based on each correction amount output from the light reception signal processing circuit 42.
  • the brightness and chromaticity between the LED19 groups can be made uniform.
  • the number of light receiving elements 41 can be reduced and the cost can be reduced compared with the case where the light receiving elements 28 are individually installed for each group as in the first embodiment.
  • ⁇ ⁇ can be planned.
  • the number of light receiving elements 41 is not limited to one, and a plurality of light receiving elements 41 may be provided within a range not exceeding the total number of groups (nine in this embodiment). In this case, when the LEDs 19 belonging to each group are sequentially turned on, the light receiving elements 41 can simultaneously receive light. Thereby, improvement of measurement accuracy can be aimed at.
  • LED19 A group of LEDs 19-1A facing both boundary lines 23-1 in the group, as shown in Fig. 9, the light axis is diagonally opposite. Although it may be inclined to the adjacent area 22-1 side (in Fig. 9, the inclined mounting surface 30-1A on which the LED19-1A facing both the two borders 23-1 is mounted is tilted. (The figure shows a setting with a slope that slopes toward the region 22-1.) In this way, it is possible to extend the overlapping range between the irradiation area of the LED 19-1A and the irradiation area of the LED 19-1 group of the three adjacent areas 22-1.
  • the center axis A of light may be set to be inclined toward the adjacent region 22-2.
  • the inclination angle of the central axis A of the LED 19 2A facing the boundary line 23-2 and the inclination angle of the central axis A of the LED19-2B in the second row In Fig. 10, the inclined mounting surfaces 30-2A and 30-2B are two-step inclined surfaces, and the inclined mounting surface 30-2B corresponding to the second row is inclined.) (Settings with small angles are shown).
  • the central axis of the light may be tilted toward the adjacent region even for the LEDs in the third and subsequent columns from the boundary line.
  • the LED groups facing each other across the boundary line are set so that the central axes are inclined with respect to the partner region, but as shown in FIG. Only the LED19-6A in one of the adjacent regions 22-6A and 22-6B in the region 22-6A is set to have the center axis inclined, and the LED19-6B in the other region 22-6B inclines the center axis.
  • the present invention also includes a configuration in which the inclined mounting surface 30-6 is provided only on one of the substrates 18-6A (see FIG. 13).
  • each LED 19— is a force exemplifying that each LED is arranged in a lattice shape along the vertical direction and the horizontal direction of the LED mounting surface of the substrate.
  • the present invention includes those in which the seven groups are arranged obliquely with respect to the vertical direction and the horizontal direction of the LED mounting surface 18a-7 of the substrate 18-7.
  • (8) in the above (1) to (7), as means for inclining the central axis of light in the LED the force illustrated only on the inclined mounting surface As in Embodiments 2 and 3, the LED lens or reflector The center axis of the light may be tilted by changing the shape of.
  • the inclination angle of the central axis of light in the LED can be arbitrarily changed.
  • the crossing position of the center axis of the LED and the lower surface of the optical member may be set so that it does not enter the irradiation area of the LED group belonging to the adjacent group or matches the boundary line.
  • each region 22-12 includes all the regions 22-12 as shown in FIG. 15, in which each region is set to divide the LED mounting surface of the substrate into a grid pattern. As a setting to divide the LED layout area along the vertical direction.
  • each region 22-13 can be set to divide the area where all LEDs are arranged along the horizontal direction.
  • each region can be arbitrarily changed, and can be set to, for example, a square, an oblique shape, or a triangle. Also, the number of areas can be arbitrarily changed.
  • the light receiving element is attached to the optical member.
  • the wire W is bridged between the adjacent support portions 21-15.
  • the light receiving element 28-15 may be attached to the wire W.
  • the arrangement position of the light receiving element can be arbitrarily changed.
  • the light receiving element may be attached to the inner peripheral surface of the side portion of the backlight case.
  • the number of light receiving elements per area can be arbitrarily changed.
  • LE including three types of chips of R light emission, G light emission, and B light emission
  • D light emission
  • a single chip specifically, a blue light emitting chip or an ultraviolet light emitting chip
  • LEDs that emit white light as a whole can be used.
  • the present invention includes three types of LEDs that emit R, G, and B in a single color. It is also possible to use LEDs that emit monochromatic light other than white or R, G, B.
  • the lighting circuit for lighting the LED group is a dimming lighting circuit having a dimming function.
  • the lighting circuit does not have a dimming function! / ⁇ A device using a lighting circuit is also included in the present invention.
  • the lighting circuit in that case has a circuit configuration in which the light receiving element 29 and the light receiving signal processing circuit 28 shown in FIG. 4 are omitted.
  • point light emitting elements such as a semiconductor laser
  • a large number of planar light-emitting elements such as EL (Electro Luminescence) are arranged in a matrix, and the EL groups are grouped in association with a plurality of areas, and each is lit by a lighting circuit. What is made is also included in the present invention.
  • a point-like light emitting element is exemplified as the light source.
  • a linear light source such as a discharge tube (a cold cathode tube or a hot cathode tube) may be used.
  • the present invention can also be applied to a liquid crystal display device using a switching element other than TFT. Further, the present invention can be applied to a liquid crystal display device for monochrome display as well as a liquid crystal display device for color display.
  • the present invention can be applied to other types of display devices that use a backlight other than liquid crystal.

Abstract

A LED unit (15) comprises a substrate (18), a large number of LEDs (19) installed on the substrates (18), and light-controllable lighting circuits (20) for lighting the LEDs (19). The substrates (18) is separated corresponding to a plurality of areas (22) formed by dividing an area where all LEDs (19) are disposed, and the LEDs (19) are grouped corresponding to respective areas (22) and substrates (18). Grouped LEDs (19) are respectively lit by the light- controllable lighting circuits (20) different from each other. The LED (19) near the boundary of one of the areas (22) among the LED groups are so formed that the center axes of the light radiated from the LED (19) is tilted to the adjacent area (22) side.

