WO2007094911A1 - Method and system for writing data to mems display elements - Google Patents

Method and system for writing data to mems display elements Download PDF

Info

Publication number
WO2007094911A1
WO2007094911A1 PCT/US2007/001115 US2007001115W WO2007094911A1 WO 2007094911 A1 WO2007094911 A1 WO 2007094911A1 US 2007001115 W US2007001115 W US 2007001115W WO 2007094911 A1 WO2007094911 A1 WO 2007094911A1
Authority
WO
WIPO (PCT)
Prior art keywords
preferred
voltages
potential differences
potential
array
Prior art date
Application number
PCT/US2007/001115
Other languages
French (fr)
Inventor
Manish Kothari
Original Assignee
Idc, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idc, Llc filed Critical Idc, Llc
Priority to CN200780005111XA priority Critical patent/CN101385066B/en
Priority to EP07716671A priority patent/EP1982322A1/en
Priority to JP2008554244A priority patent/JP2009526267A/en
Publication of WO2007094911A1 publication Critical patent/WO2007094911A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/3466Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on interferometric effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/04Networks or arrays of similar microstructural devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Microelectromechanical systems include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and/or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices.
  • MEMS device One type of MEMS device is called an interferometric modulator.
  • interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference.
  • an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal.
  • one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by an air gap.
  • the position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator.
  • Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
  • One embodiment has a method of driving a display device including a set of MEMS display elements configured as an array of rows and columns of MEMS elements, where the
  • MEMS elements are characterized by a preferred set of drive potential differences including preferred positive and preferred negative actuation potential differences, preferred positive and preferred negative hold potential differences, and a preferred release potential difference, where the preferred set of drive potential differences is symmetric about a voltage differing from OV by an offset ⁇ V and where drive potential differences are applied to each MEMS element as a difference between a column voltage and a row voltage.
  • the method includes generating a set of four different voltage levels, writing display data to the array by applying voltages to each column of the array and each row of the array so as to apply first and second actuation potential differences, first and second hold potential differences, and first and second release potential differences to the array, where the voltages are selected only from the set of four different voltage levels, and where first and second hold potentials are of opposite polarity.
  • MEMS microelectromechanical system
  • the MEMS elements are characterized by a preferred set of drive potential differences including preferred positive and preferred negative actuation potential differences, preferred positive and preferred negative hold potential differences, and a preferred release potential difference, where the preferred set of drive potential differences is symmetric about a voltage differing from OV by an offset ⁇ V, and an array controller configured to write display data to the array by applying voltages to each column of the array and each row of the array so as to apply first and second actuation potential differences, first and second hold potential differences, and first and second release potential differences, where the voltages are selected from a set of only four different voltage levels, and where first and second hold potentials are of opposite polarity.
  • MEMS microelectromechanical system
  • Another embodiment has a method of driving a display device including a set of MEMS display elements configured as an array of rows and columns of MEMS elements, where the MEMS elements are characterized by a preferred set of drive potential differences including preferred positive and preferred negative actuation potential differences, preferred positive and preferred negative hold potential differences, and a preferred release potential difference, where the preferred set of drive potential differences is symmetric about a voltage differing from OV by an offset ⁇ V and where drive potential differences are applied to each MEMS element as a difference between a column voltage and a row voltage.
  • the method includes generating a set of four different voltage levels, writing display data to the array by applying voltages to each column of the array and each row of the array so as to apply first and second actuation potential differences, first and second hold potential differences, and first and second release potential differences, where the voltages are selected only from the set of four different voltage levels, and where at least one of first and second actuation potentials, first and second hold potentials, and first and second hold potentials are of opposite polarity and are symmetric about the offset voltage ⁇ V.
  • FIG. 1 is an isometric view depicting a portion of one embodiment of an interferometric modulator display in which a movable reflective layer of a first interferometric modulator is in a released position and a movable reflective layer of a second interferometric modulator is in an actuated position.
  • FIG. 2 A is a cross section of the device of Figure 1.
  • FIG. 2B is a cross section of an alternative embodiment of an interferometric modulator.
  • FIG. 2C is a cross section of another alternative embodiment of an interferometric modulator.
  • FIG 2D is a cross section of yet another alternative embodiment of an interferometric modulator.
  • FIG. 2E is a cross section of an additional alternative embodiment of an interferometric modulator.
  • FIG. 3 is a system block diagram illustrating one embodiment of an electronic device incorporating a 3x3 interferometric modulator display.
  • FIG. 4 is a diagram of movable mirror position versus applied voltage for one exemplary embodiment of an interferometric modulator of Figure 1.
  • FIG. 5 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display.
  • FIG. s 6A and 6B illustrate one exemplary timing diagram for row and column signals that may be used to write a frame of display data to the 3x3 interferometric modulator display of Figure 3.
  • FIG. 7 is a diagram of movable mirror position versus applied voltage for one exemplary embodiment of an interferometric modulator of Figure 1.
  • FIG. 8 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display.
  • FIG. 9 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display.
  • FIG. 10 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display.
  • FIGS. 1 IA and 1 IB are system block diagrams illustrating an embodiment of a visual display device comprising a plurality of interferometric modulators.
  • the invention may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers;, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry).
  • MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
  • One interferometric modulator display embodiment including an interferometric
  • MEMS display element is illustrated in Figure 1.
  • the pixels are in either a bright or dark state.
  • the display element In the bright ("on” or “open”) state, the display element reflects a large portion of incident visible light to a user.
  • the dark (“off or “closed”) state When in the dark (“off or “closed”) state, the display element reflects little incident visible light to the user.
  • the light reflectance properties of the "on” and “off states may be reversed.
  • MEMS pixels can be configured to reflect predominantly at selected colors, allowing for a color display in addition to black and white.
  • Figure 1 is an isometric view depicting two adjacent pixels in a series of pixels of a visual display, where each pixel includes a MEMS interferometric modulator.
  • an interferometric modulator display includes a row/column array of these interferometric modulators.
  • Each interferometric modulator includes a pair of reflective layers positioned at a variable and controllable distance from each other to form a resonant optical cavity with at least one variable dimension.
  • one of the reflective layers may be moved between two positions. In the first position, referred to herein as the released state, the movable layer is positioned at a relatively large distance from a fixed partially reflective layer. In the second position, the movable layer is positioned more closely adjacent to the partially reflective layer. Incident light that reflects from the two layers interferes constructively or destructively depending on the position of the movable reflective layer, producing either an overall reflective or non-reflective state for each pixel.
  • the depicted portion of the pixel array in Figure 1 includes two adjacent interferometric modulators 12a and 12b.
  • a movable and highly reflective layer 14a is illustrated in a released position at a predetermined distance from a fixed partially reflective layer 16a.
  • the movable highly reflective layer 14b is illustrated in an actuated position adjacent to the fixed partially reflective layer 16b.
  • the fixed layers 16a, 16b are electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more layers each of chromium and indium-tin-oxide onto a transparent substrate 20. The layers are patterned into parallel strips, and may form row electrodes in a display device as described further below.
  • the movable layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the deformable metal layers are separated from the fixed metal layers by a defined air gap 19.
  • Another embodiment has a highly conductive and reflective material such as aluminum may be used for the deformable layers, and these strips may form column electrodes in a display device.
  • a highly conductive and reflective material such as aluminum may be used for the deformable layers, and these strips may form column electrodes in a display device.
  • the cavity 19 remains between the layers 14a, 16a and the deformable layer is in a mechanically relaxed state as illustrated by the pixel 12a in Figure 1.
  • the capacitor formed at the intersection of the row and column electrodes at the corresponding pixel becomes charged, and electrostatic forces pull the electrodes together.
  • the movable layer is deformed and is forced against the fixed layer (a dielectric material which is not illustrated in this Figure may be deposited on the fixed layer to prevent shorting and control the separation distance) as illustrated by the pixel 12b on the right in Figure 1.
  • the fixed layer a dielectric material which is not illustrated in this Figure may be deposited on the fixed layer to prevent shorting and control the separation distance
  • the behavior is the same regardless of the polarity of the applied potential difference. In this way, row/column actuation that can control the reflective vs. non- reflective pixel states is analogous in many ways to that used in conventional LCD and other display technologies.
  • Figures 2A-2E illustrate five different embodiments of the movable reflective layer 14 and its supporting structures.
  • Figure 2A is a cross section of the embodiment of Figure 1 , where a strip of metal material 14 is deposited on orthogonally extending supports 18.
  • the moveable reflective layer 14 is attached to supports at the corners only, on tethers 32.
  • the moveable reflective layer 14 is suspended from a deformable layer 34, which may comprise a flexible metal.
  • the deformable layer 34 connects, directly or indirectly, to the substrate 20 around the perimeter of the deformable layer 34. These connections are herein referred to as support posts.
  • the embodiment illustrated in Figure 2D has support post plugs 42 upon which the deformable layer 34 rests.
  • the movable reflective layer 14 remains suspended over the cavity, as in Figures 2A-2C, but the deformable layer 34 does not form the support posts by filling holes between the deformable layer 34 and the optical stack 16. Rather, the support posts are formed of a planarization material, which is used to form support post plugs 42.
  • the embodiment illustrated in Figure 2E is based on the embodiment shown in Figure 2D, but may also be adapted to work with any of the embodiments illustrated in Figures 2A-2C, as well as additional embodiments not shown. In the embodiment shown in Figure 2E, an extra layer of metal or other conductive material has been used to form a bus structure 44. This allows signal routing along the back of the interferometric modulators, eliminating a number of electrodes that may otherwise have had to be formed on the substrate 20.
  • the interferometric modulators function as direct-view devices, in which images are viewed from the front side of the transparent substrate 20, the side opposite to that upon which the modulator is arranged.
  • the reflective layer 14 optically shields the portions of the interferometric modulator on the side of the reflective layer opposite the substrate 20, including the deformable layer 34. This allows the shielded areas to be configured and operated upon without negatively affecting the image quality.
  • Such shielding allows the bus structure 44 in Figure 7E, which provides the ability to separate the optical properties of the modulator from the electromechanical properties of the modulator, such as addressing and the movements that result from that addressing.
  • This separable modulator architecture allows the structural design and materials used for the electromechanical aspects and the optical aspects of the modulator to be selected and to function independently of each other.
  • the embodiments shown in Figures 2C-2E have additional benefits deriving from the decoupling of the optical properties of the reflective layer 14 from its mechanical properties, which are carried out by the deformable layer 34. This allows the structural design and materials used for the reflective layer 14 to be optimized with respect to the optical properties, and the structural design and materials used for the deformable layer 34 to be optimized with respect to desired mechanical properties.
  • Figures 3 through 6 illustrate one exemplary process and system for using an array of interferometric modulators in a display application.
  • Figure 3 is a system block diagram illustrating one embodiment of an electronic device that may incorporate aspects of the invention.
  • the electronic device includes a processor 21 which may be any general purpose single- or multi-chip microprocessor such as an ARM, Pentium ® , Pentium II ® , Pentium III ® , Pentium IV ® , Pentium ® Pro, an 8051, a MIPS ® , a Power PC ® , an ALPHA ® , or any special purpose microprocessor such as a digital signal processor, microcontroller, or a programmable gate array.
  • a processor 21 which may be any general purpose single- or multi-chip microprocessor such as an ARM, Pentium ® , Pentium II ® , Pentium III ® , Pentium IV ® , Pentium ® Pro, an 8051, a MIPS
  • the processor 21 may be configured to execute one or more software modules.
  • the processor may be configured to execute one or more software applications, including a web browser, a telephone application, an email program, or any other software application.
  • the processor 21 is also configured to communicate with an array driver 22.
  • the array driver 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a display array or panel 30.
  • the cross section of the array illustrated in Figure 1 is shown by the lines 1-1 in Figure 3.
  • the row/column actuation protocol may take advantage of a hysteresis property of these devices illustrated in Figure 4. It may require, for example, a 6 volt potential difference to cause a movable layer to deform from the released state to the actuated state. However, when the voltage is reduced from that value, the movable layer maintains its state as the voltage drops back below 6 volts.
  • the movable layer does not release completely until the voltage drops below 1 volt.
  • a range of voltage about 2 to 4 V in the example illustrated in Figure 4, where there exists a window of applied voltage within which the device is stable in either the released or actuated state. This is referred to herein as the "hysteresis window” or “stability window.”
  • the "drive potential” of Figure 4 is defined as the difference between the potential of the stationary electrode and the potential of the deformable electrode.
  • a "0 volt" drive potential thus means that a given row and column have the same absolute voltage relative to a reference common such as ground.
  • a "0 volt" drive potential does not imply that either a row or column is necessarily at an absolute voltage of 0 volts relative to ground or any other reference.
  • a positive polarity drive potential means the column electrode is at a higher potential than the row electrode.
  • a negative polarity drive potential means the row electrode is at a higher potential than the column electrode.
  • the row/column actuation protocol can be designed such that during row strobing, pixels in the strobed row that are to be actuated are exposed to a voltage difference of about 6 volts, and pixels that are to be released are exposed to a voltage difference of close to zero volts.
  • each pixel sees a potential difference within the "stability window" of 2-4 volts in this example.
  • This feature makes the pixel design illustrated in Figure 1 stable under the same applied voltage conditions in either an actuated or released pre-existing state. Since each pixel of the interferometric modulator, whether in the actuated or released state, is essentially a capacitor formed by the fixed and moving reflective layers, this stable state can be held at a voltage within the hysteresis window with almost no power dissipation. Essentially no current flows into the pixel if the applied potential is fixed.
  • a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row.
  • Another embodiment has a row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines.
  • the asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row.
  • Another embodiment has a pulse that is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes.
  • the row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame.
  • the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second.
  • Another embodiment has a wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
  • Figures 5 and 6 illustrate one possible actuation protocol for creating a display frame on the 3x3 array of Figure 3.
  • Figure 4 is a diagram of movable mirror position versus applied voltage showing a hysteresis characteristic.
  • Figure 5 is a table showing column and row voltages used to create preferred drive potentials for the embodiment of Figure 3, where each drive potential is the difference between the associated column voltage and the associated row voltage. As shown, the column voltages are 6V and OV, and the row voltages are 3V, 6V, and OV, and are used to create the preferred positive and preferred negative actuation potentials (+6V and -6V), the preferred positive and preferred negative hold potentials (+3V and -3V), and the preferred release potential (OV).
  • the numerical values for the applied row and column voltages are given as 0, +3, and +6, but it will be appreciated that the numerical values for these applied voltages could be shifted together and produce the exact same hold, release, and actuation drive potentials. Only the difference is relevant, not the absolute values.
  • actuating a pixel involves setting the appropriate column to 0, and the appropriate row to +6V. Releasing the pixel is accomplished by setting the appropriate column to +6V, and the appropriate row to the same +6V, producing a zero volt potential difference across the pixel. In those rows where the row voltage is held at 3 volts, the pixels are stable in whatever state they were originally in, regardless of whether the column is at +6V or 0. As is also illustrated in Figure 5, it will be appreciated that voltages of opposite polarity than those described above can be used, e.g., actuating a pixel can involve setting the appropriate column to +6V, and the appropriate row to 0. In this embodiment, releasing the pixel is accomplished by setting the appropriate column to 0, and the appropriate row to the same 0, producing a zero volt potential difference across the pixel.
  • Figure 6B is a timing diagram showing a series of row and column signals applied to the 3x3 array of Figure 3 which will result in the display arrangement illustrated in Figure
  • actuated pixels are non-reflective.
  • the pixels Prior to writing the frame illustrated in Figure 6A, the pixels can be in any state, and in this example, all the rows are at 3 volts, and all the columns are at 6 volts. With these applied voltages, all pixels are stable in their existing actuated or released states.
  • pixels (1,1), (1,2), (2,2), (3,2) and (3,3) are actuated.
  • columns 1 and 2 are set to 0 volts, and column 3 is set to +6 volts. This does not change the state of any pixels, because all the pixels remain in the 2-4 volt stability window.
  • Row 1 is then strobed with a pulse that goes from 3 V, up to 6V, and back to 3V. This actuates the (1,1) and (1,2) pixels and releases the (1,3) pixel. No other pixels in the array are affected.
  • column 2 is set to 0 volts
  • columns 1 and 3 are set to +6 volts.
  • Row 3 is similarly set by setting columns 2 and 3 to 0 volts, and column 1 to +6 volts.
  • the row 3 strobe sets the row 3 pixels as shown in Figure 6OA.
  • the row potentials are 3V, and the column potentials can remain at either +6 or 0 volts, and the display is then stable in the arrangement of Figure 6 A. It will be appreciated that the same procedure can be employed for arrays of dozens or hundreds of rows and columns. It will also be appreciated that the timing, sequence, and levels of voltages used to perform row and column actuation can be varied widely within the general principles outlined above, and the above example is exemplary only, and any actuation voltage method can be used with the present invention.
  • charge can build on the dielectric between the layers of the device. This can be the result of the manufacturing process and can be caused when the devices are actuated and held in the actuated state by an electric field that predominantly points in the same direction. For example, if the moving layer is always at a higher potential relative to the fixed layer when the device is actuated by potentials having a magnitude larger than the outer threshold of stability, a slowly increasing charge buildup on the dielectric between the layers can begin to shift the hysteresis curve for the device.
  • Figure 7 is a diagram of movable mirror position versus applied voltage showing a hysteresis characteristic similar to that shown in Figure 4.
  • the Hysteresis characteristic shown in Figure 7, however, is not centered about Ov, but is shifted by an offset ⁇ V, where ⁇ V is the potential difference at the center of the hysteresis curve.
  • ⁇ V is the potential difference at the center of the hysteresis curve.
  • Such an offset can be the result of design, manufacturing, environment and/or operation history.
  • the numerical value for ⁇ V could be either positive or negative. If ⁇ V is not too large, a MEMS device with the characteristic shown in Figure 7 may still be driven with the column and row voltages shown in Figure 5.
  • Figure 8 is a table showing column and row voltages used to create a set of preferred drive potentials for the embodiment of Figure 7, where each drive potential is the difference between the associated column voltage and the associated row voltage.
  • the column voltages are 6V+5V and OV+ ⁇ V
  • the row voltages are 3 V, 6V, and OV 5 and are used to create the preferred positive and preferred negative actuation potentials (+6V+ ⁇ V and -6V+ ⁇ V), the preferred positive and preferred negative hold potentials (+3V+ ⁇ V and - 3V+ ⁇ V), and the preferred release potential (OV+ ⁇ V).
  • These values are advantageous because each of the positive and negative actuation potentials, positive and negative release potentials, and positive and negative hold potentials are symmetric about ⁇ V. This results in at least the benefits of charge accumulation balancing within each interferometric modulator, and substantially identical light modulation characteristics at both positive and negative polarity signals.
  • Figure 9 is a table showing column and row voltages used to create a set of alternate drive potentials for an interferometric modulator with an offset ⁇ V, and with a hysteresis curve as shown in Figure 7, where each drive potential is the difference between the associated column voltage and the associated row voltage.
  • the column voltages are 6V+25V and OV 5 and the row voltages are 3V, 6V, and OV, and are used to create alternate positive and alternate negative actuation potentials (+6V+25V and -6V), alternate positive and alternate negative hold potentials (+3V+25V and -3V), and alternate positive and alternate negative release potentials (OV and 0V+26V).
  • This scheme advantageously uses only four supply voltages OV, 3V, 6V, and 6V+25V.
  • the alternate drive potentials differ from the preferred drive potentials, undesirable performance characteristics due to asymmetric drive potentials are avoided because each pair of positive and negative drive voltages is symmetric about the preferred drive voltages, and therefore symmetric about the offset voltage ⁇ V.
  • the alternate positive and alternate negative actuation potentials, +6V+2 ⁇ V and -6V are symmetric about the preferred positive and preferred negative actuation potentials, +6V+5V and -6V+5V
  • the alternate positive and alternate negative hold potentials, +3V+26V and -3V are symmetric about the preferred positive and preferred negative hold potentials, +3V+ ⁇ V and -3V+ ⁇ V
  • the alternate positive and alternate negative release potentials, OV and 0V+2 ⁇ V are symmetric about the preferred release potential, OV+ ⁇ V.
  • column and row voltages of Figure 9 may be used to create a set of alternate drive potentials for an interferometric modulator with an offset ⁇ V and with a hysteresis curve as shown in Figure 7, with use of four supply voltages and with the advantageous performance characteristics associated with symmetric drive potentials, such as charge buildup reduction and substantially identical light modulation characteristics regardless of signal polarity.
  • Figure 10 is a table showing column and row voltages used to create another set of alternate drive potentials for an interferometric modulator with an offset ⁇ V, with a hysteresis curve as shown in Figure 7, where each drive potential is the difference between the associated column voltage and the associated row voltage.
  • the column voltages are 6V and OV
  • the row voltages are 3V- ⁇ V, 6V, and 0V-2 ⁇ V, and are used to create alternate positive and alternate negative actuation potentials (+6V+2 ⁇ V and -6V), alternate positive and alternate negative hold potentials (+3V+ ⁇ V and -3V+ ⁇ V), and alternate positive and alternate negative release potentials (0V+2 ⁇ V and OV).
  • This scheme advantageously uses only four supply voltages OV- ⁇ V, OV, 3V- ⁇ V, and 6V.
  • the alternate positive and alternate negative actuation potentials, +6V+25V and -6V are symmetric about the preferred positive and preferred negative actuation potentials, +6V+5V and -6V+ ⁇ V
  • the alternate positive and alternate negative hold potentials, +3V+5V and -3V+6V are symmetric about, and in fact identical to, the preferred positive and preferred negative hold potentials, +3V+5V and -3V+ ⁇ V
  • the alternate positive and alternate negative release potentials, OV and 0V+2 ⁇ V are symmetric about the preferred release potential, OV+ ⁇ V.
  • the set of alternate drive potentials of Figure 10 has an advantageous aspect that the positive and negative hold potentials are identical to the preferred positive and negative hold potentials.
  • column and row voltages of Figure 10 may be used to create a set of alternate drive potentials for an interferometric modulator with an offset ⁇ V and with a hysteresis curve as shown in Figure 7, with use of four supply voltages and with the advantageous performance characteristics associated with symmetric drive potentials, such as charge buildup reduction and substantially identical light modulation characteristics regardless of signal polarity.
  • row and column are arbitrarily chosen to each represent a separate dimension in an array. Rows and columns are not meant to be relative to any fixed reference. Accordingly, rows and columns may be interchanged.
  • FIGS HA and HB are system block diagrams illustrating an embodiment of a display device 40 in which the inventions described herein may be implemented.
  • the display device 40 can be, for example, a cellular or mobile telephone.
  • the same components of display device 40 or slight variations thereof are also illustrative of various types of display devices such as televisions and portable media players.
  • the display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 44, an input device 48, and a microphone 46.
  • the housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding and vacuum forming.
  • the housing 41 may be made from any of a variety of materials, including, but not limited to, plastic, metal, glass, rubber, and ceramic, or a combination thereof.
  • the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
  • the display 30 of exemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein.
  • the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art.
  • the display 30 includes an interferometric modulator display, as described herein.
  • the components of one embodiment of exemplary display device 40 are schematically illustrated in Figure 1 IB.
  • the illustrated exemplary display device 40 includes a housing 41 and can include additional components at least partially enclosed therein.
  • the exemplary display device 40 includes a network interface 27 that includes an antenna 43, which is coupled to a transceiver 47.
  • the transceiver 47 is connected to a processor 21, which is connected to conditioning hardware 52.
  • the conditioning hardware 52 may be configured to condition a signal (e.g., filter a signal).
  • the conditioning hardware 52 is connected to a speaker 45 and a microphone 46.
  • the processor 21 is also connected to an input device 48 and a driver controller 29.
  • the driver controller 29 is coupled to a frame buffer 28 and to an array driver 22, which in turn is coupled to a display array 30.
  • a power supply 50 provides power to all components as required by the particular exemplary display device 40 design.
  • the network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one or more devices over a network. In one embodiment, the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21.
  • the antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.11 standard, including IEEE 802.1 l(a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS, or other known signals that are used to communicate within a wireless cell phone network.
  • the transceiver 47 pre-processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21.
  • the transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.
  • the transceiver 47 can be replaced by a receiver.
  • network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21.
  • the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
  • Processor 21 generally controls the overall operation of the exemplary display device 40.
  • the processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data.
  • the processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage.
  • Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
  • the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40.
  • Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.
  • the driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22.
  • a driver controller 29, such as a LCD controller is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
  • IC Integrated Circuit
  • the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.
  • driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller).
  • array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display).
  • a driver controller 29 is integrated with the array driver 22.
  • display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).
  • the input device 48 allows a user to control the operation of the exemplary display device 40.
  • input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, or a pressure- or heat-sensitive membrane.
  • the microphone 46 is an input device for the exemplary display device 40. When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40.
  • Power supply 50 can include a variety of energy storage devices as are well known in the art.
  • power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery.
  • power supply 50 is a renewable energy source, a capacitor, or a solar cell including a plastic solar cell, and solar-cell paint.
  • power supply 50 is configured to receive power from a wall outlet.
  • control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some embodiments, control programmability resides in the array driver 22. Those of skill in the art will recognize that the above-described optimizations may be implemented in any number of hardware and/or software components and in various configurations.

