WO2007083748A1 - 圧力センサパッケージ及び電子部品 - Google Patents

圧力センサパッケージ及び電子部品 Download PDF

Info

Publication number
WO2007083748A1
WO2007083748A1 PCT/JP2007/050801 JP2007050801W WO2007083748A1 WO 2007083748 A1 WO2007083748 A1 WO 2007083748A1 JP 2007050801 W JP2007050801 W JP 2007050801W WO 2007083748 A1 WO2007083748 A1 WO 2007083748A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
sensor package
semiconductor substrate
bump
pressure
Prior art date
Application number
PCT/JP2007/050801
Other languages
English (en)
French (fr)
Inventor
Satoshi Yamamoto
Mikio Hashimoto
Takanao Suzuki
Original Assignee
Fujikura Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd. filed Critical Fujikura Ltd.
Priority to EP07707089A priority Critical patent/EP1975587A1/en
Priority to JP2007533809A priority patent/JPWO2007083748A1/ja
Priority to CN2007800031760A priority patent/CN101375146B/zh
Publication of WO2007083748A1 publication Critical patent/WO2007083748A1/ja
Priority to US12/175,245 priority patent/US7549344B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • G01L19/0069Electrical connection means from the sensor to its support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Definitions

  • the present invention relates to a pressure sensor package and an electronic component.
  • FIG. 1 An example of a pressure sensor using a semiconductor substrate (hereinafter also referred to as a semiconductor pressure sensor) is shown in FIG.
  • This semiconductor pressure sensor 100 has a thin diaphragm portion 102 formed by etching the back side force of the semiconductor substrate 101, and four gauge resistors 103 formed on the surface side of the semiconductor substrate 101. .
  • the four gauge resistors 103 are electrically connected to form a Wheatstone bridge.
  • the pressure sensor sensor / cage 200 includes a casing 204 including a base 201 made of an insulator and a lid 203 made of a resin or the like having a pressure introduction port 202.
  • the pressure sensor 205 (100) is mounted on the base 201 and has a structure that is electrically connected to the lead 207 by a wire bond 206.
  • the pressure sensor 205 (100) constituting the pressure sensor package 200 is connected to, for example, an amplification circuit and a compensation circuit (not shown) provided outside the housing 204 via the lead 207.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-340714
  • the conventional pressure sensor package has at least the following two problems.
  • the present invention has been made in view of the above circumstances, and provides a compact and low-cost pressure sensor package by realizing a wafer level package having a pressure sensor function.
  • Another object is to provide a small and lightweight electronic component by mounting such a pressure sensor package.
  • a surface of a semiconductor substrate is provided with a space extending substantially in parallel with the one surface inside the central region, and is formed into a thin plate positioned above the space.
  • the region is a diaphragm portion, and a pressure-sensitive element is disposed on the diaphragm portion.
  • the one surface is disposed in an outer edge region excluding the diaphragm portion, and is electrically connected to the pressure-sensitive element.
  • a pressure sensor package comprising: a pressure sensor having at least a first conductive part; and a first bump disposed on and electrically connected to the first conductive part individually.
  • D1 is the thickness of the semiconductor substrate in the outer edge region
  • D2 is the thickness of the diaphragm portion
  • D3 is the height of the space
  • the thickness of the remaining portion of the semiconductor substrate excluding D2 and D3 in the central region Is defined as D4, (D2 + D3) ⁇ D4 and 4 And characterized in that.
  • a space extending substantially parallel to the surface is provided inside the central region, and a thinned region located above the space is provided.
  • a pressure sensitive element is arranged on the diaphragm part.
  • a pressure sensor including at least a first conductive portion disposed in an outer edge region excluding the diaphragm portion and electrically connected to the pressure-sensitive element; a first insulating portion provided to cover the outer edge region; A second conductive portion disposed on the first insulating portion and electrically connected to the first conductive portion separately; and a second conductive portion separately disposed on the first conductive portion and the first conductive portion.
  • a pressure sensor package including a second bump electrically connected at a position not overlapping the conductive portion, wherein the thickness of the semiconductor substrate in the outer edge region is ⁇ , and the thickness of the diaphragm portion is Is defined as ⁇ 2, the height of the space is ⁇ 3, and the remaining thickness of the semiconductor substrate excluding ⁇ 2 and ⁇ 3 in the central region is defined as ⁇ 4, ( ⁇ 2 + ⁇ 3) « ⁇ 4, and ⁇ It is characterized by 1 ⁇ ⁇ 4.
  • a third aspect of the present invention is the second aspect, further comprising a second insulating part provided so as to cover only the second bump and cover the outer edge region including the second conductive part.
  • a fourth aspect of the present invention is the method according to the second aspect, in which the second insulating part is provided so as to overlap the first insulating part so that only the second bump is exposed and covers the second conductive part. And at least one of the first insulating portion and the second insulating portion is disposed around the second bump having an island shape.
  • a fifth aspect of the present invention is characterized in that, in the second aspect, the second bumps are arranged at positions symmetrical to each other.
  • a sixth aspect of the present invention is characterized in that, in any one of the first to fifth force aspects, an amplifier circuit and a collar or a compensation circuit are provided in the pressure sensor.
  • the first insulating portion has an island shape.
  • An electronic component according to the present invention includes the pressure sensor package according to any one of the first to seventh aspects.
  • first pressure sensor package the pressure sensor itself is electrically connected to the diaphragm portion, the pressure-sensitive element, and the electric circuit in the same semiconductor substrate.
  • the first conductive part on which the first bump is placed is arranged in a separate area, and the dimensions D2 to D4 of the central area where the diaphragm part is provided and the first conductive part are provided.
  • the dimension Dl of the outer edge region is configured to satisfy the above-described relationship, that is, (D2 + D3) ⁇ D4 and D1 ⁇ D4.
  • the first pressure sensor package is configured by using a semiconductor substrate having the same thickness as the outer edge region in the central region where the diaphragm portion overlaps, and also having the same member.
  • a semiconductor substrate having the same thickness as the outer edge region in the central region where the diaphragm portion overlaps, and also having the same member.
  • Such a configuration brings about an effect of suppressing the mechanical or thermal influence applied to the pressure sensitive element when the pressure sensor is connected to the external substrate, for example, by the first bump.
  • the configuration in which the first bump is used to directly connect to the external substrate requires the conventional pressure sensor package, and the housing that includes the pressure sensor and the electrical connection between the pressure sensor and the external substrate are provided. There is no need for connecting members such as wire bonds and leads. Therefore, according to the present invention, it is possible to obtain a pressure sensor package that does not require a housing or the like and can be reduced in size and cost.
  • the pressure sensor itself is electrically connected to the diaphragm portion and the pressure sensitive element in the same semiconductor substrate.
  • the second conductive part on which the second bump is placed and the first conductive part electrically connected to the second bump are arranged in different areas, and each dimension T2 to T4 in the central area where the diaphragm part is provided and the first
  • the dimension T1 of the outer edge region provided with the conductive portion and the second conductive portion is configured to satisfy the relationship described above, that is, ( ⁇ 2 + ⁇ 3) ⁇ ⁇ 4 and ⁇ 1 ⁇ ⁇ 4.
  • the second pressure sensor package is configured using a semiconductor substrate having the same thickness as the outer edge region in the central region where it overlaps the diaphragm portion and made of the same member.
  • the second conductive portion since the second conductive portion is provided, the second bump can be disposed at an arbitrary position in the outer edge area that does not overlap the first conductive portion. A high connection position can be set.
  • such a configuration including the second conductive portion suppresses the mechanical or thermal influence on the pressure sensitive element when the pressure sensor is connected to the external substrate, for example, by the second bump. Also effective.
  • the configuration in which the second bump is used to connect directly to the external board consists of a housing that contains the pressure sensor, which is essential for the conventional pressure sensor package, and a wire that electrically connects the pressure sensor and the external board. No connection members such as bonds and leads are required. Therefore, according to the present invention, there is provided a pressure sensor package that has a degree of freedom of connection according to the requirements of the external substrate, and that can be reduced in size and cost at the same time without requiring a housing. Obtained It is.
  • An electronic component according to the present invention mounts a pressure sensor package having the above-described configuration. Since this pressure sensor package does not require a bulky casing when mounted, the volume for storing the pressure sensor package is greatly reduced, and the weight equivalent to the casing is also reduced. . Therefore, according to the present invention, it is possible to provide a small and lightweight electronic component.
  • FIG. 1A is a cross-sectional side view of an essential part of a pressure sensor package according to a first embodiment of the present invention.
  • FIG. 1B is a plan view of the pressure sensor package according to the first embodiment of the present invention.
  • FIG. 2 is an electrical wiring diagram of a pressure sensitive element (gauge resistor).
  • FIG. 3A is a sectional side view of an essential part of a pressure sensor package according to a second embodiment of the present invention.
  • FIG. 3B is a plan view of a pressure sensor package according to a second embodiment of the present invention.
  • FIG. 4A is a sectional side view of an essential part of a pressure sensor package according to a third embodiment of the present invention.
  • FIG. 4B is a plan view of a pressure sensor package according to a third embodiment of the present invention.
  • FIG. 5A is a cross-sectional view of a principal part of a substrate incorporating an electric circuit.
  • FIG. 5B is a plan view of the substrate of FIG. 5A.
  • FIG. 6 is a cross-sectional side view of an essential part of a pressure sensor package mounted on an external substrate.
  • FIG. 7A is a cross-sectional side view of an essential part showing a certain process in manufacturing a pressure sensor package of a third embodiment.
  • FIG. 7B is a plan view of the pressure sensor package of FIG. 7A.
  • FIG. 8A is a sectional side view of the main part of the pressure sensor package in the next step of the step shown in FIG. 7A.
  • FIG. 8B is a plan view of the pressure sensor package of FIG. 8A.
  • FIG. 9A is a sectional side view of the main part of the pressure sensor package in the next step of the step shown in FIG. 8A.
  • FIG. 9B is a plan view of the pressure sensor package of FIG. 9A.
  • FIG. 10A is a sectional side view of the main part of the pressure sensor package in the next step of the step shown in FIG. 9A.
  • FIG. 10B is a plan view of the pressure sensor package of FIG. 10A.
  • FIG. 11 is a sectional side view of a conventional pressure sensor.
  • FIG. 12 is a cross-sectional side view of a conventional pressure sensor package.
  • 13A A cross-sectional side view of an essential part of a pressure sensor package according to a fourth embodiment of the present invention.
  • 13B is a plan view of a pressure sensor package according to a fourth embodiment of the present invention.
  • FIG. 14A is a plan view of a modification of the pressure sensor package.
  • FIG. 14B is a plan view of another modification of the pressure sensor package.
  • FIG. 15A is a plan view showing an example of the arrangement of second bumps.
  • FIG. 15B is a plan view showing another example of the arrangement of the second bumps.
  • FIG. 15C is a plan view showing still another example of the arrangement of the second bumps.
  • FIG. 15D is a plan view showing another example of the arrangement of the second bumps.
  • FIG. 16A is a cross-sectional side view of an essential part of a pressure sensor package according to the present invention mounted on an external substrate.
  • FIG. 16B is a plan view showing a thermal stress state of the pressure sensor package shown in FIG. 16A.
  • FIG. 17A is a cross-sectional side view of a main part of a conventional pressure sensor package mounted on an external substrate.
  • FIG. 17B is a plan view showing a thermal stress state of the pressure sensor package shown in FIG. 17A.
  • FIG. 18A is a cross-sectional side view of a main part of a thick example of a pressure sensor package according to the present invention mounted on an external substrate.
  • FIG. 18B is a plan view showing a thermal stress state of the thick example of the pressure sensor package shown in FIG. 18A.
  • FIG. 19A is a cross-sectional side view of a main part of a medium thickness example of a pressure sensor package according to the present invention mounted on an external substrate.
  • FIG. 19B is a plan view showing a thermal stress state of the inner wall example of the pressure sensor package shown in FIG. 19A.
  • 20B is a plan view showing a thermal stress state of the thin wall example of the pressure sensor package shown in FIG. 20A.
  • ⁇ 21] is a diagram showing the relationship between the thickness of the substrate (chip thickness) and the maximum value of thermal stress inside the substrate.
  • a pressure sensor package of the present invention includes a structure (first type pressure sensor package) in which a first bump is provided on a first conductive portion disposed on an outer edge portion of a semiconductor substrate, and a semiconductor substrate.
  • first type pressure sensor package in which a first bump is provided on a first conductive portion disposed on an outer edge portion of a semiconductor substrate, and a semiconductor substrate.
  • FIG. 1A shows a cross section taken along the line AA of the pressure sensor sensor / cage of the first embodiment shown in FIG. 1B.
  • the pressure sensor 11 constituting the first type pressure sensor package 10 has a flat semiconductor substrate 12 as a base material.
  • a space (reference pressure chamber) 13 that extends substantially in parallel with the one surface is provided inside the region a in the plate thickness direction, and a thinned region located in the upper portion of the space is referred to as a diaphragm portion 14.
  • a plurality of pressure sensitive elements 15 are arranged in the diaphragm portion 14 and extend to the outer edge region. Further, on the one surface, a first conductive portion 17 electrically connected to the pressure sensitive element 15 is disposed in the outer edge region j8 excluding the diaphragm portion.
  • 8 excluding the first conductive portion 17 for mounting the first bump 18 is a thin insulating film such as a nosedation film such as a nitride film or an oxide film.
  • the form covered by the part 16 is preferred.
  • the first bump 18 is connected to, for example, an external substrate (not shown). In this case, sufficient insulation of the pressure sensitive element 15 with respect to the external substrate can be secured.
  • the insulating part 16 improves the corrosion resistance of the pressure sensitive element 15 in order to cut off the contact with the outside air of the pressure sensitive element 15.
  • the insulating portion 16 is provided, an effect of significantly reducing the mechanical influence of the pressure sensitive element 15 directly on the external force without passing through the diaphragm portion 14 can be obtained.
  • Each of the first conductive parts 17 constituting the pressure sensor 11 is individually arranged on the electric First bumps 18 connected to each other.
  • gauge resistors that function as the pressure sensitive element 15 are disposed on the one surface of the substrate 12.
  • Each gauge resistor is electrically connected to form a Wheatstone bridge (FIG. 2) via a lead wiring (not shown).
  • Such a pressure sensitive element 15 is preferably arranged at the peripheral edge of the diaphragm section 14. At the periphery, both compressive and tensile stresses are easily applied to the pressure sensitive element 15, which is also the force to obtain a sensitive pressure sensor.
  • the pressure sensor 11 has a thickness D1 of the semiconductor substrate 12 in the outer edge region j8, a thickness D2 of the diaphragm portion 14, a height D3 of the space 13, and a central region ⁇ .
  • D4 thickness of the remaining portion of the semiconductor substrate 12 excluding D2 and D3
  • D4 it is preferable that (D2 + D3) ⁇ D4 and D1 ⁇ D4.
  • D1 to D4 are appropriately selected so as to satisfy the above two expressions.
  • D1 to D4 satisfy the above two formulas means that the pressure sensor 11 constituting the first pressure sensor package 10 has a central region ⁇ when the one-surface force of the semiconductor substrate 12 is also viewed in the thickness direction. There is a diaphragm part 14 with a very thin thickness D2 and a space 13 with a very low height D3, and the lower part (upper side in FIG. 1A) has a remaining part with a sufficient thickness D4. Exists.
  • This thickness D4 of the semiconductor substrate 12 means that it is designed to be approximately equal to the thickness D1 of the entire semiconductor substrate 12 in the outer edge region
  • the dimension (D2 + D3) obtained by adding the thickness D2 of the diaphragm portion 14 and the height D3 of the space 13 is extremely small, for example, 5 to 20 ⁇ m.
  • the space height D3 is, for example, 1 to 3 ⁇ m.
  • the central area and the outer edge area are distinguished from each other, but both areas are composed of a single semiconductor substrate.
  • the conventional pressure The housing that contains the pressure sensor, which was a mandatory component of the sensor package, is no longer necessary.
  • the pressure sensor itself includes the first bump 18 that can be connected to the external substrate, an extremely small pressure sensor package can be obtained.
  • the number of members constituting the housing and the like is reduced, and the process of packaging the pressure sensor in the housing is not necessary, so that a significant cost reduction can be achieved.
  • it does not use wire bonds, leads, etc. that cause multiple electrical connection points, and it is connected to an external board only by the first bump 18, so that excellent connection reliability is also achieved. Obtained at the same time.
  • this embodiment is merely an example, and it goes without saying that the arrangement of gauge resistors or lead resistors may be changed depending on the specifications.
  • FIGS. 3A and 3B a pressure sensor package (second type pressure sensor package) according to a second embodiment of the present invention will be described with reference to FIGS. 3A and 3B.
  • FIG. 3A shows a cross section taken along line BB of the pressure sensor package of the second embodiment shown in FIG. 3B.
  • the pressure sensor 21 constituting the second-type pressure sensor package 20 has a flat semiconductor substrate 22 as a base material.
  • a space (reference pressure chamber) 23 that extends substantially in parallel with the one surface is provided inside the region ⁇ in the plate thickness direction, and a thinned region located above the space is referred to as a diaphragm portion 24.
  • a plurality of pressure sensitive elements 25 are arranged in the diaphragm portion 24. Further, on the one surface, a first conductive portion 27 electrically connected to the pressure sensitive element 25 is disposed in an outer edge region ⁇ excluding the diaphragm portion.
  • an outer edge region ⁇ excluding the first conductive portion 27 for mounting the second conductive portion 29 and the second bump 30 is a nossion film, for example, a nitride film, an oxide layer, or the like.
  • a form covered with a thin insulating portion 26 such as a capsule is preferable.
  • the second conductive portion 29 and the second bump Pressure sensor 21 should be left or stored before making 30 In this case, the insulation of the pressure sensitive element 25 can be sufficiently secured with respect to the external substrate. Further, since the insulating part 26 blocks contact with the outside air of the pressure sensitive element 25, the corrosion resistance of the pressure sensitive element 25 is improved. Further, since the insulating portion 26 is provided, the effect of greatly reducing the mechanical influence of the pressure-sensitive element 25 directly on the external force without going through the diaphragm portion 24 can be obtained.
  • the pressure sensor 21 is disposed on the first insulating portion 28 and the first insulating portion 28 disposed so as to cover the outer edge region ⁇ . 1 Electrically connected to the second conductive part 29 separately from the conductive part 27, and the second conductive part individually arranged at the position where it is placed on the first conductive part and does not overlap with the second conductive part. And a second bump connected to the.
  • the first insulating part uses a photosensitive resin such as epoxy as a stress buffer layer.
  • gauge resistors (R1 to R4) are arranged in the same manner as in FIGS. 1A and 1B. Each gauge resistor is electrically connected to form a Wheatstone bridge (Fig. 2) via lead wiring (not shown). Also in the case of the pressure sensor 21 shown in FIGS. 3A and 3B, the arrangement of the pressure sensitive elements 25 is preferable to the peripheral portion of the diaphragm portion 24 because both compressive and tensile stresses are easily applied to the pressure sensitive element 25.
  • the pressure sensor 21 has a thickness of the semiconductor substrate 22 in the outer edge region ⁇ of ⁇ 1, a thickness of the diaphragm portion 24 of ⁇ 2, a height of the space 23 of ⁇ 3, and a central region ⁇ .
  • the thickness of the remaining portion of the semiconductor substrate 22 excluding ⁇ 2 and ⁇ 3 is defined as ⁇ 4, it is preferable that ( ⁇ 2 + ⁇ 3) ⁇ ⁇ 4 and ⁇ 1 ⁇ ⁇ 4.
  • ⁇ 1 to ⁇ 4 are appropriately selected so as to satisfy the above two expressions.
  • ⁇ 1 to ⁇ 4 satisfy the above two formulas means that the pressure sensor 21 constituting the second pressure sensor package 20 has a central region when the one-surface force of the semiconductor substrate 22 is also viewed in the thickness direction.
  • there is a diaphragm portion 24 having a very thin thickness ⁇ 2 and a space 23 having a very low height ⁇ 3, and a remaining portion having a thickness ⁇ 4 that is sufficiently smaller than these (below in FIG. Exists.
  • This thickness ⁇ 4 of the semiconductor substrate 22 means that the thickness is designed to be approximately equal to the thickness T1 of the entire semiconductor substrate 22 in the outer edge region ⁇ .
  • the dimension ( ⁇ 2 + ⁇ 3) which is the sum of the thickness ⁇ 2 of the diaphragm 24 and the height 233 of the space 23, is extremely small.
  • the space height T3 is, for example, 1 to 3 ⁇ m.
  • the central area and the outer edge area are distinguished from each other, but both areas are composed of a single semiconductor substrate.
  • the second bump 30 can be disposed at an arbitrary position in the outer edge region ⁇ so as not to overlap the first conductive portion 27.
  • the second bump 30 can be provided at the connection position according to the requirements of the external substrate. Therefore, the second pressure sensor package 20 has a high degree of freedom with respect to the connection position with the external substrate.
  • a housing that contains the pressure sensor, which has been an essential component of the conventional pressure sensor package, is unnecessary, and for example, a second sensor that can be connected to an external substrate is used. Since the bump 30 is also provided in the pressure sensor itself, an extremely small pressure sensor package can be obtained. In addition, the number of members constituting the housing and the like is reduced, and the process of packaging the pressure sensor in the housing is not necessary, so that a significant cost reduction can be achieved. In addition, it does not use wire bonds, leads, etc. that cause multiple electrical connection points, and it is connected to the external board only by the second bump 30, so that excellent connection reliability is also achieved. Obtained at the same time. Note that this embodiment is merely an example, and it goes without saying that the arrangement of gauge resistors or lead resistors may be changed depending on the specifications.
  • FIG. 4 (b) shows a cross section along the line CC of the pressure sensor package of the third embodiment shown in FIG. 4 (b).
  • the pressure sensor package 40 shown in FIGS. 4 and 4 is based on the pressure sensor package 20 of the second type shown in FIGS. 3 and 3 and the outer edge region is exposed so that only the second bump 30 is exposed.
  • This is an example in which a second insulating portion 31 covering ⁇ is arranged.
  • the second insulating part uses the same epoxy resin as the first insulating part.
  • the second bump 30 is, for example, externally provided.
  • the second conductive portion 29 can be sufficiently insulated from the external substrate.
  • the second insulating portion 31 is configured to prevent the second conductive portion 29 from coming into contact with the outside air.
  • Figures 5 and 5 show such a substrate, and Figure 5 shows a cross-section along the DD line of the substrate shown in Figure 5-4.
  • the pressure sensor package 60 that also includes the substrate force shown in FIG. 5 is based on the pressure sensor package 10 or 20 of the first type or the second type shown in FIGS. 1A to 4 and is based on the semiconductor substrate 11 (21).
  • a circuit 62 having functions such as signal amplification and compensation is provided inside the substrate in the outer edge region ( ⁇ ) and not provided with the first conductive portion 17 (27) functioning as an electrode pad. is there.
  • the position where such a circuit 62 is provided is not limited to a specific place in the outer edge region j8 ( ⁇ ) as long as it does not overlap with the diaphragm section 64.
  • FIGS. 5A and 5B in order to clearly show the positional relationship between the first conductive portion 17 (27) and the circuit 62, other components are appropriately omitted.
  • the circuit 62 is provided inside the substrate. Since it is externally attached, there is no need for a configuration, so that the manufacturing process required for connecting members can be reduced, so that the manufacturing cost is reduced and the physical or chemical influence of the external force of the board is reduced. As a result, electrical connection quality can be improved.
  • the pressure sensor package according to the present invention is mounted on an external substrate. An example is briefly explained.
  • the pressure sensor package 72 is connected to the external substrate 71 having various printed circuit board forces by the bumps 73 provided on the substrate, and the pressure sensor package according to the present invention can be mounted in a chip size. It represents something.
  • the bump arrangement in FIG. 6 is a force indicating an example corresponding to the above-described second pressure sensor package. This example is not limited to this.
  • the chip is similarly applied to the first pressure sensor package. Can be implemented in size.
  • processing for realizing a chip size package is performed at the wafer level for the pressure sensor.
  • a pressure sensor having a space (reference pressure chamber) 23 inside a semiconductor substrate is, for example, a method disclosed by S. Armbruster et al. (S. Armbruster et.al, “A NOVEL MICROMACHINING PROCESS FOR THE FABRICATION OF MONOCRYSTALLINE SI-MEMBRANES USING PO ROUS SILICON ", Digest of Technical Papers Transducers '03, 2003, pp. 246.)
  • an insulating resin layer 28 is formed in a region other than the diaphragm 24 of the pressure sensor 21.
  • photosensitive resin such as epoxy resin
  • exposure and development are performed to remove only the resin on the diaphragm, and the remainder is insulated.
  • a greaves layer was formed.
  • the resin on the first conductive portion 27 functioning as an electrode pad was also removed at the same time, thereby efficiently forming an opening for electrical wiring.
  • a wiring layer is formed as the second conductive portion 29 so as to be electrically connected to the first conductive portion 27.
  • a wiring layer made of copper (Cu) was formed by plating. Note that the wiring layer is not limited to being formed by plating, and other film forming methods such as sputtering may be used. Also, the material is only Cu. Au, Ni, etc. These metal materials or a combination of these may be used.
  • an insulating resin layer is formed as the second insulating portion 31 in the region including the second conductive portion 29 and other than the diaphragm portion 24.
  • a photosensitive resin such as epoxy resin is used, and once applied to the entire surface of the wafer including the diaphragm, exposure and development are performed to simultaneously remove the resin on the diaphragm surface. The part was formed efficiently.
  • the bump 30 is formed so as to be electrically connected to the wiring layer constituting the second conductive portion 29.
  • bumps were formed by mounting solder balls. Note that the method for forming the bump is not limited to this, and the bump can be formed by printing or clinging.
  • the second pressure sensor package having the configuration of FIGS. 4A and 4B (third embodiment) is manufactured.
  • the pressure sensor package illustrated in FIGS. 1A and 1B and FIGS. 3A and 3B can be manufactured by substantially the same manufacturing method.
  • a pressure sensor package (second type pressure sensor package) according to a fourth embodiment of the present invention will be described with reference to FIGS. 13A and 13B.
  • an insulating layer such as passivation is omitted.
  • FIG. 13A shows a cross section taken along line JJ of the pressure sensor package of the fourth embodiment shown in FIG. 13B.
  • the first insulating portion is continuous, whereas the pressure sensor package of the fourth embodiment shown in FIGS. 13A and 13B. 50, the plurality of second bumps 30 are individually formed with island-like portions 35 in which the first insulating portion 28 and the second insulating portion 31 arranged in the periphery are individually independent.
  • the pressure sensor package 50 shown in Figs. 13A and 13B it is disposed on the first insulating portion 28 and electrically connected to the first conductive portion 27 partially exposed from the first insulating portion 28. And a second insulating part 31 covering the second conductive part.
  • the second conductive portion 29 is partially exposed to the opening force formed in the second insulating portion 31, and is electrically connected to the second conductive portion 29 in this exposed region, i.e., at a position not overlapping the first conductive portion.
  • a second bump 30 connected to is arranged. Due to such a configuration, the influence of the insulating portion (insulating resin layer) on the diaphragm portion can be minimized. As a result, the sensitivity of the diaphragm can be maintained high, and a highly accurate sensor can be constructed.
  • the island-shaped portions 35 are formed independently of each other so as to correspond to the respective second bumps 30.
  • the central region of the semiconductor substrate 22 on which the diaphragm portion 24 is disposed is connected to the outside of the semiconductor substrate 22 without being surrounded by the first insulating portion 28 and the second insulating portion 31 by the passage S. , Pressure inflow path and outflow path can be secured.
  • the island-shaped portion 35 is most preferably formed for each second bump 30, or a plurality of second bumps may form one island-shaped portion. Good.
  • the arrangement of the second bumps 30 with respect to the semiconductor substrate 22 is such that, as shown in FIGS. 13A and 13B, the second bumps 30 are respectively arranged in the middle part of each side in the outer edge area excluding the diaphragm part 24.
  • the form is not limited. That is, for example, as shown in FIG. 14A, the second bumps 30 may be arranged at the corners of the four sides of the outer edge region excluding the diaphragm portion 24 of the semiconductor substrate 22, respectively.
  • the island-shaped portions 35 around the second bump 30 may be arranged so as to extend along two of the four sides of the outer edge region.
  • the planar shape of the island-shaped portion 35 may be formed in a rectangular shape.
  • the planar shape of the island-shaped portion 35 may be formed in various shapes such as an ellipse and an indefinite shape as long as the distance between the island-shaped portions 35 is maintained.
  • the first insulating portion and the second insulating portion are formed in an island shape and the one that is uniformly spread as in the past is used.
  • the offset temperature characteristics that fluctuate due to external stress were greatly improved. Therefore, it was confirmed that the formation of the island-shaped portion as in this embodiment is effective in reducing the influence of stress on the diaphragm.
  • the configuration with the second insulating resin layer is shown. However, the same effect can be obtained even in the configuration in which the first insulating resin layer formed by the second insulating resin layer has an island shape. .
  • FIG. 15A shows an example in which the second bumps 30 are arranged in the four corner regions of the semiconductor substrate 22 whose one surface is rectangular, and the second bumps 30 are arranged symmetrically at equal intervals.
  • the second bumps 30 may be arranged so as to be symmetrical at an intermediate portion of each side of the semiconductor substrate 22 and at equal intervals.
  • the same actions and effects as the configuration of Fig. 15A can be obtained.
  • FIGS. 15C and 15D it is preferable that the second bumps 30 arranged symmetrically at equal intervals with respect to the semiconductor substrate 22 have the same size. As described above, by uniformly arranging the sizes of the second bumps 30, the stress applied to the respective second bumps 30 can be evenly distributed. Therefore, the arrangement of FIGS. 15A and 15B has the effect of suppressing fluctuations in the detection characteristics of the pressure sensor package 90.
  • FIG. in the above embodiment an absolute pressure type sensor has been described. However, a relative pressure type sensor is constructed by making a through hole reaching the space part (formed inside the central area) in the range without any influence of stress in the diaphragm part in the remaining part of the central part. You can also [0060] Hereinafter, characteristic actions and effects of the pressure sensor package according to the present invention with respect to the conventional structure will be briefly described with reference to FIGS. 16A to 17B.
  • the present invention also has a package forming force in which there is a large part of the board that backs up the diaphragm on the back side opposite to the front side where the diaphragm exists, and such a backup (board part).
  • a simulation was performed to compare with the conventional structure (Fig. 17A).
  • FIG. 16A shows a configuration in which a typical example 80 of the pressure sensor package according to the present invention is mounted on another substrate, specifically, the external substrate 71, and FIG. 16B acts on the bump portion at the time of mounting. Indicates the degree of thermal stress concentration (thermal stress state).
  • FIG. 17A shows a configuration in which a typical conventional pressure sensor package 82 is mounted on another substrate, specifically, an external substrate 71, and FIG. 17B acts on the bump portion at the time of mounting. Indicates the degree of thermal stress concentration (thermal stress state).
  • a thick wall example shown in FIG. 18A (specifically, 400 / ⁇ ⁇ ), and a middle wall example shown in FIG. 19A (specifically, 200 ⁇ m)
  • a thin-walled example (specifically, 100 m) shown in FIG. 20A was prepared, and a simulation (experiment) was performed to compare them.
  • FIG. 18B, FIG. 19B, and FIG. 20B show the degree of thermal stress concentration (thermal stress state) acting on the bump portion when the thick-wall example, middle-wall example, and thin-wall example are mounted, respectively.
  • the experimental results showed that the bumps with cracks and the like were not particularly troublesome with a thickness of 200 m or more. However, a defect such as 3ZlO at 150 m and 5710 at 100 111 occurred.
  • the diagram showing the thermal stress state is a diagram showing the upper surface (surface) side force at the junction between the semiconductor package and the bump.
  • a portion surrounded by a dotted line indicates a diaphragm portion.
  • the darker the black part the greater the stress.
  • the pressure sensor package according to the present invention is used for measuring pressure such as air pressure, water pressure, and hydraulic pressure, and in particular, has a structure in which a housing or the like is not required by a wafer level chip size package. Therefore, it is suitable for various electronic components such as V, which are required to be thinner, smaller or lighter.

Abstract

  本発明の圧力センサパッケージ10は、半導体基板12の一面において、その中央域αの内部に空間13を備え、該空間の上部に位置する薄板化された領域をダイアフラム部14とし、該ダイアフラム部に感圧素子15を配置してなり、前記一面において、前記ダイアフラム部を除いた外縁域βに配置され、前記感圧素子ごとに電気的に接続された第1導電部17を少なくとも備えた圧力センサ11と、前記第1導電部には個別に、その上に配置され電気的に接続される第1バンプ18と、を備える。前記外縁域における半導体基板の厚さD1、前記ダイアフラム部の厚さD2、前記空間の高さD3、及び、前記中央域において、前記D2と前記D3を除いた半導体基板の残部の厚さD4は、(D2+D3)≪D4、かつ、D1≒D4、を満たす。

Description

明 細 書
圧力センサパッケージ及び電子部品
技術分野
[0001] 本発明は、圧力センサパッケージ及び電子部品に関する。
本出願は、 2006年 1月 19日に日本に出願された特願 2006— 10961号、及び、 2 006年 9月 21日に日本に出願された特願 2006— 256003号に基づき優先権を主 張し、その内容をここに援用する。
背景技術
[0002] 半導体基板を用いた圧力センサ(以下、半導体圧力センサとも呼ぶ。)としては、例 えば、図 11に示すものが挙げられる。この半導体圧力センサ 100は、半導体基板 10 1の裏面側力もエッチングすることにより形成した薄肉のダイアフラム部 102と、半導 体基板 101の表面側に形成された 4つのゲージ抵抗 103を有している。 4つのゲー ジ抵抗 103は、ホイートストーンブリッジを構成するように電気的に接続されている。 ダイアフラム部 102が圧力を受けて橈むと、各ゲージ抵抗 103にダイアフラム部 102 の橈み量に応じた応力が発生し、この応力に応じてゲージ抵抗 103の抵抗値が変化 する。この抵抗値変化を電気信号として取り出すことにより、半導体圧力センサ 100 は圧力の検出をする(例えば、特許文献 1の図 5を参照)。
[0003] このような半導体圧力センサは、例えば、図 12に示すようにパッケージィ匕された後、 通常の使用に供される。すなわち、圧力センサノ¾ /ケージ 200は、絶縁体からなる基 台 201と、圧力導入口 202を備えた榭脂等カゝらなる蓋体 203とからなる筐体 204を必 要的 ·必然的に備える。筐体 204の内部空間において、圧力センサ 205 (100)が基 台 201に載置され、ワイヤボンド 206によりリード 207と電気的に接続された構造を有 する。このような構造により、圧力センサパッケージ 200を構成する圧力センサ 205 ( 100)は、リード 207を介して、筐体 204の外部に設けられる、例えば、図示しない増 幅回路や補償回路と接続される。
特許文献 1:特開 2002— 340714号公報
発明の開示 発明が解決しょうとする課題
[0004] し力しながら、従来の圧力センサパッケージには、少なくとも次のような 2つの課題 かあつた。
(1)上述した筐体内に圧力センサを設置する構成のパッケージでは、圧力センサの 小型化が図れたとしても、筐体自体は依然として元の大きさゆえに、直ちにパッケ一 ジ自体の小型化を図ることは困難である。
(2)上記構成のノ ッケージを製造する際には、半導体基板上に複数個の圧力センサ を作製し、圧力センサを個別に利用するためチップ化した後、個々のチップをパッケ ージ化する必要がある。したがって、製造工程が多くなりパッケージの製造コストが嵩 むため、低コストィ匕が図りにくい。
[0005] 本発明は、上記事情に鑑みてなされたものであり、圧力センサの機能を備えたゥヱ ハレベルパッケージを実現することにより、小型で低コストの圧力センサパッケージを 提供することを 1つの目的とする。また、このような圧力センサパッケージを搭載するこ とにより、小型で軽量な電子部品を提供することを別の目的とする。
課題を解決するための手段
[0006] 本発明の第 1の態様 (aspect)は、半導体基板の一面において、その中央域の内部 に該一面と略平行して広がる空間を備え、該空間の上部に位置する薄板化された領 域をダイアフラム部とし、該ダイアフラム部に感圧素子を配置してなり、前記一面にお いて、前記ダイアフラム部を除いた外縁域に配置され、前記感圧素子と電気的に接 続された第 1導電部を少なくとも備えた圧力センサと、前記第 1導電部には個別に、 その上に配置され電気的に接続される第 1バンプと、を備えてなる圧力センサパッケ ージであって、前記外縁域における半導体基板の厚さを Dl、前記ダイアフラム部の 厚さを D2、前記空間の高さを D3、前記中央域において、前記 D2と前記 D3を除い た半導体基板の残部の厚さを D4、と定義したとき、(D2 + D3)《D4、かつ、 4、であることを特徴とする。
[0007] 本発明の第 2の態様は、半導体基板の一面において、その中央域の内部に該ー 面と略平行して広がる空間を備え、該空間の上部に位置する薄板化された領域をダ ィァフラム部とし、該ダイアフラム部に感圧素子を配置してなり、前記一面において、 前記ダイアフラム部を除いた外縁域に配置され、前記感圧素子と電気的に接続され た第 1導電部を少なくとも備えた圧力センサと、前記外縁域を覆うように設けられる第 1絶縁部と、該第 1絶縁部の上に配置され、前記第 1導電部と個別に、電気的に接続 される第 2導電部と、該第 2導電部には個別に、その上に配置され前記第 1導電部と 重ならない位置において、電気的に接続される第 2バンプと、を備えてなる圧力セン サパッケージであって、前記外縁域における半導体基板の厚さを τΐ、前記ダイァフ ラム部の厚さを Τ2、前記空間の高さを Τ3、前記中央域において、前記 Τ2と前記 Τ3 を除いた半導体基板の残部の厚さを Τ4、と定義したとき、(Τ2+Τ3) «Τ4,かつ、 Τ 1 ^Τ4、であることを特徴とする。
[0008] 本発明の第 3の態様は、第 2態様において、前記第 2バンプのみ露呈させて、前記 第 2導電部を含む前記外縁域を覆うように設けられる第 2絶縁部を備える。
[0009] 本発明の第 4の態様は、第 2態様において、前記第 2バンプのみ露呈させて、前記 第 2導電部を覆うように前記第 1絶縁部に重ねて設けられる第 2絶縁部を備え、前記 第 1絶縁部、第 2絶縁部の少なくとも一方は島状を成す前記第 2バンプの周囲に配 置される。
[0010] 本発明の第 5の態様は、第 2態様において、前記第 2バンプどうしは互いに対称と なる位置に配置されることを特徴とする。
[0011] 本発明の第 6の態様は、第 1〜5のいずれ力 1つの態様において、前記圧力センサ 内に、増幅回路及び Ζ又は補償回路を備えたことを特徴とする。
本発明の第 7の態様は、第 2態様において、第 1絶縁部が島状を有することを特 徴とする。
[0012] 本発明に係る電子部品は、第 1〜7のいずれか 1つの態様の圧力センサパッケージ を搭載する。
発明の効果
[0013] 本発明の第 1態様の圧力センサパッケージ (以下、「第 1の圧力センサパッケージ」 とも呼ぶ。)では、圧力センサ自体が同一の半導体基板内においてダイアフラム部と 、感圧素子と電気的に接続されると共に第 1バンプを載置する第 1導電部とを別な領 域に配置し、ダイアフラム部を設けた中央域の各寸法 D2〜D4と第 1導電部を設けた 外縁域の寸法 Dlが、前述した関係、すなわち(D2 + D3)《D4、かつ、 D1 ^D4、 を満たすように構成される。つまり、第 1の圧力センサパッケージは、ダイアフラム部と 重なる位置の中央域には外縁域とほぼ同じ厚みをもち、同一部材カもなる半導体基 板を使用して構成される。このような構成は、圧力センサを第 1バンプによって例えば 外部基板と接続する際に、ダイアフラム部ゃ感圧素子に加わる機械的あるいは熱的 な影響を抑制する効果をもたらす。また、第 1バンプを用いて外部基板と直接接続さ せる構成は、従来の圧力センサパッケージが必須として 、た圧力センサを内包する 筐体、及び、圧力センサと外部基板の間を電気的に繋ぐワイヤボンドやリード等の接 続部材、を一切不要とする。したがって、本発明によれば、筐体などを必要とせず、 小型化と低コスト化とを一緒に図ることが可能な圧力センサパッケージが得られる。 本発明の第 2態様の圧力センサパッケージ (以下、「第 2の圧力センサパッケージ」 とも呼ぶ。)では、圧力センサ自体が同一の半導体基板内においてダイアフラム部と 、感圧素子と電気的に接続されると共に第 2バンプを載置する第 2導電部と電気的に 接続される第 1導電部とを別な領域に配置し、ダイアフラム部を設けた中央域の各寸 法 T2〜T4と第 1導電部及び第 2導電部を設けた外縁域の寸法 T1が、前述した関係 、すなわち(Τ2+Τ3)《Τ4、かつ、 Τ1 ^Τ4、を満たすように構成される。つまり、第 2の圧力センサパッケージは、ダイアフラム部と重なる位置の中央域には外縁域とほ ぼ同じ厚みをもち、同一部材からなる半導体基板を使用して構成される。この構成で は、第 2導電部を備えたことにより、外縁域内において第 1導電部とは重ならない任 意の場所へ第 2バンプを配置できるので、例えば外部基板の要求に応じた自由度の 高い接続位置の設定が可能となる。また、このような第 2導電部を備えた構成は、圧 力センサを第 2バンプによって例えば外部基板と接続する際に、ダイアフラム部ゃ感 圧素子に加わる機械的あるいは熱的な影響を抑制する効果も発揮する。さらに、第 2 バンプを用いて外部基板と直接接続させる構成は、従来の圧力センサパッケージが 必須としていた圧力センサを内包する筐体、及び、圧力センサと外部基板の間を電 気的に繋ぐワイヤボンドやリード等の接続部材、を一切不要とする。したがって、本発 明によれば、外部基板の要求に応じた接続自由度を備えると共に、筐体などを必要 とせず、小型化と低コスト化とを一緒に図ることが可能な圧力センサパッケージが得ら れる。
[0015] 本発明に係る電子部品は、上述した構成を備える圧力センサパッケージを搭載す る。この圧力センサパッケージは、搭載した際に嵩張る筐体などが不要なことから、圧 力センサパッケージを収納する容積が大幅に低減されると共に、筐体などに相当す る重量も肖 U減される。よって、本発明によれば、小型で軽量な電子部品の提供が可 能となる。
本発明の上記及び他の目的、作用 ·効果等については、本発明の実施形態の記 載及び図面から、当業者に明らかになろう。
図面の簡単な説明
[0016] [図 1A]本発明の第 1実施形態の圧力センサパッケージの要部断面側面図である。
[図 1B]本発明の第 1実施形態の圧力センサパッケージの平面図である。
[図 2]感圧素子 (ゲージ抵抗)の電気的な配線図である。
[図 3A]本発明の第 2実施形態の圧力センサパッケージの要部断面側面図である。
[図 3B]本発明の第 2実施形態の圧力センサパッケージの平面図である。
[図 4A]本発明の第 3実施形態の圧力センサパッケージの要部断面側面図である。
[図 4B]本発明の第 3実施形態の圧力センサパッケージの平面図である。
[図 5A]電気回路を内蔵した基板の要部断面図である。
[図 5B]図 5Aの基板の平面図である。
[図 6]外部基板に実装された圧力センサパッケージの要部断面側面図である。
[図 7A]第 3実施形態の圧力センサパッケージの製造における或る工程を示す要部断 面側面図である。
[図 7B]図 7Aの圧力センサパッケージの平面図である。
[図 8A]図 7Aに示す工程の次の工程の圧力センサパッケージの要部断面側面図で ある。
[図 8B]図 8Aの圧力センサパッケージの平面図である。
[図 9A]図 8Aに示す工程の次の工程の圧力センサパッケージの要部断面側面図で ある。
[図 9B]図 9Aの圧力センサパッケージの平面図である。 [図 10A]図 9Aに示す工程の次の工程の圧力センサパッケージの要部断面側面図で ある。
[図 10B]図 10Aの圧力センサパッケージの平面図である。
[図 11]従来の圧力センサの断面側面図である。
[図 12]従来の圧力センサパッケージの断面側面図である。
圆 13A]本発明の第 4実施形態の圧力センサパッケージの要部断面側面図である。 圆 13B]本発明の第 4実施形態の圧力センサパッケージの平面図である。
[図 14A]圧力センサパッケージの変形例の平面図である。
[図 14B]圧力センサパッケージの別の変形例の平面図である。
[図 15A]第 2バンプの配置の一例を示す平面図である。
[図 15B]第 2バンプの配置の別の例を示す平面図である。
[図 15C]第 2バンプの配置の更に別の例を示す平面図である。
[図 15D]第 2バンプの配置の他の例を示す平面図である。
圆 16A]外部基板に実装した本発明に係る圧力センサパッケージの要部断面側面図 である。
[図 16B]図 16Aに示す圧力センサパッケージの熱応力状態を示す平面図である。
[図 17A]外部基板に実装した従来の圧力センサパッケージの要部断面側面図である
[図 17B]図 17Aに示す圧力センサパッケージの熱応力状態を示す平面図である。 圆 18A]外部基板に実装した本発明に係る圧力センサパッケージの厚肉例の要部側 面断面図である。
[図 18B]図 18Aに示す圧力センサパッケージの厚肉例の熱応力状態を示す平面図 である。
圆 19A]外部基板に実装した本発明に係る圧力センサパッケージの中肉例の要部側 面断面図である。
[図 19B]図 19Aに示す圧力センサパッケージの中肉例の熱応力状態を示す平面図 である。
圆 20A]外部基板に実装した本発明に係る圧力センサパッケージの薄肉例の要部側 面断面図である。
[図 20B]図 20Aに示す圧力センサパッケージの薄肉例の熱応力状態を示す平面図 である。
圆 21]基板の厚さ (チップ厚)と基板内部の熱応力の最大値との関係を示す図である 符号の説明
a、 y 中央域、
13、 δ 外縁域、
10、 20、 40 圧力センサモジユー/レ、
11、 21 圧力センサ、
12、 22 半導体基板、
13、 23 空間、
14、 24 ダイアフラム部、
15、 25 感圧素子、
16、 26 絶縁部、
17、 27 第 1導電部、
18 第 1バンプ、
28 第 1絶縁部、
29 第 2導電部、
30 第 2バンプ、
31 第 2絶縁部、
62 回路。
5 照明ランプ
発明を実施するための最良の形態
[0018] 以下、図面を参照して、本発明の複数の実施の形態に基づいて、本発明を詳細に 説明する。
[0019] 本発明の圧力センサパッケージは、半導体基板の外縁部に配置された第 1導電部 上に第 1バンプを設けてなる構造 (第 1形式の圧力センサパッケージ)と、半導体基板 の外縁部に配置された第 1導電部上に第 2導電部を設け、第 1導電部と重ならない 位置にある第 2導電部上に第 2バンプを設けてなる構造 (第 2形式の圧力センサパッ ケージ)とに大きく分けることができる。もっとも、以下に記載する各実施形態は例示 であって、例えば、ゲージ配置などは、これに限定されるものではない。
[0020] <第 1実施形態 >
先ず、図 1A、図 1B、及び図 2を参照して、本発明の第 1の実施形態の圧力センサ ノ ッケージ (第 1形式の圧力センサパッケージ)について説明する。
図 1Aは、図 1Bに示す第 1実施形態の圧力センサノ¾ /ケージの A— A線に沿った 断面を示す。
[0021] 図 1A及び 1Bに示すように、第 1形式の圧力センサパッケージ 10を構成する圧力 センサ 11は、平板状の半導体基板 12を基材とし、この半導体基板 12の一面におい て、その中央域 aの板厚方向の内部に該一面と略平行して広がる空間(基準圧力室 ) 13を備え、該空間の上部に位置する薄板化された領域をダイアフラム部 14とする。 また、ダイアフラム部 14には複数の感圧素子 15が配置され、外縁領域まで延びてい る。さらに、前記一面において、前記ダイアフラム部を除いた外縁域 j8には、感圧素 子 15と電気的に接続された第 1導電部 17が配置されている。
[0022] なお、図示のように、第 1バンプ 18を載置するための第 1導電部 17を除く外縁域 |8 は、ノッシベーシヨン膜、例えば、窒化膜、酸ィ匕膜のような薄い絶縁部 16によって覆 われる形態が好ましい。絶縁部 16を設けることにより、感圧素子 15が絶縁部 16によ つて被覆した構成が得られる。
本第 1実施形態の圧力センサパッケージ 10においては、第 1バンプ 18以外の外 縁域 j8は全て絶縁部 16によって被覆されているので、第 1バンプ 18を、例えば外部 基板 (不図示)と接続させる際に、外部基板に対して感圧素子 15の絶縁性を十分に 確保できる。
また、絶縁部 16は、感圧素子 15の外気と接触を遮断するために、感圧素子 15の 耐食性を向上させる。また、絶縁部 16があるために、感圧素子 15がダイアフラム部 1 4を介さずに直接、外部力 受ける機械的な影響を大幅に低減する効果が得られる。
[0023] 圧力センサ 11を構成する第 1導電部 17の各々は、個別にその上に配置され電気 的に接続される第 1バンプ 18を備える。
[0024] 基板 12の前記一面には、感圧素子 15として機能するゲージ抵抗 (R1〜R4)が配 置される。各ゲージ抵抗は、不図示のリード配線等を介して、ホイートストーンブリッジ (図 2)を構成するように電気的に接続されている。このような感圧素子 15は、ダイァフ ラム部 14の周縁部に配置することが好ま 、。周縁部にお 、ては圧縮と引張の両応 力が感圧素子 15にカ卩わりやすいので、感度のよい圧力センサが得られる力もである
[0025] 図 1Aに示すように、圧力センサ 11は、外縁域 j8における半導体基板 12の厚さを D 1、ダイアフラム部 14の厚さを D2、空間 13の高さを D3、中央域 αにおいて、前記 D 2と前記 D3を除いた半導体基板 12の残部の厚さを D4、と定義したとき、(D2 + D3) 《D4、かつ、 D1 ^D4、とすることが好ましい。
したがって、本第 1実施形態において、 D1〜D4はそれぞれ、上記 2式を満たすよう に適宜選択される。
[0026] D1〜D4が上記 2式を満たすということは、第 1の圧力センサパッケージ 10を構成 する圧力センサ 11は、半導体基板 12の一面力もその厚さ方向に見たとき、その中央 域 αには、厚さ D2が極めて薄いダイアフラム部 14と高さ D3が極めて低い空間 13が 存在し、その下方(図 1Aでは上方側)にはこれらに比べて十分な厚さ D4を有する残 部が存在する。半導体基板 12のこの厚さ D4は、外縁域 |8における半導体基板 12 全体の厚さ D1とほぼ等しい値に設計されていることを意味する。換言すると、ダイァ フラム部 14の厚さ D2と、空間 13の高さ D3とを足した寸法(D2 + D3)は極めて微小 であって、例えば、 5〜20 μ mである。空間高さ D3は、例えば、 1〜3 μ mである。
ここでは、中央域と外縁域に区別して呼称するが、両域は一体をなす一枚の半導 体基板から構成されている。
[0027] ところで、上述のように、従来のセンサチップでは、パッケージする際に、チップへの 熱的な影響 (ひずみ等)を考慮して、ワイヤボンドが不可欠であり、これが小型化を阻 害していた。しかしながら、本実施形態 (本発明)では、センサチップ自体にバンプを 設け、これを介して他の要素と直接連結できるようにされて 、る。
したがって、本第 1実施形態の圧力センサパッケージ 10にあっては、従来の圧力 センサパッケージが必須構成としていた圧力センサを内包する筐体などが不要となる
。また、例えば、外部基板と接続可能な第 1バンプ 18も圧力センサ自体が備えている ので、極めて小型の圧力センサパッケージが得られる。また、筐体などを構成する各 部材が削減されると共に、筐体内に圧力センサをパッケージングする工程も不要とな るので、大幅な低コストィ匕が図れる。さらには、複数の電気的な接続箇所が生じてし まうワイヤボンドやリード等を用いておらず、第 1バンプ 18のみによって外部基板と接 続する構成としたことにより、優れた接続信頼性も同時に得られる。なお、本実施形 態は例示であって、仕様等によりゲージ抵抗又はリード抵抗等の配置が変わっても 良いことは言うまでもない。
[0028] <第 2実施形態 >
次に、図 3A及び 3Bを参照して、本発明の第 2の実施形態の圧力センサパッケージ (第 2形式の圧力センサパッケージ)につ 、て説明する。
図 3Aは、図 3Bに示す第 2実施形態の圧力センサパッケージの B— B線に沿った 断面を示す。
[0029] 図 3A及び 3Bに示すように、第 2形式の圧力センサパッケージ 20を構成する圧力 センサ 21は、平板状の半導体基板 22を基材とし、この半導体基板 22の一面におい て、その中央域 γの板厚方向の内部に該一面と略平行して広がる空間(基準圧力室 ) 23を備え、該空間の上部に位置する薄板化された領域をダイアフラム部 24とする。 また、ダイアフラム部 24には複数の感圧素子 25が配置されている。さらに、前記一面 において、前記ダイアフラム部を除いた外縁域 δには、前記感圧素子 25と電気的に 接続された第 1導電部 27が配置されている。
[0030] なお、図示のように、第 2導電部 29と第 2バンプ 30とを載置するための第 1導電部 2 7を除く外縁域 δは、ノッシベーシヨン膜、例えば、窒化膜、酸ィ匕膜のような薄い絶縁 部 26によって覆われる形態が好ましい。絶縁部 26を設けることにより、感圧素子 25 が絶縁部 26によって被覆した構成が得られる。
本第 2実施形態の圧力センサパッケージ 20においては、第 1導電部 27を設ける 予定の領域以外の外縁域 δは全て絶縁部 26によって被覆されているので、第 2導 電部 29や第 2バンプ 30を作製する前に圧力センサ 21が放置あるいは保管されるよう な際に、外部基板に対して感圧素子 25の絶縁性を十分に確保できる。 また、絶縁部 26は、感圧素子 25の外気と接触を遮断するため感圧素子 25の耐 食性を向上させる。また、絶縁部 26があるために、感圧素子 25がダイアフラム部 24 を介さずに直接、外部力 受ける機械的な影響を大幅に低減する効果が得られる。
[0031] 本第 2実施形態の圧力センサパッケージ 20において、圧力センサ 21は、その外縁 域 δを覆うように配置される第 1絶縁部 28と、第 1絶縁部 28の上に配置され、第 1導 電部 27と個別に、電気的に接続される第 2導電部 29と、第 2導電部には個別に、そ の上に配置され前記第 1導電部と重ならない位置において、電気的に接続される第 2バンプと、を備える。第 1絶縁部は、応力の緩衝層としてエポキシなどの感光性榭脂 などが用いられる。
[0032] 本第 2実施形態の感圧素子 25は、図 1A及び 1Bの其れと同様に、ゲージ抵抗 (R1 〜R4)が配置される。各ゲージ抵抗は、不図示のリード配線を介して、ホイートスト一 ンブリッジ(図 2)を構成するように電気的に接続されて ヽる。図 3A及び 3Bに示す圧 力センサ 21の場合も、これらの感圧素子 25の配置は、圧縮と引張の両応力が感圧 素子 25に加わりやす 、ダイァフラム部 24の周縁部が好ま 、。
[0033] 図 3Aに示すように、圧力センサ 21は、外縁域 δにおける半導体基板 22の厚さを Τ 1、ダイアフラム部 24の厚さを Τ2、空間 23の高さを Τ3、中央域 γにおいて、前記 Τ2 と前記 Τ3を除いた半導体基板 22の残部の厚さを Τ4、と定義したとき、(Τ2+Τ3)《 Τ4、かつ、 Τ1 ^Τ4、とすることが好ましい。
したがって、本第 2実施形態において、 Τ1〜Τ4はそれぞれ、上記 2式を満たすよう に適宜選択される。
[0034] Τ1〜Τ4が上記 2式を満たすということは、第 2の圧力センサパッケージ 20を構成す る圧力センサ 21は、半導体基板 22の一面力もその厚さ方向に見たとき、その中央域 γには、厚さ Τ2が極めて薄いダイアフラム部 24と高さ Τ3が極めて低い空間 23が存 在し、その下方(図 3Αでは上方側)にはこれらに比べて十分な厚さ Τ4を有する残部 が存在する。半導体基板 22のこの厚さ Τ4は外縁域 δにおける半導体基板 22全体 の厚さ T1とほぼ等しい値に設計されていることを意味する。換言すると、ダイアフラム 部 24の厚さ Τ2と、空間 23の高さ Τ3とを足した寸法 (Τ2+Τ3)は極めて微小であつ て、例えば、 5〜20 μ mである。空間高さ T3は、例えば、 1〜3 μ mである。
ここでは、中央域と外縁域に区別して呼称するが、両域は一体をなす一枚の半導 体基板から構成されている。
[0035] 特に、この構成では、第 2導電部 29を備えたことにより、外縁域 δ内において第 1 導電部 27とは重ならな 、任意の場所へ第 2バンプ 30を配置できるので、例えば外部 基板の要求に応じた接続位置に第 2バンプ 30を設けることが可能となる。ゆえに、第 2の圧力センサパッケージ 20は、外部基板との接続位置について高い自由度を有す る。
[0036] ところで、上述のように、従来のセンサチップでは、パッケージする際に、チップへ の熱的な影響 (ひずみ等)を考慮して、ワイヤボンドが不可欠であり、これが小型化を 阻害していた。しかしながら、本実施形態 (本発明)では、センサチップ自体にバンプ を設け、これを介して他の要素と直接連結できるようにされて!、る。
したがって、本第 1実施形態の圧力センサパッケージ 20にあっては、従来の圧力 センサパッケージが必須構成としていた圧力センサを内包する筐体などが不要となり 、また、例えば外部基板と接続可能な第 2バンプ 30も圧力センサ自体が備えている ので、極めて小型の圧力センサパッケージが得られる。また、筐体などを構成する各 部材が削減されると共に、筐体内に圧力センサをパッケージングする工程も不要とな るので、大幅な低コストィ匕が図れる。さらには、複数の電気的な接続箇所が生じてし まうワイヤボンドやリード等を用いておらず、第 2バンプ 30のみによって外部基板と接 続する構成としたことにより、優れた接続信頼性も同時に得られる。なお、本実施形 態は例示であって、仕様等によりゲージ抵抗又はリード抵抗等の配置が変わっても 良いことは言うまでもない。
[0037] <第 3実施形態 >
次に、図 4Α及び 4Βを参照して、本発明の第 3の実施形態の圧力センサパッケージ (第 2形式の圧力センサパッケージをベース)について説明する。図 4Αは、図 4Βに 示す第 3実施形態の圧力センサパッケージの C C線に沿った断面を示す。
図 4Α及び 4Βに示す圧力センサパッケージ 40は、図 3Α及び 3Βに示した第 2形式 の圧力センサパッケージ 20をベースとし、第 2バンプ 30のみ露出するように、外縁域 δを覆う第 2絶縁部 31を配置した例である。第 2絶縁部は、第 1絶縁部と同様のェポ キシ榭脂などが用いられる。
[0038] 本第 3実施形態の第 2形式の圧力センサパッケージ 40においては、第 2バンプ 30 以外の外縁域 δは全て第 2絶縁部 31によって被覆されているので、第 2バンプ 30を 例えば外部基板 (不図示)と接続させる際に、外部基板に対して第 2導電部 29の絶 縁性を十分に確保できる。
また、第 2絶縁部 31は、第 2導電部 29の外気と接触を遮断するため第 2導電部 2
9の耐食性を向上させる。また、第 2絶縁部 31があるために、第 2導電部 29が外部か ら受ける機械的な影響を大幅に低減する効果が得られる。
[0039] ここで、センサパッケージの要部を構成する基板の内部に各種回路を内蔵させた 構造を紹介する。
図 5Α及び 5Βは、このような基板を示し、図 5Αは、図 5Βに示す基板の D— D線に 沿った断面を示す。
図 5に示した基板力も構成される圧力センサパッケージ 60は、図 1A〜図 4Βに示 した第 1形式または第 2形式の圧力センサパッケージ 10、 20をベースとし、半導体基 板 11 (21)の外縁域 ( δ )にあって、電極パッドとして機能する第 1導電部 17 (27) が設けられていない基板内部に、例えば、信号増幅や補償などの機能を備えた回路 62を設けた例である。
このような回路 62が設けられる位置は、ダイアフラム部 64と重ならな 、位置であれ ばよぐ外縁域 j8 ( δ )内の特定の場所に限定されるものではない。なお、図 5Α及び 図 5Βにおいては特に、第 1導電部 17 (27)と回路 62の位置関係を明確に示すため 、その他の構成物は適宜割愛して描写した。
[0040] 上記第 1、第 2、及び第 3実施形態について記載したと同様の理由から、このような 形態の圧力センサパッケージ 60にあっても、基板内部に回路 62を備えているので、 従来は外付けとされて 、た構成が不要となるので、接続部材ゃ接続に要する製造ェ 程が削減できるので製造コストが削減されるとともに、基板外部力もの物理的あるい は化学的な影響が回避されるので電気的な接続品質の向上も図れる。
[0041] ここで、図 6を参照して、本発明に係る圧力センサパッケージを外部基板に実装し た一例を簡潔に説明する。
図 6は、例えば、各種のプリント基板力もなる外部基板 71に対して、圧力センサパッ ケージ 72はそれ自体が備えるバンプ 73によって接続されており、本発明に係る圧力 センサパッケージがチップサイズで実装可能であることを表している。
なお、図 6においては特に、上記の実装される状態を明確に示すため、その他の構 成物は適宜割愛して描写した。また、図 6のバンプ配置は、上述した第 2の圧力セン サパッケージに相当する例を示している力 本例はこれに限定されるものではなぐ たとえば第 1の圧力センサノ ッケージにおいても同様にチップサイズで実装可能であ る。
[0042] 以下では、図 7〜図 10を参照して、図 4A及び 4Bに示す第 3実施形態の圧力セン サパッケージ (第 2形式)を製造する工程にっ 、て説明する。
本発明の総ての実施形態においては、圧力センサに対して、チップサイズパッケ一 ジを実現するための加工をウェハレベルで行う。このような半導体基板の内部に空間 (基準圧力室) 23を備えてなる構造の圧力センサは、例えば S. Armbruster等により 開示された方法(S. Armbruster et.al, "A NOVEL MICROMACHINING PROCESS FOR THE FABRICATION OF MONOCRYSTALLINE SI-MEMBRANES USING PO ROUS SILICON", Digest of Technical Papers Transducers '03, 2003, pp. 246.)によ り作製される c
[0043] まず、図 7A及び 7Bに示すように、圧力センサ 21のダイアフラム 24以外の領域に、 絶縁榭脂層 28を形成する。本製造方法においては、エポキシ榭脂などの感光性の 榭脂を用い、一度ダイアフラムを含むウェハ全面に塗布した後、露光現像を行いダイ ァフラム部上にある榭脂のみを除去し、残部を絶縁榭脂層とした。このとき、電極パッ ドとして機能する第 1導電部 27上の榭脂も同時に除去することで、電気配線のため の開口部を効率よく形成した。
[0044] 次に、図 8A及び 8Bに示すように、第 1導電部 27と電気的に接続するように、第 2導 電部 29として配線層を形成する。本製造方法においては、めっきにより銅 (Cu)から なる配線層を形成した。なお、めっきにより配線層を形成することに限定されず、スパ ッタゃ CVD等、他の成膜方法でもよい。また、材料も Cuだけでなぐ Auや Ni等、他 の金属材料やこれらを適宜組み合わせたものでもよい。
[0045] 次 、で、図 9A及び 9Bに示すように、第 2導電部 29を含み、かつダイアフラム部 24 以外の領域に、第 2絶縁部 31として絶縁榭脂層を形成する。そして、エポキシ榭脂な どの感光性の榭脂を用い、一度ダイアフラムを含むウェハ全面に塗布した後、露光 現像を行いダイァフラム面上の榭脂も同時に除去することで、バンプ形成のための開 口部を効率よく形成した。
[0046] 最後に、図 10A及び 10Bに示すように、第 2導電部 29を構成する配線層と電気的 に接続するようにバンプ 30を形成する。ここでは、はんだボールを搭載してバンプを 形成した。なお、バンプの形成方法はこれに限定されず、印刷やめつきにより形成す ることが可能である。
[0047] 上述した工程により、図 4A及び 4Bの構成 (第 3実施形態)を備えた第 2の圧力セン サパッケージは作製される。しかしながら、図 1A及び 1Bや図 3A及び 3Bなどに例示 した圧力センサパッケージもほぼ同様の製造方法により作製することができる。
[0048] <第 4実施形態 >
先ず、図 13A及び 13Bを参照して、本発明の第 4の実施形態の圧力センサパッケ ージ (第 2形式の圧力センサパッケージ)について説明する。本実施形態の図におい ては、パッシベーシヨンなどの絶縁層を省略してある。
図 13Aは、図 13Bに示す第 4実施形態の圧力センサパッケージの J -J線に沿った 断面を示す。図 4A及び 4Bに示した第 3実施形態の圧力センサパッケージ 40にお ヽ ては第 1絶縁部が連続しているのに対して、図 13A及び 13Bに示す本第 4実施形態 の圧力センサパッケージ 50は、複数の第 2バンプ 30は個別に、周囲に配置される第 1絶縁部 28及び第 2絶縁部 31が個々に独立した島状部 35を成している。
[0049] 図 13A及び 13Bに示す圧力センサパッケージ 50では、第 1絶縁部 28の上に配置 され、第 1絶縁部 28から一部が露呈された第 1導電部 27に対して電気的に接続され る第 2導電部 29と、第 2導電部を覆う第 2絶縁部 31を備える。この第 2導電部 29は、 第 2絶縁部 31に形成された開口力もその一部が露呈され、この露呈領域すなわち前 記第 1導電部と重ならない位置において、第 2導電部 29と電気的に接続される第 2バ ンプ 30が配置されている。 斯カゝる構成ために、絶縁部 (絶縁榭脂層)がダイァフラム部に及ぼす影響を極力少 なくすることができる。これにより、ダイァフラムの感度を高く維持でき、高精度なセン サを構築できる。
[0050] また、副次的な効果として、このように、それぞれの第 2バンプ 30に対応して、互 ヽ に独立した島状部 35を形成することによって、島状部 35どうしの間は、ダイアフラム 部 24と半導体基板 22の外部との間を等圧に保つ圧力通路 Sを設けることが可能とな る。
[0051] 換言すると、ダイアフラム部 24が配置された半導体基板 22の中央領域が、第 1絶 縁部 28及び第 2絶縁部 31によって囲われることなぐ半導体基板 22の外部との間で 通路 Sによって、圧力の流入路と流出路を確保できる。
[0052] 例えば、狭い管路中にこうした圧力センサパッケージ 50を配置した場合、島状部 3 5どうしの間の通路 Sを通して、外部の圧力がダイアフラム部 24に正確に伝わるので 、狭小な環境下で密に設置された場合でも、正確かつ安定して圧力を検出すること ができる。
[0053] なお、島状部 35は、個々の第 2バンプ 30ごとに形成するのが最も好ましぐそれ以 外にも、複数の第 2バンプが 1つの島状部を成していてもよい。
[0054] また、第 2バンプ 30の半導体基板 22に対する配列は、図 13A及び 13Bに示したよ うな、ダイアフラム部 24を除いた外縁域において、各辺の中間部分に第 2バンプ 30 をそれぞれ配置する形態に限定されない。すなわち、例えば、図 14Aに示すように、 半導体基板 22のダイアフラム部 24を除いた外縁域の四辺の角部にそれぞれ第 2バ ンプ 30を配置してもよい。そしてこの第 2バンプ 30の周辺の島状部 35は、それぞれ 外縁域の四辺のうちの二辺に沿って延びるように配置してもよい。
[0055] この構成によって、島状部 35の長手方向 Lでは、気体や液体が流れる方向に沿つ て開口部を広く設けて、流入、流出をよりスムーズに行うことが可能となる。例えば、 細長い圧力通路などで、圧力通路の延長方向と島状部 35の長手方向 Lとが合致す るように圧力センサパッケージ 50を設置すれば、圧力通路中の圧力変化を正確に検 出することが可能になる。
[0056] なお、図 14Aの構成では、島状部 35の平面形状を液滴形に形成している力 図 1 4Bに示すように、島状部 35の平面形状を矩形に形成しても良い。またそれ以外にも 、島状部 35どうしの間隔が保たれるならば、島状部 35の平面形状を楕円形や不定 形など各種形状に形成しても良い。
[0057] こうした、島状部の効果を検証するために、第 1絶縁部及び第 2絶縁部を島状に形 成したものと、従来のように一律に広げて形成したものとを用いて、圧力センサとして の特性を測定して比較を行ったところ、外部応力により変動するオフセット温度特性 が大きく改善した。よって、本実施形態のような島状部の形成が、ダイァフラムに対す る応力の影響の低減に効果的であることが確認された。なお、本実施形態において は、第 2絶縁榭脂層がある構成について示したが、第 2絶縁榭脂層がなぐ第 1絶縁 榭脂層を島状にした構成においても同様の効果が得られる。
[0058] 図 15A〜15Dを参照して、本発明に係る圧力センサパッケージの第 2バンプを配 置する形成パターンを幾つ力説明する。
図 15Aは、一面が矩形を成す半導体基板 22の四方のコーナー領域に第 2バン プ 30を配置した例であり、それぞれの第 2バンプ 30は互いに等間隔で対称形に配 置されている。第 2バンプ 30を互いに等間隔で対称形に配置することによって、それ ぞれの第 2バンプ 30に掛力る応力の配分が均等にされるので、圧力センサパッケ一 ジ 90の検出特性の変動を抑えることが可能になる。
図 15Bに示すように、半導体基板 22の各辺の中間部分で、かつ互いに等間隔で対 称形になるように第 2バンプ 30を配置するようにしてもょ 、。図 15Aの構成と同様の 作用,効果が得られる。
[0059] また、図 15C及び 15Dに示すように、半導体基板 22に対して互いに等間隔で対称 形に配置される第 2バンプ 30は、互いに同じ大きさすることが好ましい。このように、 第 2バンプ 30の大きさを均一に揃えることによって、それぞれの第 2バンプ 30に加わ る応力を均等に配分できる。ゆえに、図 15A及び 15Bの配置は、圧力センサパッケ ージ 90の検出特性の変動を抑える効果をもたらす。なお、以上の実施形態において は、絶対圧タイプのセンサについて記載した。しかしながら、中央部の残部にダイァ フラム部に、応力の影響の出な 、範囲で(中央域の内部に形成された)空間部に到 達する貫通穴をあけることにより、相対圧タイプのセンサを構成することもできる。 [0060] 以下、従来構造に対する、本発明に係る圧力センサパッケージの特徴的な作用 · 効果について、図 16A〜図 17Bを参照して簡潔に説明する。
ダイァフラムの存在する表面側とは反対の裏面側にぉ 、て、ダイアフラムをバック アップするような基板部分が大きく存在するパッケージ構成力も成る本発明(図 16A) と、そのようなバックアップ (基板部分)の無 、従来構造(図 17A)とを比較するシミュ レーシヨン (実験)を行った。
図 16Aは、本発明に係る圧力センサパッケージの典型例 80を、他の基板、具体的 には、外部基板 71に実装した構成を示し、図 16Bは、この実装時におけるバンプ部 分に作用する熱応力の集中度合 、 (熱応力状態)を示す。
他方、図 17Aは、従来の典型的な圧力センサパッケージ 82を、他の基板、具体的 には、外部基板 71に実装した構成を示し、図 17Bは、この実装時におけるバンプ部 分に作用する熱応力の集中度合 、 (熱応力状態)を示す。
図 16Bおよび図 17Bとの対比 ·比較から、本発明構造 (典型例)の方が、発生する 熱応力の大小の面で極めて優れている、すなわち、発生する熱応力が小さい、という ことが良く理解できる。
[0061] 次に、本発明に係る圧力センサパッケージにおいて、基板厚(D1あるいは T1)の 大小に応じて、どのような作用 '効果の違いが現われるかについて、図 18A〜図 20 を参照して簡潔に説明する。
本発明に係る圧力センサパッケージとして、基板全厚の違う 3つのもの、すなわち、 図 18Aに示す厚肉例(具体的には、 400 /ζ πι)、図 19Aに示す中肉例(具体的には 、 200 ^ m) ,図 20Aに示す薄肉例(具体的には、 100 m)を用意して、それらを比 較するシミュレーション (実験)を行った。
図 18B、図 19B、図 20Bは、それぞれ、厚肉例、中肉例、薄肉例を実装した際のバ ンプ部分に作用する熱応力の集中度合 、 (熱応力の状態)を示す。
これらの図の対比 ·比較から、薄肉の場合には作用 ·効果の面で良好な結果を得る ことができないこと、および、肉厚が或る程度であった方が作用 '効果の面で優れて いること、等が理解できる。
具体的に、最適ないし実用的な基板厚の上限および下限を見い出すために、更な る実験 (熱信頼性試験)をおこなった。その実際の条件は次の通りである。
• -25°C/125°C 1000サイクル (サイクル実行後にバンプ部分の観察)
'センサ各部寸法: ϋ2 = 5 πι;ϋ3 = 2 ;ζ πι;ϋ1 = 100 ;ζ πι, 150 ^ m, 200 μ m, 300 μ m, 400 μ m, 500 μ m
'外部基板 71 =厚さ lmmのリジッド基板 (FR4)
実験結果としては、図 21からも理解され得るように、 200 m以上の厚さを有するも のでは、バンプ部の亀裂等の不具合は特に生じな力つた。し力しながら、 150 mで は 3ZlO、 100 111では5710、というように不良が生じた。
結論的には、基板厚 (D1または T1)は、 200 m以上であることが望ましぐ上限( 最大厚)としては、実装面から 500 m程度が実用上、望ましい、ということが言い得 る。
なお、上述した本シミュレーション (実験)において、熱応力状態を示す図は、半 導体パッケージとバンプとの接合部を上面 (表面)側力も見た図を示すものである。図 16B、図 17B、図 18B、図 19B、図 20Bにおいて、点線で囲まれた箇所は、ダイァフ ラム部を示す。また、黒色の濃く表されている箇所ほど、応力が大きく作用しているこ とを意味する。
産業上の利用可能性
本発明に係る圧力センサパッケージは、空気圧や水圧、油圧などの圧力を測定す る用途に使用され、特に、ウェハレベルチップサイズパッケージィ匕により筐体等を不 要とした構造を備えているので、薄型化や小型化、あるいは軽量ィ匕等が求められて V、る各種の電子部品に好適である。

Claims

請求の範囲
[1] 半導体基板の一面において、その中央域の内部に該一面と略平行して広がる空 間を備え、該空間の上部に位置する薄板化された領域をダイアフラム部とし、該ダイ ァフラム部に感圧素子を配置してなり、前記一面において、前記ダイアフラム部を除 いた外縁域に配置され、前記感圧素子と電気的に接続された第 1導電部を少なくと も備えた圧力センサと、前記第 1導電部には個別に、その上に配置され電気的に接 続される第 1バンプと、を備えてなる圧力センサパッケージであって、
前記外縁域における半導体基板の厚さを Dl、前記ダイアフラム部の厚さを D2、前 記空間の高さを D3、前記中央域において、前記 D2と前記 D3を除いた半導体基板 の残部の厚さを D4、と定義したとき、(D2 + D3)《D4、かつ、 D1 ^D4、であること を特徴とする圧力センサパッケージ。
[2] 半導体基板の一面において、その中央域の内部に該一面と略平行して広がる空 間を備え、該空間の上部に位置する薄板化された領域をダイアフラム部とし、該ダイ ァフラム部に感圧素子を配置してなり、前記一面において、前記ダイアフラム部を除 いた外縁域に配置され、前記感圧素子と電気的に接続された第 1導電部を少なくと も備えた圧力センサと、前記外縁域を覆うように設けられる第 1絶縁部と、該第 1絶縁 部の上に配置され、前記第 1導電部と個別に、電気的に接続される第 2導電部と、該 第 2導電部には個別に、その上に配置され前記第 1導電部と重ならない位置におい て、電気的に接続される第 2バンプと、を備えてなる圧力センサパッケージであって、 前記外縁域における半導体基板の厚さを Tl、前記ダイアフラム部の厚さを Τ2、前 記空間の高さを Τ3、前記中央域において、前記 Τ2と前記 Τ3を除いた半導体基板 の残部の厚さを Τ4、と定義したとき、(Τ2+Τ3)《Τ4、かつ、 Τ1 ^Τ4、であることを 特徴とする圧力センサパッケージ。
[3] 前記第 2バンプのみ露呈させて、前記第 2導電部を含む前記外縁域を覆うように設 けられる第 2絶縁部を備えたことを特徴とする請求項 2に記載の圧力センサパッケ一 ジ。
[4] 前記第 2バンプのみ露呈させて、前記第 2導電部を覆うように前記第 1絶縁部に重 ねて設けられる第 2絶縁部を備え、前記第 1絶縁部、第 2絶縁部の少なくとも一方は 島状を成す前記第 2バンプの周囲に配置されることを特徴とする請求項 2に記載の 圧力センサパッケージ。
[5] 前記第 2バンプどうしは互いに対称となる位置に配置されることを特徴とする請求項
2に記載の圧力センサパッケージ。
[6] 前記圧力センサ内に、増幅回路及び Z又は補償回路を備えたことを特徴とする請 求項 1又は 2に記載の圧力センサパッケージ。
[7] 第 1絶縁部は、島状を有することを特徴とする請求項 2に記載の圧力センサパッケ ージ。
[8] 請求項 1又は 2に記載の圧力センサパッケージを搭載することを特徴とする電子部
PCT/JP2007/050801 2006-01-19 2007-01-19 圧力センサパッケージ及び電子部品 WO2007083748A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07707089A EP1975587A1 (en) 2006-01-19 2007-01-19 Pressure sensor package and electronic part
JP2007533809A JPWO2007083748A1 (ja) 2006-01-19 2007-01-19 圧力センサパッケージ及び電子部品
CN2007800031760A CN101375146B (zh) 2006-01-19 2007-01-19 压力传感器封装体和电子器件
US12/175,245 US7549344B2 (en) 2006-01-19 2008-07-17 Pressure sensor package and electronic part

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-010961 2006-01-19
JP2006010961 2006-01-19
JP2006-256003 2006-09-21
JP2006256003 2006-09-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/175,245 Continuation US7549344B2 (en) 2006-01-19 2008-07-17 Pressure sensor package and electronic part

Publications (1)

Publication Number Publication Date
WO2007083748A1 true WO2007083748A1 (ja) 2007-07-26

Family

ID=38287698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050801 WO2007083748A1 (ja) 2006-01-19 2007-01-19 圧力センサパッケージ及び電子部品

Country Status (5)

Country Link
US (1) US7549344B2 (ja)
EP (1) EP1975587A1 (ja)
JP (2) JPWO2007083748A1 (ja)
CN (1) CN101375146B (ja)
WO (1) WO2007083748A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065883A1 (en) * 2006-11-29 2008-06-05 Fujikura Ltd. Pressure sensor module
CN102519655A (zh) * 2008-04-24 2012-06-27 株式会社藤仓 压力传感器模块及电子部件

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673769B2 (en) * 2007-06-20 2014-03-18 Lam Research Corporation Methods and apparatuses for three dimensional integrated circuits
JP2010199148A (ja) * 2009-02-23 2010-09-09 Fujikura Ltd 半導体センサデバイス及びその製造方法、パッケージ及びその製造方法、モジュール及びその製造方法、並びに電子機器
JP5216041B2 (ja) * 2010-04-07 2013-06-19 ダイキン工業株式会社 透明圧電シートをそれぞれ有するフレーム付透明圧電シート、タッチパネル、および電子装置
US8378435B2 (en) 2010-12-06 2013-02-19 Wai Yew Lo Pressure sensor and method of assembling same
CN102589753B (zh) 2011-01-05 2016-05-04 飞思卡尔半导体公司 压力传感器及其封装方法
US8511171B2 (en) * 2011-05-23 2013-08-20 General Electric Company Device for measuring environmental forces and method of fabricating the same
US9029999B2 (en) 2011-11-23 2015-05-12 Freescale Semiconductor, Inc. Semiconductor sensor device with footed lid
JP5935352B2 (ja) * 2012-01-27 2016-06-15 富士電機株式会社 Son構造を有する物理量センサの製造方法。
US9297713B2 (en) 2014-03-19 2016-03-29 Freescale Semiconductor,Inc. Pressure sensor device with through silicon via
US9362479B2 (en) 2014-07-22 2016-06-07 Freescale Semiconductor, Inc. Package-in-package semiconductor sensor device
CN107527874B (zh) 2016-06-20 2023-08-01 恩智浦美国有限公司 腔式压力传感器器件
CN107941407B (zh) * 2017-11-19 2019-05-21 东北大学 一种微压高过载传感器芯片

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495740A (ja) * 1990-08-06 1992-03-27 Toyota Autom Loom Works Ltd 半導体装置
JP2002082009A (ja) * 2000-06-30 2002-03-22 Denso Corp 圧力センサ
JP2002340714A (ja) 2001-05-15 2002-11-27 Matsushita Electric Works Ltd 半導体圧力センサ及びその製造方法
JP2004170148A (ja) * 2002-11-18 2004-06-17 Fujikura Ltd 絶対圧タイプ圧力センサモジュール
WO2004068096A1 (ja) * 2003-01-30 2004-08-12 Fujikura Ltd. 半導体圧力センサ及びその製造方法
JP2006010961A (ja) 2004-06-24 2006-01-12 Mitsubishi Cable Ind Ltd フォトニッククリスタルファイバおよびレーザ加工機
JP2006105624A (ja) * 2004-09-30 2006-04-20 Sumitomo Osaka Cement Co Ltd ダイアフラムチップとそれを用いた圧力センサ及びダイアフラムチップの製造方法
JP2006256003A (ja) 2005-03-16 2006-09-28 Honda Motor Co Ltd 構造板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210935A (ja) * 1995-02-07 1996-08-20 Tokai Rika Co Ltd 圧力センサ
US6809421B1 (en) * 1996-12-02 2004-10-26 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
JP4074051B2 (ja) 1999-08-31 2008-04-09 株式会社東芝 半導体基板およびその製造方法
JP4250868B2 (ja) 2000-09-05 2009-04-08 株式会社デンソー 半導体圧力センサの製造方法
JP4322508B2 (ja) * 2003-01-15 2009-09-02 新光電気工業株式会社 半導体装置の製造方法
JP2006324320A (ja) * 2005-05-17 2006-11-30 Renesas Technology Corp 半導体装置
JP2007234881A (ja) * 2006-03-01 2007-09-13 Oki Electric Ind Co Ltd 半導体チップを積層した半導体装置及びその製造方法
JP4955349B2 (ja) * 2006-09-07 2012-06-20 新光電気工業株式会社 半導体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495740A (ja) * 1990-08-06 1992-03-27 Toyota Autom Loom Works Ltd 半導体装置
JP2002082009A (ja) * 2000-06-30 2002-03-22 Denso Corp 圧力センサ
JP2002340714A (ja) 2001-05-15 2002-11-27 Matsushita Electric Works Ltd 半導体圧力センサ及びその製造方法
JP2004170148A (ja) * 2002-11-18 2004-06-17 Fujikura Ltd 絶対圧タイプ圧力センサモジュール
WO2004068096A1 (ja) * 2003-01-30 2004-08-12 Fujikura Ltd. 半導体圧力センサ及びその製造方法
JP2006010961A (ja) 2004-06-24 2006-01-12 Mitsubishi Cable Ind Ltd フォトニッククリスタルファイバおよびレーザ加工機
JP2006105624A (ja) * 2004-09-30 2006-04-20 Sumitomo Osaka Cement Co Ltd ダイアフラムチップとそれを用いた圧力センサ及びダイアフラムチップの製造方法
JP2006256003A (ja) 2005-03-16 2006-09-28 Honda Motor Co Ltd 構造板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065883A1 (en) * 2006-11-29 2008-06-05 Fujikura Ltd. Pressure sensor module
US7849749B2 (en) 2006-11-29 2010-12-14 Fujikura Ltd. Pressure sensor module
CN102519655A (zh) * 2008-04-24 2012-06-27 株式会社藤仓 压力传感器模块及电子部件

Also Published As

Publication number Publication date
EP1975587A1 (en) 2008-10-01
US7549344B2 (en) 2009-06-23
JPWO2007083748A1 (ja) 2009-06-11
JP2009180746A (ja) 2009-08-13
CN101375146B (zh) 2010-08-11
US20080276713A1 (en) 2008-11-13
JP4991788B2 (ja) 2012-08-01
CN101375146A (zh) 2009-02-25

Similar Documents

Publication Publication Date Title
WO2007083748A1 (ja) 圧力センサパッケージ及び電子部品
US7530276B2 (en) Semiconductor pressure sensor and manufacturing method thereof
US7849749B2 (en) Pressure sensor module
CN107131998A (zh) 用于恶劣媒介应用的半导体压力传感器
JP2007248212A (ja) 圧力センサパッケージ及び電子部品
JP2014048072A (ja) 圧力センサモジュール
JP2007240250A (ja) 圧力センサ、圧力センサパッケージ、圧力センサモジュール、及び電子部品
JP3915605B2 (ja) 圧力センサ装置
JP3908266B2 (ja) 半導体圧力センサ及びその製造方法
JP2005127750A (ja) 半導体センサおよびその製造方法
JP6714439B2 (ja) 歪検出器及びその製造方法
JP2009265012A (ja) 半導体センサ
US20200399118A1 (en) Electronic device
JP4706634B2 (ja) 半導体センサおよびその製造方法
JP5779487B2 (ja) 圧力センサモジュール
WO2022080130A1 (ja) センサモジュールおよびその製造方法
US7765870B2 (en) Acceleration sensor and method of manufacturing the same
JP2010286407A (ja) 圧力センサアレイ、圧力センサアレイパッケージ及びその製造方法、並びに圧力センサモジュール及び電子部品
JP2010107215A (ja) 圧力センサ、圧力センサパッケージ及びその製造方法、並びに圧力センサモジュール及び電子部品
JP2010096613A (ja) 圧力センサ
JP2011004306A (ja) 圧電デバイス
JP2004247397A (ja) ワイヤボンディング用構造体
JP2004245631A (ja) 圧力センサ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007533809

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200780003176.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007707089

Country of ref document: EP