WO2007092905A2 - Intra-mode region-of-interest video object segmentation - Google Patents

Intra-mode region-of-interest video object segmentation Download PDF

Info

Publication number
WO2007092905A2
WO2007092905A2 PCT/US2007/061803 US2007061803W WO2007092905A2 WO 2007092905 A2 WO2007092905 A2 WO 2007092905A2 US 2007061803 W US2007061803 W US 2007061803W WO 2007092905 A2 WO2007092905 A2 WO 2007092905A2
Authority
WO
WIPO (PCT)
Prior art keywords
video frame
roi
detected
features
facial feature
Prior art date
Application number
PCT/US2007/061803
Other languages
French (fr)
Other versions
WO2007092905A3 (en
Inventor
Haohong Wang
Khaled Helmi El-Maleh
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to JP2008554492A priority Critical patent/JP4988770B2/en
Priority to EP07763076A priority patent/EP1994761A2/en
Publication of WO2007092905A2 publication Critical patent/WO2007092905A2/en
Publication of WO2007092905A3 publication Critical patent/WO2007092905A3/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • G06V40/162Detection; Localisation; Normalisation using pixel segmentation or colour matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • G06V40/165Detection; Localisation; Normalisation using facial parts and geometric relationships
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • G06V40/167Detection; Localisation; Normalisation using comparisons between temporally consecutive images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/19Sensors therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/167Position within a video image, e.g. region of interest [ROI]

Definitions

  • the disclosure relates to video object segmentation and, more particularly, techniques for automatic segmentation of region-of-interest (ROI) video objects from video sequences for multimedia applications.
  • ROI region-of-interest
  • ROI object segmentation may be useful for a wide range of multimedia applications that utilize video sequences.
  • An ROI object may be referred to as a "foreground” object within a video frame and non- ROI areas may be referred to as "background” areas within the video frame.
  • ROI object segmentation enables selected foreground objects of a video sequence that may be of interest to a viewer to be extracted from the background of the video sequence.
  • Multimedia applications may then preferentially utilize the ROI object segmented from the video sequence.
  • Typical examples of an ROI object are a human face or a head and shoulder area of a human body.
  • an ROI object segmented from a captured video sequence can be input into a facial database system.
  • the facial database system may use the segmented ROI object, e.g., a human face, to accurately match with target face objects stored within the database. Law enforcement agencies may utilize this application of ROI object segmentation to identify suspects from surveillance video sequences.
  • VT video telephony
  • the video sequence encoder may allocate more resources to the segmented ROI object to code the ROI object with higher quality for transmission to a recipient.
  • VT applications permit users to share video and audio information to support applications such as videoconferencing.
  • users may send and receive video information, only receive video information, or only send video information.
  • a recipient generally views received video information in the form in which it is transmitted from a sender. With preferential encoding of the segmented ROI object, a recipient is able to view the ROI object more clearly than non-ROI areas of the video sequence.
  • ROI object corresponding to the face of a human presenter such as a news reporter or talk show host.
  • a statistical model-based object segmentation algorithm abstracts an ROI object into a blob- based statistical region model and a shape model.
  • the ROI object segmentation problem may be converted into a model detection and tracking problem.
  • a foreground object may be extracted from a video frame based on disparity estimation between two views from a stereo camera setup.
  • a further case proposes a ROI object segmentation algorithm that includes both region-based and feature-based segmentation approaches. The algorithm uses region descriptors to represent the object regions, which are homogeneous with respect to the motion, color and texture features, and tracks them across the video sequence.
  • the disclosure is directed to techniques for automatic segmentation of a region-of-interest (ROI) video object from a video sequence.
  • ROI object segmentation enables selected ROl or "foreground” objects of a video sequence to be extracted from non-ROI or "background” areas of the video sequence.
  • Examples of an ROI object are a human face or a head and shoulder area of a human body.
  • the disclosed techniques include a hybrid technique that combines ROI feature detection, region segmentation, and background subtraction. In this way, the disclosed techniques may provide accurate foreground object generation and low- complexity extraction of the foreground object from the video sequence.
  • the disclosed techniques also include a technique for verification of facial features detected within a video frame of the video sequence based on inherent properties of facial features, such as symmetric location and shape characteristics.
  • the disclosed techniques include a technique for separation of detected facial features for multiple individual faces within a video frame of the video sequence.
  • the multi-face separation technique may be mapped into a maximum matching graph theory problem that reduces computational complexity from exponential to polynomial. In this way, the techniques provide accurate feature detection for each face within a frame of the video sequence.
  • An ROI object segmentation system may implement the techniques described herein.
  • the ROI object segmentation system supports intra- mode segmentation and inter-mode segmentation.
  • Intra-mode segmentation processes a frame of a video sequence independently from other frames in the video sequence without using ROI object motion information.
  • Inter-mode segmentation processes a frame of a video sequence based on motion information for the ROI object indicating motion between the current frame and a previous or subsequent frame of the video sequence.
  • the ROI object segmentation system may decide whether to perform intra-mode segmentation or inter-mode segmentation on a received frame based on one or more segmentation mode decision factors.
  • the disclosed techniques may further include a technique for generation of a foreground object during intra-mode segmentation by automatically selecting defined regions of a video frame located within an ROI object shape from a set of candidate regions within the entire frame.
  • the disclosed techniques also include a technique for detecting moving regions within a foreground object during inter- mode segmentation based on background modeling and subtraction. Successfully detecting the moving foreground region may improve performance speed of ROI feature detection during intcr-modc segmentation.
  • the disclosure provides a method comprising receiving a video frame of a video sequence, detecting ROI features within the video frame, and approximating a ROI object shape within the video frame based on the detected ROI features.
  • the method also comprises segmenting the video frame into multiple candidate regions based on the detected ROI features, and selecting one or more of the candidate regions located within the ROI object shape of the video frame as an ROI object.
  • the disclosure provides a computer-readable medium comprising instructions that cause a programmable processor to receive a video frame of a video sequence, detect ROI features within the video frame, and approximate a ROI object shape within the video frame based on the detected ROI features.
  • the instructions also cause the programmable processor to segment the video frame into multiple candidate regions based on the detected ROI features, and select one or more of the candidate regions located within the ROI object shape of the video frame as an ROI object.
  • the disclosure provides an automatic ROI object segmentation system comprising a ROI feature detector that detects ROI features within a received video frame of a video sequence, and an object shape approximation module that approximates a ROI object shape within the received video frame based on the detected ROI features.
  • the automatic ROI object segmentation system also comprises a region segmentation module that segments the received video frame into multiple candidate regions based on the detected ROI features, and a object generation module that selects one or more of the candidate regions located within the ROI object shape of the received video frame as an ROI object.
  • the disclosure provides a method comprising receiving a video frame of a video sequence, detecting ROI features within the video frame, wherein the ROI features include a face mask including eye features and mouth features, and segmenting the video frame into multiple candidate regions based on the detected ROl features.
  • the method also comprises combining eye feature candidates and mouth feature candidates into eye-mouth triangles, verifying the eye-mouth triangles based on orientation of the eye-mouth triangles within the video frame, and selecting one or more of the candidate regions as an ROI object based on the verification.
  • the disclosure provides a computer-readable medium comprising instructions to cause a programmable processor to receive a video frame of a video sequence, detect ROI features within the video frame, wherein the ROI features include a face mask including eye features and mouth features, and segment the video frame into multiple candidate regions based on the detected ROI features.
  • the instructions also cause the programmable processor to combine eye feature candidates and mouth feature candidates into eye-mouth triangles, verify the eye-mouth triangles based on orientation of the eye-mouth triangles within the video frame, and select one or more of the candidate regions as an ROI object based on the verification.
  • the disclosure provides a system comprising an ROI feature detector that detects ROI features within a video frame of a video sequence, wherein the ROI features include a face mask including eye features and mouth features.
  • the system also comprises a region segmentation module that segments the video frame into multiple candidate regions based on the detected ROI features, a feature verification module that combines eye feature candidates and mouth feature candidates into eye-mouth triangles, and verifies the eye-mouth triangles based on orientation of the eye-mouth triangles within the video frame, and an object generation module that selects one or more of the candidate regions as an ROI object based on the verification.
  • the techniques described herein may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the techniques may be realized in part by a computer readable medium comprising program code containing instructions that, when executed by a programmable processor, performs one or more of the methods described herein.
  • FIG. 1 is a block diagram illustrating a region-of-interest (ROI) object segmentation system that implements techniques for automatic segmentation of an ROI video object from a video sequence.
  • ROI region-of-interest
  • FIGS. 2A and 2B arc diagrams illustrating a definition of an ROI object and a non-ROI area within a video frame of a video sequence.
  • FIG. 3 illustrates changes in object movement/rotation and shape deformation for an object presented within an ROI object of a video sequence.
  • FIG. 4 illustrates changes in facial expression for a person within an ROI object of a video sequence.
  • FIG. 5A is a flow diagram that illustrates an exemplary operation of the ROI object segmentation system from FIG. 1.
  • FIG. 5B is a. flowchart illustrating the segmentation mode decision from FIG. 5 A in greater detail.
  • FIG. 6 is a block diagram illustrating a ROI object segmentation system when performing intra-mode segmentation on a frame of a video sequence received from a video source.
  • FIGS. 7-13 are screen shots illustrating exemplary results of the techniques implemented by a ROI object segmentation system during intra-mode segmentation.
  • FIG. 14 is a flow diagram illustrating operation of a ROI object segmentation system performing intra-mode segmentation.
  • FIG. 15 is a block diagram illustrating a ROI object segmentation system when performing inter-mode segmentation on a frame of a video sequence received from a video source.
  • FIGS. 16 and 17 are screen shots illustrating exemplary results of the techniques implemented by a ROI object segmentation system during inter-mode segmentation.
  • FIG. 18 is a flow diagram illustrating operation of a ROI object segmentation system performing inter-mode segmentation.
  • FIG. 1 is a block diagram illustrating a region-of-interest (ROI) object segmentation system 14 that implements techniques for automatic segmentation of a ROI.
  • ROI region-of-interest
  • ROI video object from a video sequence may be useful in a wide range of multimedia applications that utilize video sequences, such as video telephony (VT) applications and video surveillance applications.
  • VT video telephony
  • video surveillance applications such as video telephony (VT) applications and video surveillance applications.
  • a ROI object segmented from a captured video sequence can be input into a facial database system.
  • the facial database system may use the segmented ROI object, e.g., a human face, to accurately match with target face objects stored within the database.
  • a ROI object segmented from a captured video sequence can be input into a video sequence encoder.
  • the video sequence encoder may allocate more resources to the segmented ROI object to code the ROI object with higher quality for transmission to a recipient.
  • Other examples include video broadcasting applications in which a person presents informational video such as a live or prerecorded news or entertainment broadcast.
  • informational video such as a live or prerecorded news or entertainment broadcast.
  • system 14 receives a video sequence from video source 12.
  • Video source 12 may be a video capture device, such as a camera, that obtains a video sequence, or a video archive storing a pre-recorded video sequence.
  • System 14 automatically segments an ROI object from the received video sequence.
  • ROI object segmentation system 14 stores video frames of the video sequence obtained from video source 12 in video memory 16 during the ROI object segmentation process. After each frame of the video sequence is processed, system 14 sends an output image of the segmented video frame to a multimedia application 18.
  • an ROI object may comprise a human face or a head and shoulder area of a human body.
  • the ROI object may be referred to as a "foreground” object within a video frame and non-ROI areas may be referred to as "background” areas within the video frame.
  • ROI object segmentation system 14 extracts one or more selected foreground objects of frames in a video sequence that may be of interest to a user of multimedia application 18 from background areas of the video sequence.
  • Multimedia application 18 may preferentially utilize the ROI object segmented from the video sequence.
  • multimedia application 18 may comprise a video surveillance application incorporating a facial database system.
  • multimedia application 18 may comprise a video telephony (VT) application incorporating ROI-enabled video encoder-decoders (CODECs).
  • VT video telephony
  • CODECs ROI-enabled video encoder-decoders
  • a ROI object segmented from a captured video sequence can be input into a facial database system.
  • video source 12 may be a video archive that stores a pre-recorded video sequence from a surveillance camera.
  • the facial database system may use the segmented ROI object, e.g., a human face, to accurately match with target face objects stored within the database. Law enforcement agencies may utilize ROI object segmentation system 14 with a facial database system in order to identify suspects from surveillance video sequences.
  • a ROI object segmented from a captured video sequence can be input into a ROI-enabled video encoder.
  • VT applications permit users to share video and audio information to support applications such as videoconferencing.
  • users may send and receive video information, only receive video information, or only send video information.
  • video source 12 may be a video capture device, such as a camera, that obtains a video sequence.
  • video source 12 may comprise a video camera included within a communication device capable of participating in video telephony with another communication device.
  • a ROI-enabled video encoder may reside within a communication device that further includes appropriate transmit, receive, modem, and processing electronics to support wired or wireless communication.
  • the ROI-cnablcd video encoder may reside within a wireless mobile terminal or a wired terminal equipped for communication with other terminals.
  • wireless mobile terminals include mobile radio telephones, mobile personal digital assistants (PDAs), mobile computers, or other mobile devices equipped with wireless communication capabilities and video encoding and/or decoding capabilities.
  • the ROI-enabled video encoder may reside within a so-called camera phone or video phone used in VT applications.
  • Examples of wired terminals include desktop computers, video telephones, network appliances, set-top boxes, interactive televisions, or the like.
  • the ROT-enabled video encoder may preferentially encode the segmented ROT object included in the output image received from ROI object segmentation system 14. For example, the ROI-enabled video encoder may allocate additional coding bits to the ROI object of the video frame and allocate a reduced number of coding bits to non-ROI areas of the video frame.
  • the amount of encoding bits available to encode a video frame can be low and vary according to wireless channel conditions. Accordingly, preferential allocation of coding bits to ROI objects can be helpful in improving the visual quality of the ROI object while efficiently conforming to applicable bit rate requirements.
  • a recipient is able to view the ROI object more clearly than non-ROI areas of the video sequence.
  • ROI object segmentation system 14 may implement techniques for automatic segmentation of a ROI video object from a video sequence.
  • the disclosed techniques include a hybrid technique that combines detecting ROI features (i.e., a face mask and facial features) within a video frame of the video sequence, segmenting the video frame into multiple candidate regions, and performing background (non-ROI) subtraction based on the video frame and a previous video frame of the video sequence.
  • ROI features i.e., a face mask and facial features
  • background (non-ROI) subtraction based on the video frame and a previous video frame of the video sequence.
  • the disclosed techniques may provide accurate foreground (ROI) object generation and low-complexity extraction of the foreground object from frames in the video sequence.
  • the disclosed techniques also include a technique for verification of facial features detected within a video frame of the video sequence based on inherent properties of facial features, such as symmetric location and shape characteristics.
  • the disclosed techniques include a technique for separation of detected facial features for multiple individual faces within a video frame of the video sequence.
  • the multi-face separation technique may be mapped into a maximum matching scheme problem that reduces computational complexity from exponential to polynomial. In this way, the techniques provide accurate feature detection for each face within a frame of the video sequence with reduce processing requirements.
  • ROI object segmentation system 14 supports multiple, e.g., two, modes of segmentation: intra-mode and inter-mode.
  • Intra-mode segmentation processes a frame of a video sequence independently from other frames in the video sequence. In this case, no ROI object motion information is used. Intra-mode segmentation is a first, high-complexity segmentation mode. Tnter-mode segmentation is a second, low- complexity segmentation mode that processes a frame of a video sequence based on previous or subsequent frame information, and is generally a lower complexity segmentation mode.
  • the inter-mode segmentation makes use of motion information for the ROl object between the current frame and one or more previous or subsequent frames of the video sequence. Hence, inter-mode segmentation is a relatively low- complexity segmentation mode.
  • ROI object segmentation system 14 may decide whether to perform intra-mode segmentation or intcr-modc segmentation on a received frame based on one or more segmentation mode decision factors. Segmentation of on ROI object from the video frame without reference to motion information for the video frame, i.e., intra-mode segmentation, is applied when the high-complexity segmentation mode is selected. Segmentation of an ROI object from the video frame based on motion information for the video frame and a different video frame of the video sequence is applied when the low-complexity segmentation mode is selected.
  • the disclosed techniques further include a technique for generation of a foreground object during intra-mode segmentation by automatically selecting defined regions of a video frame located within a ROI object shape from a set of candidate regions within the entire frame.
  • the disclosed techniques also include a technique for detecting moving regions within a foreground object during inter-mode segmentation based on background modeling and subtraction. Successfully detecting the moving foreground region may improve performance speed of ROl feature detection during inter-mode segmentation.
  • the background modeling and subtraction technique is robust for noise and moving background regions.
  • the technique is also substantially more efficient than moving object segmentation approaches employing computationally intensive motion estimation operations.
  • ROI object segmentation system 14 first detects a face mask within a video frame and then detects facial features, such as human eyes and a mouth, within the face mask. System 14 then performs feature verification based on geometric properties and shape characteristics of human facial features to remove false facial feature detections. After that, system 14 determines whether the frame includes more than one human face and separates the detected facial features into groups for the individual faces. Based on the geometric locations of the facial features and an ROI geometric model, the ROI object shape is approximated.
  • the ROT geometric model may comprise a human head and shoulder geometric model.
  • System 14 performs region growing on the video frame to generate a set of candidate regions.
  • System 14 then generates a foreground object by selecting regions located within the resulting ROI object shape from the set of candidate regions for the entire frame. System 14 then determines if there is more than one foreground object and merges multiple foreground objects together to form a combined foreground object for an output image. Upon merging the multiple foreground objects, if applicable, system 14 sends the output image of the segmented frame to multimedia application 18, e.g., for personal identity detection in surveillance applications or preferential encoding in VT applications.
  • multimedia application 18 e.g., for personal identity detection in surveillance applications or preferential encoding in VT applications.
  • ROI object segmentation system 14 uses a background modeling and subtraction technique to take advantage of the temporal correlation of consecutive video frames of the video sequence. In this way, the technique described herein provides enhanced efficiency.
  • System 14 classifies moving pixels within the ROI object between the current frame and the previous frame as foreground pixels.
  • System 14 then generates a moving foreground region based on the foreground pixels.
  • System 14 may then detect ROI features within the moving foreground region and the face mask and facial feature locations within the previous frame. In this way, system 14 reduces the computational complexity of performing region segmentation for each frame of the video sequence.
  • System 14 then merges the moving foreground region with the foreground object of the previous frame to from an output image and sends the output image of the segmented frame to multimedia application 18.
  • ROI object segmentation system 14 may be implemented in hardware, software, firmware or any combination thereof.
  • various aspects of ROI object segmentation system 14 may be implemented within one or more digital signal processors (DSPs), microprocessors, application specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or any other equivalent integrated or discrete logic circuitry, as well as any combinations of such components.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable logic arrays
  • processors may generally refer to any of the foregoing logic circuitry, alone or in combination with other logic circuitry, and may refer to one or more of such processors.
  • FIGS. 2A and 2B are diagrams illustrating a definition of a ROI object 24 and a non-ROl area 25 within a video frame 22 of a video sequence.
  • the ROI object is depicted as a head and shoulder ROI object 24.
  • the ROI object may comprise a rectangular ROI object or a non- rectangular ROI object that may have a rounded or irregular shape.
  • ROI object 24 contains the face 26 of a person presented in video frame 22.
  • the non-ROI area 25, i.e., the background, is highlighted by shading in FIG. 2B.
  • ROI object 24 may be automatically segmented from a video sequence by ROI object segmentation system 14 from FIG. 1.
  • a communication device may preferentially encode ROI object 24 with an ROI-enabled encoder.
  • ROI object 24 may encompass a portion of video frame 22 that contains the face 26 of a participant in a videoconference.
  • Other examples include preferential encoding of the face of a person presenting information in streaming video, e.g., an informational video or a news or entertainment broadcast.
  • the size, shape and position of ROI object 24 may be fixed or adjustable, and may be defined, described or adjusted in a variety of ways.
  • ROI object 24 permits a video sender to emphasize individual objects within a transmitted video frame 22, such as the face 26 of a person. Conversely, ROI object 24 permits a video recipient to more clearly view desired objects within a received video frame 22. In either case, face 26 within ROI object 24 is encoded with higher image quality relative to non-ROI areas 25 such as background regions of video frame 22. In this way, the user is able to more clearly view facial expressions, lip movement, eye movement, and the like. In some embodiments, ROI object also may be encoded not only with additional coding bits, but also enhanced error detection and resiliency. [0053] FIG. 3 illustrates changes in object movement/rotation and shape deformation for an object presented within an ROI object of a video sequence.
  • FIG. 3 illustrates changes in facial expression for a person within an ROI object of a video sequence.
  • the mouth of the person pictured in Frames 0 and 1 transitions from a substantially closed position to a wide open position.
  • FIGS. 3 and 4 represent cases of large amounts of movement in the ROI object of a video sequence.
  • FIG. 5 A is a flow diagram that illustrates an exemplary operation of ROI object segmentation system 14 from FlG. 1.
  • ROl object segmentation system 14 implements techniques for automatic segmentation of a ROI object from a video sequence. As described above, ROI object segmentation system 14 supports both intra-mode segmentation and inter-mode segmentation to process a video sequence.
  • ROI object segmentation system 14 receives a first frame of a video sequence from video source 12 (30). ROI object segmentation system 14 performs intra-mode segmentation on the received frame (32). Intra-mode segmentation processes the current frame of the video sequence independently from other frames in the video sequence. In the case of intra-mode segmentation, ROI object segmentation system 14 uses no ROI object motion information.
  • ROI object segmentation system 14 While performing intra-mode segmentation, ROI object segmentation system 14 stores the received frame of the video sequence in video memory 16. The ROI object segmentation system 14 then sends an output image of the segmented frame to multimedia application 18 (34). [0056] ROI object segmentation system. 14 receives the next frame of the video sequence from video source 12 (36). System 14 then makes a mode decision to determine whether to perform intra-mode segmentation or inter-mode segmentation on the received frame (37). The mode decision may be based on one or more segmentation mode decision factors.
  • system 14 may decide which segmentation mode to perform on the received frame based on segmentation mode decision factors such as computational complexity of the received frame, a desired quality of segmentation for the received frame, an amount of similarity between the received frame and the previous frame, an amount of motion activity between the received frame and the previous frame, the segmentation mode used for the previous frame, and a number of frames segmented since the last intra-mode process.
  • the segmentation mode decision may be based on additional segmentation mode decision factors.
  • ROI object segmentation system 14 retrieves motion information from the previous frame of the video sequence, e.g., from video memory 16, and uses motion information for the ROT object between the current frame and the previous frame. While performing inter-mode segmentation, ROI object segmentation system 14 stores the received frame of the video sequence in video memory 16. The ROI object segmentation system 14 then sends an output image of the segmented frame to multimedia application 18 (40).
  • ROI object segmentation system 14 continues to receive frames of the video sequence from video source 12. When system 14 decides to perform inter-mode segmentation (yes branch of 37), ROI segmentation system 14 again performs intra- mode segmentation on the received frame (32). Therefore, ROI object segmentation system 14 performs intra-mode segmentation on some of the frames of the video sequence received from video source 12 and performs inter-mode segmentation on the other frames of the video sequence.
  • FIG. 5B is a flowchart illustrating the segmentation mode decision (step 37) from FIG. 5A in greater detail.
  • ROI object segmentation system 14 may make the segmentation mode decision based on one or more segmentation mode decision factors.
  • System 14 may perform one or more of the steps illustrated in FIG. 5 to determine the mode of segmentation to perform on a received frame.
  • system 14 may perform the steps individually or combine one or more of the steps in any order.
  • ROI object segmentation system 14 may consider additional segmentation mode decision factors when deciding whether to perform intra-mode segmentation or inter-mode segmentation on the received frame.
  • [0060J System 14 may determine a computational complexity of the received frame (46).
  • system 14 may examine the received frame to determine a number of ROI feature candidates included in the received frame. If the frame includes a large number of ROI features, the received frame may be too complex for the inter-mode segmentation process to accurately segment the ROI object from the frame. Therefore, system 14 may decide to perform intra-mode segmentation when the computational complexity is above a pre-determined level in order to process the high-complexity video frame. System 14 may also determine a desired quality of segmentation from an end-user (48). For example, system 14 may perform intra-mode segmentation on the received frame if an end-user of a video communication device that implements ROI segmentation system 14 requests a quality of segmentation above a pre-determined level for the received video frame.
  • system 14 may perform inter-mode segmentation on the received frame if the end-user requests a quality of segmentation below the pre-determined level for the received video frame.
  • system 14 may determine an amount of similarity between the received frame and the previous frame (50). For example, system 14 may compare the received frame with the previous frame to determine whether an amount of similarity between the color histograms of the two frames is above a pre-determined level. Large color changes between the two frames may indicate a scene change. In this case, system 14 may perform intra-mode segmentation in order to segment potential new ROI objects within the received frame. If the color histogram remains substantially similar between the two frames, system 14 may perform intcr-modc segmentation.
  • System 14 may determine an amount of motion activity between the received frame and the previous frame (52). For example, system 14 may compare the received frame with the previous frame to determine whether an amount of movement between the locations of the ROI objects within the frames is above a pre-determined level. If ROI objects occupy substantially different areas or locations within the two frames, system 14 may perform intra-mode segmentation. IfROI objects occupy substantially the same area or location within the two frames, system 14 may perform inter-mode segmentation. [0063] In the above steps, the ROI segmentation processes of the video sequence may include any number of intra-mode segmentation and inter-mode segmentation performed on video frames of the video sequence in any order. For example, intra- mode segmentation may be represented as 0 and inter-mode segmentation may be represented as 1.
  • the intra-mode (0) and inter-mode status (1) of a set of frames in an exemplary video sequence segmentation may be represented as: 0 0 1 1 0 1 1 1 0.
  • the segmentation mode decision is based purely on properties of the received frame or between the received frame and the previous frame.
  • System 14 may also determine which segmentation mode to perform on the received frame based on the segmentation mode used to segment the previous frame. System 14 may determine whether the previous frame was segmented by the intra-mode process (54). If the previous frame was segmented by the intra-mode process, system 14 may decide to segment the received frame by the inter-mode process.
  • the ROI segmentation processes of the video sequence may include any number of intra- mode segmentation and inter-mode segmentation performed on video frames of the video sequence such that inter-mode segmentation always follows intra-mode segmentation.
  • the intra-mode (0) and inter-mode status (1) of a set of frames in an exemplary video sequence segmentation may be represented as: 0 1 1 0 1 1 1 1 0 1.
  • the segmentation mode decision is based purely on the segmentation mode of the previous frame.
  • system 14 may determine a number of frames segmented since the last intra-mode segmented frame (56). For example, system 14 may decide to perform intra-mode segmentation on a periodic basis, such as every N frames. In some cases the Nth frame may comprise the 10 th frame. In other embodiments, N may be equal to more or less than 10 frames.
  • the ROI segmentation processes of the video sequence may include any number of intra-mode segmentation and inter-mode segmentation performed on video frames of the video sequence such that intra-mode segmentation is performed periodically.
  • the intra-mode (0) and inter-mode status (1) of a set of frames in an exemplary video sequence segmentation may be represented as: 0 1 1 1 0 1 1 1 0 1. In this case, the segmentation mode decision is based on performing intra-mode segmentation every 4 th frame.
  • FIG. 6 is a block diagram illustrating ROI object segmentation system 14 when performing intra-mode segmentation on a frame of a video sequence received from video source 12.
  • ROI object segmentation system 14 processes the frame of the video sequence independently from other frames of the video sequence and without motion information.
  • FIGS. 7-13 are screen shots illustrating exemplary results of the techniques implemented by ROI object segmentation system 14 during intra- mode segmentation.
  • video source 12 includes a chrominance blue channel (Cb) 60, a chrominance red channel (Cr) 61, and a luminance channel (Y) 62.
  • ROI object segmentation system 14 implements techniques to automatically segment a ROI object, such as a human head and shoulder area, from a video frame of a video sequence received from video source 12.
  • the disclosed techniques include a hybrid technique that combines feature-based and model-based detection with region segmentation during intra-mode segmentation.
  • ROI object segmentation system 14 includes a face mask detector 64 that detects skin-color regions within a video frame based on blue and red channel chrominance values received from chrominance blue channel 60 and chrominance red channel 61 of video source 12. Face mask detector 64 then classifies pixels of the detected skin-color regions as facial pixels. In this way, face mask detector 64 may obtain a face mask by removing pixels within the received frame that are not facial pixels. After the face mask is obtained, face mask detector 64 uses mathematical morphological operations of dilation and erosion to remove noise and holes within the face mask due to the facial features, such as eye and mouth regions.
  • FIG. 7 illustrates an example of a quick face mask detection on a frame of a standard "Mother and Daughter" video test sequence.
  • face mask detector 64 uses a skin-color map that can identify skin- color regions within the video frame by the presence of a certain set of chrominance values narrowly and consistently distributed in the YCbCr color space.
  • the skin-color map is robust against different types of skin color. Skin colors of human races arc perceived differently mainly due to the darkness or fairness of the skin. In other words, the skin color is characterized by the difference in the brightness of the color, which is governed by Y but not Cr or Cb. Therefore, an effective skin-color map can be achieved based only on the Cr and Cb components of the received frame.
  • Face mask detector 64 may utilize a CbCr skin-color map having a range of Cr e [133, 173] and Cb e [77, 127] to detect the skin-color regions within the received video frame.
  • the Cr and Cb ranges should not be considered limiting, however, and face mask detector 64 may utilize a skin-color map having different Cr and Cb ranges.
  • face mask detector 64 may be unable to exclusively obtain a human face. As illustrated in FIG. 7, the clothing regions of the mother and the daughter within the frame appear to have tones similar to those defined by the skin-tone map. Therefore, face mask detector 64 may falsely select the clothing regions as part of the face mask.
  • the quick face mask detection step described herein removes some non- face regions within the frame, but further processing may be needed to obtain and verify exact face regions.
  • System 14 also includes an eye detector 66 and a mouth detector 67 that detect facial feature candidates within the face mask, and a feature verification module 68 that selects facial features from the eye and mouth candidates.
  • Facial filters are typically built based on common knowledge of human faces and their features, such as the elliptical shape of a facial region and overall spatial relationship constraints among the facial features. Therefore, locating these facial features is useful in deriving an approximate face location within a video frame.
  • eye detector 66 may apply a threshold to the chrominance (C) eye map value of each pixel within the eye map to locate the brightest regions within the eye map for eye candidates. Eye detector 66 then applies morphological operations to merge substantially close brightest regions into single eye candidates.
  • FIG. 8A illustrates an example of eye detection within a chrominance eye map of the frame of the "Mother and Daughter" video test sequence.
  • Eye detector 66 may construct a luminance eye map of the frame based on equation (2) given below. DilationJY) Erosfon(Y) + l
  • eye detector 66 may apply a threshold to the luminance (L) eye map value of each pixel within the eye map to locate the brightest regions within the eye map for eye candidates. Eye detector 66 then applies morphological operations to merge substantially close brightest regions into single eye candidates.
  • FIG. 8B illustrates an example of eye detection within a luminance eye map of the frame of the "Mother and Daughter" video test sequence.
  • Eye detector 66 combines the eye candidates detected within the chrominance eye map (shown in FlG. 8A) with the eye candidates detected within the luminance eye map (shown in FIG. 8B) to find final eye candidates within the face mask. In some cases, however, the final eye candidates may still contain incorrect eye candidates. These extraneous eye candidates may be removed later during a feature verification process.
  • Mouth detector 67 detects mouth feature candidates within the face mask obtained by face mask detector 64.
  • the color of a mouth region contains a stronger red component and a weaker blue component than other facial regions. Therefore, the chrominance component Cr should be greater than the chrominance component Cb in the mouth region.
  • the mouth region has a relatively low response in the Cr/Cb feature, but has a relatively high response in the Cr 2 feature.
  • Mouth detector 67 may construct a mouth map of the frame based on equations (3) and (4) given below.
  • mouth detector 67 may apply a threshold to the mouth (M) value of each pixel within the mouth map to locate the brightest regions within the mouth map for mouth candidates. Mouth detector 67 then applies morphological operations to merge substantially close brightest regions into single mouth candidates.
  • FIG. 9 illustrates an example of mouth detection within a mouth map of the frame of the "Mother and Daughter" video test sequence.
  • Feature verification module 68 verifies the facial feature candidates detected within the face mask by eye detector 66 and mouth detector 67 to select the correct facial features from the eye and mouth candidates. Feature verification module 68 ensures a robust ROl feature detection process.
  • Feature verification module 68 performs three verification steps to verify the facial feature candidates within the face mask and remove any false facial feature detections.
  • feature verification module 68 identifies the valley regions by performing grayscale-close and dilation morphological operations. Feature verification module 68 then compares locations of the facial feature candidates within the frame to locations of the valley regions within the frame.
  • FIG. 1OA illustrates valley regions identified within the frame of the "Mother and Daughter" video sequence.
  • FIG. 1OB illustrates inherent properties of an eye pair with respective centroids Oi and O 2 .
  • the two eyes are also symmetric with respect to respective PCA (Principle Component Analysis) axes, PCA 1 and PCA 2 .
  • eyebrows can typically be detected above the two eyes.
  • Feature verification module 68 may utilize a weighted score-system to verify the eye feature candidates within the face mask. In this case, feature verification module 68 checks a number of criteria based on eye pair properties and provides a score for each of the criteria. For example, feature verification module 68 determines whether the eye centroid location is inside a valley region. Next, feature verification module 68 determines whether the locations of the eye centroid and the detected iris are substantially close. The iris location may be found by projecting an intensity value in an eye to horizontal and vertical axes and identifying the point that corresponds to a minimum accumulated total intensity value. Feature verification module 68 then determines whether an eyebrow is found above the eye.
  • feature verification module 68 determines whether a PCA axis of the eye is within a range of reasonable directions, which may be determined from empirical characterization of typical human eye pairs. Feature verification module 68 then determines whether the eye has an eye pair within a reasonable distance, which again may be determined from empirical characterization. Next, feature verification module 68 determines whether the pair of eyes has symmetric PCA axes according to the axis OA. Feature verification module 68 then determines whether the pair of eyes has a symmetric shape according to the axis OA.
  • Feature verification module 68 accumulates scores from each criterion described above in order to select the correct facial features from the candidates and construct a facial feature map of the video frame.
  • the scores determined for the various individual criteria may be equally weighted, or differently weighted to emphasize one or more criteria over other criteria.
  • Feature verification module 68 identifies false detections as those facial feature candidates with cumulative scores below a preset threshold value. Feature verification module 68 then removes these falsely detected facial feature candidates.
  • feature verification module 68 verifies eye-mouth triangles from every possible combination of two eye candidates and one mouth candidate within the facial feature map.
  • Feature verification module 68 first reviews the geometry and orientation of the cyc-mouth triangles and removes unreasonable cyc-mouth triangles from further consideration. Eye-mouth triangles deemed unreasonable are those that do not substantially match a range of empirically determined eye-mouth triangle geometries for typical humans.
  • FIG. 1OC illustrates two possible eye-mouth triangles (dashed-lines) within the facial feature map of the frame of the "Mother and Daughter" video sequence.
  • Feature verification module 68 uses a template to verify gradient characteristics of the eye-mouth triangle area.
  • feature verification module 68 may select the correct eye and mouth candidates for a face in the video frame.
  • System 14 also includes a multi-face separation module 70 that separates the facial features selected by feature verification module 68 into groups for individual faces within the frame.
  • multi-face separation module 70 separates the sets of eye and mouth candidates into groups corresponding to the different faces.
  • the difficulties of this task are three-fold. First, the total number of faces included within the video frame is unknown. Second, some facial features may not have been detected within the video frame. Third, an exhaustive check of all the potential facial feature group combinations has exponential computational complexity. By simplifying the problem to the task of pairing eyes with a mouth, the original problem can be mapped into a graph theory problem, which has polynomial computational complexity. The resulting reduction in computational complexity may be highly desirable for many applications, including mobile applications with limited power and processing resources and other applications requiring fast and possibly realtime results.
  • multi-face separation module 70 can solve the multi-face separation problem in polynomial time complexity.
  • System 14 includes an object shape approximation module 72 that approximates an ROl object shape for each face within the video frame based on a ROl object geometric model. For example, a ROI object shape may be approximated within the frame based on a human head and shoulder geometric model. After feature verification module 68 obtains the correct eye-mouth triangle for a face, object shape approximation module 72 may build an ROI object shape, e.g., a head and shoulder model, based on the geometric relationship between the nodes of the eye-mouth triangle. [0089] In order to speed up performance during intra-mode segmentation, object shape approximation module 72 may use a simple rectangular model to approximate the ROI object shape, such as a human head and shoulder object shape.
  • ROI object segmentation system 14 also includes a region segmentation module 74 that performs split-and-merge region growing on the entire frame. Region segmentation module 74 divides the original frame into multiple homogeneous candidate regions.
  • region segmentation module 74 classifies relationships between neighboring pixels within the video frame into a similar class and a dissimilar class. Region similarity may be determined based on the average pixel intensity value in the region. Region segmentation module 74 then clusters connected similar pixels into small regions and continues to merge these regions to form a minimum number of candidate regions.
  • FIG. 12 illustrates the region growing process where the video frame is initially split into 1195 regions, and then the regions are merged together until 22 candidate regions are generated.
  • System 14 further includes an object generation module 76 that automatically selects regions of the frame located within the approximated ROI object shape from the candidate regions within the entire frame.
  • the selected regions may be considered foreground regions and unselected regions may be considered background regions.
  • Object generation, module 76 then generates a foreground object based on the foreground regions.
  • Object generation module 76 only selects regions from the set of candidate regions generated by region segmentation module 74 that are located within the ROI object shape approximated by object shape approximation module 72.
  • the ROI object shape may comprise a rectangular area that contains a ROI object, e.g., a face, and the size of the ROI object shape may be estimated based on the selected eye-mouth triangle for the face. In this way, further processing may be conducted within the ROI object shape instead of within the entire video frame.
  • Object generation module 76 examines each of the candidate regions within the video frame generated by region segmentation module 74 and determines whether the regions are located within the ROI object shape.
  • Object generation module 76 may consider regions that have more than a predefined percentage, e.g., 60%, of total pixels within the ROI object shape to be foreground regions. Object generation module 76 may then consider the remaining regions within the video frame that have less than the predefined percentage of total pixels within the ROT object shape to be background regions. In this way, object generation module 76 generates a foreground object from the foreground regions within the video frame.
  • a predefined percentage e.g. 60%
  • system 14 includes an object fusing module 78 that merges multiple foreground objects within the frame into a final output image. For video sequences that include more than one foreground object, object fusing module 78 merges the foreground objects to form an output image.
  • FIG. 13 illustrates generation of a foreground object for each of the faces within the video frame and generation of an output image by merging the two foreground objects.
  • ROI object segmentation system 14 may then send the output image of the segmented frame to multimedia application 18.
  • FIG. 14 is a flow diagram illustrating operation of ROI object segmentation system 14 performing intra-mode segmentation. The operation will be described herein in reference to ROI object segmentation system 14 illustrated in FIG. 7.
  • ROI object segmentation system 14 receives a frame of a video sequence from video source 12 (80). In the case of infra-mode segmentation, ROI object segmentation system 14 processes the received frame of the video sequence independently from other frames of the video sequence and without motion information.
  • Face mask detector 64 detects a face mask within the received frame based on skin-color regions identified within the video frame (82). Face mask detector 64 then classifies pixels of the identified skin-color regions as facial pixels. In this way, face mask detector 64 may obtain the face mask by removing pixels within the received frame that are not facial pixels.
  • Eye detector 66 and mouth detector 67 then detect facial feature candidates within the face mask (84). Eye detector 66 may detect eye feature candidates based on chrominance values and luminance values of pixels within the face mask. Mount detector 67 may detect mouth feature candidates based on chrominance values of pixels within the face mask. Feature verification module 68 performs verification of the facial feature candidates detected by eye detector 66 and mouth detector 67 to select the correct facial features (86).
  • ROI object segmentation system 14 determines whether or not the received video frame includes more than one face (87). If the video frame does include more than one face, multi-face separation module 70 separates the facial features selected by feature verification module 68 into groups for the individual faces included in the frame (88). Object shape approximation module 72 then approximates a ROT object shape for each face within the video frame based on a ROI object geometric model defined by the facial features selected by feature verification module 68 (90). For example, a head and shoulder object shape may be approximated for each face within the frame based on the location of the correct eye-mouth triangle.
  • Region segmentation module 74 performs split-and-merge region growing on the entire frame (92). Region segmentation module 74 divides the original frame into multiple homogeneous candidate regions. Object generation module 76 then automatically selects regions of the frame located within the approximated ROI object shape from the candidate regions within the entire frame. The selected regions may be considered foreground regions and unselected regions may be considered background regions. Object generation module 76 then generates a foreground object based on the foreground regions (94).
  • ROI object segmentation system 14 determines whether the video frame includes more than one foreground object (95). When the video frame includes more than one foreground object, object fusing module 78 merges the foreground objects within the frame into a final output image (96). ROI object segmentation system 14 then sends the output image of the segmented frame to multimedia application 18 (98).
  • FIG. 15 is a block diagram illustrating ROI object segmentation system
  • ROI object segmentation system 14 when performing inter-mode segmentation on a frame of a video sequence received from video source 12.
  • ROI object segmentation system 14 processes the frame of the video sequence based on motion information for the ROl object between the current frame and a previous or subsequent frame of the video sequence stored in video memory 16.
  • FIGS. 16 and 17 are screen shots illustrating exemplary results of the techniques implemented by ROI object segmentation system 14 during inter-mode segmentation.
  • ROI object segmentation system 14 may perform intra-mode segmentation, as described in FIGS. 6-14, on some of the frames of a video sequence and perform inter-mode segmentation, described below, on the other frames of the video sequence based on one or more segmentation mode decision factors.
  • ROI object segmentation system 14 implements techniques to automatically segment a ROI object, such as a human head and shoulder area, from a video frame of a video sequence received from video source 12.
  • ROI object segmentation system 14 performs inter-mode segmentation based on motion information for the ROI object.
  • the disclosed techniques include a technique for detecting moving regions within a foreground object based on background modeling and subtraction. Successfully detecting the moving foreground region may improve performance speed of ROI feature detection during inter-mode segmentation.
  • video source 12 again includes a chrominance blue channel (Cb) 100, a chrominance red channel (Cr) 101, and a luminance channel (Y) 102.
  • Cb chrominance blue channel
  • Cr chrominance red channel
  • Y luminance channel
  • ROI object segmentation system 14 further includes a background subtraction module 112 when performing inter-mode segmentation as illustrated in FIG. 15.
  • ROI object segmentation system 14 also includes the components used when performing intra-modc segmentation as illustrated in FIG. 6.
  • ROI object segmentation system 14 includes a ROI feature detector 104 that comprises face mask detector 64, eye detector 68, and mouth detector 67 from FIG. 6.
  • ROI object segmentation module 14 also includes feature verification module 106, multi-face separation module 108, object shape approximation module 110, region segmentation module 114, object generation module 116, and object fusing module 118, which may operate in manner similar to corresponding components in FIG. 6.
  • Background subtraction module 112 interacts with ROI feature detector
  • system 14 identifies a moving foreground region of the video frame representing movement relative to a different video frame in the video sequence.
  • background subtraction module 112 compares first locations of pixels within the ROl object of the video frame to second locations of the pixels within the different video frame, e.g., a previous frame in the video sequence.
  • Background subtraction module 112 then classifies pixels that have not moved from the second location as background pixels, and classifies pixels that have moved from the second location as foreground pixels.
  • the moving foreground region is identified based on the identified foreground pixels.
  • System 14 detects ROI features within a combined foreground region of the video frame corresponding to the moving foreground region and a foreground region previously identified in the different, e.g., previous, video frame. Based on the detected ROI features, shape approximation module 110 approximates a shape of an ROI object within the video frame.
  • Background subtraction module 112 takes advantage of the temporal correlation of consecutive video frames of the video sequence.
  • Background subtraction module 1 12 conducts a pixel -by-pixel classification process of pixels within the ROT object of the video sequence received from video source 12. In this way, background subtraction module 112 determines which pixels of the current frame are background pixels based on motion information between the current frame and a previous or subsequent frame of the video sequence retrieved from video memory 16. In other words, background subtraction module 112 uses additional information available in inter-mode operation to quickly and efficiently find the moving region of the foreground object. Again, background subtraction module 112 classifies those pixels of the current frame that have not moved from their previous location as background pixels. In turn, background subtraction module 112 then classifies those pixels that have moved from their previous location as foreground pixels. In this way, background subtraction module 112 is more efficient and has lower complexity than a motion estimation-based technique.
  • Background subtraction module 112 may provide one or more benefits.
  • the search space of the face mask can be reduced from the entire image to the moving foreground region plus the face mask region from the previous frame, which may be considered a combined foreground region.
  • the facial features will be either inside the moving foreground regions or in the same location as in the previous frame.
  • the connected moving foreground regions can be treated as a homogeneous region.
  • FIG. 16 illustrates an example of foreground pixel classification, based on pixel motion between frames of the "Mother and Daughter" video sequence.
  • background subtraction module 112 classifies only portion of the head pixels as foreground pixels while the body pixels are static during the first 10 frames.
  • background subtraction module 112 applies a background model.
  • Wu is the normalized weight, ⁇ t and ⁇ , are the mean and the standard deviation of the zth distribution.
  • background subtraction module 1 12 determines which of the Gaussians of the mixture are most likely produced by background processes. Based on heuristic information, background subtraction module 112 selects the Gaussian distributions which have the most supporting evidence and the least variance. It is for this reason that the K distributions are ordered based on the value of w/ ⁇ . This ordering of the model is effectively an ordered list, where the most likely background distributions remain on top and the less probable transient background distributions gravitate toward the bottom. Background subtraction module 112 may find the most likely distribution models based on equation (6) given below.
  • background subtraction module 112 checks the new pixel against the existing K Gaussian distributions until a match is found. Background subtraction module 112 finds a match when the distance between the mean of the distribution and the new pixel value is within 2.5 standard deviations of the distributions. If none of the K distributions matches the current pixel value, the least probable distribution which has the smallest value of w/ ⁇ is replaced by a new distribution with the current new pixel value as the mean, an initially high variance and low prior weight.
  • a new pixel value can always be represented by one of the major components of the mixture model of K Gaussian distributions. If this matched distribution is one of the B background distributions, the new pixel is marked as background. If not, the pixel is marked as foreground.
  • background subtraction module 112 In order to keep the mixture model adaptive, background subtraction module 112 continuously updates the model parameters using the new pixel values. For the matched Gaussian distribution, background subtraction module 112 updates all the parameters at time t with this new pixel value X 1 . In addition, background subtraction module 112 updates the prior weight as
  • region segmentation module 114 may perform split-and-merge region growing on the foreground pixels to create a moving foreground region of the video frame. In this manner, the classified foreground pixels are used to merge the regions obtained from the region growing approach, and thereby form the foreground regions. In particular, by fusing the moving foreground region resulting from background subtraction with split-and-merge growing techniques, a moving region of the foreground object can be obtained.
  • FIG. 17 illustrates an a moving foreground region extracted from a background area of a video frame of the "Mother and Daughter" video sequence.
  • ROI object segmentation system 14 may then use substantially similar techniques to complete the inter-mode segmentation process as are used to perform intra-mode segmentation described above. For example, ROI feature detector 100 detects a face mask and facial features within the combined foreground region formed by the moving foreground region and the face mask and facial feature locations within the previous frame. In this way, background subtraction module 112 reduces the computational complexity of performing ROI feature detection within the entire video frame. Object fusing module 118 then merges the foreground objects to form an output image. ROI object segmentation module 14 sends the output image of the segmented frame to multimedia application 18.
  • ROI object segmentation system 14 may skip feature verification module 108 and multi-face separation module 108 when performing inter-mode segmentation, as indicated by the dashed line extending between ROI feature detector 104 and object shape approximation module 110.
  • the object of the current frame can be quickly generated by using the object shape approximation module 110 and object generation module 116, without the need to apply the functions of feature verification module 106 and multi-face separation module 108.
  • Face mask and facial feature detector 100 may detect additional ROI features within a video frame during inter-mode segmentation.
  • ROI object segmentation system 14 may use feature verification module 106 to verify the newly detected facial features.
  • system 14 may use multi-face separation module 108, followed by object shape approximation module 110 and object generation module 116, for new faces included in the video frame.
  • FIG. 18 is a flow diagram illustrating operation of ROI object segmentation system 14 performing inter-mode segmentation. The operation will be described herein in reference to ROI object segmentation system 14 illustrated in FIG. 15
  • ROI object segmentation system 14 receives a frame of a video sequence from video source 12 and retrieves a previous frame of the video sequence from video memory 16 (120).
  • ROl object segmentation system 14 processes the frame of the video sequence based on motion information for the ROI object between the current frame and the previous frame of the video sequence.
  • ROI object segmentation system 14 may alternatively or additionally use motion information indicating ROI object motion with respect to a subsequent video frame.
  • Background subtraction module 112 performs background subtraction on the received video frame to classify moving pixels within the ROI object between the previous frame and the current frame as foreground pixels (122). Background subtraction module 112 conducts a pixel-by-pixel classification process in order to determine which pixels of the current frame have moved from their previous location in the previous frame. Once background subtraction module 112 classifies the moving pixels as foreground pixels, region segmentation module 114 may perform split-and- merge region growing on the foreground pixels to create a moving foreground region of the video frame (124).
  • ROI object segmentation system 14 may then use substantially similar techniques to complete the inter-mode segmentation process as are used to perform intra-mode segmentation described above.
  • ROI feature detector 104 detects a face mask within a region including both the moving foreground region and the face mask location from the previous frame (126), i.e., within a combined foreground region.
  • ROI feature detector 104 detects facial features, e.g., eye and mouth candidates, within the combined foreground region including the moving foreground region and the facial feature locations within the previous frame (128).
  • the object in the previous frame does not present significant movement.
  • the object of the current frame can be quickly generated by using the object shape approximation module 110 (136) and object generation module 116 (138), while skipping the functions of feature verification module 106 (132) and multi-face separation module 108 (134).
  • feature verification module 106 verifies the detected features (132), and multi-face separation module 108 performs face separation (134).
  • object shape approximation module 110 is applied (136), followed by object generation module 116 (138).
  • object generation module 116 connected moving foreground regions are treated as homogeneous regions to generate the object (138).
  • Object fusing module 118 then merges the foreground objects to form an output image (140).
  • ROI object segmentation system 14 sends the output image of the segmented frame to multimedia application 18 (142).
  • RAM random access memory
  • SDRAM synchronous dynamic random access memory
  • ROM read-only memory
  • NVRAM non-volatile random access memory
  • EEPROM electrically erasable programmable read-only memory
  • FLASH memory magnetic or optical data storage media, and the like.
  • the program code may be executed by a programmable processor, which may be realized by one or more digital signal processors (DSPs), general purpose microprocessors, application specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other combinations of equivalent integrated or discrete logic circuitry.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable logic arrays
  • the functionality described herein may be provided within dedicated software modules or hardware units configured for automatic object segmentation, or incorporated in an automatic object segmentation system.
  • various techniques have been described for automatic segmentation of a ROI object from a video sequence.
  • An ROI object segmentation system may implement one or more of the disclosed techniques individually or in combination to provide an accurately segmented ROI object for use in a multimedia application, such as a VT application, a video streaming application or a video surveillance application.
  • the disclosed techniques include a hybrid technique that includes ROI feature detection, region segmentation, and background subtraction.
  • the disclosed techniques may include both intra-mode and inter-mode object segmentation. Inter- mode segmentation takes advantage of the temporal correlation of consecutive video frames of a video sequence by using background modeling and subtraction instead of conventional computationally intensive motion estimation operations to speed up performance of the ROI object segmentation system.
  • the disclosed techniques also include facial feature verification, multi-face separation, and ROI object generation to speed up performance of intra-mode segmentation by the ROI object segmentation system.

Abstract

The disclosure is directed to techniques for automatic segmentation of a region-of-interest (ROI) video object from a video sequence. ROI object segmentation enables selected ROI or 'foreground' objects of a video sequence that may be of interest to a viewer to be extracted from non-ROI or 'background' areas of the video sequence. Examples of a ROI object are a human face or a head and shoulder area of a human body. The disclosed techniques include a hybrid technique that combines ROI feature detection, region segmentation, and background subtraction. In this way, the disclosed techniques may provide accurate foreground object generation and low-complexity extraction of the foreground object from the video sequence. A ROI object segmentation system may implement the techniques described herein. In addition, ROI object segmentation may be useful in a wide range of multimedia applications that utilize video sequences, such as video telephony applications and video surveillance applications.

Description

INTRA-MODE REGϊON-OF-INTEREST VIDEO OBJECT SEGMENTATION
TECHNICAL FTELD
[0001] The disclosure relates to video object segmentation and, more particularly, techniques for automatic segmentation of region-of-interest (ROI) video objects from video sequences for multimedia applications.
BACKGROUND
[0002] Automatic region-of-interest (ROI) video object segmentation may be useful for a wide range of multimedia applications that utilize video sequences. An ROI object may be referred to as a "foreground" object within a video frame and non- ROI areas may be referred to as "background" areas within the video frame. ROI object segmentation enables selected foreground objects of a video sequence that may be of interest to a viewer to be extracted from the background of the video sequence. Multimedia applications may then preferentially utilize the ROI object segmented from the video sequence. Typical examples of an ROI object are a human face or a head and shoulder area of a human body.
[0003] In video surveillance applications, for example, an ROI object segmented from a captured video sequence can be input into a facial database system. The facial database system may use the segmented ROI object, e.g., a human face, to accurately match with target face objects stored within the database. Law enforcement agencies may utilize this application of ROI object segmentation to identify suspects from surveillance video sequences.
[0004] As another example, in video telephony (VT) applications an ROI object segmented from a captured video sequence can be input into a video sequence encoder. The video sequence encoder may allocate more resources to the segmented ROI object to code the ROI object with higher quality for transmission to a recipient. VT applications permit users to share video and audio information to support applications such as videoconferencing. In a VT system, users may send and receive video information, only receive video information, or only send video information. A recipient generally views received video information in the form in which it is transmitted from a sender. With preferential encoding of the segmented ROI object, a recipient is able to view the ROI object more clearly than non-ROI areas of the video sequence.
[0005J Other examples include video broadcasting applications in which a person presents informational video such as a live or prerecorded news or entertainment broadcast. In such applications, it may be desirable to preferentially encode an ROI object corresponding to the face of a human presenter, such as a news reporter or talk show host.
[0006] Conventionally, automatic ROI object segmentation focuses on motion analysis, motion segmentation and region segmentation. In one case, a statistical model-based object segmentation algorithm abstracts an ROI object into a blob- based statistical region model and a shape model. Thus, the ROI object segmentation problem may be converted into a model detection and tracking problem. In another case, a foreground object may be extracted from a video frame based on disparity estimation between two views from a stereo camera setup. A further case proposes a ROI object segmentation algorithm that includes both region-based and feature-based segmentation approaches. The algorithm uses region descriptors to represent the object regions, which are homogeneous with respect to the motion, color and texture features, and tracks them across the video sequence.
SUMMARY
[0007] The disclosure is directed to techniques for automatic segmentation of a region-of-interest (ROI) video object from a video sequence. ROI object segmentation enables selected ROl or "foreground" objects of a video sequence to be extracted from non-ROI or "background" areas of the video sequence. Examples of an ROI object are a human face or a head and shoulder area of a human body. The disclosed techniques include a hybrid technique that combines ROI feature detection, region segmentation, and background subtraction. In this way, the disclosed techniques may provide accurate foreground object generation and low- complexity extraction of the foreground object from the video sequence. [0008] The disclosed techniques also include a technique for verification of facial features detected within a video frame of the video sequence based on inherent properties of facial features, such as symmetric location and shape characteristics. In addition, the disclosed techniques include a technique for separation of detected facial features for multiple individual faces within a video frame of the video sequence. As described herein, the multi-face separation technique may be mapped into a maximum matching graph theory problem that reduces computational complexity from exponential to polynomial. In this way, the techniques provide accurate feature detection for each face within a frame of the video sequence. [0009] An ROI object segmentation system, for example, may implement the techniques described herein. The ROI object segmentation system supports intra- mode segmentation and inter-mode segmentation. Intra-mode segmentation processes a frame of a video sequence independently from other frames in the video sequence without using ROI object motion information. Inter-mode segmentation processes a frame of a video sequence based on motion information for the ROI object indicating motion between the current frame and a previous or subsequent frame of the video sequence. The ROI object segmentation system may decide whether to perform intra-mode segmentation or inter-mode segmentation on a received frame based on one or more segmentation mode decision factors. [0010] The disclosed techniques may further include a technique for generation of a foreground object during intra-mode segmentation by automatically selecting defined regions of a video frame located within an ROI object shape from a set of candidate regions within the entire frame. The disclosed techniques also include a technique for detecting moving regions within a foreground object during inter- mode segmentation based on background modeling and subtraction. Successfully detecting the moving foreground region may improve performance speed of ROI feature detection during intcr-modc segmentation.
[0011] In one embodiment, the disclosure provides a method comprising receiving a video frame of a video sequence, detecting ROI features within the video frame, and approximating a ROI object shape within the video frame based on the detected ROI features. The method also comprises segmenting the video frame into multiple candidate regions based on the detected ROI features, and selecting one or more of the candidate regions located within the ROI object shape of the video frame as an ROI object.
[0012] In another embodiment, the disclosure provides a computer-readable medium comprising instructions that cause a programmable processor to receive a video frame of a video sequence, detect ROI features within the video frame, and approximate a ROI object shape within the video frame based on the detected ROI features. The instructions also cause the programmable processor to segment the video frame into multiple candidate regions based on the detected ROI features, and select one or more of the candidate regions located within the ROI object shape of the video frame as an ROI object.
[0013] In another embodiment, the disclosure provides an automatic ROI object segmentation system comprising a ROI feature detector that detects ROI features within a received video frame of a video sequence, and an object shape approximation module that approximates a ROI object shape within the received video frame based on the detected ROI features. The automatic ROI object segmentation system also comprises a region segmentation module that segments the received video frame into multiple candidate regions based on the detected ROI features, and a object generation module that selects one or more of the candidate regions located within the ROI object shape of the received video frame as an ROI object.
[0014] Tn a further embodiment, the disclosure provides a method comprising receiving a video frame of a video sequence, detecting ROI features within the video frame, wherein the ROI features include a face mask including eye features and mouth features, and segmenting the video frame into multiple candidate regions based on the detected ROl features. The method also comprises combining eye feature candidates and mouth feature candidates into eye-mouth triangles, verifying the eye-mouth triangles based on orientation of the eye-mouth triangles within the video frame, and selecting one or more of the candidate regions as an ROI object based on the verification.
[0015] In another embodiment, the disclosure provides a computer-readable medium comprising instructions to cause a programmable processor to receive a video frame of a video sequence, detect ROI features within the video frame, wherein the ROI features include a face mask including eye features and mouth features, and segment the video frame into multiple candidate regions based on the detected ROI features. The instructions also cause the programmable processor to combine eye feature candidates and mouth feature candidates into eye-mouth triangles, verify the eye-mouth triangles based on orientation of the eye-mouth triangles within the video frame, and select one or more of the candidate regions as an ROI object based on the verification.
[0016] In another embodiment, the disclosure provides a system comprising an ROI feature detector that detects ROI features within a video frame of a video sequence, wherein the ROI features include a face mask including eye features and mouth features. The system also comprises a region segmentation module that segments the video frame into multiple candidate regions based on the detected ROI features, a feature verification module that combines eye feature candidates and mouth feature candidates into eye-mouth triangles, and verifies the eye-mouth triangles based on orientation of the eye-mouth triangles within the video frame, and an object generation module that selects one or more of the candidate regions as an ROI object based on the verification.
[0017] The techniques described herein may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the techniques may be realized in part by a computer readable medium comprising program code containing instructions that, when executed by a programmable processor, performs one or more of the methods described herein.
[0018] The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
BRIEF DESCRIPTION OF DRAWINGS
[0019] FIG. 1 is a block diagram illustrating a region-of-interest (ROI) object segmentation system that implements techniques for automatic segmentation of an ROI video object from a video sequence.
[0020] FIGS. 2A and 2B arc diagrams illustrating a definition of an ROI object and a non-ROI area within a video frame of a video sequence.
[0021] FIG. 3 illustrates changes in object movement/rotation and shape deformation for an object presented within an ROI object of a video sequence.
[0022] FIG. 4 illustrates changes in facial expression for a person within an ROI object of a video sequence.
[0023] FIG. 5A is a flow diagram that illustrates an exemplary operation of the ROI object segmentation system from FIG. 1. [0024] FIG. 5B is a. flowchart illustrating the segmentation mode decision from FIG. 5 A in greater detail.
[0025] FIG. 6 is a block diagram illustrating a ROI object segmentation system when performing intra-mode segmentation on a frame of a video sequence received from a video source.
[0026] FIGS. 7-13 are screen shots illustrating exemplary results of the techniques implemented by a ROI object segmentation system during intra-mode segmentation.
[0027] FIG. 14 is a flow diagram illustrating operation of a ROI object segmentation system performing intra-mode segmentation.
[0028] FIG. 15 is a block diagram illustrating a ROI object segmentation system when performing inter-mode segmentation on a frame of a video sequence received from a video source.
[0029] FIGS. 16 and 17 are screen shots illustrating exemplary results of the techniques implemented by a ROI object segmentation system during inter-mode segmentation.
[0030] FIG. 18 is a flow diagram illustrating operation of a ROI object segmentation system performing inter-mode segmentation.
DETAILED DESCRIPTION
[0031] FIG. 1 is a block diagram illustrating a region-of-interest (ROI) object segmentation system 14 that implements techniques for automatic segmentation of a
ROI video object from a video sequence. ROI object segmentation may be useful in a wide range of multimedia applications that utilize video sequences, such as video telephony (VT) applications and video surveillance applications.
[0032] For example, in video surveillance applications a ROI object segmented from a captured video sequence can be input into a facial database system. The facial database system may use the segmented ROI object, e.g., a human face, to accurately match with target face objects stored within the database.
[0033] As another example, in VT applications a ROI object segmented from a captured video sequence can be input into a video sequence encoder. The video sequence encoder may allocate more resources to the segmented ROI object to code the ROI object with higher quality for transmission to a recipient.
[0034] Other examples include video broadcasting applications in which a person presents informational video such as a live or prerecorded news or entertainment broadcast. In such applications, it may be desirable to preferentially encode an ROI object corresponding to the face of a human presenter, such as a news reporter or talk show host.
[0035J As shown in FlG. 1, system 14 receives a video sequence from video source 12. Video source 12 may be a video capture device, such as a camera, that obtains a video sequence, or a video archive storing a pre-recorded video sequence. System 14 automatically segments an ROI object from the received video sequence. ROI object segmentation system 14 stores video frames of the video sequence obtained from video source 12 in video memory 16 during the ROI object segmentation process. After each frame of the video sequence is processed, system 14 sends an output image of the segmented video frame to a multimedia application 18.
[0036] For example, an ROI object may comprise a human face or a head and shoulder area of a human body. The ROI object may be referred to as a "foreground" object within a video frame and non-ROI areas may be referred to as "background" areas within the video frame. ROI object segmentation system 14 extracts one or more selected foreground objects of frames in a video sequence that may be of interest to a user of multimedia application 18 from background areas of the video sequence. Multimedia application 18 may preferentially utilize the ROI object segmented from the video sequence. In one embodiment, multimedia application 18 may comprise a video surveillance application incorporating a facial database system. In another embodiment, multimedia application 18 may comprise a video telephony (VT) application incorporating ROI-enabled video encoder-decoders (CODECs). [0037] In the embodiment where multimedia application 18 comprises a video surveillance application, a ROI object segmented from a captured video sequence can be input into a facial database system. In this case, video source 12 may be a video archive that stores a pre-recorded video sequence from a surveillance camera. The facial database system may use the segmented ROI object, e.g., a human face, to accurately match with target face objects stored within the database. Law enforcement agencies may utilize ROI object segmentation system 14 with a facial database system in order to identify suspects from surveillance video sequences.
[0038] In an embodiment in which multimedia application 18 comprises a VT application, a ROI object segmented from a captured video sequence can be input into a ROI-enabled video encoder. VT applications permit users to share video and audio information to support applications such as videoconferencing. In a VT system, users may send and receive video information, only receive video information, or only send video information. In this case, video source 12 may be a video capture device, such as a camera, that obtains a video sequence. For example, video source 12 may comprise a video camera included within a communication device capable of participating in video telephony with another communication device.
[0039] A ROI-enabled video encoder may reside within a communication device that further includes appropriate transmit, receive, modem, and processing electronics to support wired or wireless communication. For example, the ROI-cnablcd video encoder may reside within a wireless mobile terminal or a wired terminal equipped for communication with other terminals. Examples of wireless mobile terminals include mobile radio telephones, mobile personal digital assistants (PDAs), mobile computers, or other mobile devices equipped with wireless communication capabilities and video encoding and/or decoding capabilities. For example, the ROI-enabled video encoder may reside within a so-called camera phone or video phone used in VT applications. Examples of wired terminals include desktop computers, video telephones, network appliances, set-top boxes, interactive televisions, or the like.
[0040] The ROT-enabled video encoder may preferentially encode the segmented ROT object included in the output image received from ROI object segmentation system 14. For example, the ROI-enabled video encoder may allocate additional coding bits to the ROI object of the video frame and allocate a reduced number of coding bits to non-ROI areas of the video frame. In mobile applications, in particular, the amount of encoding bits available to encode a video frame can be low and vary according to wireless channel conditions. Accordingly, preferential allocation of coding bits to ROI objects can be helpful in improving the visual quality of the ROI object while efficiently conforming to applicable bit rate requirements. Hence, with preferential encoding of the ROI object, a recipient is able to view the ROI object more clearly than non-ROI areas of the video sequence. The encoded video frame may then be transmitted over a wired or wireless communication channel to another communication device. [0041] As described above, ROI object segmentation system 14 may implement techniques for automatic segmentation of a ROI video object from a video sequence. The disclosed techniques include a hybrid technique that combines detecting ROI features (i.e., a face mask and facial features) within a video frame of the video sequence, segmenting the video frame into multiple candidate regions, and performing background (non-ROI) subtraction based on the video frame and a previous video frame of the video sequence. In this way, the disclosed techniques may provide accurate foreground (ROI) object generation and low-complexity extraction of the foreground object from frames in the video sequence.
10042 J The disclosed techniques also include a technique for verification of facial features detected within a video frame of the video sequence based on inherent properties of facial features, such as symmetric location and shape characteristics. In addition, the disclosed techniques include a technique for separation of detected facial features for multiple individual faces within a video frame of the video sequence. As described herein, the multi-face separation technique may be mapped into a maximum matching scheme problem that reduces computational complexity from exponential to polynomial. In this way, the techniques provide accurate feature detection for each face within a frame of the video sequence with reduce processing requirements. [0043] ROI object segmentation system 14 supports multiple, e.g., two, modes of segmentation: intra-mode and inter-mode. Intra-mode segmentation processes a frame of a video sequence independently from other frames in the video sequence. In this case, no ROI object motion information is used. Intra-mode segmentation is a first, high-complexity segmentation mode. Tnter-mode segmentation is a second, low- complexity segmentation mode that processes a frame of a video sequence based on previous or subsequent frame information, and is generally a lower complexity segmentation mode. The inter-mode segmentation makes use of motion information for the ROl object between the current frame and one or more previous or subsequent frames of the video sequence. Hence, inter-mode segmentation is a relatively low- complexity segmentation mode.
[0044] ROI object segmentation system 14 may decide whether to perform intra-mode segmentation or intcr-modc segmentation on a received frame based on one or more segmentation mode decision factors. Segmentation of on ROI object from the video frame without reference to motion information for the video frame, i.e., intra-mode segmentation, is applied when the high-complexity segmentation mode is selected. Segmentation of an ROI object from the video frame based on motion information for the video frame and a different video frame of the video sequence is applied when the low-complexity segmentation mode is selected.
[0045] The disclosed techniques further include a technique for generation of a foreground object during intra-mode segmentation by automatically selecting defined regions of a video frame located within a ROI object shape from a set of candidate regions within the entire frame. The disclosed techniques also include a technique for detecting moving regions within a foreground object during inter-mode segmentation based on background modeling and subtraction. Successfully detecting the moving foreground region may improve performance speed of ROl feature detection during inter-mode segmentation. The background modeling and subtraction technique is robust for noise and moving background regions. The technique is also substantially more efficient than moving object segmentation approaches employing computationally intensive motion estimation operations.
[0046] In the case of intra-mode segmentation, ROI object segmentation system 14 first detects a face mask within a video frame and then detects facial features, such as human eyes and a mouth, within the face mask. System 14 then performs feature verification based on geometric properties and shape characteristics of human facial features to remove false facial feature detections. After that, system 14 determines whether the frame includes more than one human face and separates the detected facial features into groups for the individual faces. Based on the geometric locations of the facial features and an ROI geometric model, the ROI object shape is approximated. For example, the ROT geometric model may comprise a human head and shoulder geometric model. [0047] System 14 performs region growing on the video frame to generate a set of candidate regions. System 14 then generates a foreground object by selecting regions located within the resulting ROI object shape from the set of candidate regions for the entire frame. System 14 then determines if there is more than one foreground object and merges multiple foreground objects together to form a combined foreground object for an output image. Upon merging the multiple foreground objects, if applicable, system 14 sends the output image of the segmented frame to multimedia application 18, e.g., for personal identity detection in surveillance applications or preferential encoding in VT applications.
[0048] In the case of inter-mode segmentation, ROI object segmentation system 14 uses a background modeling and subtraction technique to take advantage of the temporal correlation of consecutive video frames of the video sequence. In this way, the technique described herein provides enhanced efficiency. System 14 classifies moving pixels within the ROI object between the current frame and the previous frame as foreground pixels. System 14 then generates a moving foreground region based on the foreground pixels. System 14 may then detect ROI features within the moving foreground region and the face mask and facial feature locations within the previous frame. In this way, system 14 reduces the computational complexity of performing region segmentation for each frame of the video sequence. System 14 then merges the moving foreground region with the foreground object of the previous frame to from an output image and sends the output image of the segmented frame to multimedia application 18.
[0049] ROI object segmentation system 14 may be implemented in hardware, software, firmware or any combination thereof. For example, various aspects of ROI object segmentation system 14 may be implemented within one or more digital signal processors (DSPs), microprocessors, application specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or any other equivalent integrated or discrete logic circuitry, as well as any combinations of such components. The term "processor" may generally refer to any of the foregoing logic circuitry, alone or in combination with other logic circuitry, and may refer to one or more of such processors. When implemented in software, the functionality ascribed to ROI object segmentation system 14 may be embodied as instructions on a computer-readable medium such as random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), electrically erasable programmable read-only memory (EEPROM), FLASH memory, magnetic media, optical media, or the like. The instructions are executed to support one or more aspects of the functionality described in this disclosure. [0050] FIGS. 2A and 2B are diagrams illustrating a definition of a ROI object 24 and a non-ROl area 25 within a video frame 22 of a video sequence. In the example of FlG. 2B, the ROI object is depicted as a head and shoulder ROI object 24. In other embodiments, the ROI object may comprise a rectangular ROI object or a non- rectangular ROI object that may have a rounded or irregular shape. ROI object 24 contains the face 26 of a person presented in video frame 22. The non-ROI area 25, i.e., the background, is highlighted by shading in FIG. 2B.
[0051] ROI object 24 may be automatically segmented from a video sequence by ROI object segmentation system 14 from FIG. 1. For VT applications, a communication device may preferentially encode ROI object 24 with an ROI-enabled encoder. In that case, ROI object 24 may encompass a portion of video frame 22 that contains the face 26 of a participant in a videoconference. Other examples include preferential encoding of the face of a person presenting information in streaming video, e.g., an informational video or a news or entertainment broadcast. The size, shape and position of ROI object 24 may be fixed or adjustable, and may be defined, described or adjusted in a variety of ways.
[0052] ROI object 24 permits a video sender to emphasize individual objects within a transmitted video frame 22, such as the face 26 of a person. Conversely, ROI object 24 permits a video recipient to more clearly view desired objects within a received video frame 22. In either case, face 26 within ROI object 24 is encoded with higher image quality relative to non-ROI areas 25 such as background regions of video frame 22. In this way, the user is able to more clearly view facial expressions, lip movement, eye movement, and the like. In some embodiments, ROI object also may be encoded not only with additional coding bits, but also enhanced error detection and resiliency. [0053] FIG. 3 illustrates changes in object movement/rotation and shape deformation for an object presented within an ROI object of a video sequence. In particular, the head of the person pictured in Frames 0 and 1 of FIG. 3 changes its position significantly. In the example of FIG. 3, the person's head tilts in Frame 1 relative to Frame 0. FIG. 4 illustrates changes in facial expression for a person within an ROI object of a video sequence. In particular, the mouth of the person pictured in Frames 0 and 1 transitions from a substantially closed position to a wide open position. Hence, FIGS. 3 and 4 represent cases of large amounts of movement in the ROI object of a video sequence.
[0054] FIG. 5 A is a flow diagram that illustrates an exemplary operation of ROI object segmentation system 14 from FlG. 1. ROl object segmentation system 14 implements techniques for automatic segmentation of a ROI object from a video sequence. As described above, ROI object segmentation system 14 supports both intra-mode segmentation and inter-mode segmentation to process a video sequence. [0055] ROI object segmentation system 14 receives a first frame of a video sequence from video source 12 (30). ROI object segmentation system 14 performs intra-mode segmentation on the received frame (32). Intra-mode segmentation processes the current frame of the video sequence independently from other frames in the video sequence. In the case of intra-mode segmentation, ROI object segmentation system 14 uses no ROI object motion information. While performing intra-mode segmentation, ROI object segmentation system 14 stores the received frame of the video sequence in video memory 16. The ROI object segmentation system 14 then sends an output image of the segmented frame to multimedia application 18 (34). [0056] ROI object segmentation system. 14 receives the next frame of the video sequence from video source 12 (36). System 14 then makes a mode decision to determine whether to perform intra-mode segmentation or inter-mode segmentation on the received frame (37). The mode decision may be based on one or more segmentation mode decision factors. For example, system 14 may decide which segmentation mode to perform on the received frame based on segmentation mode decision factors such as computational complexity of the received frame, a desired quality of segmentation for the received frame, an amount of similarity between the received frame and the previous frame, an amount of motion activity between the received frame and the previous frame, the segmentation mode used for the previous frame, and a number of frames segmented since the last intra-mode process. In other embodiments, the segmentation mode decision may be based on additional segmentation mode decision factors. [0057] When system 14 decides to not perform intra-mode segmentation (no branch of 37), ROI object segmentation system 14 performs inter-mode segmentation on the received frame based on the previous frame (38). In this case, ROI object segmentation system 14 retrieves motion information from the previous frame of the video sequence, e.g., from video memory 16, and uses motion information for the ROT object between the current frame and the previous frame. While performing inter-mode segmentation, ROI object segmentation system 14 stores the received frame of the video sequence in video memory 16. The ROI object segmentation system 14 then sends an output image of the segmented frame to multimedia application 18 (40).
[0058] ROI object segmentation system 14 continues to receive frames of the video sequence from video source 12. When system 14 decides to perform inter-mode segmentation (yes branch of 37), ROI segmentation system 14 again performs intra- mode segmentation on the received frame (32). Therefore, ROI object segmentation system 14 performs intra-mode segmentation on some of the frames of the video sequence received from video source 12 and performs inter-mode segmentation on the other frames of the video sequence.
[0059] FIG. 5B is a flowchart illustrating the segmentation mode decision (step 37) from FIG. 5A in greater detail. ROI object segmentation system 14 may make the segmentation mode decision based on one or more segmentation mode decision factors. System 14 may perform one or more of the steps illustrated in FIG. 5 to determine the mode of segmentation to perform on a received frame. In some embodiments, system 14 may perform the steps individually or combine one or more of the steps in any order. In. other embodiments, ROI object segmentation system 14 may consider additional segmentation mode decision factors when deciding whether to perform intra-mode segmentation or inter-mode segmentation on the received frame. [0060J System 14 may determine a computational complexity of the received frame (46). For example, system 14 may examine the received frame to determine a number of ROI feature candidates included in the received frame. If the frame includes a large number of ROI features, the received frame may be too complex for the inter-mode segmentation process to accurately segment the ROI object from the frame. Therefore, system 14 may decide to perform intra-mode segmentation when the computational complexity is above a pre-determined level in order to process the high-complexity video frame. System 14 may also determine a desired quality of segmentation from an end-user (48). For example, system 14 may perform intra-mode segmentation on the received frame if an end-user of a video communication device that implements ROI segmentation system 14 requests a quality of segmentation above a pre-determined level for the received video frame. Conversely, system 14 may perform inter-mode segmentation on the received frame if the end-user requests a quality of segmentation below the pre-determined level for the received video frame. [0061] In addition, system 14 may determine an amount of similarity between the received frame and the previous frame (50). For example, system 14 may compare the received frame with the previous frame to determine whether an amount of similarity between the color histograms of the two frames is above a pre-determined level. Large color changes between the two frames may indicate a scene change. In this case, system 14 may perform intra-mode segmentation in order to segment potential new ROI objects within the received frame. If the color histogram remains substantially similar between the two frames, system 14 may perform intcr-modc segmentation. [0062] System 14 may determine an amount of motion activity between the received frame and the previous frame (52). For example, system 14 may compare the received frame with the previous frame to determine whether an amount of movement between the locations of the ROI objects within the frames is above a pre-determined level. If ROI objects occupy substantially different areas or locations within the two frames, system 14 may perform intra-mode segmentation. IfROI objects occupy substantially the same area or location within the two frames, system 14 may perform inter-mode segmentation. [0063] In the above steps, the ROI segmentation processes of the video sequence may include any number of intra-mode segmentation and inter-mode segmentation performed on video frames of the video sequence in any order. For example, intra- mode segmentation may be represented as 0 and inter-mode segmentation may be represented as 1. The intra-mode (0) and inter-mode status (1) of a set of frames in an exemplary video sequence segmentation may be represented as: 0 0 1 1 0 1 1 1 1 0. In this case, the segmentation mode decision is based purely on properties of the received frame or between the received frame and the previous frame. [0064] System 14 may also determine which segmentation mode to perform on the received frame based on the segmentation mode used to segment the previous frame. System 14 may determine whether the previous frame was segmented by the intra-mode process (54). If the previous frame was segmented by the intra-mode process, system 14 may decide to segment the received frame by the inter-mode process. In this step, the ROI segmentation processes of the video sequence may include any number of intra- mode segmentation and inter-mode segmentation performed on video frames of the video sequence such that inter-mode segmentation always follows intra-mode segmentation. The intra-mode (0) and inter-mode status (1) of a set of frames in an exemplary video sequence segmentation may be represented as: 0 1 1 0 1 1 1 1 0 1. In this case, the segmentation mode decision is based purely on the segmentation mode of the previous frame.
[0065] Furthermore, system 14 may determine a number of frames segmented since the last intra-mode segmented frame (56). For example, system 14 may decide to perform intra-mode segmentation on a periodic basis, such as every N frames. In some cases the Nth frame may comprise the 10th frame. In other embodiments, N may be equal to more or less than 10 frames. In this step, the ROI segmentation processes of the video sequence may include any number of intra-mode segmentation and inter-mode segmentation performed on video frames of the video sequence such that intra-mode segmentation is performed periodically. The intra-mode (0) and inter-mode status (1) of a set of frames in an exemplary video sequence segmentation may be represented as: 0 1 1 1 0 1 1 1 0 1. In this case, the segmentation mode decision is based on performing intra-mode segmentation every 4th frame.
[0066] FIG. 6 is a block diagram illustrating ROI object segmentation system 14 when performing intra-mode segmentation on a frame of a video sequence received from video source 12. In this case, ROI object segmentation system 14 processes the frame of the video sequence independently from other frames of the video sequence and without motion information. FIGS. 7-13 are screen shots illustrating exemplary results of the techniques implemented by ROI object segmentation system 14 during intra- mode segmentation.
[0067] In the embodiment illustrated in FIG. 6, video source 12 includes a chrominance blue channel (Cb) 60, a chrominance red channel (Cr) 61, and a luminance channel (Y) 62. ROI object segmentation system 14 implements techniques to automatically segment a ROI object, such as a human head and shoulder area, from a video frame of a video sequence received from video source 12. The disclosed techniques include a hybrid technique that combines feature-based and model-based detection with region segmentation during intra-mode segmentation.
[0068] ROI object segmentation system 14 includes a face mask detector 64 that detects skin-color regions within a video frame based on blue and red channel chrominance values received from chrominance blue channel 60 and chrominance red channel 61 of video source 12. Face mask detector 64 then classifies pixels of the detected skin-color regions as facial pixels. In this way, face mask detector 64 may obtain a face mask by removing pixels within the received frame that are not facial pixels. After the face mask is obtained, face mask detector 64 uses mathematical morphological operations of dilation and erosion to remove noise and holes within the face mask due to the facial features, such as eye and mouth regions. FIG. 7 illustrates an example of a quick face mask detection on a frame of a standard "Mother and Daughter" video test sequence. [0069] Typically, face mask detector 64 uses a skin-color map that can identify skin- color regions within the video frame by the presence of a certain set of chrominance values narrowly and consistently distributed in the YCbCr color space. The skin-color map is robust against different types of skin color. Skin colors of human races arc perceived differently mainly due to the darkness or fairness of the skin. In other words, the skin color is characterized by the difference in the brightness of the color, which is governed by Y but not Cr or Cb. Therefore, an effective skin-color map can be achieved based only on the Cr and Cb components of the received frame. Face mask detector 64 may utilize a CbCr skin-color map having a range of Cr e [133, 173] and Cb e [77, 127] to detect the skin-color regions within the received video frame. The Cr and Cb ranges should not be considered limiting, however, and face mask detector 64 may utilize a skin-color map having different Cr and Cb ranges. [0070] In some cases, face mask detector 64 may be unable to exclusively obtain a human face. As illustrated in FIG. 7, the clothing regions of the mother and the daughter within the frame appear to have tones similar to those defined by the skin-tone map. Therefore, face mask detector 64 may falsely select the clothing regions as part of the face mask. The quick face mask detection step described herein removes some non- face regions within the frame, but further processing may be needed to obtain and verify exact face regions.
[0071] System 14 also includes an eye detector 66 and a mouth detector 67 that detect facial feature candidates within the face mask, and a feature verification module 68 that selects facial features from the eye and mouth candidates. Facial filters are typically built based on common knowledge of human faces and their features, such as the elliptical shape of a facial region and overall spatial relationship constraints among the facial features. Therefore, locating these facial features is useful in deriving an approximate face location within a video frame.
[0072] Eye detector 66 detects eye feature candidates within the face mask obtained by face mask detector 64. Eye detector 66 detects the eye feature candidates based on two observations. First, the chrominance components around eyes normally contain high Cb and low Cr values. Therefore, eye detector 66 may construct a chrominance eye map of the frame based on equation (1) given below. c = CE2 + (255 -O) +[CbJCr)
[0073] Once the chrominance eye map is obtained, eye detector 66 may apply a threshold to the chrominance (C) eye map value of each pixel within the eye map to locate the brightest regions within the eye map for eye candidates. Eye detector 66 then applies morphological operations to merge substantially close brightest regions into single eye candidates. FIG. 8A illustrates an example of eye detection within a chrominance eye map of the frame of the "Mother and Daughter" video test sequence. [0074] Second, eyes usually contain both dark and bright pixels in the luminance component. Therefore, grayscale morphological operators may be used to emphasize brighter and darker pixels in the luminance component around eye regions. Eye detector 66 may construct a luminance eye map of the frame based on equation (2) given below. DilationJY) Erosfon(Y) + l
[0075] Once the luminance eye map is obtained, eye detector 66 may apply a threshold to the luminance (L) eye map value of each pixel within the eye map to locate the brightest regions within the eye map for eye candidates. Eye detector 66 then applies morphological operations to merge substantially close brightest regions into single eye candidates. FIG. 8B illustrates an example of eye detection within a luminance eye map of the frame of the "Mother and Daughter" video test sequence. [0076] Eye detector 66 combines the eye candidates detected within the chrominance eye map (shown in FlG. 8A) with the eye candidates detected within the luminance eye map (shown in FIG. 8B) to find final eye candidates within the face mask. In some cases, however, the final eye candidates may still contain incorrect eye candidates. These extraneous eye candidates may be removed later during a feature verification process.
[0077] Mouth detector 67 detects mouth feature candidates within the face mask obtained by face mask detector 64. Typically, the color of a mouth region contains a stronger red component and a weaker blue component than other facial regions. Therefore, the chrominance component Cr should be greater than the chrominance component Cb in the mouth region. However, the mouth region has a relatively low response in the Cr/Cb feature, but has a relatively high response in the Cr2 feature. Mouth detector 67 may construct a mouth map of the frame based on equations (3) and (4) given below.
. 2
( Cr Y
M = Cr2 \ Cr2 - λ — , where (3)
V. Cb)
Figure imgf000020_0001
[0078] Once the mouth map is obtained, mouth detector 67 may apply a threshold to the mouth (M) value of each pixel within the mouth map to locate the brightest regions within the mouth map for mouth candidates. Mouth detector 67 then applies morphological operations to merge substantially close brightest regions into single mouth candidates. FIG. 9 illustrates an example of mouth detection within a mouth map of the frame of the "Mother and Daughter" video test sequence. [0079] Feature verification module 68 verifies the facial feature candidates detected within the face mask by eye detector 66 and mouth detector 67 to select the correct facial features from the eye and mouth candidates. Feature verification module 68 ensures a robust ROl feature detection process. Although the eye and mouth map processes described above are effective in classifying eye and mouth regions, some erroneous classifications may still result in false facial feature detections. Feature verification module 68 performs three verification steps to verify the facial feature candidates within the face mask and remove any false facial feature detections. [0080] First, in terms of facial topography, it is observed that facial features are typically located in "valley" regions, i.e., recessed regions, which are characterized by high intensity contrast inside the region. Therefore, feature verification module 68 identifies the valley regions by performing grayscale-close and dilation morphological operations. Feature verification module 68 then compares locations of the facial feature candidates within the frame to locations of the valley regions within the frame. If a facial feature candidate does not at least partially overlap an area of a detected valley region, feature verification module 68 will remove the facial feature candidate from consideration. Hence, to retain a facial feature candidate, feature verification module 68 requires correlation of the feature with one of the identified valley regions. FIG. 1OA illustrates valley regions identified within the frame of the "Mother and Daughter" video sequence.
[0081] Second, feature verification module 68 verifies the eye feature candidates based on inherent properties of eye pairs, such as symmetric location within the frame and shape characteristics. FIG. 1OB illustrates inherent properties of an eye pair with respective centroids Oi and O2. For example, the two eyes are symmetric with respect to a major axis, A, of a face such that IAO1I=IAO2I, both eyes have a similar area, and both eyes have a similar shape that can be compared by projecting to the axis OA. The two eyes are also symmetric with respect to respective PCA (Principle Component Analysis) axes, PCA1 and PCA2. In addition, eyebrows can typically be detected above the two eyes.
[0082] Feature verification module 68 may utilize a weighted score-system to verify the eye feature candidates within the face mask. In this case, feature verification module 68 checks a number of criteria based on eye pair properties and provides a score for each of the criteria. For example, feature verification module 68 determines whether the eye centroid location is inside a valley region. Next, feature verification module 68 determines whether the locations of the eye centroid and the detected iris are substantially close. The iris location may be found by projecting an intensity value in an eye to horizontal and vertical axes and identifying the point that corresponds to a minimum accumulated total intensity value. Feature verification module 68 then determines whether an eyebrow is found above the eye. Next, feature verification module 68 determines whether a PCA axis of the eye is within a range of reasonable directions, which may be determined from empirical characterization of typical human eye pairs. Feature verification module 68 then determines whether the eye has an eye pair within a reasonable distance, which again may be determined from empirical characterization. Next, feature verification module 68 determines whether the pair of eyes has symmetric PCA axes according to the axis OA. Feature verification module 68 then determines whether the pair of eyes has a symmetric shape according to the axis OA.
[0083] Feature verification module 68 accumulates scores from each criterion described above in order to select the correct facial features from the candidates and construct a facial feature map of the video frame. The scores determined for the various individual criteria may be equally weighted, or differently weighted to emphasize one or more criteria over other criteria. Feature verification module 68 identifies false detections as those facial feature candidates with cumulative scores below a preset threshold value. Feature verification module 68 then removes these falsely detected facial feature candidates.
[0084] Third, feature verification module 68 verifies eye-mouth triangles from every possible combination of two eye candidates and one mouth candidate within the facial feature map. Feature verification module 68 first reviews the geometry and orientation of the cyc-mouth triangles and removes unreasonable cyc-mouth triangles from further consideration. Eye-mouth triangles deemed unreasonable are those that do not substantially match a range of empirically determined eye-mouth triangle geometries for typical humans. FIG. 1OC illustrates two possible eye-mouth triangles (dashed-lines) within the facial feature map of the frame of the "Mother and Daughter" video sequence. Feature verification module 68 then uses a template to verify gradient characteristics of the eye-mouth triangle area. Because the human face is a three- dimensional (3D) object, the luminance throughout the facial region tends to be nonuniform. A legitimate eye-mouth triangle area should contain a nose, which makes the gradient information more complicated than in other facial areas, such as a chin. Using the more distinctive gradient information available from the eye-mouth triangle area, feature verification module 68 may select the correct eye and mouth candidates for a face in the video frame.
[0085] System 14 also includes a multi-face separation module 70 that separates the facial features selected by feature verification module 68 into groups for individual faces within the frame. In video sequences, such as the Mother and Daughter sequence, that include more than one face in a video frame, multi-face separation module 70 separates the sets of eye and mouth candidates into groups corresponding to the different faces. The difficulties of this task are three-fold. First, the total number of faces included within the video frame is unknown. Second, some facial features may not have been detected within the video frame. Third, an exhaustive check of all the potential facial feature group combinations has exponential computational complexity. By simplifying the problem to the task of pairing eyes with a mouth, the original problem can be mapped into a graph theory problem, which has polynomial computational complexity. The resulting reduction in computational complexity may be highly desirable for many applications, including mobile applications with limited power and processing resources and other applications requiring fast and possibly realtime results.
[00861 Applying graph theory, multi-face separation module 70 considers a bipartite graph G=(V5E) with vertices set V= {mouth} + {eye pairs} and edge set£1={(vr-,Vj)}, where v,- and v,- belong to different sets and the distance between the node v,- and v,- is within a reasonable range. If a matching S is defined as a subset of E such that no two edges in S are incident to the same vertex or directly connected vertices, then the problem becomes a maximum matching scheme problem. In this way, the multi-face separation process is a variant of the original maximum matching scheme problem, because in the original maximum matching scheme problem definition, the constraint on the matching only requires that no two edges in S are incident to the same vertex. [0087] It is important to observe the possibility of converting the multi-face separation problem into the original maximum matching scheme problem. If an edge set ϋ"= {(vf,Vj)} , where there exits v* such that ( v, , vk ) e E , ( v. , vk ) e E but ( v,. , v. ) g E , is defined after expanding the edge set from E to E U E' , the problem becomes the original maximum matching scheme problem except that an additional constraint must be included such that the result matches must be a subset of E instead of E U E' . Therefore, multi-face separation module 70 can solve the multi-face separation problem in polynomial time complexity.
[0088] System 14 includes an object shape approximation module 72 that approximates an ROl object shape for each face within the video frame based on a ROl object geometric model. For example, a ROI object shape may be approximated within the frame based on a human head and shoulder geometric model. After feature verification module 68 obtains the correct eye-mouth triangle for a face, object shape approximation module 72 may build an ROI object shape, e.g., a head and shoulder model, based on the geometric relationship between the nodes of the eye-mouth triangle. [0089] In order to speed up performance during intra-mode segmentation, object shape approximation module 72 may use a simple rectangular model to approximate the ROI object shape, such as a human head and shoulder object shape. For video sequences that include more than one face in a video frame, after multi-face separation module 70 separates the eyes and mouth candidates into groups for the different faces, object shape approximation module 72 approximates a ROI object shape for each of the faces based on the separate eye-mouth triangles. For example, object shape approximation module 72 may approximate a head and shoulder object shape for each face included within the video frame. FIG. 11 illustrates head and shoulder object shapes defined for each face within the frame of the "Mother and Daughter" video test sequence. [0090] ROI object segmentation system 14 also includes a region segmentation module 74 that performs split-and-merge region growing on the entire frame. Region segmentation module 74 divides the original frame into multiple homogeneous candidate regions. When performing split-and-merge region growing, region segmentation module 74 classifies relationships between neighboring pixels within the video frame into a similar class and a dissimilar class. Region similarity may be determined based on the average pixel intensity value in the region. Region segmentation module 74 then clusters connected similar pixels into small regions and continues to merge these regions to form a minimum number of candidate regions. FIG. 12 illustrates the region growing process where the video frame is initially split into 1195 regions, and then the regions are merged together until 22 candidate regions are generated.
[0091] System 14 further includes an object generation module 76 that automatically selects regions of the frame located within the approximated ROI object shape from the candidate regions within the entire frame. The selected regions may be considered foreground regions and unselected regions may be considered background regions. Object generation, module 76 then generates a foreground object based on the foreground regions.
[0092J Object generation module 76 only selects regions from the set of candidate regions generated by region segmentation module 74 that are located within the ROI object shape approximated by object shape approximation module 72. As described above, the ROI object shape may comprise a rectangular area that contains a ROI object, e.g., a face, and the size of the ROI object shape may be estimated based on the selected eye-mouth triangle for the face. In this way, further processing may be conducted within the ROI object shape instead of within the entire video frame. [0093] Object generation module 76 examines each of the candidate regions within the video frame generated by region segmentation module 74 and determines whether the regions are located within the ROI object shape. Object generation module 76 may consider regions that have more than a predefined percentage, e.g., 60%, of total pixels within the ROI object shape to be foreground regions. Object generation module 76 may then consider the remaining regions within the video frame that have less than the predefined percentage of total pixels within the ROT object shape to be background regions. In this way, object generation module 76 generates a foreground object from the foreground regions within the video frame.
[0094] Finally, system 14 includes an object fusing module 78 that merges multiple foreground objects within the frame into a final output image. For video sequences that include more than one foreground object, object fusing module 78 merges the foreground objects to form an output image. FIG. 13 illustrates generation of a foreground object for each of the faces within the video frame and generation of an output image by merging the two foreground objects. ROI object segmentation system 14 may then send the output image of the segmented frame to multimedia application 18.
[0095] FIG. 14 is a flow diagram illustrating operation of ROI object segmentation system 14 performing intra-mode segmentation. The operation will be described herein in reference to ROI object segmentation system 14 illustrated in FIG. 7. ROI object segmentation system 14 receives a frame of a video sequence from video source 12 (80). In the case of infra-mode segmentation, ROI object segmentation system 14 processes the received frame of the video sequence independently from other frames of the video sequence and without motion information. [0096] Face mask detector 64 detects a face mask within the received frame based on skin-color regions identified within the video frame (82). Face mask detector 64 then classifies pixels of the identified skin-color regions as facial pixels. In this way, face mask detector 64 may obtain the face mask by removing pixels within the received frame that are not facial pixels.
[0097] Eye detector 66 and mouth detector 67 then detect facial feature candidates within the face mask (84). Eye detector 66 may detect eye feature candidates based on chrominance values and luminance values of pixels within the face mask. Mount detector 67 may detect mouth feature candidates based on chrominance values of pixels within the face mask. Feature verification module 68 performs verification of the facial feature candidates detected by eye detector 66 and mouth detector 67 to select the correct facial features (86).
[0098] ROI object segmentation system 14 then determines whether or not the received video frame includes more than one face (87). If the video frame does include more than one face, multi-face separation module 70 separates the facial features selected by feature verification module 68 into groups for the individual faces included in the frame (88). Object shape approximation module 72 then approximates a ROT object shape for each face within the video frame based on a ROI object geometric model defined by the facial features selected by feature verification module 68 (90). For example, a head and shoulder object shape may be approximated for each face within the frame based on the location of the correct eye-mouth triangle.
[0099] Region segmentation module 74 performs split-and-merge region growing on the entire frame (92). Region segmentation module 74 divides the original frame into multiple homogeneous candidate regions. Object generation module 76 then automatically selects regions of the frame located within the approximated ROI object shape from the candidate regions within the entire frame. The selected regions may be considered foreground regions and unselected regions may be considered background regions. Object generation module 76 then generates a foreground object based on the foreground regions (94).
[00100] ROI object segmentation system 14 determines whether the video frame includes more than one foreground object (95). When the video frame includes more than one foreground object, object fusing module 78 merges the foreground objects within the frame into a final output image (96). ROI object segmentation system 14 then sends the output image of the segmented frame to multimedia application 18 (98). [00101] FIG. 15 is a block diagram illustrating ROI object segmentation system
14 when performing inter-mode segmentation on a frame of a video sequence received from video source 12. In this case, ROI object segmentation system 14 processes the frame of the video sequence based on motion information for the ROl object between the current frame and a previous or subsequent frame of the video sequence stored in video memory 16. FIGS. 16 and 17 are screen shots illustrating exemplary results of the techniques implemented by ROI object segmentation system 14 during inter-mode segmentation. In some embodiments, ROI object segmentation system 14 may perform intra-mode segmentation, as described in FIGS. 6-14, on some of the frames of a video sequence and perform inter-mode segmentation, described below, on the other frames of the video sequence based on one or more segmentation mode decision factors. [00102] As described above, ROI object segmentation system 14 implements techniques to automatically segment a ROI object, such as a human head and shoulder area, from a video frame of a video sequence received from video source 12. ROI object segmentation system 14 performs inter-mode segmentation based on motion information for the ROI object. The disclosed techniques include a technique for detecting moving regions within a foreground object based on background modeling and subtraction. Successfully detecting the moving foreground region may improve performance speed of ROI feature detection during inter-mode segmentation. [00103] In the embodiment illustrated in FIG. 15, video source 12 again includes a chrominance blue channel (Cb) 100, a chrominance red channel (Cr) 101, and a luminance channel (Y) 102. ROI object segmentation system 14 further includes a background subtraction module 112 when performing inter-mode segmentation as illustrated in FIG. 15. In this case, ROI object segmentation system 14 also includes the components used when performing intra-modc segmentation as illustrated in FIG. 6. For example, ROI object segmentation system 14 includes a ROI feature detector 104 that comprises face mask detector 64, eye detector 68, and mouth detector 67 from FIG. 6. In addition, ROI object segmentation module 14 also includes feature verification module 106, multi-face separation module 108, object shape approximation module 110, region segmentation module 114, object generation module 116, and object fusing module 118, which may operate in manner similar to corresponding components in FIG. 6.
[00104] Background subtraction module 112 interacts with ROI feature detector
104 and region segmentation module 114 to support inter-mode segmentation. With background subtraction module 112, system 14 identifies a moving foreground region of the video frame representing movement relative to a different video frame in the video sequence. In particular, to identify the moving foreground region, background subtraction module 112 compares first locations of pixels within the ROl object of the video frame to second locations of the pixels within the different video frame, e.g., a previous frame in the video sequence.
[00105] Background subtraction module 112 then classifies pixels that have not moved from the second location as background pixels, and classifies pixels that have moved from the second location as foreground pixels. The moving foreground region is identified based on the identified foreground pixels. System 14 then detects ROI features within a combined foreground region of the video frame corresponding to the moving foreground region and a foreground region previously identified in the different, e.g., previous, video frame. Based on the detected ROI features, shape approximation module 110 approximates a shape of an ROI object within the video frame. [00106] Background subtraction module 112 takes advantage of the temporal correlation of consecutive video frames of the video sequence. Background subtraction module 1 12 conducts a pixel -by-pixel classification process of pixels within the ROT object of the video sequence received from video source 12. In this way, background subtraction module 112 determines which pixels of the current frame are background pixels based on motion information between the current frame and a previous or subsequent frame of the video sequence retrieved from video memory 16. In other words, background subtraction module 112 uses additional information available in inter-mode operation to quickly and efficiently find the moving region of the foreground object. Again, background subtraction module 112 classifies those pixels of the current frame that have not moved from their previous location as background pixels. In turn, background subtraction module 112 then classifies those pixels that have moved from their previous location as foreground pixels. In this way, background subtraction module 112 is more efficient and has lower complexity than a motion estimation-based technique.
[00107] Background subtraction module 112 may provide one or more benefits.
For example, the search space of the face mask can be reduced from the entire image to the moving foreground region plus the face mask region from the previous frame, which may be considered a combined foreground region. In addition, the facial features will be either inside the moving foreground regions or in the same location as in the previous frame. As another possible benefit, the connected moving foreground regions can be treated as a homogeneous region.
[00108] FIG. 16 illustrates an example of foreground pixel classification, based on pixel motion between frames of the "Mother and Daughter" video sequence. In FlG. 16, as the movement of the foreground object from frame 8 to 10 is rather small, background subtraction module 112 classifies only portion of the head pixels as foreground pixels while the body pixels are static during the first 10 frames. [00109] In order to perform the pixcl-by-pixcl classification process, background subtraction module 112 applies a background model. In particular, background subtraction module 112 adapts a mixture of if Gaussian distributions to model the pixel intensity (e.g., K=5) where each Gaussian is weighted according to the frequency with which it explains the observed background. Therefore, the probability that a certain pixel within the foreground region has intensity Xt at time t is estimated as:
Figure imgf000029_0001
where Wu is the normalized weight, μt and σ, are the mean and the standard deviation of the zth distribution.
[00110] As the parameters of the mixture model of each pixel change, background subtraction module 1 12 determines which of the Gaussians of the mixture are most likely produced by background processes. Based on heuristic information, background subtraction module 112 selects the Gaussian distributions which have the most supporting evidence and the least variance. It is for this reason that the K distributions are ordered based on the value of w/σ. This ordering of the model is effectively an ordered list, where the most likely background distributions remain on top and the less probable transient background distributions gravitate toward the bottom. Background subtraction module 112 may find the most likely distribution models based on equation (6) given below.
B = argrnin, (∑*=1 w, > T) , (6) where the threshold T is the fraction of the total weight given to the background. [00111] Then, background subtraction module 112 checks the new pixel against the existing K Gaussian distributions until a match is found. Background subtraction module 112 finds a match when the distance between the mean of the distribution and the new pixel value is within 2.5 standard deviations of the distributions. If none of the K distributions matches the current pixel value, the least probable distribution which has the smallest value of w/σ is replaced by a new distribution with the current new pixel value as the mean, an initially high variance and low prior weight. In general, a new pixel value can always be represented by one of the major components of the mixture model of K Gaussian distributions. If this matched distribution is one of the B background distributions, the new pixel is marked as background. If not, the pixel is marked as foreground.
[00112] In order to keep the mixture model adaptive, background subtraction module 112 continuously updates the model parameters using the new pixel values. For the matched Gaussian distribution, background subtraction module 112 updates all the parameters at time t with this new pixel value X1. In addition, background subtraction module 112 updates the prior weight as
W1 = (l -a)wt_x +a , (7) and the mean and variance are updated as μt = (l-p)μt_1 + pXl , (8) and σf = (l-p)σf_ι + p(Xli )\ (9) where α is the learning rate controlling adaptation speed, 1/α defines the time constant which determines change, and p is the probability associated with the current pixel, scaled by the learning rate α. Therefore p may be represented by
Figure imgf000030_0001
For unmatched distributions, the mean μ, and variance σt remain unchanged, while background subtraction module 112 updates the prior weight as
W1 = (I - Or) W^1 . (11)
[00113] One advantage of this updating method is that, when background subtraction module 112 allows an object to become part of the background, the original background model is not destroyed. Tn other words, the original background distribution remains in the mixture until it becomes the least probable distribution and a new color is observed. Therefore, if this static object happens to move again, background subtraction module 112 will rapidly reincorporate the previous background distribution into the model. [00114] Once background subtraction module 112 classifies the moving pixels as foreground pixels, region segmentation module 114 may perform split-and-merge region growing on the foreground pixels to create a moving foreground region of the video frame. In this manner, the classified foreground pixels are used to merge the regions obtained from the region growing approach, and thereby form the foreground regions. In particular, by fusing the moving foreground region resulting from background subtraction with split-and-merge growing techniques, a moving region of the foreground object can be obtained.
[00115] Detecting the foreground pixels and creating the moving foreground region may increase robustness of the inter-mode segmentation process and speed up ROI feature detection performance. The search for ROI features can be confined to the combined foreground region, including the moving foreground region and the foreground region formed by the face mask of the previous frame. FIG. 17 illustrates an a moving foreground region extracted from a background area of a video frame of the "Mother and Daughter" video sequence.
[00116] ROI object segmentation system 14 may then use substantially similar techniques to complete the inter-mode segmentation process as are used to perform intra-mode segmentation described above. For example, ROI feature detector 100 detects a face mask and facial features within the combined foreground region formed by the moving foreground region and the face mask and facial feature locations within the previous frame. In this way, background subtraction module 112 reduces the computational complexity of performing ROI feature detection within the entire video frame. Object fusing module 118 then merges the foreground objects to form an output image. ROI object segmentation module 14 sends the output image of the segmented frame to multimedia application 18.
[00117] In the illustrated embodiment, no new faces or facial features are introduced during the video sequence. Therefore, ROI object segmentation system 14 may skip feature verification module 108 and multi-face separation module 108 when performing inter-mode segmentation, as indicated by the dashed line extending between ROI feature detector 104 and object shape approximation module 110. In particular, if the detected facial features are located close to the features in the previous frame, which means the object in the previous frame does not present significant movement, then the object of the current frame can be quickly generated by using the object shape approximation module 110 and object generation module 116, without the need to apply the functions of feature verification module 106 and multi-face separation module 108. [00118] Otherwise, if new faces or facial features are introduced, the entire process is applied, i.e., feature verification module 106, multi-face separation module 108, object shape approximation module 110 and object generation module 116 are applied. In object generation module 116, connected moving foreground regions are treated as homogeneous regions. Object fusing module 118 merges the foreground objects to form an output image. ROI object segmentation system 14 sends the output image of the segmented frame to multimedia application 18.
[00119] Face mask and facial feature detector 100 may detect additional ROI features within a video frame during inter-mode segmentation. In this case, ROI object segmentation system 14 may use feature verification module 106 to verify the newly detected facial features. In addition, system 14 may use multi-face separation module 108, followed by object shape approximation module 110 and object generation module 116, for new faces included in the video frame.
[00120] FIG. 18 is a flow diagram illustrating operation of ROI object segmentation system 14 performing inter-mode segmentation. The operation will be described herein in reference to ROI object segmentation system 14 illustrated in FIG. 15 ROI object segmentation system 14 receives a frame of a video sequence from video source 12 and retrieves a previous frame of the video sequence from video memory 16 (120). In the case of inter-mode segmentation, ROl object segmentation system 14 processes the frame of the video sequence based on motion information for the ROI object between the current frame and the previous frame of the video sequence. In some embodiments, ROI object segmentation system 14 may alternatively or additionally use motion information indicating ROI object motion with respect to a subsequent video frame.
[00121] Background subtraction module 112 performs background subtraction on the received video frame to classify moving pixels within the ROI object between the previous frame and the current frame as foreground pixels (122). Background subtraction module 112 conducts a pixel-by-pixel classification process in order to determine which pixels of the current frame have moved from their previous location in the previous frame. Once background subtraction module 112 classifies the moving pixels as foreground pixels, region segmentation module 114 may perform split-and- merge region growing on the foreground pixels to create a moving foreground region of the video frame (124).
[00122] ROI object segmentation system 14 may then use substantially similar techniques to complete the inter-mode segmentation process as are used to perform intra-mode segmentation described above. ROI feature detector 104 detects a face mask within a region including both the moving foreground region and the face mask location from the previous frame (126), i.e., within a combined foreground region. Furthermore, ROI feature detector 104 detects facial features, e.g., eye and mouth candidates, within the combined foreground region including the moving foreground region and the facial feature locations within the previous frame (128).
[00123] If the facial features detected by ROI feature detector 104 are located close to the facial features detected in the previous frame (130), the object in the previous frame does not present significant movement. In this case, the object of the current frame can be quickly generated by using the object shape approximation module 110 (136) and object generation module 116 (138), while skipping the functions of feature verification module 106 (132) and multi-face separation module 108 (134). [00124] Otherwise, if the facial features detected by ROT feature detector 104 are not located close to the facial features detected in. the previous frame, the object in the previous frame has moved significantly. In this case, the entire process is applied. In particular, feature verification module 106 verifies the detected features (132), and multi-face separation module 108 performs face separation (134). Then, object shape approximation module 110 is applied (136), followed by object generation module 116 (138). In object generation module 116, connected moving foreground regions are treated as homogeneous regions to generate the object (138). Object fusing module 118 then merges the foreground objects to form an output image (140). ROI object segmentation system 14 sends the output image of the segmented frame to multimedia application 18 (142).
[00125] The techniques described herein may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the techniques may be realized in part by a computer readable medium comprising program code containing instructions that, when executed, performs one or more of the methods described above. In this case, the computer readable medium may comprise random access memory (RAM) such as synchronous dynamic random access memory (SDRAM), read-only memory (ROM), non-volatile random access memory (NVRAM), electrically erasable programmable read-only memory (EEPROM), FLASH memory, magnetic or optical data storage media, and the like.
[00126] The program code may be executed by a programmable processor, which may be realized by one or more digital signal processors (DSPs), general purpose microprocessors, application specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other combinations of equivalent integrated or discrete logic circuitry. In some embodiments, the functionality described herein may be provided within dedicated software modules or hardware units configured for automatic object segmentation, or incorporated in an automatic object segmentation system. (00127] In this disclosure, various techniques have been described for automatic segmentation of a ROI object from a video sequence. An ROI object segmentation system may implement one or more of the disclosed techniques individually or in combination to provide an accurately segmented ROI object for use in a multimedia application, such as a VT application, a video streaming application or a video surveillance application.
[00128] The disclosed techniques include a hybrid technique that includes ROI feature detection, region segmentation, and background subtraction. The disclosed techniques may include both intra-mode and inter-mode object segmentation. Inter- mode segmentation takes advantage of the temporal correlation of consecutive video frames of a video sequence by using background modeling and subtraction instead of conventional computationally intensive motion estimation operations to speed up performance of the ROI object segmentation system. The disclosed techniques also include facial feature verification, multi-face separation, and ROI object generation to speed up performance of intra-mode segmentation by the ROI object segmentation system. These and other embodiments arc within the scope of the following claims.

Claims

1. A method comprising: receiving a video frame of a video sequence; detecting region of interest (ROI) features within the video frame; approximating a ROI object shape within the video frame based on the detected ROI features; segmenting the video frame into multiple candidate regions based on the detected ROI features; and selecting one or more of the candidate regions located within the ROI object shape of the video frame as an ROI object.
2. The method of claim 1, further comprising generating an output image that identifies the ROI object, and preferentially encoding the ROI object relative to non- ROI regions of the video frame.
3. The method of claim 1 , wherein selecting one or more candidate regions comprises selecting one or more of the candidate regions as the ROI object without reference to motion information for the video frame in the video sequence.
4. The method of claim 1 , wherein detecting ROl features comprises: detecting a face mask within the video frame based on chrominance values of skin-color regions within the video frame; detecting eye features within the video frame based on both chrominance values and luminance values of pixels within the detected face mask; and detecting mouth features within the video frame based on chrominance values of pixels within the detected face mask.
5. The method of claim 1 , wherein the detected ROI features comprise detected facial feature candidates within the video frame, the method further comprising verifying the detected facial feature candidates to select correct facial features for the ROI object and remove false facial features from the set of facial feature candidates.
6. The method of claim 5, wherein verifying the detected facial feature candidates comprises: detecting valley regions within the video frame; comparing locations of the detected facial feature candidates within the video frame to locations of the valley regions within the video frame; removing a facial feature from the set of facial feature candidates when the facial feature does not at least partially overlap one of the detected valley regions within the video frame.
7. The method of claim 5 , wherein verifying the detected facial feature candidates comprises: comparing each of the detected facial feature candidates to a plurality of criteria based on symmetric and geometric properties of eye features; assigning a score to each of the detected facial feature candidates based on a level of correspondence with the plurality of criteria; and removing a facial feature from the set of facial feature candidates when the score assigned to the facial feature is less than a threshold value.
8. The method of claim 5, wherein verifying the detected facial feature candidates comprises: combining eye feature candidates and mouth feature candidates into eye-mouth triangles; and verifying the eye-mouth triangles based on orientation of the eye-mouth triangles within the video frame and gradient characteristics of the ROI object within the cyc-mouth triangles.
9. The method of claim 1 , wherein the video frame includes more than one ROI object, the method further comprising separating the detected ROI features into groups for the individual ROI objects, and applying maximum matching graph theory to the detected ROI features within the video frame.
10. The method of claim 1, wherein approximating a ROI object shape comprises approximating the ROI object shape based on a geometric model defined by a location of the detected ROI features, wherein the approximate ROI object shape comprises a human head and shoulder object shape within the video frame.
11. The method of claim 1 , wherein segmenting the video frame comprises: classifying each pixel within the video frame based on similarity to neighboring pixels; and merging the similar pixels into a minimum number of the candidate regions within the video frame.
12. The method of claim 1 , wherein selecting one or more of the candidate regions comprises selecting one or more of the candidate regions that have a predetermined percentage of pixels located within the ROI object shape of the video frame, the method further comprising generating a foreground object by merging the selected one or more of the candidate regions.
13. The method of claim 12, wherein the video frame includes more than one foreground object, the method further comprising merging the more than one foreground objects to form an output image and sending the output image to a multimedia application.
14. A computer-readable medium comprising instructions that cause a programmable processor to: receive a video frame of a video sequence; detect region of interest (ROI) features within the video frame; approximate a ROI object shape within the video frame based on the detected ROI features; segment the video frame into multiple candidate regions based on the detected ROI features; and select one or more of the candidate regions located within the ROI object shape of the video frame as an ROI object.
15. The computer-readable medium of claim 14, wherein the instructions cause the processor to generate an output image that identifies the ROI object, and preferentially encode the ROI object relative to non-ROI regions of the video frame.
16. The computer-readable medium of claim 14, farther comprising instructions to cause the processor toiselect one or more of the candidate regions as the ROI object without reference to motion information for the video frame and a different video frame in the video sequence.
17. The computer-readable medium of claim 14, wherein the instructions that cause the programmable processor to detect ROI features cause the programmable processor to: detect a face mask within the video frame based on chrominance values of skin- color regions within the video frame; detect eye features within the video frame based on both chrominance values and luminance values of pixels within the detected face mask; and detect mouth features within the video frame based on chrominance values of pixels within the detected face mask.
18. The computer-readable medium of claim 14, wherein the detected ROT features comprise detected facial feature candidates within the video frame, further comprising instructions that cause the programmable processor to verify the detected facial feature candidates to select correct facial features for the ROI object and remove false facial features from the set of facial feature candidates.
19. The computer-readable medium of claim 18, wherein the instructions cause the programmable processor to: detect valley regions within the video frame; compare locations of the detected facial feature candidates within the video frame to locations of the valley regions within the video frame; remove a facial feature from the set of facial feature candidates when the facial feature does not at least partially overlap one of the detected valley regions within the video frame.
20. The computer-readable medium of claim 18, wherein the instructions cause the programmable processor to: compare each of the detected facial feature candidates to a plurality of criteria based on symmetric and geometric properties of eye features; assign a score to each of the detected facial feature candidates based on a level of correspondence with the plurality of criteria; and remove a facial feature from the set of facial feature candidates when the score assigned to the facial feature is less than a threshold value.
21. The computer-readable medium of claim 18, wherein the instructions cause the programmable processor to: combine eye feature candidates and mouth feature candidates into eye-mouth triangles; and verify the eye-mouth triangles based on orientation of the eye-mouth triangles within the video frame and gradient characteristics of the ROI object within the eye- mouth triangles.
22. The computer-readable medium of claim 14, wherein the video frame includes more than one ROT object, further comprising instructions that cause the programmable processor to separate the detected ROI features into groups for the individual ROI objects, and apply maximum matching graph theory to the detected ROI features within the video frame.
23. The computer-readable medium of claim 14, wherein the instructions cause the programmable processor to approximate the ROI object shape based on a geometric model defined by a location of the detected ROI features.
24. The computer-readable medium of claim 14, wherein the instructions that cause the programmable processor to segment the video frame cause the programmable processor to: classify each pixel within the video frame based on similarity to neighboring pixels; and merge the similar pixels into a minimum number of candidate regions within the first frame.
25. The computer-readable medium of claim 17, wherein the instructions cause the programmable processor to select one or more of the candidate regions that have a predetermined percentage of pixels located within the ROI object shape of the video frame, further comprising instructions that cause the programmable processor to generate a foreground object by merging the selected one or more of the candidate regions.
26. The computer-readable medium of claim 25, wherein the video frame includes more than one foreground object, further comprising instructions that cause the programmable processor to merge the more than one foreground objects to form the output image and send the output image to a multimedia application.
27. An automatic region of interest (ROI) object segmentation system comprising: a ROI feature detector that detects ROI features within a video frame of a video sequence; an object shape approximation module that approximates a ROI object shape within the video frame based on the detected ROT features; a region segmentation module that segments the video frame into multiple candidate regions based on the detected ROI features; and a object generation module that selects one or more of the candidate regions located within the ROl object shape of the video frame as an ROI object.
28. The system of claim 27, further comprising: an object fusion module that generates an output image that identifies the ROI object; and an encoder that preferentially encodes the ROI object relative to non-ROI regions of the video frame.
29. The system of claim 27, wherein the object generation module selects the one or more of the candidate regions as the ROI object without reference to motion information for the video frame in the video sequence.
30. The system of claim 27, wherein the ROI feature detector includes a face mask detector that detects a face mask within the video frame based on chrominance values of skin-color regions within the video frame, an eye detector that detects eye features within the video frame based on both chrominance values and luminance values of pixels within the detected face mask, and a mouth detector that detects mouth features within the video frame based on chrominance values of pixels within the detected face mask.
31. The system of claim 27, wherein the detected ROI features comprise detected facial feature candidates within the video frame, the system further comprising a feature verification module that verifies the detected facial feature candidates to select correct facial features for the ROI object and remove false facial features from the set of facial feature candidates, and wherein the feature verification module: detects valley regions within the video frame; compares locations of the detected facial feature candidates within the video frame to locations of the valley regions within the video frame; removes a facial feature from the set of facial feature candidates when the facial feature does not at least partially overlap one of the detected valley regions within the video frame.
32. The system of claim 31 , wherein the feature verification module: compares each of the detected facial feature candidates to a plurality of criteria based on symmetric and geometric properties of eye features; assigns a score to each of the detected facial feature candidates based on a level of correspondence with the plurality of criteria; and removes a facial feature from the set of facial feature candidates when the score assigned to the facial feature is less than a threshold value.
33. The system of claim 31 , wherein the feature verification module: combines eye feature candidates and mouth feature candidates into eye-mouth triangles; and verifies the eye-mouth triangles based on orientation of the eye-mouth triangles within the video frame and gradient characteristics of the ROI object within the eye- mouth triangles.
34. The system of claim 27, wherein the video frame includes more than one ROI object, further comprising a multi-face separation module that separates the detected ROI features into groups for the individual ROI objects, and applies maximum matching graph theory to the detected ROl features within the video frame to separate the detected ROI features.
35. The system of claim 27, wherein the object shape approximation module approximates the ROI object shape based on a geometric model defined by a location of the detected ROI features, wherein the approximate ROI object shape comprises a human head and shoulder object shape within the video frame.
36. The system of claim 27, wherein the region segmentation module: classifies each pixel within the video frame based on similarity to neighboring pixels; and merges the similar pixels into a minimum number of candidate regions within the first frame.
37. The system of claim 27, further comprising an object generation module that selects one or more of the candidate regions that have a predetermined percentage of pixels located within the ROI object shape of the video frame, wherein the object generation module generates a foreground object by merging the selected one or more of the candidate regions.
38. The system of claim 37, wherein the video frame includes more than one foreground objects, wherein the object fusing module merges the more than one foreground objects to form the output image and sends the output image to a multimedia application.
39. A method comprising: receiving a video frame of a video sequence; detecting region of interest (ROI) features within the video frame, wherein the ROl features include a face mask including eye features and mouth features; segmenting the video frame into multiple candidate regions based on the detected ROI features; combining eye feature candidates and mouth feature candidates into eye-mouth triangles; verifying the eye-mouth triangles based on orientation of the eye-mouth triangles within the video frame; and selecting one or more of the candidate regions as an ROI object based on the verification.
40. The method of claim 39, wherein detecting ROI features comprises detecting the face mask within the video frame based on both chrominance values and luminance values of pixels within the detected face mask.
41. The method of claim 39, wherein verifying the detected facial feature candidates comprises: detecting valley regions within the video frame; comparing locations of the detected facial feature candidates within the video frame to locations of the valley regions within the video frame; removing a facial feature from the set of facial feature candidates when the facial feature does not at least partially overlap one of the detected valley regions within the video frame.
42. The method of claim 39, wherein verifying the detected facial feature candidates comprises: comparing each of the detected facial feature candidates to a plurality of criteria based on symmetric and geometric properties of eye features; assigning a score to each of the detected facial feature candidates based on a level of correspondence with the plurality of criteria; and removing a facial feature from the set of facial feature candidates when the score assigned to the facial feature is less than a threshold value.
43. A computer-readable medium comprising instructions to cause a programmable processor to: receive a video frame of a video sequence; detect region of interest (ROI) features within the video frame, wherein the ROI features include a face mask including eye features and mouth features; segment the video frame into multiple candidate regions based on the detected ROI features; combine eye feature candidates and mouth feature candidates into eye-mouth triangles; verify the eye-mouth triangles based on orientation of the eye-mouth triangles within the video frame; and select one or more of the candidate regions as an ROl object based on the verification.
44. The computer-readable medium of claim 43, wherein the instructions cause the processor to detect the face mask within the video frame based on both chrominance values and luminance values of pixels within the detected face mask.
45. The computer-readable medium of claim 43, wherein verification of the detected facial feature candidates includes: detecting valley regions within the video frame; comparing locations of the detected facial feature candidates within the video frame to locations of the valley regions within the video frame; removing a facial feature from the set of facial feature candidates when the facial feature does not at least partially overlap one of the detected valley regions within the video frame.
46. The computer-readable medium of claim 43, wherein verification of the detected facial feature candidates comprises: comparing each of the detected facial feature candidates to a plurality of criteria based on symmetric and geometric properties of eye features; assigning a score to each of the detected facial feature candidates based on a level of correspondence with the plurality of criteria; and removing a facial feature from the set of facial feature candidates when the score assigned to the facial feature is less than a threshold value.
47. A system comprising: a region of interest (ROI) feature detector that detects ROI features within a video frame of a video sequence, wherein the ROl features include a face mask including eye features and mouth features; a region segmentation module that segments the video frame into multiple candidate regions based on the detected ROI features; a feature verification module that combines eye feature candidates and mouth feature candidates into eye-mouth triangles, and verifies the eye-mouth triangles based on orientation of the eye-mouth triangles within the video frame; and an object generation module that selects one or more of the candidate regions as an ROI object based on the verification.
48. The system of claim 47, wherein the ROI feature detector detects the face mask within the video frame based on both chrominance values and luminance values of pixels within the detected face mask.
49. The system of claim 47, wherein the feature verification module: detects valley regions within the video frame; compares locations of the detected facial feature candidates within the video frame to locations of the valley regions within the video frame; removes a facial feature from the set of facial feature candidates when the facial feature does not at least partially overlap one of the detected valley regions within the video frame.
50. The system of claim 49, wherein the feature verification module: compares each of the detected facial feature candidates to a plurality of criteria based on symmetric and geometric properties of eye features; assigns a score to each of the detected facial feature candidates based on a level of correspondence with the plurality of criteria; and removes a facial feature from the set of facial feature candidates when the score assigned to the facial feature is less than a threshold value.
PCT/US2007/061803 2006-02-07 2007-02-07 Intra-mode region-of-interest video object segmentation WO2007092905A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008554492A JP4988770B2 (en) 2006-02-07 2007-02-07 Region of interest image object segmentation between modes
EP07763076A EP1994761A2 (en) 2006-02-07 2007-02-07 Intra-mode region-of-interest video object segmentation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/350,376 US8265349B2 (en) 2006-02-07 2006-02-07 Intra-mode region-of-interest video object segmentation
US11/350,376 2006-02-07

Publications (2)

Publication Number Publication Date
WO2007092905A2 true WO2007092905A2 (en) 2007-08-16
WO2007092905A3 WO2007092905A3 (en) 2007-12-13

Family

ID=38334114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/061803 WO2007092905A2 (en) 2006-02-07 2007-02-07 Intra-mode region-of-interest video object segmentation

Country Status (6)

Country Link
US (1) US8265349B2 (en)
EP (1) EP1994761A2 (en)
JP (2) JP4988770B2 (en)
KR (1) KR101023733B1 (en)
CN (1) CN101375608A (en)
WO (1) WO2007092905A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908976B2 (en) 2010-05-26 2014-12-09 Panasonic Intellectual Property Corporation Of America Image information processing apparatus

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088872B1 (en) * 2002-02-14 2006-08-08 Cogent Systems, Inc. Method and apparatus for two dimensional image processing
US8872899B2 (en) * 2004-07-30 2014-10-28 Extreme Reality Ltd. Method circuit and system for human to machine interfacing by hand gestures
CA2575704C (en) 2004-07-30 2014-03-04 Extreme Reality Ltd. A system and method for 3d space-dimension based image processing
US8928654B2 (en) 2004-07-30 2015-01-06 Extreme Reality Ltd. Methods, systems, devices and associated processing logic for generating stereoscopic images and video
US8681100B2 (en) 2004-07-30 2014-03-25 Extreme Realty Ltd. Apparatus system and method for human-machine-interface
US8208758B2 (en) 2005-10-05 2012-06-26 Qualcomm Incorporated Video sensor-based automatic region-of-interest detection
US8019170B2 (en) 2005-10-05 2011-09-13 Qualcomm, Incorporated Video frame motion-based automatic region-of-interest detection
US9046962B2 (en) 2005-10-31 2015-06-02 Extreme Reality Ltd. Methods, systems, apparatuses, circuits and associated computer executable code for detecting motion, position and/or orientation of objects within a defined spatial region
US20070285554A1 (en) 2005-10-31 2007-12-13 Dor Givon Apparatus method and system for imaging
US8131477B2 (en) * 2005-11-16 2012-03-06 3M Cogent, Inc. Method and device for image-based biological data quantification
US8150155B2 (en) 2006-02-07 2012-04-03 Qualcomm Incorporated Multi-mode region-of-interest video object segmentation
JP4427533B2 (en) * 2006-09-22 2010-03-10 富士フイルム株式会社 Face image detection apparatus and control method thereof
US8787445B2 (en) * 2007-03-15 2014-07-22 Nvidia Corporation Allocation of available bits to represent different portions of video frames captured in a sequence
US8275179B2 (en) * 2007-05-01 2012-09-25 3M Cogent, Inc. Apparatus for capturing a high quality image of a moist finger
US8446454B2 (en) 2007-05-21 2013-05-21 Polycom, Inc. Dynamic adaption of a continuous presence videoconferencing layout based on video content
US8411916B2 (en) * 2007-06-11 2013-04-02 3M Cogent, Inc. Bio-reader device with ticket identification
CN101325691B (en) * 2007-06-14 2010-08-18 清华大学 Method and apparatus for tracing a plurality of observation model with fusion of differ durations
US8548049B2 (en) * 2007-07-02 2013-10-01 Vixs Systems, Inc Pattern detection module, video encoding system and method for use therewith
US7995841B2 (en) * 2007-09-24 2011-08-09 Microsoft Corporation Hybrid graph model for unsupervised object segmentation
CN101409817B (en) * 2007-10-11 2012-08-29 鸿富锦精密工业(深圳)有限公司 Video processing method, video processing system and video apparatus
US8233676B2 (en) * 2008-03-07 2012-07-31 The Chinese University Of Hong Kong Real-time body segmentation system
US9646087B2 (en) * 2008-04-17 2017-05-09 Adobe Systems Incorporated Scene break prediction based on characteristics of previous scenes
US8243987B2 (en) * 2008-06-06 2012-08-14 International Business Machines Corporation Object tracking using color histogram and object size
WO2010001311A1 (en) * 2008-07-02 2010-01-07 C-True Ltd. Networked face recognition system
US9031279B2 (en) * 2008-07-09 2015-05-12 Disney Enterprises, Inc. Multiple-object tracking and team identification for game strategy analysis
US20100014755A1 (en) * 2008-07-21 2010-01-21 Charles Lee Wilson System and method for grid-based image segmentation and matching
EP2342642A1 (en) * 2008-09-04 2011-07-13 Extreme Reality Ltd. Method system and software for providing image sensor based human machine interfacing
US7809195B1 (en) * 2008-09-18 2010-10-05 Ernest Greene Encoding system providing discrimination, classification, and recognition of shapes and patterns
WO2010080687A1 (en) * 2009-01-09 2010-07-15 Thomson Licensing Method and apparatus for detecting and separating objects of interest in soccer video by color segmentation and shape analysis
US8358834B2 (en) 2009-08-18 2013-01-22 Behavioral Recognition Systems Background model for complex and dynamic scenes
JP2013505493A (en) 2009-09-21 2013-02-14 エクストリーム リアリティー エルティーディー. Method, circuit, apparatus and system for human-machine interfacing with electronic equipment
US8878779B2 (en) 2009-09-21 2014-11-04 Extreme Reality Ltd. Methods circuits device systems and associated computer executable code for facilitating interfacing with a computing platform display screen
JP2011090569A (en) * 2009-10-23 2011-05-06 Sony Corp Image processing apparatus and image processing method
DE102010013580A1 (en) * 2010-03-31 2011-10-06 Rohde & Schwarz Gmbh & Co. Kg Device and method for identifying persons
CN101854520A (en) * 2010-04-16 2010-10-06 广东中大讯通信息有限公司 Wireless transmission video monitoring system and method
JP5590390B2 (en) * 2010-07-15 2014-09-17 ソニー株式会社 Image processing apparatus and method
KR102405529B1 (en) 2010-10-08 2022-06-08 지이 비디오 컴프레션, 엘엘씨 Picture coding supporting block partitioning and block merging
JP5036084B2 (en) * 2010-10-14 2012-09-26 シャープ株式会社 Video processing apparatus, video processing method, and program
US11049473B2 (en) * 2011-03-24 2021-06-29 Koninklijke Philips N.V. Apparatuses and methods for analyzing image gradings
US9165201B2 (en) * 2011-09-15 2015-10-20 Xerox Corporation Systems and methods for detecting cell phone usage by a vehicle operator
US8849007B2 (en) 2011-10-19 2014-09-30 Crown Equipment Corporation Identifying, evaluating and selecting possible pallet board lines in an image scene
US8938100B2 (en) 2011-10-28 2015-01-20 Intellectual Ventures Fund 83 Llc Image recomposition from face detection and facial features
US9025836B2 (en) * 2011-10-28 2015-05-05 Intellectual Ventures Fund 83 Llc Image recomposition from face detection and facial features
US9025835B2 (en) 2011-10-28 2015-05-05 Intellectual Ventures Fund 83 Llc Image recomposition from face detection and facial features
US9008436B2 (en) * 2011-10-28 2015-04-14 Intellectual Ventures Fund 83 Llc Image recomposition from face detection and facial features
US20130108119A1 (en) * 2011-10-28 2013-05-02 Raymond William Ptucha Image Recomposition From Face Detection And Facial Features
US20130108170A1 (en) * 2011-10-28 2013-05-02 Raymond William Ptucha Image Recomposition From Face Detection And Facial Features
US8811747B2 (en) * 2011-10-28 2014-08-19 Intellectual Ventures Fund 83 Llc Image recomposition from face detection and facial features
TWI439967B (en) * 2011-10-31 2014-06-01 Hon Hai Prec Ind Co Ltd Security monitor system and method thereof
WO2013069023A2 (en) * 2011-11-13 2013-05-16 Extreme Reality Ltd. Methods systems apparatuses circuits and associated computer executable code for video based subject characterization, categorization, identification and/or presence response
US20130308856A1 (en) 2012-01-12 2013-11-21 Google Inc. Background Detection As An Optimization For Gesture Recognition
CN102547290B (en) * 2012-01-20 2013-12-18 厦门大学 Video image coding/decoding method based on geometric partitioning
US9262670B2 (en) * 2012-02-10 2016-02-16 Google Inc. Adaptive region of interest
JP5949481B2 (en) * 2012-03-14 2016-07-06 富士通株式会社 Image processing method, program, and apparatus
KR20130111061A (en) * 2012-03-30 2013-10-10 한국전자통신연구원 Image encoding method using binary partition tree
KR101640527B1 (en) 2012-10-09 2016-07-18 에스케이 텔레콤주식회사 Method and Apparatus for Monitoring Video for Estimating Size of Single Object
KR20140098959A (en) * 2013-01-31 2014-08-11 한국전자통신연구원 Apparatus and method for evidence video generation
CN103218555A (en) * 2013-03-04 2013-07-24 北京百纳威尔科技有限公司 Logging-in method and device for application program
US9098737B2 (en) * 2013-03-12 2015-08-04 Dell Products L.P. Efficient 360 degree video processing
CN103220530A (en) * 2013-04-22 2013-07-24 郑永春 System and method for processing high-definition picture for intelligent monitoring
CN105144768B (en) 2013-04-26 2019-05-21 英特尔Ip公司 Shared frequency spectrum in frequency spectrum share situation is redistributed
JP2015231145A (en) * 2014-06-05 2015-12-21 日本放送協会 Transmitter, receiver and programs thereof
US9858470B2 (en) * 2014-07-18 2018-01-02 Htc Corporation Method for performing a face tracking function and an electric device having the same
US9607210B2 (en) 2014-12-19 2017-03-28 Tata Consultancy Services Limited Video surveillance system and method for fraud detection
US9584716B2 (en) 2015-07-01 2017-02-28 Sony Corporation Method and apparatus for autofocus area selection by detection of moving objects
CN106407984B (en) * 2015-07-31 2020-09-11 腾讯科技(深圳)有限公司 Target object identification method and device
CN105407352A (en) * 2015-11-23 2016-03-16 小米科技有限责任公司 Image compression method and device, and server
WO2017120384A1 (en) 2016-01-08 2017-07-13 Flir Systems, Inc. Thermal-image based object detection and heat map generation systems and methods
US10147195B2 (en) 2016-02-19 2018-12-04 Flir Systems, Inc. Object detection along pre-defined trajectory
US9990535B2 (en) 2016-04-27 2018-06-05 Crown Equipment Corporation Pallet detection using units of physical length
EP3287947A1 (en) 2016-08-25 2018-02-28 Dolby Laboratories Licensing Corp. Automatic video framing of conference participants
US11176675B2 (en) 2017-02-01 2021-11-16 Conflu3Nce Ltd System and method for creating an image and/or automatically interpreting images
US11158060B2 (en) * 2017-02-01 2021-10-26 Conflu3Nce Ltd System and method for creating an image and/or automatically interpreting images
GB2561607B (en) 2017-04-21 2022-03-23 Sita Advanced Travel Solutions Ltd Detection System, Detection device and method therefor
KR102343648B1 (en) * 2017-08-29 2021-12-24 삼성전자주식회사 Video encoding apparatus and video encoding system
CN108198203B (en) * 2018-01-30 2022-02-08 广东美的制冷设备有限公司 Motion alarm method, device and computer readable storage medium
CN108898604A (en) * 2018-06-28 2018-11-27 上海连尚网络科技有限公司 Method and apparatus for handling image
TWI692731B (en) * 2019-01-02 2020-05-01 瑞昱半導體股份有限公司 Object position determination circuit
KR20230173221A (en) * 2019-01-18 2023-12-26 스냅 아이엔씨 Systems and methods for generating personalized videos with customized text messages
US11544828B2 (en) 2020-11-18 2023-01-03 Disney Enterprises, Inc. Automatic occlusion detection
US11494944B2 (en) 2020-11-18 2022-11-08 Disney Enterprises, Inc. Automatic low contrast detection
CN116630355B (en) * 2023-07-24 2023-11-07 荣耀终端有限公司 Video segmentation method, electronic device, storage medium and program product

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194274A (en) 1983-04-18 1984-11-05 Nippon Telegr & Teleph Corp <Ntt> Person deciding device
US4951140A (en) 1988-02-22 1990-08-21 Kabushiki Kaisha Toshiba Image encoding apparatus
DE68903233T2 (en) * 1988-03-14 1993-04-08 Seiko Epson Corp METHOD AND DEVICE FOR FEEDING PAPER IN THE PRINTER.
US5150432A (en) 1990-03-26 1992-09-22 Kabushiki Kaisha Toshiba Apparatus for encoding/decoding video signals to improve quality of a specific region
US5048095A (en) 1990-03-30 1991-09-10 Honeywell Inc. Adaptive image segmentation system
JP2863818B2 (en) 1990-08-31 1999-03-03 工業技術院長 Moving image change point detection method
US5323470A (en) 1992-05-08 1994-06-21 Atsushi Kara Method and apparatus for automatically tracking an object
KR950009699B1 (en) 1992-06-09 1995-08-26 대우전자주식회사 Motion vector detection method and apparatus
GB9308952D0 (en) 1993-04-30 1993-06-16 Philips Electronics Uk Ltd Tracking objects in video sequences
US5852669A (en) 1994-04-06 1998-12-22 Lucent Technologies Inc. Automatic face and facial feature location detection for low bit rate model-assisted H.261 compatible coding of video
KR100235343B1 (en) 1994-12-29 1999-12-15 전주범 Apparatus for calculating motion vector in encoder using segmentation method
KR100235345B1 (en) 1994-12-29 1999-12-15 전주범 Moving picture estimation apparatus and method in divided region
KR0180170B1 (en) 1995-06-30 1999-05-01 배순훈 A method of and an apparatus for estimating motion
US6026183A (en) 1995-10-27 2000-02-15 Texas Instruments Incorporated Content-based video compression
KR0181069B1 (en) 1995-11-08 1999-05-01 배순훈 Motion estimation apparatus
US5774591A (en) * 1995-12-15 1998-06-30 Xerox Corporation Apparatus and method for recognizing facial expressions and facial gestures in a sequence of images
US5764283A (en) 1995-12-29 1998-06-09 Lucent Technologies Inc. Method and apparatus for tracking moving objects in real time using contours of the objects and feature paths
US5692063A (en) * 1996-01-19 1997-11-25 Microsoft Corporation Method and system for unrestricted motion estimation for video
JPH1051755A (en) 1996-05-30 1998-02-20 Fujitsu Ltd Screen display controller for video conference terminal equipment
US6343141B1 (en) 1996-10-08 2002-01-29 Lucent Technologies Inc. Skin area detection for video image systems
US5828769A (en) * 1996-10-23 1998-10-27 Autodesk, Inc. Method and apparatus for recognition of objects via position and orientation consensus of local image encoding
US5864630A (en) 1996-11-20 1999-01-26 At&T Corp Multi-modal method for locating objects in images
US6456328B1 (en) 1996-12-18 2002-09-24 Lucent Technologies Inc. Object-oriented adaptive prefilter for low bit-rate video systems
US6993201B1 (en) * 1997-07-08 2006-01-31 At&T Corp. Generalized scalability for video coder based on video objects
US6188777B1 (en) 1997-08-01 2001-02-13 Interval Research Corporation Method and apparatus for personnel detection and tracking
US6335985B1 (en) 1998-01-07 2002-01-01 Kabushiki Kaisha Toshiba Object extraction apparatus
US6148092A (en) * 1998-01-08 2000-11-14 Sharp Laboratories Of America, Inc System for detecting skin-tone regions within an image
GB2333590A (en) 1998-01-23 1999-07-28 Sharp Kk Detecting a face-like region
US6301370B1 (en) 1998-04-13 2001-10-09 Eyematic Interfaces, Inc. Face recognition from video images
US6477201B1 (en) 1998-05-22 2002-11-05 Sarnoff Corporation Content-adaptive compression encoding
AUPP400998A0 (en) 1998-06-10 1998-07-02 Canon Kabushiki Kaisha Face detection in digital images
US6023183A (en) * 1998-06-15 2000-02-08 International Business Machines Corporation Voltage conversion circuit and method
US6141041A (en) 1998-06-22 2000-10-31 Lucent Technologies Inc. Method and apparatus for determination and visualization of player field coverage in a sporting event
US6292575B1 (en) 1998-07-20 2001-09-18 Lau Technologies Real-time facial recognition and verification system
US6924832B1 (en) 1998-08-07 2005-08-02 Be Here Corporation Method, apparatus & computer program product for tracking objects in a warped video image
WO2000008586A2 (en) 1998-08-07 2000-02-17 Korea Institute Of Science And Technology Apparatus and method for detecting a moving object in a sequence of color frame images
GB2341231A (en) * 1998-09-05 2000-03-08 Sharp Kk Face detection in an image
US6480615B1 (en) 1999-06-15 2002-11-12 University Of Washington Motion estimation within a sequence of data frames using optical flow with adaptive gradients
US6545706B1 (en) 1999-07-30 2003-04-08 Electric Planet, Inc. System, method and article of manufacture for tracking a head of a camera-generated image of a person
US6526161B1 (en) 1999-08-30 2003-02-25 Koninklijke Philips Electronics N.V. System and method for biometrics-based facial feature extraction
EP1102210A3 (en) 1999-11-16 2005-12-14 Fuji Photo Film Co., Ltd. Image processing apparatus, image processing method and recording medium
US7123745B1 (en) 1999-11-24 2006-10-17 Koninklijke Philips Electronics N.V. Method and apparatus for detecting moving objects in video conferencing and other applications
US6754389B1 (en) 1999-12-01 2004-06-22 Koninklijke Philips Electronics N.V. Program classification using object tracking
GB2358098A (en) 2000-01-06 2001-07-11 Sharp Kk Method of segmenting a pixelled image
US6829395B2 (en) 2000-01-20 2004-12-07 Axis, Ab Apparatus and method for storing and reading digital images
US6970598B1 (en) 2000-01-21 2005-11-29 Xerox Corporation Data processing methods and devices
US6668070B2 (en) 2000-03-29 2003-12-23 Sony Corporation Image processing device, image processing method, and storage medium
US6580821B1 (en) * 2000-03-30 2003-06-17 Nec Corporation Method for computing the location and orientation of an object in three dimensional space
JP3603737B2 (en) 2000-03-30 2004-12-22 日本電気株式会社 Moving object tracking method and device
EP1158786A3 (en) 2000-05-24 2005-03-09 Sony Corporation Transmission of the region of interest of an image
US6731799B1 (en) * 2000-06-01 2004-05-04 University Of Washington Object segmentation with background extraction and moving boundary techniques
US6826292B1 (en) 2000-06-23 2004-11-30 Sarnoff Corporation Method and apparatus for tracking moving objects in a sequence of two-dimensional images using a dynamic layered representation
US6665450B1 (en) 2000-09-08 2003-12-16 Avid Technology, Inc. Interpolation of a sequence of images using motion analysis
EP1211640A3 (en) 2000-09-15 2003-10-15 Canon Kabushiki Kaisha Image processing methods and apparatus for detecting human eyes, human face and other objects in an image
US6680745B2 (en) 2000-11-10 2004-01-20 Perceptive Network Technologies, Inc. Videoconferencing method with tracking of face and dynamic bandwidth allocation
US6678413B1 (en) 2000-11-24 2004-01-13 Yiqing Liang System and method for object identification and behavior characterization using video analysis
US7020305B2 (en) 2000-12-06 2006-03-28 Microsoft Corporation System and method providing improved head motion estimations for animation
JP2002175538A (en) 2000-12-08 2002-06-21 Mitsubishi Electric Corp Device and method for portrait generation, recording medium with portrait generating program recorded thereon, terminal for communication, and communication method by terminal for communication
US6670963B2 (en) 2001-01-17 2003-12-30 Tektronix, Inc. Visual attention model
US6964023B2 (en) 2001-02-05 2005-11-08 International Business Machines Corporation System and method for multi-modal focus detection, referential ambiguity resolution and mood classification using multi-modal input
GB2372165A (en) 2001-02-10 2002-08-14 Hewlett Packard Co A method of selectively storing images
US20020168091A1 (en) 2001-05-11 2002-11-14 Miroslav Trajkovic Motion detection via image alignment
US6870945B2 (en) 2001-06-04 2005-03-22 University Of Washington Video object tracking by estimating and subtracting background
JP4596222B2 (en) 2001-06-26 2010-12-08 ソニー株式会社 Image processing apparatus and method, recording medium, and program
JP4840630B2 (en) 2001-06-27 2011-12-21 ソニー株式会社 Image processing apparatus and method, recording medium, and program
JP3920849B2 (en) 2001-06-29 2007-05-30 株式会社エヌ・ティ・ティ・ドコモ Image encoding device, image decoding device, image encoding method, and image decoding method
US7861169B2 (en) 2001-11-19 2010-12-28 Ricoh Co. Ltd. Multimedia print driver dialog interfaces
US7130446B2 (en) 2001-12-03 2006-10-31 Microsoft Corporation Automatic detection and tracking of multiple individuals using multiple cues
JP2003174504A (en) 2001-12-05 2003-06-20 Mitsubishi Electric Corp Portable terminal with talking function, controller for the same and back light control method
KR100456619B1 (en) 2001-12-05 2004-11-10 한국전자통신연구원 A system for registering and authenticating human face using support vector machines and method thereof
US7277580B2 (en) 2001-12-12 2007-10-02 Sony Corporation Multiple thresholding for video frame segmentation
KR100411347B1 (en) 2001-12-29 2003-12-18 엘지전자 주식회사 Shot transition detecting algorithm for video stream
AUPS140502A0 (en) 2002-03-27 2002-05-09 Seeing Machines Pty Ltd Method for automatic detection of facial features
US7212670B1 (en) * 2002-05-03 2007-05-01 Imagetree Corp. Method of feature identification and analysis
US7082211B2 (en) * 2002-05-31 2006-07-25 Eastman Kodak Company Method and system for enhancing portrait images
CA2486164A1 (en) 2002-06-12 2003-12-24 British Telecommunications Public Limited Company Video pre-processing
US7190809B2 (en) 2002-06-28 2007-03-13 Koninklijke Philips Electronics N.V. Enhanced background model employing object classification for improved background-foreground segmentation
KR100474848B1 (en) 2002-07-19 2005-03-10 삼성전자주식회사 System and method for detecting and tracking a plurality of faces in real-time by integrating the visual ques
US7227893B1 (en) 2002-08-22 2007-06-05 Xlabs Holdings, Llc Application-specific object-based segmentation and recognition system
US7035461B2 (en) 2002-08-22 2006-04-25 Eastman Kodak Company Method for detecting objects in digital images
EP1418530B1 (en) 2002-10-08 2012-12-05 Sony France S.A. Adaptive artificial vision method and system
KR100455294B1 (en) 2002-12-06 2004-11-06 삼성전자주식회사 Method for detecting user and detecting motion, and apparatus for detecting user within security system
JP2004220555A (en) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd System, method and program for extracting object region from image, and recording medium stored with the program
US6999600B2 (en) 2003-01-30 2006-02-14 Objectvideo, Inc. Video scene background maintenance using change detection and classification
US7599524B2 (en) 2003-04-04 2009-10-06 Sarnoff Corporation Method and apparatus for providing a robust object finder
WO2005036456A2 (en) 2003-05-12 2005-04-21 Princeton University Method and apparatus for foreground segmentation of video sequences
US7430335B2 (en) * 2003-08-13 2008-09-30 Apple Inc Pre-processing method and system for data reduction of video sequences and bit rate reduction of compressed video sequences using spatial filtering
WO2005041579A2 (en) 2003-10-24 2005-05-06 Reactrix Systems, Inc. Method and system for processing captured image information in an interactive video display system
US7136507B2 (en) 2003-11-17 2006-11-14 Vidient Systems, Inc. Video surveillance system with rule-based reasoning and multiple-hypothesis scoring
US20050104960A1 (en) 2003-11-17 2005-05-19 Mei Han Video surveillance system with trajectory hypothesis spawning and local pruning
US7127083B2 (en) 2003-11-17 2006-10-24 Vidient Systems, Inc. Video surveillance system with object detection and probability scoring based on object class
JP2005182196A (en) 2003-12-16 2005-07-07 Canon Inc Image display method and image display device
JP2005293539A (en) 2004-03-08 2005-10-20 Matsushita Electric Works Ltd Facial expression recognizing device
JP4819380B2 (en) 2004-03-23 2011-11-24 キヤノン株式会社 Surveillance system, imaging setting device, control method, and program
US8594391B2 (en) * 2004-05-06 2013-11-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Finger-based identification systems and methods
GB2414614A (en) 2004-05-28 2005-11-30 Sony Uk Ltd Image processing to determine most dissimilar images
EP1622009A1 (en) * 2004-07-27 2006-02-01 Texas Instruments Incorporated JSM architecture and systems
US8131022B2 (en) 2004-08-31 2012-03-06 Panasonic Corporation Surveillance recorder and its method
US20060067562A1 (en) 2004-09-30 2006-03-30 The Regents Of The University Of California Detection of moving objects in a video
US7391907B1 (en) 2004-10-01 2008-06-24 Objectvideo, Inc. Spurious object detection in a video surveillance system
US7583287B2 (en) 2005-03-22 2009-09-01 Microsoft Corp. System and method for very low frame rate video streaming for face-to-face video conferencing
US7602944B2 (en) 2005-04-06 2009-10-13 March Networks Corporation Method and system for counting moving objects in a digital video stream
US7409076B2 (en) 2005-05-27 2008-08-05 International Business Machines Corporation Methods and apparatus for automatically tracking moving entities entering and exiting a specified region
JP2009508450A (en) 2005-09-13 2009-02-26 ヴェリフィコン コーポレーション System and method for object tracking and activity analysis
US8150155B2 (en) 2006-02-07 2012-04-03 Qualcomm Incorporated Multi-mode region-of-interest video object segmentation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908976B2 (en) 2010-05-26 2014-12-09 Panasonic Intellectual Property Corporation Of America Image information processing apparatus

Also Published As

Publication number Publication date
US8265349B2 (en) 2012-09-11
KR20080099296A (en) 2008-11-12
JP4988770B2 (en) 2012-08-01
KR101023733B1 (en) 2011-03-25
CN101375608A (en) 2009-02-25
JP2009526495A (en) 2009-07-16
WO2007092905A3 (en) 2007-12-13
US20070183663A1 (en) 2007-08-09
EP1994761A2 (en) 2008-11-26
JP2012155727A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
US8265349B2 (en) Intra-mode region-of-interest video object segmentation
EP2378486B1 (en) Multi-mode region-of-interest video object segmentation
US8265392B2 (en) Inter-mode region-of-interest video object segmentation
US10395385B2 (en) Using object re-identification in video surveillance
WO2009143279A1 (en) Automatic tracking of people and bodies in video
Haque et al. Perception-inspired background subtraction
US9646386B2 (en) Method and apparatus for generating temporally consistent superpixels
Zafarifar et al. Blue sky detection for picture quality enhancement
KR20140134549A (en) Apparatus and Method for extracting peak image in continuously photographed image
CN109583262B (en) Adaptive system and method for object detection
TWI624793B (en) Adaptive system and method for object detection
Dane et al. A Multi-Mode Video Object Segmentation Scheme for Wireless Video Applications
CODING Centre for Communication Systems Research University of Surrey, Guildford, GU27XH, UK E-mail: y. sheng (@ surrey. ac. uk

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1249/MUMNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200780003851.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008554492

Country of ref document: JP

Ref document number: 2007763076

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087021404

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07763076

Country of ref document: EP

Kind code of ref document: A2