WO2007105291A1 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
WO2007105291A1
WO2007105291A1 PCT/JP2006/304877 JP2006304877W WO2007105291A1 WO 2007105291 A1 WO2007105291 A1 WO 2007105291A1 JP 2006304877 W JP2006304877 W JP 2006304877W WO 2007105291 A1 WO2007105291 A1 WO 2007105291A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
fuel cell
housing
fuel
generation unit
Prior art date
Application number
PCT/JP2006/304877
Other languages
French (fr)
Japanese (ja)
Inventor
Masami Tsutsumi
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2006/304877 priority Critical patent/WO2007105291A1/en
Publication of WO2007105291A1 publication Critical patent/WO2007105291A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell, and more particularly to a configuration of a fuel cell with improved durability.
  • Recent portable information devices have been further reduced in size, weight, and functionality!
  • the battery used as a power source has steadily progressed in the small, light and high capacity.
  • the most common driving power source in current mobile phone devices is a lithium ion battery.
  • Lithium-ion batteries have a high driving voltage and battery capacity at the beginning of practical use, and performance improvements have been made in line with advances in mobile phone devices.
  • there are limits to improving the performance of lithium-ion batteries and lithium-ion batteries are no longer able to meet the demands for driving power sources for mobile phone devices that are becoming more sophisticated in the future.
  • a fuel cell supplies a fuel electrode (anode electrode) with fuel, generates electrons and protons (H +), and reacts the protons with oxygen supplied to an air electrode (force sword electrode).
  • This is a device that generates electricity. Electrons generated at the anode move to the power sword through the external circuit (conductor), and power can be taken out.
  • the anode electrode and the force sword electrode are placed facing each other with the electrolyte layer in between.
  • the structure of this power generation unit is called MEA (Membrane Electrode Assembly).
  • Patent Document 2 JP 2004-362849 A
  • the conventional method described above has a problem that the MEA multilayer structure is complicated and the manufacturing process of the fuel cell is increased.
  • an object of the present invention is to realize a structure capable of closely contacting the MEA during power generation with a simple structure.
  • a close contact holding means capable of closely holding the MEA power generation unit by an exothermic reaction during power generation is provided.
  • a housing is arranged facing the MEA, and the housing is made of a material that can be deformed as the temperature rises.
  • the housing material bends in the direction of pressing the MEA due to the exothermic reaction during power generation.
  • the MEA is fixed to the housing using a shape memory alloy panel, and the position of the housing material is changed in the direction of pressing the MEA due to the temperature rise during power generation.
  • the fuel cell comprises:
  • the close-contact holding means is a housing disposed to face the power generation unit, and the housing is made of a material that deforms as the temperature rises, for example, bimetal. Is done.
  • the housing may have irregularities on the surface.
  • the close-contact holding means presses and holds the power generation unit against the housing as the temperature rises, and the housing is arranged to face the power generation unit. And a shape memory alloy panel.
  • FIG. 1 is a diagram showing the appearance of a fuel cell according to one embodiment of the present invention and its cross-sectional structure.
  • FIG. 2 is a cross-sectional view showing a first configuration example of a fuel cell according to an embodiment of the present invention.
  • FIG. 3 is a view showing a pressing state of the housing against the MEA when the housing surface is uneven.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the MEA of the fuel cell of FIG.
  • FIG. 5 is a cross-sectional view showing a second configuration example of a fuel cell according to an embodiment of the present invention.
  • FIG. 6 is a graph showing improved durability of the fuel cell of the present invention.
  • FIG. 1 (a) is a schematic view showing an example of an external configuration of a fuel cell 10 according to an embodiment of the present invention
  • FIG. 1 (b) is a longitudinal sectional view thereof.
  • the fuel cell 10 is accommodated in a fuel cell casing 11 having openings 17 on the front surface and the back surface.
  • the fuel cell 10 includes a fuel tank 13 that stores liquid fuel, a power generation unit (MEA) 15, and a vaporization unit that vaporizes the liquid fuel and supplies the fuel to the MEAl 5 in a gas phase. 14 and a housing 12 holding MEA 15.
  • the liquid fuel is, for example, a 30% to 100% aqueous methanol solution, and preferably a 90% or higher aqueous methanol solution.
  • the vaporization section 14 is a vaporized film formed of a non-porous material having methanol permeability, such as a perfluorosulfonic acid material, a perfluorosulfonic acid material having a carboxyl group, a silicone material, or a polyimide material ( And a mask layer with an opening (not shown) for preventing and holding the vaporized film from being deformed.
  • MEA 15 includes an electrolyte layer 23 and a pair of electrodes 21 and 22 sandwiching the electrolyte layer 23.
  • the fuel electrode (anode electrode) 21 located on the fuel tank 13 side oxidizes the fuel supplied in the vapor phase from the vaporization section 14 to extract protons and electrons. That is, the anode electrode is an electrode on the side where the fuel is oxidized.
  • the generated protons are transported to the air electrode (force sword electrode) 22 located on the opposite side of the fuel tank 13 through the electrolyte layer 23 formed of an ionic conductor having no electronic conductivity.
  • the force sword electrode 22 generates water (steam) from ions generated by reducing oxygen and electrons and protons generated at the anode electrode 21. That is, the force sword electrode 22 is an electrode on the side which reduces at least oxygen as an active substance.
  • the fuel housing 11 has an opening 17 so that outside air can be introduced into the force sword electrode 22.
  • the fuel cell housing 11 has the openings 17 on the front and the back because it employs a series configuration in which the MEAs 15 are arranged on both sides of the fuel tank 13, respectively.
  • the opening 17 may be provided on either the front side or the back side.
  • Leads (not shown) are connected to the anode electrode 21 and the force sword electrode 22 of each MEA 15, and supply electrons generated by the anode electrode 21 to an external circuit.
  • the housing 12 fixes the MEA 15 during power generation to prevent the MEA 15 from peeling off from repeated discharge.
  • the housing 12 is made of a bimetal material. In addition to this, any material may be used as long as it can be deformed as the temperature rises.
  • the housing 12 is arranged to face each of the MEAs 15 located on both sides of the fuel tank 13.
  • the corner portion of each housing 12 is pressed against the casing 11 or the other housing 12 by a bolt or the like (not shown).
  • the temperature of the MEA 15 and its vicinity increases due to an exothermic reaction.
  • the bimetal material is brought into close contact with the MEA 15 by bending in the direction in which the MEA 15 is pressed due to a temperature rise with a large curvature coefficient due to a temperature change. That is, the electrolyte layer 23, the fuel electrode 21, and the air electrode 22 are pressed and brought into close contact with each other.
  • a nanometal is a plate-like member in which two or more metals or alloys having different thermal expansion coefficients are bonded together.
  • two types of metal plates with different coefficients of thermal expansion are made by adding manganese, chromium, copper, etc. to an alloy of iron and nickel, and bonded together by cold rolling.
  • the housing 12 is set so that the metal (or alloy) with the higher thermal expansion coefficient is located on the side in contact with the MEA 15.
  • FIG. 3 is a view showing a pressing state of the housing 12 against the MEA 15 when the surface of the bimetallic housing 12 is provided with irregularities.
  • the bimetal housing 12 may have a flat surface as shown in Fig. 2. However, by providing irregularities on the surface as shown in Fig. 3, the adhesion spot for MEA15 with respect to 15 is increased and the adhesion effect is further enhanced. Can do.
  • FIG. 4 is a diagram illustrating a configuration example of the MEA 15.
  • the MEA 15 has a fuel electrode (anode electrode) 21 on one side of the electrolyte layer 23 and an air electrode (force sword electrode) 22 on the other side.
  • an anode catalyst layer 21a and an anode current collector 21b are laminated in this order from the electrolyte layer 23 side.
  • the anode catalyst layer 21a is made of a porous conductive material such as carbon paper containing fine particles of an alloy made of a transition metal such as platinum (Pt) or platinum and ruthenium (Ru), carbon powder, and high molecules forming the electrolyte layer 23. The film is applied and filled.
  • the anode current collector 21b also has a metal mesh force such as SUS and Ni, and efficiently takes out the electrons generated in the anode catalyst layer 21a.
  • the force sword electrode 22 is laminated in the order of the force sword catalyst layer 22a and the force sword current collector 22b from the electrolyte layer 23 side. Similar to the anode catalyst layer 21a, the force sword catalyst layer 22a is composed of alloy fine particles made of a transition metal such as platinum (Pt), carbon powder, and a polymer that forms the electrolyte layer 23, such as carbon paper. A porous conductive film is applied and filled.
  • the force sword current collector 22b also has a metal mesh force such as SUS or Ni, and efficiently supplies electrons to the force sword catalyst layer 22a.
  • the electrolyte layer 23 is a polyperfluorosulfonic acid polymer (resin) membrane represented by a Nafion membrane manufactured by DuPont.
  • the electrolyte layer 23 itself is easily bent by the power generation of the MEA 15. This deflection causes the MEA 15 to peel off, but as shown in Fig. 2, the housing 21 that holds the MEA 15 is made of bimetal to maintain the introduction of air into the air electrode 22 while generating power. MEA can be pressed and held inside.
  • FIG. 5 is a diagram showing a second configuration example for fixing the MEA 15 during power generation.
  • MEA15 is held against Nosing 32 using shape memory alloy panel 18. To do.
  • a shape memory alloy is a material that returns to its original shape when heated even if it is deformed by applying a force at a temperature below the transformation point after processing the material into a certain shape and applying an appropriate heat treatment. have. Therefore, even if the panel in the compressed state is processed into the original shape with a shape memory alloy and then deformed at room temperature to extend the entire length of the panel, the original compressed shape is restored due to the increase in environmental temperature. Return.
  • the MEA 15 is held against the nosing 32 by the shape memory alloy panel 18 deformed at room temperature.
  • the housing 32 in FIG. 5 does not need to be made of bimetal, and for example, an appropriate material such as SUS or ceramics is used.
  • the shape memory alloy vane 18 When the temperature rises due to the discharge of the MEA 15 during power generation of the fuel cell, the shape memory alloy vane 18 returns to its original compressed shape, and a force is applied in the direction in which the gusset 12 is pressed against the MEA 15. . By this pressing force, the fuel electrode, the air electrode, and the electrolyte layer can be brought into close contact with each other, and peeling can be prevented.
  • the MEA 15 can be held in close contact with each other even when the discharge accompanying the power generation of the fuel cell is repeated. Can be improved.
  • FIG. 6 is a graph showing improvement in durability of the fuel cell of the present invention.
  • the horizontal axis of the graph is the number of repetitions, and the vertical axis is the discharge capacity.
  • a square mark indicates a discharge capacity when the bimetallic housing 12 of the embodiment shown in FIG. 2 is used, and a diamond mark indicates a discharge capacity when a general SUS304 housing is used.
  • the fuel cell using the bimetal housing 12 as in the present embodiment has a substantially constant discharge capacity even after repeated discharges 50 times, and exhibits good durability.
  • the bimetal housing 12 bends and presses in the direction in which the air electrode 22 is brought into close contact with the electrolyte layer 23 as the temperature rises with the power generation of the fuel cell, so that the MEA 15 is prevented from being peeled off.
  • the durability of the fuel cell can be dramatically improved.
  • the same effect can be obtained when the shape memory alloy panel is used.
  • an opening may be formed in the force housing 12 in which the housing 12 is installed independently of the fuel cell casing 11 and used as a part of the casing. Further, when the housing is used independently of the fuel cell casing 11 having the opening 17, the opening may be formed in the housing 12 itself.

Abstract

It is intended to realize a structure of simple architecture capable of close contact of MEA during power generation. There is provided a fuel cell comprising power generation part (15) having electrolyte layer (23) and, arranged opposite to each other with the electrolyte layer interposed therebetween, anode electrode (21) and cathode electrode (23) and comprising close contact retaining means (12) for mechanically effecting close contact and retention of the laminated structure by an exothermic reaction during the power generation of the power generation part.

Description

明 細 書  Specification
燃料電池  Fuel cell
技術分野  Technical field
[0001] 本発明は、燃料電池に関し、特に耐久性が向上した燃料電池の構成に関する。  TECHNICAL FIELD [0001] The present invention relates to a fuel cell, and more particularly to a configuration of a fuel cell with improved durability.
背景技術  Background art
[0002] 最近の携帯情報機器は、小型化、軽量化、高機能化が一段と進んで!/、る。また情 報機器装置の発展に伴い、その電源となる電池も小型'軽量 ·高容量ィ匕が着実に進 んできた。現在の携帯電話装置における最も一般的な駆動電源は、リチウムイオン電 池である。リチウムイオン電池は実用化当初力 高い駆動電圧と電池容量を持ち、携 帯電話装置の進歩に併せるように性能改善が図られてきた。しかし、リチウムイオン 電池の性能改善にも限界があり、今後も高機能化進む携帯電話装置の駆動電源と しての要求をリチウムイオン電池は満足できなくなりつつある。  [0002] Recent portable information devices have been further reduced in size, weight, and functionality! In addition, along with the development of information equipment, the battery used as a power source has steadily progressed in the small, light and high capacity. The most common driving power source in current mobile phone devices is a lithium ion battery. Lithium-ion batteries have a high driving voltage and battery capacity at the beginning of practical use, and performance improvements have been made in line with advances in mobile phone devices. However, there are limits to improving the performance of lithium-ion batteries, and lithium-ion batteries are no longer able to meet the demands for driving power sources for mobile phone devices that are becoming more sophisticated in the future.
[0003] このような状況のもとで、リチウムイオン電池に代わる新たな発電デバイスの開発が 期待されている。そのような発電デバイスとして、燃料電池が挙げられる。  [0003] Under such circumstances, development of a new power generation device to replace the lithium ion battery is expected. An example of such a power generation device is a fuel cell.
[0004] 燃料電池は、燃料極 (アノード電極)に燃料を供給して、電子とプロトン (H + )を生 成し、そのプロトンを空気極 (力ソード電極)に供給された酸素と反応させることで発電 する装置である。アノードで生成された電子は、外部回路 (導線)を通って力ソードへ 移動し、これによつて電力が取り出せる。アノード電極と力ソード電極は、電解質層を 挟んで対向して配置され、この発電部の構造は MEA (Membrane Electrode Assembl y)と呼ばれている。  [0004] A fuel cell supplies a fuel electrode (anode electrode) with fuel, generates electrons and protons (H +), and reacts the protons with oxygen supplied to an air electrode (force sword electrode). This is a device that generates electricity. Electrons generated at the anode move to the power sword through the external circuit (conductor), and power can be taken out. The anode electrode and the force sword electrode are placed facing each other with the electrolyte layer in between. The structure of this power generation unit is called MEA (Membrane Electrode Assembly).
[0005] 燃料電池システムの最大の特徴は、燃料及び酸素を補給することで長時間連続発 電が可能になる点にある。二次電池における充電の代わりに燃料を補給することで、 二次電池と同様に機器電源に応用できる。このことから、燃料電池は分散電源ゃ電 気自動車用の大型の発電機としてだけでなぐノート型 PCや携帯電話に適用するた めの超小型の発電ユニットとして盛んに研究開発が行われている。  [0005] The greatest feature of a fuel cell system is that it can generate power continuously for a long time by replenishing fuel and oxygen. By replenishing the fuel instead of charging in the secondary battery, it can be applied to the equipment power supply in the same way as the secondary battery. For this reason, fuel cells are being actively researched and developed as ultra-compact power generation units that can be applied to notebook PCs and mobile phones that can be used not only as large generators for distributed power sources and electric vehicles. .
[0006] しかし、特に小型の燃料電池において、耐久性が悪ぐ繰り返し放電を行うと容量 が減少して 、くと!/、う問題があった。これは燃料電池の発電部である MEA (Membran e Electrode Assembly)が繰り替えし発電することで剥離が起こり、その結果発電でき な 、ことに起因して!/、ると考えられる。 [0006] However, in particular, in a small fuel cell, when repeated discharge with poor durability is performed, the capacity decreases and there is a problem! This is MEA (Membran e Electrode Assembly) repeatedly generates electricity, causing peeling, resulting in inability to generate electricity! / I think.
[0007] 押さえ治具を用いることなぐ MEAをはがれにくい構造とするために、電解質の両 面に、複数の貫通孔を有する一対の電極基板をホットプレスで埋め込み、電極基板 の貫通孔の中に固体電解質を食い込ませることにより、接合を強固にする方法が提 案されている (たとえば、特許文献 1参照)。また、燃料極と固体電解質の密着性を高 めるために、燃料極と固体電解質の間に、金属粒子と固体電解質粒子との複合材で あるサーメット層を挿入する構成も提案されている (たとえば、特許文献 2参照)。 特許文献 1:特開平 9— 71889号公報 [0007] In order to make the MEA difficult to peel off without using a holding jig, a pair of electrode substrates having a plurality of through-holes are embedded in both sides of the electrolyte by hot pressing, and the electrode substrates are inserted into the through-holes of the electrode substrate. There has been proposed a method for strengthening the joining by causing a solid electrolyte to penetrate (see, for example, Patent Document 1). In order to increase the adhesion between the fuel electrode and the solid electrolyte, a configuration in which a cermet layer, which is a composite material of metal particles and solid electrolyte particles, is inserted between the fuel electrode and the solid electrolyte has been proposed ( For example, see Patent Document 2). Patent Document 1: Japanese Patent Laid-Open No. 9-71889
特許文献 2:特開 2004 - 362849号公報  Patent Document 2: JP 2004-362849 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 上述した従来の方法は、 MEA積層構造を複雑にし、燃料電池の作製工程が増大 するという問題がある。 [0008] The conventional method described above has a problem that the MEA multilayer structure is complicated and the manufacturing process of the fuel cell is increased.
[0009] そこで、本発明は、簡単な構造で、発電中に MEAを密着させることのできる構造を 実現することを課題とする。  [0009] Therefore, an object of the present invention is to realize a structure capable of closely contacting the MEA during power generation with a simple structure.
課題を解決するための手段  Means for solving the problem
[0010] 上記課題を解決するために、発電中の発熱反応により MEA発電部を密着保持す ることのできる密着保持手段を設ける。 [0010] In order to solve the above problems, a close contact holding means capable of closely holding the MEA power generation unit by an exothermic reaction during power generation is provided.
[0011] 第 1の具体例として、密着保持手段として、 MEAに対向してハウジングを配置し、こ のハウジングを、温度上昇にともなって変形することのできる材料で構成する。発電 時の発熱反応で、 MEAを押圧する方向にハウジング材をたわませる。 [0011] As a first specific example, as a close-contact holding means, a housing is arranged facing the MEA, and the housing is made of a material that can be deformed as the temperature rises. The housing material bends in the direction of pressing the MEA due to the exothermic reaction during power generation.
第 2の具体例として、形状記憶合金パネを用いて MEAをハウジングに固定し、発 電時の温度上昇により、 MEAを押圧する方向にハウジング材の位置を変化させる。  As a second specific example, the MEA is fixed to the housing using a shape memory alloy panel, and the position of the housing material is changed in the direction of pressing the MEA due to the temperature rise during power generation.
[0012] より具体的には、燃料電池は、 [0012] More specifically, the fuel cell comprises:
(a)電解層質と、当該電解質層を挟んで対向するアノード電極および力ソード電極が 配置される発電部と、  (a) an electrolysis layer, and a power generation unit in which an anode electrode and a force sword electrode facing each other across the electrolyte layer are disposed,
(b)前記発電部の発電中の発熱反応により、前記積層構造を機械的に密着保持す る密着保持手段と (b) The laminated structure is mechanically held tightly by an exothermic reaction during power generation of the power generation unit. Close contact holding means
を備える。  Is provided.
[0013] 上記第 1の具体例に対応して、密着保持手段は、発電部に対向して配置されるハ ウジングであり、前記ハウジングは、温度の上昇に従って変形する材料、たとえばバ ィメタルで構成される。良好な構成例として、ハウジングは、表面に凹凸を有してもよ い。  [0013] Corresponding to the first specific example, the close-contact holding means is a housing disposed to face the power generation unit, and the housing is made of a material that deforms as the temperature rises, for example, bimetal. Is done. As a good configuration example, the housing may have irregularities on the surface.
[0014] 上記第 2の具体例に対応して、密着保持手段は、発電部に対向して配置されるハ ウジングと、温度の上昇に伴って前記発電部を前記ハウジングに対して押圧保持す る形状記憶合金パネとで構成される。  [0014] Corresponding to the second specific example, the close-contact holding means presses and holds the power generation unit against the housing as the temperature rises, and the housing is arranged to face the power generation unit. And a shape memory alloy panel.
発明の効果  The invention's effect
[0015] 簡単な構成で、 MEAの電解質層と電極の剥離を防止することができる。その結果 、燃料電池の耐久性が向上する。  [0015] With a simple configuration, peeling of the MEA electrolyte layer and the electrode can be prevented. As a result, the durability of the fuel cell is improved.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明の一実施形態に係る燃料電池の外観と、その断面構造を示す図である  FIG. 1 is a diagram showing the appearance of a fuel cell according to one embodiment of the present invention and its cross-sectional structure.
[図 2]本発明の一実施形態に係る燃料電池の第 1の構成例を示す断面図である。 FIG. 2 is a cross-sectional view showing a first configuration example of a fuel cell according to an embodiment of the present invention.
[図 3]ハウジング表面に凹凸を設けた場合の、 MEAに対するハウジングの押圧状態 を示す図である。  FIG. 3 is a view showing a pressing state of the housing against the MEA when the housing surface is uneven.
[図 4]図 2の燃料電池の MEAの構成を示す概略断面図である。  4 is a schematic cross-sectional view showing the configuration of the MEA of the fuel cell of FIG.
[図 5]本発明の一実施形態に係る燃料電池の第 2の構成例を示す断面図である。  FIG. 5 is a cross-sectional view showing a second configuration example of a fuel cell according to an embodiment of the present invention.
[図 6]本発明の燃料電池の改善された耐久性を示すグラフである。  FIG. 6 is a graph showing improved durability of the fuel cell of the present invention.
符号の説明  Explanation of symbols
[0017] 10 燃料電池 [0017] 10 Fuel cell
12、 32 ハウジング  12, 32 housing
13 燃料タンク  13 Fuel tank
14 気化部  14 Vaporizer
15 発電部(MEA)  15 Power Generation Department (MEA)
17 開口部 18 形状記憶合金パネ 17 opening 18 Shape memory alloy panel
21 燃料極 (アノード電極)  21 Fuel electrode (anode electrode)
22 空気極 (力ソード電極)  22 Air electrode (force sword electrode)
23 電解質層  23 Electrolyte layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明の実施の形態について、図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019] 図 1 (a)は、本発明の一実施形態に係る燃料電池 10の外観構成の一例を示す概 略者静、図 1 (b)は、その縦断面図である。燃料電池 10は、図 1の例では、前面およ び背面に開口 17を有する燃料電池筐体 11の中に収容される。  FIG. 1 (a) is a schematic view showing an example of an external configuration of a fuel cell 10 according to an embodiment of the present invention, and FIG. 1 (b) is a longitudinal sectional view thereof. In the example of FIG. 1, the fuel cell 10 is accommodated in a fuel cell casing 11 having openings 17 on the front surface and the back surface.
[0020] 燃料電池 10は、液体燃料を収容する燃料タンク 13と、発電部(MEA:Membrane E lectrode Assembly) 15と、液体燃料を気化して気相で燃料を MEAl 5に供給する気 化部 14と、 MEA15を保持するハウジング 12を含む。液体燃料は、たとえば 30%〜 100%のメタノール水溶液であり、好ましくは、 90%以上のメタノール水溶液である。 気化部 14は、パーフルォロスルホン酸系材料、カルボキシル基を有するパーフルォ ロスルホン酸系材料、シリコーン系材料、ポリイミド系材料など、メタノール透過性を有 する非多孔質材料で形成される気化膜 (不図示)と、気化膜の変形を防止して保持 する開口付きマスク層(付図示)を含む。 MEA15は、電解質層 23およびこれを挟持 する一対の電極 21、 22とで構成される  [0020] The fuel cell 10 includes a fuel tank 13 that stores liquid fuel, a power generation unit (MEA) 15, and a vaporization unit that vaporizes the liquid fuel and supplies the fuel to the MEAl 5 in a gas phase. 14 and a housing 12 holding MEA 15. The liquid fuel is, for example, a 30% to 100% aqueous methanol solution, and preferably a 90% or higher aqueous methanol solution. The vaporization section 14 is a vaporized film formed of a non-porous material having methanol permeability, such as a perfluorosulfonic acid material, a perfluorosulfonic acid material having a carboxyl group, a silicone material, or a polyimide material ( And a mask layer with an opening (not shown) for preventing and holding the vaporized film from being deformed. MEA 15 includes an electrolyte layer 23 and a pair of electrodes 21 and 22 sandwiching the electrolyte layer 23.
MEA15の電極のうち、燃料タンク 13側に位置する燃料極(アノード電極) 21にお いて、気化部 14から気相で供給される燃料を酸化して、プロトンと電子を取り出す。 アノード電極とはすなわち、燃料を酸ィ匕する側の電極である。生成されたプロトンは、 電子伝導性を有さないイオン導電体で形成される電解質層 23を通って、燃料タンク 13と反対側に位置する空気極 (力ソード電極) 22に輸送される。力ソード電極 22は、 酸素を還元して発生したイオンと、アノード電極 21で生成された電子およびプロトン から水 (蒸気)を生成する。力ソード電極 22とはすなわち、少なくとも酸素を活性物質 として還元する側の電極である。力ソード電極 22に外気を導入できるように、燃料筐 体 11は、開口 17を有する。  Of the MEA 15 electrodes, the fuel electrode (anode electrode) 21 located on the fuel tank 13 side oxidizes the fuel supplied in the vapor phase from the vaporization section 14 to extract protons and electrons. That is, the anode electrode is an electrode on the side where the fuel is oxidized. The generated protons are transported to the air electrode (force sword electrode) 22 located on the opposite side of the fuel tank 13 through the electrolyte layer 23 formed of an ionic conductor having no electronic conductivity. The force sword electrode 22 generates water (steam) from ions generated by reducing oxygen and electrons and protons generated at the anode electrode 21. That is, the force sword electrode 22 is an electrode on the side which reduces at least oxygen as an active substance. The fuel housing 11 has an opening 17 so that outside air can be introduced into the force sword electrode 22.
[0021] なお、図示の便宜上、気化部 14と MEA15の燃料極 21の間に広い空隙があるよう に描かれているが、実際は密着しているか、または間に空気以外の燃料拡散層(不 図示)が挿入されている。 [0021] For convenience of illustration, there is a wide gap between the vaporizer 14 and the fuel electrode 21 of the MEA 15. In fact, they are in close contact with each other, or a fuel diffusion layer (not shown) other than air is inserted between them.
[0022] 図 1 (b)では、燃料タンク 13の両側にそれぞれ MEA15を配置する直列型の構成 を採用しているので、燃料電池筐体 11は、前面および背面に開口部 17を有してい る。燃料タンク 13の片面のみに MEA15を配置する場合は、前面または背面のいず れか一方に開口部 17を設ければよい。  [0022] In Fig. 1 (b), the fuel cell housing 11 has the openings 17 on the front and the back because it employs a series configuration in which the MEAs 15 are arranged on both sides of the fuel tank 13, respectively. The When the MEA 15 is disposed only on one side of the fuel tank 13, the opening 17 may be provided on either the front side or the back side.
[0023] 各 MEA15のアノード電極 21と力ソード電極 22は図示しないリードが接続され、ァ ノード電極 21で生成された電子を外部回路に供給する。  [0023] Leads (not shown) are connected to the anode electrode 21 and the force sword electrode 22 of each MEA 15, and supply electrons generated by the anode electrode 21 to an external circuit.
[0024] ハウジング 12は、発電時に MEA15を固定して、繰り返し行われる放電から MEA1 5の剥離を防止する。本実施形態では、ハウジング 12は、バイメタル材料で構成され る。これ以外にも、温度上昇にともなって変形可能な材料であれば、任意の材料を用 いてもよい。  [0024] The housing 12 fixes the MEA 15 during power generation to prevent the MEA 15 from peeling off from repeated discharge. In the present embodiment, the housing 12 is made of a bimetal material. In addition to this, any material may be used as long as it can be deformed as the temperature rises.
[0025] 図 2 (a)に示すように、燃料タンク 13の両側に位置する MEA15の各々に対向して ハウジング 12が配置される。各ハウジング 12のコーナー部分は、図示しないボルト等 により、筐体 11または他方のハウジング 12に対して力しめられている。  [0025] As shown in Fig. 2 (a), the housing 12 is arranged to face each of the MEAs 15 located on both sides of the fuel tank 13. The corner portion of each housing 12 is pressed against the casing 11 or the other housing 12 by a bolt or the like (not shown).
[0026] MEA15が放電を行うと、発熱反応により MEA15およびその近傍の温度が上昇す る。バイメタル材は、温度変化による湾曲係数が大きぐ温度上昇によって、図 2 (b) に示すように、 MEA15を押圧する方向にたわむことで、 MEA15を密着させる。つま り、電解質層 23と燃料極 21、空気極 22とが押圧され、密着することになる。  [0026] When the MEA 15 discharges, the temperature of the MEA 15 and its vicinity increases due to an exothermic reaction. As shown in Fig. 2 (b), the bimetal material is brought into close contact with the MEA 15 by bending in the direction in which the MEA 15 is pressed due to a temperature rise with a large curvature coefficient due to a temperature change. That is, the electrolyte layer 23, the fuel electrode 21, and the air electrode 22 are pressed and brought into close contact with each other.
[0027] ノ ィメタルは、熱膨張係数の異なる 2種類あるいはそれ以上の金属または合金を一 体に接着した板状の部材である。例えば、鉄とニッケルの合金にマンガン、クロム、銅 などを添加して 2種類の熱膨張率の異なる金属板を作り、冷間圧延で貼り合わせたも のである。図 2 (b)の例では、 MEA15に接する側に熱膨張率の高い方の金属(また は合金)が位置するように、ハウジング 12を設定する。  [0027] A nanometal is a plate-like member in which two or more metals or alloys having different thermal expansion coefficients are bonded together. For example, two types of metal plates with different coefficients of thermal expansion are made by adding manganese, chromium, copper, etc. to an alloy of iron and nickel, and bonded together by cold rolling. In the example of Fig. 2 (b), the housing 12 is set so that the metal (or alloy) with the higher thermal expansion coefficient is located on the side in contact with the MEA 15.
[0028] 図 3は、バイメタルのハウジング 12の表面に、凹凸を設けた場合の、 MEA15に対 するハウジング 12の押圧状態を示す図である。バイメタルのハウジング 12は、図 2の ように表面が平坦なものでもよいが、図 3のように表面に凹凸を設けることで、 MEA1 5に対 15に対する密着スポットを増やし、さらに密着効果を高めることができる。 [0029] 図 4は、 MEA15の構成例を示す図である。 MEA15は、電解質層 23の一方の側 に燃料極 (アノード電極) 21を、他方の側に空気極 (力ソード電極) 22を有する。ァノ ード電極 21は、電解質層 23側から、アノード触媒層 21aとアノード集電体 21bがこの 順で積層されている。アノード触媒層 21aは、白金 (Pt)または白金とルテニウム (Ru )などの遷移金属から成る合金の微粒子と、炭素粉末と、電解質層 23を形成する高 分子を、カーボンぺーパなどの多孔質導電膜に塗布、充填したものである。アノード 集電体 21bは、 SUS, Niなどの金属メッシュ力もなり、アノード触媒層 21aで生成され た電子を効率的に取り出すものである。 FIG. 3 is a view showing a pressing state of the housing 12 against the MEA 15 when the surface of the bimetallic housing 12 is provided with irregularities. The bimetal housing 12 may have a flat surface as shown in Fig. 2. However, by providing irregularities on the surface as shown in Fig. 3, the adhesion spot for MEA15 with respect to 15 is increased and the adhesion effect is further enhanced. Can do. FIG. 4 is a diagram illustrating a configuration example of the MEA 15. The MEA 15 has a fuel electrode (anode electrode) 21 on one side of the electrolyte layer 23 and an air electrode (force sword electrode) 22 on the other side. In the anode electrode 21, an anode catalyst layer 21a and an anode current collector 21b are laminated in this order from the electrolyte layer 23 side. The anode catalyst layer 21a is made of a porous conductive material such as carbon paper containing fine particles of an alloy made of a transition metal such as platinum (Pt) or platinum and ruthenium (Ru), carbon powder, and high molecules forming the electrolyte layer 23. The film is applied and filled. The anode current collector 21b also has a metal mesh force such as SUS and Ni, and efficiently takes out the electrons generated in the anode catalyst layer 21a.
[0030] 力ソード電極 22は、電解質層 23側から、力ソード触媒層 22aと力ソード集電体 22b 力 の順で積層されている。力ソード触媒層 22aは、アノード触媒層 21aと同様に、白 金 (Pt)などの遷移金属から成る合金の微粒子と、炭素粉末と、電解質層 23を形成 する高分子を、カーボンぺーパなどの多孔質導電膜に塗布、充填したものである。力 ソード集電体 22bは、 SUS, Niなどの金属メッシュ力もなり、力ソード触媒層 22aに効 率的に電子を供給するものである。  [0030] The force sword electrode 22 is laminated in the order of the force sword catalyst layer 22a and the force sword current collector 22b from the electrolyte layer 23 side. Similar to the anode catalyst layer 21a, the force sword catalyst layer 22a is composed of alloy fine particles made of a transition metal such as platinum (Pt), carbon powder, and a polymer that forms the electrolyte layer 23, such as carbon paper. A porous conductive film is applied and filled. The force sword current collector 22b also has a metal mesh force such as SUS or Ni, and efficiently supplies electrons to the force sword catalyst layer 22a.
[0031] 電解質層 23は、デュポン社製の Nafion膜に代表されるポリパーフルォロスルホン 酸系の高分子 (榭脂)膜であり、 MEA15の発電によりそれ自体がたわみやすい。こ のたわみが MEA15の剥離の原因となるのであるが、図 2のように、 MEA15を保持 するハウジング 21をバイメタルで構成することにより、空気極 22への空気の導入を維 持しつつ、発電中に MEAを押圧保持することができる。  [0031] The electrolyte layer 23 is a polyperfluorosulfonic acid polymer (resin) membrane represented by a Nafion membrane manufactured by DuPont. The electrolyte layer 23 itself is easily bent by the power generation of the MEA 15. This deflection causes the MEA 15 to peel off, but as shown in Fig. 2, the housing 21 that holds the MEA 15 is made of bimetal to maintain the introduction of air into the air electrode 22 while generating power. MEA can be pressed and held inside.
[0032] 燃料タンク 13、気化部 14を介して、燃料極 21に燃料が供給され、 MEA15で発電 が開始されると、 MEA15は、徐々に発熱を始める。この発熱により、 MEA15は、約 20°Cから 65°Cまで上昇する。一方、バイメタルを、 20°Cから 65°Cで変形するものを 用いた場合、 MEA15の温度変化に応じて、徐々に湾曲を始め、発電が一定となつ た温度、つまり 65°Cで最も湾曲することになる。つまり、最も剥離しやすい温度(65°C )において、最も押圧力が強くなる。従って、発電中に MEAを押圧保持することが可 能となる。  [0032] When fuel is supplied to the fuel electrode 21 via the fuel tank 13 and the vaporization unit 14 and power generation is started by the MEA 15, the MEA 15 gradually starts to generate heat. This heat generation raises MEA15 from about 20 ° C to 65 ° C. On the other hand, when a bimetal that deforms from 20 ° C to 65 ° C is used, it begins to bend gradually according to the temperature change of MEA15, and it is the most bent at a temperature at which power generation becomes constant, that is, 65 ° C. Will do. That is, the pressing force is strongest at the temperature at which peeling is most likely (65 ° C.). Therefore, the MEA can be pressed and held during power generation.
[0033] 図 5は、発電中の MEA15を固定ィ匕するための第 2の構成例を示す図である。図 5 の例では、形状記憶合金パネ 18を使用して、 MEA15をノヽウジング 32に対して保持 する。 FIG. 5 is a diagram showing a second configuration example for fixing the MEA 15 during power generation. In the example of Fig. 5, MEA15 is held against Nosing 32 using shape memory alloy panel 18. To do.
[0034] 形状記憶合金は、材料をある形状に加工し、適切な熱処理を施した後に、変態点 以下の温度で力を加えて変形させたとしても、加熱すればもとの形状に戻る性質を 持っている。したがって、形状記憶合金で、圧縮された状態のパネを元の形状として 加工し、その後常温で変形させてパネの全長を伸長しても、環境温度の上昇により、 もとの圧縮された形状に戻る。  [0034] A shape memory alloy is a material that returns to its original shape when heated even if it is deformed by applying a force at a temperature below the transformation point after processing the material into a certain shape and applying an appropriate heat treatment. have. Therefore, even if the panel in the compressed state is processed into the original shape with a shape memory alloy and then deformed at room temperature to extend the entire length of the panel, the original compressed shape is restored due to the increase in environmental temperature. Return.
[0035] そこで、図 5 (a)のように、常温で変形した形状記憶合金パネ 18で、 MEA15をノヽゥ ジング 32に対して保持する。図 5のハウジング 32は、バイメタルで構成する必要はな ぐたとえば、 SUS、セラミックスなど、適切な材料を用いる。  Therefore, as shown in FIG. 5A, the MEA 15 is held against the nosing 32 by the shape memory alloy panel 18 deformed at room temperature. The housing 32 in FIG. 5 does not need to be made of bimetal, and for example, an appropriate material such as SUS or ceramics is used.
[0036] 燃料電池の発電時に、 MEA15の放電により温度が上昇すると、形状記憶合金バ ネ 18が圧縮されたもとの形状に戻り、ノ、ウジング 12を MEA15に対して押圧する方 向に力が加わる。この押圧力により、燃料極と空気極と電解質層とを密着することが でき、剥離を防止することができる。  [0036] When the temperature rises due to the discharge of the MEA 15 during power generation of the fuel cell, the shape memory alloy vane 18 returns to its original compressed shape, and a force is applied in the direction in which the gusset 12 is pressed against the MEA 15. . By this pressing force, the fuel electrode, the air electrode, and the electrolyte layer can be brought into close contact with each other, and peeling can be prevented.
[0037] このような構成でも、図 2の構成と同様に、燃料電池の発電に伴う放電が繰り返し行 われた場合でも、 MEA15を密着保持できるので、剥離を防止し、燃料電池 10の耐 久性を向上することができる。  [0037] In this configuration as well, as in the configuration of FIG. 2, the MEA 15 can be held in close contact with each other even when the discharge accompanying the power generation of the fuel cell is repeated. Can be improved.
[0038] 図 6は、本発明の燃料電池の耐久性の改善を示すグラフである。グラフの横軸は繰 り返し回数、縦軸は放電容量である。四角マークは、図 2に示す実施形態のバイメタ ルハウジング 12を用いたときの放電容量、菱形マークは、一般的な SUS304のハウ ジングを用いたときの放電容量を示す。  FIG. 6 is a graph showing improvement in durability of the fuel cell of the present invention. The horizontal axis of the graph is the number of repetitions, and the vertical axis is the discharge capacity. A square mark indicates a discharge capacity when the bimetallic housing 12 of the embodiment shown in FIG. 2 is used, and a diamond mark indicates a discharge capacity when a general SUS304 housing is used.
[0039] 実験では、 100vol%メタノールを 2. 5cc供給し、全部を放電させて 1回とカウントし た。その際に、 2. OVの電圧印可で流れる電流の積算値を測定した。ハウジング 12 のバイメタル材料として、バイメタル No. 5000 (富士金属株式会社製)を用いた。 M EA15の燃料極(アノード電極) 21の触媒層 21aとして、白金 ルテニウム(Pt— Ru) 合金担持触媒 (TEC61E54、田中貴金属製)を用い、空気極 (力ソード電極) 22の 触媒層 22aとして、白金 (Pt)担持触媒 (TEC10E70TPM、田中貴金属製)を用い た。電解質層 23は、 Dupont社製の Nafion NF112を用いた。  [0039] In the experiment, 2.5 cc of 100 vol% methanol was supplied, and the whole was discharged and counted as one time. At that time, the integrated value of the current flowing under the voltage of 2. OV was measured. Bimetal No. 5000 (manufactured by Fuji Metal Co., Ltd.) was used as the bimetal material for the housing 12. As catalyst layer 21a of fuel electrode (anode electrode) 21 of MEA15, platinum ruthenium (Pt—Ru) alloy supported catalyst (TEC61E54, made by Tanaka Kikinzoku) is used, and as catalyst layer 22a of air electrode (force sword electrode) 22, A platinum (Pt) supported catalyst (TEC10E70TPM, manufactured by Tanaka Kikinzoku) was used. As the electrolyte layer 23, Nafion NF112 manufactured by Dupont was used.
[0040] SUS304のハウジングを用いた場合は、放電の繰り返し回数が 10回を超えると、放 電容量が急激に低減し、ほとんど燃料電池として機能しなくなる。これは、電解質層と 電極層との剥離等により、インピーダンスが急激に増大するためと考えられる。 [0040] When a SUS304 housing is used, if the number of repeated discharges exceeds 10, The electric capacity is drastically reduced, and it hardly functions as a fuel cell. This is presumably because the impedance rapidly increases due to separation between the electrolyte layer and the electrode layer.
これに対し、本実施形態のようにバイメタルのハウジング 12を用いた燃料電池は、 放電を 50回繰り返しても、その放電容量はほぼ一定しており、良好な耐久性を示す 。上述のように、燃料電池の発電に伴う温度上昇にしたがって、バイメタルのハウジン グ 12が湾曲し、空気極 22を電解質層 23に密着させる方向に押圧するので、 MEA1 5の剥離が防止される。その結果、グラフに現れるように、燃料電池の耐久性を飛躍 的に向上することができる。図 5のように、形状記憶合金パネを用いた場合も、同様の 効果を得ることができる。  On the other hand, the fuel cell using the bimetal housing 12 as in the present embodiment has a substantially constant discharge capacity even after repeated discharges 50 times, and exhibits good durability. As described above, the bimetal housing 12 bends and presses in the direction in which the air electrode 22 is brought into close contact with the electrolyte layer 23 as the temperature rises with the power generation of the fuel cell, so that the MEA 15 is prevented from being peeled off. As a result, as shown in the graph, the durability of the fuel cell can be dramatically improved. As shown in FIG. 5, the same effect can be obtained when the shape memory alloy panel is used.
以上、良好な実施形態に基づいて本発明を説明した力 本発明はこれらの例に限 定されるものではなぐ多様な変更が可能である。たとえば、図 2の構成例では、ハウ ジング 12を燃料電池筐体 11と独立して設置した力 ハウジング 12に開口部を形成し て、筐体の一部として用いてもよい。また、開口部 17を有する燃料電池筐体 11と独 立してハウジングを用いる場合に、ハウジング 12自体にも開口を形成してもよい。  As described above, the present invention has been described based on the preferred embodiments. The present invention is not limited to these examples, and various modifications are possible. For example, in the configuration example of FIG. 2, an opening may be formed in the force housing 12 in which the housing 12 is installed independently of the fuel cell casing 11 and used as a part of the casing. Further, when the housing is used independently of the fuel cell casing 11 having the opening 17, the opening may be formed in the housing 12 itself.

Claims

請求の範囲 The scope of the claims
[1] 電解層質と、当該電解質層を挟んで対向するアノード電極および力ソード電極が配 置された発電部と、  [1] An electrolysis layer, and a power generation unit in which an anode electrode and a force sword electrode facing each other across the electrolyte layer are disposed,
前記発電部の発電中の発熱反応により、前記積層構造を機械的に密着保持する 密着保持手段と  An adhesion holding means for mechanically holding the laminated structure in close contact by an exothermic reaction during power generation of the power generation unit;
を備えることを特徴とする燃料電池。  A fuel cell comprising:
[2] 前記密着保持手段は、前記発電部に対向して配置されるハウジングであり、前記 ノ、ウジングは、温度の上昇に従って変形する材料で構成されることを特徴とする請求 項 1に記載の燃料電池。  2. The close contact holding means is a housing disposed to face the power generation unit, and the sawing and the swing are made of a material that deforms as the temperature rises. Fuel cell.
[3] 前記ハウジングは、ノ ィメタルで構成されることを特徴とする請求項 2に記載の燃料 電池。  [3] The fuel cell according to [2], wherein the housing is made of metal.
[4] 前記ハウジングは、表面に凹凸を有することを特徴とする請求項 2または 3に記載の 燃料電池。  4. The fuel cell according to claim 2, wherein the housing has irregularities on the surface.
[5] 前記密着保持手段は、前記発電部に対向して配置されるハウジングと、温度の上 昇に伴って前記発電部を前記ハウジングに対して押圧保持する形状記憶合金パネ とで構成されることを特徴とする請求項 1に記載の燃料電池。  [5] The close-contact holding means includes a housing disposed to face the power generation unit, and a shape memory alloy panel that presses and holds the power generation unit against the housing as the temperature rises. The fuel cell according to claim 1, wherein:
[6] 前記ハウジングは、複数の開口部を有することを特徴とする請求項 2または 4に記 載の燃料電池。 6. The fuel cell according to claim 2, wherein the housing has a plurality of openings.
[7] 前記発電部に燃料を供給する燃料供給部と、 [7] a fuel supply unit for supplying fuel to the power generation unit;
前記燃料供給部から供給される燃料を気化する気化部と、  A vaporization unit that vaporizes the fuel supplied from the fuel supply unit;
をさらに備え、前記発電部へは、気相で燃料が供給されることを特徴とする請求項 1 に記載の燃料電池。  The fuel cell according to claim 1, further comprising: a fuel in a gas phase supplied to the power generation unit.
[8] 前記発電部は、前記燃料供給部を挟んで直列に配置される一対の発電体を含む ことを特徴とする請求項 1に記載の燃料電池。  8. The fuel cell according to claim 1, wherein the power generation unit includes a pair of power generation bodies arranged in series with the fuel supply unit interposed therebetween.
PCT/JP2006/304877 2006-03-13 2006-03-13 Fuel cell WO2007105291A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304877 WO2007105291A1 (en) 2006-03-13 2006-03-13 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304877 WO2007105291A1 (en) 2006-03-13 2006-03-13 Fuel cell

Publications (1)

Publication Number Publication Date
WO2007105291A1 true WO2007105291A1 (en) 2007-09-20

Family

ID=38509142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304877 WO2007105291A1 (en) 2006-03-13 2006-03-13 Fuel cell

Country Status (1)

Country Link
WO (1) WO2007105291A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117326A (en) * 2007-11-05 2009-05-28 Hyundai Motor Co Ltd End plate for fuel cell stack and its manufacturing method
WO2010038869A1 (en) * 2008-10-02 2010-04-08 日本特殊陶業株式会社 Solid oxide fuel battery
JP2010153240A (en) * 2008-12-25 2010-07-08 Sharp Corp Fuel cell
JP2010541135A (en) * 2007-09-25 2010-12-24 オングストローム パワー インク. Fuel cell cover
US8628890B2 (en) 2004-05-04 2014-01-14 Societe Bic Electrochemical cells having current-carrying structures underlying electrochemical reaction layers
US9673476B2 (en) 2007-09-25 2017-06-06 Intelligent Energy Limited Fuel cell systems including space-saving fluid plenum and related methods

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4522205Y1 (en) * 1966-02-03 1970-09-03
JPS61285676A (en) * 1985-06-13 1986-12-16 Toshiba Corp Molten carbonate type fuel cell
JPS6255874U (en) * 1985-09-27 1987-04-07
JPS6223022Y2 (en) * 1981-05-21 1987-06-11
JPH0620294Y2 (en) * 1987-04-14 1994-05-25 三菱重工業株式会社 Solid electrolyte fuel cell
JPH06231794A (en) * 1993-02-03 1994-08-19 Hitachi Ltd Layered type fuel cell
JPH10284108A (en) * 1997-03-31 1998-10-23 Toyota Motor Corp Solid electrolyte, and fuel cell, hydrogen pump, oxygen concentration sensor, and steam concentration sensor using the electrolyte
JP2000106201A (en) * 1998-09-30 2000-04-11 Toshiba Corp Fuel cell
JP2003075403A (en) * 2001-09-03 2003-03-12 Ngk Spark Plug Co Ltd Gas sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4522205Y1 (en) * 1966-02-03 1970-09-03
JPS6223022Y2 (en) * 1981-05-21 1987-06-11
JPS61285676A (en) * 1985-06-13 1986-12-16 Toshiba Corp Molten carbonate type fuel cell
JPS6255874U (en) * 1985-09-27 1987-04-07
JPH0620294Y2 (en) * 1987-04-14 1994-05-25 三菱重工業株式会社 Solid electrolyte fuel cell
JPH06231794A (en) * 1993-02-03 1994-08-19 Hitachi Ltd Layered type fuel cell
JPH10284108A (en) * 1997-03-31 1998-10-23 Toyota Motor Corp Solid electrolyte, and fuel cell, hydrogen pump, oxygen concentration sensor, and steam concentration sensor using the electrolyte
JP2000106201A (en) * 1998-09-30 2000-04-11 Toshiba Corp Fuel cell
JP2003075403A (en) * 2001-09-03 2003-03-12 Ngk Spark Plug Co Ltd Gas sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8628890B2 (en) 2004-05-04 2014-01-14 Societe Bic Electrochemical cells having current-carrying structures underlying electrochemical reaction layers
US9017892B2 (en) 2004-05-04 2015-04-28 Societe Bic Electrochemical cells having current-carrying structures underlying electrochemical reaction layers
JP2010541135A (en) * 2007-09-25 2010-12-24 オングストローム パワー インク. Fuel cell cover
US9673476B2 (en) 2007-09-25 2017-06-06 Intelligent Energy Limited Fuel cell systems including space-saving fluid plenum and related methods
JP2009117326A (en) * 2007-11-05 2009-05-28 Hyundai Motor Co Ltd End plate for fuel cell stack and its manufacturing method
WO2010038869A1 (en) * 2008-10-02 2010-04-08 日本特殊陶業株式会社 Solid oxide fuel battery
US20110171554A1 (en) * 2008-10-02 2011-07-14 Ngk Spark Plug Co., Ltd. Solid oxide fuel cell apparatus
JP5519491B2 (en) * 2008-10-02 2014-06-11 日本特殊陶業株式会社 Solid oxide fuel cell
US9123936B2 (en) 2008-10-02 2015-09-01 Ngk Spark Plug Co., Ltd. Solid oxide fuel cell apparatus
JP2010153240A (en) * 2008-12-25 2010-07-08 Sharp Corp Fuel cell

Similar Documents

Publication Publication Date Title
JP5438900B2 (en) Electrochemical device
GB2404491A (en) Flat fuel cell assembly and fabrication thereof
US7875405B2 (en) Side-by-side fuel cells
JP2006253135A (en) Stack for fuel cell and fuel cell system using stack for fuel cell
JP2010021135A (en) Stack and fuel cell electric power generation system including same
WO2007105291A1 (en) Fuel cell
US8663870B2 (en) Electrochemical device comprising linked bonded bodies
WO2003088399A1 (en) Fuel battery, electric device, portable computer, and fuel battery drive method
CN101828293B (en) Fuel cell
JPWO2004075331A1 (en) Fuel cell and manufacturing method thereof
JP2010170887A (en) Fuel cell system and electronic equipment
US20070048584A1 (en) Fuel cell
JP5235581B2 (en) Fuel cell separator
Jaouen et al. Adhesive copper films for an air-breathing polymer electrolyte fuel cell
JP2004214040A (en) Fuel cell
JP2005353561A (en) Fuel cell
US20080152980A1 (en) Membrane electrode assembly, method of producing the membrane electrode assembly, and fuel cell using the membrane electrode assembly
JP2006244715A (en) Bipolar membrane and fuel cell using it
JP2005340158A (en) Fuel cell module
JP2007250461A (en) Fuel cell system, and control method thereof
JP2008047333A (en) Manufacturing method of electrolyte membrane, and manufacturing method of membrane electrode assembly
KR100684781B1 (en) Stack and fuel cell apparatus with the same
US9385389B2 (en) Fuel cell
US20060159976A1 (en) Electrochemical energy source and electronic device incorporating such an energy source
KR20090095642A (en) Fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06715600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06715600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP