WO2007101896A1 - Compound material, method for producing it continuously and its use - Google Patents

Compound material, method for producing it continuously and its use Download PDF

Info

Publication number
WO2007101896A1
WO2007101896A1 PCT/ES2007/000117 ES2007000117W WO2007101896A1 WO 2007101896 A1 WO2007101896 A1 WO 2007101896A1 ES 2007000117 W ES2007000117 W ES 2007000117W WO 2007101896 A1 WO2007101896 A1 WO 2007101896A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
fibers
spindle
stage
minimum
Prior art date
Application number
PCT/ES2007/000117
Other languages
Spanish (es)
French (fr)
Inventor
Carlos GONZÁLEZ SÁNCHEZ
Original Assignee
Crady Eléctrica S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crady Eléctrica S.A. filed Critical Crady Eléctrica S.A.
Publication of WO2007101896A1 publication Critical patent/WO2007101896A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/28Moulding or pressing characterised by using extrusion presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/92Wood chips or wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/385Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • B29C48/2886Feeding the extrusion material to the extruder in solid form, e.g. powder or granules of fibrous, filamentary or filling materials, e.g. thin fibrous reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/29Feeding the extrusion material to the extruder in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/297Feeding the extrusion material to the extruder at several locations, e.g. using several hoppers or using a separate additive feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/39Plasticisers, homogenisers or feeders comprising two or more stages a first extruder feeding the melt into an intermediate location of a second extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/065HDPE, i.e. high density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/006PBT, i.e. polybutylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0011Biocides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0026Flame proofing or flame retarding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0032Pigments, colouring agents or opacifiyng agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0044Stabilisers, e.g. against oxydation, light or heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • This invention relates to composite materials comprising cellulosic materials that serve even for moderately demanding applications, such as those in the sectors of manufacture of electrical, electronic and telecommunications material, and can thus replace different thermosetting polymers and fiber reinforced materials. of glass, currently used. Additionally, the present invention relates to a method for the continuous production of said composite materials to which it refers and to the use of said composite materials for the manufacture of various moldable articles.
  • Thermosetting polymeric materials are not recyclable. In addition, the cycle times for injection molding are long. In the case of laminar molding compounds such as those used in compression molding of thermosetting prepregs (SMCs), a lot of labor is required and the production process is relatively rudimentary and difficult to automate. Therefore, production costs are high.
  • Thermoplastic materials are relatively expensive, difficult to recycle and, their waste, difficult to treat, due to their content of glass fibers, which are not biodegradable.
  • its density is relatively high (around 2.5-2.8 kg / m 3 ), resulting in molded articles that are heavier than desirable.
  • the abrasion produced by glass fibers in processing equipment is notable, resulting in higher production costs because the change of the various parts of the processing equipment has to be carried out more frequently (eg, the spindles of injection molding machines).
  • cellulosic materials such as fillers and reinforcements in polymer matrix composite materials.
  • Cellulosic materials are composed of different types of particulate fillers and reinforcements derived from a multitude of plant species and tree or wood species, whose main components are cellulose, hemicellulose and lignin, among others.
  • Cellulosic materials have some important advantages over inorganic materials such as talc, mica or glass fibers, traditionally used as fillers and reinforcements in polymer matrix composite materials. Mainly, these advantages are: lower density, lower cost, less abrasion of processing equipment, biodegradability and renewable character.
  • cellulosic materials have several disadvantages:
  • the developed composite materials can be divided into two groups: 1) Composite materials whose main component is a cellulosic material. 2) Composite materials whose main component is a polymer. Depending on the type of cellulosic materials and polymers used, their relative proportion in the composite material and the formulation of the composite material as a whole, the methods of obtaining the composite materials and their potential applications can vary widely.
  • the prior art includes various formulations of composite materials based on cellulosic materials from a multitude of potential sources of raw materials (cellulosic, virgin or residual fibers, from plant or herbaceous plants, or tree or wood species).
  • raw materials cellulosic, virgin or residual fibers, from plant or herbaceous plants, or tree or wood species.
  • the most relevant attempts of the prior art state for Solving the problems encountered in trying to combine different types of polymers and cellulosic materials, include different approaches.
  • patent application WO9605347 in the name of SKILLICORN describes a series of formulations of composite materials composed of cellulose fibers of different plant plants (among others, jute or kenaf) and a thermoplastic selected from the group of polypropylenes or polyethylenes.
  • This invention provides a multitude of applications for these formulations of composite materials: packaging, small appliances, furniture, building materials, automotive products, among many others.
  • the composite materials disclosed by it can be transformed by injection molding, compression molding, extrusion, rotational molding or blow molding.
  • different techniques can be used to mix between 20 to 60%, by weight, of cellulose fibers coated with a malleable polypropylene, with 80 to 40%, by weight, of polypropylene.
  • These techniques include cold compression and pelletizing devices, the Banbury mixer, the Farrell continuous mixer or the single-screw and twin-screw extruders.
  • One of the objectives of the method used to obtain the composite material is to maximize the slenderness -relation length / diameter- of the fibers. With this objective and in order to maintain an adequate dispersion of the fibers in the composite material, the use of less intensive mixers such as continuous kneaders or appropriately configured double screw extruders is recommended.
  • the EP0426619 patent to ICMA SAN GIORGIO describes a method for the continuous production of mouldable panels obtained from a polymer with high melting temperature (T your ng> 150 ° C) and a thermosensitive filler by direct extrusion using a corroding double screw extruder.
  • the method corresponding to the invention comprises the use of three or, preferably, four helical extrusion sections for transport or effective feeding, and two or, preferably, three interposed kneading sections.
  • the cylinder or chamber of the extruder used in said invention has three openings or ports. The first opening serves to feed the polymer. The second opening serves to feed the heat-sensitive filling and the third opening for venting or degassing.
  • the spindles of the extruder of the invention consist of helical extrusion sections, which have a typical angle, shape and depth of channel, but not considered critical.
  • the distance between the cylindrical spaces defined by the rotation of the spindles of the extruder and the integral mixing and extrusion space varies between 0.2 and 2 mm.
  • EP0611250 in the name of ICMA SAN GIORGIO describes a method for the extrusion of composite materials based on low melting temperature polymers (T fUs ón ⁇ 150 ° C) for the continuous production of typical semi-finished products, such as PVC panels
  • T fUs ón ⁇ 150 ° C low melting temperature polymers
  • thermoplastic polymers that can be used to make composite materials comprise so-called general-purpose plastics, such as polyolefins and polystyrene, or engineering plastics. In addition to virgin thermoplastics, recycled thermoplastics can also be used instead.
  • a coupling agent to the polymeric material.
  • the preferred ratio of polymer to coupling agent for a polyolefin matrix is 70 to 6, with the most preferred ratio being 8 to 16, by weight.
  • Preferred coupling agents for such matrices are polyethylenes grafted with maleic anhydride or polypropylenes grafted with maleic anhydride, depending on the type of matrix used.
  • Other additives, such as pigments, antioxidants, flame retardants and fillers such as talc, calcium carbonate and carbon black, can also be added to the polymer.
  • the pellet of composite material obtained following the process indicated in the patent is considered suitable for obtaining articles by injection molding and compression molding.
  • the process revealed by the patent is advantageous because the individual or elementary fibers retain their high slenderness and length.
  • the location of the zones of the extruder is calculated from the head of the same, because it is important that the fiber feeding port is located as close as possible to the end of the extruder. Therefore, cellulose fibers are introduced into the melt as late as possible, so that they are minimally affected by friction and heat.
  • the extruder claimed by the invention comprises all extruders with two separate feed ports and a degassing port.
  • the extruder claimed is divided, according to the authors of the invention, into four zones: a first zone where the polymer is fed, a second zone where the cellulose fibers are fed, a third zone for venting or degassing and a fourth zone in where the pressure is increased.
  • Patent application US 5288772 in the name of Clemson University provides a thermoplastic formulation reinforced with cellulose fibers that allows the production of composite materials.
  • Another object of said patent is to provide a method to use residual cellulosic and thermoplastic materials.
  • the thermoplastic resin present in the composite material can be any thermoplastic (polyolefins, vinyl polymers, polyamides, acrylic resins and styrene resins).
  • the cellulosic materials included in said invention can be any material containing cellulose fibers (newspapers, cardboard, wood fibers, scratches, cottons, ramie, jute, bagasse, among many others).
  • lignin can be added to the formulation, as well as independent component, or already forming part of the cellulosic materials themselves.
  • Another object of the patent is to provide a method for obtaining said composite materials. According to said method, thermoplastic resins are heated in a mixing device until a molten matrix is obtained. Then, while stirring the molten matrix of thermoplastics is continued, the cellulosic materials are added thereto, maintaining the selected temperature.
  • US5516472 in the name of STRANDEX describes a composite material comprising a polymer and cellulosic fibers, as well as the process and the machine for manufacturing said product.
  • the composite material is characterized by having a high content of cellulose fibers (more than 50%, by weight). According to the authors of the patent, using the continuous low temperature extrusion process revealed by the patent, the material could have up to a 1: 0 fiber / thermoplastic ratio.
  • EP799679 in the name of AIN ENGINEERING KK refers to a method for achieving a drawing, such as a wood grain with the appearance of natural wood, on the surface of a synthetic board.
  • Said board is constituted by a mixture containing between 20-65%, by weight, of a wood flour, and 35-80%, by weight, of a thermoplastic. If the thermoplastic used is polypropylene or polyethylene, the preferred content of wood flour varies between 50-55%, by weight.
  • the synthetic board is manufactured by extrusion, using a single or multi-spindle extruder.
  • Patent application US2003 / 00301176 in the name of THERMO FIBERGEN presents as a novelty that high levels of sludge from papermaking can be mixed (eg, up to 70-75%), transformed into granules by wet way, with plastic and , if desired, cellulose fiber, to obtain composite materials.
  • the authors of the invention indicate that, surprisingly, despite the low relative levels of plastic, composite materials have good mechanical properties (high strength, high modulus, high impact resistance, among others). These mechanical properties make the composite materials object of the patent useful as raw material for the manufacture of different products, such as roof tiles, fences, door panels, acoustic screens, roofing materials, decorative wall coverings and similar applications. However, the examples show that the mechanical properties of composite materials are poor.
  • the sludge from the manufacture of cellulose, lignin, hemicellulose, calcium carbonate, clay and other inorganic components paper In many cases, the ashes of the sludge from papermaking total up to 50% (and in some cases, up to 80% or more) of the volume of sludge.
  • the main components of the ashes are calcium carbonate (20-75% of the dry mud) and clay. These two minerals are commonly used in paper as a coating and a filler to improve its mechanical characteristics as well as its appearance.
  • the granules obtained by wet transformation of the sludge of papermaking, used as raw material, in combination with rice husk, to obtain the composite materials object of the patent are composed of: Paper fiber (CAS # 9004-34- 6): 47-53%; Kaolin: 28-34% (CAS # 1332-58-7); Calcium carbonate (CAS # 471-34-1): 14-20%. Titanium dioxide (CAS # 13463-67-7): ⁇ 1%.
  • the composite material can also contain, together with the granulated sludge of papermaking, different types of cellulose fibers from different sources: short fibers of agricultural origin; fibrous plant materials; fibers from the processes of textile fiber production and processing operations of cellulose pulp and paper; fibers from the recycling processes of paper and wood products, etc.
  • the organic material of the composite material comprises the granulated sludge, alone or in combination with cellulose fibers.
  • the claimed composite material is manufactured by mixing certain amounts of its components to give rise to a homogeneous mixture, which is then fed to a twin screw extruder.
  • the method followed to manufacture the composite material involves the prior obtaining of a homogeneous mixture of the components of the composite material, instead of its direct separate feeding to the extruder, which represents a further stage in the process of obtaining and Higher production cost.
  • the resulting composite material is pelleted and fed to a single screw extruder to shape the final product.
  • the invention provides, on the one hand, new and effective composite materials, and on the other hand, a new use for the pulp and paper sludge.
  • Patent application WO01 / 83195 in the name of DAVIS STANDARD CORP, MURDOCK DAVID E., SNEAD DALE K, DARDENNE DARRELL S. and MILLS IAN W. describes an extrusion process for the manufacture of plastic matrix composites containing particles of wood or wood fibers, whose humidity can be variable and / or high.
  • the wood fibers can come from soft wood species -conifers- and / or hardwood species -frondosas-, being the most popular for obtaining profiles, pine, maple and oak.
  • organic fillers such as grass residues, agricultural residues, natural fibers from land or aquatic plants, can also be used.
  • the process revealed by this patent uses a double screw spindle extruder to dry the organic filling, as well as at least a second extruder to melt the polymer and feed it into the cylinder of the first extruder.
  • the process corresponding to the invention uses spindle rotation speeds and shear speeds, lower than traditional equipment and processes.
  • the state of the existing technique describes various formulations of composite materials that are suitable for a multitude of applications.
  • none of these formulations of composite materials meets the requirements set to the raw materials currently used for some moderately demanding applications, such as those in the sectors of manufacturing of electrical, electronic and telecommunications equipment, or others such as The construction, aviation, automotive, furniture and packaging.
  • cellulosic fibers of tree or wood species are different from cellulosic fibers from plant plants.
  • Cellulosic fibers from soft wood tree species - whose lengths are between 0.7-1.6 mm approximately - differ from those that come from hardwood tree species - whose lengths are between 2.7-4, 6 mm, approximately.
  • the cellulosic fibers of plant plants - whose lengths are between 0.7-250 mm approximately - differ from each other.
  • residual cellulosic fibers differ from virgin cellulose fibers.
  • the cellulosic fibers obtained by different insulation processes e.g., the different mechanical, chemical and chemical thermomechanical processes for obtaining cellulose pulp
  • bleaching processes and refining processes have different characteristics.
  • the type of treatments to which the cellulosic fibers can be subjected to be obtained in the desired final form also affects their quality.
  • all these factors mentioned condition the morphology of the individual fibers and the characteristics of the agglomerates that they can form (that is, their morphology and apparent density).
  • all these factors condition the possibilities of continuously feeding and dosing cellulosic fibers to mixing equipment with molten polymers that can allow the obtaining of composite materials, as well as the properties of the composite materials themselves.
  • the prior art does not take into account that the means necessary for dosing the longer cellulose fibers, which are presented in the form of skeins or strands, are different from the means necessary for dosing shorter cellulose fibers.
  • thermoplastic matrix composite materials comprising cellulosic materials. These new materials make it possible to replace thermosetting polymers and glass fiber reinforced materials, currently used in various sectors, such as the manufacturing of electrical, electronic and telecommunications equipment. It is also the object of the present invention to provide a new method for the continuous production of said composite materials, as well as some of the molded products that can be manufactured using said composite materials as raw material. Thus, the technology described in this application allows obtaining, in a technical and economically viable way, new thermoplastic matrix composite materials comprising cellulosic materials.
  • Figure 1 is a side view of an installation used in the method according to the present invention for obtaining the composite material.
  • Figure 2 represents a side view of the corroding extruder with an illustration of the types of spindle elements that can be inserted on each of the mandrels thereof to give rise to different spindle configurations.
  • Figure 3 shows a fuse holder base for blade fuses made of the composite materials object of this invention.
  • Figure 4 shows a fuse holder base for cylindrical fuses made of the composite materials object of this invention.
  • Figure 5 shows the body of the closed vertical tripolar bases manufactured with the composite materials object of this invention. DESCRIPTION OF THE INVENTION
  • the present invention refers to a composite material that, for every 100 parts of its weight, comprises: (A) between 25 and 90 parts, by weight, of a thermoplastic polymer; (B) between 1 and 50 parts, by weight, of a cellulosic material, (C) between 0.1 and 15 parts, by weight, of a coupling agent; (D) between 0.05 and 3 parts, by weight, of a primary antioxidant; (E) between 0.05 and 6 parts, by weight, of a secondary antioxidant (F) between 1 and 40 parts, by weight, of a flame retardant, characterized in that said cellulosic material (B) comprises fibers that are selected from the group formed by virgin cellulose pulp fibers from hardwood tree species, fibers obtained as waste from the pulp and paper industry, fibers obtained as waste from the synthetic and textile fiber manufacturing industries, fibers from solid urban and industrial waste or mixtures thereof.
  • said thermoplastic polymer (A) is a polyolefin, which is selected from the group consisting of polypropylene homopolymers, propylene copolymers, polypropylene-polyethylene vinyl acetate (PP) + EVA), high density polyethylene, low density polyethylene), a polystyrene (which is selected from the group of its homopolymers, copolymers or terpolymers), polyvinylchloride (PVC), a polymer from the polyamide group, poly (ethylene glycol terephthalate) (PETP), poly (butylene glycol terephthalate) (PBTP), poly (methyl methacrylate) (PMMA) or polycarbonate (PC) or mixtures thereof.
  • PETP poly (ethylene glycol terephthalate)
  • PBTP poly (butylene glycol terephthalate)
  • PMMA poly (methyl methacrylate)
  • PC polycarbonate
  • the preferred virgin polyolefins for carrying out this invention are polypropylene homopolymers and copolymers of controlled rheology with similar melting points and flow rates ranging from 12 to 150 g / 10 minutes (according to ISO 1133, at 230 0 C and 2 , 16 kg).
  • thermoplastic polymers come from industrial waste from the transformation of plastics (eg, any polypropylene, polyethylene, polystyrene or polypropylene co-polyethylene-vinyl- acetate (PP + EVA)) or of the comment of urban solid waste.
  • plastics eg, any polypropylene, polyethylene, polystyrene or polypropylene co-polyethylene-vinyl- acetate (PP + EVA)
  • PP + EVA polypropylene co-polyethylene-vinyl- acetate
  • the recommended coupling agents (C), in accordance with the present invention, are those belonging to the group of polyolefins grafted with maleic anhydride, said polyolefins having number average molecular weights between 2000 and 50,000 or mass average molecular weights comprised between 4000 and 300000, and having maleic anhydride contents comprised between 0.1 and 20%, by weight; pure or modified polyethyleneimines whose molecular weights vary between 800 g / mol-g and 200000 g / mol-g, which are presented as anhydrous products or not; aromatic and aliphatic organosilanes or mixtures thereof.
  • the composite material according to the present invention comprises cellulose fibers from hardwood tree species, such as Eucalyptus globul ⁇ s.
  • Said cellulose fibers may be virgin cellulose pulp fibers, either raw, bleached or refined.
  • the virgin raw cellulose pulp fibers have the following approximate composition (on a dry basis): 97%, by weight, holocellulose, 2.5%, by weight, lignin and 0.5%, by weight, ash.
  • Virgin bleached or refined cellulose pulp fibers contain cellulose, for the most part, and very small proportions of lignin and hemicelluloses.
  • said fibers obtained as residues of the pulp and paper pulp industry can be residual pulp pulp fibers of the pulp pulp production processes from wood species, from the rejections of the sieving processes of the mixture of cellulose fibers and black liquor leaving the digesters, of the final rejections of the purification processes of the cellulose pulp, and of various losses and leaks through the fabrics of the scrubbers used in the different phases of the bleaching of the cellulose pulp and through the sheet-forming fabric in the window dressing machine.