Description

明 細 書  Specification
光源ユニット、及びそれを用いた照明装置、及びそれを用いた表示装置 技術分野  LIGHT SOURCE UNIT, LIGHTING DEVICE USING THE SAME, AND DISPLAY DEVICE USING THE SAME
[0001] 本発明は、光源ユニット、及びそれを用いた照明装置、及びそれを用いた表示装 置に関する。  The present invention relates to a light source unit, a lighting device using the same, and a display device using the same.
背景技術  Background art
[0002] 液晶表示装置は、表示パネルとして非自発光の液晶パネルを用いて 、るため、外 部光源としてバックライトを必要としている。ノ ックライトの光源としては、放電管である 冷陰極管を用いるのが一般的である力 近年では色再現性の向上などを目的として LED (発光ダイオード: Light Emitting Diode)を用いることが提案されている。  Since a liquid crystal display device uses a non-self-luminous liquid crystal panel as a display panel, a backlight is required as an external light source. As a light source of knock light, it is common to use a cold cathode tube, which is a discharge tube. Recently, it has been proposed to use an LED (Light Emitting Diode) for the purpose of improving color reproducibility. Yes.
[0003] LEDを光源としたバックライトの一例として特許文献 1に記載されたものが知られて いる。この種のバックライトは、大まかには、液晶パネル側の面が開口した箱型をなす ケースと、ケース内に収容される基板と、基板上に設置された多数の LEDとから構成 される。ここで、 LEDは、点状の光源であるため、ノ ックライト全体の輝度分布が均一 になるように、基板の表面上において例えば格子状に並んだ配置とされる。  [0003] An example of a backlight using an LED as a light source is described in Patent Document 1. This type of backlight is roughly composed of a box-shaped case with an open surface on the side of the liquid crystal panel, a substrate housed in the case, and a number of LEDs installed on the substrate. Here, since the LEDs are point light sources, the LEDs are arranged, for example, in a lattice pattern on the surface of the substrate so that the luminance distribution of the entire knock light is uniform.
特許文献 1 :特開 2002— 311412公報  Patent Document 1: Japanese Unexamined Patent Application Publication No. 2002-311412
発明の開示  Disclosure of the invention
[0004] (発明が解決しょうとする課題)  [0004] (Problems to be solved by the invention)
ところで、大画面の液晶表示装置では、使用する LEDの数も膨大なものとなるため 、仮に全ての LEDを単一の点灯回路により点灯させるようにしたのでは、高価な点灯 回路が必要になるなどの問題がある。そこで、基板を複数の領域に分割し、各領域 に対応した LED群をグループ化し、それら各グループに属する LED群をそれぞれ 異なる点灯回路によって点灯させることが考えられる。  By the way, in a large-screen liquid crystal display device, the number of LEDs to be used becomes enormous, so if all LEDs are lit by a single lighting circuit, an expensive lighting circuit is required. There are problems such as. Therefore, it is conceivable to divide the board into multiple areas, group the LED groups corresponding to each area, and turn on the LED groups belonging to each group with different lighting circuits.
[0005] ところが、例えば基板やケースの温度分布に偏りがある場合には、各領域間に生じ る温度差に起因して各領域の LED群の輝度や色度に差が生じるおそれがある。そ れに対応するには、各領域に対応して受光素子をそれぞれ設けて、各グループの L ED群の輝度や色度を検出するようにし、各受光素子からの信号に基づ!/、て各ダル ープの LED群の輝度や色度を制御するよう各点灯回路に調光機能を持たせること が考えられる。 [0005] However, for example, when the temperature distribution of the substrate or the case is uneven, there is a possibility that a difference in brightness and chromaticity of the LED group in each region may occur due to a temperature difference generated between the regions. In order to cope with this, a light receiving element is provided for each region so that the luminance and chromaticity of the LED group in each group can be detected, and based on the signal from each light receiving element! /, Each dal It is conceivable that each lighting circuit has a dimming function to control the brightness and chromaticity of the group of LEDs.
[0006] し力しながら、上記したフィードバック制御による調光を行ったとしても、隣接する領 域間において各 LED群の輝度や色度の格差が僅かながらも生じてしまうことがあり、 それを完全に解消するのは困難であった。そして、各 LED群の輝度や色度の格差 に起因して隣接する領域間の境界付近のムラが目立つことが懸念されるところであつ た。  However, even if dimming is performed by the feedback control described above, there may be a slight difference in brightness and chromaticity of each LED group between adjacent regions. It was difficult to eliminate completely. In addition, there was a concern that unevenness near the boundary between adjacent regions was conspicuous due to the difference in brightness and chromaticity of each LED group.
[0007] 本発明は上記のような事情に基づいて完成されたものであって、領域間の境界付 近におけるムラを目立ち難くすることを目的とする。  [0007] The present invention has been completed based on the above-described circumstances, and an object thereof is to make the unevenness near the boundary between regions less noticeable.
(課題を解決するための手段)  (Means for solving problems)
[0008] 本発明の光源ユニットは、所定の面内に配置された多数の光源と、これらの光源群 を前記面内に設定した複数の領域に対応付けてグループ化して各領域に属する光 源群を点灯する点灯回路とを備え、前記光源群のうち、前記各領域の境界付近に存 する光源については、その光源カゝら照射される光の中心軸が隣接する領域側へ傾け られている。  The light source unit of the present invention is a light source belonging to each area by grouping a number of light sources arranged in a predetermined plane and these light source groups in association with a plurality of areas set in the plane. A lighting circuit for lighting a group, and among the light source group, for the light source existing near the boundary of each region, the central axis of the light emitted from the light source cover is tilted toward the adjacent region side. Yes.
[0009] このようにすると、面内の各領域に対応してグループ化された光源群は、対応する 各点灯回路によって点灯される。このとき、各グループの光源群の発光状態に格差 が生じてしまうことがある。ところが、本発明では光源群のうち各領域の境界付近に存 する光源について、その光源力も照射される光の中心軸を隣接する領域側へ傾ける ようにしたから、その光源による照射領域と、隣接するグループの光源群による照射 領域との重なり範囲を増やすことができる。これにより、各領域の境界付近におけるム ラをぼカゝすことができる。  In this way, the light source group grouped corresponding to each region in the surface is turned on by each corresponding lighting circuit. At this time, there may be a difference in the light emission state of the light source group of each group. However, in the present invention, the light source existing in the vicinity of the boundary of each region in the light source group is configured such that the central axis of the light to which the light source power is irradiated is inclined to the adjacent region side. It is possible to increase the overlapping range with the irradiation area by the light source group of the group that performs. As a result, blurring around the boundary of each region can be blurred.
[0010] 本発明の実施態様として、次の構成が好ましい。  [0010] The following configuration is preferable as an embodiment of the present invention.
( 1)前記光源を点状の発光素子とする。光源として点状の発光素子を用いるときは、 仮に線状の光源を用いた場合と比較して使用する光源の数が多くなり勝ちであるの で、特に有効である。  (1) The light source is a point-like light emitting element. When a point light emitting element is used as the light source, the number of light sources to be used is likely to increase as compared with the case where a linear light source is used, which is particularly effective.
[0011] (2)前記光源群のうち、前記各領域の境界線に面して配される前記光源を、前記中 心軸が隣接する領域側へ傾くようにする。これにより、境界付近に生じるムラをより有 効にぼかすことができる。 [0011] (2) In the light source group, the light sources arranged facing the boundary lines of the regions are inclined toward the adjacent region side. As a result, unevenness that occurs near the boundary It can be blurred.
[0012] (3)前記各領域の境界付近に存するとともに互いに異なる前記点灯回路により点灯 される前記各光源を、前記中心軸が互いに相手の領域側へ傾くようにする。これによ り、隣接するグループの光源群同士による照射領域の重なり範囲をより拡張できるの で、境界付近に生じるムラをより有効にぼかすことができる。  [0012] (3) The respective light sources that are present in the vicinity of the boundaries of the respective regions and are turned on by the different lighting circuits are arranged such that the central axes are inclined toward the other region. As a result, the overlapping range of the irradiation regions by the light source groups of adjacent groups can be further expanded, so that unevenness that occurs near the boundary can be more effectively blurred.
[0013] (4)前記各領域の境界付近に存するとともに互いに異なる前記点灯回路により点灯 される前記各光源における前記中心軸の傾き角度を、ほぼ同一に設定する。これに より、隣接するグループの光源群同士による照射領域の重なり範囲を、境界線を挟 んで対称にできるので、境界付近に生じるムラをさらに有効にぼかすことができる。  [0013] (4) The inclination angles of the central axes of the light sources that are located in the vicinity of the boundaries of the regions and are lit by the different lighting circuits are set to be substantially the same. As a result, the overlapping range of the irradiation regions by the light source groups of the adjacent groups can be made symmetric with respect to the boundary line, so that unevenness generated near the boundary can be more effectively blurred.
[0014] (5)前記各光源が基板上に設置されるとともに、この基板における光源装着面には、 前記各領域の境界付近に存する光源を傾けた姿勢で装着可能な傾斜装着面が形 成される構成とする。これにより、光源自体の構造を変更することなぐその光源にお ける光の中心軸を傾けることができる。  (5) Each light source is installed on a substrate, and an inclined mounting surface is formed on the light source mounting surface of the substrate so that the light source existing near the boundary of each region can be mounted in an inclined posture. The configuration is as follows. This makes it possible to tilt the central axis of light in the light source without changing the structure of the light source itself.
[0015] (6)前記各領域の境界付近に存する前記光源は、光を発する発光体と、この発光体 に対して照射側に配されるレンズとを備えており、前記レンズが非対称形状とされるこ とで、前記中心軸が傾けられる構成とする。このように、レンズの形状を非対称形状と することで、光源における光の中心軸を傾けることができる。  [0015] (6) The light source existing in the vicinity of the boundary between the regions includes a light emitter that emits light, and a lens disposed on the irradiation side with respect to the light emitter, and the lens has an asymmetric shape. Thus, the central axis is inclined. Thus, the center axis of the light in the light source can be tilted by making the lens shape asymmetrical.
[0016] (7)前記各領域の境界付近に存する前記光源は、光を発する発光体と、この発光体 に対して照射側とは反対側に配されるとともに光を反射する反射体とを備えており、 前記反射体が非対称形状とされることで、前記中心軸が傾けられる構成とする。この ように、反射体の形状を非対称形状とすることで、光源における光の中心軸を傾ける ことができる。  (7) The light source located in the vicinity of the boundary between the regions includes a light emitter that emits light, and a reflector that is disposed on the opposite side of the light emitter from the irradiation side and reflects light. And the central axis is inclined by making the reflector asymmetrical. Thus, the central axis of the light in the light source can be tilted by making the shape of the reflector asymmetrical.
[0017] (8)前記各領域が、前記面を格子状に分割する設定とされるとともに、各領域間の格 子状をなす境界付近に存する前記光源が、その光源から照射される光の中心軸が 隣接する領域側へ傾けられる構成とする。これにより、各領域の境界が格子状になる ものでは、境界付近のムラを目立ち易くなるので、特に有効である。  (8) Each area is set to divide the surface into a lattice shape, and the light source existing in the vicinity of the boundary forming a lattice shape between the areas is the light emitted from the light source. The central axis is inclined toward the adjacent area. As a result, when the boundary of each region is in a lattice shape, unevenness near the boundary is easily noticeable, which is particularly effective.
[0018] (9)前記点灯回路は、前記光源から照射される光を受光する受光素子を備えるととも に、受光素子からの信号に基づ!、て前記各グループに属する光源群の発光状態が 各グループ間で均一化するように前記光源群を駆動する調光機能を有する。これに より、光源群の発光状態に基づいて受光素子力 信号が点灯回路に出力され、この 信号に基づいて各点灯回路は、各光源群を制御して各グループ間における発光状 態の均一化を図る。もって、境界付近にムラが発生するのを抑制することができる。 [0018] (9) The lighting circuit includes a light receiving element that receives light emitted from the light source, and based on a signal from the light receiving element, a light emission state of the light source group belonging to each group But It has a light control function for driving the light source group so as to be uniform between the groups. As a result, a light receiving element force signal is output to the lighting circuit based on the light emission state of the light source group, and based on this signal, each lighting circuit controls each light source group to equalize the light emission state between the groups. Plan. Therefore, it is possible to suppress the occurrence of unevenness near the boundary.
[0019] (10)前記受光素子が、前記各グループ毎に対応して複数設けられる構成とする。こ れにより、各グループ毎に設けた受光素子により各光源群の発光状態を個別に検出 することができる。  [0019] (10) A plurality of light receiving elements are provided corresponding to each group. Thereby, the light emission state of each light source group can be detected individually by the light receiving element provided for each group.
[0020] (11)前記点灯回路は、前記各グループに属する光源群を順次に発光させて各光源 群の発光量を前記受光素子により検出し、その検出値を、前記受光素子と発光させ た前記光源群との間の距離に応じて補正した信号に基づいて前記光源群を制御す る。これにより、仮に各グループ毎に受光素子を配置した場合と比較すると、受光素 子の数を削減でき、もって低コストィ匕を図ることができる。  [0020] (11) The lighting circuit sequentially emits the light source groups belonging to each group, detects the light emission amount of each light source group by the light receiving element, and causes the light receiving element to emit the detected value. The light source group is controlled based on a signal corrected according to the distance between the light source group. As a result, the number of light receiving elements can be reduced compared with the case where the light receiving elements are arranged for each group, thereby reducing the cost.
[0021] (12)前記受光素子は、前記各光源に対してその照射側に対向して配される光学部 材に取り付けられる構成とする。光学部材に取り付けた受光素子により光源群の発光 状態を良好に検出することができる。  [0021] (12) The light receiving element is configured to be attached to an optical member disposed facing the irradiation side with respect to each light source. The light emitting state of the light source group can be satisfactorily detected by the light receiving element attached to the optical member.
[0022] (13)前記光源ユニットと、前記光源ユニットを収容するケースとを備える照明装置と する。  [0022] (13) An illumination device including the light source unit and a case for housing the light source unit.
[0023] (14)前記照明装置と、表示パネルとを備える表示装置とする。  [0023] (14) A display device including the illumination device and a display panel is provided.
(発明の効果)  (The invention's effect)
[0024] 本発明によれば、隣接する領域間の境界付近におけるムラを目立ち難くすることが できる。  [0024] According to the present invention, unevenness in the vicinity of the boundary between adjacent regions can be made inconspicuous.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]本発明の実施形態 1に係る液晶表示装置の断面図 FIG. 1 is a cross-sectional view of a liquid crystal display device according to Embodiment 1 of the present invention.
[図 2]LEDユニットの平面図  [Figure 2] Plan view of LED unit
[図 3]LEDユニットの要部拡大断面図  [Figure 3] Enlarged sectional view of the main part of the LED unit
[図 4]LEDユニットの要部拡大平面図  [Figure 4] Enlarged plan view of the main part of the LED unit
[図 5]調光点灯回路のブロック図  [Figure 5] Block diagram of dimming lighting circuit
[図 6]本発明の実施形態 2に係る LEDユニットの要部拡大断面図 [図 7]本発明の実施形態 3に係る LEDユニットの要部拡大断面図 [図 8]本発明の実施形態 4に係る調光点灯回路のブロック図 [図 9]他の実施形態(1)に係る LEDユニットの要部拡大平面図 [図 10]他の実施形態(2)に係る LEDユニットの要部拡大断面図 [図 11]他の実施形態 (4)に係る LEDユニットの要部拡大断面図 [図 12]他の実施形態(5)に係る LEDユニットの要部拡大平面図 [図 13]他の実施形態(6)に係る LEDユニットの要部拡大平面図 [図 14]他の実施形態(7)に係る LEDユニットの要部拡大平面図 [図 15]他の実施形態(12)に係る LEDユニットの平面図 FIG. 6 is an enlarged sectional view of a main part of an LED unit according to Embodiment 2 of the present invention. FIG. 7 is an enlarged cross-sectional view of a main part of an LED unit according to Embodiment 3 of the present invention. FIG. 8 is a block diagram of a dimming / lighting circuit according to Embodiment 4 of the present invention. FIG. 10 is an enlarged cross-sectional view of the main part of the LED unit according to another embodiment (2). FIG. 11 is an enlarged main part of the LED unit according to the other embodiment (4). Sectional view [FIG. 12] An enlarged plan view of the main part of an LED unit according to another embodiment (5) [FIG. 13] An enlarged plan view of the main part of an LED unit according to another embodiment (6) [FIG. FIG. 15 is a plan view of an LED unit according to another embodiment (12).
[図 16]他の実施形態(13)に係る LEDユニットの平面図 FIG. 16 is a plan view of an LED unit according to another embodiment (13).
[図 17]他の実施形態(15)に係る LEDユニットの要部拡大断面図 符号の説明 FIG. 17 is an enlarged cross-sectional view of the main part of an LED unit according to another embodiment (15).
10· · '液晶表示装置 (表示装置)  10 ·· 'Liquid crystal display device (display device)
11· · '液晶パネル(表示パネル)  11 ·· 'LCD panel (display panel)
12· ··バックライト (照明装置)  12 ··· Backlight (lighting device)
14· ··ケース  14 ··· Case
15- LEDユニット(光源ユニット)  15- LED unit (light source unit)
16· ··光学部材  16 ··· Optical components
18a' "LED装着面 (光源装着面)  18a '"LED mounting surface (light source mounting surface)
19, 31 , 32- ":LED (光源)  19, 31, 32- ": LED (light source)
20· · ·調光点灯回路  20 ··· Dimming and lighting circuit
22…領域  22 ... Area
23…境界線  23 ... Border line
28· ··受光素子  28
30…傾斜装着面  30 ... Inclined mounting surface
31a…レンズ  31a ... Lens
32a…チップ (発光体)  32a… Chip (light emitter)
31b…反射体 A…中心軸 31b ... Reflector A ... Center axis
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] <実施形態 1 >  <Embodiment 1>
本発明の実施形態 1を図 1ないし図 5によって説明する。本実施形態では、液晶表 示装置 10のバックライト 12に用いられる LEDユニット 15について例示する。なお以 下では、図 1に示す上側を表側、下側を裏側とする。  Embodiment 1 of the present invention will be described with reference to FIGS. In the present embodiment, an LED unit 15 used for the backlight 12 of the liquid crystal display device 10 is illustrated. In the following, the upper side shown in Fig. 1 is the front side, and the lower side is the back side.
[0028] まず、液晶表示装置 10の全体の概要を説明する。液晶表示装置 10は、大まかに は、図 1に示すように、横長形状 (略矩形)をなす液晶パネル 11と、外部光源である バックライト 12とを備え、これらが液晶表示装置 10の表示領域を取り囲む枠状に形 成されたべゼル 13などにより一体的に保持されるようになっている。このうち、液晶パ ネル 11は、一対の透明な (透光性を有する)ガラス基板 1 laが所定のギャップを空け た状態で張り合わせられるとともに、両ガラス基板 11a間に電圧印加に伴って光学特 性が変化する物質である液晶 1 lbが封入された構成とされる。一方のガラス基板 1 la には、互いに直交するソース配線とゲート配線とに接続されたスイッチング素子 (例え ば TFT)や画素電極がマトリックス状に設けられている。他方のガラス基板 11aには、 画素電極と対向する対向電極が設けられるとともに、各画素に対応した R (赤色), G (緑色), B (青色)のカラーフィルタがマトリックス状に設けられている。また両ガラス基 板 1 laの外面には、偏光板 1 lcがそれぞれ貼り付けられて 、る。  First, an overview of the entire liquid crystal display device 10 will be described. As shown in FIG. 1, the liquid crystal display device 10 roughly includes a horizontally long liquid crystal panel 11 (substantially rectangular) and a backlight 12 which is an external light source, and these are the display area of the liquid crystal display device 10. Is integrally held by a bezel 13 formed in a frame shape surrounding the frame. Among these, the liquid crystal panel 11 is bonded to a pair of transparent (translucent) glass substrates 1 la with a predetermined gap therebetween, and an optical characteristic is applied in accordance with voltage application between the two glass substrates 11a. It is configured to contain 1 lb of liquid crystal, a substance that changes its properties. On one glass substrate 1 la, switching elements (for example, TFTs) and pixel electrodes connected to source lines and gate lines orthogonal to each other are provided in a matrix. The other glass substrate 11a is provided with a counter electrode facing the pixel electrode, and R (red), G (green), and B (blue) color filters corresponding to each pixel are provided in a matrix. . Further, polarizing plates 1 lc are attached to the outer surfaces of both glass substrates 1 la, respectively.
[0029] 次に、バックライト 12について説明する。バックライト 12は、大まかには、上面側 (液 晶パネル 11側)が開口した矩形の略箱型をなすケース 14と、ケース 14内に配される LEDユニット 15と、ケース 14の開口部側に取り付けられた複数の光学部材 16とから 構成される。  [0029] Next, the backlight 12 will be described. The backlight 12 is roughly a rectangular, substantially box-shaped case 14 with an open top surface (the liquid crystal panel 11 side), an LED unit 15 disposed in the case 14, and the opening side of the case 14 And a plurality of optical members 16 attached to.
[0030] ケース 14は、金属製とされるととも〖こ、略矩形状をなす底部 14aの周縁から側部 14 bを立ち上げた構成とされる。側部 14bは、底部 14aに対して鈍角の傾斜角度をもつ て連結されており、ケース 14は開口部側ほど間口が拡がる形状となっている。各光 学部材 16は、互いに積層された状態でケース 14の開口部に設けられた受け部 14c に載せられるとともに、その表側からケース 14に対して取り付けられるフレーム 17に よって保持されるようになっている。フレーム 17は、金属製とされるとともに、液晶表示 装置 10の表示領域を取り囲む枠状に形成されている。 [0030] The case 14 is made of metal and has a configuration in which the side portion 14b is raised from the periphery of the bottom portion 14a having a substantially rectangular shape. The side portion 14b is connected to the bottom portion 14a with an obtuse inclination angle, and the case 14 has a shape in which the front opening is expanded toward the opening side. Each optical member 16 is placed on a receiving portion 14c provided in the opening of the case 14 in a stacked state, and is held by a frame 17 attached to the case 14 from the front side. ing. The frame 17 is made of metal and has a liquid crystal display It is formed in a frame shape surrounding the display area of the device 10.
[0031] 各光学部材 16は、図 1に示す下側 (裏側)から拡散板、拡散シート、レンズシート、 輝度上昇シートの順に積層され、ケース 14とフレーム 17との間に挟み込まれた状態 で保持されるようになっている。各 LED19から発せられた光は、各光学部材 16を透 過することで、面状に変換されるとともに効率的に液晶パネル 11へと照射されるよう になっている。 [0031] Each optical member 16 is laminated in the order of a diffusion plate, a diffusion sheet, a lens sheet, and a brightness enhancement sheet from the lower side (back side) shown in FIG. 1 and is sandwiched between the case 14 and the frame 17 It is supposed to be retained. The light emitted from each LED 19 passes through each optical member 16 so as to be converted into a planar shape and efficiently irradiated onto the liquid crystal panel 11.
[0032] 次に、 LEDユニット 15について詳細に説明する。 LEDユニット 15は、ケース 14内 に収容される基板 18と、基板 18上に設置された多数個の光源である LED19と、 LE D19群を点灯させるとともに調光可能な調光点灯回路 20とを備える。  [0032] Next, the LED unit 15 will be described in detail. The LED unit 15 includes a substrate 18 housed in a case 14, an LED 19 that is a large number of light sources installed on the substrate 18, and a dimming lighting circuit 20 that can illuminate and dim the LEDs 19 group. Prepare.
[0033] 基板 18の表面 (液晶パネル 11側の面)には、図 1及び図 2に示すように、多数個の LED 19が液晶パネル 11やケース 14の短辺方向及び長辺方向(縦方向及び横方向 )に沿って格子状に整列して配置されている。各 LED19間の間隔は、ほぼ等間隔に 設定されており、基板 18の表面に対する LED19群の面密度(単位面積当たりの LE D19の分布の割合)がほぼ均一になっている。この基板 18の表面には、各 LED19 の接続端子に対して接続される導電路(図示せず)が所定のパターンで配索されて いる。また、基板 18の表面における LED19の装着箇所力 外れた位置には、光学 部材 16を支持するための支持部 21が複数本設けられている。支持部 21は、光学部 材 16側へ突出するとともに先細り状をなす断面円形の柱状体であり、各支持部 21間 の間隔がほぼ等間隔に設定されている。  On the surface of the substrate 18 (the surface on the liquid crystal panel 11 side), as shown in FIGS. 1 and 2, a large number of LEDs 19 are arranged in the short side direction and the long side direction (vertical direction) of the liquid crystal panel 11 and the case 14. In a grid pattern along the direction and the horizontal direction). The spacing between the LEDs 19 is set to be approximately equal, and the surface density of the LED 19 group with respect to the surface of the substrate 18 (the ratio of the distribution of LED 19 per unit area) is substantially uniform. Conductive paths (not shown) connected to the connection terminals of the LEDs 19 are arranged on the surface of the substrate 18 in a predetermined pattern. Further, a plurality of support portions 21 for supporting the optical member 16 are provided at positions where the mounting force of the LED 19 is removed from the surface of the substrate 18. The support portion 21 is a columnar body having a circular cross section that protrudes toward the optical member 16 and has a tapered shape. The intervals between the support portions 21 are set to be approximately equal.
[0034] LED19は、点状をなす発光素子(点状光源)であり、大まかには発光体であるチッ プ (半導体素子)を内蔵した発光部と、発光部力 導出した接続端子とを備える。発 光部内には、 R発光 (赤色発光), G発光 (緑色発光), B発光 (青色発光)の 3種類の チップが備えられており、接続端子は各チップに対応して 3対設けられている。この L ED19では、発光色が異なる 3つのチップを発光させることにより、全体として発光色 が白色となる。また基板 18の導電路は、各接続端子対に対応したものが 3本配索さ れている。  [0034] The LED 19 is a light emitting element (point light source) having a dot shape, and roughly includes a light emitting unit incorporating a chip (semiconductor element) as a light emitter, and a connection terminal derived from the light emitting unit force. . Within the light emitting section, there are three types of chips: R light emission (red light emission), G light emission (green light emission), and B light emission (blue light emission). Three pairs of connection terminals are provided for each chip. ing. With this LED 19, the emission color is white as a whole by emitting light from three chips with different emission colors. In addition, three conductive paths on the substrate 18 corresponding to each connection terminal pair are arranged.
[0035] LED19からの光の照射領域は、図 3の破線に示すように、チップを頂点として所定 の角度範囲をもった略錐状に拡がるとともに、その照射方向と直交する面で切断した ときの断面がほぼ円形になる設定とされる。この LED19からの光の照射領域の中心 を貫く中心軸 A (図 3にて一点鎖線で示す)は、基板 18における LED装着面 18aが 水平な面 (光学部材 16や液晶パネル 11の面方向と平行な面)であれば、鉛直方向( 光学部材 16や液晶パネル 11の面方向と直交する方向)を向く設定とされる。この LE D19における配光分布は、中心軸 Aと一致した方向の光強度が最も大きぐこの中 心軸 Aカゝら照射領域の端側(図 3に示す破線側)に行くに連れて(中心軸 Aからの角 度範囲が拡がるに連れて)次第に光強度が小さくなる傾向にあり、全体として略対称 となる。また、 LED19における軸線と、照射される光の中心軸 Aとはほぼ一致してい る。 [0035] As shown by the broken line in FIG. 3, the light irradiation area from the LED 19 spreads in a substantially conical shape having a predetermined angle range with the chip as the apex, and is cut along a plane orthogonal to the irradiation direction. The cross section at the time is set to be almost circular. The central axis A (shown by the alternate long and short dash line in FIG. 3) passing through the center of the area irradiated with light from the LED 19 is a plane in which the LED mounting surface 18a of the substrate 18 is horizontal (the surface direction of the optical member 16 and the liquid crystal panel 11). If it is a parallel plane, it is set to face in the vertical direction (direction perpendicular to the plane direction of the optical member 16 and the liquid crystal panel 11). The distribution of light distribution in this LED19 goes from this central axis A, where the light intensity in the direction that coincides with the central axis A is the largest, to the end side of the irradiation area (dashed line side in Fig. 3) ( As the angular range from the central axis A increases, the light intensity tends to decrease gradually and becomes generally symmetrical as a whole. Further, the axis line of the LED 19 and the central axis A of the irradiated light are almost coincident.
[0036] 上記した基板 18は、図 2に示すように、ケース 14の底部 14a (全 LED19の配設領 域)を分割する複数の領域 22に対応して互いに分離されている。そして、各領域 22 に対応した各基板 18上に装着された LED19群がグループィ匕されるとともに、そのグ ループ化された各 LED19群力 互いに異なる(独立した)調光点灯回路 20によって 点灯されるようになっている。各領域 22に対応した各基板 18は、ケース 14の底部 14 aを格子状にほぼ均等に分割するよう、それぞれ横長の矩形状に形成されており、各 領域 22間の境界線 23は、ケース 14の底部 14aにおける縦方向及び横方向に沿つ て延びるとともに格子状をなしている(図 2及び図 4にて二点鎖線で示す)。本実施形 態では、ケース 14の底部 14aは、縦に 3つ、横に 3つの合計 9つの領域 22 (基板 18) に分割されている。  As shown in FIG. 2, the above-described substrate 18 is separated from each other corresponding to a plurality of regions 22 that divide the bottom portion 14a of the case 14 (a region where all the LEDs 19 are disposed). Then, the LED 19 group mounted on each substrate 18 corresponding to each region 22 is grouped, and the grouped LED 19 group power is turned on by a different (independent) dimming lighting circuit 20. It has become so. Each substrate 18 corresponding to each region 22 is formed in a horizontally long rectangular shape so as to divide the bottom portion 14a of the case 14 into a lattice shape, and the boundary line 23 between the regions 22 14 extends along the vertical and horizontal directions at the bottom 14a and has a lattice shape (indicated by a two-dot chain line in FIGS. 2 and 4). In the present embodiment, the bottom portion 14a of the case 14 is divided into nine regions 22 (substrate 18), that is, three vertically and three horizontally.
[0037] 調光点灯回路 20は、次のような構成とされる。調光点灯回路 20は、図 5に示すよう に、互いに直列に接続された LED19群の一端側に接続される電源 24と、 LED 19 群の他端側に接続されるトランジスタ 25と、トランジスタ 25に接続された駆動回路 26 と、駆動回路 26に接続された受光信号処理回路 27と、受光信号処理回路 27に接 続された受光素子 28とを備える。  [0037] The dimming / lighting circuit 20 is configured as follows. As shown in FIG. 5, the dimming / lighting circuit 20 includes a power source 24 connected to one end side of the LED 19 group connected in series with each other, a transistor 25 connected to the other end side of the LED 19 group, and a transistor 25 A light receiving signal processing circuit 27 connected to the driving circuit 26, and a light receiving element 28 connected to the light receiving signal processing circuit 27.
[0038] 受光素子 28により対応する領域 22の LED19群から発せられる光を検出すると、 受光素子 28から受光信号処理回路 27へ信号が出力され、受光信号処理回路 27に て処理された信号が駆動回路 26へと出力される。入力された信号に基づいて駆動 回路 26によって LED 19に対して供給する電流量が調整されることで、 LED19群の 輝度や色度を制御できる。 [0038] When light emitted from the LED 19 group in the corresponding region 22 is detected by the light receiving element 28, a signal is output from the light receiving element 28 to the light receiving signal processing circuit 27, and the signal processed by the light receiving signal processing circuit 27 is driven. Output to circuit 26. The drive circuit 26 adjusts the amount of current supplied to the LED 19 based on the input signal. Brightness and chromaticity can be controlled.
[0039] 詳しくは、各 LED19群の輝度や色度が均一になるよう制御するには、以下に示す 2通りの方法がある。第 1には、受光素子 28を、受光した白色光を R, G, Bに分解す るフィルターを有する構成としておく。そして、 LED19群を白色発光させてその光を 上記構成の受光素子 28により検出し、 R, G, Bの各受光量に基づいてその LED19 群における R, G, Bの各発光素子に対して供給する電流量を駆動回路 26により調 整することで、その LED 19群の輝度及び色度を制御し、もって各 LED19群間の輝 度及び色度の均一化を図る。  [0039] Specifically, there are the following two methods for controlling the brightness and chromaticity of each LED 19 group to be uniform. First, the light receiving element 28 is configured to have a filter that decomposes the received white light into R, G, and B. Then, the LED 19 group emits white light, and the light is detected by the light receiving element 28 having the above-described configuration, and the R, G, B light emitting elements in the LED 19 group are detected based on the light receiving amounts of R, G, B. By adjusting the amount of current to be supplied by the drive circuit 26, the brightness and chromaticity of the LED 19 group are controlled, and the brightness and chromaticity between the LED 19 groups are made uniform.
[0040] 第 2には、 LED19群における R, G, Bの発光素子を色毎に順次に点灯させ、各色 の光を広帯域の受光素子 28により順次に検出する。そして、 R, G, Bの各受光量に 基づいてその LED19群における R, G, Bの各発光素子に対して供給する電流量を 駆動回路 26により調整することで、その LED 19群の輝度及び色度を制御し、もって 各 LED19群間の輝度及び色度の均一化を図る。なお、受光素子 28は、光学部材 1 6のうち、 LED19と照射側(ケース 14とは反対側)に対向して配されるもの(拡散板) における LED19との対向面に取り付けられるとともに、各領域 22に対応して 1つず つ設けられており、各領域 22のほぼ中央位置に設置されている(図 2では一点鎖線 で示す)。  [0040] Second, the R, G, and B light emitting elements in the LED group 19 are sequentially turned on for each color, and light of each color is sequentially detected by the broadband light receiving element 28. The drive circuit 26 adjusts the amount of current supplied to the R, G, and B light emitting elements in the LED 19 group based on the received light amounts of the R, G, and B, so that the luminance of the LED 19 group is adjusted. In addition, the brightness and chromaticity between the LED19 groups are made uniform by controlling the chromaticity. The light receiving element 28 is attached to the surface facing the LED 19 in the optical member 16 that is disposed facing the LED 19 and the irradiation side (opposite the case 14) (diffuse plate). One is provided corresponding to each region 22 and is installed at the approximate center position of each region 22 (indicated by a one-dot chain line in FIG. 2).
[0041] さて、上記したようにグループィ匕された LED19群のうち、各領域 22の境界付近に 存する LED19は、照射される光の中心軸 Aが隣接する領域 22側へ傾けられて 、る 。詳しくは、基板 18における LED装着面 18aであって、 LED 19群のうち隣接する領 域 22間の境界線 23に面しない LED19が装着される部分については、ケース 14の 底部 14aや光学部材 16とほぼ平行な水平面 29とされているのに対し、隣接する領 域 22間の境界線 23に面する LED19が装着される部分には、水平面 29に対して傾 斜した傾斜装着面 30が形成されている。従って、この傾斜装着面 30に装着される L ED19における光の中心軸 Aは、水平面 29に装着される LED19における光の中心 軸 Aに対して相対的に傾けられている。  [0041] Of the group of LEDs 19 grouped as described above, the LED 19 existing near the boundary of each region 22 is tilted toward the adjacent region 22 side with the central axis A of the irradiated light. . Specifically, for the LED mounting surface 18a on the substrate 18 and the portion of the LED 19 group where the LED 19 that does not face the boundary line 23 between the adjacent regions 22 is mounted, the bottom 14a of the case 14 or the optical member 16 In contrast to the horizontal plane 29 that is substantially parallel to the horizontal plane 29, the inclined mounting surface 30 that is inclined with respect to the horizontal plane 29 is formed in the portion where the LED 19 facing the boundary line 23 between the adjacent areas 22 is mounted. Has been. Accordingly, the central axis A of light in the LED 19 mounted on the inclined mounting surface 30 is inclined relative to the central axis A of light in the LED 19 mounted on the horizontal plane 29.