Abstract

Another embodiment has a method of driving a display device including an array of MEMS elements is disclosed. The MEMS elements are characterized by a preferred set of drive potential differences including preferred positive and preferred negative actuation potential differences, preferred positive and preferred negative hold potential differences, and a preferred release potential difference, where the preferred set of drive potential differences is symmetric about a voltage differing from 0V by an offset δV. Another embodiment has a reduced set of supply voltages are used, while maintaining the charge balancing effects of applying potential differences of opposite polarity without visible artifacts.

Description

METHOD AND SYSTEM FOR WRITING DATA TO MEMS DISPLAY ELEMENTS
Background
Microelectromechanical systems (MEMS) include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and/or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In certain embodiments, an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. In a particular embodiment, one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. As described herein in more detail, the position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
Summary
The system, method, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled "Detailed Description of Certain Embodiments" one will understand how the features of this invention provide advantages over other display devices.
One embodiment has a method of driving a display device including a set of MEMS display elements configured as an array of rows and columns of MEMS elements, where the
MEMS elements are characterized by a preferred set of drive potential differences including preferred positive and preferred negative actuation potential differences, preferred positive and preferred negative hold potential differences, and a preferred release potential difference, where the preferred set of drive potential differences is symmetric about a voltage differing from OV by an offset δV and where drive potential differences are applied to each MEMS element as a difference between a column voltage and a row voltage. The method includes generating a set of four different voltage levels, writing display data to the array by applying voltages to each column of the array and each row of the array so as to apply first and second actuation potential differences, first and second hold potential differences, and first and second release potential differences to the array, where the voltages are selected only from the set of four different voltage levels, and where first and second hold potentials are of opposite polarity.
Another embodiment has a microelectromechanical system (MEMS) display device including an array of MEMS display elements configured as an array of rows and columns of MEMS elements, where the MEMS elements are characterized by a preferred set of drive potential differences including preferred positive and preferred negative actuation potential differences, preferred positive and preferred negative hold potential differences, and a preferred release potential difference, where the preferred set of drive potential differences is symmetric about a voltage differing from OV by an offset δV, and an array controller configured to write display data to the array by applying voltages to each column of the array and each row of the array so as to apply first and second actuation potential differences, first and second hold potential differences, and first and second release potential differences, where the voltages are selected from a set of only four different voltage levels, and where first and second hold potentials are of opposite polarity.
Another embodiment has a method of driving a display device including a set of MEMS display elements configured as an array of rows and columns of MEMS elements, where the MEMS elements are characterized by a preferred set of drive potential differences including preferred positive and preferred negative actuation potential differences, preferred positive and preferred negative hold potential differences, and a preferred release potential difference, where the preferred set of drive potential differences is symmetric about a voltage differing from OV by an offset δV and where drive potential differences are applied to each MEMS element as a difference between a column voltage and a row voltage. The method includes generating a set of four different voltage levels, writing display data to the array by applying voltages to each column of the array and each row of the array so as to apply first and second actuation potential differences, first and second hold potential differences, and first and second release potential differences, where the voltages are selected only from the set of four different voltage levels, and where at least one of first and second actuation potentials, first and second hold potentials, and first and second hold potentials are of opposite polarity and are symmetric about the offset voltage δV.
Brief Description of the Drawings
FIG. 1 is an isometric view depicting a portion of one embodiment of an interferometric modulator display in which a movable reflective layer of a first interferometric modulator is in a released position and a movable reflective layer of a second interferometric modulator is in an actuated position.
FIG. 2 A is a cross section of the device of Figure 1.
FIG. 2B is a cross section of an alternative embodiment of an interferometric modulator.
FIG. 2C is a cross section of another alternative embodiment of an interferometric modulator.
FIG 2D is a cross section of yet another alternative embodiment of an interferometric modulator.
FIG. 2E is a cross section of an additional alternative embodiment of an interferometric modulator. FIG. 3 is a system block diagram illustrating one embodiment of an electronic device incorporating a 3x3 interferometric modulator display.
FIG. 4 is a diagram of movable mirror position versus applied voltage for one exemplary embodiment of an interferometric modulator of Figure 1.
FIG. 5 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display.
FIG. s 6A and 6B illustrate one exemplary timing diagram for row and column signals that may be used to write a frame of display data to the 3x3 interferometric modulator display of Figure 3.
FIG. 7 is a diagram of movable mirror position versus applied voltage for one exemplary embodiment of an interferometric modulator of Figure 1.
FIG. 8 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display. FIG. 9 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display.
FIG. 10 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display. FIGS. 1 IA and 1 IB are system block diagrams illustrating an embodiment of a visual display device comprising a plurality of interferometric modulators.
Detailed Description of Preferred Embodiments The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings where like parts are designated with like numerals throughout. As will be apparent from the following description, the invention may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the invention may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers;, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices. One interferometric modulator display embodiment including an interferometric
MEMS display element is illustrated in Figure 1. In these devices, the pixels are in either a bright or dark state. In the bright ("on" or "open") state, the display element reflects a large portion of incident visible light to a user. When in the dark ("off or "closed") state, the display element reflects little incident visible light to the user. Depending on the embodiment, the light reflectance properties of the "on" and "off states may be reversed. MEMS pixels can be configured to reflect predominantly at selected colors, allowing for a color display in addition to black and white. Figure 1 is an isometric view depicting two adjacent pixels in a series of pixels of a visual display, where each pixel includes a MEMS interferometric modulator. In some embodiments, an interferometric modulator display includes a row/column array of these interferometric modulators. Each interferometric modulator includes a pair of reflective layers positioned at a variable and controllable distance from each other to form a resonant optical cavity with at least one variable dimension. In one embodiment, one of the reflective layers may be moved between two positions. In the first position, referred to herein as the released state, the movable layer is positioned at a relatively large distance from a fixed partially reflective layer. In the second position, the movable layer is positioned more closely adjacent to the partially reflective layer. Incident light that reflects from the two layers interferes constructively or destructively depending on the position of the movable reflective layer, producing either an overall reflective or non-reflective state for each pixel.
The depicted portion of the pixel array in Figure 1 includes two adjacent interferometric modulators 12a and 12b. In the interferometric modulator 12a on the left, a movable and highly reflective layer 14a is illustrated in a released position at a predetermined distance from a fixed partially reflective layer 16a. In the interferometric modulator 12b on the right, the movable highly reflective layer 14b is illustrated in an actuated position adjacent to the fixed partially reflective layer 16b.
The fixed layers 16a, 16b are electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more layers each of chromium and indium-tin-oxide onto a transparent substrate 20. The layers are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the deformable metal layers are separated from the fixed metal layers by a defined air gap 19. Another embodiment has a highly conductive and reflective material such as aluminum may be used for the deformable layers, and these strips may form column electrodes in a display device. With no applied voltage, the cavity 19 remains between the layers 14a, 16a and the deformable layer is in a mechanically relaxed state as illustrated by the pixel 12a in Figure 1. However, when a potential difference is applied to a selected row and column, the capacitor formed at the intersection of the row and column electrodes at the corresponding pixel becomes charged, and electrostatic forces pull the electrodes together. If the voltage is high enough, the movable layer is deformed and is forced against the fixed layer (a dielectric material which is not illustrated in this Figure may be deposited on the fixed layer to prevent shorting and control the separation distance) as illustrated by the pixel 12b on the right in Figure 1. The behavior is the same regardless of the polarity of the applied potential difference. In this way, row/column actuation that can control the reflective vs. non- reflective pixel states is analogous in many ways to that used in conventional LCD and other display technologies.
The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example, Figures 2A-2E illustrate five different embodiments of the movable reflective layer 14 and its supporting structures. Figure 2A is a cross section of the embodiment of Figure 1 , where a strip of metal material 14 is deposited on orthogonally extending supports 18. In Figure 2B, the moveable reflective layer 14 is attached to supports at the corners only, on tethers 32. In Figure 2C, the moveable reflective layer 14 is suspended from a deformable layer 34, which may comprise a flexible metal. The deformable layer 34 connects, directly or indirectly, to the substrate 20 around the perimeter of the deformable layer 34. These connections are herein referred to as support posts. The embodiment illustrated in Figure 2D has support post plugs 42 upon which the deformable layer 34 rests. The movable reflective layer 14 remains suspended over the cavity, as in Figures 2A-2C, but the deformable layer 34 does not form the support posts by filling holes between the deformable layer 34 and the optical stack 16. Rather, the support posts are formed of a planarization material, which is used to form support post plugs 42. The embodiment illustrated in Figure 2E is based on the embodiment shown in Figure 2D, but may also be adapted to work with any of the embodiments illustrated in Figures 2A-2C, as well as additional embodiments not shown. In the embodiment shown in Figure 2E, an extra layer of metal or other conductive material has been used to form a bus structure 44. This allows signal routing along the back of the interferometric modulators, eliminating a number of electrodes that may otherwise have had to be formed on the substrate 20.
In embodiments such as those shown in Figure 2, the interferometric modulators function as direct-view devices, in which images are viewed from the front side of the transparent substrate 20, the side opposite to that upon which the modulator is arranged. In these embodiments, the reflective layer 14 optically shields the portions of the interferometric modulator on the side of the reflective layer opposite the substrate 20, including the deformable layer 34. This allows the shielded areas to be configured and operated upon without negatively affecting the image quality. Such shielding allows the bus structure 44 in Figure 7E, which provides the ability to separate the optical properties of the modulator from the electromechanical properties of the modulator, such as addressing and the movements that result from that addressing. This separable modulator architecture allows the structural design and materials used for the electromechanical aspects and the optical aspects of the modulator to be selected and to function independently of each other. Moreover, the embodiments shown in Figures 2C-2E have additional benefits deriving from the decoupling of the optical properties of the reflective layer 14 from its mechanical properties, which are carried out by the deformable layer 34. This allows the structural design and materials used for the reflective layer 14 to be optimized with respect to the optical properties, and the structural design and materials used for the deformable layer 34 to be optimized with respect to desired mechanical properties.
Figures 3 through 6 illustrate one exemplary process and system for using an array of interferometric modulators in a display application. Figure 3 is a system block diagram illustrating one embodiment of an electronic device that may incorporate aspects of the invention. In the exemplary embodiment, the electronic device includes a processor 21 which may be any general purpose single- or multi-chip microprocessor such as an ARM, Pentium®, Pentium II®, Pentium III®, Pentium IV®, Pentium® Pro, an 8051, a MIPS®, a Power PC®, an ALPHA®, or any special purpose microprocessor such as a digital signal processor, microcontroller, or a programmable gate array. As is conventional in the art, the processor 21 may be configured to execute one or more software modules. In addition to executing an operating system, the processor may be configured to execute one or more software applications, including a web browser, a telephone application, an email program, or any other software application.
In one embodiment, the processor 21 is also configured to communicate with an array driver 22. In one embodiment, the array driver 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a display array or panel 30. The cross section of the array illustrated in Figure 1 is shown by the lines 1-1 in Figure 3. For MEMS interferometric modulators, the row/column actuation protocol may take advantage of a hysteresis property of these devices illustrated in Figure 4. It may require, for example, a 6 volt potential difference to cause a movable layer to deform from the released state to the actuated state. However, when the voltage is reduced from that value, the movable layer maintains its state as the voltage drops back below 6 volts. In the exemplary embodiment of Figure 3, the movable layer does not release completely until the voltage drops below 1 volt. There is thus a range of voltage, about 2 to 4 V in the example illustrated in Figure 4, where there exists a window of applied voltage within which the device is stable in either the released or actuated state. This is referred to herein as the "hysteresis window" or "stability window." It will be appreciated that the "drive potential" of Figure 4 is defined as the difference between the potential of the stationary electrode and the potential of the deformable electrode. A "0 volt" drive potential thus means that a given row and column have the same absolute voltage relative to a reference common such as ground. A "0 volt" drive potential does not imply that either a row or column is necessarily at an absolute voltage of 0 volts relative to ground or any other reference. By convention in this disclosure, a positive polarity drive potential means the column electrode is at a higher potential than the row electrode. A negative polarity drive potential means the row electrode is at a higher potential than the column electrode. For a display array having the hysteresis characteristics of Figure 4, the row/column actuation protocol can be designed such that during row strobing, pixels in the strobed row that are to be actuated are exposed to a voltage difference of about 6 volts, and pixels that are to be released are exposed to a voltage difference of close to zero volts. After the strobe, the pixels are exposed to a steady state voltage difference of about 3 volts such that they remain in whatever state the row strobe put them in. After being written, each pixel sees a potential difference within the "stability window" of 2-4 volts in this example. This feature makes the pixel design illustrated in Figure 1 stable under the same applied voltage conditions in either an actuated or released pre-existing state. Since each pixel of the interferometric modulator, whether in the actuated or released state, is essentially a capacitor formed by the fixed and moving reflective layers, this stable state can be held at a voltage within the hysteresis window with almost no power dissipation. Essentially no current flows into the pixel if the applied potential is fixed.
In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. Another embodiment has a row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. Another embodiment has a pulse that is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. Another embodiment has a wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
Figures 5 and 6 illustrate one possible actuation protocol for creating a display frame on the 3x3 array of Figure 3. Figure 4 is a diagram of movable mirror position versus applied voltage showing a hysteresis characteristic. Figure 5 is a table showing column and row voltages used to create preferred drive potentials for the embodiment of Figure 3, where each drive potential is the difference between the associated column voltage and the associated row voltage. As shown, the column voltages are 6V and OV, and the row voltages are 3V, 6V, and OV, and are used to create the preferred positive and preferred negative actuation potentials (+6V and -6V), the preferred positive and preferred negative hold potentials (+3V and -3V), and the preferred release potential (OV). For convenience of explanation, the numerical values for the applied row and column voltages are given as 0, +3, and +6, but it will be appreciated that the numerical values for these applied voltages could be shifted together and produce the exact same hold, release, and actuation drive potentials. Only the difference is relevant, not the absolute values.
In the Figure 5 embodiment, actuating a pixel involves setting the appropriate column to 0, and the appropriate row to +6V. Releasing the pixel is accomplished by setting the appropriate column to +6V, and the appropriate row to the same +6V, producing a zero volt potential difference across the pixel. In those rows where the row voltage is held at 3 volts, the pixels are stable in whatever state they were originally in, regardless of whether the column is at +6V or 0. As is also illustrated in Figure 5, it will be appreciated that voltages of opposite polarity than those described above can be used, e.g., actuating a pixel can involve setting the appropriate column to +6V, and the appropriate row to 0. In this embodiment, releasing the pixel is accomplished by setting the appropriate column to 0, and the appropriate row to the same 0, producing a zero volt potential difference across the pixel.
Figure 6B is a timing diagram showing a series of row and column signals applied to the 3x3 array of Figure 3 which will result in the display arrangement illustrated in Figure
6A, where actuated pixels are non-reflective. Prior to writing the frame illustrated in Figure 6A, the pixels can be in any state, and in this example, all the rows are at 3 volts, and all the columns are at 6 volts. With these applied voltages, all pixels are stable in their existing actuated or released states.
In the Figure 6A frame, pixels (1,1), (1,2), (2,2), (3,2) and (3,3) are actuated. To accomplish this, during a "line time" for row 1, columns 1 and 2 are set to 0 volts, and column 3 is set to +6 volts. This does not change the state of any pixels, because all the pixels remain in the 2-4 volt stability window. Row 1 is then strobed with a pulse that goes from 3 V, up to 6V, and back to 3V. This actuates the (1,1) and (1,2) pixels and releases the (1,3) pixel. No other pixels in the array are affected. To set row 2 as desired, column 2 is set to 0 volts, and columns 1 and 3 are set to +6 volts. The same strobe applied to row 2 will then actuate pixel (2,2) and release pixels (2,1) and (2,3). Again, no other pixels of the array are affected. Row 3 is similarly set by setting columns 2 and 3 to 0 volts, and column 1 to +6 volts. The row 3 strobe sets the row 3 pixels as shown in Figure 6OA. After writing the frame, the row potentials are 3V, and the column potentials can remain at either +6 or 0 volts, and the display is then stable in the arrangement of Figure 6 A. It will be appreciated that the same procedure can be employed for arrays of dozens or hundreds of rows and columns. It will also be appreciated that the timing, sequence, and levels of voltages used to perform row and column actuation can be varied widely within the general principles outlined above, and the above example is exemplary only, and any actuation voltage method can be used with the present invention.
It is one aspect of the above described devices that charge can build on the dielectric between the layers of the device. This can be the result of the manufacturing process and can be caused when the devices are actuated and held in the actuated state by an electric field that predominantly points in the same direction. For example, if the moving layer is always at a higher potential relative to the fixed layer when the device is actuated by potentials having a magnitude larger than the outer threshold of stability, a slowly increasing charge buildup on the dielectric between the layers can begin to shift the hysteresis curve for the device.
Figure 7 is a diagram of movable mirror position versus applied voltage showing a hysteresis characteristic similar to that shown in Figure 4. The Hysteresis characteristic shown in Figure 7, however, is not centered about Ov, but is shifted by an offset δV, where δV is the potential difference at the center of the hysteresis curve. Such an offset can be the result of design, manufacturing, environment and/or operation history. The numerical value for δV could be either positive or negative. If δV is not too large, a MEMS device with the characteristic shown in Figure 7 may still be driven with the column and row voltages shown in Figure 5. However, driving the device with positive and negative drive potential differences which are not at the same location within the hysteresis curve can result in certain undesirable performance characteristics. For example, in addition to the aforementioned charge buildup, light modulation characteristics when the movable mirror is actuated with the positive actuation potential may be different from the light modulation characteristics when the movable mirror is actuated with the negative actuation potential. This can occur because the effective electrostatic force on the movable mirror will depend on the absolute value of the difference between the driven potential difference and δV3 the potential difference at the center of the hysteresis curve.
Figure 8 is a table showing column and row voltages used to create a set of preferred drive potentials for the embodiment of Figure 7, where each drive potential is the difference between the associated column voltage and the associated row voltage. As shown, the column voltages are 6V+5V and OV+δ V, and the row voltages are 3 V, 6V, and OV5 and are used to create the preferred positive and preferred negative actuation potentials (+6V+δV and -6V+δV), the preferred positive and preferred negative hold potentials (+3V+δV and - 3V+δV), and the preferred release potential (OV+δV). These values are advantageous because each of the positive and negative actuation potentials, positive and negative release potentials, and positive and negative hold potentials are symmetric about δV. This results in at least the benefits of charge accumulation balancing within each interferometric modulator, and substantially identical light modulation characteristics at both positive and negative polarity signals.
Comparison of the column and row voltages of Figures 5 and 8 shows that the number of different supply voltages needed for the row and column signals increases when there is an offset. With no offset, the column and row voltages are each one of three supply voltages, OV, 3V, and 6V. However, with an offset δV, the column and row voltages are each one of five supply voltages, OV, OV+δV, 3V5 6V, and 6V+δV. Adding supply voltages increases the complexity of supply generation and distribution, and may increase power consumption.
Alternate sets of drive potential reducing the number of supply voltages while avoiding the undesirable performance characteristics are now presented. Figure 9 is a table showing column and row voltages used to create a set of alternate drive potentials for an interferometric modulator with an offset δV, and with a hysteresis curve as shown in Figure 7, where each drive potential is the difference between the associated column voltage and the associated row voltage. As shown, the column voltages are 6V+25V and OV5 and the row voltages are 3V, 6V, and OV, and are used to create alternate positive and alternate negative actuation potentials (+6V+25V and -6V), alternate positive and alternate negative hold potentials (+3V+25V and -3V), and alternate positive and alternate negative release potentials (OV and 0V+26V). This scheme advantageously uses only four supply voltages OV, 3V, 6V, and 6V+25V. Additionally, although the alternate drive potentials differ from the preferred drive potentials, undesirable performance characteristics due to asymmetric drive potentials are avoided because each pair of positive and negative drive voltages is symmetric about the preferred drive voltages, and therefore symmetric about the offset voltage δV. That is, the alternate positive and alternate negative actuation potentials, +6V+2δV and -6V, are symmetric about the preferred positive and preferred negative actuation potentials, +6V+5V and -6V+5V, the alternate positive and alternate negative hold potentials, +3V+26V and -3V, are symmetric about the preferred positive and preferred negative hold potentials, +3V+δV and -3V+δV, and the alternate positive and alternate negative release potentials, OV and 0V+2δV, are symmetric about the preferred release potential, OV+δV. Thus, column and row voltages of Figure 9 may be used to create a set of alternate drive potentials for an interferometric modulator with an offset δ V and with a hysteresis curve as shown in Figure 7, with use of four supply voltages and with the advantageous performance characteristics associated with symmetric drive potentials, such as charge buildup reduction and substantially identical light modulation characteristics regardless of signal polarity. Figure 10 is a table showing column and row voltages used to create another set of alternate drive potentials for an interferometric modulator with an offset δV, with a hysteresis curve as shown in Figure 7, where each drive potential is the difference between the associated column voltage and the associated row voltage. As shown, the column voltages are 6V and OV, and the row voltages are 3V-δV, 6V, and 0V-2δV, and are used to create alternate positive and alternate negative actuation potentials (+6V+2δV and -6V), alternate positive and alternate negative hold potentials (+3V+δV and -3V+δV), and alternate positive and alternate negative release potentials (0V+2δV and OV). This scheme advantageously uses only four supply voltages OV-δV, OV, 3V-δV, and 6V. Similar to the alternate drive potentials shown in Figure 9, even though the alternate drive potentials of Figure 10 differ from the preferred drive potentials, undesirable performance characteristics due to asymmetric drive potentials are avoided because each pair of positive and negative drive voltages is symmetric about the preferred drive voltages, and therefore symmetric about the offset voltage 5V. That is, the alternate positive and alternate negative actuation potentials, +6V+25V and -6V, are symmetric about the preferred positive and preferred negative actuation potentials, +6V+5V and -6V+δV, the alternate positive and alternate negative hold potentials, +3V+5V and -3V+6V, are symmetric about, and in fact identical to, the preferred positive and preferred negative hold potentials, +3V+5V and -3V+δV, and the alternate positive and alternate negative release potentials, OV and 0V+2δV, are symmetric about the preferred release potential, OV+δV. The set of alternate drive potentials of Figure 10 has an advantageous aspect that the positive and negative hold potentials are identical to the preferred positive and negative hold potentials. Thus, column and row voltages of Figure 10 may be used to create a set of alternate drive potentials for an interferometric modulator with an offset δV and with a hysteresis curve as shown in Figure 7, with use of four supply voltages and with the advantageous performance characteristics associated with symmetric drive potentials, such as charge buildup reduction and substantially identical light modulation characteristics regardless of signal polarity. It will be understood that in the above discussion the terms row and column are arbitrarily chosen to each represent a separate dimension in an array. Rows and columns are not meant to be relative to any fixed reference. Accordingly, rows and columns may be interchanged.
Figures HA and HB are system block diagrams illustrating an embodiment of a display device 40 in which the inventions described herein may be implemented. The display device 40 can be, for example, a cellular or mobile telephone. However, the same components of display device 40 or slight variations thereof are also illustrative of various types of display devices such as televisions and portable media players.
The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 44, an input device 48, and a microphone 46. The housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding and vacuum forming. In addition, the housing 41 may be made from any of a variety of materials, including, but not limited to, plastic, metal, glass, rubber, and ceramic, or a combination thereof. In one embodiment, the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
The display 30 of exemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein. In other embodiments, the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art. However, for purposes of describing the present embodiment, the display 30 includes an interferometric modulator display, as described herein. The components of one embodiment of exemplary display device 40 are schematically illustrated in Figure 1 IB. The illustrated exemplary display device 40 includes a housing 41 and can include additional components at least partially enclosed therein. For example, in one embodiment, the exemplary display device 40 includes a network interface 27 that includes an antenna 43, which is coupled to a transceiver 47. The transceiver 47 is connected to a processor 21, which is connected to conditioning hardware 52. The conditioning hardware 52 may be configured to condition a signal (e.g., filter a signal). The conditioning hardware 52 is connected to a speaker 45 and a microphone 46. The processor 21 is also connected to an input device 48 and a driver controller 29. The driver controller 29 is coupled to a frame buffer 28 and to an array driver 22, which in turn is coupled to a display array 30. A power supply 50 provides power to all components as required by the particular exemplary display device 40 design.
The network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one or more devices over a network. In one embodiment, the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21. The antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.11 standard, including IEEE 802.1 l(a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS, or other known signals that are used to communicate within a wireless cell phone network. The transceiver 47 pre-processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.
In an alternative embodiment, the transceiver 47 can be replaced by a receiver. In yet another alternative embodiment, network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. For example, the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
Processor 21 generally controls the overall operation of the exemplary display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level. In one embodiment, the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40. Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.
The driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as a LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
Typically, the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.
In one embodiment, the driver controller 29, array driver 22, and display array 30 are appropriate for any of the types of displays described herein. For example, in one embodiment, driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller). In another embodiment, array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display). In one embodiment, a driver controller 29 is integrated with the array driver 22. Such an embodiment is common in highly integrated systems such as cellular phones, watches, and other small area displays. In yet another embodiment, display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).
The input device 48 allows a user to control the operation of the exemplary display device 40. In one embodiment, input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, or a pressure- or heat-sensitive membrane. In one embodiment, the microphone 46 is an input device for the exemplary display device 40. When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40. Power supply 50 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment, power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery. In another embodiment, power supply 50 is a renewable energy source, a capacitor, or a solar cell including a plastic solar cell, and solar-cell paint. In another embodiment, power supply 50 is configured to receive power from a wall outlet.
In some embodiments, control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some embodiments, control programmability resides in the array driver 22. Those of skill in the art will recognize that the above-described optimizations may be implemented in any number of hardware and/or software components and in various configurations.
It will also be understood by those of skill in the art that numerous and various modifications can be made without departing from the spirit of the present invention. Therefore, it should be clearly understood that the forms of the present invention are illustrative only and are not intended to limit the scope of the present invention.

Claims

WHAT IS CLAIMED IS:
1. A display device comprising a set of MEMS display elements configured as an array of rows and columns of MEMS elements, wherein the MEMS elements are characterized by a preferred set of drive potential differences comprising preferred positive and preferred negative actuation potential differences, preferred positive and preferred negative hold potential differences, and a preferred release potential difference, wherein the preferred set of drive potential differences is symmetric about a voltage differing from OV by an offset δV and wherein drive potential differences are applied to each MEMS element as a difference between a column voltage and a row voltage, said method comprising: generating a set of four different voltage levels; writing display data to the array by applying voltages to each column of the array and each row of the array so as to apply first and second actuation potential differences, first and second hold potential differences, and first and second release potential differences, wherein said voltages are selected only from said set of four different voltage levels, and wherein first and second hold potentials are of opposite polarity.
2. The method of Claim 1, wherein said first hold potential is a positive polarity such that the column is at a higher potential than the row, and wherein said second hold potential is a negative polarity such that the row is at a higher potential than the column.
3. The method of Claim 1 , wherein δV is a positive value.
4. The method of Claim 1, wherein δV is a negative value.
5. The method of Claim 1, wherein voltages applied to the columns are selected from a set of two voltages, wherein voltages applied to the rows are selected from a set of three voltages, and wherein the set of three voltages and the set of two voltage share one common voltage.
6. The method of Claim 5, wherein one of the set of three voltages is shifted from one of the set of two voltages by about 2δV.
7. The method of Claim 5, wherein the common voltage is about 0 V.
8. The method of Claim 5, wherein the common voltage is about 5 V or more.
9. The method of Claim 1, wherein the first and second actuation potential differences are symmetric about the offset voltage δV.
10. The method of Claim 1, wherein the first and second release potential differences are symmetric about the offset voltage δV.
11. The method of Claim 1, wherein the first and second hold potential differences are symmetric about the offset voltage δV.
12. A microelectromechanical system (MEMS) display device comprising: an array of rows and columns of MEMS elements, wherein the MEMS elements are characterized by a preferred set of drive potential differences comprising preferred positive and preferred negative actuation potential differences, preferred positive and preferred negative hold potential differences, and a preferred release potential difference, wherein the preferred set of drive potential differences is symmetric about a voltage differing from OV by an offset δV; and an array driver configured to write display data to the array by applying voltages to each column of the array and each row of the array so as to apply first and second actuation potential differences, first and second hold potential differences, and first and second release potential differences, wherein the voltages are selected from a set of only four different voltage levels, and wherein first and second hold potentials are of opposite polarity.
13. The method of Claim 12, wherein said first hold potential is a positive polarity such that the column is at a higher potential than the row, and wherein said second hold potential is a negative polarity such that the row is at a higher potential than the column.
14. The method of Claim 12, wherein δV is a positive value.
15. The method of Claim 12, wherein δV is a negative value.
16. The device of Claim 12, wherein the array controller is configured to apply voltages to the columns selected from a set of two voltages, and to apply voltages to the rows selected from a set of three voltages, and wherein the set of three voltages and the set of two voltages share one common voltage.
17. The device of Claim 16, wherein one of the set of three voltages is shifted from one of the set of two voltages by about 2δV.
18. The device of Claim 16, wherein the common voltage is about 0 V.
19. The device of Claim 16, wherein the common voltage is about 5 V or more.
20. The device of Claim 12, wherein the first and second actuation potential differences are symmetric about the offset voltage δV.
21. The device of Claim 12, wherein the first and second release potential differences are symmetric about the offset voltage δV.
22. The device of Claim 12, wherein the first and second hold potential differences are symmetric about the offset voltage δV.
23. The apparatus of Claim 12, further comprising: a processor that is configured to communicate with said display, said processor being configured to process image data; and a memory device that is configured to communicate with said processor.
24. The apparatus of Claim 23, further comprising a controller configured to send at least a portion of the image data to the driver circuit.
25. The apparatus of Claim 23, further comprising an image source module configured to send said image data to said processor.
26. The apparatus of Claim 25, wherein the image source module comprises at least one of a receiver, transceiver, and transmitter.
27. The apparatus of Claim 23, further comprising an input device configured to receive input data and to communicate said input data to said processor.
28. A method of driving a display device comprising a set of MEMS display elements configured as an array of rows and columns of MEMS elements, wherein said
MEMS elements are characterized by a preferred set of drive potential differences comprising preferred positive and preferred negative actuation potential differences, preferred positive and preferred negative hold potential differences, and a preferred release potential difference, wherein the preferred set of drive potential differences is symmetric about a voltage differing from OV by an offset δV and wherein drive potential differences are applied to each MEMS element as a difference between a column voltage and a row voltage, the method comprising: generating a set of four different voltage levels; writing display data to the array by applying voltages to each column of the array and each row of the array so as to apply first and second actuation potential differences, first and second hold potential differences, and first and second release potential differences, wherein the voltages are selected only from the set of four different voltage levels, and wherein at least one of first and second actuation potentials, first and second hold potentials, and first and second release potentials are of opposite polarity and are symmetric about the offset voltage δV.
29. The method of Claim 28, wherein said first hold potential is a positive polarity such that the column is at a higher potential than the row, and wherein said second hold potential is a negative polarity such that the row is at a higher potential than the column.
30. The method of Claim 28, wherein δV is a positive value.
31. The method of Claim 2S3 wherein δV is a negative value.
32. The method of Claim 28, wherein voltages applied to the columns are selected from a set of two voltages, wherein voltages applied to the rows are selected from a set of three voltages, and wherein the set of three voltages and the set of two voltage share one common voltage.
33. The method of Claim 32, wherein each of the first and second actuation potentials, the first and second hold potentials, and the first and second hold potentials are of opposite polarity and are symmetric about the offset voltage δV.
34. The method of Claim 28, wherein the light modulation characteristics of each MEMS display element when driven with a positive polarity potential is substantially identical to the light modulation characteristics when driven with a negative polarity potential.
35. A microelectromechanical system (MEMS) display device comprising: means for displaying rows and columns of image data, wherein said means are characterized by a preferred set of drive potential differences comprising preferred positive and preferred negative actuation potential differences, preferred positive and preferred negative hold potential differences, and a preferred release potential difference, wherein the preferred set of drive potential differences is symmetric about a voltage differing from OV by an offset δV; and means for writing image data to the means for displaying by applying voltages to each column of the array and each row of the array so as to apply first and second actuation potential differences, first and second hold potential differences, and first and second release potential differences, wherein the voltages are selected from a set of only four different voltage levels, and wherein first and second hold potentials are of opposite polarity.
36. The device of Claim 35, wherein said means for displaying comprises an array of MEMS elements configured as interferometric modulators.
37. The device of Claim 36, wherein said means for writing image data comprises an array driver circuit.
PCT/US2007/001115 2006-02-09 2007-01-16 Method and system for writing data to mems display elements WO2007094911A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200780005111XA CN101385066B (en) 2006-02-09 2007-01-16 Method and system for writing data to mems display elements
EP07716671A EP1982322A1 (en) 2006-02-09 2007-01-16 Method and system for writing data to mems display elements
JP2008554244A JP2009526267A (en) 2006-02-09 2007-01-16 Method and system for writing data to a MEMS display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/350,712 2006-02-09
US11/350,712 US8194056B2 (en) 2006-02-09 2006-02-09 Method and system for writing data to MEMS display elements

Publications (1)

Publication Number Publication Date
WO2007094911A1 true WO2007094911A1 (en) 2007-08-23

Family

ID=38093432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/001115 WO2007094911A1 (en) 2006-02-09 2007-01-16 Method and system for writing data to mems display elements

Country Status (6)

Country Link
US (1) US8194056B2 (en)
EP (1) EP1982322A1 (en)
JP (1) JP2009526267A (en)
KR (1) KR20080108440A (en)
CN (1) CN101385066B (en)
WO (1) WO2007094911A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884940B2 (en) 2010-01-06 2014-11-11 Qualcomm Mems Technologies, Inc. Charge pump for producing display driver output

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8310441B2 (en) 2004-09-27 2012-11-13 Qualcomm Mems Technologies, Inc. Method and system for writing data to MEMS display elements
US7957589B2 (en) * 2007-01-25 2011-06-07 Qualcomm Mems Technologies, Inc. Arbitrary power function using logarithm lookup table
US20100039424A1 (en) * 2008-08-14 2010-02-18 Qualcomm Mems Technologies, Inc. Method of reducing offset voltage in a microelectromechanical device
US8736590B2 (en) 2009-03-27 2014-05-27 Qualcomm Mems Technologies, Inc. Low voltage driver scheme for interferometric modulators
US8405649B2 (en) * 2009-03-27 2013-03-26 Qualcomm Mems Technologies, Inc. Low voltage driver scheme for interferometric modulators
US20110109615A1 (en) * 2009-11-12 2011-05-12 Qualcomm Mems Technologies, Inc. Energy saving driving sequence for a display
JP5310529B2 (en) * 2009-12-22 2013-10-09 株式会社豊田中央研究所 Oscillator for plate member
KR20120111809A (en) 2011-04-01 2012-10-11 삼성디스플레이 주식회사 Display apparatus
US8836681B2 (en) 2011-10-21 2014-09-16 Qualcomm Mems Technologies, Inc. Method and device for reducing effect of polarity inversion in driving display
US20130127794A1 (en) * 2011-11-18 2013-05-23 Qualcomm Mems Technologies, Inc. Write waveform porch overlapping

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020054424A1 (en) * 1994-05-05 2002-05-09 Etalon, Inc. Photonic mems and structures

Family Cites Families (329)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982239A (en) 1973-02-07 1976-09-21 North Hills Electronics, Inc. Saturation drive arrangements for optically bistable displays
DE2910586B2 (en) 1979-03-17 1981-01-29 Hoechst Ag, 6000 Frankfurt Filler-containing polyolefin molding composition and process for its production
NL8001281A (en) 1980-03-04 1981-10-01 Philips Nv DISPLAY DEVICE.
US4441791A (en) * 1980-09-02 1984-04-10 Texas Instruments Incorporated Deformable mirror light modulator
NL8103377A (en) 1981-07-16 1983-02-16 Philips Nv DISPLAY DEVICE.
US4571603A (en) * 1981-11-03 1986-02-18 Texas Instruments Incorporated Deformable mirror electrostatic printer
NL8200354A (en) 1982-02-01 1983-09-01 Philips Nv PASSIVE DISPLAY.
US4500171A (en) * 1982-06-02 1985-02-19 Texas Instruments Incorporated Process for plastic LCD fill hole sealing
US4482213A (en) 1982-11-23 1984-11-13 Texas Instruments Incorporated Perimeter seal reinforcement holes for plastic LCDs
US5633652A (en) 1984-02-17 1997-05-27 Canon Kabushiki Kaisha Method for driving optical modulation device
US4710732A (en) 1984-07-31 1987-12-01 Texas Instruments Incorporated Spatial light modulator and method
US4566935A (en) * 1984-07-31 1986-01-28 Texas Instruments Incorporated Spatial light modulator and method
US4709995A (en) 1984-08-18 1987-12-01 Canon Kabushiki Kaisha Ferroelectric display panel and driving method therefor to achieve gray scale
US5096279A (en) * 1984-08-31 1992-03-17 Texas Instruments Incorporated Spatial light modulator and method
US4662746A (en) 1985-10-30 1987-05-05 Texas Instruments Incorporated Spatial light modulator and method
US4596992A (en) 1984-08-31 1986-06-24 Texas Instruments Incorporated Linear spatial light modulator and printer
US5061049A (en) 1984-08-31 1991-10-29 Texas Instruments Incorporated Spatial light modulator and method
US4615595A (en) 1984-10-10 1986-10-07 Texas Instruments Incorporated Frame addressed spatial light modulator
US5172262A (en) 1985-10-30 1992-12-15 Texas Instruments Incorporated Spatial light modulator and method
US4859060A (en) 1985-11-26 1989-08-22 501 Sharp Kabushiki Kaisha Variable interferometric device and a process for the production of the same
US5835255A (en) 1986-04-23 1998-11-10 Etalon, Inc. Visible spectrum modulator arrays
FR2605444A1 (en) 1986-10-17 1988-04-22 Thomson Csf METHOD FOR CONTROLLING AN ELECTROOPTIC MATRIX SCREEN AND CONTROL CIRCUIT USING THE SAME
JPS63298287A (en) 1987-05-29 1988-12-06 シャープ株式会社 Liquid crystal display device
US5010328A (en) 1987-07-21 1991-04-23 Thorn Emi Plc Display device
US4879602A (en) 1987-09-04 1989-11-07 New York Institute Of Technology Electrode patterns for solid state light modulator
CA1319767C (en) 1987-11-26 1993-06-29 Canon Kabushiki Kaisha Display apparatus
US4956619A (en) 1988-02-19 1990-09-11 Texas Instruments Incorporated Spatial light modulator
US4856863A (en) 1988-06-22 1989-08-15 Texas Instruments Incorporated Optical fiber interconnection network including spatial light modulator
US5074840A (en) 1990-07-24 1991-12-24 Inbae Yoon Packing device and method of packing for endoscopic procedures
US5028939A (en) 1988-08-23 1991-07-02 Texas Instruments Incorporated Spatial light modulator system
US4982184A (en) * 1989-01-03 1991-01-01 General Electric Company Electrocrystallochromic display and element
US5162787A (en) 1989-02-27 1992-11-10 Texas Instruments Incorporated Apparatus and method for digitized video system utilizing a moving display surface
US5214420A (en) 1989-02-27 1993-05-25 Texas Instruments Incorporated Spatial light modulator projection system with random polarity light
US5079544A (en) * 1989-02-27 1992-01-07 Texas Instruments Incorporated Standard independent digitized video system
US5192946A (en) * 1989-02-27 1993-03-09 Texas Instruments Incorporated Digitized color video display system
US5287096A (en) * 1989-02-27 1994-02-15 Texas Instruments Incorporated Variable luminosity display system
US5272473A (en) 1989-02-27 1993-12-21 Texas Instruments Incorporated Reduced-speckle display system
US5170156A (en) 1989-02-27 1992-12-08 Texas Instruments Incorporated Multi-frequency two dimensional display system
KR100202246B1 (en) 1989-02-27 1999-06-15 윌리엄 비. 켐플러 Apparatus and method for digital video system
US5206629A (en) 1989-02-27 1993-04-27 Texas Instruments Incorporated Spatial light modulator and memory for digitized video display
US5446479A (en) 1989-02-27 1995-08-29 Texas Instruments Incorporated Multi-dimensional array video processor system
US5214419A (en) 1989-02-27 1993-05-25 Texas Instruments Incorporated Planarized true three dimensional display
DE69027163T2 (en) 1989-09-15 1996-11-14 Texas Instruments Inc Spatial light modulator and method
US4954789A (en) 1989-09-28 1990-09-04 Texas Instruments Incorporated Spatial light modulator
US5124834A (en) 1989-11-16 1992-06-23 General Electric Company Transferrable, self-supporting pellicle for elastomer light valve displays and method for making the same
US5037173A (en) 1989-11-22 1991-08-06 Texas Instruments Incorporated Optical interconnection network
US5227900A (en) 1990-03-20 1993-07-13 Canon Kabushiki Kaisha Method of driving ferroelectric liquid crystal element
CH682523A5 (en) * 1990-04-20 1993-09-30 Suisse Electronique Microtech A modulation matrix addressed light.
US5099353A (en) * 1990-06-29 1992-03-24 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
US5018256A (en) 1990-06-29 1991-05-28 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
EP0467048B1 (en) * 1990-06-29 1995-09-20 Texas Instruments Incorporated Field-updated deformable mirror device
US5142405A (en) 1990-06-29 1992-08-25 Texas Instruments Incorporated Bistable dmd addressing circuit and method
US5083857A (en) * 1990-06-29 1992-01-28 Texas Instruments Incorporated Multi-level deformable mirror device
US5216537A (en) 1990-06-29 1993-06-01 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
US5192395A (en) * 1990-10-12 1993-03-09 Texas Instruments Incorporated Method of making a digital flexure beam accelerometer
US5526688A (en) 1990-10-12 1996-06-18 Texas Instruments Incorporated Digital flexure beam accelerometer and method
US5602671A (en) * 1990-11-13 1997-02-11 Texas Instruments Incorporated Low surface energy passivation layer for micromechanical devices
US5331454A (en) 1990-11-13 1994-07-19 Texas Instruments Incorporated Low reset voltage process for DMD
US5233459A (en) 1991-03-06 1993-08-03 Massachusetts Institute Of Technology Electric display device
CA2063744C (en) 1991-04-01 2002-10-08 Paul M. Urbanus Digital micromirror device architecture and timing for use in a pulse-width modulated display system
US5142414A (en) 1991-04-22 1992-08-25 Koehler Dale R Electrically actuatable temporal tristimulus-color device
US5226099A (en) 1991-04-26 1993-07-06 Texas Instruments Incorporated Digital micromirror shutter device
US5179274A (en) * 1991-07-12 1993-01-12 Texas Instruments Incorporated Method for controlling operation of optical systems and devices
US5168406A (en) 1991-07-31 1992-12-01 Texas Instruments Incorporated Color deformable mirror device and method for manufacture
US5254980A (en) 1991-09-06 1993-10-19 Texas Instruments Incorporated DMD display system controller
US5563398A (en) 1991-10-31 1996-10-08 Texas Instruments Incorporated Spatial light modulator scanning system
CA2081753C (en) 1991-11-22 2002-08-06 Jeffrey B. Sampsell Dmd scanner
US5233385A (en) 1991-12-18 1993-08-03 Texas Instruments Incorporated White light enhanced color field sequential projection
US5233456A (en) 1991-12-20 1993-08-03 Texas Instruments Incorporated Resonant mirror and method of manufacture
CA2087625C (en) 1992-01-23 2006-12-12 William E. Nelson Non-systolic time delay and integration printing
JPH05216617A (en) 1992-01-31 1993-08-27 Canon Inc Display driving device and information processing system
US5296950A (en) * 1992-01-31 1994-03-22 Texas Instruments Incorporated Optical signal free-space conversion board
US5231532A (en) 1992-02-05 1993-07-27 Texas Instruments Incorporated Switchable resonant filter for optical radiation
US5212582A (en) 1992-03-04 1993-05-18 Texas Instruments Incorporated Electrostatically controlled beam steering device and method
EP0562424B1 (en) 1992-03-25 1997-05-28 Texas Instruments Incorporated Embedded optical calibration system
US5312513A (en) 1992-04-03 1994-05-17 Texas Instruments Incorporated Methods of forming multiple phase light modulators
DE69321873T2 (en) 1992-05-19 1999-05-20 Canon Kk Method and device for controlling a display
JPH0651250A (en) * 1992-05-20 1994-02-25 Texas Instr Inc <Ti> Monolithic space optical modulator and memory package
US5638084A (en) 1992-05-22 1997-06-10 Dielectric Systems International, Inc. Lighting-independent color video display
JPH06214169A (en) 1992-06-08 1994-08-05 Texas Instr Inc <Ti> Controllable optical and periodic surface filter
US5818095A (en) * 1992-08-11 1998-10-06 Texas Instruments Incorporated High-yield spatial light modulator with light blocking layer
US5327286A (en) 1992-08-31 1994-07-05 Texas Instruments Incorporated Real time optical correlation system
US5325116A (en) 1992-09-18 1994-06-28 Texas Instruments Incorporated Device for writing to and reading from optical storage media
US5488505A (en) * 1992-10-01 1996-01-30 Engle; Craig D. Enhanced electrostatic shutter mosaic modulator
US5285196A (en) * 1992-10-15 1994-02-08 Texas Instruments Incorporated Bistable DMD addressing method
US5659374A (en) 1992-10-23 1997-08-19 Texas Instruments Incorporated Method of repairing defective pixels
EP0608056B1 (en) 1993-01-11 1998-07-29 Canon Kabushiki Kaisha Display line dispatcher apparatus
JP3547160B2 (en) 1993-01-11 2004-07-28 テキサス インスツルメンツ インコーポレイテツド Spatial light modulator
US6674562B1 (en) * 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
US5461411A (en) 1993-03-29 1995-10-24 Texas Instruments Incorporated Process and architecture for digital micromirror printer
JP3524122B2 (en) 1993-05-25 2004-05-10 キヤノン株式会社 Display control device
US5489952A (en) 1993-07-14 1996-02-06 Texas Instruments Incorporated Method and device for multi-format television
US5365283A (en) 1993-07-19 1994-11-15 Texas Instruments Incorporated Color phase control for projection display using spatial light modulator
US5526172A (en) 1993-07-27 1996-06-11 Texas Instruments Incorporated Microminiature, monolithic, variable electrical signal processor and apparatus including same
US5619061A (en) 1993-07-27 1997-04-08 Texas Instruments Incorporated Micromechanical microwave switching
US5581272A (en) * 1993-08-25 1996-12-03 Texas Instruments Incorporated Signal generator for controlling a spatial light modulator
US5552925A (en) 1993-09-07 1996-09-03 John M. Baker Electro-micro-mechanical shutters on transparent substrates
US5457493A (en) 1993-09-15 1995-10-10 Texas Instruments Incorporated Digital micro-mirror based image simulation system
US5629790A (en) 1993-10-18 1997-05-13 Neukermans; Armand P. Micromachined torsional scanner
US5828367A (en) 1993-10-21 1998-10-27 Rohm Co., Ltd. Display arrangement
US5526051A (en) 1993-10-27 1996-06-11 Texas Instruments Incorporated Digital television system
US5497197A (en) * 1993-11-04 1996-03-05 Texas Instruments Incorporated System and method for packaging data into video processor
US5459602A (en) 1993-10-29 1995-10-17 Texas Instruments Micro-mechanical optical shutter
US5452024A (en) 1993-11-01 1995-09-19 Texas Instruments Incorporated DMD display system
JPH07152340A (en) 1993-11-30 1995-06-16 Rohm Co Ltd Display device
US5517347A (en) 1993-12-01 1996-05-14 Texas Instruments Incorporated Direct view deformable mirror device
CA2137059C (en) 1993-12-03 2004-11-23 Texas Instruments Incorporated Dmd architecture to improve horizontal resolution
US5583688A (en) 1993-12-21 1996-12-10 Texas Instruments Incorporated Multi-level digital micromirror device
US5598565A (en) * 1993-12-29 1997-01-28 Intel Corporation Method and apparatus for screen power saving
US5448314A (en) 1994-01-07 1995-09-05 Texas Instruments Method and apparatus for sequential color imaging
US5500761A (en) 1994-01-27 1996-03-19 At&T Corp. Micromechanical modulator
US5444566A (en) 1994-03-07 1995-08-22 Texas Instruments Incorporated Optimized electronic operation of digital micromirror devices
US5665997A (en) 1994-03-31 1997-09-09 Texas Instruments Incorporated Grated landing area to eliminate sticking of micro-mechanical devices
JP3298301B2 (en) 1994-04-18 2002-07-02 カシオ計算機株式会社 Liquid crystal drive
US7460291B2 (en) * 1994-05-05 2008-12-02 Idc, Llc Separable modulator
US7550794B2 (en) * 2002-09-20 2009-06-23 Idc, Llc Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer
US6680792B2 (en) 1994-05-05 2004-01-20 Iridigm Display Corporation Interferometric modulation of radiation
US6710908B2 (en) * 1994-05-05 2004-03-23 Iridigm Display Corporation Controlling micro-electro-mechanical cavities
US6040937A (en) * 1994-05-05 2000-03-21 Etalon, Inc. Interferometric modulation
US20010003487A1 (en) 1996-11-05 2001-06-14 Mark W. Miles Visible spectrum modulator arrays
KR950033432A (en) 1994-05-12 1995-12-26 윌리엄 이. 힐러 Spatial Light Modulator Display Pointing Device
US5497172A (en) * 1994-06-13 1996-03-05 Texas Instruments Incorporated Pulse width modulation for spatial light modulator with split reset addressing
US5673106A (en) 1994-06-17 1997-09-30 Texas Instruments Incorporated Printing system with self-monitoring and adjustment
US5454906A (en) 1994-06-21 1995-10-03 Texas Instruments Inc. Method of providing sacrificial spacer for micro-mechanical devices
US5499062A (en) * 1994-06-23 1996-03-12 Texas Instruments Incorporated Multiplexed memory timing with block reset and secondary memory
US5636052A (en) 1994-07-29 1997-06-03 Lucent Technologies Inc. Direct view display based on a micromechanical modulation
US5485304A (en) 1994-07-29 1996-01-16 Texas Instruments, Inc. Support posts for micro-mechanical devices
US6053617A (en) 1994-09-23 2000-04-25 Texas Instruments Incorporated Manufacture method for micromechanical devices
US5650881A (en) 1994-11-02 1997-07-22 Texas Instruments Incorporated Support post architecture for micromechanical devices
US5552924A (en) 1994-11-14 1996-09-03 Texas Instruments Incorporated Micromechanical device having an improved beam
US5610624A (en) * 1994-11-30 1997-03-11 Texas Instruments Incorporated Spatial light modulator with reduced possibility of an on state defect
US5612713A (en) * 1995-01-06 1997-03-18 Texas Instruments Incorporated Digital micro-mirror device with block data loading
JPH08202318A (en) 1995-01-31 1996-08-09 Canon Inc Display control method and its display system for display device having storability
US5567334A (en) 1995-02-27 1996-10-22 Texas Instruments Incorporated Method for creating a digital micromirror device using an aluminum hard mask
US5610438A (en) * 1995-03-08 1997-03-11 Texas Instruments Incorporated Micro-mechanical device with non-evaporable getter
US5535047A (en) 1995-04-18 1996-07-09 Texas Instruments Incorporated Active yoke hidden hinge digital micromirror device
US5578976A (en) 1995-06-22 1996-11-26 Rockwell International Corporation Micro electromechanical RF switch
DE69535818D1 (en) 1995-09-20 2008-10-02 Hitachi Ltd IMAGE DISPLAY DEVICE
JP3799092B2 (en) 1995-12-29 2006-07-19 アジレント・テクノロジーズ・インク Light modulation device and display device
US5638946A (en) 1996-01-11 1997-06-17 Northeastern University Micromechanical switch with insulated switch contact
US5912758A (en) 1996-09-11 1999-06-15 Texas Instruments Incorporated Bipolar reset for spatial light modulators
US5771116A (en) 1996-10-21 1998-06-23 Texas Instruments Incorporated Multiple bias level reset waveform for enhanced DMD control
US7471444B2 (en) 1996-12-19 2008-12-30 Idc, Llc Interferometric modulation of radiation
EP0877272B1 (en) * 1997-05-08 2002-07-31 Texas Instruments Incorporated Improvements in or relating to spatial light modulators
US6480177B2 (en) 1997-06-04 2002-11-12 Texas Instruments Incorporated Blocked stepped address voltage for micromechanical devices
US5808780A (en) 1997-06-09 1998-09-15 Texas Instruments Incorporated Non-contacting micromechanical optical switch
US5867302A (en) * 1997-08-07 1999-02-02 Sandia Corporation Bistable microelectromechanical actuator
US5966235A (en) 1997-09-30 1999-10-12 Lucent Technologies, Inc. Micro-mechanical modulator having an improved membrane configuration
GB2330678A (en) 1997-10-16 1999-04-28 Sharp Kk Addressing a ferroelectric liquid crystal display
US6028690A (en) * 1997-11-26 2000-02-22 Texas Instruments Incorporated Reduced micromirror mirror gaps for improved contrast ratio
US6180428B1 (en) * 1997-12-12 2001-01-30 Xerox Corporation Monolithic scanning light emitting devices using micromachining
GB9803441D0 (en) 1998-02-18 1998-04-15 Cambridge Display Tech Ltd Electroluminescent devices
JP3403635B2 (en) 1998-03-26 2003-05-06 富士通株式会社 Display device and method of driving the display device
WO1999052006A2 (en) 1998-04-08 1999-10-14 Etalon, Inc. Interferometric modulation of radiation
US5943158A (en) 1998-05-05 1999-08-24 Lucent Technologies Inc. Micro-mechanical, anti-reflection, switched optical modulator array and fabrication method
US6160833A (en) 1998-05-06 2000-12-12 Xerox Corporation Blue vertical cavity surface emitting laser
US6282010B1 (en) 1998-05-14 2001-08-28 Texas Instruments Incorporated Anti-reflective coatings for spatial light modulators
US6323982B1 (en) 1998-05-22 2001-11-27 Texas Instruments Incorporated Yield superstructure for digital micromirror device
US6147790A (en) 1998-06-02 2000-11-14 Texas Instruments Incorporated Spring-ring micromechanical device
US6430332B1 (en) 1998-06-05 2002-08-06 Fiber, Llc Optical switching apparatus
US6496122B2 (en) 1998-06-26 2002-12-17 Sharp Laboratories Of America, Inc. Image display and remote control system capable of displaying two distinct images
US6304297B1 (en) 1998-07-21 2001-10-16 Ati Technologies, Inc. Method and apparatus for manipulating display of update rate
JP2000075963A (en) 1998-08-27 2000-03-14 Sharp Corp Power-saving control system for display device
US6113239A (en) 1998-09-04 2000-09-05 Sharp Laboratories Of America, Inc. Projection display system for reflective light valves
JP4074714B2 (en) * 1998-09-25 2008-04-09 富士フイルム株式会社 Array type light modulation element and flat display driving method
US6323834B1 (en) * 1998-10-08 2001-11-27 International Business Machines Corporation Micromechanical displays and fabrication method
JP3919954B2 (en) 1998-10-16 2007-05-30 富士フイルム株式会社 Array type light modulation element and flat display driving method
US6391675B1 (en) * 1998-11-25 2002-05-21 Raytheon Company Method and apparatus for switching high frequency signals
US6501107B1 (en) 1998-12-02 2002-12-31 Microsoft Corporation Addressable fuse array for circuits and mechanical devices
GB9827945D0 (en) 1998-12-19 1999-02-10 Secr Defence Method of driving a spatial light modulator
JP3119255B2 (en) 1998-12-22 2000-12-18 日本電気株式会社 Micromachine switch and method of manufacturing the same
US6606175B1 (en) 1999-03-16 2003-08-12 Sharp Laboratories Of America, Inc. Multi-segment light-emitting diode
US7012600B2 (en) 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
NL1015202C2 (en) 1999-05-20 2002-03-26 Nec Corp Active matrix type liquid crystal display device includes adder provided by making scanning line and pixel electrode connected to gate electrode of TFT to overlap via insulating and semiconductor films
TW523727B (en) * 1999-05-27 2003-03-11 Koninkl Philips Electronics Nv Display device
US6201633B1 (en) * 1999-06-07 2001-03-13 Xerox Corporation Micro-electromechanical based bistable color display sheets
US6862029B1 (en) * 1999-07-27 2005-03-01 Hewlett-Packard Development Company, L.P. Color display system
US6507330B1 (en) * 1999-09-01 2003-01-14 Displaytech, Inc. DC-balanced and non-DC-balanced drive schemes for liquid crystal devices
US6275326B1 (en) 1999-09-21 2001-08-14 Lucent Technologies Inc. Control arrangement for microelectromechanical devices and systems
JP2001175216A (en) * 1999-10-04 2001-06-29 Matsushita Electric Ind Co Ltd High gradation display technology
KR20010050623A (en) 1999-10-04 2001-06-15 모리시타 요이찌 Display technique for high gradation degree
WO2003007049A1 (en) 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
US6549338B1 (en) 1999-11-12 2003-04-15 Texas Instruments Incorporated Bandpass filter to reduce thermal impact of dichroic light shift
US6552840B2 (en) 1999-12-03 2003-04-22 Texas Instruments Incorporated Electrostatic efficiency of micromechanical devices
US6545335B1 (en) 1999-12-27 2003-04-08 Xerox Corporation Structure and method for electrical isolation of optoelectronic integrated circuits
US6548908B2 (en) 1999-12-27 2003-04-15 Xerox Corporation Structure and method for planar lateral oxidation in passive devices
US6674090B1 (en) * 1999-12-27 2004-01-06 Xerox Corporation Structure and method for planar lateral oxidation in active
JP2001249287A (en) * 1999-12-30 2001-09-14 Texas Instr Inc <Ti> Method for operating bistabl micro mirror array
JP2002162652A (en) 2000-01-31 2002-06-07 Fujitsu Ltd Sheet-like display device, resin spherical body and microcapsule
US7098884B2 (en) 2000-02-08 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and method of driving semiconductor display device
JP2003524215A (en) 2000-02-24 2003-08-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Display device with optical waveguide
JP3498033B2 (en) 2000-02-28 2004-02-16 Nec液晶テクノロジー株式会社 Display device, portable electronic device, and method of driving display device
US20030004272A1 (en) * 2000-03-01 2003-01-02 Power Mark P J Data transfer method and apparatus
WO2001069310A1 (en) 2000-03-14 2001-09-20 Koninklijke Philips Electronics N.V. Twisted nematic liquid crystal display device with means for temperature compensation of operating voltage
US20010051014A1 (en) 2000-03-24 2001-12-13 Behrang Behin Optical switch employing biased rotatable combdrive devices and methods
US6674413B2 (en) 2000-03-30 2004-01-06 Matsushita Electric Industrial Co., Ltd. Display control apparatus
US6788520B1 (en) 2000-04-10 2004-09-07 Behrang Behin Capacitive sensing scheme for digital control state detection in optical switches
US20010052887A1 (en) 2000-04-11 2001-12-20 Yusuke Tsutsui Method and circuit for driving display device
US6356085B1 (en) * 2000-05-09 2002-03-12 Pacesetter, Inc. Method and apparatus for converting capacitance to voltage
JP3843703B2 (en) * 2000-06-13 2006-11-08 富士ゼロックス株式会社 Optical writable recording and display device
US6473274B1 (en) 2000-06-28 2002-10-29 Texas Instruments Incorporated Symmetrical microactuator structure for use in mass data storage devices, or the like
US6853129B1 (en) * 2000-07-28 2005-02-08 Candescent Technologies Corporation Protected substrate structure for a field emission display device
US6778155B2 (en) 2000-07-31 2004-08-17 Texas Instruments Incorporated Display operation with inserted block clears
US6643069B2 (en) 2000-08-31 2003-11-04 Texas Instruments Incorporated SLM-base color projection display having multiple SLM's and multiple projection lenses
US6504118B2 (en) 2000-10-27 2003-01-07 Daniel J Hyman Microfabricated double-throw relay with multimorph actuator and electrostatic latch mechanism
US6859218B1 (en) * 2000-11-07 2005-02-22 Hewlett-Packard Development Company, L.P. Electronic display devices and methods
US6593934B1 (en) 2000-11-16 2003-07-15 Industrial Technology Research Institute Automatic gamma correction system for displays
US6433917B1 (en) 2000-11-22 2002-08-13 Ball Semiconductor, Inc. Light modulation device and system
US6504641B2 (en) 2000-12-01 2003-01-07 Agere Systems Inc. Driver and method of operating a micro-electromechanical system device
US6756996B2 (en) 2000-12-19 2004-06-29 Intel Corporation Obtaining a high refresh rate display using a low bandwidth digital interface
FR2818795B1 (en) 2000-12-27 2003-12-05 Commissariat Energie Atomique MICRO-DEVICE WITH THERMAL ACTUATOR
US6775174B2 (en) 2000-12-28 2004-08-10 Texas Instruments Incorporated Memory architecture for micromirror cell
US6625047B2 (en) 2000-12-31 2003-09-23 Texas Instruments Incorporated Micromechanical memory element
JP4109992B2 (en) * 2001-01-30 2008-07-02 株式会社アドバンテスト Switch and integrated circuit device
GB2373121A (en) 2001-03-10 2002-09-11 Sharp Kk Frame rate controller
US6630786B2 (en) 2001-03-30 2003-10-07 Candescent Technologies Corporation Light-emitting device having light-reflective layer formed with, or/and adjacent to, material that enhances device performance
SE0101184D0 (en) 2001-04-02 2001-04-02 Ericsson Telefon Ab L M Micro electromechanical switches
US6657832B2 (en) 2001-04-26 2003-12-02 Texas Instruments Incorporated Mechanically assisted restoring force support for micromachined membranes
US6465355B1 (en) 2001-04-27 2002-10-15 Hewlett-Packard Company Method of fabricating suspended microstructures
US6809711B2 (en) * 2001-05-03 2004-10-26 Eastman Kodak Company Display driver and method for driving an emissive video display
JP4449249B2 (en) 2001-05-11 2010-04-14 ソニー株式会社 Method for driving optical multilayer structure, method for driving display device, and display device
US6822628B2 (en) 2001-06-28 2004-11-23 Candescent Intellectual Property Services, Inc. Methods and systems for compensating row-to-row brightness variations of a field emission display
JP4032216B2 (en) * 2001-07-12 2008-01-16 ソニー株式会社 OPTICAL MULTILAYER STRUCTURE, ITS MANUFACTURING METHOD, OPTICAL SWITCHING DEVICE, AND IMAGE DISPLAY DEVICE
US6862022B2 (en) * 2001-07-20 2005-03-01 Hewlett-Packard Development Company, L.P. Method and system for automatically selecting a vertical refresh rate for a video display monitor
JP3749147B2 (en) * 2001-07-27 2006-02-22 シャープ株式会社 Display device
US6589625B1 (en) 2001-08-01 2003-07-08 Iridigm Display Corporation Hermetic seal and method to create the same
GB2378343B (en) 2001-08-03 2004-05-19 Sendo Int Ltd Image refresh in a display
US6600201B2 (en) 2001-08-03 2003-07-29 Hewlett-Packard Development Company, L.P. Systems with high density packing of micromachines
US6632698B2 (en) 2001-08-07 2003-10-14 Hewlett-Packard Development Company, L.P. Microelectromechanical device having a stiffened support beam, and methods of forming stiffened support beams in MEMS
US6781208B2 (en) 2001-08-17 2004-08-24 Nec Corporation Functional device, method of manufacturing therefor and driver circuit
US6787438B1 (en) 2001-10-16 2004-09-07 Teravieta Technologies, Inc. Device having one or more contact structures interposed between a pair of electrodes
US6870581B2 (en) * 2001-10-30 2005-03-22 Sharp Laboratories Of America, Inc. Single panel color video projection display using reflective banded color falling-raster illumination
CN102789764B (en) 2001-11-20 2015-05-27 伊英克公司 Methods for driving bistable electro-optic displays
JP4190862B2 (en) 2001-12-18 2008-12-03 シャープ株式会社 Display device and driving method thereof
US6791735B2 (en) * 2002-01-09 2004-09-14 The Regents Of The University Of California Differentially-driven MEMS spatial light modulator
US6750589B2 (en) 2002-01-24 2004-06-15 Honeywell International Inc. Method and circuit for the control of large arrays of electrostatic actuators
US6794119B2 (en) 2002-02-12 2004-09-21 Iridigm Display Corporation Method for fabricating a structure for a microelectromechanical systems (MEMS) device
US6574033B1 (en) 2002-02-27 2003-06-03 Iridigm Display Corporation Microelectromechanical systems device and method for fabricating same
US7283112B2 (en) * 2002-03-01 2007-10-16 Microsoft Corporation Reflective microelectrical mechanical structure (MEMS) optical modulator and optical display system
EP1343190A3 (en) 2002-03-08 2005-04-20 Murata Manufacturing Co., Ltd. Variable capacitance element
EP1345197A1 (en) 2002-03-11 2003-09-17 Dialog Semiconductor GmbH LCD module identification
WO2003090199A1 (en) 2002-04-19 2003-10-30 Koninklijke Philips Electronics N.V. Programmable drivers for display devices
US20030202264A1 (en) 2002-04-30 2003-10-30 Weber Timothy L. Micro-mirror device
US6972882B2 (en) 2002-04-30 2005-12-06 Hewlett-Packard Development Company, L.P. Micro-mirror device with light angle amplification
US6954297B2 (en) 2002-04-30 2005-10-11 Hewlett-Packard Development Company, L.P. Micro-mirror device including dielectrophoretic liquid
US20040212026A1 (en) 2002-05-07 2004-10-28 Hewlett-Packard Company MEMS device having time-varying control
US6791441B2 (en) * 2002-05-07 2004-09-14 Raytheon Company Micro-electro-mechanical switch, and methods of making and using it
US20050200785A1 (en) * 2002-05-29 2005-09-15 Jones John C. Liquid crystal device with bi- or multistable alignment gratings
JP2004021067A (en) 2002-06-19 2004-01-22 Sanyo Electric Co Ltd Liquid crystal display and method for adjusting the same
US6741377B2 (en) 2002-07-02 2004-05-25 Iridigm Display Corporation Device having a light-absorbing mask and a method for fabricating same
US7256795B2 (en) * 2002-07-31 2007-08-14 Ati Technologies Inc. Extended power management via frame modulation control
JP4111776B2 (en) * 2002-08-22 2008-07-02 富士通株式会社 Control apparatus and control method for optical signal exchanger
US7372999B2 (en) 2002-09-09 2008-05-13 Ricoh Company, Ltd. Image coder and image decoder capable of power-saving control in image compression and decompression
TW544787B (en) * 2002-09-18 2003-08-01 Promos Technologies Inc Method of forming self-aligned contact structure with locally etched gate conductive layer
US7428054B2 (en) * 2002-10-15 2008-09-23 University Of Maryland Micro-optical sensor system for pressure, acceleration, and pressure gradient measurements
EP1414011A1 (en) 2002-10-22 2004-04-28 STMicroelectronics S.r.l. Method for scanning sequence selection for displays
US6747785B2 (en) 2002-10-24 2004-06-08 Hewlett-Packard Development Company, L.P. MEMS-actuated color light modulator and methods
US6666561B1 (en) 2002-10-28 2003-12-23 Hewlett-Packard Development Company, L.P. Continuously variable analog micro-mirror device
US7370185B2 (en) 2003-04-30 2008-05-06 Hewlett-Packard Development Company, L.P. Self-packaged optical interference display device having anti-stiction bumps, integral micro-lens, and reflection-absorbing layers
KR20060026001A (en) 2002-11-22 2006-03-22 어드밴스드 나노 시스템즈 인코포레이티드 Mems scanning mirror with tunable natural frequency
US6741503B1 (en) 2002-12-04 2004-05-25 Texas Instruments Incorporated SLM display data address mapping for four bank frame buffer
US6813060B1 (en) 2002-12-09 2004-11-02 Sandia Corporation Electrical latching of microelectromechanical devices
US20040147056A1 (en) 2003-01-29 2004-07-29 Mckinnell James C. Micro-fabricated device and method of making
US7205675B2 (en) 2003-01-29 2007-04-17 Hewlett-Packard Development Company, L.P. Micro-fabricated device with thermoelectric device and method of making
US6903487B2 (en) 2003-02-14 2005-06-07 Hewlett-Packard Development Company, L.P. Micro-mirror device with increased mirror tilt
FR2851683B1 (en) 2003-02-20 2006-04-28 Nemoptic IMPROVED BISTABLE NEMATIC LIQUID CRYSTAL DISPLAY DEVICE AND METHOD
US7541614B2 (en) * 2003-03-11 2009-06-02 Semiconductor Energy Laboratory Co., Ltd. Integrated circuit, semiconductor device comprising the same, electronic device having the same, and driving method of the same
US6844953B2 (en) 2003-03-12 2005-01-18 Hewlett-Packard Development Company, L.P. Micro-mirror device including dielectrophoretic liquid
US6853476B2 (en) 2003-04-30 2005-02-08 Hewlett-Packard Development Company, L.P. Charge control circuit for a micro-electromechanical device
US7358966B2 (en) 2003-04-30 2008-04-15 Hewlett-Packard Development Company L.P. Selective update of micro-electromechanical device
US7072093B2 (en) 2003-04-30 2006-07-04 Hewlett-Packard Development Company, L.P. Optical interference pixel display with charge control
US6741384B1 (en) 2003-04-30 2004-05-25 Hewlett-Packard Development Company, L.P. Control of MEMS and light modulator arrays
US6829132B2 (en) 2003-04-30 2004-12-07 Hewlett-Packard Development Company, L.P. Charge control of micro-electromechanical device
US7400489B2 (en) 2003-04-30 2008-07-15 Hewlett-Packard Development Company, L.P. System and a method of driving a parallel-plate variable micro-electromechanical capacitor
US6819469B1 (en) 2003-05-05 2004-11-16 Igor M. Koba High-resolution spatial light modulator for 3-dimensional holographic display
US6865313B2 (en) 2003-05-09 2005-03-08 Opticnet, Inc. Bistable latching actuator for optical switching applications
US7218499B2 (en) 2003-05-14 2007-05-15 Hewlett-Packard Development Company, L.P. Charge control circuit
US6917459B2 (en) 2003-06-03 2005-07-12 Hewlett-Packard Development Company, L.P. MEMS device and method of forming MEMS device
US6811267B1 (en) 2003-06-09 2004-11-02 Hewlett-Packard Development Company, L.P. Display system with nonvisible data projection
US7221495B2 (en) 2003-06-24 2007-05-22 Idc Llc Thin film precursor stack for MEMS manufacturing
US6903860B2 (en) 2003-11-01 2005-06-07 Fusao Ishii Vacuum packaged micromirror arrays and methods of manufacturing the same
US7190380B2 (en) * 2003-09-26 2007-03-13 Hewlett-Packard Development Company, L.P. Generating and displaying spatially offset sub-frames
US7173314B2 (en) * 2003-08-13 2007-02-06 Hewlett-Packard Development Company, L.P. Storage device having a probe and a storage cell with moveable parts
EP2698784B1 (en) 2003-08-19 2017-11-01 E Ink Corporation Electro-optic display
US20050057442A1 (en) * 2003-08-28 2005-03-17 Olan Way Adjacent display of sequential sub-images
US7066448B2 (en) * 2003-09-29 2006-06-27 Thurm Kenneth R Portable motorcycle lift
US20050068583A1 (en) * 2003-09-30 2005-03-31 Gutkowski Lawrence J. Organizing a digital image
US6861277B1 (en) * 2003-10-02 2005-03-01 Hewlett-Packard Development Company, L.P. Method of forming MEMS device
US20050116924A1 (en) 2003-10-07 2005-06-02 Rolltronics Corporation Micro-electromechanical switching backplane
US7142346B2 (en) 2003-12-09 2006-11-28 Idc, Llc System and method for addressing a MEMS display
US7161728B2 (en) * 2003-12-09 2007-01-09 Idc, Llc Area array modulation and lead reduction in interferometric modulators
WO2005091533A1 (en) * 2004-03-10 2005-09-29 Pirelli & C. S.P.A. Method and apparatus for optical phase modulation
CN1725067A (en) * 2004-07-23 2006-01-25 元太科技工业股份有限公司 Micro-electromechanical structure display unit
US7560299B2 (en) 2004-08-27 2009-07-14 Idc, Llc Systems and methods of actuating MEMS display elements
US7499208B2 (en) * 2004-08-27 2009-03-03 Udc, Llc Current mode display driver circuit realization feature
US7551159B2 (en) * 2004-08-27 2009-06-23 Idc, Llc System and method of sensing actuation and release voltages of an interferometric modulator
US7889163B2 (en) * 2004-08-27 2011-02-15 Qualcomm Mems Technologies, Inc. Drive method for MEMS devices
US7515147B2 (en) * 2004-08-27 2009-04-07 Idc, Llc Staggered column drive circuit systems and methods
US7602375B2 (en) * 2004-09-27 2009-10-13 Idc, Llc Method and system for writing data to MEMS display elements
US7626581B2 (en) * 2004-09-27 2009-12-01 Idc, Llc Device and method for display memory using manipulation of mechanical response
US7573547B2 (en) * 2004-09-27 2009-08-11 Idc, Llc System and method for protecting micro-structure of display array using spacers in gap within display device
US7302157B2 (en) * 2004-09-27 2007-11-27 Idc, Llc System and method for multi-level brightness in interferometric modulation
US7289256B2 (en) * 2004-09-27 2007-10-30 Idc, Llc Electrical characterization of interferometric modulators
US7327510B2 (en) * 2004-09-27 2008-02-05 Idc, Llc Process for modifying offset voltage characteristics of an interferometric modulator
US7843410B2 (en) * 2004-09-27 2010-11-30 Qualcomm Mems Technologies, Inc. Method and device for electrically programmable display
US7359066B2 (en) * 2004-09-27 2008-04-15 Idc, Llc Electro-optical measurement of hysteresis in interferometric modulators
US20060066594A1 (en) * 2004-09-27 2006-03-30 Karen Tyger Systems and methods for driving a bi-stable display element
US7453579B2 (en) * 2004-09-27 2008-11-18 Idc, Llc Measurement of the dynamic characteristics of interferometric modulators
US7532195B2 (en) 2004-09-27 2009-05-12 Idc, Llc Method and system for reducing power consumption in a display
US8514169B2 (en) * 2004-09-27 2013-08-20 Qualcomm Mems Technologies, Inc. Apparatus and system for writing data to electromechanical display elements
US7310179B2 (en) 2004-09-27 2007-12-18 Idc, Llc Method and device for selective adjustment of hysteresis window
US8310441B2 (en) * 2004-09-27 2012-11-13 Qualcomm Mems Technologies, Inc. Method and system for writing data to MEMS display elements
US7675669B2 (en) * 2004-09-27 2010-03-09 Qualcomm Mems Technologies, Inc. Method and system for driving interferometric modulators
US7701631B2 (en) * 2004-09-27 2010-04-20 Qualcomm Mems Technologies, Inc. Device having patterned spacers for backplates and method of making the same
US7551246B2 (en) * 2004-09-27 2009-06-23 Idc, Llc. System and method for display device with integrated desiccant
TW200628833A (en) * 2004-09-27 2006-08-16 Idc Llc Method and device for multistate interferometric light modulation
US8878825B2 (en) * 2004-09-27 2014-11-04 Qualcomm Mems Technologies, Inc. System and method for providing a variable refresh rate of an interferometric modulator display
US7679627B2 (en) 2004-09-27 2010-03-16 Qualcomm Mems Technologies, Inc. Controller and driver features for bi-stable display
US7345805B2 (en) 2004-09-27 2008-03-18 Idc, Llc Interferometric modulator array with integrated MEMS electrical switches
US7545550B2 (en) * 2004-09-27 2009-06-09 Idc, Llc Systems and methods of actuating MEMS display elements
US7446927B2 (en) * 2004-09-27 2008-11-04 Idc, Llc MEMS switch with set and latch electrodes
US7724993B2 (en) * 2004-09-27 2010-05-25 Qualcomm Mems Technologies, Inc. MEMS switches with deforming membranes
US7136213B2 (en) * 2004-09-27 2006-11-14 Idc, Llc Interferometric modulators having charge persistence
CN100373426C (en) * 2004-10-11 2008-03-05 友达光电股份有限公司 Drive voltage regulator suitable for microcomputer electrooptical device, its method and display
US7920136B2 (en) 2005-05-05 2011-04-05 Qualcomm Mems Technologies, Inc. System and method of driving a MEMS display device
US7948457B2 (en) 2005-05-05 2011-05-24 Qualcomm Mems Technologies, Inc. Systems and methods of actuating MEMS display elements
US20070126673A1 (en) * 2005-12-07 2007-06-07 Kostadin Djordjev Method and system for writing data to MEMS display elements
US8391630B2 (en) 2005-12-22 2013-03-05 Qualcomm Mems Technologies, Inc. System and method for power reduction when decompressing video streams for interferometric modulator displays
JP2007199101A (en) * 2006-01-23 2007-08-09 Fujifilm Corp Micro electromechanical element array device and image forming apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020054424A1 (en) * 1994-05-05 2002-05-09 Etalon, Inc. Photonic mems and structures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MILES M W ET AL: "5.3: Digital Paper: Reflective Displays Using Interferometric Modulation", SID DIGEST, vol. XXXI, 2000, pages 32, XP007007323 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884940B2 (en) 2010-01-06 2014-11-11 Qualcomm Mems Technologies, Inc. Charge pump for producing display driver output

Also Published As

Publication number Publication date
CN101385066B (en) 2011-03-09
US8194056B2 (en) 2012-06-05
EP1982322A1 (en) 2008-10-22
CN101385066A (en) 2009-03-11
JP2009526267A (en) 2009-07-16
US20070182707A1 (en) 2007-08-09
KR20080108440A (en) 2008-12-15

Similar Documents

Publication Publication Date Title
US7499208B2 (en) Current mode display driver circuit realization feature
US7911677B2 (en) MEMS switch with set and latch electrodes
US7719500B2 (en) Reflective display pixels arranged in non-rectangular arrays
US7603001B2 (en) Method and apparatus for providing back-lighting in an interferometric modulator display device
US8194056B2 (en) Method and system for writing data to MEMS display elements
EP1640773A2 (en) System and method for multi-level brightness in interferometric modulation
EP2383724A1 (en) Apparatus and method for actuating display elements
US20060250350A1 (en) Systems and methods of actuating MEMS display elements
US20090323165A1 (en) Method for packaging a display device and the device obtained thereof
US20070126673A1 (en) Method and system for writing data to MEMS display elements
WO2009158357A1 (en) Backlight displays
WO2009158354A1 (en) Backlight displays
CA2654185A1 (en) Method and apparatus for low range bit depth enhancement for mems display architectures
EP1949165B1 (en) MEMS switch with set and latch electrodes
US8884940B2 (en) Charge pump for producing display driver output
US20110164014A1 (en) Display drive switch configuration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007716671

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008554244

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780005111.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1904/MUMNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087021762

Country of ref document: KR