  • Said residual cellulose pulp fibers, after being subjected to filtration and compaction are presented in the form of agglomerates with a humidity comprised between 50-70%, by weight, and which may also contain "uncooked".
  • Said agglomerates have the following approximate composition (on a dry basis): between a 5 and 20%, by weight, of ashes, between 5 and 20%, by weight, of lignin and between 55 and 90%, by weight, of holocellulose, and presented in the form of planar agglomerates of form and irregular contours, whose diameter equivalent to its projected area is essentially less than 67 mm, whose sphericity is between 0.5 and 0.9, and whose roundness is between 0.3 and 0.7, its bulk density being between 0 , 08 and 0.380 g / cm 3 .
  • diameter equivalent to the area projected by the agglomerate is understood to be that diameter of the circle of the same area as that projected by the particle agglomerate in a stable position.
  • Sphericity is understood as that relationship or quotient between the area of the surface of the sphere with the same volume as the agglomerate and the area of the surface of the agglomerate.
  • Roundness is understood as that relationship or quotient between the perimeter of the circle with the same area as the area projected by the agglomerate in a stable position and the actual perimeter of the particle projected in a stable position.
  • "Incocided" pieces of wood are understood to be not defibrated during the cooking of the wood that takes place in the process of obtaining the cellulose pulp or fiber packages that did not dissolve during said cooking.
  • said fibers obtained as residues of the pulp and paper industry are the residual cellulose fibers from the industrial processes of manufacturing cellulose pulp from plant plants selected from the group that includes jute, abaca, sisal, hemp, flax, or mixtures thereof.
  • said cellulose fibers from the rejections of the manufacturing processes of synthetic and textile fibers are selected from the group consisting of cellulose fibers from the rejections of the manufacturing processes of synthetic fibers.
  • cellulose fibers from the rejections of the manufacturing processes of synthetic fibers eg, cellulosic fiber threads - viscose and rayon threads -, etc.
  • cellulose fibers obtained from the recycling of spent textile products for example, clothing, household textiles-clothing of household-, sanitary material-bandages, dressings-, protective garments, cleaning material
  • residual cellulose fibers from industrial manufacturing processes of non-woven fabrics for example, those in which non-woven fabric It is made using a hydraulic interlacing process in which jets of High speed water seals the cellulose fibers resulting in a high technical performance fabric).
  • said cellulose fibers from urban and industrial solid waste are residual cellulose fibers from the urban solid waste stream (cellulose fibers from used paper and cardboard) or the residual fibers of cellulose from the recycling processes of paper and cardboard used (eg, newspaper, magazine, cartons for liquids from complex containers with plastic and aluminum, etc.), provided that, mainly, they belong to the type of Cellulose fibers indicated above, or having a length and slenderness - length / diameter ratio - similar to those of the cellulose fibers indicated above.
  • the length and slenderness of the cellulose fibers, used as raw material, are preferably similar and constant within a range.
  • the extent of said range depends on the characteristics of the specific embodiment of the method used to obtain the composite materials object of this invention.
  • said cellulosic material (B) comprises cellulosic fibers with individual lengths between 0.1-10 mm, individual fiber diameters between 0.01-50 ⁇ m, and individual length / diameter ratios between 2-250.
  • the recommended primary antioxidants are those belonging to the group of sterically hindered phenols with molecular weights greater than 300 g / mol, cinnamates, amines or mixtures thereof.
  • the secondary antioxidant (E) is selected from the group consisting of phosphorus compounds, thioethers, thioesters, preferably thioethers, or mixtures thereof.
  • the flame retardants (F) are selected from the group consisting of the compounds belonging to the category of phosphorus compounds, chlorinated compounds, brominated compounds or mixtures thereof.
  • the flame retardants (F) indicated above can also be combined with one of the following synergistic components: aluminum trihydroxide, hydrated aluminas, borates, stannates, magnesium hydroxide, antimony oxide (III) and compounds belonging to the category of nitrogen-containing compounds.
  • said composite material comprises at least one lactone.
  • the composite material additionally comprises between 0.1 and 40%, by weight, with respect to the total weight of the composite material, of an additive (G) that is selected from the group formed by the stabilizers to light or UV stabilizers, modifiers of impact properties, inorganic fillers, lubricants, pigments, biocides and foaming agents or mixtures thereof.
  • the additives (G) can be used to improve some of the properties and processability of the composite materials that constitute one of the objects of the present invention, provided that the final application of the composite material requires it.
  • the light stabilizers are lignin, carbon black and those belonging to the groups of the bénzófeno ⁇ as, bénzotriazoles and the triazines.
  • the content of said light stabilizers in the composite material can be comprised between 0.1-10%, by weight, with respect to the total weight of the composite material.
  • the modifiers of the impact properties are those belonging to the group of ethylene and propylene copolymers, including grafted copolymers of ethylene and propylene, terpolymers of ethylene, propylene and non-conjugated diene monomers, and polybutenes.
  • the content of said modifiers of the impact properties in the composite material may be between 1 and 30%, by weight, with respect to the total weight of the composite material.
  • the lubricants are those belonging to the group of the derivatives of long main chain fatty acids, amide waxes, natural paraffins, waxes of low molecular weight polyolefins, stearates, siloxanes, and even fluorothermoplastics
  • the specific lubricants to be used and their dosage levels depend on the specific production scale of the industrial process and on the specific application in which the composite materials are used.
  • One of the advantages of the new composite materials according to the present invention is that they fulfill the requirements corresponding to the articles of the sectors of manufacture of electrical, electronic and telecommunications equipment.
  • the formulations of the composite materials object of this invention cover the future demand for environmentally sustainable materials, due to their high content of renewable fibers and compounds that are not harmful to the environment.
  • the present invention refers to a new method of obtaining the new continuous composite materials, which allows the effective use of different types of cellulose fibers (virgin or residual) for obtaining different Composite material formulations.
  • Such formulations are suitable, even, for demanding applications, such as those in the manufacturing of electrical, electronic and telecommunications equipment.
  • Said new method for obtaining the new composite materials with cellulosic materials comprises the following steps: a) drying the cellulosic material object of the present invention rb) providing a corroding double screw extruder, which comprises two mandrels (3), in each of which an identical spindle configuration is mounted using different spindle elements, the ratio between its external and internal diameter being between 1, 02 and 2; c) mix the components of the composite material; and d) discharge the resulting composite material through a discharge zone (4) which extends along a length between three and seven times the diameter of the extruder.
  • Step a) consists in subjecting the cellulosic material to drying, preferably, to a moisture content of between 1 and 10%, by weight, for which any of the commercially available drying technologies can be used.
  • an additional step may be required which comprises the transformation of the previously dried cellulosic materials into agglomerates with a size and shape suitable for continuous feeding to the equipment. of melt phase mixing in which the composite materials object of this invention are obtained.
  • the cellulosic materials are transformed into planar agglomerates of irregular shape and contour, whose diameter equivalent to their projected area is essentially less than 15 mm, whose sphericity is between 0.3 and 0.7, and whose roundness is comprised between 0.1 and 0.7, suitable for continuous feeding.
  • the double screw extruder used in the present invention can comprise at least two separate feeding ports and at least one degassing port and can have up to 10 openings or separate ports. Three of these ports are preferably suitable for feeding different raw materials in solid state. Four of these ports are preferably suitable for feeding raw materials in liquid phase, and the other three ports are preferably suitable for atmospheric venting, or by vacuum, of various gaseous products. This method allows the control of the length and slenderness -relation length / diameter- of the cellulose fibers, in order to optimize the properties of the composite materials that are also the object of this invention.
  • step d) the resulting composite material leaves the extruder through a discharge head (5), after which it can undergo various transformation processes.
  • a cord extrusion head is placed.
  • the pelletizing methods are the cord granulator or the head knife granulator with air cooling or air-water mixtures.
  • the composite pellet thus obtained is capable of being fed to an industrial injection molding machine in order to obtain molded products.
  • the composite material after passing through the discharge zone (4) and being subjected to a granulation process, is subjected to an injection molding process.
  • the composite pellets is injected at a temperature lower than 210 0 C in any of the heating zones of a chamber or plasticising cylinder of a molding machine injection.
  • said composite material is subjected to a calendering process as it leaves the discharge zone (4) in order to have a thin panel, followed by compression molding.
  • the composite material is subjected to a direct extrusion process after passing through the discharge zone (4).
  • the necessary adjustments are made on the same extruder preparing an optimal spindle configuration for obtaining a composite material with the characteristics appropriate to each application.
  • the spindle configuration chosen depends on the characteristics of the thermoplastic to be fed to the extruder (such as morphology and fluidity index) and the characteristics of the cellulosic material to be fed to the extruder (such as length and slenderness of its cellulose fibers). It also depends on the mechanical and rheological properties that the composite material to obtain must have, which, in turn, depend on the requirements of the final application in which the composite material is to be used.
  • the mixing stage c) comprises the following steps: i.- dosing through a feed hopper '(6) the thermoplastic polymer (A), the agent coupling (C), the primary antioxidant (D) and the secondary antioxidant (E) and, optionally also the additives (G) that are selected from the group consisting of light stabilizers or UV stabilizers, modifiers of the impact properties, inorganic fillers, lubricants, pigments, biocides and foaming agents, by means of a set of gravimetric dosers (2), within a feeding zone of the polymer and additives (7), which comprises positive transport spindle elements and extends to The length of a length between three and seven times the diameter of the extruder; i ⁇ .- heating the mixture obtained in step i.- and transporting said mixture along a closed transport and heating zone (8) comprising positive transport spindle elements;
  • fusion (9) between three and seven times the diameter of the extruder; iv.- subject the previous mixture, through the atmospheric venting port (11), to venting and degassing in a first venting zone (10) comprising spindle elements of negative or reverse transport and positive transport;
  • (22) comprising spindle elements of negative or reverse transport and positive transport Ia which extends along a length between three and seven times the diameter of the extruder.
  • the temperature in stage i.- is comprised between 20 and 50 0 C
  • the temperature in stage i ⁇ .- is comprised between 175 0 C and 205 0 C
  • the temperature in stage iii.- is between 175 0 C and 205 0 C
  • the temperature in stage iv.- is between 174 0 C and 204 0 C
  • the temperature in stage v.- is between 174 0 C and 204 0 C
  • the temperature in stage vi.- is comprised between 173 0 C and 203 0 C
  • the temperature in stage vii.- is comprised between 171 0 C and 201 0 C
  • the temperature in the discharge zone (4) is comprised between 165 0 C and 195 0 C.
  • each gravimetric dispenser used in stage i.- may have different configuration depending on the nature of the component to be fed: i. for pellet-shaped components, to be fed in said stage i.-, the gravimetric dispenser can preferably be selected from the double spindle feeders, whose spindles have a minimum external diameter of 20 mm, a minimum propeller angle of 11, 31 sexagesimal degrees, a minimum fillet thickness of 1.5 mm and a minimum channel depth of 3 mm; or between single spindle feeders whose spindle has a minimum external diameter of 24 mm, a minimum propeller angle of 7.12 sexagesimal degrees, a minimum fillet thickness of 1.5 mm and a minimum channel depth of 3 mm; ii.
  • the gravimetric dispenser can preferably be selected from the double spindle feeders, whose spindles have a minimum external diameter of 12 mm, a minimum propeller angle of 9, 47 sexagesimal degrees, a minimum fillet thickness of 1 mm and a minimum channel depth of 1 mm; iii.
  • the gravimetric dispenser can preferably be selected from the double spindle feeders , whose spindles have a minimum external diameter of 35 mm, a minimum propeller angle of 19.65 sexagesimal degrees, a minimum fillet thickness of 3 mm and a minimum channel depth of 7.5 mm.
  • the spindle configuration in stage d) comprises a combination of spindle elements of positive transport and toothed mixing.
  • the configuration of the gravimetric dosers used in stages v.- and viii.- will depend on the physical characteristics of the cellulosic material and the flame retardant respectively.
  • the double screw gravimetric dispenser (14) used in step v.- to increase the cellulosic material can be selected from the feeders, whose spindles have a minimum external diameter of 35 mm, a minimum helix angle of 19, 65 sexagesimal degrees, a minimum fillet thickness of 3 mm and a minimum channel depth of 7.5 mm.
  • the double screw gravimetric dispenser (20) used in step viii.- to feed the flame retardant has a minimum external diameter of 20 mm, a minimum propeller angle of 11, 31 sexagesimal degrees, a minimum fillet thickness of 1.5 mm and a minimum channel depth of 3 mm.
  • the two mandrels of the corroding extruder preferably rotate at a speed greater than 200 rpm and the two mandrels rotate in the same direction, in accordance with the direction of transport of the components.
  • a good dispersion of the cellulose fibers and the rest of the components of the composite material can be achieved.
  • said speeds of rotation of the spindles allow to achieve productions of composite material higher than those that can be achieved, using the embodiments described in the prior art.
  • the method object of the invention allows, however, the control of the length and slenderness -relation length / diameter- of the cellulose fibers, in order to optimize the properties of the composite materials, according to the applications that are also object of this invention.
  • stage vi.- said cellulosic material is kneaded with the components of the composite material that have been mixed and kneaded in the previous stages.
  • the cellulosic material is subjected to dispersive or distributive mixing, depending on the spindle elements selected, in accordance with the spindle configuration chosen to obtain the composite material.
  • stage vi.- comprises kneading by means of toothed mixing elements. This configuration allows the fibers to be distributed evenly and effectively.
  • Stage ix.- of flame retardant kneading You should understand as little time as possible to prevent additives that can decompose due to shearing, such as some flame retardants, from decomposing.
  • the composite materials according to the present invention have characteristics that make them suitable for use in the manufacture of components for various sectors, even for moderately demanding applications, such as those in the sectors of manufacture of electrical, electronic and telecommunications equipment, being able to in this way replace different materials reinforced with fiberglass and thermosetting polymers, currently used. Among these requirements are resistance to abnormal heat and fire. Moreover, the composite materials according to the present invention respond to the growing environmental restrictions, by reusing waste materials from other industries. An important advantage is that the new composite materials have a uniform rheological behavior and a relatively low viscosity that makes them easily moldable in various articles, following different techniques such as extrusion, injection molding and compression molding, using the machinery available in the market. This advantage is inherent in the new composite materials and the method object of the present invention.
  • the present invention relates to the use of the composite material according to the present invention to obtain molded articles.
  • Said articles are especially suitable for use in the electrical, electronic and telecommunications sectors, preferably for the manufacture of fuse bases, common telecommunications infrastructures and boxes for meter centralization.
  • the articles obtained meet the requirements of stability and resistance to heat and fire required in these industries.
  • said articles formed from a composite material according to the present invention are also suitable for use in the construction, aviation, automotive, furniture sectors.
  • ETP Positive Transport Element
  • EA Kneading Element
  • ETN Negative Transport Element
  • EMD Serrated Mix Element
  • a composite material was obtained which, for every 100 parts of its weight, comprised:
  • the composite material pellet of the formulation corresponding to this example, finally obtained, was fed to an injection molding machine of 450 kN of closing force, in which the cylinder or plasticizing chamber of the injection molding machine is heated according to the selected temperature profile (see table III):
  • the cooling time was 25 seconds.
  • multipurpose specimens were obtained in accordance with ISO 3167 that were used to determine the properties of the composite material obtained.
  • the values of the main mechanical and thermal properties of the composite materials obtained were:
  • Example 2 Following the method described in Example 1 and using planar agglomerates of a cellulosic material consisting of virgin fibers of raw cellulose pulp of Eucalyptus globulus previously dried and whose morphology allowed its continuous feeding to the extruder without being subjected to the aforementioned transformation process, a composite material was obtained which, for every 100 parts of its weight, included:
  • the composite material pellet of the formulation corresponding to this example was injected to obtain multipurpose specimens in accordance with ISO 3167. According to ISO standards, the values of the main mechanical properties and The thermal materials obtained were (see table IV):
  • pellets were produced in sufficient quantity to feed an industrial injection molding machine of 2000 kN of closing force, in which the cylinder or Plasticizing chamber of the injection molding machine was heated according to the following selected temperature profile (see Table VII):
  • pellets were produced in sufficient quantity to feed an industrial injection molding machine of 800 kN closing force, in which the cylinder or Plasticizing chamber of the injection molding machine was heated according to the temperature profile, selected as follows (see table IX):.
  • the cooling time was 12 seconds.
  • the body and the handle of the fuse holder base for cylindrical fuses are shown, which is shown in Figure 4, characterized by a minimum wall thickness of 2 mm and for whose injection the maximum melt flow path was 25 cm, approximately.
  • This product underwent various tests set by the standards that apply to these types of products.
  • Table X shows the results of said tests, as well as their comparison with the results obtained for the same product manufactured with a conventional material such as poly (butylene glycol terephthalate) (PBTP) reinforced with 30% fiberglass.
  • PBTP poly (butylene glycol terephthalate)
  • pellets were produced in sufficient quantity to feed an industrial injection molding machine of 800 kN closing force, in which the cylinder or Plasticizing chamber of the injection molding machine was heated according to the following selected temperature profile (see table Xl):
  • the cooling time was 8 seconds.
  • the body and the handle of a fuse holder base for cylindrical fuses were manufactured similar to that shown in Figure 4, characterized by a minimum wall thickness of 1.74 mm and for whose Injection, the maximum melt flow path was approximately 20 cm.
  • This product underwent various tests set by the standards that apply to these types of products.
  • Table XII shows the results of said tests, as well as their comparison with the results obtained for the same product manufactured with a conventional material such as poly (butylene glycol terephthalate) (PBTP) reinforced with 30% fiberglass.
  • PBTP poly (butylene glycol terephthalate)
  • pellets were produced in sufficient quantity to feed an industrial injection molding machine of 5000 kN of closing force, in which the cylinder or Plasticizing chamber of the injection molding machine was heated according to the following selected temperature profile (see table XIII): Table XIII
  • the cooling time was 60 seconds.
  • a part of the body of the closed three-pole vertical bases was shown, which is shown in Figure 5, characterized by a minimum wall thickness of 1.66 mm and for whose injection the maximum melt flow path was 48 cm, approximately.
  • This product underwent various tests set by the standards that apply to these types of products.
  • Table XIV shows the results of said tests, as well as their comparison with the results obtained for the same product manufactured with a conventional material such as pqljar ⁇ ida. reinforced with 20% fiberglass.
  • D ext means external diameter of each spindle; ⁇ means the propeller angle of each spindle; Esp. Means thickness of the fillets of each spindle; Prof. means Channel depth of the channels of each spindle; D hEmb means external diameter of the spindles of the stuffer.

Abstract

The present invention relates to compound materials that comprise thermoplastic polymer and cellulose fibres, to a method for producing them continuously and to the use of said compound materials in the manufacture of various mouldable articles.

Description

MATERIAL COMPUESTO. MÉTODO PARA SU PRODUCCIÓN EN CONTINUO Y USO DEL MISMOCOMPOSITE MATERIAL. METHOD FOR CONTINUOUS PRODUCTION AND USE OF THE SAME
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
Esta invención se refiere a materiales compuestos que comprenden materiales celulósicos que sirven incluso para aplicaciones moderadamente exigentes, tales como las de los sectores de fabricación de material eléctrico, electrónico y de telecomunicaciones, pudiendo de esta manera sustituir a diferentes polímeros termoestables y materiales reforzados con fibra de vidrio, utilizados en Ia actualidad. Adicionalmente, Ia presente invención se refiere a un método para Ia producción en continuo de dichos materiales compuestos a los que se refiere Ia misma y al uso de dichos materiales compuestos para Ia fabricación de diversos artículos moldeables.This invention relates to composite materials comprising cellulosic materials that serve even for moderately demanding applications, such as those in the sectors of manufacture of electrical, electronic and telecommunications material, and can thus replace different thermosetting polymers and fiber reinforced materials. of glass, currently used. Additionally, the present invention relates to a method for the continuous production of said composite materials to which it refers and to the use of said composite materials for the manufacture of various moldable articles.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
Los termoplásticos reforzados con fibra de vidrio y los polímeros termoestables utilizados en Ia actualidad como materia prima para el moldeo de diferentes artículos en distintos sectores industriales, tales como los sectores de fabricación de material eléctrico, electrónico y de telecomunicaciones, presentan diversas e importantes desventajas:Glass fiber reinforced thermoplastics and thermosetting polymers currently used as raw material for the molding of different items in different industrial sectors, such as the manufacturing of electrical, electronic and telecommunications equipment, present several important disadvantages:
1. Los materiales poliméricos termoestables no son reciclables. Además, los tiempos de ciclo para su moldeo por inyección son largos. En el caso de compuestos laminares de moldeo como los utilizados en el moldeo por compresión de preimpregnados termoestables (SMCs) se requiere bastante mano de obra y el proceso de producción es, relativamente, rudimentario y difícil de automatizar. Por ello, los costes de producción son elevados.1. Thermosetting polymeric materials are not recyclable. In addition, the cycle times for injection molding are long. In the case of laminar molding compounds such as those used in compression molding of thermosetting prepregs (SMCs), a lot of labor is required and the production process is relatively rudimentary and difficult to automate. Therefore, production costs are high.
2. Los materiales termoplásticos son relativamente caros, difíciles de reciclar y, sus residuos, difíciles de tratar, debido su contenido de fibras de vidrio, que no son biodegradables. Además su densidad es relativamente elevada (en torno a 2,5-2,8 kg/m3), dando lugar a artículos moldeados que son más pesados de Io deseable. La abrasión producida por las fibras de vidrio en los equipos de procesamiento es notable, dando lugar a costes de producción más elevados debido a que el cambio de las diversas partes de los equipos de procesamiento ha de realizarse con mayor frecuencia (e.g., los husillos de las máquinas de moldeo por inyección).2. Thermoplastic materials are relatively expensive, difficult to recycle and, their waste, difficult to treat, due to their content of glass fibers, which are not biodegradable. In addition, its density is relatively high (around 2.5-2.8 kg / m 3 ), resulting in molded articles that are heavier than desirable. The abrasion produced by glass fibers in processing equipment is notable, resulting in higher production costs because the change of the various parts of the processing equipment has to be carried out more frequently (eg, the spindles of injection molding machines).
Por tanto, existe Ia necesidad de encontrar materiales poliméricos sin las desventajas anteriormente mencionadas y que, a Ia vez, permitan obtener productos moldeados que cumplan exigencias similares o superiores a las de los productos moldeados fabricados, actualmente, con las materias primas anteriormente mencionadas. Entre estas exigencias se encuentran, por ejemplo, Ia resistencia al calor anormal y al fuego en el sector eléctrico, electrónico y de las telecomunicaciones.Therefore, there is a need to find polymeric materials without the aforementioned disadvantages and, at the same time, allow to obtain molded products that meet similar or superior requirements to those of molded products manufactured, currently, with the aforementioned raw materials. Among these requirements are, for example, resistance to abnormal heat and fire in the electrical, electronic and telecommunications sector.
En las últimas décadas, se ha realizado una gran cantidad de investigación con el objetivo de- lograr Ia utilización efectiva de materiales celulósicos como rellenos y refuerzos en materiales compuestos de matriz polimérica. Los materiales celulósicos están integrados por diferentes tipos de rellenos particulados y de refuerzos derivados de una multitud de especies de plantas vegetales y especies arbóreas o madereras, cuyos componentes principales son Ia celulosa, las hemicelulosas y Ia lignina, entre otros. Los materiales celulósicos presentan algunas importantes ventajas sobre los materiales inorgánicos como el talco, Ia mica o las fibras de vidrio, utilizados tradicionalmente como rellenos y refuerzos en materiales compuestos de matriz polimérica. Principalmente, esas ventajas son: menor densidad, menor coste, menor abrasión de los equipos de procesamiento, biodegradabilidad y carácter renovable. No obstante, los materiales celulósicos tienen diversas desventajas:In recent decades, a great deal of research has been carried out with the objective of achieving the effective use of cellulosic materials such as fillers and reinforcements in polymer matrix composite materials. Cellulosic materials are composed of different types of particulate fillers and reinforcements derived from a multitude of plant species and tree or wood species, whose main components are cellulose, hemicellulose and lignin, among others. Cellulosic materials have some important advantages over inorganic materials such as talc, mica or glass fibers, traditionally used as fillers and reinforcements in polymer matrix composite materials. Mainly, these advantages are: lower density, lower cost, less abrasion of processing equipment, biodegradability and renewable character. However, cellulosic materials have several disadvantages:
1. Estabilidad térmica muy limitada, que da lugar a una sustancial degradación térmica de los mismos a las temperaturas de procesamiento utilizadas habitualmente para los materiales termoplásticos. Dicha estabilidad depende de Ia naturaleza u origen del material celulósico y del proceso seguido para su aislamiento u obtención. Así, las fibras de celulosa procedentes de especies arbóreas tienen una mayor estabilidad térmica que las fibras de celulosa procedentes de plantas vegetales, las cuales pierden una gran parte de su resistencia a temperaturas superiores a 1600C. Además, las fibras de celulosa obtenidas siguiendo diferentes procesos de aislamiento - procesos de obtención de pasta de celulosa- poseen diferente estabilidad térmica. La degradación térmica sufrida por el material celulósico perjudica a las propiedades de los materiales compuestos finalmente obtenidos.1. Very limited thermal stability, which results in a substantial thermal degradation thereof at the processing temperatures commonly used for thermoplastic materials. Said stability depends on the nature or origin of the cellulosic material and the process followed for its isolation or obtaining. Thus, cellulose fibers from tree species have a higher thermal stability than cellulose fibers from plant plants, which lose a large part of their resistance at temperatures above 160 0 C. In addition, cellulose fibers obtained by following Different insulation processes - processes for obtaining cellulose pulp - have different thermal stability. The Thermal degradation suffered by the cellulosic material impairs the properties of the composite materials finally obtained.
2. La mayor parte de los materiales celulósicos tienen una naturaleza polar y, por tanto, son hidrofílicos, debido Ia presencia de grupos hidroxilo en su estructura química, mientras que algunos de los polímeros utilizados como matrices para materiales compuestos (poliolefinas) son no polares y, por tanto, hidrofóbicos. Por ello, Ia compatibilidad química entre la matriz polimérica y el material celulósico utilizado como relleno o refuerzo tiende a ser baja. Dicha baja compatibilidad da lugar a una pobre dispersión del material celulósico en el seno de Ia matriz polimérica. Por otra parte, esa baja compatibilidad da lugar a una débil interfase entre el polímero y el material celulósico, que da lugar a una pobre transferencia del esfuerzo entre Ia matriz polimérica y el material celulósico, perjudicando de esta manera las propiedades del material compuesto y restringiendo sus posibles aplicaciones.2. Most cellulosic materials have a polar nature and, therefore, are hydrophilic, due to the presence of hydroxyl groups in their chemical structure, while some of the polymers used as matrices for composite materials (polyolefins) are non-polar. and, therefore, hydrophobic. Therefore, the chemical compatibility between the polymer matrix and the cellulosic material used as filler or reinforcement tends to be low. Said low compatibility results in a poor dispersion of the cellulosic material within the polymer matrix. On the other hand, this low compatibility results in a weak interface between the polymer and the cellulosic material, which results in a poor transfer of effort between the polymer matrix and the cellulosic material, thus damaging the properties of the composite material and restricting Your possible applications.
Por todo ello, se ha dedicado una considerable investigación científica a Ia solución de los inconvenientes anteriormente mencionados y a Ia combinación de diferentes tipos de materiales celulósicos y polímeros en distintas proporciones para dar lugar a diferentes formulaciones de materiales compuestos con objeto de mejorar las propiedades de los materiales compuestos obtenidos y ampliar su potencial espectro de aplicaciones. Teniendo en cuenta dicho espectro de potenciales aplicaciones, los materiales compuestos desarrollados se pueden dividir en dos grupos: 1) Materiales compuestos cuyo componente principal es un material celulósico. 2) Materiales compuestos cuyo componente principal es un polímero. Dependiendo del tipo de materiales celulósicos y polímeros utilizados, de su proporción relativa en el material compuesto y de Ia formulación del material compuesto en su conjunto, los métodos de obtención de los materiales compuestos y sus potenciales aplicaciones pueden variar ampliamente.Therefore, considerable scientific research has been dedicated to the solution of the aforementioned drawbacks and to the combination of different types of cellulosic and polymeric materials in different proportions to give rise to different formulations of composite materials in order to improve the properties of Composite materials obtained and expand its potential spectrum of applications. Taking into account this spectrum of potential applications, the developed composite materials can be divided into two groups: 1) Composite materials whose main component is a cellulosic material. 2) Composite materials whose main component is a polymer. Depending on the type of cellulosic materials and polymers used, their relative proportion in the composite material and the formulation of the composite material as a whole, the methods of obtaining the composite materials and their potential applications can vary widely.
El estado de Ia técnica anterior incluye diversas formulaciones de materiales compuestos basadas en materiales celulósicos procedentes de una multitud de potenciales fuentes de materias primas (fibras celulósicas, vírgenes o residuales, procedentes de plantas vegetales o herbáceas, o de especies arbóreas o madereras). En relación con los objetos de esta patente, los intentos más relevantes del estado de Ia técnica anterior, para resolver los problemas encontrados al tratar de combinar diferentes tipos de polímeros y materiales celulósicos, incluyen distintos enfoques.The prior art includes various formulations of composite materials based on cellulosic materials from a multitude of potential sources of raw materials (cellulosic, virgin or residual fibers, from plant or herbaceous plants, or tree or wood species). In relation to the objects of this patent, the most relevant attempts of the prior art state, for Solving the problems encountered in trying to combine different types of polymers and cellulosic materials, include different approaches.
Así, Ia solicitud de patente WO9605347 a nombre de SKILLICORN, describe una serie de formulaciones de materiales compuestos integrados por fibras de celulosa de diferentes plantas vegetales (entre otras, yute o kenaf) y un termoplástico seleccionado del grupo de los polipropilenos o polietilenos. Esta invención prevé una multitud de aplicaciones para esas formulaciones de materiales compuestos: embalajes, pequeños electrodomésticos, muebles, materiales de construcción, productos para automoción, entre muchos otros. Asimismo, de acuerdo con dicha invención, los materiales compuestos revelados por Ia misma pueden ser transformados mediante moldeo por inyección, moldeo por compresión, extrusión, rotomoldeo o moldeo por soplado. De acuerdo con el método revelado en dicha invención, se pueden utilizar distintas técnicas para mezdar entre un 20 a 60%, en peso, de fibras de celulosa recubiertas de un polipropileno maleado, con un 80 a 40%, en peso, de polipropileno. Entre estas técnicas se encuentran los aparatos de compresión en frío y granceado, el mezclador Banbury, el mezclador continuo Farrell o las extrusoras de husillo simple y doble husillo. Uno de los objetivos del método utilizado para obtener el material compuesto es maximizar Ia esbeltez -relación longitud/diámetro- de las fibras. Con ese objetivo y con el de mantener una adecuada dispersión de las fibras en el material compuesto, se recomienda Ia utilización de mezcladores menos intensivos como los amasadores continuos o las extrusoras de doble husillo configuradas apropiadamente.Thus, patent application WO9605347 in the name of SKILLICORN, describes a series of formulations of composite materials composed of cellulose fibers of different plant plants (among others, jute or kenaf) and a thermoplastic selected from the group of polypropylenes or polyethylenes. This invention provides a multitude of applications for these formulations of composite materials: packaging, small appliances, furniture, building materials, automotive products, among many others. Also, in accordance with said invention, the composite materials disclosed by it can be transformed by injection molding, compression molding, extrusion, rotational molding or blow molding. According to the method disclosed in said invention, different techniques can be used to mix between 20 to 60%, by weight, of cellulose fibers coated with a malleable polypropylene, with 80 to 40%, by weight, of polypropylene. These techniques include cold compression and pelletizing devices, the Banbury mixer, the Farrell continuous mixer or the single-screw and twin-screw extruders. One of the objectives of the method used to obtain the composite material is to maximize the slenderness -relation length / diameter- of the fibers. With this objective and in order to maintain an adequate dispersion of the fibers in the composite material, the use of less intensive mixers such as continuous kneaders or appropriately configured double screw extruders is recommended.
La patente EP0426619 a nombre de ICMA SAN GIORGIO describe un método para Ia producción en continuo de paneles moldeables obtenidos a partir de un polímero de elevada temperatura de fusión (Ttus¡ón>150°C) y un relleno termosensible, mediante extrusión directa utilizando una extrusora corroíante de doble husillo. El método correspondiente a Ia invención comprende Ia utilización de tres o, preferiblemente, cuatro secciones de extrusión helicoidales de transporte o alimentación efectiva, y dos o, preferiblemente, tres secciones interpuestas de amasado. El cilindro o cámara de Ia extrusora utilizada en dicha invención tiene tres aberturas o puertos. La primera abertura sirve para Ia alimentación del polímero. La segunda apertura sirve para Ia alimentación del relleno termosensible y Ia tercera apertura para venteo o desgasificación. Los husillos de Ia extrusora de Ia invención constan de secciones de extrusión helicoidales, que tienen un ángulo, una forma y una profundidad de canal típicas, pero que no se consideran críticas. La distancia entre los espacios cilindricos definidos por Ia rotación de los husillos de Ia extrusora y el espacio integral de mezcla y extrusión varía entre 0,2 y 2 mm.The EP0426619 patent to ICMA SAN GIORGIO describes a method for the continuous production of mouldable panels obtained from a polymer with high melting temperature (T your ng> 150 ° C) and a thermosensitive filler by direct extrusion using a corroding double screw extruder. The method corresponding to the invention comprises the use of three or, preferably, four helical extrusion sections for transport or effective feeding, and two or, preferably, three interposed kneading sections. The cylinder or chamber of the extruder used in said invention has three openings or ports. The first opening serves to feed the polymer. The second opening serves to feed the heat-sensitive filling and the third opening for venting or degassing. The spindles of the extruder of the invention consist of helical extrusion sections, which have a typical angle, shape and depth of channel, but not considered critical. The distance between the cylindrical spaces defined by the rotation of the spindles of the extruder and the integral mixing and extrusion space varies between 0.2 and 2 mm.
La patente EP0611250 a nombre de ICMA SAN GIORGIO describe un método para Ia extrusión de materiales compuestos basados en polímeros de baja temperatura de fusión (TfUsión<150°C) para Ia producción en continuo de productos semi-acabados típicos, como los paneles de PVC. El método descrito en Ia patente EP0611250 es muy parecido al descrito en Ia patente EP0426619, pero, como los solicitantes de Ia patente EP0611250 destacan, el uso de polímeros de bajo punto de fusión no se menciona en Ia patente EP0426619.EP0611250 in the name of ICMA SAN GIORGIO describes a method for the extrusion of composite materials based on low melting temperature polymers (T fUs ón <150 ° C) for the continuous production of typical semi-finished products, such as PVC panels The method described in patent EP0611250 is very similar to that described in patent EP0426619, but, as the applicants for patent EP0611250 stand out, the use of low melting point polymers is not mentioned in patent EP0426619.
La patente WO 9956936 a nombre de INST VOOR AGROTECH ONDERZOEK, SNIJDER MARTINUS HENDRICUS VER, KEMENADE MATHEA JOHANNA JOSEPH y BOS HARRIETTE LOUISE describe un proceso para Ia fabricación en continuo de materiales compuestos integrados por un polímero termoplástico y fibras de celulosa, utilizando una extrusora de doble husillo corroíante, cuyos husillos giran a una velocidad de 200 rpm. De acuerdo con esta invención, los polímeros termoplásticos que se pueden utilizar para fabricar los materiales compuestos comprenden los denominados plásticos de uso general, como las poliolefinas y el poliestireno, o plásticos ingenieriles. Además de termoplásticos vírgenes, también se pueden utilizar, en su lugar, termoplásticos reciclados. Se prefiere, asimismo, añadir un agente de acoplamiento al material polimérico. La proporción preferida de polímero a agente de acoplamiento para una matriz poliolefínica (e.g., polietileno, polipropileno) es 70 a 6, siendo Ia proporción más preferida 8 a 16, en peso. Los agentes acoplamiento preferidos para ese tipo de matrices son los polietilenos injertados con anhídrido maleico o los polipropilenos injertados con anhídrido maleico, dependiendo del tipo de matriz utilizada. También se pueden añadir al polímero otros aditivos, tales como pigmentos, antioxidantes, retardadores de llama y rellenos como el talco, el carbonato calcico y el negro de carbono. La granza de material compuesto obtenida siguiendo el proceso indicado en Ia patente, se considera adecuada para obtener artículos mediante moldeo por inyección y moldeo por compresión. También, según indica esta invención, es posible moldear directamente el material compuesto obtenido en forma de planchas, tubos o perfiles. Los artículos obtenidos a partir del material compuesto obtenido pueden servir para remplazar a Ia madera, al plástico y, alternativamente, a materiales compuestos con distintos rellenos y refuerzos. Los autores de Ia patente WO 9956936 destacan Ia importancia de Ia esbeltez y Ia longitud de las fibras para obtener materiales compuestos con buenas propiedades mecánicas. De acuerdo con ello, recomiendan el uso de fibras de plantas anuales o fibras de Ia corteza del tallo de plantas anuales, tales como lino, cáñamo, yute y kenaf, debido a su elevada longitud y elevada esbeltez (relación longitud/diámetro). Indican que también es posible utilizar una combinación de diferentes tipos de fibras, tales como fibras de papel reciclado y fibras de Ia corteza del tallo de plantas anuales. También destacan que el proceso revelado por Ia patente es ventajoso debido a que las fibras individuales o elementales conservan su elevada esbeltez y longitud. De acuerdo con Ia invención, Ia localización de las zonas de Ia extrusora se calcula desde el cabezal de Ia misma, debido a que es importante que el puerto de alimentación de las fibras esté localizado tan cerca como sea posible del final de Ia extrusora. Por ello, las fibras de celulosa se introducen en el fundido tan tarde como sea posible, de modo que se vean afectadas mínimamente por Ia fricción y el calor. La extrusora reivindicada por Ia invención comprende todas las extrusoras con dos puertos de alimentación separados y un puerto de desgasificación. La extrusora reivindicada se divide, según los autores de Ia invención, en cuatro zonas: una primera zona donde se alimenta el polímero, una segunda zona donde se alimentan las fibras de celulosa, una tercera zona para el venteo o desgasificación y una cuarta zona en donde se aumenta Ia presión.WO 9956936 in the name of INST VOOR AGROTECH ONDERZOEK, SNIJDER MARTINUS HENDRICUS VER, KEMENADE MATHEA JOHANNA JOSEPH and BOS HARRIETTE LOUISE describes a process for the continuous manufacture of composite materials composed of a thermoplastic polymer and cellulose fibers, using an extruder of double corroding spindle, whose spindles rotate at a speed of 200 rpm. According to this invention, thermoplastic polymers that can be used to make composite materials comprise so-called general-purpose plastics, such as polyolefins and polystyrene, or engineering plastics. In addition to virgin thermoplastics, recycled thermoplastics can also be used instead. It is also preferred to add a coupling agent to the polymeric material. The preferred ratio of polymer to coupling agent for a polyolefin matrix (eg, polyethylene, polypropylene) is 70 to 6, with the most preferred ratio being 8 to 16, by weight. Preferred coupling agents for such matrices are polyethylenes grafted with maleic anhydride or polypropylenes grafted with maleic anhydride, depending on the type of matrix used. Other additives, such as pigments, antioxidants, flame retardants and fillers such as talc, calcium carbonate and carbon black, can also be added to the polymer. The pellet of composite material obtained following the process indicated in the patent is considered suitable for obtaining articles by injection molding and compression molding. Also, as indicated by this invention, it is possible to directly mold the composite material obtained in the form of plates, tubes or profiles. Items obtained from Composite material obtained can be used to replace wood, plastic and, alternatively, composite materials with different fillers and reinforcements. The authors of WO 9956936 highlight the importance of slenderness and the length of the fibers to obtain composite materials with good mechanical properties. Accordingly, they recommend the use of annual plant fibers or fibers of the stem bark of annual plants, such as flax, hemp, jute and kenaf, due to their high length and high slenderness (length / diameter ratio). They indicate that it is also possible to use a combination of different types of fibers, such as recycled paper fibers and fibers of the bark of the stem of annual plants. They also emphasize that the process revealed by the patent is advantageous because the individual or elementary fibers retain their high slenderness and length. In accordance with the invention, the location of the zones of the extruder is calculated from the head of the same, because it is important that the fiber feeding port is located as close as possible to the end of the extruder. Therefore, cellulose fibers are introduced into the melt as late as possible, so that they are minimally affected by friction and heat. The extruder claimed by the invention comprises all extruders with two separate feed ports and a degassing port. The extruder claimed is divided, according to the authors of the invention, into four zones: a first zone where the polymer is fed, a second zone where the cellulose fibers are fed, a third zone for venting or degassing and a fourth zone in where the pressure is increased.
La solicitud de patente US 5288772 a nombre de Ia Universidad Clemson proporciona una formulación de termoplástico reforzado con fibras de celulosa que permite Ia producción de materiales compuestos. Otro objeto de dicha patente es proporcionar un método para poder utilizar materiales celulósicos y termoplásticos de carácter residual. De acuerdo con dicha invención, Ia resina termoplástica presente en el material compuesto puede ser cualquier termoplástico (poliolefinas, polímeros vinílicos, poliamldas, resinas acrílicas y resinas de estireno). Los materiales celulósicos incluidos en dicha invención pueden ser cualquier material que contenga fibras de celulosa (periódicos, cartones, fibras de madera, rayones, algodones, ramie, yute, bagazo, entre muchos otros). De acuerdo con Ia invención, para asegurarse de que las fibras y los termoplásticos dan lugar a una masa suficientemente coherente, se puede añadir a Ia formulación lignina, bien como componente independiente, o formando ya parte de los propios materiales celulósicos. Otro de los objetos de Ia patente es proporcionar un método para Ia obtención de dichos materiales compuestos. De acuerdo con dicho método, las resinas termoplásticas se calientan en un dispositivo de mezcla hasta que se obtiene una matriz fundida. A continuación, mientras se continúa Ia agitación de Ia matriz fundida de termoplásticos, se adicionan los materiales celulósicos a Ia misma, manteniendo Ia temperatura seleccionada.Patent application US 5288772 in the name of Clemson University provides a thermoplastic formulation reinforced with cellulose fibers that allows the production of composite materials. Another object of said patent is to provide a method to use residual cellulosic and thermoplastic materials. In accordance with said invention, the thermoplastic resin present in the composite material can be any thermoplastic (polyolefins, vinyl polymers, polyamides, acrylic resins and styrene resins). The cellulosic materials included in said invention can be any material containing cellulose fibers (newspapers, cardboard, wood fibers, scratches, cottons, ramie, jute, bagasse, among many others). According to the invention, to ensure that the fibers and thermoplastics give rise to a sufficiently coherent mass, lignin can be added to the formulation, as well as independent component, or already forming part of the cellulosic materials themselves. Another object of the patent is to provide a method for obtaining said composite materials. According to said method, thermoplastic resins are heated in a mixing device until a molten matrix is obtained. Then, while stirring the molten matrix of thermoplastics is continued, the cellulosic materials are added thereto, maintaining the selected temperature.
La patente US5516472 a nombre de STRANDEX describe un material compuesto que comprende un polímero y fibras celulósicas, así como el proceso y Ia máquina para fabricar dicho producto. El material compuesto se caracteriza por tener un elevado contenido de fibras de celulosa (más del 50%, en peso). De acuerdo con los autores de Ia patente, empleando el proceso de extrusión continuo de baja temperatura revelado por Ia patente, el material podría tener hasta una proporción fibra/termoplástico 1 :0.US5516472 in the name of STRANDEX describes a composite material comprising a polymer and cellulosic fibers, as well as the process and the machine for manufacturing said product. The composite material is characterized by having a high content of cellulose fibers (more than 50%, by weight). According to the authors of the patent, using the continuous low temperature extrusion process revealed by the patent, the material could have up to a 1: 0 fiber / thermoplastic ratio.
La patente EP799679 a nombre de AIN ENGINEERING KK se refiere a un método para lograr un dibujo, tal cómo una veta dé madera con apariencia de madera natural, sobre Ia superficie de un tablero sintético. Dicho tablero está constituido por una mezcla que contiene entre 20-65%, en peso, de una harina de madera, y un 35-80%, en peso, de un termoplástico. Si el termoplástico utilizado es polipropileno o polietileno, el contenido preferido de harina de madera varía entre 50-55%, en peso. El tablero sintético se fabrica por extrusión, utilizando una extrusora de husillo simple o de múltiples husillos.EP799679 in the name of AIN ENGINEERING KK refers to a method for achieving a drawing, such as a wood grain with the appearance of natural wood, on the surface of a synthetic board. Said board is constituted by a mixture containing between 20-65%, by weight, of a wood flour, and 35-80%, by weight, of a thermoplastic. If the thermoplastic used is polypropylene or polyethylene, the preferred content of wood flour varies between 50-55%, by weight. The synthetic board is manufactured by extrusion, using a single or multi-spindle extruder.
La solicitud de patente US2003/00301176 a nombre de THERMO FIBERGEN presenta como novedad que se pueden mezclar elevados niveles de lodo procedente de Ia fabricación del papel (e.g., hasta un 70-75%), transformado en granulos por vía húmeda, con plástico y, si se desea, fibra de celulosa, para obtener materiales compuestos. Los autores de Ia invención indican que, sorprendentemente, a pesar de los bajos niveles relativos de plástico, los materiales compuestos tienen buenas propiedades mecánicas (elevada resistencia, elevado módulo, elevada resistencia al impacto, entre otras). Esas propiedades mecánicas hacen que los materiales compuestos objeto de Ia patente sean útiles como materia prima para Ia fabricación de distintos productos, tales como baldosas para techos, vallas, paneles de puertas, pantallas acústicas, materiales para cubiertas, revestimientos decorativos de paredes y aplicaciones similares. Sin embargo, los ejemplos ponen de manifiesto que las propiedades mecánicas de los materiales compuestos son pobres. Así, por ejemplo, su resistencia a Ia flexión no supera los 17,34 MPa (2500 psi) y su módulo de elasticidad a flexión no supera los 2,9 GPa (418000 ps¡), en los mejores casos. Estas pobres propiedades mecánicas suponen ya, por una parte, una limitación importante en las aplicaciones en las que se pueden emplear estos materiales compuestos. Por otra parte, afectan negativamente a Ia geometría de los productos a fabricar que, como consecuencia, deben de tener mayores espesores de pared para lograr Ia rigidez necesaria, Io cual supone un mayor gasto de material, un mayor peso de Ia pieza y, en definitiva, un mayor coste.Patent application US2003 / 00301176 in the name of THERMO FIBERGEN presents as a novelty that high levels of sludge from papermaking can be mixed (eg, up to 70-75%), transformed into granules by wet way, with plastic and , if desired, cellulose fiber, to obtain composite materials. The authors of the invention indicate that, surprisingly, despite the low relative levels of plastic, composite materials have good mechanical properties (high strength, high modulus, high impact resistance, among others). These mechanical properties make the composite materials object of the patent useful as raw material for the manufacture of different products, such as roof tiles, fences, door panels, acoustic screens, roofing materials, decorative wall coverings and similar applications. However, the examples show that the mechanical properties of composite materials are poor. Thus, for example, its resistance to bending does not exceed 17,34 MPa (2,500 psi) and its modulus of elasticity to bending does not exceed 2,9 GPa (418,000 ps¡), in the best cases. These poor mechanical properties already represent, on the one hand, an important limitation in the applications in which these composite materials can be used. On the other hand, they negatively affect the geometry of the products to be manufactured which, as a consequence, must have greater wall thicknesses to achieve the necessary stiffness, which implies a greater material expense, a greater weight of the piece and, in Definitely, a higher cost.
De acuerdo con Ia descripción de dicha solicitud de patente el lodo de Ia fabricación del papel contiena celulosa, lignina, hemicelulosa, carbonato calcico, arcilla y otros componentes inorgánicos. En muchos casos, las cenizas del lodo de Ia fabricación del papel totalizan hasta un 50% (y en algunos casos, hasta un 80% o más) del volumen de lodo. Los componentes principales de las cenizas son el carbonato calcico (20-75% del lodo seco) y Ia arcilla. Esos dos minerales se utilizan habitualmente en el papel como un recubrimiento y un relleno para mejorar sus características mecánicas así como su apariencia. Más específicamente, los granulos (marca BIODAC), obtenidos mediante transformación en húmedo del lodo de Ia fabricación del papel, utilizados como materia prima, en combinación con cascara de arroz, para Ia obtención de los materiales compuestos objeto de Ia patente están compuestos por: Fibra de papel (CAS #9004-34- 6): 47-53%; Caolín:28-34% (CAS #1332-58-7); Carbonato cálcico(CAS #471-34-1): 14- 20%. Dióxido de titanio(CAS #13463-67-7): <1%. Su densidad oscila entre 0.64-0.768 g/cm3 y su granulometría puede ser 10/30 mallas (0,590-2,000 mm) o 12/20 mallas (0,840-1 ,680 mm) o 20/50 mallas (0,297-0,840 mm). El material compuesto también puede contener, junto al lodo granulado de Ia fabricación del papel, distintos tipos de fibras de celulosa procedentes de diferentes fuentes: fibras cortas de origen agrícola; materiales fibrosos de plantas; fibras procedentes de los procesos de producción de fibras textiles y de operaciones de transformación de Ia pasta de celulosa y del papel; fibras procedentes de los procesos de reciclado del papel y de productos de madera, etc. En una de las realizaciones de dicha invención, el material orgánico del material compuesto comprende el lodo granulado, sólo o en combinación con fibras de celulosa. De acuerdo con la invención, se puede lograr un beneficio ecológico ulterior mediante Ia combinación del lodo granulado con plástico reciclado. En Ia formulación del material compuesto también se pueden incluir agentes de refuerzo, lubricantes, colorantes, compatibilizantes y/o retardadores de llama, a niveles consistentes con aplicaciones bien conocidas de los materiales compuestos. Los autores de Ia invención indican que el producto final de esta patente -el material compuesto- se puede transformar, preferiblemente, mediante extrusión, moldeo por inyección o moldeo por compresión. Sin embargo, los ejemplos mostrados en Ia patente se refieren, exclusivamente, a Ia transformación de los materiales compuestos mediante extrusión para obtener productos cuyo espesor de pared mínimo es de 0,25 pulgadas (6,35 mm). No se hace mención en Ia patente a cuáles son las propiedades reológicas de los materiales compuestos objeto de Ia invención. Dichas propiedades condicionan totalmente sus posibilidades de transformación en productos reales de distintos espesores -en muchos casos menores que los indicados en Ia patente- , especialmente en el caso de su transformación mediante moldeo por inyección.According to the description of said patent application, the sludge from the manufacture of cellulose, lignin, hemicellulose, calcium carbonate, clay and other inorganic components paper. In many cases, the ashes of the sludge from papermaking total up to 50% (and in some cases, up to 80% or more) of the volume of sludge. The main components of the ashes are calcium carbonate (20-75% of the dry mud) and clay. These two minerals are commonly used in paper as a coating and a filler to improve its mechanical characteristics as well as its appearance. More specifically, the granules (BIODAC brand), obtained by wet transformation of the sludge of papermaking, used as raw material, in combination with rice husk, to obtain the composite materials object of the patent are composed of: Paper fiber (CAS # 9004-34- 6): 47-53%; Kaolin: 28-34% (CAS # 1332-58-7); Calcium carbonate (CAS # 471-34-1): 14-20%. Titanium dioxide (CAS # 13463-67-7): <1%. Its density ranges from 0.64-0.768 g / cm 3 and its granulometry can be 10/30 meshes (0.590-2,000 mm) or 12/20 meshes (0.840-1, 680 mm) or 20/50 meshes (0.297-0.840 mm) . The composite material can also contain, together with the granulated sludge of papermaking, different types of cellulose fibers from different sources: short fibers of agricultural origin; fibrous plant materials; fibers from the processes of textile fiber production and processing operations of cellulose pulp and paper; fibers from the recycling processes of paper and wood products, etc. In one of the embodiments of said invention, the organic material of the composite material comprises the granulated sludge, alone or in combination with cellulose fibers. Agree With the invention, a further ecological benefit can be achieved by combining the granulated sludge with recycled plastic. In the formulation of the composite material, reinforcing agents, lubricants, colorants, compatibilizers and / or flame retardants can also be included, at levels consistent with well known applications of the composite materials. The authors of the invention indicate that the final product of this patent -the composite material- can be transformed, preferably, by extrusion, injection molding or compression molding. However, the examples shown in the patent refer exclusively to the transformation of composite materials by extrusion to obtain products whose minimum wall thickness is 0.25 inches (6.35 mm). No mention is made in the patent to which are the rheological properties of the composite materials object of the invention. Said properties totally condition their possibilities of transformation into real products of different thicknesses - in many cases smaller than those indicated in the patent -, especially in the case of their transformation by injection molding.
De acuerdo con Ia descripción de Ia patente de THERMO FIBERGEN, el material compuesto reivindicado se fabrica mezclando cantidades determinadas de sus componentes para dar lugar a una mezcla homogénea, que, seguidamente, se alimenta a una extrusora de doble husillo. Así pues, el método seguido para fabricar el material compuesto comporta Ia obtención previa de una mezcla homogénea de los componentes del material compuesto, en lugar de su alimentación directa por separado a Ia extrusora, lo cual supone una etapa más en el proceso de obtención y un mayor coste de producción. El material compuesto resultante se grancea y se alimenta a una extrusora de husillo simple para dar forma al producto final. Según indican los autores, Ia invención proporciona, por una parte, materiales compuestos nuevos y eficaces, y por otra parte, un nuevo uso para los lodos de pasta de celulosa y de papel. También indican que, de acuerdo con su invención, los nuevos materiales compuestos se pueden utilizar, en general, para una amplia variedad de aplicaciones específicas. Más aún, los autores mencionan que los materiales compuestos de su invención pueden hacerse ignífugos. Sin embargo, en su patente no existe ninguna referencia a la forma en que se ha de operar para obtener dicha interesante propiedad, ni tampoco a los tipos de artículos que se podrían fabricar utilizando esos materiales compuestos ignífugos. La solicitud de patente WO01/83195 a nombre de DAVIS STANDARD CORP, MURDOCK DAVID E., SNEAD DALE K, DARDENNE DARRELL S. y MILLS IAN W. describe un proceso de extrusión para Ia fabricación de materiales compuestos de matriz plástica que contienen partículas de madera o fibras de madera, cuya humedad puede ser variable y/o elevada. De acuerdo con esta invención, las fibras de madera pueden proceder de especies de madera blanda -coniferas- y/o especies de madera dura -frondosas-, siendo las más populares para Ia obtención de perfiles, el pino, el arce y el roble. Además de las fibras de madera, también se pueden utilizar rellenos orgánicos, como residuos de césped, residuos agrícolas, fibras naturales de plantas de tierra o acuáticas. El proceso revelado por esta patente, utiliza una extrusora de doble husillo contrarrotante para secar el relleno orgánico, así como, al menos, una segunda extrusora para fundir el polímero y alimentarlo en el cilindro de Ia primera extrusora. De acuerdo con esta patente, el proceso correspondiente a Ia invención, utiliza velocidades -de rotación de tos husillos y velocidades de cizallamiento, más bajas que los equipos y procesos tradicionales.According to the description of the THERMO FIBERGEN patent, the claimed composite material is manufactured by mixing certain amounts of its components to give rise to a homogeneous mixture, which is then fed to a twin screw extruder. Thus, the method followed to manufacture the composite material involves the prior obtaining of a homogeneous mixture of the components of the composite material, instead of its direct separate feeding to the extruder, which represents a further stage in the process of obtaining and Higher production cost. The resulting composite material is pelleted and fed to a single screw extruder to shape the final product. According to the authors, the invention provides, on the one hand, new and effective composite materials, and on the other hand, a new use for the pulp and paper sludge. They also indicate that, according to their invention, the new composite materials can be used, in general, for a wide variety of specific applications. Moreover, the authors mention that the composite materials of their invention can be made flame retardant. However, in its patent there is no reference to the way in which it is to be operated to obtain said interesting property, nor to the types of articles that could be manufactured using those fire-retardant composite materials. Patent application WO01 / 83195 in the name of DAVIS STANDARD CORP, MURDOCK DAVID E., SNEAD DALE K, DARDENNE DARRELL S. and MILLS IAN W. describes an extrusion process for the manufacture of plastic matrix composites containing particles of wood or wood fibers, whose humidity can be variable and / or high. In accordance with this invention, the wood fibers can come from soft wood species -conifers- and / or hardwood species -frondosas-, being the most popular for obtaining profiles, pine, maple and oak. In addition to wood fibers, organic fillers, such as grass residues, agricultural residues, natural fibers from land or aquatic plants, can also be used. The process revealed by this patent, uses a double screw spindle extruder to dry the organic filling, as well as at least a second extruder to melt the polymer and feed it into the cylinder of the first extruder. In accordance with this patent, the process corresponding to the invention uses spindle rotation speeds and shear speeds, lower than traditional equipment and processes.
Así pues, el estado de Ia técnica existente describe diversas formulaciones de materiales compuestos que son adecuadas para una multitud de aplicaciones. Sin embargo, ninguna de esas formulaciones de materiales compuestos cumple las exigencias fijadas a las materias primas utilizadas en Ia actualidad para algunas aplicaciones moderadamente exigentes, tales como aquellas de los sectores de fabricación de material eléctrico, electrónico y de telecomunicaciones, u otros como el de Ia construcción, aviación, automoción, mueble y embalajes. De hecho, no existe ningún producto comercial del tipo de los revelados en el estado de Ia técnica que cumpla los requisitos fijados a los materiales utilizados para las aplicaciones anteriormente mencionadas.Thus, the state of the existing technique describes various formulations of composite materials that are suitable for a multitude of applications. However, none of these formulations of composite materials meets the requirements set to the raw materials currently used for some moderately demanding applications, such as those in the sectors of manufacturing of electrical, electronic and telecommunications equipment, or others such as The construction, aviation, automotive, furniture and packaging. In fact, there is no commercial product of the type disclosed in the state of the art that meets the requirements set to the materials used for the aforementioned applications.
Los procesos de extrusión-mezclado con extrusoras de doble husillo corrotantes, utilizados para Ia obtención de diferentes materiales compuestos, de acuerdo con el estado de Ia técnica anterior, son muy similares. Estos procesos difieren en detalles muy pequeños que, teniendo en cuenta el número de patentes concedidas, son los que condicionan Ia obtención de los materiales compuestos deseados y productos previstos para esos materiales compuestos. Es decir, pequeños cambios en los procesos de extrusión-mezclado permiten Ia obtención de distintos materiales compuestos, con distintas propiedades y distintas posibles aplicaciones. Tal y como se describe anteriormente, en el estado de Ia técnica se proponen diversos plásticos vírgenes y reciclados como matrices para Ia fabricación de materiales compuestos reforzados con celulosa. Sin embargo, no se hace referencia acerca de qué características específicas deberían de poseer esos plásticos para poderse utilizar en Ia producción de los materiales compuestos y los productos reivindicados por las patentes correspondientes al estado de Ia técnica anterior. En concreto, no existe ninguna referencia a qué morfología y propiedades reológicas deberían poseer para poder ser utilizados, ni qué características específicas debería tener el equipo de alimentación de dichos plásticos para su continua y adecuada dosificación a Ia línea de producción de los materiales compuestos.The extrusion-mixing processes with twin-screw extruders corrotantes, used to obtain different composite materials, according to the prior art, are very similar. These processes differ in very small details that, taking into account the number of patents granted, are those that condition the obtaining of the desired composite materials and products intended for those composite materials. That is, small changes in the extrusion-mixing processes allow the obtaining of different composite materials, with different properties and different possible applications. As described above, in the state of the art various virgin and recycled plastics are proposed as matrices for the manufacture of composite materials reinforced with cellulose. However, no reference is made about what specific characteristics these plastics should possess in order to be used in the production of the composite materials and the products claimed by the patents corresponding to the prior art. Specifically, there is no reference to what morphology and rheological properties they should possess in order to be used, nor what specific characteristics the feeding equipment of said plastics should have for its continuous and adequate dosage to the production line of composite materials.
El estado de- Ia técnica anterior sitúa todas tes fibras celulósicas dentro de una categoría amplia y general. Sin embargo, Ia composición química, Ia estabilidad térmica y Ia morfología de las fibras celulósicas depende de su naturaleza u origen y del proceso seguido para su aislamiento y obtención. Así, las fibras celulósicas de las especies arbóreas o madereras son diferentes de las fibras celulósicas procedentes de plantas vegetales. Las fibras celulósicas procedentes de especies arbóreas de madera blanda - cuyas longitudes están comprendidas entre 0,7-1 ,6 mm, aproximadamente- difieren de aquellas que proceden de especies arbóreas de madera dura -cuyas longitudes están comprendidas entre 2,7-4,6 mm, aproximadamente-. Asimismo, las fibras celulósicas de las plantas vegetales -cuyas longitudes están comprendidas entre 0,7-250 mm, aproximadamente- difieren entre sí. Por su parte, las fibras celulósicas residuales difieren de las fibras de celulosa vírgenes. Además, las fibras celulósicas obtenidas mediante diferentes procesos de aislamiento (e.g., los diferentes procesos mecánicos, químicos y químicotermomecánicos de obtención de pasta de celulosa), procesos de blanqueo y procesos de refinado, tienen diferentes características.The prior art state places all cellulosic fibers within a broad and general category. However, the chemical composition, the thermal stability and the morphology of the cellulosic fibers depend on their nature or origin and the process followed for their isolation and obtaining. Thus, cellulosic fibers of tree or wood species are different from cellulosic fibers from plant plants. Cellulosic fibers from soft wood tree species - whose lengths are between 0.7-1.6 mm approximately - differ from those that come from hardwood tree species - whose lengths are between 2.7-4, 6 mm, approximately. Likewise, the cellulosic fibers of plant plants - whose lengths are between 0.7-250 mm approximately - differ from each other. On the other hand, residual cellulosic fibers differ from virgin cellulose fibers. In addition, the cellulosic fibers obtained by different insulation processes (e.g., the different mechanical, chemical and chemical thermomechanical processes for obtaining cellulose pulp), bleaching processes and refining processes, have different characteristics.
Por otra parte, el tipo de tratamientos a que se pueden ver sometidas las fibras celulósicas para su obtención en Ia forma final deseada también afecta a su calidad. En su conjunto, todos estos factores mencionados condicionan Ia morfología de las fibras individuales y las características de los aglomerados que pueden llegar a formar (esto es, su morfología y densidad aparente). A su vez, todos estos factores condicionan las posibilidades de alimentar y dosificar en continuo las fibras celulósicas a los equipos de mezcla con polímeros fundidos que pueden permitir Ia obtención de materiales compuestos, así como las propiedades de los propios materiales compuestos. El estado de Ia técnica anterior no tiene en cuenta que los medios necesarios para dosificar las fibras de celulosa más largas, que se presentan en forma de madejas o hebras, son diferentes de los medios necesarios para dosificar fibras de celulosa más cortas. Específicamente, se ignora que cuanto mayor es Ia longitud de Ia fibra, mayor es el enmarañamiento que se produce entre las fibras y menor Ia densidad aparente de los aglomerados que forman. Cuanto menor es Ia densidad aparente de estos aglomerados, más difícil es su alimentación a los equipos de obtención de materiales compuestos, Io cual da lugar a que Ia calidad y propiedades de los materiales compuestos así obtenidos sean variables y a que, además, no sea posible alcanzar las tasas de producción que exige Ia producción a escala industrial.On the other hand, the type of treatments to which the cellulosic fibers can be subjected to be obtained in the desired final form also affects their quality. As a whole, all these factors mentioned condition the morphology of the individual fibers and the characteristics of the agglomerates that they can form (that is, their morphology and apparent density). In turn, all these factors condition the possibilities of continuously feeding and dosing cellulosic fibers to mixing equipment with molten polymers that can allow the obtaining of composite materials, as well as the properties of the composite materials themselves. The prior art does not take into account that the means necessary for dosing the longer cellulose fibers, which are presented in the form of skeins or strands, are different from the means necessary for dosing shorter cellulose fibers. Specifically, it is ignored that the greater the length of the fiber, the greater the entanglement that occurs between the fibers and the lower the apparent density of the agglomerates they form. The lower the apparent density of these agglomerates, the more difficult it is to feed the equipment for obtaining composite materials, which results in the quality and properties of the composite materials thus obtained being variable and, in addition, it is not possible to reach the production rates required by the industrial scale production.
Más aún, las fibras más largas dan lugar a materiales compuestos con una mayor viscosidad y un comportamiento reológico variable, que hace difícil su transformación en diferentes artículos por medio de los procesos de moldeo más comunes como el moldeo por inyección. Las mezclas de fibras de diferente naturaleza y procedencia no pueden sustraerse a los problemas y limitaciones anteriormente mencionados y requieren de una tecnología adecuada para ser posible su uso efectivo como materia prima celulósica en materiales compuestos de matriz polimérica.Moreover, the longer fibers give rise to composite materials with a higher viscosity and a variable rheological behavior, which makes their transformation into different articles difficult by means of the most common molding processes such as injection molding. Mixtures of fibers of different nature and origin cannot be subtracted from the aforementioned problems and limitations and require adequate technology to enable their effective use as a cellulosic raw material in polymeric matrix composites.
Los problemas mencionados anteriormente son muy relevantes, y condicionan el logro de una tecnología adecuada y práctica para Ia fabricación de materiales compuestos de matriz polimérica con materiales celulósicos y los productos que corresponden a sus aplicaciones. Así, Ia utilización práctica y efectiva de Ia multitud de materiales celulósicos que se citan en el estado de Ia técnica anterior, tiende a ser menor de Io que se indica en el mismo, cuando se contemplan aplicaciones industriales reales y moderadamente exigentes para ese tipo de materiales compuestos. Esto se debe a que su utilización puede comprometer, no sólo las propiedades de los materiales compuestos, sino el propio proceso de obtención de materiales compuestos, debido a los diferentes problemas que presenta cada tipo de material celulósico. Adicionalmente, cuando se contemplan las aplicaciones que son objeto directo de esta patente o que son sugeridas por Ia misma para este tipo de materiales compuestos, no existen formulaciones ni métodos de mezclado específicos que sean idóneos para el procesamiento de las materias primas correspondientes. Como resultado, los beneficios potenciales ofrecidos por las formulaciones de materiales compuestos indicadas hasta ahora se mantienen limitados, en Io que se refiere a materiales y productos realmente disponibles, beneficios medioambientales y costes.The problems mentioned above are very relevant, and condition the achievement of a suitable and practical technology for the manufacture of polymer matrix composite materials with cellulosic materials and the products that correspond to their applications. Thus, the practical and effective use of the multitude of cellulosic materials cited in the prior art state, tends to be less than what is indicated therein, when real and moderately demanding industrial applications are contemplated for that type of composite materials. This is because its use can compromise, not only the properties of composite materials, but the process of obtaining composite materials, due to the different problems that each type of cellulosic material presents. Additionally, when the applications that are the direct object of this patent or that are suggested by it are contemplated For this type of composite materials, there are no specific formulations or mixing methods that are suitable for the processing of the corresponding raw materials. As a result, the potential benefits offered by the formulations of composite materials indicated so far remain limited, in what refers to really available materials and products, environmental benefits and costs.
Es objeto de Ia presente invención proporcionar nuevos materiales compuestos de matriz termoplástica que comprenden materiales celulósicos. Estos nuevos materiales permiten sustituir a los polímeros termoestables y materiales reforzados con fibras de vidrio, utilizados actualmente en diversos sectores como, por ejemplo, los sectores de fabricación de material eléctrico, electrónico y de telecomunicaciones. Es también objeto de Ia presente invención proporcionar un nuevo método para la-producción en continuo dedichos materiales compuestos, así como algunos de los productos moldeados que se pueden fabricar utilizando dichos materiales compuestos como materia prima. Así pues, Ia tecnología descrita en Ia presente solicitud permite obtener, de forma técnica y económicamente viable, nuevos materiales compuestos de matriz termoplástica que comprenden materiales celulósicos.It is an object of the present invention to provide new thermoplastic matrix composite materials comprising cellulosic materials. These new materials make it possible to replace thermosetting polymers and glass fiber reinforced materials, currently used in various sectors, such as the manufacturing of electrical, electronic and telecommunications equipment. It is also the object of the present invention to provide a new method for the continuous production of said composite materials, as well as some of the molded products that can be manufactured using said composite materials as raw material. Thus, the technology described in this application allows obtaining, in a technical and economically viable way, new thermoplastic matrix composite materials comprising cellulosic materials.
BREVE DESCRIPCIÓN DE LOS DIBUJOSBRIEF DESCRIPTION OF THE DRAWINGS
La descripción de Ia presente invención, se realizará a continuación con Ia ayuda de las siguientes figuras:The description of the present invention will be carried out below with the help of the following figures:
La Figura 1 es una vista lateral de una instalación utilizada en el método según Ia presente invención para Ia obtención del material compuesto. La Figura 2 representa una vista lateral de Ia extrusora corroíante con una ilustración de los tipos de elementos de husillo que pueden insertarse sobre cada uno de los mandriles de Ia misma para dar lugar a distintas configuraciones de husillo.Figure 1 is a side view of an installation used in the method according to the present invention for obtaining the composite material. Figure 2 represents a side view of the corroding extruder with an illustration of the types of spindle elements that can be inserted on each of the mandrels thereof to give rise to different spindle configurations.
La Figura 3 muestra una base portafusibles para fusibles de cuchillas fabricada con los materiales compuestos objeto de esta invención. La Figura 4 muestra una base portafusibles para fusibles cilindricos fabricada con los materiales compuestos objeto de esta invención.Figure 3 shows a fuse holder base for blade fuses made of the composite materials object of this invention. Figure 4 shows a fuse holder base for cylindrical fuses made of the composite materials object of this invention.
La Figura 5 muestra el cuerpo de las bases tripolares verticales cerradas fabricado con los materiales compuestos objeto de esta invención. DESCRIPCIÓN DE LA INVENCIÓNFigure 5 shows the body of the closed vertical tripolar bases manufactured with the composite materials object of this invention. DESCRIPTION OF THE INVENTION
Por Io tanto, de acuerdo con un primer aspecto esencial, Ia presente invención se refiere a un material compuesto que, por cada 100 partes de su peso, comprende: (A) entre 25 y 90 partes, en peso, de un polímero termoplástico; (B) entre 1 y 50 partes, en peso, de un material celulósico, (C) entre 0,1 y 15 partes, en peso, de un agente de acoplamiento; (D) entre 0,05 y 3 partes, en peso, de un antioxidante primario; (E) entre 0,05 y 6 partes, en peso, de un antioxidante secundario (F) entre 1 y 40 partes, en peso, de un retardador de llama, caracterizado porque dicho material celulósico (B) comprende fibras que se seleccionan del grupo formado por fibras vírgenes de pasta de celulosa procedentes de las especies arbóreas de madera dura, fibras obtenidas como residuos de Ia industria de Ia pasta de celulosa y del papel, fibras obtenidas como residuos de las industrias de fabricación de fibras sintéticas y textil, fibras procedentes de residuos sólidos urbanos e industriales o mezclas de las mismas.Therefore, according to a first essential aspect, the present invention refers to a composite material that, for every 100 parts of its weight, comprises: (A) between 25 and 90 parts, by weight, of a thermoplastic polymer; (B) between 1 and 50 parts, by weight, of a cellulosic material, (C) between 0.1 and 15 parts, by weight, of a coupling agent; (D) between 0.05 and 3 parts, by weight, of a primary antioxidant; (E) between 0.05 and 6 parts, by weight, of a secondary antioxidant (F) between 1 and 40 parts, by weight, of a flame retardant, characterized in that said cellulosic material (B) comprises fibers that are selected from the group formed by virgin cellulose pulp fibers from hardwood tree species, fibers obtained as waste from the pulp and paper industry, fibers obtained as waste from the synthetic and textile fiber manufacturing industries, fibers from solid urban and industrial waste or mixtures thereof.
De acuerdo con una realización preferida según Ia presente invención, dicho polímero termoplástico (A) es una poliolefina, Ia cual se selecciona del grupo formado por los homopolímeros de polipropileno, los copolímeros de propileno, el polipropileno co- polietilen-vinil-acetato (PP+EVA), el polietileno de alta densidad, el polietileno de baja densidad), un poliestireno (el cual se selecciona del grupo de sus homopolímeros, copolímeros o terpolímeros), policloruro de vinilo (PVC), un polímero del grupo de las poliamidas, poli(tereftalato de etilenglicol) (PETP), poli(tereftalato de butilenglicol) (PBTP), poli(metacrilato de metilo) (PMMA) o policarbonato (PC) o mezclas de los mismos. Las poliolefinas vírgenes preferidas para llevar a cabo esta invención son los homopolímeros y copolímeros de polipropileno de reología controlada con puntos de fusión similares e índices de fluidez comprendidos entre 12 y 150 g/10 minutos (según norma ISO 1133, a 230 0C y 2,16 kg).According to a preferred embodiment according to the present invention, said thermoplastic polymer (A) is a polyolefin, which is selected from the group consisting of polypropylene homopolymers, propylene copolymers, polypropylene-polyethylene vinyl acetate (PP) + EVA), high density polyethylene, low density polyethylene), a polystyrene (which is selected from the group of its homopolymers, copolymers or terpolymers), polyvinylchloride (PVC), a polymer from the polyamide group, poly (ethylene glycol terephthalate) (PETP), poly (butylene glycol terephthalate) (PBTP), poly (methyl methacrylate) (PMMA) or polycarbonate (PC) or mixtures thereof. The preferred virgin polyolefins for carrying out this invention are polypropylene homopolymers and copolymers of controlled rheology with similar melting points and flow rates ranging from 12 to 150 g / 10 minutes (according to ISO 1133, at 230 0 C and 2 , 16 kg).
De acuerdo con otra realización preferida según Ia presente invención, dichos polímeros termoplásticos provienen de los residuos industriales de Ia transformación de plásticos (e.g., cualquier polipropileno, polietileno, poliestireno o polipropileno co-polietilen-vinil- acetato (PP+EVA)) o de Ia comente de residuos sólidos urbanos. Estos últimos son, principalmente, diferentes mezclas de polipropileno y polietileno disponibles, inicialmente, en forma de escamas de forma y tamaño irregulares.According to another preferred embodiment according to the present invention, said thermoplastic polymers come from industrial waste from the transformation of plastics (eg, any polypropylene, polyethylene, polystyrene or polypropylene co-polyethylene-vinyl- acetate (PP + EVA)) or of the comment of urban solid waste. The latter are mainly different mixtures of polypropylene and polyethylene available, initially, in the form of irregularly shaped and sized scales.
Los agentes de acoplamiento (C) recomendados, de acuerdo con Ia presente invención, son aquellos que pertenecen al grupo de las poliolefinas injertadas con anhídrido maleico, dichas poliolefinas teniendo pesos moleculares medios en número comprendidos entre 2000 y 50000 o pesos moleculares medios en masa comprendidos entre 4000 y 300000, y que tengan contenidos de anhídrido maleico comprendidos entre 0,1 y 20%, en peso; polietileniminas puras o modificadas cuyos pesos moleculares varían entre 800 g/mol-g y 200000 g/mol-g, las cuales se presentan como productos anhidros o no; organosilanos aromáticos y alifáticos o mezclas de los mismos.The recommended coupling agents (C), in accordance with the present invention, are those belonging to the group of polyolefins grafted with maleic anhydride, said polyolefins having number average molecular weights between 2000 and 50,000 or mass average molecular weights comprised between 4000 and 300000, and having maleic anhydride contents comprised between 0.1 and 20%, by weight; pure or modified polyethyleneimines whose molecular weights vary between 800 g / mol-g and 200000 g / mol-g, which are presented as anhydrous products or not; aromatic and aliphatic organosilanes or mixtures thereof.
Por otra parte, preferiblemente, el material compuesto según Ia presente invención comprende fibras de celulosa procedentes de las especies arbóreas de madera dura, tales como el Eucaliptus globulυs. Dichas fibras de celulosa pueden ser fibras vírgenes de pasta de celulosa, bien crudas, blanqueadas o refinadas. Las fibras vírgenes de pasta de celulosa cruda tienen Ia siguiente composición aproximada (en base seca): 97%, en peso, de holocelulosa, 2.5%, en peso, de lignina y 0.5%, en peso, de cenizas. Las fibras vírgenes de pasta de celulosa blanqueadas o refinadas contienen celulosa, en su mayor parte, y muy pequeñas proporciones de lignina y hemicelulosas.On the other hand, preferably, the composite material according to the present invention comprises cellulose fibers from hardwood tree species, such as Eucalyptus globulυs. Said cellulose fibers may be virgin cellulose pulp fibers, either raw, bleached or refined. The virgin raw cellulose pulp fibers have the following approximate composition (on a dry basis): 97%, by weight, holocellulose, 2.5%, by weight, lignin and 0.5%, by weight, ash. Virgin bleached or refined cellulose pulp fibers contain cellulose, for the most part, and very small proportions of lignin and hemicelluloses.
De acuerdo con una realización preferida según Ia presente invención dichas fibras obtenidas como residuos de Ia industria de Ia pasta de celulosa y de papel pueden ser fibras residuales de pasta de celulosa de los procesos de producción de pasta de celulosa a partir de las especies madereras, procedentes de los rechazos de los procesos de tamizado de Ia mezcla de fibras de celulosa y lejía negra que sale de los digestores, de los rechazos finales de los procesos de depuración de Ia pasta de celulosa, y de diversas pérdidas y escapes a través de las telas de los lavadores utilizados en las distintas fases del blanqueo de Ia pasta de celulosa y a través de Ia tela formadora de hojas en Ia máquina secapastas. Dichas fibras residuales de pasta de celulosa, tras ser sometidas a filtración y compactado, se presentan en forma de aglomerados con una humedad comprendida entre el 50-70%, en peso, y que también pueden contener "incocidos". Dichos aglomerados tienen Ia siguiente composición aproximada (en base seca): entre un 5 y un 20%, en peso, de cenizas, entre un 5 y un 20%, en peso, de lignina y entre un 55 y un 90%, en peso, de holocelulosa, y presentándose en forma de aglomerados planares de forma y contomo irregulares, cuyo diámetro equivalente a su área proyectada es esencialmente menor de 67 mm, cuya esfericidad está comprendida entre 0,5 y 0,9, y cuya redondez está comprendida entre 0,3 y 0,7 siendo su densidad aparente de entre 0,08 y 0,380 g/cm3. A estos efectos se entiende por diámetro equivalente al área proyectada por el aglomerado aquel diámetro del círculo de igual área que Ia proyectada por el aglomerado partícula en posición estable. Se entiende por esfericidad aquella relación o cociente entre el área de Ia superficie de Ia esfera con el mismo volumen que el aglomerado y el área de Ia superficie del aglomerado. Se entiende por redondez aquella relación o cociente entre el perímetro del círculo con el mismo área que el área proyectada por el aglomerado en posición estable y el perímetro real de Ia partícula proyectada en posición estable. Se entiende por "incocidos" trozos de madera que no se desfibraron durante Ia cocción de Ia madera que tiene lugar en el proceso de obtención de Ia pasta de celulosa o paquetes de fibras que no se disolvieron durante dicha cocción.According to a preferred embodiment according to the present invention said fibers obtained as residues of the pulp and paper pulp industry can be residual pulp pulp fibers of the pulp pulp production processes from wood species, from the rejections of the sieving processes of the mixture of cellulose fibers and black liquor leaving the digesters, of the final rejections of the purification processes of the cellulose pulp, and of various losses and leaks through the fabrics of the scrubbers used in the different phases of the bleaching of the cellulose pulp and through the sheet-forming fabric in the window dressing machine. Said residual cellulose pulp fibers, after being subjected to filtration and compaction, are presented in the form of agglomerates with a humidity comprised between 50-70%, by weight, and which may also contain "uncooked". Said agglomerates have the following approximate composition (on a dry basis): between a 5 and 20%, by weight, of ashes, between 5 and 20%, by weight, of lignin and between 55 and 90%, by weight, of holocellulose, and presented in the form of planar agglomerates of form and irregular contours, whose diameter equivalent to its projected area is essentially less than 67 mm, whose sphericity is between 0.5 and 0.9, and whose roundness is between 0.3 and 0.7, its bulk density being between 0 , 08 and 0.380 g / cm 3 . For these purposes, diameter equivalent to the area projected by the agglomerate is understood to be that diameter of the circle of the same area as that projected by the particle agglomerate in a stable position. Sphericity is understood as that relationship or quotient between the area of the surface of the sphere with the same volume as the agglomerate and the area of the surface of the agglomerate. Roundness is understood as that relationship or quotient between the perimeter of the circle with the same area as the area projected by the agglomerate in a stable position and the actual perimeter of the particle projected in a stable position. "Incocided" pieces of wood are understood to be not defibrated during the cooking of the wood that takes place in the process of obtaining the cellulose pulp or fiber packages that did not dissolve during said cooking.
De acuerdo con otra realización preferida, dichas fibras obtenidas como residuos de Ia industria de Ia pasta de celulosa y del papel son las fibras residuales de celulosa procedentes de los procesos industriales de fabricación de pasta de celulosa a partir de plantas vegetales seleccionadas del grupo que incluye el yute, Ia abacá, el sisal, el cáñamo, el lino, o mezclas de las mismas.According to another preferred embodiment, said fibers obtained as residues of the pulp and paper industry are the residual cellulose fibers from the industrial processes of manufacturing cellulose pulp from plant plants selected from the group that includes jute, abaca, sisal, hemp, flax, or mixtures thereof.
De acuerdo con otra realización preferida según Ia presente invención, dichas fibras de celulosa procedentes de los rechazos de los procesos de fabricación de fibras sintéticas y textil se seleccionan del grupo formado por fibras de celulosa procedentes de los rechazos de los procesos de fabricación de fibras sintéticas (p.ej., hilachas de fibras celulósicas -hilachas de viscosa y de rayón-, etc.), fibras de celulosa obtenidas a partir del reciclaje de productos textiles gastados (por ejemplo, prendas de vestir, tejidos de uso doméstico-ropa de hogar-, material sanitario-vendas, apositos-, prendas de protección, material de limpieza), o fibras residuales de celulosa procedentes de los procesos industriales de fabricación de tejidos no-tejidos (por ejemplo, aquellos en los que el tejido no-tejido se elabora mediante un proceso de entrelazado hidráulico en el que chorros de agua alta velocidad sellan las fibras de celulosa dando lugar a un tejido de altas prestaciones técnicas).According to another preferred embodiment according to the present invention, said cellulose fibers from the rejections of the manufacturing processes of synthetic and textile fibers are selected from the group consisting of cellulose fibers from the rejections of the manufacturing processes of synthetic fibers. (eg, cellulosic fiber threads - viscose and rayon threads -, etc.), cellulose fibers obtained from the recycling of spent textile products (for example, clothing, household textiles-clothing of household-, sanitary material-bandages, dressings-, protective garments, cleaning material), or residual cellulose fibers from industrial manufacturing processes of non-woven fabrics (for example, those in which non-woven fabric It is made using a hydraulic interlacing process in which jets of High speed water seals the cellulose fibers resulting in a high technical performance fabric).
De acuerdo con otra realización preferida según Ia presente invención, dichas fibras de celulosa procedentes de residuos sólidos urbanos e industriales son fibras residuales de celulosa procedentes de Ia corriente de residuos sólidos urbanos (fibras de celulosa procedentes de papel y cartón usados) o las fibras residuales de celulosa de los procesos de reciclaje del papel y cartón usados (p.ej., papel de periódico, de revistas, cartones para líquidos procedentes de envases complejos con plástico y aluminio, etc.), siempre que, principalmente, pertenezcan al tipo de fibras de celulosa anteriormente indicado, o bien, que tengan una longitud y una esbeltez -relación longitud/diámetro- similares a las de las fibras de celulosa anteriormente indicadas.According to another preferred embodiment according to the present invention, said cellulose fibers from urban and industrial solid waste are residual cellulose fibers from the urban solid waste stream (cellulose fibers from used paper and cardboard) or the residual fibers of cellulose from the recycling processes of paper and cardboard used (eg, newspaper, magazine, cartons for liquids from complex containers with plastic and aluminum, etc.), provided that, mainly, they belong to the type of Cellulose fibers indicated above, or having a length and slenderness - length / diameter ratio - similar to those of the cellulose fibers indicated above.
La longitud y Ia esbeltez de las fibras de celulosa, utilizadas como materia prima, preferiblemente son similares y constantes dentro de un intervalo. La extensión de dicho intervalo depende de las características del modo específico de realización del método utilizado para obtener los materiales compuestos objeto de esta invención.The length and slenderness of the cellulose fibers, used as raw material, are preferably similar and constant within a range. The extent of said range depends on the characteristics of the specific embodiment of the method used to obtain the composite materials object of this invention.
Opcionalmente, dicho material celulósico (B) comprende fibras celulósicas con longitudes individuales comprendidas entre 0,1-10 mm, diámetros de fibra individuales comprendidos entre 0,01-50 μm, y relaciones longitud/diámetro individuales comprendidas entre 2-250.Optionally, said cellulosic material (B) comprises cellulosic fibers with individual lengths between 0.1-10 mm, individual fiber diameters between 0.01-50 μm, and individual length / diameter ratios between 2-250.
De acuerdo con otra realización preferida según Ia presente invención, los antioxidantes primarios recomendados son aquellos pertenecientes al grupo de los fenoles estéricamente impedidos con pesos moleculares mayores que 300 g/mol, los cinamatos, las aminas o mezclas de los mismos.According to another preferred embodiment according to the present invention, the recommended primary antioxidants are those belonging to the group of sterically hindered phenols with molecular weights greater than 300 g / mol, cinnamates, amines or mixtures thereof.
De acuerdo con otra realización preferida según Ia presente invención, el antioxidante secundario (E) se selecciona del grupo formado por compuestos de fósforo, los tioéteres, los tioésteres, preferiblemente los tioéteres, o mezclas de los mismos. Preferiblemente, los retardadores de llama (F) se seleccionan del grupo formado por los compuestos que pertenecen a Ia categoría de los compuestos de fósforo, compuestos clorados, bromados o mezclas de los mismos. Opcionalmente, los retardadores de llama (F) anteriormente indicados también se pueden combinar con uno de los siguientes componentes sinérgicos: trihidróxido de aluminio, alúminas hidratadas, boratos, estannatos, hidróxido magnésico, óxido de antimonio (III) y compuestos que pertenecen a Ia categoría de los compuestos que contienen nitrógeno.In accordance with another preferred embodiment according to the present invention, the secondary antioxidant (E) is selected from the group consisting of phosphorus compounds, thioethers, thioesters, preferably thioethers, or mixtures thereof. Preferably, the flame retardants (F) are selected from the group consisting of the compounds belonging to the category of phosphorus compounds, chlorinated compounds, brominated compounds or mixtures thereof. Optionally, the flame retardants (F) indicated above can also be combined with one of the following synergistic components: aluminum trihydroxide, hydrated aluminas, borates, stannates, magnesium hydroxide, antimony oxide (III) and compounds belonging to the category of nitrogen-containing compounds.
De acuerdo con otra realización preferida según Ia presente invención, dicho material compuesto comprende al menos una lactona.According to another preferred embodiment according to the present invention, said composite material comprises at least one lactone.
De acuerdo con otra realización preferida según Ia presente invención el material compuesto adicionalmente comprende entre 0,1 y 40%, en peso, con respecto al peso total del material compuesto, de un aditivo (G) que se selecciona del grupo formado por los estabilizantes a Ia luz o estabilizantes UV, modificadores de las propiedades de impacto, cargas inorgánicas, lubricantes, pigmentos, biocidas y agentes espumantes o mezclas de los mismos. Los- aditivos (G) pueden servir para mejorar algunas de las propiedades y Ia procesabilidad de los materiales compuestos que constituyen uno de los objetos de Ia presente invención, siempre que Ia aplicación final del material compuesto Io requiera. Preferiblemente, los estabilizantes a Ia luz son Ia lignina, el negro de humo y aquellos pertenecientes a los grupos de las bénzófenoήas, bénzotriazoles y de las triazinas. El contenido de dichos estabilizantes a Ia luz en el material compuesto puede estar comprendido entre 0,1-10%, en peso, con respecto al peso total del material compuesto. Preferiblemente, los modificadores de las propiedades de impacto son aquellos pertenecientes al grupo de los copolímeros de etileno y propileno, incluyendo los copolímeros injertados de etileno y propileno, los terpolímeros de etileno, propileno y monómeros diénicos no conjugados, y los polibutenos. El contenido de dichos modificadores de las propiedades de impacto en el material compuesto puede estar comprendido entre 1 y 30%, en peso, con respecto al peso total del material compuesto. De acuerdo con una realización preferida según Ia presente invención, los lubricantes son aquellos pertenecientes al grupo de los derivados de ácidos grasos de cadena principal larga, ceras de amida, parafinas naturales, ceras de poliolefinas de bajo peso molecular, estearatos, siloxanos, e incluso fluorotermoplásticos. Los lubricantes específicos que se deben emplear y sus niveles de dosificación dependen de Ia escala de producción específica del proceso industrial y de Ia aplicación específica en Ia que se empleen los materiales compuestos. Una de las ventajas de los nuevos materiales compuestos según Ia presente invención es que cumplen las exigencias correspondientes a los artículos de los sectores de fabricación de material eléctrico, electrónico y de telecomunicaciones. En resumen, entre otras, estas exigencias son: • Rigidez mecánica suficiente para resistir Ia extracción de cualquier componente eléctrico (e.g., un cartucho fusible) sin sufrir roturas ni presentar grietas, tanto a temperatura ambiente como tras un ser sometido a calentamiento a una temperatura de 80+5 0C.According to another preferred embodiment according to the present invention, the composite material additionally comprises between 0.1 and 40%, by weight, with respect to the total weight of the composite material, of an additive (G) that is selected from the group formed by the stabilizers to light or UV stabilizers, modifiers of impact properties, inorganic fillers, lubricants, pigments, biocides and foaming agents or mixtures thereof. The additives (G) can be used to improve some of the properties and processability of the composite materials that constitute one of the objects of the present invention, provided that the final application of the composite material requires it. Preferably, the light stabilizers are lignin, carbon black and those belonging to the groups of the bénzófenoήas, bénzotriazoles and the triazines. The content of said light stabilizers in the composite material can be comprised between 0.1-10%, by weight, with respect to the total weight of the composite material. Preferably, the modifiers of the impact properties are those belonging to the group of ethylene and propylene copolymers, including grafted copolymers of ethylene and propylene, terpolymers of ethylene, propylene and non-conjugated diene monomers, and polybutenes. The content of said modifiers of the impact properties in the composite material may be between 1 and 30%, by weight, with respect to the total weight of the composite material. In accordance with a preferred embodiment according to the present invention, the lubricants are those belonging to the group of the derivatives of long main chain fatty acids, amide waxes, natural paraffins, waxes of low molecular weight polyolefins, stearates, siloxanes, and even fluorothermoplastics The specific lubricants to be used and their dosage levels depend on the specific production scale of the industrial process and on the specific application in which the composite materials are used. One of the advantages of the new composite materials according to the present invention is that they fulfill the requirements corresponding to the articles of the sectors of manufacture of electrical, electronic and telecommunications equipment. In summary, among others, these requirements are: • Mechanical rigidity sufficient to resist the removal of any electrical component (eg, a fusible cartridge) without breaking or cracking, both at room temperature and after being subjected to heating at a temperature of 80 + 5 0 C.
• No deterioro de las partes aislantes tras ser sometido a un calentamiento continuo a una temperatura de 155±5 0C durante 168 horas.• No deterioration of the insulating parts after being subjected to continuous heating at a temperature of 155 ± 5 0 C for 168 hours.
• Resistencia de aislamiento no inferior a 5 Megaohmnios; tras ser sometida a una tensión continua de 500 V.• Insulation resistance not less than 5 Megaohms; after being subjected to a continuous voltage of 500 V.
• Resistencia a Ia formación de caminos conductores tras someter al material a un goteo con una disolución conductora de cloruro amónico anhidro y sulfato de dibutil naftaleno de sodio y someterla a una tensión de 600V.• Resistance to the formation of conductive paths after subjecting the material to a drip with a conductive solution of anhydrous ammonium chloride and sodium dibutyl naphthalene sulfate and subjecting it to a voltage of 600V.
• Verificación del calentamiento del conjunto portador y potencia disipable que supone someter a los artículos fabricados con el material compuesto a su intensidad nominal.• Verification of the heating of the carrier assembly and dissipable power that involves subjecting the articles manufactured with the composite material to its nominal intensity.
• Ensayo de fusión para comprobar Ia resistencia del material a condiciones de trabajo severas. • Resistencia al calor anormal y al fuego que supone que, tras poner en contacto los artículos fabricados con el material compuesto, a un hilo incandescente a una temperatura de 960 0C durante 30 segundos, Ia llama producida debe extinguirse antes de los 30 segundos siguientes.• Fusion test to check the resistance of the material to severe working conditions. • Resistance to abnormal heat and fire, which means that after contacting the manufactured articles with the composite material, an incandescent wire at a temperature of 960 0 C for 30 seconds, the flame produced must be extinguished before the next 30 seconds .
• Grado de protección equivalente a IP203 (protección contra Ia entrada de cuerpos sólidos, agua y resistencia a impactos mecánicos con un péndulo normalizado).• Degree of protection equivalent to IP203 (protection against the entry of solid bodies, water and resistance to mechanical impacts with a standardized pendulum).
• Rigidez dieléctrica suficiente para no sufrir perforaciones o contorneos tras ser sometido a una tensión normalizada a frecuencia industrial.• Dielectric strength sufficient not to suffer perforations or contours after being subjected to a normalized voltage at industrial frequency.
• Presentar una huella inferior a 2 mm tras ser sometido a un peso normalizado en forma de punta, en una estufa a 125 0C durante 1 hora. • Resistencia a Ia corrosión en atmósfera de niebla salina, el material no se deteriora, tras Ia exposición durante 336 horas. Las formulaciones de los materiales compuestos objeto esta invención cubren Ia futura demanda de materiales medio ambientalmente sostenibles, debido a su alto contenido de fibras renovables y de compuestos no dañinos para el medio ambiente.• present a lower footprint to 2 mm after being subjected to a standard point - shaped weight in an oven at 125 0 C for 1 hour. • Resistance to corrosion in salt spray atmosphere, the material does not deteriorate, after exposure for 336 hours. The formulations of the composite materials object of this invention cover the future demand for environmentally sustainable materials, due to their high content of renewable fibers and compounds that are not harmful to the environment.
De acuerdo con un segundo aspecto esencial, Ia presente invención se refiere a un nuevo método de obtención de los nuevos materiales compuestos en continuo, el cual permite el uso efectivo de distintos tipos de fibras de celulosa (vírgenes o residuales) para Ia obtención de diferentes formulaciones de materiales compuestos. Dichas formulaciones son adecuadas, incluso, para aplicaciones exigentes, tales como las de los sectores de fabricación de material eléctrico, electrónico y de telecomunicaciones. Dicho nuevo método para Ia obtención de los nuevos materiales compuestos con materiales celulósicos comprende las siguientes etapas: a) secar el material celulósico objeto de Ia presente invención r b) proveerse de una extrusora de doble husillo corroíante, Ia cual comprende dos mandriles (3), en cada uno de los cuales se monta una idéntica configuración de husillo utilizando distintos elementos de husillo siendo Ia relación entre su diámetro externo e interno de entre 1 ,02 y 2; c) mezclar los componentes del material compuesto; y d) descargar el material compuesto resultante a través de una zona de descarga (4) Ia cual se extiende a Io largo de una longitud comprendida entre tres y siete veces el diámetro de Ia extrusora.In accordance with a second essential aspect, the present invention refers to a new method of obtaining the new continuous composite materials, which allows the effective use of different types of cellulose fibers (virgin or residual) for obtaining different Composite material formulations. Such formulations are suitable, even, for demanding applications, such as those in the manufacturing of electrical, electronic and telecommunications equipment. Said new method for obtaining the new composite materials with cellulosic materials comprises the following steps: a) drying the cellulosic material object of the present invention rb) providing a corroding double screw extruder, which comprises two mandrels (3), in each of which an identical spindle configuration is mounted using different spindle elements, the ratio between its external and internal diameter being between 1, 02 and 2; c) mix the components of the composite material; and d) discharge the resulting composite material through a discharge zone (4) which extends along a length between three and seven times the diameter of the extruder.
La etapa a) consiste en someter el material celulósico a secado, preferiblemente, hasta un contenido de humedad comprendido entre un 1 a 10%, en peso, para Io cual se puede utilizar cualquiera de las tecnologías de secado disponibles comercialmente. En el caso de algunos materiales celulósicos que se pueden utilizar como materias primas en esta invención, se puede requerir una etapa adicional que comprende Ia transformación de los materiales celulósicos previamente secados en aglomerados con un tamaño y forma adecuados para su alimentación en continuo a los equipos de mezcla en fase fundida en los que se obtienen los materiales compuestos objeto de esta invención. Preferiblemente, los materiales celulósicos se transforman en aglomerados planares de forma y contorno irregulares, cuyo diámetro equivalente a su área proyectada es, esencialmente, menor de 15 mm, cuya esfericidad está comprendida entre 0,3 y 0,7, y cuya redondez está comprendida entre 0,1 y 0,7, adecuados para su alimentación en continuo. La extrusora de doble husillo utilizada en Ia presente invención puede comprender al menos dos puertos separados de alimentación y al menos un puerto de desgasificación y puede tener hasta 10 aberturas o puertos separados. Tres de esos puertos preferiblemente están adecuados para Ia alimentación de diferentes materias primas en estado sólido. Cuatro de esos puertos preferiblemente están adecuados para alimentar materias primas en fase líquida, y, los otros tres puertos, preferiblemente están adecuados para el venteo atmosférico, o por vacío, de diversos productos gaseosos. Este método permite el control de Ia longitud y esbeltez -relación longitud/diámetro- de las fibras de celulosa, con objeto de optimizar las propiedades de los materiales compuestos que también son objeto de esta invención.Step a) consists in subjecting the cellulosic material to drying, preferably, to a moisture content of between 1 and 10%, by weight, for which any of the commercially available drying technologies can be used. In the case of some cellulosic materials that can be used as raw materials in this invention, an additional step may be required which comprises the transformation of the previously dried cellulosic materials into agglomerates with a size and shape suitable for continuous feeding to the equipment. of melt phase mixing in which the composite materials object of this invention are obtained. Preferably, the cellulosic materials are transformed into planar agglomerates of irregular shape and contour, whose diameter equivalent to their projected area is essentially less than 15 mm, whose sphericity is between 0.3 and 0.7, and whose roundness is comprised between 0.1 and 0.7, suitable for continuous feeding. The double screw extruder used in the present invention can comprise at least two separate feeding ports and at least one degassing port and can have up to 10 openings or separate ports. Three of these ports are preferably suitable for feeding different raw materials in solid state. Four of these ports are preferably suitable for feeding raw materials in liquid phase, and the other three ports are preferably suitable for atmospheric venting, or by vacuum, of various gaseous products. This method allows the control of the length and slenderness -relation length / diameter- of the cellulose fibers, in order to optimize the properties of the composite materials that are also the object of this invention.
En la etapa d) según Ia presente invención, el material compuesto resultante sale de Ia extrusora a través de un cabezal de descarga (5), tras Io cual puede someterse a diversos procesos de transformación. Cuando se desea el material compuesto en forma de granza, se coloca un cabezal de extrusión de cordones. Preferiblemente, los métodos de granceado son el granulador de cordones o el granulador de cuchilla en cabeza con enfriamiento mediante aire o mezclas aire-agua. La granza de material compuesto así obtenida es susceptible de ser alimentada a una máquina industrial de moldeo por inyección con objeto de obtener productos moldeados.In step d) according to the present invention, the resulting composite material leaves the extruder through a discharge head (5), after which it can undergo various transformation processes. When the composite material in the form of a pellet is desired, a cord extrusion head is placed. Preferably, the pelletizing methods are the cord granulator or the head knife granulator with air cooling or air-water mixtures. The composite pellet thus obtained is capable of being fed to an industrial injection molding machine in order to obtain molded products.
De acuerdo con una realización preferida según Ia presente invención, el material compuesto, tras pasar por Ia zona de descarga (4) y ser sometido a un proceso de granulación, se somete a un proceso de moldeo por inyección. Preferiblemente, el material compuesto granulado se inyecta a una temperatura menor que 210 0C en cualquiera de las zonas de calefacción de una cámara o cilindro de plastificación de una máquina de moldeo por inyección.In accordance with a preferred embodiment according to the present invention, the composite material, after passing through the discharge zone (4) and being subjected to a granulation process, is subjected to an injection molding process. Preferably, the composite pellets is injected at a temperature lower than 210 0 C in any of the heating zones of a chamber or plasticising cylinder of a molding machine injection.
Opcionalmente, dicho material compuesto se somete a un procedimiento de calandrado a medida que sale de Ia zona de descarga (4) con objeto de tener un panel delgado, seguido de un moldeo por compresión. De acuerdo con otra realización preferida según Ia presente invención, el material compuesto se somete a un proceso de extrusión directa tras pasar por Ia zona de descarga (4).Optionally, said composite material is subjected to a calendering process as it leaves the discharge zone (4) in order to have a thin panel, followed by compression molding. In accordance with another preferred embodiment according to the present invention, the composite material is subjected to a direct extrusion process after passing through the discharge zone (4).
En las etapas b) y c), se realizan los ajustes necesarios sobre Ia misma extrusora preparándose una configuración del husillo óptima para Ia obtención de un material compuesto con las características adecuadas a cada aplicación. La configuración de husillo elegida depende de las características dei termoplástico que se vaya a alimentar a Ia extrusora (tales como, morfología e índice de fluidez) y de las características del material celulósico se vaya a alimentar a Ia extrusora (tales como Ia longitud y esbeltez de sus fibras de celulosa). También depende de las propiedades mecánicas y reológicas que deba de tener el material compuesto a obtener, las cuales dependen, a su vez, de los requerimientos que tenga Ia aplicación final en Ia que se vaya emplear el material compuesto. Por Io tanto, de acuerdo con una realización preferida según Ia presente invención, Ia etapa de mezclado c) comprende las siguientes etapas: i.- dosificar a través de una tolva de alimentación' (6) el polímero termoplástico (A), el agente de acoplamiento (C), el antioxidante primario (D) y el antioxidante secundario (E) y,opcionalmente también los aditivos (G) que se seleccionan del grupo constituido por estabilizantes a Ia luz o estabilizantes UV, modificadores de las propiedades de impacto, cargas inorgánicas, lubricantes, pigmentos, biocidas y agentes espumantes, mediante un conjunto de dosificadores gravimétricos (2), dentro de una zona de alimentación del polímero y los aditivos (7), Ia cual comprende elementos de husillo de transporte positivo y se extiende a Io largo de una longitud comprendida entre tres y siete veces el diámetro de Ia extrusora; i¡.- calentar Ia mezcla obtenida en el paso i.- y transportar dicha mezcla a Io largo de una zona cerrada de transporte y calentamiento (8) que comprende elementos de husillo de transporte positivo;In stages b) and c), the necessary adjustments are made on the same extruder preparing an optimal spindle configuration for obtaining a composite material with the characteristics appropriate to each application. The spindle configuration chosen depends on the characteristics of the thermoplastic to be fed to the extruder (such as morphology and fluidity index) and the characteristics of the cellulosic material to be fed to the extruder (such as length and slenderness of its cellulose fibers). It also depends on the mechanical and rheological properties that the composite material to obtain must have, which, in turn, depend on the requirements of the final application in which the composite material is to be used. Therefore, in accordance with a preferred embodiment according to the present invention, the mixing stage c) comprises the following steps: i.- dosing through a feed hopper '(6) the thermoplastic polymer (A), the agent coupling (C), the primary antioxidant (D) and the secondary antioxidant (E) and, optionally also the additives (G) that are selected from the group consisting of light stabilizers or UV stabilizers, modifiers of the impact properties, inorganic fillers, lubricants, pigments, biocides and foaming agents, by means of a set of gravimetric dosers (2), within a feeding zone of the polymer and additives (7), which comprises positive transport spindle elements and extends to The length of a length between three and seven times the diameter of the extruder; i¡.- heating the mixture obtained in step i.- and transporting said mixture along a closed transport and heating zone (8) comprising positive transport spindle elements;
¡¡i.- fundir, mezclar y amasar dicha mezcla en una zona de fusión (9), que comprende elementos de husillo de amasado, estando comprendida la longitud conjunta de Ia zona cerrada de transporte y calentamiento (8) y de la zona de fusión (9) entre tres y siete veces el diámetro de Ia extrusora; iv.- someter Ia mezcla anterior, a través del puerto de venteo atmosférico (11), a venteo y desgasificación en una primera zona de venteo (10) que comprende elementos de husillo de transporte negativo o inverso y de transporte positivo; v.- dosificar en continuo el material celulósico (B) en una zona de alimentación lateral del material celulósico (12) que comprende elementos de husillo de transporte positivo, empleando un primer embutidor de doble husillo con husillos que deben de tener un diámetro externo mínimo de 24 mm (13), alimentado a su vez por un segundo dosificador gravimétrico de doble husillo (14) dispuesto encima de dicho primer embutidor, estando comprendida Ia longitud conjunta de Ia primera zona de venteo (10) y de Ia zona de alimentación lateral del material celulósico (12) entre tres y ocho veces el diámetro de Ia extrusora. vi.- amasar Ia mezcla obtenida en Ia etapa anterior v.- en una zona de incorporación del material celulósico e inyección de líquidos (15) que comprende al menos un elemento de husillo de amasado o al menos un elemento de mezcla dentado, o al menos un elemento de transporte positivo, o al menos un elemento de transporte negativo o una mezcla de los mismos, extendiéndose dicha zona a Io largo de una longitud comprendida entre tres y siete veces el diámetro de Ia extrusora; vii.-someter Ia mezcla obtenida en Ia etapa anterior vi.- a través de un segundo puerto de venteo atmosférico (17), a venteo y desgasificación en una segunda zona de venteo (16) que comprende elementos de husillo de transporte y de transporte positivo; viii.- dosificar en continuo un retardador de llama (F) en una zona de alimentación lateral del retardador de llama (18) que comprende elementos de husillo de transporte positivo empleando un segundo embutidor de doble husillo con cámara y husillos preferiblemente refrigerados (19), teniendo dichos husillos un diámetro externo mínimo de 20 mm, alimentado su vez por un tercer dosificador gravimétrico de doble husillo (20) dispuesto encima de dicho segundo embutidor (19), estando comprendida Ia longitud conjunta de Ia segunda zona de venteo¡¡I.- melt, mix and knead said mixture in a melting zone (9), which comprises kneading spindle elements, the joint length of the closed transport and heating zone (8) and of the mixing zone being included. fusion (9) between three and seven times the diameter of the extruder; iv.- subject the previous mixture, through the atmospheric venting port (11), to venting and degassing in a first venting zone (10) comprising spindle elements of negative or reverse transport and positive transport; v.- continuously dosing the cellulosic material (B) in a lateral feeding zone of the cellulosic material (12) comprising positive transport spindle elements, using a first double spindle stuffing with spindles that must have a minimum external diameter 24 mm (13), in turn fed by a second double screw gravimetric dispenser (14) disposed above said first stuffer, the joint length of the first vent zone (10) and the lateral feed zone being comprised of the cellulosic material (12) between three and eight times the diameter of the extruder. vi.- kneading the mixture obtained in the previous stage v.- in an area of incorporation of the cellulosic material and liquid injection (15) comprising at least one kneading spindle element or at least one toothed mixing element, or at less a positive transport element, or at least one negative transport element or a mixture thereof, said area extending along a length between three and seven times the diameter of the extruder; vii.-submit the mixture obtained in the previous stage vi.- through a second atmospheric venting port (17), to venting and degassing in a second venting zone (16) comprising transport and transport spindle elements positive; viii.- continuously dosing a flame retardant (F) in a side feed zone of the flame retardant (18) comprising positive transport spindle elements using a second double spindle stuffing chamber with chamber and preferably chilled spindles (19) , said spindles having a minimum external diameter of 20 mm, fed in turn by a third double spindle gravimetric dispenser (20) disposed above said second stuffer (19), the joint length of the second venting area being comprised
(16) y de Ia zona de alimentación lateral del retardador de llama (18) entre tres y ocho veces el diámetro de Ia extrusora. ix.- amasar Ia mezcla obtenida en Ia etapa anterior viii.- en una zona de incorporación del retardador de llama e inyección de líquidos (21) que comprende al menos un elemento de husillo de amasado o al menos un elemento de mezcla dentado, o al menos un elemento de transporte positivo, o al menos un elemento de transporte negativo o una mezcla de los mismos, extendiéndose dicha zona a Io largo de una longitud comprendida entre tres y siete veces el diámetro de Ia extrusora; x.- someter la mezcla obtenida en Ia etapa anterior ¡x.-, a través de un tercer puerto de venteo (23), a venteo y desgasificación a vacío en una tercera zona de venteo(16) and of the side feed zone of the flame retardant (18) between three and eight times the diameter of the extruder. ix.- kneading the mixture obtained in the previous stage viii.- in a zone of incorporation of the flame retardant and liquid injection (21) comprising at least one kneading spindle element or at least one toothed mixing element, or at least one positive transport element, or at least one negative transport element or a mixture thereof, said area extending along a length between three and seven times the diameter of the extruder; x.- subject the mixture obtained in the previous stage ¡x.-, through a third venting port (23), to venting and vacuum degassing in a third venting zone
(22) que comprende elementos de husillo de transporte negativo o inverso y de transporte positivo Ia cual se extiende a Io largo de una longitud comprendida entre tres y siete veces el diámetro de Ia extrusora.(22) comprising spindle elements of negative or reverse transport and positive transport Ia which extends along a length between three and seven times the diameter of the extruder.
De acuerdo con una realización preferida según Ia presente invención, Ia temperatura en Ia etapa i.- está comprendida entre 20 y 50 0C, Ia temperatura en Ia etapa i¡.- está comprendida entre 175 0C y 205 0C, Ia temperatura en Ia etapa iii.- está comprendida entre 175 0C y 205 0C, Ia temperatura en Ia etapa iv.- está comprendida entre 174 0C y 204 0C, Ia temperatura en Ia etapa v.- está comprendida entre 174 0C y 204 0C, Ia temperatura en Ia etapa vi.- está comprendida entre 1730C y 203 0C, Ia temperatura en Ia etapa vii.- está comprendida entre 171 0C y 201 0C, Ia temperatura en Ia etapa viii.- está comprendida entre 171 0C y 201 0C, Ia temperatura en Ia etapa ix.- está comprendida entre 169 0C y 199 0C, Ia temperatura en Ia etapa x.- está comprendida entre 1670C y 197 0C. Opcionalmente, Ia temperatura en Ia zona de descarga (4) está comprendida entre 1650C y 195 0C.According to a preferred embodiment according to the present invention, the temperature in stage i.- is comprised between 20 and 50 0 C, the temperature in stage i¡.- is comprised between 175 0 C and 205 0 C, the temperature in stage iii.- is between 175 0 C and 205 0 C, the temperature in stage iv.- is between 174 0 C and 204 0 C, the temperature in stage v.- is between 174 0 C and 204 0 C, the temperature in stage vi.- is comprised between 173 0 C and 203 0 C, the temperature in stage vii.- is comprised between 171 0 C and 201 0 C, the temperature in stage viii. - is between 171 0 C and 201 0 C, the temperature in stage ix.- is between 169 0 C and 199 0 C, the temperature in stage x.- is between 167 0 C and 197 0 C. Optionally, the temperature in the discharge zone (4) is comprised between 165 0 C and 195 0 C.
Cada dosificador gravimétrico de los utilizados en Ia etapa i.- puede tener distinta configuración en función de Ia naturaleza del componente a alimentar: i. para componentes en forma de granza, a alimentar en dicha etapa i.-, el dosificador gravimétrico se puede seleccionar preferiblemente de entre los alimentadores de doble husillo, cuyos husillos tienen un diámetro externo mínimo de 20 mm, un ángulo de hélice mínimo de 11 ,31 grados sexagesimales, un espesor de filete mínimo de 1 ,5 mm y una profundidad de canal mínima de 3 mm; o entre los alimentadores de husillo simple cuyo husillo tiene un diámetro externo mínimo de 24 mm, un ángulo de hélice mínimo de 7,12 grados sexagesimales, un espesor de filete mínimo de 1 ,5 mm y una profundidad de canal mínima de 3 mm; ii. para componentes en forma de polvo, a alimentar en dicha etapa i.-, el dosificador gravimétrico se puede seleccionar preferiblemente de entre los alimentadores de doble husillo, cuyos husillos tienen un diámetro externo mínimo de 12 mm, un ángulo de hélice mínimo de 9,47 grados sexagesimales, un espesor de filete mínimo de 1 mm y una profundidad de canal mínima de 1 mm; iii. para componentes en forma de escamas irregulares o partículas (tales como las que corresponden a los polímeros residuales procedentes de los residuos sólidos urbanos), a alimentar en dicha etapa i.-, el dosificador gravimétrico se puede seleccionar preferiblemente de entre los alimentadores de doble husillo, cuyos husillos tienen un diámetro externo mínimo de 35 mm, un ángulo de hélice mínimo de 19,65 grados sexagesimales, un espesor de filete mínimo de 3 mm y una profundidad de canal mínima de 7,5 mm.Each gravimetric dispenser used in stage i.- may have different configuration depending on the nature of the component to be fed: i. for pellet-shaped components, to be fed in said stage i.-, the gravimetric dispenser can preferably be selected from the double spindle feeders, whose spindles have a minimum external diameter of 20 mm, a minimum propeller angle of 11, 31 sexagesimal degrees, a minimum fillet thickness of 1.5 mm and a minimum channel depth of 3 mm; or between single spindle feeders whose spindle has a minimum external diameter of 24 mm, a minimum propeller angle of 7.12 sexagesimal degrees, a minimum fillet thickness of 1.5 mm and a minimum channel depth of 3 mm; ii. for powder-shaped components, to be fed in said stage i.-, the gravimetric dispenser can preferably be selected from the double spindle feeders, whose spindles have a minimum external diameter of 12 mm, a minimum propeller angle of 9, 47 sexagesimal degrees, a minimum fillet thickness of 1 mm and a minimum channel depth of 1 mm; iii. for components in the form of irregular scales or particles (such as those corresponding to residual polymers from urban solid waste), to be fed at said stage i.-, the gravimetric dispenser can preferably be selected from the double spindle feeders , whose spindles have a minimum external diameter of 35 mm, a minimum propeller angle of 19.65 sexagesimal degrees, a minimum fillet thickness of 3 mm and a minimum channel depth of 7.5 mm.
Opcionalmente, Ia configuración de husillo en Ia etapa d) comprende una combinación de elementos de husillo de transporte positivo y de mezcla dentados. La configuración de los dosificadores gravimétricos empleados en las etapas v.- y viii.- dependerán de las características físicas del material celulósico y del retardador de llama respectivamente. Preferiblemente, el dosificador gravimétrico de doble husillo (14) empleado en Ia etapa v.- para aumentar el material celulósico se puede seleccionar de entre los alimentadores, cuyos husillos tienen un diámetro externo mínimo de 35 mm, un ángulo de hélice mínimo de 19,65 grados sexagesimales, un espesor de filete mínimo de 3 mm y una profundidad de canal mínima de 7,5 mm. De acuerdo con otra realización preferida según Ia presente invención, el dosificador gravimétrico de doble husillo (20) empleado en Ia etapa viii.- para alimentar el retardador de llama tiene un diámetro extemo mínimo de 20 mm, un ángulo de hélice mínimo de 11 ,31 grados sexagesimales, un espesor de filete mínimo de 1 ,5 mm y una profundidad de canal mínima de 3 mm.Optionally, the spindle configuration in stage d) comprises a combination of spindle elements of positive transport and toothed mixing. The configuration of the gravimetric dosers used in stages v.- and viii.- will depend on the physical characteristics of the cellulosic material and the flame retardant respectively. Preferably, the double screw gravimetric dispenser (14) used in step v.- to increase the cellulosic material can be selected from the feeders, whose spindles have a minimum external diameter of 35 mm, a minimum helix angle of 19, 65 sexagesimal degrees, a minimum fillet thickness of 3 mm and a minimum channel depth of 7.5 mm. In accordance with another preferred embodiment according to the present invention, the double screw gravimetric dispenser (20) used in step viii.- to feed the flame retardant has a minimum external diameter of 20 mm, a minimum propeller angle of 11, 31 sexagesimal degrees, a minimum fillet thickness of 1.5 mm and a minimum channel depth of 3 mm.
De acuerdo con una realización preferida según la presente invención, los dos mandriles de Ia extrusora corroíante preferiblemente rotan a una velocidad superior a 200 rpm y los dos mandriles rotan en el mismo sentido, de acuerdo con Ia dirección de transporte de los componentes. De ese modo, se puede lograr una buena dispersión de las fibras de celulosa y del resto de los componentes del material compuesto. Además, dichas velocidades de rotación de los husillos permiten alcanzar producciones de material compuesto superiores a las que se pueden lograr, utilizando los modos de realización descritos en el estado de Ia técnica anterior. El método objeto de Ia invención permite, aún así, el control de Ia longitud y esbeltez -relación longitud/diámetro- de las fibras de celulosa, con objeto de optimizar las propiedades de los materiales compuestos, de acuerdo con las aplicaciones que también son objeto de esta invención. Durante la etapa de amasado del material celulósico (etapa vi.-) dicho material celulósico resulta amasado con los componentes del material compuesto que han resultado mezclados y amasados en las etapas anteriores. De este modo, el material celulósico resulta sometido a mezclado dispersivo o distributivo, dependiendo de los elementos de husillo seleccionados, de acuerdo con Ia configuración husillo elegida para obtener el material compuesto. El amasado de las fibras celulósicas requiere tiempo suficiente para su mezcla con el polímero fundido, así como para su anclaje mecánico con el mismo, y para reaccionar con el agente de acoplamiento. Así, en Ia presente invención, para evitar Ia degradación térmica y mecánica de las fibras celulósicas, preferiblemente Ia etapa vi.- comprende amasar mediante elementos de mezcla dentados. Dicha configuración permite distribuir las fibras de forma uniforme y efectiva.In accordance with a preferred embodiment according to the present invention, the two mandrels of the corroding extruder preferably rotate at a speed greater than 200 rpm and the two mandrels rotate in the same direction, in accordance with the direction of transport of the components. In this way, a good dispersion of the cellulose fibers and the rest of the components of the composite material can be achieved. In addition, said speeds of rotation of the spindles allow to achieve productions of composite material higher than those that can be achieved, using the embodiments described in the prior art. The method object of the invention allows, however, the control of the length and slenderness -relation length / diameter- of the cellulose fibers, in order to optimize the properties of the composite materials, according to the applications that are also object of this invention. During the kneading stage of the cellulosic material (stage vi.-) said cellulosic material is kneaded with the components of the composite material that have been mixed and kneaded in the previous stages. In this way, the cellulosic material is subjected to dispersive or distributive mixing, depending on the spindle elements selected, in accordance with the spindle configuration chosen to obtain the composite material. The kneading of the cellulosic fibers requires sufficient time for mixing with the molten polymer, as well as for its mechanical anchoring with it, and for reacting with the coupling agent. Thus, in the present invention, in order to avoid thermal and mechanical degradation of the cellulosic fibers, preferably stage vi.- comprises kneading by means of toothed mixing elements. This configuration allows the fibers to be distributed evenly and effectively.
La etapa ix.- de amasado del retardador de llama; debe comprender el menor tiempo posible para evitar que los aditivos que se pueden descomponer debido al cizallamiento, tales como algunos retardadores de llama, se descompongan.Stage ix.- of flame retardant kneading; You should understand as little time as possible to prevent additives that can decompose due to shearing, such as some flame retardants, from decomposing.
Los materiales compuestos según Ia presente invención poseen unas características que los hacen aptos para su utilización en Ia fabricación de componentes para diversos sectores, incluso para aplicaciones moderadamente exigentes, tales como las de los sectores de fabricación de material eléctrico, electrónico y de telecomunicaciones, pudiendo de esta manera sustituir a diferentes materiales reforzados con fibra de vidrio y polímeros termoestables, utilizados en Ia actualidad. Entre estas exigencias se encuentran Ia resistencia al calor anormal y al fuego. Más aún, los materiales compuestos según Ia presente invención responden a las crecientes restricciones medioambientales, al reutilizar materiales de deshecho provenientes de otras industrias. Una importante ventaja es que los nuevos materiales compuestos poseen un comportamiento reológico uniforme y una viscosidad relativamente baja que les hace fácilmente moldeables en diversos artículos, siguiendo distintas técnicas como Ia extrusión, el moldeo por inyección y el moldeo por compresión, utilizando Ia maquinaria disponible en el mercado. Esta ventaja es inherente a los nuevos materiales compuestos y el método objeto de Ia presente invención. Esta ventaja supone que se pueden moldear, a ritmos de producción industriales, artículos con espesores de pared tan delgados como 0,5 mm, sin perjudicar las propiedades de los materiales compuestos ni Ia apariencia de los artículos moldeados. Por lo tanto, de acuerdo con un tercer aspecto esencial, Ia presente invención se refiere al uso del material compuesto según Ia presente invención para obtener artículos moldeados. Dichos artículos son especialmente aptos para su uso en los sectores eléctrico, electrónico y de telecomunicaciones, preferiblemente para Ia fabricación de bases portafusibles, infraestructuras comunes de telecomunicaciones y cajas para centralización de contadores. Los artículos obtenidos cumplen con las exigencias de estabilidad y resistencia al calor y el fuego requeridos en estas industrias. Adicionalmente, dichos artículos conformados a partir de un material compuesto según Ia presente invención, también son aptos para su uso en los sectores de construcción, aviación, automoción, mueble.The composite materials according to the present invention have characteristics that make them suitable for use in the manufacture of components for various sectors, even for moderately demanding applications, such as those in the sectors of manufacture of electrical, electronic and telecommunications equipment, being able to in this way replace different materials reinforced with fiberglass and thermosetting polymers, currently used. Among these requirements are resistance to abnormal heat and fire. Moreover, the composite materials according to the present invention respond to the growing environmental restrictions, by reusing waste materials from other industries. An important advantage is that the new composite materials have a uniform rheological behavior and a relatively low viscosity that makes them easily moldable in various articles, following different techniques such as extrusion, injection molding and compression molding, using the machinery available in the market. This advantage is inherent in the new composite materials and the method object of the present invention. This advantage means that items with wall thicknesses as thin as 0.5 mm can be molded at industrial production rates, without damaging the properties of the composite materials or the appearance of the molded articles. Therefore, in accordance with a third essential aspect, the present invention relates to the use of the composite material according to the present invention to obtain molded articles. Said articles are especially suitable for use in the electrical, electronic and telecommunications sectors, preferably for the manufacture of fuse bases, common telecommunications infrastructures and boxes for meter centralization. The articles obtained meet the requirements of stability and resistance to heat and fire required in these industries. Additionally, said articles formed from a composite material according to the present invention, are also suitable for use in the construction, aviation, automotive, furniture sectors.
A continuación, se describen varias formas de realización preferida según Ia presente invención para mejor comprensión de Ia misma, con ejemplos que en ningún caso son limitativos.Next, several preferred embodiments according to the present invention are described for a better understanding thereof, with examples that in no case are limiting.
Ejemplo 1Example 1
En aras de Ia claridad y brevedad, en este ejemplo, sólo se describen los rasgos distintivos del modo de realización de Ia invención correspondiente a este ejemplo.For the sake of clarity and brevity, in this example, only the distinctive features of the embodiment of the invention corresponding to this example are described.
Desde Ia parte del mandril que se acopla a Ia unidad motriz de Ia extrusora (1) hasta el final del mandril que se corresponde con el cabezal de Ia misma (5) (de izquierda a derecha en Ia tabla siguiente), en cada uno de los dos mandriles de Ia extrusora corroíante, se introdujeron diversos elementos de husillo en el orden que se indica en Ia tabla I:From the part of the mandrel that is coupled to the drive unit of the extruder (1) to the end of the mandrel that corresponds to the head of the same (5) (from left to right in the following table), in each of the two mandrels of the corroding extruder, various spindle elements were introduced in the order indicated in Table I:
TablaTable
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000029_0001
Figure imgf000030_0001
Claves de Ia tabla: ETP significa Elemento de Transporte Positivo; EA significa Elemento de Amasado; ETN significa Elemento de Transporte Negativo; EMD significa Elemento de Mezcla DentadoKeys of the table: ETP means Positive Transport Element; EA means Kneading Element; ETN means Negative Transport Element; EMD stands for Serrated Mix Element
Ambos mandriles quedaron así configurados con idéntica configuración de husillo. Su velocidad de rotación, en este caso, se fijó en 300 rpm.Both mandrels were thus configured with identical spindle configuration. Its rotation speed, in this case, was set at 300 rpm.
El perfil de temperatura fijado en las distintas etapas de mezclado y en Ia zona de descarga (4) de Ia extrusora se muestra en Ia tabla II:The temperature profile set in the different mixing stages and in the discharge zone (4) of the extruder is shown in Table II:
Tabla IlIl table
Figure imgf000030_0002
Figure imgf000030_0002
El polímero, los aglomerados planares del material celulósico procedentes de los rechazos y pérdidas del proceso de producción de pasta de celulosa kraft a partir de madera de Eucaliptus globulus, previamente secados y transformados en aglomerados con Ia morfología adecuada para su alimentación en continuo, el agente de acoplamiento, los antioxidantes y el retardador de llama, se alimentaron continuamente a dicha extrusora de doble husillo corroíante para su mezclado en fase fundida. Siguiendo el método descrito anteriormente, se obtuvo un material compuesto que, por cada 100 partes de su peso, comprendió:The polymer, the planar agglomerates of the cellulosic material from the rejections and losses of the production process of kraft pulp from Eucalyptus globulus wood, previously dried and transformed into agglomerates with the appropriate morphology for continuous feeding, the agent of coupling, the antioxidants and the flame retardant, were continuously fed to said corroding double screw extruder for mixing in molten phase. Following the method described above, a composite material was obtained which, for every 100 parts of its weight, comprised:
• 44,25 partes, en peso, de un polipropileno homopolímero con un índice de fluidez de 75 g/10 minutos (según norma ISO 1133, a 230 °C y 2,16 kg).• 44.25 parts, by weight, of a homopolymer polypropylene with a flow rate of 75 g / 10 minutes (according to ISO 1133, at 230 ° C and 2.16 kg).
• 1 ,15 partes, en peso, de un polipropileno injertado con anhídrido maleico con un peso molecular medio en número de 3900, un peso molecular medio en masa de 9100 y un contenido de anhídrido maleico del 8,21% en peso. • 0,15 partes, en peso, de tetrakis(3-(3,5-di-terc-but¡l-4-hidrox¡fenil) propionato) de pentaeritritol (CAS #6683-19-8)• 1.15 parts, by weight, of a polypropylene grafted with maleic anhydride with a number average molecular weight of 3900, a mass average molecular weight of 9100 and a content of maleic anhydride of 8.21% by weight. • 0.15 parts, by weight, of pentaerythritol tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate) (CAS # 6683-19-8)
• 0,62 partes, en peso, de (3, 3Miodipropionato) de dioctadecilo (CAS #693-36-7)• 0.62 parts, by weight, of (3, 3-Methylpropionate) dioctadecyl (CAS # 693-36-7)
• 30,77 partes, en peso, de un material celulósico procedente de los rechazos y pérdidas del proceso de producción de pasta de celulosa kraft a partir de madera de Eucaliptus globulus.• 30.77 parts, by weight, of a cellulosic material from the rejections and losses of the production process of kraft pulp from Eucalyptus globulus wood.
• 23,06 partes, en peso, del ignifugante no halogenado polifosfato amónico (CAS #68333-79-9)• 23.06 parts, by weight, of the non-halogenated flame retardant ammonium polyphosphate (CAS # 68333-79-9)
La granza de material compuesto de Ia formulación correspondiente a este ejemplo, finalmente obtenida, fue alimentada a una máquina de moldeo por inyección de 450 kN de fuerza de cierre, en Ia que el cilindro o cámara de plastificación de Ia máquina de moldeo por inyección se calentó de acuerdo con el perfil de temperaturas seleccionado (ver tabla III):The composite material pellet of the formulation corresponding to this example, finally obtained, was fed to an injection molding machine of 450 kN of closing force, in which the cylinder or plasticizing chamber of the injection molding machine is heated according to the selected temperature profile (see table III):
Tabla IIITable III
Figure imgf000031_0001
Figure imgf000031_0001
El tiempo de enfriamiento fue de 25 segundos. De este modo, se obtuvieron probetas multipropósito de acuerdo con Ia norma ISO 3167 que se utilizaron para determinar las propiedades del material compuesto obtenido. De acuerdo con las normas ISO, los valores de las principales propiedades mecánicas y térmicas de los materiales compuestos obtenidos fueron:The cooling time was 25 seconds. Thus, multipurpose specimens were obtained in accordance with ISO 3167 that were used to determine the properties of the composite material obtained. In accordance with ISO standards, the values of the main mechanical and thermal properties of the composite materials obtained were:
Figure imgf000031_0002
Figure imgf000031_0002
Ejemplo 2 Siguiendo el método descrito en el ejemplo 1 y utilizando aglomerados planares de un material celulósico constituido por fibras vírgenes de pasta de celulosa cruda de Eucaliptus globulus previamente secados y cuya morfología permitió su alimentación en continuo a Ia extrusora sin necesidad de ser sometidos al proceso de transformación anteriomente indicado se obtuvo un material compuesto que, por cada 100 partes de su peso, comprendió:Example 2 Following the method described in Example 1 and using planar agglomerates of a cellulosic material consisting of virgin fibers of raw cellulose pulp of Eucalyptus globulus previously dried and whose morphology allowed its continuous feeding to the extruder without being subjected to the aforementioned transformation process, a composite material was obtained which, for every 100 parts of its weight, included:
• 44,25 partes, en peso, de un polipropileno homopolímero con un índice de fluidez de 75 g/10 minutos (según norma ISO 1133, a 2300C y 2,16 kg).• 44.25 parts by weight of a polypropylene homopolymer with a melt index of 75 g / 10 minutes (according to ISO 1133, at 230 0 C and 2.16 kg).
• 1 ,15 partes, en peso, de un polipropileno injertado con anhídrido maleico con un peso molecular medio en número de 3900, un peso molecular medio en masa de 9100 y un contenido de anhídrido maleico del 8,21% en peso.• 1.15 parts, by weight, of a polypropylene grafted with maleic anhydride with a number average molecular weight of 3900, a mass average molecular weight of 9100 and a content of maleic anhydride of 8.21% by weight.
• 0,15 partes, en peso, de tetrakis(3-(3,5-di-terc-butil-4-hidroxifenil) propionato) de pentaeritritol (CAS #6683-19-8)• 0.15 parts, by weight, of pentaerythritol tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate) (CAS # 6683-19-8)
• 0,62 partes, en peso, de (3, 3x-tiodiprσpiσnato) de dioctadecilo (CAS #693-36-7)• 0.62 parts, by weight, of (3, 3 x -thiodiprσpiσnato) dioctadecyl (CAS # 693-36-7)
• 30,77 partes, en peso, de un material celulósico constituido por fibras vírgenes de pasta de celulosa cruda procedente de Eucaliptus globulus.• 30.77 parts, by weight, of a cellulosic material consisting of virgin fibers of raw cellulose pulp from Eucaliptus globulus.
• 23,06 partes, en peso, del ignifugante no halogenado polifosfato amónico (CAS #68333-79-9)• 23.06 parts, by weight, of the non-halogenated flame retardant ammonium polyphosphate (CAS # 68333-79-9)
Siguiendo el método descrito en el ejemplo 1 , Ia granza de material compuesto de Ia formulación correspondiente a este ejemplo fue inyectada para obtener probetas multipropósito de acuerdo con Ia norma ISO 3167. De acuerdo con las normas ISO, los valores de las principales propiedades mecánicas y térmicas de los materiales compuestos obtenidos fueron (ver tabla IV):Following the method described in example 1, the composite material pellet of the formulation corresponding to this example was injected to obtain multipurpose specimens in accordance with ISO 3167. According to ISO standards, the values of the main mechanical properties and The thermal materials obtained were (see table IV):
Tabla IVTable IV
Figure imgf000032_0001
Ejemplo 3
Figure imgf000032_0001
Example 3
Siguiendo el método descrito en el ejemplo 1 y utilizando aglomerados planares de un material celulósico constituido por fibras fibras vírgenes de pasta de celulosa blanqueada de Eucaliptos globulus previamente secados y cuya morfología permitió su alimentación en continuo a Ia extrusora sin necesidad de ser sometidos al proceso de transformación anteriomente indicado se obtuvo un material compuesto que, por cada 100 partes de su peso, comprendió:Following the method described in Example 1 and using planar agglomerates of a cellulosic material consisting of virgin fibers of bleached cellulose pulp from previously dried Eucalyptus globulus and whose morphology allowed its continuous feeding to the extruder without being subjected to the process of The above-mentioned transformation obtained a composite material that, for every 100 parts of its weight, comprised:
• 44,25 partes, en peso, de un polipropileno homopolímero con un índice de fluidez de 75 g/10 minutos (según norma ISO 1133, a 230 0C y 2,16 kg). • 1 ,15 partes, en peso, de un polipropileno injertado con anhídrido maleico con un peso molecular medio en número de 3900, un peso molecular medio en masa de 9100 y un contenido de anhídrido maleico del 8,21% en peso.• 44.25 parts by weight of a polypropylene homopolymer with a melt index of 75 g / 10 minutes (according to ISO 1133, at 230 0 C and 2.16 kg). • 1.15 parts, by weight, of a polypropylene grafted with maleic anhydride with a number average molecular weight of 3900, a mass average molecular weight of 9100 and a content of maleic anhydride of 8.21% by weight.
• 0,15 partes, en peso, de tetrakis(3-(3,5-dT-terc-but¡r-4-hidroxifenil) propíonato) de pentaeritritol (CAS #6683-19-8) • 0,62 partes, en peso, de (3, 3Miodipropionato) de dioctadecilo (CAS #693-36-7)• 0.15 parts, by weight, of tetrakis (3- (3,5-dT-tert-butr-4-hydroxyphenyl) propyonate) of pentaerythritol (CAS # 6683-19-8) • 0.62 parts, by weight of dioctadecyl (3, 3-propionate) diodedecyl (CAS # 693-36-7)
• 30,77 partes, en peso, de un material celulósico constituido por fibras vírgenes de pasta de celulosa blanqueada de Eucaliptus globulus.• 30.77 parts, by weight, of a cellulosic material consisting of virgin fibers of bleached cellulose pulp from Eucaliptus globulus.
• 23,06 partes, en peso, del ignifugante no halogenado polifosfato amónico (CAS #68333-79-9) Siguiendo el método descrito en el ejemplo 1 , Ia granza de material compuesto de Ia formulación correspondiente a este ejemplo fue inyectada para obtener probetas multipropósito de acuerdo con Ia norma ISO 3167. De acuerdo con las normas ISO, los valores de las principales propiedades mecánicas y térmicas de los materiales compuestos obtenidos fueron (ver tabla V):• 23.06 parts, by weight, of the non-halogenated flame retardant ammonium polyphosphate (CAS # 68333-79-9) Following the method described in example 1, the composite material pellet of the formulation corresponding to this example was injected to obtain specimens multipurpose in accordance with ISO 3167. According to ISO standards, the values of the main mechanical and thermal properties of the composite materials obtained were (see table V):
Tabla VTable V
Figure imgf000033_0001
Ejemplo 4
Figure imgf000033_0001
Example 4
Siguiendo el método descrito en el ejemplo 1 y utilizando aglomerados planares de un material celulósico constituido por fibras residuales de celulosa de un proceso de reciclaje de papel usado previamente secados y transformados en aglomerados con Ia morfología adecuada para su alimentación en continuo se obtuvo un material compuesto que, por cada 100 partes de su peso, comprendió:Following the method described in example 1 and using planar agglomerates of a cellulosic material constituted by residual cellulose fibers of a recycled paper process used previously dried and transformed into agglomerates with the morphology suitable for continuous feeding, a composite material was obtained which, for every 100 parts of its weight, included:
• 44,25 partes, en peso, de un polipropileno homopolímero con un índice de fluidez de 75 g/10 minutos (según norma ISO 1133, a 230 0C y 2,16 kg).• 44.25 parts by weight of a polypropylene homopolymer with a melt index of 75 g / 10 minutes (according to ISO 1133, at 230 0 C and 2.16 kg).
• 1 ,15 partes, en peso, de un polipropileno injertado con anhídrido maleico con un peso molecular medio en número de 3900, un peso molecular medio en masa de 9100 y un contenido de anhídrido maleico del 8,21% en peso.• 1.15 parts, by weight, of a polypropylene grafted with maleic anhydride with a number average molecular weight of 3900, a mass average molecular weight of 9100 and a content of maleic anhydride of 8.21% by weight.
• 0,15 partes, en peso, de tetrakis(3-(3,5-di-terc-butil-4-hidroxifenil) propionato) de pentaeritritol (CAS #6683-19-8)• 0.15 parts, by weight, of pentaerythritol tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate) (CAS # 6683-19-8)
• 0,62 partes, en peso, de (3, 3x-tiodipropionato) de dioctadecilo (CAS #693-36-7) • 30,77 partes, en peso, de un material celulósico constituido por fibras residuales de celulosa de un proceso de reciclaje de papel usado• 0.62 parts, by weight, of (3, 3 x -iodiopropionate) dioctadecyl (CAS # 693-36-7) • 30.77 parts, by weight, of a cellulosic material consisting of residual cellulose fibers of a cellulose waste paper recycling process
• 23,06 partes, en peso, del ignifugante no halogenado polifosfato amónico (CAS #68333-79-9)• 23.06 parts, by weight, of the non-halogenated flame retardant ammonium polyphosphate (CAS # 68333-79-9)
Siguiendo el método descrito en el ejemplo 1, Ia granza de material compuesto de Ia formulación correspondiente a este ejemplo fue inyectada para obtener probetas multipropósito de acuerdo con Ia norma ISO 3167. De acuerdo con las normas ISO, los valores de las principales propiedades mecánicas y térmicas de los materiales compuestos obtenidos fueron (ver Tabla Vl):Following the method described in example 1, the composite material pellet of the formulation corresponding to this example was injected to obtain multipurpose specimens in accordance with ISO 3167. According to ISO standards, the values of the main mechanical properties and The thermal materials obtained were (see Table Vl):
Tabla VlVl table
Figure imgf000034_0001
Ejemplo 5
Figure imgf000034_0001
Example 5
Utilizando el material compuesto con Ia composición descrita en el Ejemplo 1 y el método descrito en dicho ejemplo, se produjo granza en cantidad suficiente para alimentar a una máquina de moldeo por inyección industrial de 2000 kN de fuerza de cierre, en Ia que el cilindro o cámara de plastificación de Ia máquina de moldeo por inyección se calentó de acuerdo con el perfil de temperaturas seleccionado siguiente (ver Tabla VII):Using the composite material with the composition described in Example 1 and the method described in said example, pellets were produced in sufficient quantity to feed an industrial injection molding machine of 2000 kN of closing force, in which the cylinder or Plasticizing chamber of the injection molding machine was heated according to the following selected temperature profile (see Table VII):
Tabla VIITable VII
ZONAS DEL CILINDRO DE LA ZONA 1 ZONA 2 ZONA 3 ZONA 4 BOQUILLA INYECTORAZONES OF THE CYLINDER OF THE ZONE 1 ZONE 2 ZONE 3 ZONE 4 INJECTOR NOZZLE
Temperatura (0C) 180 185 195 200 200Temperature ( 0 C) 180 185 195 200 200
B tiempo de enfriamiento fue de 30 segundos. De este modo, se fabricó- Ia base portafusibles para fusibles de cuchillas que se muestra en Ia Figura 3, caracterizada por un espesor mínimo de pared de 2,66 mm y para cuya inyección el recorrido máximo del flujo de fundido fue de 20 cm, aproximadamente. Este producto se sometió a diversos ensayos fijados por las normas que les son aplicables a este tipo de productos. En Ia tabla VIII se muestran los resultados de dichos ensayos, así como su comparación con los resultados obtenidos para el mismo producto fabricado con un material convencional como el poli(tereftalato de butilenglicol) (PBTP) reforzado con un 30% de fibra de vidrio.B cooling time was 30 seconds. In this way, the fuse holder base for blade fuses was shown, which is shown in Figure 3, characterized by a minimum wall thickness of 2.66 mm and for whose injection the maximum melt flow path was 20 cm, approximately. This product underwent various tests set by the standards that apply to these types of products. Table VIII shows the results of said tests, as well as their comparison with the results obtained for the same product manufactured with a conventional material such as poly (butylene glycol terephthalate) (PBTP) reinforced with 30% fiberglass.
Tabla VIIITable VIII
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000035_0001
Figure imgf000036_0001
Ejemplo 6Example 6
Utilizando el material compuesto con Ia composición descrita en el Ejemplo 1 y el método descrito en dicho ejemplo, se produjo granza en cantidad suficiente para alimentar a una máquina de moldeo por inyección industrial de 800 kN de fuerza de cierre, en Ia que el cilindro o cámara de plastificación de la máquina de moldeo por inyección se calentó de acuerdo con el perfil de temperaturas, seleccionado siguiente (ver tabla IX): .Using the composite material with the composition described in Example 1 and the method described in said example, pellets were produced in sufficient quantity to feed an industrial injection molding machine of 800 kN closing force, in which the cylinder or Plasticizing chamber of the injection molding machine was heated according to the temperature profile, selected as follows (see table IX):.
Tabla IXTable IX
Figure imgf000036_0002
Figure imgf000036_0002
El tiempo de enfriamiento fue de 12 segundos. De este modo, se fabricaron el cuerpo y Ia manilla de Ia base portafusibles para fusibles cilindricos que se muestra en Ia Figura 4, caracterizada por un espesor mínimo de pared de 2 mm y para cuya inyección el recorrido máximo del flujo de fundido fue de 25 cm, aproximadamente. Este producto se sometió a diversos ensayos fijados por las normas que les son aplicables a este tipo de productos. En Ia tabla X se muestran los resultados de dichos ensayos, así como su comparación con los resultados obtenidos para el mismo producto fabricado con un material convencional como el poli(tereftalato de butilenglicol) (PBTP) reforzado con un 30% de fibra de vidrio. Tabla XThe cooling time was 12 seconds. In this way, the body and the handle of the fuse holder base for cylindrical fuses are shown, which is shown in Figure 4, characterized by a minimum wall thickness of 2 mm and for whose injection the maximum melt flow path was 25 cm, approximately. This product underwent various tests set by the standards that apply to these types of products. Table X shows the results of said tests, as well as their comparison with the results obtained for the same product manufactured with a conventional material such as poly (butylene glycol terephthalate) (PBTP) reinforced with 30% fiberglass. Table X
Figure imgf000037_0001
Figure imgf000037_0001
Ejemplo 7Example 7
Utilizando el material compuesto con Ia composición descrita en el Ejemplo 1 y el método descrito en dicho ejemplo, se produjo granza en cantidad suficiente para alimentar a una máquina de moldeo por inyección industrial de 800 kN de fuerza de cierre, en Ia que el cilindro o cámara de plastificación de Ia máquina de moldeo por inyección se calentó de acuerdo con el perfil de temperaturas seleccionado siguiente (ver tabla Xl):Using the composite material with the composition described in Example 1 and the method described in said example, pellets were produced in sufficient quantity to feed an industrial injection molding machine of 800 kN closing force, in which the cylinder or Plasticizing chamber of the injection molding machine was heated according to the following selected temperature profile (see table Xl):
Tabla XlTable Xl
ZONAS DEL CILINDRO DE LA ZONA 1 ZONA 2 ZONA 3 ZONA 4 BOQUILLA INYECTORAZONES OF THE CYLINDER OF THE ZONE 1 ZONE 2 ZONE 3 ZONE 4 INJECTOR NOZZLE
Temperatura (0C) 180 185 195 200 200Temperature ( 0 C) 180 185 195 200 200
El tiempo de enfriamiento fue de 8 segundos. De este modo, se fabricaron el cuerpo y Ia manilla de una base portafusibles para fusibles cilindricos similar a Ia que se muestra en Ia Figura 4, caracterizada por un espesor mínimo de pared de 1 ,74 mm y para cuya inyección el recorrido máximo del flujo de fundido fue de 20 cm, aproximadamente. Este producto se sometió a diversos ensayos fijados por las normas que les son aplicables a este tipo de productos. En Ia tabla XII se muestran los resultados de dichos ensayos, así como su comparación con los resultados obtenidos para el mismo producto fabricado con un material convencional como el poli(tereftalato de butilenglicol) (PBTP) reforzado con un 30% de fibra de vidrio.The cooling time was 8 seconds. Thus, the body and the handle of a fuse holder base for cylindrical fuses were manufactured similar to that shown in Figure 4, characterized by a minimum wall thickness of 1.74 mm and for whose Injection, the maximum melt flow path was approximately 20 cm. This product underwent various tests set by the standards that apply to these types of products. Table XII shows the results of said tests, as well as their comparison with the results obtained for the same product manufactured with a conventional material such as poly (butylene glycol terephthalate) (PBTP) reinforced with 30% fiberglass.
Tabla XIITable XII
Figure imgf000038_0001
Ejemplo 8
Figure imgf000038_0001
Example 8
Utilizando el material compuesto con Ia composición descrita en el Ejemplo 1 y el método descrito en dicho ejemplo, se produjo granza en cantidad suficiente para alimentar a una máquina de moldeo por inyección industrial de 5000 kN de fuerza de cierre, en Ia que el cilindro o cámara de plastificación de Ia máquina de moldeo por inyección se calentó de acuerdo con el perfil de temperaturas seleccionado siguiente (ver tabla XIII): Tabla XIIIUsing the composite material with the composition described in Example 1 and the method described in said example, pellets were produced in sufficient quantity to feed an industrial injection molding machine of 5000 kN of closing force, in which the cylinder or Plasticizing chamber of the injection molding machine was heated according to the following selected temperature profile (see table XIII): Table XIII
ZONAS DEL CILINDRO DE LA ZONA 1 ZONA 2 ZONA 3 ZONA 4 BOQUILLA INYECTORAZONES OF THE CYLINDER OF THE ZONE 1 ZONE 2 ZONE 3 ZONE 4 INJECTOR NOZZLE
Temperatura (0C) 180 185 195 200 200Temperature ( 0 C) 180 185 195 200 200
El tiempo de enfriamiento fue de 60 segundos. De este modo, se fabricó una parte del cuerpo de las bases tripolares verticales cerradas que se muestra en Ia Figura 5, caracterizada por un espesor mínimo de pared de 1,66 mm y para cuya inyección el recorrido máximo del flujo de fundido fue de 48 cm, aproximadamente. Este producto se sometió a diversos ensayos fijados por las normas que les son aplicables a este tipo de productos. En Ia tabla XIV se muestran los resultados de dichos ensayos, así como su comparación con los resultados obtenidos para el mismo producto fabricado con un material convencional como Ia pqljarηida. reforzada con un 20% de fibra de vidrio.The cooling time was 60 seconds. In this way, a part of the body of the closed three-pole vertical bases was shown, which is shown in Figure 5, characterized by a minimum wall thickness of 1.66 mm and for whose injection the maximum melt flow path was 48 cm, approximately. This product underwent various tests set by the standards that apply to these types of products. Table XIV shows the results of said tests, as well as their comparison with the results obtained for the same product manufactured with a conventional material such as pqljarηida. reinforced with 20% fiberglass.
Tabla XIVTable XIV
Figure imgf000039_0001
Ejemplo 9
Figure imgf000039_0001
Example 9
En este ejemplo (ver tabla XV) se muestran algunos de los resultados de las pruebas realizadas para Ia determinación del conjunto de dosificadores más adecuado en función del componente a alimentar:In this example (see table XV) some of the results of the tests carried out for the determination of the most appropriate set of dosers are shown depending on the component to be fed:
Tabla XVTable XV
Figure imgf000040_0001
Figure imgf000040_0001
Claves de Ia tabla: Dext significa diámetro externo de cada husillo; α significa ángulo de hélice de cada husillo; Esp. significa espesor de los filetes de cada husillo; Prof. significa Profundidad de canal de los canales de cada husillo; DhEmb significa diámetro externo de los husillos del embutidor. Keys of the table: D ext means external diameter of each spindle; α means the propeller angle of each spindle; Esp. Means thickness of the fillets of each spindle; Prof. means Channel depth of the channels of each spindle; D hEmb means external diameter of the spindles of the stuffer.

Claims

Reivindicaciones:Claims:
1. Material compuesto que, por cada 100 partes de su peso, comprende: (A) entre 25 y 90 partes, en peso, de un polímero termoplástico; (B) entre 1 y 50 partes, en peso, de un material celulósico, (C) entre 0,1 y 15 partes, en peso, de un agente de acoplamiento; (D) entre 0,05 y 3 partes, en peso, de un antioxidante primario; (E) entre 0,05 y 6 partes, en peso, de un antioxidante secundario (F) entre 1 y 40 partes, en peso, de un retardador de llama, caracterizado porque dicho material celulósico (B) comprende fibras que se seleccionan del grupo formado por fibras vírgenes de pasta de celulosa procedentes de las especies arbóreas de madera dura, fibras obtenidas como residuos de Ia industria de Ia pasta de celulosa y del papel, fibras obtenidas como residuos de las industrias de fabricación de fibras sintéticas y textil, fibras procedentes, de residuos sólidos urbanos e industriales o mezclas de las mismas.1. Composite material which, for every 100 parts of its weight, comprises: (A) between 25 and 90 parts, by weight, of a thermoplastic polymer; (B) between 1 and 50 parts, by weight, of a cellulosic material, (C) between 0.1 and 15 parts, by weight, of a coupling agent; (D) between 0.05 and 3 parts, by weight, of a primary antioxidant; (E) between 0.05 and 6 parts, by weight, of a secondary antioxidant (F) between 1 and 40 parts, by weight, of a flame retardant, characterized in that said cellulosic material (B) comprises fibers that are selected from the group formed by virgin cellulose pulp fibers from hardwood tree species, fibers obtained as waste from the pulp and paper industry, fibers obtained as waste from the synthetic and textile fiber manufacturing industries, fibers from solid urban and industrial waste or mixtures thereof.
2. Material compuesto según Ia reivindicación 1 , caracterizado porque dichas fibras vírgenes de pasta de celulosa procedentes de las especies arbóreas de madera dura; pueden ser fibras vírgenes, bien crudas, blanqueadas o refinadas.2. Composite material according to claim 1, characterized in that said virgin cellulose pulp fibers from hardwood tree species; they can be virgin fibers, either raw, bleached or refined.
3. Material compuesto según Ia reivindicación 1 , caracterizado porque dichas fibras obtenidas como residuos de Ia industria de Ia pasta de celulosa y del papel son las fibras residuales de pasta de celulosa de los procesos de producción de pasta de celulosa a partir de las especies madereras, procedentes de los rechazos de los procesos de tamizado de Ia mezcla de fibras de celulosa y lejía negra que sale de los digestores, de los rechazos finales de los procesos de depuración de Ia pasta de celulosa, y de diversas pérdidas y escapes a través de las telas de los lavadores utilizados en las distintas fases del blanqueo de Ia pasta de celulosa y a través de Ia tela formadora de hojas en Ia máquina secapastas, dichas fibras residuales presentándose en forma de aglomerados planares de forma y contorno irregulares, cuyo diámetro equivalente a su área proyectada es esencialmente menor de 67 mm, cuya esfericidad está comprendida entre 0,5 y 0,9, y cuya redondez está comprendida entre 0,3 y 0,7 siendo su densidad aparente de entre 0,08 y 0,380 g/cm3, dichos aglomerados comprendiendo, en base seca, entre un 5 y un 20%, en peso, de cenizas, entre un 5 y un 20%, en peso, de lignina y entre un 55 y un 90%, en peso, de holocelulosa. 3. Composite material according to claim 1, characterized in that said fibers obtained as waste from the pulp and paper industry are the residual pulp fibers of the pulp production processes from wood species , from the rejections of the sieving processes of the mixture of cellulose fibers and black liquor that leaves the digesters, of the final rejections of the processes of purification of the cellulose pulp, and of various losses and leaks through the fabrics of the scrubbers used in the different phases of the bleaching of the cellulose pulp and through the sheet-forming fabric in the window dressing machine, said residual fibers being presented in the form of planar agglomerates of irregular shape and contour, whose diameter equivalent to their projected area is essentially less than 67 mm, whose sphericity is between 0.5 and 0.9, and whose roundness is comprised in Between 0.3 and 0.7, with an apparent density between 0.08 and 0.380 g / cm 3 , said agglomerates comprising, on a dry basis, between 5 and 20%, by weight, of ashes, between 5 and 20%, by weight, of lignin and between 55 and 90%, by weight, of holocellulose.
4. Material compuesto según Ia reivindicación 1 , caracterizado porque dichas fibras obtenidas como residuos de Ia industria de Ia pasta de celulosa y del papel son las fibras residuales de celulosa procedentes de los procesos industriales de fabricación de pasta de celulosa a partir de plantas vegetales seleccionadas del grupo que incluye el yute, Ia abacá, el sisal, el cáñamo, el lino, o mezclas de las mismas.4. Composite material according to claim 1, characterized in that said fibers obtained as waste from the pulp and paper industry are the residual cellulose fibers from the industrial processes of manufacturing cellulose pulp from selected plant plants from the group that includes jute, abaca, sisal, hemp, flax, or mixtures thereof.
5. Material compuesto según Ia reivindicación 1 , caracterizado porque dichas fibras obtenidas como residuos de las industrias de fabricación de fibras sintéticas y textil se seleccionan del grupo formado por fibras de celulosa procedentes de los rechazos de los procesos de fabricación de fibras sintéticas, fibras de celulosa obtenidas a partir del reciclaje de productos textiles gastados, o fibras residuales de celulosa procedentes de los procesos industriales de fabricación de tejidos no-tejidos.5. Composite material according to claim 1, characterized in that said fibers obtained as waste from the synthetic and textile fiber manufacturing industries are selected from the group consisting of cellulose fibers from the rejections of the synthetic fiber manufacturing processes, fibers of Cellulose obtained from the recycling of spent textile products, or residual cellulose fibers from industrial manufacturing processes of non-woven fabrics.
6. Material compuesto según Ia reivindicación 1, caracterizado porque dichas fibras procedentes de residuos sólidos urbanos e industriales son fibras residuales ó& celulosa procedentes de Ia corriente de residuos sólidos urbanos o fibras residuales de celulosa de los procesos de reciclaje del papel y cartón usados.6. Composite material according to claim 1, characterized in that said fibers from urban and industrial solid waste are waste or cellulose fibers from the urban solid waste stream or residual cellulose fibers of the paper and cardboard recycling processes used.
7. Material compuesto según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho material celulósico (B) comprende fibras celulósicas con longitudes individuales comprendidas entre 0,1-10 mm, diámetros de fibra individuales comprendidos entre 0,01-50 μm, y relaciones longitud/diámetro individuales comprendidas entre 2-250.7. Composite material according to any of the preceding claims, characterized in that said cellulosic material (B) comprises cellulosic fibers with individual lengths between 0.1-10 mm, individual fiber diameters between 0.01-50 μm, and length ratios / diameter individual between 2-250.
8. Material compuesto según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho agente de acoplamiento (C) se selecciona del grupo formado por poliolefinas injertadas con anhídrido maleico, dichas poliolefinas teniendo pesos moleculares medios en número comprendidos entre 2000 y 50000 o pesos moleculares medios en masa comprendidos entre 4000 y 300000, y que tengan contenidos de anhídrido maleico comprendidos entre 0,1 y 20%, en peso; polietileniminas puras o modificadas cuyos pesos moleculares varían entre 800 g/mol- g y 200000 g/mol-g, las cuales se presentan como productos anhidros o no; organosilanos aromáticos y alifáticos o mezclas de los mismos. 9. Material compuesto según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho antioxidante primario (D) se selecciona del grupo formado por los fenoles estéricamente impedidos con un peso molecular mayor de 300g/mol, los cinamatos, las aminas o mezclas de los mismos. 8. Composite material according to any of the preceding claims, characterized in that said coupling agent (C) is selected from the group consisting of polyolefins grafted with maleic anhydride, said polyolefins having number average molecular weights between 2000 and 50,000 or average molecular weights in mass between 4000 and 300000, and having contents of maleic anhydride between 0.1 and 20%, by weight; pure or modified polyethyleneimines whose molecular weights vary between 800 g / mol and 200000 g / mol-g, which are presented as anhydrous products or not; aromatic and aliphatic organosilanes or mixtures thereof. 9. Composite material according to any of the preceding claims, characterized in that said primary antioxidant (D) is selected from the group consisting of sterically hindered phenols with a molecular weight greater than 300g / mol, cinnamates, amines or mixtures thereof.
10. Material compuesto según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho retardador de llama (F) se selecciona del grupo formado por los compuestos que pertenecen a Ia categoría de los compuestos de fósforo, compuestos clorados, bromados o mezclas de los mismos. 11. Material compuesto según cualquiera de las reivindicaciones anteriores, caracterizado porque adicionalmente comprende uno o más de los siguientes compuestos sinérgicos con respecto al retardador de llama (F): trihidróxido de aluminio, alúminas hidratadas, boratos, estannatos, hidróxido magnésico, óxido de antimonio (III) y compuestos que pertenecen a Ia categoría de los compuestos que contienen nitrógeno. 12. Material compuesto según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho antioxidante secundario (E) se selecciona del grupo formado por compuestos de fósforo, los tioéteres, los tioésteres, preferiblemente los tioéteres, o mezclas de los mismos.10. Composite material according to any of the preceding claims, characterized in that said flame retardant (F) is selected from the group consisting of compounds belonging to the category of phosphorus compounds, chlorinated compounds, brominated compounds or mixtures thereof. 11. Composite material according to any of the preceding claims, characterized in that it additionally comprises one or more of the following synergistic compounds with respect to the flame retardant (F): aluminum trihydroxide, hydrated aluminas, borates, stannates, magnesium hydroxide, antimony oxide (III) and compounds that belong to the category of nitrogen-containing compounds. 12. Composite material according to any of the preceding claims, characterized in that said secondary antioxidant (E) is selected from the group consisting of phosphorus compounds, thioethers, thioesters, preferably thioethers, or mixtures thereof.
13. Material compuesto según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende al menos una lactona.13. Composite material according to any of the preceding claims, characterized in that it comprises at least one lactone.
14. Material compuesto según cualquiera de las reivindicaciones anteriores, caracterizado porque adicionalmente comprende entre 0,1 y 40%, en peso, con respecto al peso total del material compuesto, de un aditivo (G) que se selecciona del grupo formado por los estabilizantes a Ia luz o estabilizantes UV, modificadores de las propiedades de impacto, cargas inorgánicas, lubricantes, pigmentos, biocidas y agentes espumantes o mezclas de los mismos.14. Composite material according to any of the preceding claims, characterized in that it additionally comprises between 0.1 and 40%, by weight, with respect to the total weight of the composite material, of an additive (G) selected from the group formed by the stabilizers to light or UV stabilizers, modifiers of impact properties, inorganic fillers, lubricants, pigments, biocides and foaming agents or mixtures thereof.
15. Material compuesto según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho polímero termoplástico (A) se selecciona del grupo formado por homopolímeros de polipropileno, los copolímeros de propileno, el polipropileno co- polietilen-vinil-acetato, el polietileno de alta densidad, el polietileno de baja densidad, un poliestireno, preferiblemente el cual se selecciona del grupo de sus homopolímeros, copolímeros o terpolímeros, el policloruro de vinilo, un polímero del grupo de las poliamidas, poli(tereftalato de etilenglicol), el poli(tereftalato de butilenglicol), poli(metacrilato de metilo), el policarbonato o mezclas de los mismos. 16. Material compuesto según Ia reivindicación 15, caracterizado porque dicho homopolímero o copolímero de polipropileno se selecciona de entre los homopolímeros y copolímeros de polipropileno de reología controlada con puntos de fusión similares e índices de fluidez comprendidos entre 12 y 150 g/10 minutos (según norma ISO 1133, a 230 0C y 2,16 kg).15. Composite material according to any of the preceding claims, characterized in that said thermoplastic polymer (A) is selected from the group consisting of polypropylene homopolymers, propylene copolymers, polypropylene-vinyl acetate polypropylene, high density polyethylene, low density polyethylene, a polystyrene, preferably which is selected from the group of its homopolymers, copolymers or terpolymers, polyvinylchloride, a polymer from the group of polyamides, poly (ethylene glycol terephthalate), poly (butylene glycol terephthalate ), poly (methyl methacrylate), polycarbonate or mixtures thereof. 16. Composite material according to claim 15, characterized in that said polypropylene homopolymer or copolymer is selected from polypropylene homopolymers and copolymers of rheology controlled with points of Similar fusion and melt indices ranging from 12 to 150 g / 10 minutes (according to ISO 1133 at 230 0 C and 2.16 kg).
17. Material compuesto según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho polímero termoplástico (A) comprende termoplásticos presentes en los residuos sólidos urbanos o en los residuos industriales de Ia transformación de plásticos.17. Composite material according to any of the preceding claims, characterized in that said thermoplastic polymer (A) comprises thermoplastics present in urban solid waste or in industrial waste from the transformation of plastics.
18. Un método para Ia producción en continuo de un material compuesto según las reivindicaciones 1 a 17, caracterizado porque comprende los siguientes pasos: a) secar dicho material celulósico; b) proveerse de una extrusora de doble husillo corroíante, Ia cual comprende dos mandriles (3), en cada uno de los cuales se monta una idéntica configuración de husillo utilizando distintos elementos de husillo siendo Ia relación entre diámetro externo e interno de dichos elementos de husillo, de entre 1 ,02 y 2; c) mezclar los componentes del material compuesto; y d) descargar el material compuesto resultante a través de una zona de descarga (4)18. A method for the continuous production of a composite material according to claims 1 to 17, characterized in that it comprises the following steps: a) drying said cellulosic material; b) be provided with a corroding double spindle extruder, which comprises two mandrels (3), in each of which an identical spindle configuration is mounted using different spindle elements being the relationship between external and internal diameter of said elements of spindle, between 1, 02 and 2; c) mix the components of the composite material; and d) discharge the resulting composite material through a discharge zone (4)
Ia cual se extiende a Io largo de una longitud comprendida entre tres y siete veces el diámetro de Ia extrusora.Which extends along a length between three and seven times the diameter of the extruder.
19. Método según Ia reivindicación 18, caracterizado porque antes de Ia etapa b), comprende una etapa adicional de transformación de los materiales celulósicos en aglomerados planares de forma y contorno irregulares, cuyo diámetro equivalente a su área proyectada es, esencialmente menor de 15 mm, cuya esfericidad está comprendida entre 0,3 y 0,7, y cuya redondez está comprendida entre 0,1 y 0,7, adecuados para su alimentación en continuo.19. Method according to claim 18, characterized in that before stage b), it comprises an additional stage of transformation of the cellulosic materials into planar agglomerates of irregular shape and contour, whose diameter equivalent to their projected area is essentially less than 15 mm , whose sphericity is between 0.3 and 0.7, and whose roundness is between 0.1 and 0.7, suitable for continuous feeding.
20. Método según Ia reivindicación 19, caracterizado porque dicho material celulósico se seca hasta alcanzar un contenido de humedad comprendido entre un 1 a 10%, en peso.20. Method according to claim 19, characterized in that said cellulosic material is dried to reach a moisture content comprised between 1 and 10%, by weight.
21. Método según cualquiera de las reivindicaciones 18-20, caracterizado porque los dos mandriles de Ia extrusora corrotante rotan a una velocidad superior a 200 rpm.21. Method according to any of claims 18-20, characterized in that the two mandrels of the corrotant extruder rotate at a speed greater than 200 rpm.
22. Método según cualquiera de las reivindicaciones 18-21 , caracterizado porque Ia etapa de mezclado c) comprende las siguientes etapas: i.- dosificar a través de una tolva de alimentación (6) el polímero termoplástico (A), el agente de acoplamiento (C), el antioxidante primario (D) y el antioxidante secundario (E) y.opcionalmente también los aditivos (G) que se seleccionan del grupo constituido por estabilizantes a Ia luz o estabilizantes UV, modificadores de las propiedades de impacto, cargas inorgánicas, lubricantes, pigmentos, biocidas y agentes espumantes, mediante un conjunto de dosificadores gravimétricos (2), dentro de una zona de alimentación del polímero y los aditivos (7), Ia cual comprende elementos de husillo de transporte positivo y se extiende a lo largo de una longitud comprendida entre tres y siete veces el diámetro de Ia extrusora; ii.- calentar Ia mezcla obtenida en el paso i.- y transportar dicha mezcla a Io largo de una zona cerrada de transporte y calentamiento (8) que comprende elementos de husillo de transporte positivo; iii.- fundir, mezclar y amasar dicha mezcla en una zona de fusión (9), que comprende elementos de husillo de amasado, estando comprendida Ia longitud conjunta de Ia zona cerrada de transporte y calentamiento (8) y de Ia zona de fusión (9) entre tres y siete veces el diámetro de Ia extrusora; - iv.- someter Ia mezcla anterior, a través del puerto de venteo atmosférico (11), a venteo y desgasificación en una primera zona de venteo (10) que comprende elementos de husillo de transporte negativo o inverso y de transporte positivo; v.- dosificar en continuo el material celulósico (B) en una zona de alimentación lateral del material celulósico (12) que comprende elementos de husillo de transporte positivo, empleando un primer embutidor de doble husillo con husillos que deben de tener un diámetro externo mínimo de 24 mm (13), alimentado a su vez por un segundo dosificador gravimétrico de doble husillo (14) dispuesto encima de dicho primer embutidor, estando comprendida Ia longitud conjunta de Ia primera zona de venteo (10) y de Ia zona de alimentación lateral del material celulósico (12) entre tres y ocho veces el diámetro de Ia extrusora. vi.- amasar Ia mezcla obtenida en Ia etapa anterior v.- en una zona de incorporación del material celulósico e inyección de líquidos (15) que comprende al menos un elemento de husillo de amasado o al menos un elemento de mezcla dentado, o al menos un elemento de transporte positivo, o al menos un elemento de transporte negativo o una mezcla de los mismos, extendiéndose dicha zona a Io largo de una longitud comprendida entre tres y siete veces el diámetro de Ia extrusora; vü. -someter Ia mezcla obtenida en Ia etapa anterior vi.- a través de un segundo puerto de venteo atmosférico (17), a venteo y desgasificación en una segunda zona de venteo (16) que comprende elementos de husillo de transporte y de transporte positivo; viii.- dosificar en continuo un retardador de llama (F) en una zona de alimentación lateral del retardador de llama (18) que comprende elementos de husillo de transporte positivo empleando un segundo embutidor de doble husillo con cámara y husillos preferiblemente refrigerados (19), teniendo dichos husillos un diámetro externo mínimo de 20 mm, alimentado su vez por un tercer dosificador gravimétrico de doble husillo (20) dispuesto encima de dicho segundo embutidor22. Method according to any of claims 18-21, characterized in that the mixing stage c) comprises the following steps: i.- dosing through a feed hopper (6) the thermoplastic polymer (A), the coupling agent (C), the primary antioxidant (D) and the secondary antioxidant (E) and optionally also the additives (G) that are selected from the group consisting of light stabilizers or UV stabilizers, modifiers of impact properties, inorganic fillers, lubricants, pigments, biocides and foaming agents, by means of a set of gravimetric dosers (2), within a polymer feeding zone and additives (7), which comprises positive transport spindle elements and extends along a length between three and seven times the diameter of the extruder; ii.- heating the mixture obtained in step i.- and transporting said mixture along a closed transport and heating zone (8) comprising positive transport spindle elements; iii.- melting, mixing and kneading said mixture in a melting zone (9), comprising kneading spindle elements, the joint length of the closed transport and heating zone (8) and the melting zone being comprised ( 9) between three and seven times the diameter of the extruder; - iv.- subjecting the previous mixture, through the atmospheric venting port (11), to venting and degassing in a first venting zone (10) comprising spindle elements of negative or reverse transport and positive transport; v.- continuously dosing the cellulosic material (B) in a lateral feeding zone of the cellulosic material (12) comprising positive transport spindle elements, using a first double spindle stuffing with spindles that must have a minimum external diameter 24 mm (13), in turn fed by a second double screw gravimetric dispenser (14) disposed above said first stuffer, the joint length of the first vent zone (10) and the lateral feed zone being comprised of the cellulosic material (12) between three and eight times the diameter of the extruder. vi.- kneading the mixture obtained in the previous stage v.- in an area of incorporation of the cellulosic material and liquid injection (15) comprising at least one kneading spindle element or at least one toothed mixing element, or at less a positive transport element, or at least one negative transport element or a mixture thereof, said area extending along a length between three and seven times the diameter of the extruder; vü -submit the mixture obtained in the previous stage vi.- through a second atmospheric venting port (17), to venting and degassing in a second zone of venting (16) comprising transport and positive transport spindle elements; viii.- continuously dosing a flame retardant (F) in a side feed zone of the flame retardant (18) comprising positive transport spindle elements using a second double spindle stuffing chamber with chamber and preferably chilled spindles (19) said spindles having a minimum external diameter of 20 mm, fed in turn by a third double spindle gravimetric dispenser (20) disposed above said second stuffer
(19), estando comprendida Ia longitud conjunta de Ia segunda zona de venteo (16) y de Ia zona de alimentación lateral del retardador de llama (18) entre tres y ocho veces el diámetro de Ia extrusora. ix.- amasar Ia mezcla obtenida en Ia etapa anterior viii.- en una zona de incorporación del retardador d& Hama e inyección de líquidos (21 ) que comprende al menos un elemento de husillo de amasado o al menos un elemento de mezcla dentado, o al menos un elemento de transporte positivo, o al menos un elemento de transporte negativo o una mezcla de los mismos, extendiéndose dicha zona a Io largo de una longitud comprendida entre tres y siete veces el diámetro de Ia extrusora; x.- someter Ia mezcla obtenida en Ia etapa anterior ix.-, a través de un tercer puerto de venteo (23), a venteo y desgasificación a vacío en una tercera zona de venteo (22) que comprende elementos de husillo de transporte negativo o inverso y de transporte positivo Ia cual se extiende a Io largo de una longitud comprendida entre tres y siete veces el diámetro de Ia extrusora.(19), the joint length of the second venting zone (16) and the lateral feed zone of the flame retardant (18) being comprised between three and eight times the diameter of the extruder. ix.- kneading the mixture obtained in the previous stage viii.- in an area of incorporation of the d & Hama retarder and liquid injection (21) comprising at least one kneading spindle element or at least one toothed mixing element, or at least one positive transport element, or at least one negative transport element or a mixture thereof, said area extending along a length between three and seven times the diameter of the extruder; x.- subject the mixture obtained in the previous stage ix.-, through a third venting port (23), to venting and vacuum degassing in a third venting zone (22) comprising negative transport spindle elements or inverse and positive transport Ia which extends along a length between three and seven times the diameter of the extruder.
23. Método según Ia reivindicación 22, caracterizado porque cada dosificador gravimétrico de los utilizados en Ia etapa i.- puede tener distinta configuración en función de Ia naturaleza del componente a alimentar: i. Para componentes en forma de granza, a alimentar en dicha etapa i.-, el dosificador gravimétrico se puede seleccionar preferiblemente de entre los alimentadores de doble husillo, cuyos husillos tienen un diámetro externo mínimo de 20 mm, un ángulo de hélice mínimo de 11 ,31 grados sexagesimales, un espesor de filete mínimo de 1 ,5 mm y una profundidad de canal mínima de 3 mm; o entre los alimentadores de husillo simple cuyo husillo tiene un diámetro externo mínimo de 24 mm, un ángulo de hélice mínimo de 7,12 grados sexagesimales, un espesor de filete mínimo de 1 ,5 mm y una profundidad de canal mínima de 3 mm; ii. para componentes en forma de polvo, a alimentar en dicha etapa i.-, el dosificador gravimétrico se puede seleccionar preferiblemente de entre los alimentadores de doble husillo, cuyos husillos tienen un diámetro externo mínimo de 12 mm, un ángulo de hélice mínimo de 9,47 grados sexagesimales, un espesor de filete mínimo de 1 mm y una profundidad de canal mínima de 1 mm; iii. para componentes en forma de escamas irregulares o partículas (tales como las que corresponden a los polímeros residuales procedentes de los residuos sólidos urbanos), a alimentar en dicha etapa L-, el dosificador gravimétrico se puede seleccionar preferiblemente de entre los alimentadores de doble husillo, cuyos husillos tienen un diámetro externo mínimo de 35 mm, un ángulo de hélice mínimo de 19,65 grados sexagesimales, un espesor de filete mínimo de 3 mm y una profundidad de canal mínima de 7,5 mm.23. Method according to claim 22, characterized in that each gravimetric dispenser of those used in stage i.- can have different configuration depending on the nature of the component to be fed: i. For pellet-shaped components, to be fed in said stage i.-, the gravimetric dispenser can preferably be selected from the double spindle feeders, whose spindles have a minimum external diameter of 20 mm, a minimum propeller angle of 11, 31 sexagesimal degrees, a minimum fillet thickness of 1.5 mm and a minimum channel depth of 3 mm; or between single spindle feeders whose spindle has a minimum external diameter of 24 mm, a minimum propeller angle of 7.12 sexagesimal degrees, a minimum fillet thickness of 1.5 mm and a minimum channel depth of 3 mm; ii. for powder-shaped components, to be fed in said stage i.-, the gravimetric dispenser can preferably be selected from the double spindle feeders, whose spindles have a minimum external diameter of 12 mm, a minimum propeller angle of 9, 47 sexagesimal degrees, a minimum fillet thickness of 1 mm and a minimum channel depth of 1 mm; iii. for components in the form of irregular scales or particles (such as those corresponding to residual polymers from urban solid waste), to be fed at said stage L-, the gravimetric doser can preferably be selected from among the double screw feeders, whose spindles have a minimum external diameter of 35 mm, a minimum propeller angle of 19.65 sexagesimal degrees, a minimum fillet thickness of 3 mm and a minimum channel depth of 7.5 mm.
24. Método según cualquiera de las reivindicaciones 18-23, caracterizado porque Ia configuración de husillo en Ia etapa d) comprende una combinación de elementos de husillo de transporte positivo y de mezcla dentados.24. Method according to any one of claims 18-23, characterized in that the spindle configuration in stage d) comprises a combination of spindle elements of positive transport and toothed mixing.
25. Método según Ia reivindicación 22, caracterizado porque el dosificador gravimétrico de doble husillo (14) empleado en Ia etapa v.* para alimentar el material celulósico se puede seleccionar de entre los alimentadores, cuyos husillos tienen un diámetro externo mínimo de 35 mm, un ángulo de hélice mínimo de 19,65 grados sexagesimales, un espesor de filete mínimo de 3 mm y una profundidad de canal mínima de 7,5 mm.25. Method according to claim 22, characterized in that the double-spindle gravimetric dispenser (14) used in step v. * To feed the cellulosic material can be selected from the feeders, whose spindles have a minimum external diameter of 35 mm, a minimum propeller angle of 19.65 sexagesimal degrees, a minimum fillet thickness of 3 mm and a minimum channel depth of 7.5 mm.
26. Método según Ia reivindicación 22, caracterizado porque el dosificador gravimétrico de doble husillo (20) empleado en Ia etapa viii.- para alimentar el retardador de llama tiene un diámetro externo mínimo de 20 mm, un ángulo de hélice mínimo de 11 ,31 grados sexagesimales, un espesor de filete mínimo de 1 ,5 mm y una profundidad de canal mínima de 3 mm.26. Method according to claim 22, characterized in that the double-spindle gravimetric dispenser (20) used in step viii.- to feed the flame retardant has a minimum external diameter of 20 mm, a minimum propeller angle of 11, 31 sexagesimal degrees, a minimum fillet thickness of 1.5 mm and a minimum channel depth of 3 mm.
27. Método según cualquiera de las reivindicaciones 22-26, caracterizado porque Ia temperatura en Ia etapa L- está comprendida entre 20 y 50 0C, Ia temperatura en Ia etapa ii.- está comprendida entre 175 0C y 205 0C, Ia temperatura en Ia etapa iii.- está comprendida entre 175 0C y 205 0C, Ia temperatura en Ia etapa iv.- está comprendida entre 1740C y 204 0C, Ia temperatura en Ia etapa v.- está comprendida entre 174 °C y 204 0C, Ia temperatura en Ia etapa vi.- está comprendida entre 173 0C y 203 0C, Ia temperatura en Ia etapa viL- está comprendida entre 171 0C y 201 0C, Ia temperatura en Ia etapa viü.- está comprendida entre 171 0C y 201 0C, Ia temperatura en Ia etapa ¡x.- está comprendida entre 169 0C y 199 0C, Ia temperatura en Ia etapa x.- está comprendida entre 167 °C y 1970C.27. Method according to any of claims 22-26, characterized in that the temperature in stage L- is comprised between 20 and 50 0 C, the temperature in stage ii.- is comprised between 175 0 C and 205 0 C, Ia temperature in stage iii.- is between 175 0 C and 205 0 C, the temperature in stage iv.- is between 174 0 C and 204 0 C, the temperature in stage v.- is between 174 ° C and 204 0 C, the temperature in stage vi.- is between 173 0 C and 203 0 C, the temperature in stage viL is between 171 0 C and 201 0 C, the temperature in stage viü.- it is comprised between 171 0 C and 201 0 C, the temperature in stage ¡x.- is comprised between 169 0 C and 199 0 C, the temperature in stage x.- is between 167 ° C and 197 0 C.
28. Método según cualquiera de las reivindicaciones 18-27, caracterizado porque Ia temperatura en Ia zona de descarga (4) está comprendida entre 1650C y 195 0C.28. Method according to any of claims 18-27, characterized in that the temperature in the discharge zone (4) is comprised between 165 0 C and 195 0 C.
29. Método según cualquiera de las reivindicaciones 18-28, caracterizado porque el material compuesto, tras pasar por Ia zona de descarga (4) y ser sometido a un proceso de granulación, se somete a un proceso de moldeo por inyección.29. Method according to any of claims 18-28, characterized in that the composite material, after passing through the discharge zone (4) and being subjected to a granulation process, is subjected to an injection molding process.
30. Método según Ia reivindicación 29, caracterizado porque dicho procedimiento de moldeo por inyección comprende inyectar el material compuesto granulado a una temperatura menor que 210 0C en cualquiera de las zonas de calefacción de una cámara o cilindro de piastificación de una máquina de moldeo por inyección. 3-1. Método segúrv cualquiera de las reivindicaciones 18-28, caracterizado porque el material compuesto se somete a un proceso de extrusión directa tras pasar por Ia zona de descarga (4).30. Method according to claim 29, characterized in that said injection molding process comprises injecting the granulated composite material at a temperature less than 210 0 C in any of the heating zones of a chamber or piastification cylinder of a molding machine by injection. 3-1. A method according to any of claims 18-28, characterized in that the composite material is subjected to a direct extrusion process after passing through the discharge zone (4).
32. Método según cualquiera de las reivindicaciones 18-28, caracterizado porque dicho material compuesto se somete a un procedimiento de calandrado a medida que sale de Ia zona de descarga (4) con objeto de obtener un panel delgado, seguido de un moldeo por compresión. 33. Uso de un material compuesto según las reivindicaciones 1-17 para obtener artículos moldeados.32. Method according to any of claims 18-28, characterized in that said composite material is subjected to a calendering process as it leaves the discharge zone (4) in order to obtain a thin panel, followed by compression molding . 33. Use of a composite material according to claims 1-17 to obtain molded articles.
34. Uso según Ia reivindicación 33 para Ia obtención de artículos moldeados aptos para el sector eléctrico, electrónico y de telecomunicaciones.34. Use according to claim 33 for obtaining molded articles suitable for the electrical, electronic and telecommunications sector.
35. Uso según Ia reivindicación 34 para Ia obtención de bases portafusibles. 36. Uso según Ia reivindicación 34 para Ia obtención de cajas para infraestructuras comunes de telecomunicaciones.35. Use according to claim 34 for obtaining fuse bases. 36. Use according to claim 34 for obtaining boxes for common telecommunications infrastructure.
37. Uso según Ia reivindicación 34 para Ia obtención de cajas para centralización de contadores.37. Use according to claim 34 for obtaining boxes for centralization of meters.
38. Uso según Ia reivindicación 33 para Ia obtención de artículos moldeados en los sectores de construcción, aviación, automoción, mueble y embalajes. 38. Use according to claim 33 for obtaining molded articles in the construction, aviation, automotive, furniture and packaging sectors.
PCT/ES2007/000117 2006-03-06 2007-03-06 Compound material, method for producing it continuously and its use WO2007101896A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200600541 2006-03-06
ES200600541A ES2281290B1 (en) 2006-03-06 2006-03-06 COMPOSITE MATERIAL, METHOD FOR CONTINUOUS PRODUCTION AND USE OF IT.

Publications (1)

Publication Number Publication Date
WO2007101896A1 true WO2007101896A1 (en) 2007-09-13

Family

ID=38458337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/000117 WO2007101896A1 (en) 2006-03-06 2007-03-06 Compound material, method for producing it continuously and its use

Country Status (2)

Country Link
ES (1) ES2281290B1 (en)
WO (1) WO2007101896A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019055921A3 (en) * 2017-09-15 2019-04-25 Hamilton Robert T Cellulose composite materials

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2322928B1 (en) * 2007-07-26 2010-04-23 Condepols, S.A. PROCEDURE FOR THE DEVELOPMENT OF PROFILES BY EXTRUSION OF COMPOUND MATERIALS.
FI20216326A1 (en) * 2021-12-22 2023-06-23 Fortum Oyj A composite product and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339363A (en) * 1979-07-05 1982-07-13 Kabushiki Kaisha Mikuni Seisakusho Composite material compositions using wastepaper and method of producing same
US5088910A (en) * 1990-03-14 1992-02-18 Advanced Environmental Recycling Technologies, Inc. System for making synthetic wood products from recycled materials
WO1999056936A1 (en) * 1998-05-07 1999-11-11 Instituut Voor Agrotechnologisch Onderzoek (Ato-D Lo) Process for continuously manufacturing composites of polymer and cellulosic fibres, and compounded materials obtained therewith
WO2006108256A1 (en) * 2005-04-13 2006-10-19 Ford Motor Company Brasil Ltda. Material to be injection molded, process thereof, and use therefore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339363A (en) * 1979-07-05 1982-07-13 Kabushiki Kaisha Mikuni Seisakusho Composite material compositions using wastepaper and method of producing same
US5088910A (en) * 1990-03-14 1992-02-18 Advanced Environmental Recycling Technologies, Inc. System for making synthetic wood products from recycled materials
WO1999056936A1 (en) * 1998-05-07 1999-11-11 Instituut Voor Agrotechnologisch Onderzoek (Ato-D Lo) Process for continuously manufacturing composites of polymer and cellulosic fibres, and compounded materials obtained therewith
WO2006108256A1 (en) * 2005-04-13 2006-10-19 Ford Motor Company Brasil Ltda. Material to be injection molded, process thereof, and use therefore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019055921A3 (en) * 2017-09-15 2019-04-25 Hamilton Robert T Cellulose composite materials

Also Published As

Publication number Publication date
ES2281290B1 (en) 2008-11-01
ES2281290A1 (en) 2007-09-16

Similar Documents

Publication Publication Date Title
ES2716535T3 (en) Composite polymer
KR101557210B1 (en) Polymeric composites
JP6682478B2 (en) Composite polymer
ES2715840T3 (en) Composite polymer
US20200406505A1 (en) Polymer composites
MX2014009787A (en) Process for making a molded part.
ES2772423T3 (en) Method for manufacturing a polymer composition
MX2014009783A (en) Process for making composite polymer.
ES2281290B1 (en) COMPOSITE MATERIAL, METHOD FOR CONTINUOUS PRODUCTION AND USE OF IT.
MX2014009786A (en) Composite polymer molded product.
EP2815008B1 (en) Composite polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07730358

Country of ref document: EP

Kind code of ref document: A1