[0042] 傾斜装着面 30は、各基板 18の周縁部のうち隣接する基板 18と対向する部分、つ まり隣接する領域 22との間の境界線 23に面する部分に形成されており、水平面 29 側(隣接する領域 22とは反対側)から端縁側(隣接する領域 22側)に力 4ナて下り勾配 となる傾斜をもって形成されている。傾斜装着面 30は、基板 18の周縁のうち、境界 線 23に面する部分の全域にわたって形成され、基板 18の短辺方向や長辺方向に 沿って連続する傾斜面として形成されているので、そこに装着される LED19、つまり 境界線 23に面する LED19が全て光の中心軸 Aを傾けた姿勢とされる。従って、各 基板 18に装着される各 LED19群のうち、境界線 23に面する各 LED19は、光の中 心軸 Aが互いに隣接する領域 22側へ傾けられて 、る。 [0042] The inclined mounting surface 30 is formed in a portion of the peripheral edge of each substrate 18 facing the adjacent substrate 18, that is, a portion facing the boundary line 23 between the adjacent regions 22, 29 From the side (opposite side of the adjacent region 22) to the edge side (adjacent region 22 side), it is formed with a slope that becomes a downward gradient with 4 forces. The inclined mounting surface 30 is formed over the entire periphery of the portion of the periphery of the substrate 18 facing the boundary line 23, and is formed as an inclined surface continuous along the short side direction or the long side direction of the substrate 18. The LED 19 mounted there, that is, the LED 19 facing the boundary line 23 is all inclined with the central axis A of the light inclined. Accordingly, in each LED 19 group mounted on each substrate 18, each LED 19 facing the boundary line 23 is tilted toward the region 22 side where the light central axes A are adjacent to each other.
[0043] 各傾斜装着面 30の傾斜角度については、ほぼ同一に設定されているので、そこに 装着される各 LED19の光の中心軸 Aの傾斜角度についても全てほぼ同一になって いる。そして、境界線 23に面する各 LED19における光の中心軸 Aは、隣接するダル ープの LED19群における境界線 23に面する LED19の光の中心軸 Aと交差してい る。各傾斜装着面 30に装着されるとともに互いに隣接する各 LED19の中心軸 A同 士の交差位置は、鉛直方向については光学部材 16と基板 18との間(図 3では中央) に位置し、水平方向について境界線 23とほぼ一致している。また、各傾斜装着面 30 に装着された各 LED19の中心軸 Aと、最も LED19寄りの光学部材 16の下面(LED 19との対向面)とが交差する位置は、その LED19が属するグループに対して隣接 するグループに属する LED19群の照射領域側に入り込む設定とされる。  [0043] Since the inclination angles of the inclined mounting surfaces 30 are set to be substantially the same, the inclination angles of the central axis A of the light of each LED 19 mounted thereon are also substantially the same. The central axis A of the light in each LED 19 facing the boundary line 23 intersects the central axis A of the light of the LED 19 facing the boundary line 23 in the LED 19 group of adjacent duplications. The center axis A of each LED 19 that is mounted on each inclined mounting surface 30 and adjacent to each other is located between the optical member 16 and the substrate 18 (center in FIG. 3) in the vertical direction, and is horizontal. It almost coincides with the boundary line 23 in the direction. The position where the central axis A of each LED 19 mounted on each inclined mounting surface 30 intersects the lower surface of the optical member 16 closest to the LED 19 (the surface facing the LED 19) is relative to the group to which the LED 19 belongs. Thus, the LED 19 group belonging to the adjacent group is set to enter the irradiation region side.
[0044] 各領域 22の LED19群のうち境界線 23に面する LED19について、図 4に示す 4つ の領域 22を参照しつつ詳細に説明する。なお以下では各領域 22及びそれに属する 基板 18、 LED19及び傾斜装着面 30を区別する場合には、図 4に示す左上の領域 に関するものの符号に添え字 Aを、同図左下の領域に関するものの符号に添え字 B を、同図右上の領域に関するものの符号に添え字 Cを、同図右下の領域に関するも のの符号に添え字 Dを付し、区別せずに総称する場合には、符号に添え字を付さな いものとする。また境界線 23に関して、領域 22Aと領域 22Bとの境界線の符号に添 え字 ABを、領域 22Aと領域 22Cとの境界線の符号に添え字 ACを、領域 22Cと領域 22Dとの境界線の符号に添え字 CDを、領域 22Bと領域 22Dとの境界線の符号に添 え字 BDを付し、区別せずに総称する場合には、符号に添え字を付さないものとする 。また図 4に示す矢線は、各 LED 19の傾き方向を表している。 [0045] 同図左上の基板 18Aのうち境界線 23ABに面する傾斜装着面 30Aは、基板 18A の全長辺部分にわたって形成されるとともに、ここに装着される LED19Aは、全て照 射される光の中心軸 Aが領域 22B側へ傾いた姿勢とされる。一方、基板 18Aのうち 境界線 23ACに面する傾斜装着面 30Aは、境界線 23AB及び境界線 23ACの双方 に面する(角位置の) LED19Aの装着部分を除いて基板 18Aの短辺部分に形成さ れ、ここに装着される LED19Aは、照射される光の中心軸 Aが領域 22C側へ傾いた 姿勢とされる。 [0044] The LED 19 facing the boundary line 23 in the group of LEDs 19 in each region 22 will be described in detail with reference to the four regions 22 shown in FIG. In the following, when distinguishing each region 22 and its associated substrate 18, LED 19, and inclined mounting surface 30, the subscript A is added to the reference to the upper left region shown in FIG. 4 and the reference to the lower left region in FIG. When subscript B is added to the upper right region of the figure, the subscript C is attached to the lower right region of the figure, the subscript D is attached to the lower portion of the figure, and the reference is added to the reference. There shall be no subscripts. Regarding the boundary line 23, the subscript AB is added to the sign of the boundary line between the areas 22A and 22B, the subscript AC is added to the sign of the boundary line between the areas 22A and 22C, and the boundary line between the areas 22C and 22D. If the subscript CD is added to the code of the above, and the subscript BD is added to the code of the boundary line between the region 22B and the region 22D, and they are collectively referred to without distinction, the subscript shall not be added. Also, the arrow line shown in FIG. 4 represents the tilt direction of each LED 19. [0045] The inclined mounting surface 30A facing the boundary line 23AB of the board 18A on the upper left side of the figure is formed over the entire length of the board 18A, and the LED 19A mounted on the inclined mounting surface 30A is all of the irradiated light. The center axis A is inclined to the region 22B side. On the other hand, the inclined mounting surface 30A facing the boundary line 23AC of the board 18A is formed on the short side portion of the board 18A except for the mounting part of the LED 19A (corner position) facing both the boundary line 23AB and the boundary line 23AC. The LED 19A mounted here is in a posture in which the central axis A of the irradiated light is inclined toward the region 22C.
[0046] 同図左上の基板 18Bのうち境界線 23BDに面する傾斜装着面 30Bは、基板 18B の全短辺部分にわたって形成されるとともに、ここに装着される LED19Bは、全て照 射される光の中心軸 Aが領域 22D側へ傾いた姿勢とされる。一方、基板 18Bのうち 境界線 23ABに面する傾斜装着面 30Bは、境界線 23AB及び境界線 23BDの双方 に面する(角位置の) LED19Bの装着部分を除いて基板 18Bの長辺部分に形成さ れ、ここに装着される LED19Bは、照射される光の中心軸 Aが領域 22A側へ傾いた 姿勢とされる。  [0046] The inclined mounting surface 30B facing the boundary line 23BD of the board 18B in the upper left of the figure is formed over the entire short side portion of the board 18B, and the LED 19B mounted here is all irradiated light The center axis A is inclined to the region 22D side. On the other hand, the inclined mounting surface 30B facing the boundary line 23AB of the board 18B is formed on the long side portion of the board 18B except for the mounting part of the LED 19B (at the corner position) facing both the boundary line 23AB and the boundary line 23BD. The LED 19B mounted here has a posture in which the central axis A of the irradiated light is inclined toward the region 22A.
[0047] 同図左上の基板 18Cのうち境界線 23ACに面する傾斜装着面 30Cは、基板 18C の全短辺部分にわたって形成されるとともに、ここに装着される LED19Cは、全て照 射される光の中心軸 Aが領域 22A側へ傾いた姿勢とされる。一方、基板 18Cのうち 境界線 23CDに面する傾斜装着面 30Cは、境界線 23AC及び境界線 23CDの双方 に面する(角位置の) LED19Cの装着部分を除いて基板 18Cの長辺部分に形成さ れ、ここに装着される LED19Cは、照射される光の中心軸 Aが領域 22D側へ傾いた 姿勢とされる。  [0047] In the board 18C in the upper left of the figure, the inclined mounting surface 30C facing the boundary line 23AC is formed over the entire short side portion of the board 18C, and the LED 19C mounted here is all irradiated light The center axis A is inclined to the region 22A side. On the other hand, the inclined mounting surface 30C facing the boundary line 23CD of the substrate 18C is formed on the long side portion of the substrate 18C except for the mounting portion of the LED 19C (at the corner) facing both the boundary line 23AC and the boundary line 23CD. The LED 19C mounted here is in a posture in which the central axis A of the irradiated light is inclined toward the region 22D.
[0048] 同図左上の基板 18Dのうち境界線 23CDに面する傾斜装着面 30Dは、基板 18D の全長辺部分にわたって形成されるとともに、ここに装着される LED19Dは、全て照 射される光の中心軸 Aが領域 22C側へ傾いた姿勢とされる。一方、基板 18Dのうち 境界線 23BDに面する傾斜装着面 30Dは、境界線 23BD及び境界線 23CDの双方 に面する(角位置の) LED19Dの装着部分を除いて基板 18Dの短辺部分に形成さ れ、ここに装着される LED19Dは、照射される光の中心軸 Aが領域 22B側へ傾いた 姿勢とされる。 [0049] このように、各基板 18の角位置に配されるとともに、 2本の境界線 23に面する 4つの LED19は、その光の中心軸 Aが反時計回り方向に隣り合う領域 22側に傾けられて いる。なお、傾斜装着面 30を変更することで、 2本の境界線 23に面する 4つの LED1 9が、時計回り方向に隣り合う領域 22側に傾く設定とすることも可能である。 [0048] Of the board 18D in the upper left of the figure, the inclined mounting surface 30D facing the boundary line 23CD is formed over the entire length of the side of the board 18D, and the LED 19D mounted here is all of the irradiated light. The center axis A is inclined to the region 22C side. On the other hand, the inclined mounting surface 30D facing the boundary line 23BD of the substrate 18D is formed on the short side portion of the substrate 18D except for the mounting portion of the LED 19D (at the corner position) facing both the boundary line 23BD and the boundary line 23CD. The LED 19D mounted here is in a posture in which the central axis A of the irradiated light is inclined toward the region 22B. [0049] In this way, the four LEDs 19 which are arranged at the corner positions of the respective substrates 18 and face the two boundary lines 23 have the center axis A of the light adjacent to the region 22 in the counterclockwise direction. Tilt to In addition, by changing the inclined mounting surface 30, it is possible to set the four LEDs 19 facing the two boundary lines 23 to be inclined to the adjacent region 22 side in the clockwise direction.
[0050] 本実施形態は以上のような構造であり、続いてその作用を説明する。液晶表示装 置 10に画像を表示させるには、各 LED19群をそれぞれ対応する各調光点灯回路 2 0によって点灯させるとともに、液晶パネル 11の表示駆動回路(ソース配線及びゲー ト配線など)に対して外部回路力 表示に必要な信号を供給する。  [0050] The present embodiment has the above-described structure, and the operation thereof will be described. In order to display an image on the liquid crystal display device 10, each LED 19 group is turned on by the corresponding dimming lighting circuit 20, and the display drive circuit (source wiring, gate wiring, etc.) of the liquid crystal panel 11 is turned on. To supply signals necessary for external circuit force display.
[0051] 各 LED19から発せられた光は、各光学部材 16を順次に透過する過程で均一な面 状の光に変換された状態で液晶パネル 11に対して照射される。このとき、液晶パネ ル 11内の液晶 l ibは、各配線に信号が付与されて電圧 (電界)が印加されるのに伴 つて配向状態が変化しているので、それに伴って液晶 l ibを通る光の偏光状態が変 化され、もって液晶パネル 11に所定の画像が表示される。  [0051] The light emitted from each LED 19 is applied to the liquid crystal panel 11 in a state of being converted into uniform planar light in the process of sequentially passing through each optical member 16. At this time, the liquid crystal l ib in the liquid crystal panel 11 changes its alignment state as a signal is applied to each wiring and a voltage (electric field) is applied. The polarization state of the light passing therethrough is changed, so that a predetermined image is displayed on the liquid crystal panel 11.
[0052] ところで、液晶表示装置 10の使用環境などによっては、例えばバックライト 12の基 板 18やケース 14の温度分布に偏りが生じる場合があり、そうなると各領域 22 (各基 板 18)間で温度差が生じ、それに起因して各領域 22の LED19群の平均輝度や平 均色度に格差が生じるおそれがある。  [0052] By the way, depending on the usage environment of the liquid crystal display device 10, for example, the temperature distribution of the base plate 18 of the backlight 12 and the case 14 may be biased. A temperature difference occurs, which may cause a difference in the average brightness and average chromaticity of the LED19 group in each region 22.
[0053] ところが、調光点灯回路 20では、図 5に示すように、各領域 22に対応して配された 各受光素子 28により各 LED19群の輝度や色度を検出するとともに、受光信号処理 回路 27では受光素子 28からの信号を処理して駆動回路 26へと処理した信号を出 力し、駆動回路 26により入力された信号に基づいて LED19群に対して供給する電 流量を調整することができる。このように、調光点灯回路 20により各グループの LED 19群を個別にフィードバック制御して LED 19群の発光状態を調整することで、各グ ループの LED19群間で生じる輝度や色度の格差を極力解消するようにしている。  However, in the dimming / lighting circuit 20, as shown in FIG. 5, the luminance and chromaticity of each LED 19 group is detected by the respective light receiving elements 28 arranged corresponding to the respective regions 22, and the received light signal processing is performed. The circuit 27 processes the signal from the light receiving element 28 and outputs the processed signal to the drive circuit 26, and adjusts the electric current supplied to the LED 19 group based on the signal input by the drive circuit 26. Can do. In this way, the dimming and lighting circuit 20 controls the LED 19 group of each group individually by feedback control and adjusts the light emission state of the LED 19 group, thereby causing a difference in luminance and chromaticity that occurs between the LED 19 groups of each group. Is to be eliminated as much as possible.
[0054] ところが、上記したようにフィードバック制御を行って 、ても、例えば各領域 22に配 した各受光素子 28の感度がばらつくなど様々な理由により、各グループの LED19 群の輝度や色度、つまり発光状態に僅かながらも格差が生じてしまうことがあり、それ を完全に解消するのは困難である。そして、各 LED19群の輝度や色度の格差に起 因して隣接する領域 22間の境界付近に輝度ムラ(明暗ムラ)や色ムラが縞のように見 えるなど、ムラが目立つことが懸念される。 However, even if the feedback control is performed as described above, the brightness and chromaticity of the LEDs 19 of each group, for example, due to various reasons such as the sensitivity of each light receiving element 28 arranged in each region 22 varies. In other words, a slight difference may occur in the light emission state, and it is difficult to completely eliminate it. The difference between the brightness and chromaticity of each LED19 group Therefore, there is a concern that unevenness is noticeable, such as uneven luminance (brightness / darkness unevenness) and color unevenness appearing as stripes near the boundary between adjacent regions 22.
[0055] ところが、本実施形態では、図 3及び図 4に示すように、グループィ匕された LED19 群のうち各領域 22の境界付近の LED19が、傾斜装着面 30により照射する光の中 心軸 Aを隣接する領域 22側へ傾けた姿勢とされている。詳しくは、各領域 22間の各 境界線 23に面するとともに互いに対向(隣接)する LED19同士は、互いに相手の領 域 22側へその光の中心軸 Aが傾けられている。従って、その中心軸 Aが傾けられた LED19による照射領域と、隣接するグループに属する LED19群による照射領域と の重なり範囲については、仮に境界線 23に面する各 LED19が、他の LED19 (境界 線 23に面しな 、LED 19)と同様に光の中心軸 Aを鉛直方向に一致させた場合と比 較すると、 LED19における光の中心軸 Aを傾けた分だけ拡張することができる。  However, in this embodiment, as shown in FIGS. 3 and 4, the LED 19 near the boundary of each region 22 in the grouped LED 19 group is centered on the light irradiated by the inclined mounting surface 30. The axis A is inclined to the adjacent region 22 side. Specifically, the LEDs 19 facing each boundary line 23 between the regions 22 and facing (adjacent) each other are inclined with the center axis A of the light toward the other region 22 side. Therefore, regarding the overlapping range of the irradiation area of the LED 19 whose central axis A is inclined and the irradiation area of the LED 19 group belonging to the adjacent group, each LED 19 facing the boundary line 23 is assumed to have another LED 19 (boundary line). Compared with the case where the central axis A of the light is made to coincide with the vertical direction as in the LED 19), the light central axis A in the LED 19 can be expanded by an inclination.
[0056] このように隣接する各グループに属する各 LED19群による照射領域同士の重なり 範囲が拡張されているので、各 LED19群間において発光状態の格差が生じたとし ても、境界付近において隣接する領域 22間の光の照射状態の変化を緩やかなもの とすることができ、境界付近のムラをぼかすことができる。これにより、隣接する領域 2 2間の境界付近におけるムラを目立ち難くすることができ、もって液晶表示装置 10の 表示品位の向上を図ることができる。  [0056] Since the overlapping range of the irradiation areas of the LED 19 groups belonging to the adjacent groups is expanded in this way, even if a difference in the light emission state occurs between the LED 19 groups, the adjacent areas are adjacent in the vicinity of the boundary. The change in the light irradiation state between the regions 22 can be made gradual, and unevenness near the boundary can be blurred. As a result, unevenness in the vicinity of the boundary between the adjacent regions 22 can be made inconspicuous, so that the display quality of the liquid crystal display device 10 can be improved.
[0057] 以上説明したように本実施形態によれば、グループィ匕した LED19群のうち各領域 22の境界付近に存する LED19については、その LED19から照射される光の中心 軸 Aが隣接する領域 22側へ傾けられているから、その LED19による照射領域と、隣 接するグループの LED19群による照射領域との重なり範囲を増やすことができ、も つて境界付近に生じるムラを目立ち難くすることができる。  [0057] As described above, according to the present embodiment, for the LEDs 19 existing in the vicinity of the boundary of each region 22 in the group of grouped LEDs 19, the region where the central axis A of the light emitted from the LED 19 is adjacent Since it is tilted to the 22 side, the overlapping range between the irradiation area of the LED 19 and the irradiation area of the LED 19 group of the adjacent group can be increased, and unevenness occurring near the boundary can be made inconspicuous.
[0058] また、輝度ムラを解消するには、液晶パネル 11と LED19群との間の距離を大きくし たり、光学部材 16の数や種類を増やすことが考えられるが、本実施形態によればそ の必要がない。逆に言うと、本実施形態によれば、液晶パネル 11と LED19群との間 の距離を縮めることができてバックライト 12や液晶表示装置 10の薄型化 (小型化)を 図ることができるとともに、光学部材 16の数や種類を削減して低コストィ匕を図ることが できる。 [0059] また、光源を点状の発光素子である LED19としたものでは、仮に光源として線状の 光源を用いた場合と比較して、使用する LED19の数が多くなり勝ちであるので、特 に有効である。 [0058] Further, in order to eliminate the luminance unevenness, it is conceivable to increase the distance between the liquid crystal panel 11 and the LED 19 group or increase the number and types of the optical members 16, but according to the present embodiment. It is not necessary. Conversely, according to the present embodiment, the distance between the liquid crystal panel 11 and the LED 19 group can be shortened, and the backlight 12 and the liquid crystal display device 10 can be made thinner (smaller). In addition, the number and types of optical members 16 can be reduced to achieve low cost. [0059] In addition, in the case where the light source is LED 19, which is a point light emitting element, the number of LEDs 19 to be used tends to increase as compared with the case where a linear light source is used as the light source. It is effective for.
[0060] また、 LED19群のうち、各領域 22の境界線 23に面して配される LED19は、その 中心軸 Aが隣接する領域 22側へ傾けられているから、境界付近に生じるムラをより有 効にぼかすことができる。  [0060] In addition, in the LED 19 group, the LED 19 arranged facing the boundary line 23 of each region 22 has its central axis A tilted toward the adjacent region 22 side, so that unevenness generated near the boundary is prevented. You can blur more effectively.
[0061] また、各領域 22の境界付近に存するとともに互いに異なる調光点灯回路 20により 点灯される各 LED19は、その中心軸 Aが互いに相手の領域 22側へ傾けられている から、隣接するグループの LED19群同士による照射領域の重なり範囲をより拡張で き、境界付近に生じるムラをより有効にぼかすことができる。  [0061] In addition, each LED 19 that exists in the vicinity of the boundary of each region 22 and is lit by the dimming lighting circuit 20 that is different from each other has its central axis A tilted toward the other region 22 side. It is possible to extend the overlapping range of irradiation areas between the LED19 groups, and to blur the unevenness that occurs near the boundary more effectively.
[0062] また、各領域 22の境界付近に存するとともに互いに異なる調光点灯回路 20により 点灯される LED19における中心軸 Aの傾き角度がほぼ同一に設定されているから、 隣接するグループの LED19群同士による照射領域の重なり範囲を、境界線 23を挟 んで対称にすることができ、境界付近に生じるムラをさらに有効にぼかすことができる  [0062] In addition, since the inclination angles of the central axis A of the LEDs 19 that are located near the boundary of each region 22 and are lit by different dimming lighting circuits 20 are set to be substantially the same, The overlapping area of the irradiation areas due to can be made symmetric with respect to the boundary line 23, and the unevenness near the boundary can be more effectively blurred.
[0063] また、各 LED19が基板 18上に設置されるとともに、この基板 18における LED装着 面 18aには、各領域 22の境界付近に存する LED19を傾けた姿勢で装着可能な傾 斜装着面 30が形成されているから、 LED19自体の構造を変更することなぐその LE D19における光の中心軸 Aを傾けることができる。各基板 18に設置する LED19が 1 種類で済むので、 LED19を基板 18に設置する際に、 LED19を区別する必要がな ぐ作業が容易になるなどの効果が得られる。 [0063] In addition, each LED 19 is installed on the substrate 18, and the LED mounting surface 18a on the substrate 18 is inclined to the LED mounting surface 18a. Therefore, the central axis A of light in the LED 19 can be tilted without changing the structure of the LED 19 itself. Since only one type of LED 19 needs to be installed on each board 18, it is possible to obtain an effect that, when installing the LED 19 on the board 18, it is not necessary to distinguish the LEDs 19.
[0064] また、各領域 22が全 LED19の配設領域を格子状に分割する設定とされるとともに 、各領域 22間の境界が格子状をなすものでは、境界付近のムラが目立ち易くなるも のの、境界付近に存する LED 19が、隣接するグループの調光点灯回路 20によって 点灯されるから、特に有効である。  [0064] In addition, each region 22 is set to divide the region where all the LEDs 19 are arranged in a lattice shape, and if the boundary between the regions 22 forms a lattice shape, unevenness in the vicinity of the boundary is likely to be noticeable. However, since the LED 19 existing in the vicinity of the boundary is lit by the dimming lighting circuit 20 of the adjacent group, it is particularly effective.
[0065] また、調光点灯回路 20は、 LED19から照射される光を受光する受光素子 28を備 えるとともに、受光素子 28からの信号に基づいて各グループに属する LED19群の 発光状態が各グループ間で均一化するように LED19群を駆動する調光機能を有し ているから、各 LED19群の発光状態に基づいて受光素子 28から出力される信号に 基づいて各 LED19群を制御することで、各グループ間における発光状態の均一化 を図ることができ、もって境界付近にムラが発生するのを抑制することができる。 The dimming / lighting circuit 20 includes a light receiving element 28 that receives light emitted from the LED 19, and the light emission state of the LED 19 group belonging to each group based on a signal from the light receiving element 28 is set to each group. It has a dimming function that drives the LED19 group to be uniform between Therefore, by controlling each LED 19 group based on the signal output from the light receiving element 28 based on the light emission state of each LED 19 group, the light emission state among the groups can be made uniform, and thus the boundary It is possible to suppress the occurrence of unevenness in the vicinity.
[0066] また、受光素子 28は、各グループ毎に対応して複数設けられているから、各グルー プ毎に設けた受光素子 28により各 LED19群の発光状態を個別に検出することがで きる。 [0066] Further, since a plurality of light receiving elements 28 are provided corresponding to each group, the light emitting state of each LED 19 group can be individually detected by the light receiving elements 28 provided for each group. .
[0067] また、受光素子 28が各 LED19に対してその照射側に対向して配される光学部材 16に取り付けられているから、 LED19群の発光状態を良好に検出することができる  [0067] Further, since the light receiving element 28 is attached to the optical member 16 arranged opposite to the irradiation side with respect to each LED 19, the light emission state of the LED 19 group can be detected well.
[0068] <実施形態 2> <Embodiment 2>
本発明の実施形態 2を図 6によって説明する。この実施形態 2では、境界線 23に面 する LED31について構造を変更したものを示す。なおこの実施形態 2では、上記し た実施形態 1と同様の構造、作用及び効果について重複する説明は省略する。  A second embodiment of the present invention will be described with reference to FIG. In the second embodiment, a structure of the LED 31 facing the boundary line 23 is changed. In the second embodiment, redundant description of the same structure, operation, and effects as in the first embodiment will be omitted.
[0069] 各 LED19, 31の発光部には、図 6に示すように、チップ(図示せず)から発せられ る光を透過するとともにその光を方向付けるためのレンズ 19a, 31aが備えられている 。レンズ 19a, 31aは、チップに対して上方、すなわち照射側に配されるとともに、チッ プを上方から取り囲む (覆う)略半球状 (ドーム状)に形成されて!ヽる。  [0069] As shown in FIG. 6, the light emitting portions of the LEDs 19 and 31 are provided with lenses 19a and 31a for transmitting light emitted from a chip (not shown) and directing the light. Yes. The lenses 19a and 31a are arranged above the chip, that is, on the irradiation side, and are formed in a substantially hemispherical shape (dome shape) surrounding (covering) the chip from above! Speak.
[0070] LED19, 31群のうち、境界線 23に面しない各 LED19におけるレンズ 19aは、対 称形状とされており、照射される光の中心軸 Aが、 LED19を水平な面に設置したとき に鉛直方向と一致する設定とされる。これに対し、境界線 23に面して配される各 LE D31におけるレンズ 31aは、非対称形状とされており、照射される光の中心軸 A力 L ED31を水平な面に設置したときに鉛直方向に対して傾斜する設定とされる。  [0070] Among the LEDs 19 and 31, the lens 19a in each LED 19 that does not face the boundary line 23 has a symmetrical shape, and the central axis A of the irradiated light is when the LED 19 is placed on a horizontal surface. Is set to coincide with the vertical direction. On the other hand, the lens 31a in each LE D31 arranged facing the boundary line 23 has an asymmetric shape, and when the central axis A force L ED31 of the irradiated light is placed on a horizontal surface, the lens 31a is vertical. It is set to be inclined with respect to the direction.
[0071] 一方、 LED19, 31群が設置される基板 18Ίこおける LED装着面 18&Ίま、その全 域が水平面 29'とされている。そして、境界線 23に面する各 LED31は、その光の中 心軸 Αが隣接する領域 22側へ傾くようレンズ 31aの向きを合わせた状態で装着され ている。  [0071] On the other hand, the entire surface of the LED mounting surface 18 & b, which is installed on the board 18mm on which the LEDs 19 and 31 are installed, is a horizontal plane 29 '. Each LED 31 facing the boundary line 23 is mounted with the lens 31a oriented so that the center axis of the light is inclined toward the adjacent region 22 side.
[0072] 以上のように、レンズ 31aの形状を非対称形状とすることで照射される光の中心軸 Aを傾けるようにした LED31を、境界付近に配することにより、隣接するグループの 各 LED19, 31群の照射領域同士の重なり範囲を拡張することができる。 [0072] As described above, by arranging the LED 31 in which the central axis A of the irradiated light is inclined by making the shape of the lens 31a an asymmetric shape, the lens 31a is arranged in the vicinity of the boundary. It is possible to extend the overlapping range of the irradiation areas of each LED 19, 31 group.
[0073] <実施形態 3 > <Embodiment 3>
本発明の実施形態 3を図 7によって説明する。この実施形態 3では、境界線 23に面 する LED32につ 、て構造を変更したものの他の例を示す。なおこの実施形態 3では 、上記した実施形態 1と同様の構造、作用及び効果について重複する説明は省略す る。  Embodiment 3 of the present invention will be described with reference to FIG. In the third embodiment, another example in which the structure of the LED 32 facing the boundary line 23 is changed will be described. In the third embodiment, redundant description of the same structure, operation, and effect as in the first embodiment will be omitted.
[0074] ^LED19, 32の発光咅 こ ίま、図 7【こ示す Jう【こ、チップ 19b, 32a【こ対して下方、 つまり照射側(レンズ側)とは反対側に配されるとともに、光を照射側へ向けて反射す るための反射体 19c, 32bが備えられている。反射体 19c, 32bは、チップ 19b, 32a が配される部分が最も凹んだ略半球状に形成されている。  [0074] ^ LEDs 19 and 32 emit light, Fig. 7 [shown here], tips 19b and 32a [on the other side, that is, on the side opposite to the irradiation side (lens side) Reflectors 19c and 32b are provided for reflecting the light toward the irradiation side. The reflectors 19c and 32b are formed in a substantially hemispherical shape with the most concave portions where the chips 19b and 32a are disposed.
[0075] LED19, 32群のうち、境界線 23に面しない各 LED19における反射体 19cは、対 称形状とされており、照射される光の中心軸 Aが、 LED19を水平な面に設置したとき に鉛直方向と一致する設定とされる。これに対し、境界線 23に面して配される各 LE D32における反射体 32bは、非対称形状とされており、照射される光の中心軸 Aが、 LED32を水平な面に設置したときに鉛直方向に対して傾斜する設定とされる。  [0075] Of the group of LEDs 19 and 32, the reflector 19c in each LED 19 that does not face the boundary line 23 has a symmetrical shape, and the central axis A of the emitted light is placed on the horizontal surface of the LED 19 It is set to coincide with the vertical direction. On the other hand, the reflector 32b in each LED 32 that faces the boundary line 23 has an asymmetric shape, and the central axis A of the irradiated light is when the LED 32 is placed on a horizontal surface. It is set to be inclined with respect to the vertical direction.
[0076] 一方、 LED19, 32群が設置される基板 18Ίこおける LED装着面 18&Ίま、その全 域が水平面 29'とされている。そして、境界線 23に面する各 LED32は、その光の中 心軸 Αが隣接する領域 22側へ傾くよう反射体 32bの向きを合わせた状態で装着され ている。  [0076] On the other hand, the entire surface of the LED mounting surface 18 &#39; Each LED 32 facing the boundary line 23 is mounted with the reflector 32b oriented so that the center axis of the light is inclined toward the adjacent region 22 side.
[0077] 以上のように、反射体 32aの形状を非対称形状とすることで照射される光の中心軸 Aを傾けるようにした LED32を、境界付近に配することにより、隣接するグループの 各 LED19, 32群の照射領域同士の重なり範囲を拡張することができる。  [0077] As described above, by arranging the LED 32 in which the central axis A of the irradiated light is inclined by making the shape of the reflector 32a asymmetrical, the LEDs 19 of adjacent groups are arranged near the boundary. , The overlapping range of the irradiation areas of 32 groups can be expanded.
[0078] <実施形態 4>  <Embodiment 4>
本発明の実施形態 4を図 8によって説明する。この実施形態 4では、受光素子 41の 数を 1つに変更した場合を例示する。なおこの実施形態 4では、上記した実施形態 1 と同様の構造、作用及び効果について重複する説明は省略する。  Embodiment 4 of the present invention will be described with reference to FIG. In the fourth embodiment, a case where the number of light receiving elements 41 is changed to one is illustrated. In the fourth embodiment, redundant description of the same structure, operation, and effects as those in the first embodiment will be omitted.
[0079] 調光点灯回路 40は、図 8に示すように、各グループに属する LED19群力も発せら れる光を受光可能な受光素子 41と、受光素子 41に接続された受光信号処理回路 4 2と、受光信号処理回路 42に接続されるとともに各グループに属する LED19群にそ れぞれ接続される駆動回路 43とから構成される。 As shown in FIG. 8, the dimming / lighting circuit 40 includes a light receiving element 41 that can receive light generated by the LED 19 group force belonging to each group, and a light receiving signal processing circuit 4 connected to the light receiving element 41. 2 and a drive circuit 43 connected to the received light signal processing circuit 42 and connected to the LED 19 group belonging to each group.
[0080] 受光素子 41は、本実施形態においては 9つのグループの各 LED19群に対して 1 つだけ用意されているため、受光素子 41と各グループに属する LED19群との間の 距離は、グループによって異なる場合がある。この距離の格差によって、仮に各 LED 19群の発光状態が同一であったとしても、受光素子 41による受光量が各グループ によって異なる場合がある。  [0080] In the present embodiment, only one light receiving element 41 is prepared for each of the nine groups of LED 19 groups. Therefore, the distance between the light receiving element 41 and the LED 19 group belonging to each group is the group. May vary. Due to this difference in distance, even if the light emission state of each LED 19 group is the same, the amount of light received by the light receiving element 41 may differ depending on the group.
[0081] そこで、受光信号処理回路 42では、上記した受光素子 41と各 LED19群との距離 の格差を補正できるようになつている。受光信号処理回路 42は、受光回路 44と、 CP U45と、距離補正係数記憶部 46と、補正量記憶部 47とから構成される。受光回路 4 4は、受光素子 41から入力された信号に応じた信号を CPU45に出力する。距離補 正係数記憶部 46は、受光素子 41と各グループの LED 19群との距離に応じた距離 補正係数を CPU45に出力する。距離補正係数は、上記距離の格差に対応して各グ ループの LED19群毎に設定されており、この距離補正係数を受光素子 41により検 出された実測受光量に掛け合わせることで、各 LED19群に対して等距離の位置に 配置した仮想的な受光素子によって検出したような疑似受光量が得られるよう設定さ れている。これにより、受光素子 41と LED19群との距離の格差による受光量のずれ を是正することができる。  Therefore, the received light signal processing circuit 42 can correct the difference in distance between the light receiving element 41 and each LED 19 group. The light reception signal processing circuit 42 includes a light reception circuit 44, a CPU 45, a distance correction coefficient storage unit 46, and a correction amount storage unit 47. The light receiving circuit 44 outputs a signal corresponding to the signal input from the light receiving element 41 to the CPU 45. The distance correction coefficient storage unit 46 outputs a distance correction coefficient corresponding to the distance between the light receiving element 41 and each group of LEDs 19 to the CPU 45. The distance correction coefficient is set for each group of LEDs 19 corresponding to the above disparity in distance. By multiplying this distance correction coefficient by the actual received light amount detected by the light receiving element 41, each LED 19 It is set to obtain a pseudo received light amount as detected by a virtual light receiving element placed at an equidistant position with respect to the group. As a result, the shift in the amount of received light due to the difference in distance between the light receiving element 41 and the LED 19 group can be corrected.
[0082] CPU45は、受光回路 44からの信号と、距離補正係数記憶部 46からの距離補正 係数とに基づいて、距離格差を排除した擬似受光量を演算するとともに、その擬似 受光量を目標値に至らせるのに必要な補正量を演算する。ここで、目標値とは、各グ ループにおける LED19群間の輝度や色度が均一になる値である。補正量記憶部 4 7は、 CPU45から出力された補正量を各グループに対応付けて記憶する。なお、各 補正量は、液晶表示装置 10の使用時間が所定時間(例えば 100時間)経過する度 に更新されるようになって 、る。  The CPU 45 calculates the pseudo received light amount excluding the distance difference based on the signal from the light receiving circuit 44 and the distance correction coefficient from the distance correction coefficient storage unit 46, and sets the pseudo received light amount to the target value. The amount of correction necessary to achieve the above is calculated. Here, the target value is a value at which the luminance and chromaticity between the LED 19 groups in each group become uniform. The correction amount storage unit 47 stores the correction amount output from the CPU 45 in association with each group. Each correction amount is updated every time a usage time of the liquid crystal display device 10 passes a predetermined time (for example, 100 hours).
[0083] 各グループに対応した補正量の更新は、次のようにして行われる。各グループに属 する LED19群を順次に発光させ、その度に受光素子 41にて各 LED19群力もの光 を受光する。既述した方法により、得られた実測受光量に基づいてその LED19群に おける疑似受光量及び補正量を順次に演算し、得られた補正量を補正量記憶部 47 にそのグループに対応付けて記憶させる。 The correction amount corresponding to each group is updated as follows. The LED 19 groups belonging to each group are caused to emit light sequentially, and each time the LED 19 group power is received by the light receiving element 41. Based on the measured received light quantity obtained by the method described above, the LED19 group The pseudo received light amount and the correction amount are sequentially calculated, and the obtained correction amount is stored in the correction amount storage unit 47 in association with the group.
[0084] そして、各グループに属する LED19群を点灯させる駆動回路 43は、受光信号処 理回路 42から出力された各補正量に基づいて各 LED19群に供給する電流量を調 整する。これにより各 LED19群間の輝度及び色度を均一化できるようになつている。 Then, the drive circuit 43 that turns on the LEDs 19 belonging to each group adjusts the amount of current supplied to each LED 19 based on each correction amount output from the light reception signal processing circuit 42. As a result, the brightness and chromaticity between the LED19 groups can be made uniform.
[0085] このように本実施形態によれば、実施形態 1のように各グループ毎に受光素子 28を 個別に設置したものと比較すると、受光素子 41の数を削減することができ、低コスト ィ匕を図ることができる。 As described above, according to the present embodiment, the number of light receiving elements 41 can be reduced and the cost can be reduced compared with the case where the light receiving elements 28 are individually installed for each group as in the first embodiment.匕 匕 can be planned.
[0086] なお、受光素子 41の数は、 1つに限らず、グループの総数 (本実施形態では 9つ) を越えない範囲で複数設けるようにしてもよい。その場合は、各グループに属する LE D19群を順次に点灯させる際に、複数の受光素子 41によって同時に受光することが できる。これにより、測定精度の向上を図ることができる。  Note that the number of light receiving elements 41 is not limited to one, and a plurality of light receiving elements 41 may be provided within a range not exceeding the total number of groups (nine in this embodiment). In this case, when the LEDs 19 belonging to each group are sequentially turned on, the light receiving elements 41 can simultaneously receive light. Thereby, improvement of measurement accuracy can be aimed at.
[0087] <他の実施形態 >  <Other Embodiments>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく 、例えば次のような実施形態も本発明の技術的範囲に含まれる。  The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
[0088] (1) LED19— 1群のうち、 2本の境界線 23— 1の双方に面する LED19— 1Aにつ いては、図 9に示すように、その光の中心軸を斜向かいに隣接する領域 22— 1側に 傾けるようにしてもょ 、(図 9では、 2本の境界線 23 - 1の双方に面する LED19— 1A が装着される傾斜装着面 30— 1Aが、斜向カ 、の領域 22— 1側へ傾斜する勾配を 持つ設定としたものを図示する)。このようにすれば、 LED19— 1Aの照射領域と、隣 接する 3つの領域 22— 1の LED 19— 1群の照射領域との重なり範囲を拡張すること ができる。  [0088] (1) LED19—A group of LEDs 19-1A facing both boundary lines 23-1 in the group, as shown in Fig. 9, the light axis is diagonally opposite. Although it may be inclined to the adjacent area 22-1 side (in Fig. 9, the inclined mounting surface 30-1A on which the LED19-1A facing both the two borders 23-1 is mounted is tilted. (The figure shows a setting with a slope that slopes toward the region 22-1.) In this way, it is possible to extend the overlapping range between the irradiation area of the LED 19-1A and the irradiation area of the LED 19-1 group of the three adjacent areas 22-1.
[0089] (2)上記した実施形態では、境界線に面する LEDについてのみ、光の中心軸を傾 けたものを例示したが、図 10に示すように、境界線 23— 2に面する LED19— 2Aと、 その LED19 - 2Aに対して境界線 23 - 2とは反対側に配された LED 19— 2B (境界 線 23— 2から 2番目の列の LED19— 2B)とにつ!/、て、光の中心軸 Aを隣接する領域 22— 2側へ傾ける設定としても構わない。その場合、境界線 23— 2に面する LED 19 2Aの中心軸 Aの傾斜角度と、 2番目の列の LED19— 2Bの中心軸 Aの傾斜角度 とに差をつけるようにしてもよい(図 10では、傾斜装着面 30— 2A, 30— 2Bを 2段階 の傾斜面とし、 2番目の列に対応した傾斜装着面 30— 2Bの方が傾き角度が小さい 設定を図示する)。 (2) In the above-described embodiment, only the LED facing the boundary line is exemplified by tilting the central axis of the light. However, as shown in FIG. 10, the LED 19 facing the boundary line 23-2 — 2A and LED19-2B (LED19-2B in the second row from border 23-2) placed on the opposite side of border 23-2 with respect to LED19-2A! /, Thus, the center axis A of light may be set to be inclined toward the adjacent region 22-2. In that case, the inclination angle of the central axis A of the LED 19 2A facing the boundary line 23-2 and the inclination angle of the central axis A of the LED19-2B in the second row (In Fig. 10, the inclined mounting surfaces 30-2A and 30-2B are two-step inclined surfaces, and the inclined mounting surface 30-2B corresponding to the second row is inclined.) (Settings with small angles are shown).
[0090] (3)上記した(2)以外にも、境界線から 3番目以降の列の LEDにつ 、てもその光の 中心軸を隣接する領域側へ傾けるようにしてもょ ヽ。  [0090] (3) In addition to (2) above, the central axis of the light may be tilted toward the adjacent region even for the LEDs in the third and subsequent columns from the boundary line.
[0091] (4)上記した実施形態では、境界線に面する LEDについて、光の中心軸を傾けた ものを示した力 図 11に示すように、境界線 23— 4から 2番目の列の LED19— 4A について、光の中心軸 Aを傾けるようにし、 3番目以降の LED19— 4Bや境界線 23 —4に面する LED19—4Cについて中心軸 Aを傾けない設定としてもよい(図 11では 、 LED装着面 18a— 4のうち、 2番目の列に対応する部分に傾斜装着面 30— 4を形 成し、他の部分を水平面 29— 4とした設定を図示する)。なお、 2番目の列の LEDに 限らず、 3番目以降の LEDについても上記と同様に傾斜させてもよい。  [0091] (4) In the above-described embodiment, for the LED facing the boundary line, the force indicating the tilt of the central axis of the light, as shown in FIG. 11, the second column from the boundary line 23-4 For LED19-4A, the center axis A of the light is tilted, and for LED19-4C facing the third and subsequent LED19-4B and border line 23-4, the center axis A may not be tilted (in Fig. 11, In the LED mounting surface 18a-4, the inclined mounting surface 30-4 is formed in the part corresponding to the second row, and the other part is shown as the horizontal plane 29-4. In addition to the LEDs in the second row, the third and subsequent LEDs may be inclined in the same manner as described above.
[0092] (5)上記した実施形態では、境界線に面する LEDの全てが光の中心軸を傾けたも のを示したが、図 12に示すように、中心軸を傾けた LED19— 5Aと、中心軸を傾けな V、LED19— 5Bとが交互に並ぶ設定としてもよ!/、(図 12では、基板 18— 5の端部に ぉ 、て傾斜装着面 30— 5と水平面 29 - 5とが交互に並ぶ設定としたものを図示する )。このとき、中心軸を傾けた LED19— 5Aと傾けない LED19— 5Bと力 境界線 23 - 5を挟んで向力 、合う設定としてもよ!、。  [0092] (5) In the above embodiment, all of the LEDs facing the boundary line are shown with the light central axis inclined, but as shown in FIG. 12, the LED 19-5A with the central axis inclined is shown. Also, V and LED19-5B without tilting the central axis may be set alternately! /, (In Fig. 12, the inclined mounting surface 30-5 and horizontal plane 29- Figure 5 shows the setting where 5 and 5 are arranged alternately. At this time, LED19-5A with tilted center axis and LED19-5B without tilt with force boundary line 23-5 can be set to match.
[0093] (6)上記した実施形態では、境界線を挟んで対向する LED群同士が互いに中心 軸を相手の領域側へ傾けた設定としたものを示したが、図 13に示すように、隣接する 領域 22 - 6A, 22- 6Bのうち一方の領域 22— 6Aにおける LED19 - 6Aのみが中 心軸を傾けた設定とされ、他方の領域 22— 6Bにおける LED19— 6Bが中心軸を傾 けない設定とされたものも本発明に含まれる(図 13では、一方の基板 18— 6Aにのみ 傾斜装着面 30— 6を設けた場合を図示する)。  (6) In the above-described embodiment, the LED groups facing each other across the boundary line are set so that the central axes are inclined with respect to the partner region, but as shown in FIG. Only the LED19-6A in one of the adjacent regions 22-6A and 22-6B in the region 22-6A is set to have the center axis inclined, and the LED19-6B in the other region 22-6B inclines the center axis. The present invention also includes a configuration in which the inclined mounting surface 30-6 is provided only on one of the substrates 18-6A (see FIG. 13).
[0094] (7)上記した実施形態では、各 LEDが基板の LED装着面の縦方向及び横方向に 沿って格子状に配置されたものを例示した力 図 14に示すように、各 LED19— 7群 が基板 18— 7の LED装着面 18a— 7の縦方向及び横方向に対して斜めに並ぶもの も本発明に含まれる。 [0095] (8)上記した(1)〜(7)では、 LEDにおける光の中心軸を傾ける手段として、傾斜 装着面についてのみ図示した力 実施形態 2, 3のように LEDのレンズや反射体の形 状を変更することにより、光の中心軸を傾けるようにしてもよい。 [0094] (7) In the above-described embodiment, each LED 19— is a force exemplifying that each LED is arranged in a lattice shape along the vertical direction and the horizontal direction of the LED mounting surface of the substrate. The present invention includes those in which the seven groups are arranged obliquely with respect to the vertical direction and the horizontal direction of the LED mounting surface 18a-7 of the substrate 18-7. (8) In the above (1) to (7), as means for inclining the central axis of light in the LED, the force illustrated only on the inclined mounting surface As in Embodiments 2 and 3, the LED lens or reflector The center axis of the light may be tilted by changing the shape of.
[0096] (9) LEDにおける光の中心軸の傾斜角度については、任意に変更することができ る。例えば、 LEDの中心軸と光学部材の下面との交差位置が隣接するグループに 属する LED群の照射領域に入り込まな ヽ設定や、境界線と一致する設定としてもよ い。  [0096] (9) The inclination angle of the central axis of light in the LED can be arbitrarily changed. For example, the crossing position of the center axis of the LED and the lower surface of the optical member may be set so that it does not enter the irradiation area of the LED group belonging to the adjacent group or matches the boundary line.
[0097] (10)また、互いに隣接する各 LEDの中心軸同士の交差位置力 鉛直方向につい て光学部材と LEDとの間ではな 、設定 (例えば光学部材中とした設定)としてもよ!/、  [0097] (10) Further, it is also possible to make a setting (for example, the setting in the optical member) between the optical member and the LED with respect to the vertical position of the intersection position force between the central axes of the LEDs adjacent to each other! / ,
[0098] (11)また、互いに隣接する各 LEDにおける中心軸を傾けるにあたり、互いの傾斜 角度を同一に設定する必要はなぐ中心軸同士の交差位置が境界線と一致していな いものも本発明に含まれる。 [0098] (11) Also, it is not necessary to set the same tilt angle when tilting the central axis of each LED adjacent to each other, and the crossing position of the central axes does not coincide with the boundary line. Included in the invention.
[0099] (12)上記した実施形態では、各領域が基板の LED装着面を格子状に分割する設 定とされたものを例示した力 図 15に示すように、各領域 22— 12が全 LEDの配設 領域を縦方向に沿って分割する設定としてもょ 、。  (12) In the above-described embodiment, each region 22-12 includes all the regions 22-12 as shown in FIG. 15, in which each region is set to divide the LED mounting surface of the substrate into a grid pattern. As a setting to divide the LED layout area along the vertical direction.
[0100] (13)また、図 16に示すように、各領域 22— 13が全 LEDの配設領域を横方向に沿 つて分割する設定としてもょ 、。 [0100] (13) Also, as shown in Fig. 16, each region 22-13 can be set to divide the area where all LEDs are arranged along the horizontal direction.
[0101] (14)各領域の個々の形状については、任意に変更可能であり、例えば正方形、斜 方形、三角形などに設定することも可能である。また、領域の数についても任意に変 更可能である。 [0101] (14) The individual shape of each region can be arbitrarily changed, and can be set to, for example, a square, an oblique shape, or a triangle. Also, the number of areas can be arbitrarily changed.
[0102] (15)上記した実施形態では、受光素子が光学部材に取り付けられたものを例示し たが、図 17に示すように、隣接する支持部 21— 15間にワイヤ Wを架け渡すとともに 、このワイヤ Wに受光素子 28— 15を取り付けるようにしてもよい。その他にも、受光素 子の配設位置は任意に変更可能であり、例えばバックライトのケースにおける側部の 内周面に取り付けるようにしてもよい。また 1つの領域あたりの受光素子の数について も任意に変更可能である。  (15) In the above embodiment, the light receiving element is attached to the optical member. However, as shown in FIG. 17, the wire W is bridged between the adjacent support portions 21-15. The light receiving element 28-15 may be attached to the wire W. In addition, the arrangement position of the light receiving element can be arbitrarily changed. For example, the light receiving element may be attached to the inner peripheral surface of the side portion of the backlight case. Also, the number of light receiving elements per area can be arbitrarily changed.
[0103] (16)上記した実施形態では、 R発光, G発光, B発光の 3種類のチップを備える LE Dを用いた場合を例示したが、例えば単一のチップ (具体的には青色発光のチップ や紫外発光のチップ)を備え、蛍光体により全体として白色発光するものを用いるよう にしてもよい。その他にも、全体として白色発光する LEDを用いることができる。 (16) In the above-described embodiment, LE including three types of chips of R light emission, G light emission, and B light emission Although the case where D is used is illustrated, for example, a single chip (specifically, a blue light emitting chip or an ultraviolet light emitting chip) that emits white light as a whole by a phosphor may be used. In addition, LEDs that emit white light as a whole can be used.
[0104] (17)さらには、 R, G, Bの単色発光する LEDを 3種類用いるようにしたものも本発 明に含まれる。また、白色や R, G, B以外で単色発光する LEDを用いることも可能で ある。 [0104] (17) Further, the present invention includes three types of LEDs that emit R, G, and B in a single color. It is also possible to use LEDs that emit monochromatic light other than white or R, G, B.
[0105] (18)上記した実施形態では、 LED群を点灯させるための点灯回路が調光機能を 有する調光点灯回路とされた場合を例示したが、調光機能を有しな!/ヽ点灯回路を用 いたものも本発明に含まれる。その場合の点灯回路は、図 4にて示した受光素子 29 ゃ受光信号処理回路 28を省略した回路構成となる。  (18) In the above-described embodiment, the case where the lighting circuit for lighting the LED group is a dimming lighting circuit having a dimming function is exemplified. However, the lighting circuit does not have a dimming function! / ヽA device using a lighting circuit is also included in the present invention. The lighting circuit in that case has a circuit configuration in which the light receiving element 29 and the light receiving signal processing circuit 28 shown in FIG. 4 are omitted.
[0106] (19)上記した実施形態では、点状の発光素子として LEDを用いた場合を例示した 力 例えば半導体レーザーなど他の種類の点状の発光素子を用いるようにしてもよ い。さらには、 EL (Electro Luminescence)などの平面状の発光素子(光源素子) を多数個マトリックス状に並べて設置するとともに、 EL群を複数の領域に対応付けて グループィ匕してそれぞれ点灯回路により点灯するようにしたものも本発明に含まれる  (19) In the above-described embodiments, other types of point light emitting elements such as a semiconductor laser may be used, for example, a case where an LED is used as the point light emitting element. Furthermore, a large number of planar light-emitting elements (light source elements) such as EL (Electro Luminescence) are arranged in a matrix, and the EL groups are grouped in association with a plurality of areas, and each is lit by a lighting circuit. What is made is also included in the present invention.
[0107] (20)上記した実施形態では、光源として点状の発光素子を例示したが、放電管( 冷陰極管や熱陰極管)などの線状の光源を用いるようにしてもょ 、。 (20) In the above-described embodiment, a point-like light emitting element is exemplified as the light source. However, a linear light source such as a discharge tube (a cold cathode tube or a hot cathode tube) may be used.
[0108] (21)また、 TFT以外のスイッチング素子を用いた液晶表示装置にも本発明は適用 可能である。またカラー表示する液晶表示装置以外にも、白黒表示する液晶表示装 置にも本発明は適用可能である。 (21) The present invention can also be applied to a liquid crystal display device using a switching element other than TFT. Further, the present invention can be applied to a liquid crystal display device for monochrome display as well as a liquid crystal display device for color display.
[0109] (22)また、液晶表示装置以外にも、液晶以外でバックライトを用いる他の種類の表 示装置にも本発明は適用可能である。 (22) In addition to the liquid crystal display device, the present invention can be applied to other types of display devices that use a backlight other than liquid crystal.

Claims

請求の範囲 The scope of the claims
[1] 所定の面内に配置された多数の光源と、  [1] a number of light sources arranged in a given plane;
これらの光源群を前記面内に設定した複数の領域に対応付けてグループ化して各 領域に属する光源群を点灯する点灯回路とを備え、  A lighting circuit for lighting the light source groups belonging to each area by grouping these light source groups in association with a plurality of areas set in the plane;
前記光源群のうち、前記各領域の境界付近に存する光源については、その光源か ら照射される光の中心軸が隣接する領域側へ傾けられている光源ユニット。  In the light source group, a light source unit in the vicinity of the boundary between the regions is a light source unit in which a central axis of light emitted from the light source is inclined toward an adjacent region.
[2] 前記光源は、点状の発光素子とされている請求の範囲第 1項に記載の光源ュ-ッ  [2] The light source unit according to claim 1, wherein the light source is a point-like light emitting element.
[3] 前記光源群のうち、前記各領域の境界線に面して配される前記光源は、前記中心 軸が隣接する領域側へ傾けられている請求の範囲第 2項に記載の光源ユニット。 [3] The light source unit according to claim 2, wherein, in the light source group, the light sources arranged facing the boundary lines of the respective regions are inclined toward the adjacent region side in the central axis. .
[4] 前記各領域の境界付近に存するとともに互いに異なる前記点灯回路により点灯さ れる前記各光源は、前記中心軸が互いに相手の領域側へ傾けられて!/ヽる請求の範 囲第 2項または請求の範囲第 3項に記載の光源ユニット。 [4] Each of the light sources that exist in the vicinity of the boundary between the regions and are lit by the lighting circuits different from each other is such that the central axes are inclined toward each other region side! Or the light source unit of Claim 3.
[5] 前記各領域の境界付近に存するとともに互いに異なる前記点灯回路により点灯さ れる前記各光源における前記中心軸の傾き角度がほぼ同一に設定されている請求 の範囲第 4項に記載の光源ユニット。 5. The light source unit according to claim 4, wherein an inclination angle of the central axis in each of the light sources that is present in the vicinity of the boundary of each region and is lit by the different lighting circuits is set to be substantially the same. .
[6] 前記各光源が基板上に設置されるとともに、この基板における光源装着面には、前 記各領域の境界付近に存する光源を傾けた姿勢で装着可能な傾斜装着面が形成さ れて 、る請求の範囲第 1項な 、し請求の範囲第 5項の 、ずれかに記載の光源ュ-ッ [6] The light sources are installed on the substrate, and the light source mounting surface on the substrate is formed with an inclined mounting surface that can be mounted in a tilted posture on the light source existing near the boundary of each region. The light source module according to any one of claims 1 to 5 and claim 5 of the claims.
[7] 前記各領域の境界付近に存する前記光源は、光を発する発光体と、この発光体に 対して照射側に配されるレンズとを備えており、前記レンズが非対称形状とされること で、前記中心軸が傾けられている請求の範囲第 1項ないし請求の範囲第 5項のいず れカに記載の光源ュ-ット。 [7] The light source in the vicinity of the boundary between the regions includes a light emitter that emits light and a lens that is disposed on the irradiation side of the light emitter, and the lens has an asymmetric shape. The light source unit according to any one of claims 1 to 5, wherein the central axis is inclined.
[8] 前記各領域の境界付近に存する前記光源は、光を発する発光体と、この発光体に 対して照射側とは反対側に配されるとともに光を反射する反射体とを備えており、前 記反射体が非対称形状とされることで、前記中心軸が傾けられている請求の範囲第 1項な 、し請求の範囲第 5項の 、ずれかに記載の光源ユニット。 [8] The light source located near the boundary between the regions includes a light emitter that emits light, and a reflector that is disposed on the side opposite to the irradiation side of the light emitter and reflects the light. The light source unit according to any one of claims 1 and 5, wherein the central axis is inclined by forming the reflector in an asymmetric shape.
[9] 前記各領域は、前記面を格子状に分割する設定とされるとともに、各領域間の格子 状をなす境界付近に存する前記光源は、その光源から照射される光の中心軸が隣 接する領域側へ傾けられて 、る請求の範囲第 1項な 、し請求の範囲第 8項の 、ずれ かに記載の光源ユニット。 [9] Each of the regions is set to divide the surface into a lattice, and the light source existing in the vicinity of the boundary forming the lattice between the regions is adjacent to the central axis of the light emitted from the light source. The light source unit according to any one of claims 1 to 8, wherein the light source unit is tilted toward a contact area side.
[10] 前記点灯回路は、前記光源から照射される光を受光する受光素子を備えるとともに 、受光素子からの信号に基づ!、て前記各グループに属する光源群の発光状態が各 グループ間で均一化するように前記光源群を駆動する調光機能を有して!/ヽる請求の 範囲第 1項ないし請求の範囲第 9項のいずれかに記載の光源ユニット。  [10] The lighting circuit includes a light receiving element that receives light emitted from the light source, and based on a signal from the light receiving element, the light emission state of the light source group belonging to each group is changed between the groups. It has a dimming function to drive the light source group to make it uniform! 10. The light source unit according to claim 1, wherein the light source unit is any one of claims 1 to 9.
[11] 前記受光素子は、前記各グループ毎に対応して複数設けられている請求の範囲 第 10項に記載の光源ユニット。  11. The light source unit according to claim 10, wherein a plurality of the light receiving elements are provided corresponding to each group.
[12] 前記点灯回路は、前記各グループに属する光源群を順次に発光させて各光源群 の発光量を前記受光素子により検出し、その検出値を、前記受光素子と発光させた 前記光源群との間の距離に応じて補正した信号に基づいて前記光源群を制御する ようにした請求の範囲第 10項または請求の範囲第 11項に記載の光源ユニット。  [12] The lighting circuit sequentially emits light sources belonging to each group, detects the light emission amount of each light source group by the light receiving element, and the detected value is emitted from the light receiving element. 12. The light source unit according to claim 10, wherein the light source group is controlled based on a signal corrected according to a distance between the light source and the light source unit.
[13] 前記受光素子は、前記各光源に対してその照射側に対向して配される光学部材に 取り付けられている請求の範囲第 10項ないし請求の範囲第 12項のいずれかに記載 の光源ユニット。  [13] The light receiving element according to any one of claims 10 to 12, wherein the light receiving element is attached to an optical member disposed opposite to the irradiation side with respect to each light source. Light source unit.
[14] 前記請求の範囲第 1項ないし前記請求の範囲第 13項のいずれかに記載された光 源ユニットと、前記光源ユニットを収容するケースとを備えている照明装置。  [14] An illumination device comprising: the light source unit according to any one of claims 1 to 13; and a case that houses the light source unit.
[15] 前記請求の範囲第 14項に記載された照明装置と、表示パネルとを備えている表示 装置。  [15] A display device comprising the illumination device according to claim 14 and a display panel.
PCT/JP2006/314655 2006-01-20 2006-07-25 Light source unit, lighting apparatus using the light source unit, and display using the lighting apparatus WO2007083408A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006013185A JP2009087538A (en) 2006-01-20 2006-01-20 Light source unit, lighting device using it, and display device using it
JP2006-013185 2006-01-20

Publications (1)

Publication Number Publication Date
WO2007083408A1 true WO2007083408A1 (en) 2007-07-26

Family

ID=38287369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314655 WO2007083408A1 (en) 2006-01-20 2006-07-25 Light source unit, lighting apparatus using the light source unit, and display using the lighting apparatus

Country Status (2)

Country Link
JP (1) JP2009087538A (en)
WO (1) WO2007083408A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153058A1 (en) * 2007-06-12 2008-12-18 Fujifilm Corporation Backlight unit and liquid crystal display device
JP2009099529A (en) * 2007-06-12 2009-05-07 Fujifilm Corp Backlight unit, and liquid crystal display device
JP2009110827A (en) * 2007-10-31 2009-05-21 Iwasaki Electric Co Ltd Led light source device
WO2011003277A1 (en) * 2009-07-06 2011-01-13 Cree Huizhou Opto Limited Light emitting diode display with tilted peak emission pattern
EP2116893A3 (en) * 2008-05-09 2011-10-05 Funai Electric Co., Ltd. Backlight device and liquid crystal display apparatus
US8049230B2 (en) 2008-05-16 2011-11-01 Cree Huizhou Opto Limited Apparatus and system for miniature surface mount devices
CN101510027B (en) * 2008-02-12 2012-03-14 株式会社日立制作所 Liquid crystal display apparatus
USD662902S1 (en) 2007-12-14 2012-07-03 Cree Hong Kong Limited LED package
US8350370B2 (en) 2010-01-29 2013-01-08 Cree Huizhou Opto Limited Wide angle oval light emitting diode package
US8362605B2 (en) 2006-04-26 2013-01-29 Cree Huizhou Opto Limited Apparatus and method for use in mounting electronic elements
US8367945B2 (en) 2006-08-16 2013-02-05 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
US8415692B2 (en) 2009-07-06 2013-04-09 Cree, Inc. LED packages with scattering particle regions
CN103081132A (en) * 2011-04-07 2013-05-01 惠州科锐半导体照明有限公司 LED device having tilted peak emission and LED display including such devices
US8455882B2 (en) 2010-10-15 2013-06-04 Cree, Inc. High efficiency LEDs
JP2014019436A (en) * 2012-07-13 2014-02-03 Lg Innotek Co Ltd Lamp unit and lighting system for vehicle
US8669572B2 (en) 2005-06-10 2014-03-11 Cree, Inc. Power lamp package
US8735920B2 (en) 2006-07-31 2014-05-27 Cree, Inc. Light emitting diode package with optical element
US8748915B2 (en) 2006-04-24 2014-06-10 Cree Hong Kong Limited Emitter package with angled or vertical LED
US8791471B2 (en) 2008-11-07 2014-07-29 Cree Hong Kong Limited Multi-chip light emitting diode modules
US9012938B2 (en) 2010-04-09 2015-04-21 Cree, Inc. High reflective substrate of light emitting devices with improved light output
US9035439B2 (en) 2006-03-28 2015-05-19 Cree Huizhou Solid State Lighting Company Limited Apparatus, system and method for use in mounting electronic elements
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
US9711703B2 (en) 2007-02-12 2017-07-18 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
CN106980143A (en) * 2016-01-19 2017-07-25 台达电子工业股份有限公司 The method of sensing device further installation auxiliary device and its auxiliary adjustment sensing range
US10256385B2 (en) 2007-10-31 2019-04-09 Cree, Inc. Light emitting die (LED) packages and related methods
CN114930234A (en) * 2020-10-20 2022-08-19 京东方科技集团股份有限公司 Display panel, manufacturing method thereof and display device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200823553A (en) * 2006-11-30 2008-06-01 Chung-Ming Hu Seamless LCD display manufacturing method
EP2453163A4 (en) * 2009-07-06 2013-08-14 Sharp Kk Illumination device, display device, and television receiver
US8708520B2 (en) 2010-04-30 2014-04-29 Seiko Epson Corporation Illumination device and electronic apparatus
JP5617332B2 (en) * 2010-04-30 2014-11-05 セイコーエプソン株式会社 Lighting device and electronic device
JP5950320B2 (en) 2010-11-10 2016-07-13 日本電気株式会社 Electronics
JP5580769B2 (en) * 2011-03-23 2014-08-27 シャープ株式会社 LED light source device and liquid crystal display device
JP6100077B2 (en) * 2013-05-01 2017-03-22 キヤノン株式会社 Light source device and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071702A (en) * 2003-08-21 2005-03-17 Advanced Display Inc Planar light source device and display device having device
JP2005100800A (en) * 2003-09-25 2005-04-14 Matsushita Electric Ind Co Ltd Led illumination light source
JP2006133708A (en) * 2004-11-09 2006-05-25 Sony Corp Backlight apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071702A (en) * 2003-08-21 2005-03-17 Advanced Display Inc Planar light source device and display device having device
JP2005100800A (en) * 2003-09-25 2005-04-14 Matsushita Electric Ind Co Ltd Led illumination light source
JP2006133708A (en) * 2004-11-09 2006-05-25 Sony Corp Backlight apparatus

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8669572B2 (en) 2005-06-10 2014-03-11 Cree, Inc. Power lamp package
US9035439B2 (en) 2006-03-28 2015-05-19 Cree Huizhou Solid State Lighting Company Limited Apparatus, system and method for use in mounting electronic elements
US8748915B2 (en) 2006-04-24 2014-06-10 Cree Hong Kong Limited Emitter package with angled or vertical LED
US8362605B2 (en) 2006-04-26 2013-01-29 Cree Huizhou Opto Limited Apparatus and method for use in mounting electronic elements
US8735920B2 (en) 2006-07-31 2014-05-27 Cree, Inc. Light emitting diode package with optical element
US8367945B2 (en) 2006-08-16 2013-02-05 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
US9711703B2 (en) 2007-02-12 2017-07-18 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
WO2008153058A1 (en) * 2007-06-12 2008-12-18 Fujifilm Corporation Backlight unit and liquid crystal display device
US8493314B2 (en) 2007-06-12 2013-07-23 Fujifilm Corporation Backlight unit and liquid crystal display
JP2009099529A (en) * 2007-06-12 2009-05-07 Fujifilm Corp Backlight unit, and liquid crystal display device
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
US10256385B2 (en) 2007-10-31 2019-04-09 Cree, Inc. Light emitting die (LED) packages and related methods
JP2009110827A (en) * 2007-10-31 2009-05-21 Iwasaki Electric Co Ltd Led light source device
USD662902S1 (en) 2007-12-14 2012-07-03 Cree Hong Kong Limited LED package
CN101510027B (en) * 2008-02-12 2012-03-14 株式会社日立制作所 Liquid crystal display apparatus
EP2116893A3 (en) * 2008-05-09 2011-10-05 Funai Electric Co., Ltd. Backlight device and liquid crystal display apparatus
US8773611B2 (en) 2008-05-09 2014-07-08 Funai Electric Co., Ltd. Angled backlight device and liquid crystal display apparatus
US8049230B2 (en) 2008-05-16 2011-11-01 Cree Huizhou Opto Limited Apparatus and system for miniature surface mount devices
US8791471B2 (en) 2008-11-07 2014-07-29 Cree Hong Kong Limited Multi-chip light emitting diode modules
US11210971B2 (en) 2009-07-06 2021-12-28 Cree Huizhou Solid State Lighting Company Limited Light emitting diode display with tilted peak emission pattern
WO2011003277A1 (en) * 2009-07-06 2011-01-13 Cree Huizhou Opto Limited Light emitting diode display with tilted peak emission pattern
US8415692B2 (en) 2009-07-06 2013-04-09 Cree, Inc. LED packages with scattering particle regions
CN102037504A (en) * 2009-07-06 2011-04-27 惠州科锐光电有限公司 Light emitting diode display with tilted peak emission pattern
US8350370B2 (en) 2010-01-29 2013-01-08 Cree Huizhou Opto Limited Wide angle oval light emitting diode package
US9012938B2 (en) 2010-04-09 2015-04-21 Cree, Inc. High reflective substrate of light emitting devices with improved light output
US8455882B2 (en) 2010-10-15 2013-06-04 Cree, Inc. High efficiency LEDs
CN103081132A (en) * 2011-04-07 2013-05-01 惠州科锐半导体照明有限公司 LED device having tilted peak emission and LED display including such devices
JP2014019436A (en) * 2012-07-13 2014-02-03 Lg Innotek Co Ltd Lamp unit and lighting system for vehicle
CN106980143A (en) * 2016-01-19 2017-07-25 台达电子工业股份有限公司 The method of sensing device further installation auxiliary device and its auxiliary adjustment sensing range
CN114930234A (en) * 2020-10-20 2022-08-19 京东方科技集团股份有限公司 Display panel, manufacturing method thereof and display device
US20220317500A1 (en) * 2020-10-20 2022-10-06 Boe Technology Group Co., Ltd. Display panel, method for manufacturing same, and display device
CN114930234B (en) * 2020-10-20 2023-09-26 京东方科技集团股份有限公司 Display panel, manufacturing method thereof and display device
US11846851B2 (en) * 2020-10-20 2023-12-19 Boe Technology Group Co., Ltd. Display panel, method for manufacturing same, and display device

Also Published As

Publication number Publication date
JP2009087538A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
WO2007083408A1 (en) Light source unit, lighting apparatus using the light source unit, and display using the lighting apparatus
JP4335891B2 (en) Backlight assembly and liquid crystal display device having the same
JP4172455B2 (en) Light source unit for backlight, backlight device for liquid crystal display, and transmissive color liquid crystal display device
JP5066572B2 (en) Backlight unit and liquid crystal display device including the same
NL2000141C2 (en) SURFACE LIGHT SOURCE USING A LED AND BACK LIGHTING UNIT WHICH THE SURFACE LIGHT SOURCE HAS.
KR101280390B1 (en) Light emitting diode backlight unit and liquid crystal display device module using the same
JP4896120B2 (en) Backlight unit and liquid crystal display device using the same
TWI428670B (en) A liquid crystal display device for backlighting and a liquid crystal display device using the same
EP1741973A2 (en) Lighting device and display apparatus with LEDs
KR20080033000A (en) Lens and backlight unit and liquid crystal display having the same
US20180240420A1 (en) Video display device
JP2006012819A (en) Backlight unit of liquid crystal display device utilizing light-emitting diode, and its drive method
WO2012029360A1 (en) Illumination device and display device
US10126594B2 (en) Tri-color LED groups spaced for optimal color mixing
WO2007083407A1 (en) Light source unit, lighting apparatus using the light source unit, and display using the lighting apparatus
WO2012032979A1 (en) Lighting device and display device
KR100780187B1 (en) LCD BACKLIGHT UNIT USING LEDs
WO2018230454A1 (en) Lighting device and display device
JP2008153039A (en) Lighting device and liquid crystal display equipped with the same
KR101261881B1 (en) Light Emitting Diode assembly and liquid crystal display module with the same
US20160363818A1 (en) Liquid crystal display device
KR20060095144A (en) Light emitting diodes back-light assembly and liquid crystal display device module using thereof
KR20110024288A (en) Backlight unit
JP2010277853A (en) Backlight
KR20130053568A (en) Backlight unit and display apparatus thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP