WO2007114353A1 - プローブを用いた情報記憶装置 - Google Patents

プローブを用いた情報記憶装置 Download PDF

Info

Publication number
WO2007114353A1
WO2007114353A1 PCT/JP2007/057144 JP2007057144W WO2007114353A1 WO 2007114353 A1 WO2007114353 A1 WO 2007114353A1 JP 2007057144 W JP2007057144 W JP 2007057144W WO 2007114353 A1 WO2007114353 A1 WO 2007114353A1
Authority
WO
WIPO (PCT)
Prior art keywords
buffer layer
recording medium
thermal buffer
recording
actuator structure
Prior art date
Application number
PCT/JP2007/057144
Other languages
English (en)
French (fr)
Inventor
Takanori Maeda
Jun Suzuki
Masahiro Ishimori
Kenjiro Fujimoto
Atsushi Onoe
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2008508666A priority Critical patent/JP4353337B2/ja
Priority to EP07740580A priority patent/EP2009629A4/en
Priority to US12/295,022 priority patent/US7945963B2/en
Publication of WO2007114353A1 publication Critical patent/WO2007114353A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1463Record carriers for recording or reproduction involving the use of microscopic probe means
    • G11B9/149Record carriers for recording or reproduction involving the use of microscopic probe means characterised by the memorising material or structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1418Disposition or mounting of heads or record carriers
    • G11B9/1427Disposition or mounting of heads or record carriers with provision for moving the heads or record carriers relatively to each other or for access to indexed parts without effectively imparting a relative movement
    • G11B9/1436Disposition or mounting of heads or record carriers with provision for moving the heads or record carriers relatively to each other or for access to indexed parts without effectively imparting a relative movement with provision for moving the heads or record carriers relatively to each other
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present invention relates to an information storage device that records or reads information on a recording medium using a probe, such as a scanning probe memory.
  • scanning probe memory device as a small information storage device capable of recording information with high density.
  • Scanning probe memory devices include those using a tunnel effect, those using an atomic force, those using a magnetic force, those using an electrostatic force, those using a nonlinear dielectric constant, and There are various types such as those using thermal deformation of recording media.
  • a scanning probe memory device usually includes a probe having a tip diameter of about several tens of nanometers to several micrometers, and a flat recording medium having a recording surface formed on the surface thereof.
  • the scanning probe memory device records or reads information on a recording medium by bringing the tip of the probe close to or in contact with the recording surface of the recording medium.
  • the scanning probe memory device moves the probe or the recording medium in a direction parallel to the recording surface, and changes the position between the probe and the recording medium.
  • the recording surface of the recording medium can be moved by the probe, a large amount of information can be arranged on the recording surface with high density, or a large amount of information arranged on the recording surface can be continuously arranged.
  • an electromagnetically driven or electrostatically driven actuator using MEMS (Micro Electro Mechanical System) technology is used for example.
  • many of the scanning probe memory devices are provided with a two-dimensional probe array in which several tens or hundreds or even several thousand probes are arranged in a matrix, for example.
  • a large amount of information can be quickly transferred to a recording medium. Or a large amount of information can be quickly read from the recording medium.
  • the recording medium and the actuator are arranged in a direction parallel to the recording surface. That is, the recording medium and the actuator are arranged in a direction parallel to the recording surface, and are coupled to each other by a connecting member extending in a direction parallel to the recording surface. Then, the recording medium is moved in the direction parallel to the recording surface by pulling or pushing back the connecting member in the direction parallel to the recording surface by driving the actuator.
  • the probe is arranged above the recording medium and fixed to a housing or the like so that it does not move even if the recording medium moves. As a result, the recording medium can be moved relative to the probe, and the recording surface can be scanned by the probe.
  • the projection area of the probe memory device when the plane parallel to the recording surface is used as the projection surface is small. growing.
  • a configuration in which the recording medium and the actuator are arranged in a direction perpendicular to the recording surface is conceivable.
  • a recording medium is laminated on a flat plate-like structure incorporating an actuator.
  • the plate-like structure and the recording medium are integrally moved in a direction parallel to the recording surface by driving the actuator.
  • the probe is placed above the recording medium and fixed to a housing or the like so that it does not move even if the recording medium moves. As a result, the recording medium can be moved relative to the probe, and the recording surface can be scanned by the probe.
  • the actuator and the recording medium are arranged close to each other. For this reason, the heat generated by the actuator during driving is easily conducted to the recording medium. Power, too
  • the heat source in the ueta is mainly a coil if it is an electromagnetic drive type actuator, and is mainly a comb electrode if it is an electrostatic drive type actuator. For this reason, heat generation is local. As a result, the temperature distribution of the recording medium becomes non-uniform, and the recording medium may expand non-uniformly.
  • the smoothness of the recording surface may be impaired, or the arrangement of information recorded on the recording surface may be distorted. As a result, jitter in the information reading signal increases, and the accuracy of information reading may be reduced.
  • the staggered probe memory device using thermal deformation of the recording medium heats the tip of the probe, contacts the heated tip with the recording surface of the recording medium, and locally heat-deforms the recording surface. Thus, pits are formed on the recording surface.
  • the scanning probe memory device having such an information recording principle if the temperature distribution of the recording medium becomes non-uniform due to the conduction of heat generated by the actuator, the pit shape on the recording surface varies and the information is recorded. Information recording may become unstable.
  • the present invention has been made in view of the above-described problems, and a first object of the present invention is to improve the accuracy of information reading or to improve the stability of information recording and to achieve downsizing.
  • An object of the present invention is to provide an information storage device capable of performing the above.
  • a second problem of the present invention is that, even if the recording medium and the actuator are arranged so as to overlap each other in a direction perpendicular to the recording surface, the heat generated from the actuator is conducted to the recording medium, and the recording medium is recorded.
  • An object of the present invention is to provide an information storage device that can suppress uneven temperature distribution in a recording medium.
  • an information storage device includes a flat recording medium having a recording surface and an upper side of the recording medium when a direction perpendicular to the recording surface is an up-down direction.
  • a probe for recording or reading information on the recording surface, an actuator structure disposed below the recording medium and moving the recording medium in a direction parallel to the recording surface, and the recording A first thermal buffer layer disposed between the medium structure and the actuator structure and suppressing heat conduction from the actuator structure to the recording medium;
  • FIG. 1 is a longitudinal sectional view showing a probe memory device which is a first embodiment of the information storage device of the present invention.
  • FIG. 2 is a cross-sectional view of the probe memory device in FIG. 1 as viewed from the direction of arrows AA in FIG.
  • FIG. 3 is an enlarged longitudinal sectional view showing a part of a moving part in the probe memory device in FIG. 1.
  • FIG. 4 is a longitudinal sectional view showing a probe memory device according to a second embodiment of the information storage device of the present invention.
  • FIG. 5 is a cross-sectional view of the probe memory device in FIG. 4 as viewed from the direction indicated by arrows BB in FIG.
  • FIG. 1 shows a scanning probe memory device according to a first embodiment of the information storage device of the present invention. The longitudinal section is shown.
  • FIG. 2 shows a cross section of the probe memory device 1 in FIG. 1 as viewed from the direction of arrows AA.
  • the scanning probe memory device 1 in FIG. 1 has an outer length and width (length in the left-right direction in FIG. 1) of, for example, several millimeters to several centimeters, and has a thickness (FIG. 1). This is a small device whose length (in the upper and lower directions in the middle) is, for example, several millimeters.
  • the probe memory device 1 can record information on the recording surface 21C of the recording medium 21 with high density using the probe 33, and has a huge storage capacity despite its small size.
  • the storage capacity is several tens of gigabytes to several hundred gigabytes, and can exceed terabytes.
  • the probe memory device 1 records information by locally thermally deforming the recording surface 21C of the recording medium 21 and thereby forming pits on the recording surface 21C. That is, a current is passed through the tip of the probe 33 to generate heat at the tip of the probe 33, and the tip of the probe 33 that has generated heat is brought into contact with the recording surface 21C. As a result, the recording surface 21C where the tip of the probe 33 contacts is thermally deformed, and pits are formed on the recording surface 21C.
  • the probe memory device 1 includes an electromagnetic drive type actuator, and the recording medium 21 can be moved in a direction parallel to the recording surface 21C by driving the actuator.
  • the probe 33 is fixed to the housing 12. Accordingly, the relative position between the probe 33 and the recording medium 21 can be changed, and the force S for scanning the recording surface 21C with the probe 33 can be obtained.
  • the probe memory device 1 includes a two-dimensional probe array in which, for example, several tens or several hundreds, or even several thousand probes 33 are arranged in a matrix, for example. Thereby, a large amount of information can be quickly recorded on the recording surface 21C, or a large amount of information can be quickly read from the recording surface 21C.
  • the probe memory device 1 includes a flat plate-like housing 11 disposed in the lower portion thereof, and a cup-shaped housing 12 disposed in the upper portion thereof. A space is formed between the housing 11 and the housing 12.
  • the probe memory device 1 includes a moving unit 13.
  • the moving part 13 is arranged in a space formed between the housing 11 and the housing 12. Lower surface of moving part 13 ( A gap is formed between the lower surface of the heat dissipation layer 25 and the upper surface of the housing 11. In addition, a gap is also formed between the upper surface (recording surface 21C) of the moving unit 13 and the lower surface of the housing 12. Further, each side surface of the moving part 13 is separated from each inner side surface of the housing 12 facing this.
  • the moving unit 13 is supported on the housing 12 by four support units 14.
  • the support portion 14 can be deformed in a direction parallel to the recording surface 21C, thereby functioning as a spring. Due to the deformation of the support portion 14, the moving portion 13 can move in a direction parallel to the recording surface 21 ⁇ / b> C in the space formed between the housing 11 and the housing 12.
  • the moving unit 13 includes a recording medium 21, an actuator structure 22, a first thermal buffer layer 23, a second thermal buffer layer 24, a heat dissipation layer 25, and an insulating layer 26. .
  • These components are stacked from bottom to top in the order of heat dissipation layer 25, insulating layer 26, actuator structure 22, first heat buffer layer 23, second heat buffer layer 24 and recording medium 21, and are adjacent to each other. Yes The components are tightly coupled. Thereby, these components can move integrally in a direction parallel to the recording surface 21C.
  • the recording medium 21 is a flat object.
  • the recording medium 21 includes a substrate 21A and a recording layer 21B.
  • the substrate 21A is made of, for example, silicon.
  • the thickness of the substrate 21A is, for example, about 10 / im. Further, the thermal conductivity of the substrate 21A is, for example, about 168 W / (mK).
  • the recording layer 21B is a thin film laminated on the substrate 21A.
  • the recording layer 21B is made of, for example, a polymer resin. Further, the thickness of the recording layer 21B is, for example, 1 / im or less.
  • the upper surface of the recording layer 21B is the recording surface 21C.
  • the thermal conductivity of the entire recording medium 21 is substantially equal to the thermal conductivity of the substrate 21A.
  • the actuator structure 22 constitutes a part of an electromagnetically driven actuator that moves the recording medium 21 (moving unit 13) in a direction parallel to the recording surface 21C.
  • Actuator structure The structure 22 is disposed below the recording medium 21.
  • the actuator structure 22 includes a substrate 22A and a coil wiring 31.
  • the substrate 22A is made of, for example, SiO.
  • the coil wiring 31 is made of copper, for example. As shown in FIG. 1, the coil wiring 31 is embedded in the substrate 22A. The coil wiring 31 is formed in a spiral shape as shown in FIG. The pitch P of the coil wiring 31 is about 500 ⁇ , for example.
  • a permanent magnet 32 is attached to the housing 11.
  • the permanent magnet 32 and the actuator structure 22 constitute an electromagnetic drive type actuator.
  • an electric current to the coil line 31 By applying an electric current to the coil line 31, a force for moving the recording medium 21 (moving part 13) in a direction parallel to the recording surface 21C can be generated.
  • the first heat buffer layer 23 suppresses heat conduction from the actuator structure 22 to the recording medium 21.
  • the first thermal buffer layer 23 is disposed between the recording medium 21 and the actuator 22 as shown in FIG.
  • the first heat buffer layer 23 is formed of, for example, a polyimide resin or an ultraviolet curable resin.
  • the thickness of the first thermal buffer layer 23 is preferably about 20 ⁇ , but may be thicker than 20 / m.
  • the thermal conductivity of the first thermal buffer layer 23 is smaller than the thermal conductivity of the recording medium 21. Specifically, the thermal conductivity of the first thermal buffer layer 23 is, for example, about 0.29 W / (mK).
  • the second heat buffer layer 24 diffuses the heat leaked from the first heat buffer layer 23.
  • the second thermal buffer layer 24 is disposed between the recording medium 21 and the first thermal buffer layer 23.
  • the second heat buffer layer 24 is made of, for example, platinum or copper.
  • the thickness of the second heat buffer layer 24 is desirably 1 / im or less.
  • the thermal conductivity of the second thermal buffer layer 24 is larger than the thermal conductivity of the first thermal buffer layer 23. Specifically, the thermal conductivity of the second thermal buffer layer 24 is approximately 72 W / (mK), for example.
  • the heat dissipation layer 25 releases heat generated from the actuator structure 22 to the lower side of the moving unit 13.
  • the heat dissipation layer 25 is disposed below the actuator structure 22.
  • the heat dissipation layer 25 is made of a material having a low thermal resistance, for example, copper.
  • the thickness of the heat dissipation layer 25 is approximately 10 zm, for example.
  • An insulating layer 26 is provided between the heat radiation layer 25 and the actuator structure 22 to electrically insulate the coil wiring 23 and the heat radiation layer 25 from each other. .
  • Each support portion 14 is connected to a heat dissipation layer 25.
  • the probe 33 is arranged above the recording medium 21, and records or reads information on the recording surface 21C.
  • the tip diameter of the probe 33 is about 50 nm, for example.
  • FIG. 3 shows an enlarged part of the longitudinal section of the moving unit 13. From this, the heat buffering action of the first heat buffer layer 23 and the second heat buffer layer 24 and the heat dissipation action of the heat dissipation layer 25 will be described with reference to FIG.
  • the actuator In order to move the moving unit 13 in a direction parallel to the recording surface 21C, the actuator is driven. When driving the actuator, a current is passed through the coil wiring 31.
  • the coil wiring 31 generates heat by passing a current through the coil wiring 31. Since the pitch of the coil wiring 31 is, for example, 500 ⁇ m, the generation of heat is local.
  • a part of the heat generated from the coil wiring 31 is conducted inside the substrate 22A of the actuator structure 22, and proceeds toward the upper side of the actuator structure 22.
  • a first thermal buffer layer 23 is disposed on the actuator structure 22. As described above, the first thermal buffer layer 23 has a low thermal conductivity. Therefore, most of the heat traveling upward of the actuator structure 22 is blocked by the first thermal buffer layer 23.
  • a second heat buffer layer 24 is disposed on the first heat buffer layer 23.
  • the second thermal buffer layer 24 has a thermal conductivity larger than that of the first thermal buffer layer 23. Therefore, the heat leaked from the first heat buffer layer 23 is diffused in the second heat buffer 24. That is, even if part of the heat generated from the coil wiring 23 is locally conducted in the first thermal buffer layer 23, the local heat is recorded in the second thermal buffer layer 24 at the recording surface 21C. It spreads over a wide area in the direction almost parallel to the direction.
  • the heat diffused in the second heat buffer layer 24 may be conducted to the recording medium 21.
  • the temperature of the recording medium 21 rises.
  • the first thermal buffer layer 23 since most of the heat generated from the coil wiring 23 is blocked by the first thermal buffer layer 23, the temperature rise of the recording medium 21 is small.
  • the first heat buffer Since the heat leaked from the layer 23 is diffused by the second heat buffer layer 24, the temperature distribution of the recording medium 21 is almost uniform.
  • a heat radiation layer 25 is disposed under the actuator structure 22.
  • the heat dissipation layer 25 has a low thermal resistance as described above. As a result, the heat conducted downward of the actuator structure 22 escapes below the moving part 13 by the heat dissipation layer 25.
  • Each support portion 14 is connected to a heat dissipation layer 25. As a result, heat conducted to the heat dissipation layer 25 escapes toward the housing 12 through the support portions 14. As a result, the amount of heat emitted from the coil wiring 31 and conducted toward the recording medium 21 is reduced, and therefore the degree of temperature rise of the recording medium 21 is further reduced.
  • the probe memory device 1 has the first thermal buffer layer 23 disposed between the actuator structure 22 and the recording medium 21. Thereby, it is possible to suppress the heat generated locally in the actuator structure 22 from being transmitted from the actuator structure 22 to the recording medium 21.
  • the thickness of the first thermal buffer layer 23 can be reduced, and the probe memory device 1 can be reduced in thickness.
  • the probe memory device 1 has a second thermal buffer layer 24 disposed between the first thermal buffer layer 23 and the recording medium 21.
  • the thermal conductivity of the second thermal buffer layer 24 is larger than the thermal conductivity of the first thermal buffer layer 23.
  • the effect of suppressing the uneven temperature distribution of the recording medium 21 is more effective when the first thermal buffer layer 23 and the second thermal buffer layer 24 are provided than when only the first thermal buffer layer 23 is provided. Is big.
  • the probe memory device 1 includes a heat dissipation layer 25 that is disposed below the actuator structure 22 and radiates heat generated by the actuator structure 22.
  • the heat generated from the actuator structure 22 can be released to the lower side of the actuator structure 22. Accordingly, the amount of heat emitted from the actuator structure 22 and conducted toward the recording medium 21 can be reduced.
  • FIG. 4 shows a longitudinal section of a scanning probe memory device which is a second embodiment of the information storage device of the present invention.
  • FIG. 5 shows a cross-section of the probe memory device 1 in FIG. 4 as viewed from the direction of arrows BB.
  • the probe memory device 50 in Fig. 4 has a huge storage capacity despite being small.
  • the probe memory device 50 records information by bringing the tip of the heated probe 73 into contact with the recording surface 61C formed of a polymer resin, thereby forming pits. Adopt the method to do.
  • the probe memory device 50 includes an electrostatic drive type actuator.
  • a moving part 53 is arranged between the housing 51 and the housing 52 of the probe memory device 50 In this space.
  • the moving part 53 is supported by the support part 54 in a state of being movable in a direction parallel to the recording surface 61C.
  • the moving unit 53 includes a recording medium 61, an actuator structure 62, a first thermal buffer layer 63, a second thermal buffer layer 64, a heat dissipation layer 65, and an insulating layer 66. These components are stacked from bottom to top in the order of the heat dissipation layer 65, the insulating layer 66, the actuator structure 62, the first thermal buffer layer 63, the second thermal buffer layer 64, and the recording medium 61. It can move in a direction parallel to the surface 61 C.
  • the recording medium 61, the first thermal buffer layer 63, the second thermal buffer layer 64, the heat dissipation layer 65, and the insulating layer 66 are the same as the recording medium 21, the first thermal buffer layer 23, and the second thermal buffer layer in FIG. 24, heat dissipation layer 25, and insulating layer 26 are almost the same.
  • the actuator structure 62 constitutes a part of an electrostatic drive actuator that moves the recording medium 61 (moving unit 53) in a direction parallel to the recording surface 61C.
  • the actuator structure 62 is disposed below the recording medium 61.
  • the actuator structure 62 includes a base plate 62A and comb-tooth electrodes 71.
  • the comb electrode 71 is formed around the substrate 62A as shown in FIG.
  • a comb electrode 72 is formed on the inner surface of the housing 12.
  • the comb-tooth electrode 71 and the comb-tooth electrode 72 are held together via a gap.
  • a force for moving the recording medium 61 (moving unit 53) in a direction parallel to the recording surface 61C can be generated.
  • probe memory device 50 having such a configuration, the same effect as the probe memory device 1 can be obtained.
  • the size of the probe memory device 50 can be reduced, the accuracy of reading information can be improved, and the stability of information recording can be improved.
  • the area of the surface of the first thermal buffer layer 23 in the direction parallel to the recording surface 21C is the area of the upper surface of the actuator structure 22. Or the area of the lower surface of the recording medium 21 is almost equal. That is, the first heat buffer layer 22 is entirely laminated on the upper surface of the actuator structure 22. The second heat buffer layer 24 is also laminated on the entire top surface of the first heat buffer layer 23. Thereby, it is possible to facilitate the manufacture of the recording medium 21, the first thermal buffer layer 23, the second thermal buffer layer 24, and the actuator structure 22.
  • a multilayer flat plate material having a wide area in which the material of the substrate 22A of the actuator structure 22, the material of the first thermal buffer layer 23, the material of the second thermal buffer layer 24, and the material of the recording medium 21 are laminated in advance.
  • a block having a shape equal to the upper surface shape of the recording medium 21 is cut out from the multilayer flat plate material.
  • the first thermal buffer layer may be disposed only in a region corresponding to the region where the coil wiring 31 of the actuator structure 22 is formed.
  • the first thermal buffer layer 63 and the second thermal buffer layer 64 are entirely formed so as to correspond to the lower surface of the recording medium 61, thereby recording the recording medium. 61, the first thermal buffer layer 63, the second thermal buffer layer 64, and the substrate 62A of the actuator structure 62 can be easily produced. However, the first thermal buffer layer may be disposed only in the region corresponding to the region where the comb electrode 71 is formed.
  • the materials and thicknesses of the first heat buffer layers 23 and 63 are not limited to the specific examples described above. However, the material and thickness of the first thermal buffer layers 23, 63 are the magnitude of the thermal energy emitted from the coil 31 or the comb electrode 71, and the magnitude of the thermal suppression effect of the first L thermal buffer layers 23, 63. Considering the thermal conductivity of recording media 21 and 61, the degree of influence of uneven temperature distribution of recording media 21 and 61 on the recording and reading of information, and the demand for thinner probe memory devices 1 and 50 It is desirable to decide. The same applies to the materials and thicknesses of the second heat buffer layers 24 and 64.
  • the thickness of the first thermal buffer layers 23 and 63 is increased.
  • SiC having a thermal conductivity of 3.0 W / mK is used for the first thermal buffer layers 23 and 63
  • the thickness of the first thermal buffer layers 23 and 63 is set to 90 zm or more. Even with such a configuration, the non-uniformity of the temperature distribution of the recording media 21 and 61 can be reduced.
  • the first thermal buffer layers 23 and 63 having a low thermal conductivity are disposed on the actuator structure 22, and the first thermal buffer layers 23 and 63 are thermally conductive.
  • the case where the second heat buffer layers 24 and 64 having a large rate are arranged is taken as an example.
  • the present invention is not limited to this.
  • a thermal buffer layer having a high thermal conductivity may be disposed on the actuator structure 22, and another thermal buffer layer having a low thermal conductivity may be disposed on the thermal buffer layer.
  • a thermal buffer layer having a high thermal conductivity is disposed on the actuator structure 22, another thermal buffer layer having a low thermal conductivity is disposed on the thermal buffer layer, and the other thermal buffer layer is further disposed.
  • a three-layer structure may be adopted when another thermal buffer layer having a high thermal conductivity is disposed on the thermal buffer layer. First, heat is diffused near the heat source, then conduction of the diffused heat is suppressed, and then heat is further diffused directly under the recording medium. Even with such a configuration, the temperature distribution can be made uniform while suppressing an increase in the temperature of the recording medium.
  • the first heat buffer layer may be formed of an adhesive material that bonds the recording medium and the actuator structure.
  • the adhesive layer and the heat buffer layer can be constituted by a single layer. This configuration contributes to reducing the thickness of the probe memory device.
  • a scanning probe memory device that records information by thermally deforming the recording surface is taken as an example, but the present invention is not limited to this.
  • the present invention can also be applied to, for example, a scanning probe memory device of SNDM (Scanning Nonlinear Dielectric Microscopy) system.
  • SNDM Sccanning Nonlinear Dielectric Microscopy
  • a recording medium having a recording layer formed of a ferroelectric material is used, and an electrode is disposed immediately below the recording layer.
  • the second thermal buffer layer disposed on the first thermal buffer layer may be formed of an electrode material of the recording medium. This makes it possible to configure the electrode and the thermal buffer layer with a single layer. This configuration contributes to reducing the thickness of the probe memory device.
  • the present invention can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification, and an information storage device that includes such a change is also described in the present invention. It is included in the technical idea of the invention.
  • the information storage device using the probe according to the present invention can be used for an information storage device that records or reads information on a recording medium using a probe, such as a scanning probe memory device.

Abstract

記録媒体(21)とアクチュエータ構造体(22)との間に第1熱緩衝層(23)と第2熱緩衝層(24)とを配置し、第1熱緩衝層(23)の熱伝導率を小さく設定し、第2熱緩衝層(24)の熱伝導率を大きく設定する。アクチュエータ構造体(22)のコイル配線(23)から発せられる熱の大部分を第1熱緩衝層(23)によって遮り、第1熱緩衝層(23)から漏れた熱を第2熱緩衝層(24)により拡散する。これにより、記録媒体(21)の温度分布を均一にすることができ、それゆえ記録媒体(21)とアクチュエータ構造体(22)とを重ね合わせた構成を可能とし、情報読み取りの精度向上または情報記録の安定性を図ると共に、小型化を実現することができる。

Description

明 細 書
プローブを用いた情報記憶装置
技術分野
[0001] 本発明は、例えば走查型プローブメモリーなど、プローブを用いて記録媒体に対し 情報の記録または読み取りを行う情報記憶装置に関する。
背景技術
[0002] 小型で情報を高密度に記録することができる情報記憶装置として、走査型プローブ メモリー装置がある。
[0003] 走査型プローブメモリー装置には、トンネル効果を用いたもの、原子間力を用いた もの、磁気力を用いたもの、静電力を用いたもの、非線形誘電率を用いたもの、およ び記録媒体の熱変形を用いたものなど、様々な種類がある。
[0004] 走査型プローブメモリー装置は、通常、数十ナノメートルないし数マイクロメートル程 度の先端径を有するプローブと、表面に記録面が形成された平板状の記録媒体とを 備えている。走査型プローブメモリー装置は、プローブの先端を記録媒体の記録面 に接近または接触させることにより、記録媒体に対し情報の記録または読み取りを行 う。
[0005] また、走查型プローブメモリー装置は、プローブまたは記録媒体を記録面に対し平 行な方向に移動させ、プローブと記録媒体との間の位置を変更する。これにより、プ ローブにより記録媒体の記録面を走查することが可能となり、多量の情報を記録面に 高密度に配列することが可能となり、あるいは記録面に配列された多量の情報を連 続的にまたはランダムに読み取ることが可能になる。このようなプローブまたは記録媒 体の移動には、例えば MEMS (Micro Electro Mechanical System)技術を用いた電 磁駆動式または静電駆動式のァクチユエータが用いられる。
[0006] また、走査型プローブメモリー装置の多くは、マルチプローブ方式を採用している。
すなわち、走査型プローブメモリー装置の多くは、数十個あるいは数百個、さらには 数千個以上のプローブを例えばマトリクス状に配置した 2次元プローブアレイを備え ている。このようなプローブアレイを用いることにより、多量の情報を記録媒体に迅速 に記録することが可能となり、あるいは多量の情報を記録媒体から迅速に読み取るこ とが可能となる。
発明の開示
発明が解決しょうとする課題
[0007] ところで、走査型プローブメモリーの小型化を実現するためには、プローブまたは記 録媒体記録面に対しを移動させるためのァクチユエータを装置のどこに配置するか を検討する必要がある。
[0008] 一案として、記録媒体とァクチユエ一タとを記録面に対し平行な方向に並べて配置 する構成が考えられる。すなわち、記録媒体とァクチユエ一タとを記録面に対し平行 な方向に並べ、記録面に対し平行な方向に伸びる連結部材で両者を互いに結合す る。そして、ァクチユエータの駆動により連結部材を記録面に対し平行な方向に引つ 張ったり、押し戻したりすることにより、記録媒体を記録面に対し平行な方向に移動さ せる。一方、プローブは記録媒体の上方に配置し、記録媒体が移動しても動かない ようにハウジングなどに固定しておく。これにより、プローブに対し記録媒体を移動さ せることができ、プローブによる記録面の走査が可能になる。
[0009] しかし、記録媒体とァクチユエ一タとを記録面に対し平行な方向に並べて配置する 構成によれば、記録面に対し平行な面を投影面とした場合におけるプローブメモリー 装置の投影面積が大きくなる。
[0010] 他方、もう一つの案として、記録媒体とァクチユエ一タとを記録面に対し垂直な方向 に重ねて配置する構成が考えられる。例えば、ァクチユエータを組み込んだ平板状 の構造体の上に記録媒体を積層する。そして、ァクチユエータの駆動により平板状の 構造体と記録媒体とが記録面に対し平行な方向に一体的に移動するように構成する 。一方、プローブは記録媒体の上方に配置し、記録媒体が移動しても動かないように ハウジングなどに固定しておく。これにより、プローブに対し記録媒体を移動させるこ とができ、プローブによる記録面の走査が可能になる。
[0011] しかし、記録媒体とァクチユエ一タとを記録面に対し垂直な方向に重ねて配置する 構成によると、ァクチユエータと記録媒体とが互いに接近して配置される。このため、 駆動時にァクチユエータが発する熱が記録媒体に伝導しやすくなる。し力、も、ァクチ ユエータにおける熱源は、電磁駆動方式によるァクチユエータであれば主にコイルで あり、静電駆動方式によるァクチユエータであれば主に櫛歯電極である。このため、 熱の発生は局所的である。この結果、記録媒体の温度分布が不均一となり、記録媒 体が不均一に熱膨張するおそれがある。
[0012] 記録媒体が不均一に熱膨張すると、記録面の平滑性が損なわれ、または記録面に 記録された情報の配列が歪むおそれがある。この結果、情報読み取り信号における ジッタが増加し、情報読み取りの精度が低下するおそれがある。
[0013] また、記録媒体の熱変形を用いた走查型プローブメモリー装置は、プローブの先端 を加熱し、この加熱した先端を記録媒体の記録面に接触させ、記録面を局所的に熱 変形させ、これにより記録面にピットを形成する。このような情報記録原理を有する走 查型プローブメモリー装置においては、ァクチユエータから発せられた熱の伝導によ り記録媒体の温度分布が不均一になると、記録面のピット形状にばらつきが生じ、情 報の記録が不安定になるおそれがある。
[0014] 本発明は上記に例示したような問題点に鑑みなされたものであり、本発明の第 1の 課題は、情報読み取りの精度向上または情報記録の安定性を図ると共に、小型化を 実現することができる情報記憶装置を提供することにある。
[0015] 本発明の第 2の課題は、記録媒体とァクチユエ一タとを記録面に対し垂直な方向に 重ねるように配置しても、ァクチユエータから発せられた熱が記録媒体に伝導し、記 録媒体における温度分布が不均一になるのを抑制することができる情報記憶装置を 提供することにある。
課題を解決するための手段
[0016] 上記課題を解決するために本発明の情報記憶装置は、記録面を有する平板状の 記録媒体と、前記記録面に対し垂直な方向を上下方向としたときに、前記記録媒体 の上方に配置され、前記記録面に対し情報の記録または読み取りを行うプローブと、 前記記録媒体の下方に配置され、前記記録媒体を前記記録面に対し平行な方向に 移動させるァクチユエータ構造体と、前記記録媒体と前記ァクチユエータ構造体との 間に配置され、前記ァクチユエータ構造体から前記記録媒体への熱の伝導を抑制す る第 1熱緩衝層とを備えている。 [0017] 本発明の作用及び他の利得は次に説明する実施形態から明らかにされよう。 図面の簡単な説明
[0018] [図 1]本発明の情報記憶装置の第 1実施形態であるプローブメモリー装置を示す縦 断面図である。
[図 2]図 1中のプローブメモリー装置を図 1中の矢示 A—A方向から見た横断面図で ある。
[図 3]図 1中のプローブメモリー装置における移動部の一部を拡大して示す縦断面図 である。
[図 4]本発明の情報記憶装置の第 2実施形態であるプローブメモリー装置を示す縦 断面図である。
[図 5]図 4中のプローブメモリー装置を図 4中の矢示 B— B方向から見た横断面図であ る。
符号の説明
[0019] 1、 50 走查型プローブメモリー装置
21、 61 記録媒体
21C、 61C 記録面
22、 62 ァクチユエータ構造体
23、 63 第 1熱緩衝層
24、 64 第 2熱緩衝層
25、 64 放熱層
31 コイル配線
33、 73 プローブ
71 櫛歯電極
発明を実施するための最良の形態
[0020] 以下、本発明を実施するための最良の形態について実施形態毎に順に図面に基 づいて説明する。
[0021] (第 1実施形態)
図 1は、本発明の情報記憶装置の第 1実施形態である走査型プローブメモリー装置 の縦断面を示している。図 2は、図 1中のプローブメモリー装置 1を矢示 A— A方向か ら見た横断面を示している。
[0022] 図 1中の走査型プローブメモリー装置 1は、その外形の長さおよび幅(図 1中の左右 方向の長さ)が例えば数ミリメートルないし数センチメートノレであり、厚さ(図 1中の上 下方向の長さ)が例えば数ミリメートルである小型の装置である。
[0023] プローブメモリー装置 1は、プローブ 33を用いて記録媒体 21の記録面 21C上に情 報を高密度に記録することができ、小型であるにもかかわらず、膨大な記憶容量を有 する。例えば、その記憶容量は、数十ギガバイトないし数百ギガバイトであり、さらに はテラバイトを超えることも可能である。
[0024] プローブメモリー装置 1は、記録媒体 21の記録面 21Cを局所的に熱変形させ、こ れにより記録面 21C上にピットを形成することにより情報を記録する。すなわち、プロ ーブ 33の先端に電流を流し、プローブ 33の先端を発熱させ、この発熱したプローブ 33の先端を記録面 21Cに接触させる。これによりプローブ 33の先端が接触した部分 の記録面 21Cが熱変形し、記録面 21C上にピットが形成される。
[0025] また、プローブメモリー装置 1は、電磁駆動式のァクチユエータを備えており、ァクチ ユエータの駆動により、記録媒体 21を記録面 21Cに対し平行な方向に移動させるこ とができる。一方、プローブ 33は、ハウジング 12に固定されている。これにより、プロ ーブ 33と記録媒体 21との相対位置を変更することができ、プローブ 33により記録面 21Cを走査すること力 Sできる。
[0026] また、プローブメモリー装置 1は、例えば数十個あるいは数百個、さらには数千個以 上のプローブ 33を例えばマトリクス状に配置した 2次元プローブアレイを備えている。 これにより、多量の情報を記録面 21Cに迅速に記録することができ、あるいは多量の 情報を記録面 21Cから迅速に読み取ることができる。
[0027] 図 1に示すように、プローブメモリー装置 1は、その下部に配置された平板状のハウ ジング 11と、上部に配置されたカップ状のハウジング 12とを備えている。ハウジング 1 1とハウジング 12との間には空間が形成されている。
[0028] さらに、プローブメモリー装置 1は移動部 13を備えている。移動部 13は、ハウジング 11とハウジング 12との間に形成された空間内に配置されてレ、る。移動部 13の下面( 放熱層 25の下面)とハウジング 11の上面との間には空隙が形成されている。また、 移動部 13の上面(記録面 21C)とハウジング 12の下面との間にも空隙が形成されて いる。さらに、移動部 13の各側面は、これに対向するハウジング 12の各内側面と離 れている。
[0029] 移動部 13は、図 2に示すように、 4つの支持部 14によりハウジング 12に支持されて いる。支持部 14は記録面 21Cに対し平行な方向に変形することができ、これによりば ねとして機能する。支持部 14の変形により、移動部 13は、ハウジング 11とハウジング 12との間に形成された空間内において、記録面 21Cに対し平行な方向に移動する こと力 Sできる。
[0030] 移動部 13は、図 1に示すように、記録媒体 21、ァクチユエータ構造体 22、第 1熱緩 衝層 23、第 2熱緩衝層 24、放熱層 25および絶縁層 26を備えている。これらの構成 要素は、放熱層 25、絶縁層 26、ァクチユエータ構造体 22、第 1熱緩衝層 23、第 2熱 緩衝層 24および記録媒体 21の順序で下から上へ積層されており、互いに隣接する 構成要素間は強固に結合している。これにより、これらの構成要素は、記録面 21Cに 対し平行な方向に一体的に移動することができる。
[0031] 記録媒体 21は平板状の物体である。記録媒体 21は、基板 21Aおよび記録層 21B を備えている。
[0032] 基板 21Aは例えばシリコンにより形成されている。基板 21Aの厚さは例えばおよそ 10 /i mである。また、基板 21Aの熱伝導率は例えばおよそ 168W/(mK)である。
[0033] 記録層 21Bは、基板 21A上に積層された薄膜である。記録層 21Bは例えばポリマ 一樹脂により形成されている。また、記録層 21Bの厚さは例えば 1 /i m以下である。ま た、記録層 21Bの上面が記録面 21Cである。加熱したプローブ 33の先端を記録面 2 1Cに接触させることにより、記録層 21Bが熱変形し、これにより記録面 21Cにピットが 形成される。
[0034] なお、記録層 21Bの厚さは基板 21Aの厚さに比べて十分に薄いため、記録媒体 2 1全体の熱伝導率は基板 21Aの熱伝導率に実質的に見て等しい。
[0035] ァクチユエータ構造体 22は、記録媒体 21 (移動部 13)を記録面 21Cに対し平行な 方向に移動させる電磁駆動ァクチユエータの一部を構成している。ァクチユエータ構 造体 22は、記録媒体 21の下方に配置されている。ァクチユエータ構造体 22は、基 板 22Aおよびコイル配線 31を備えている。
[0036] 基板 22Aは例えば SiOにより形成されている。
2
[0037] コイル配線 31は例えば銅により形成されている。コイル配線 31は、図 1に示すよう に、基板 22Aの内部に埋め込まれている。また、コイル配線 31は、図 2に示すように 、螺旋状に形成されている。コイル配線 31のピッチ Pは例えばおよそ 500 μ πιである。
[0038] 一方、ハウジング 11には永久磁石 32が取り付けられている。永久磁石 32およびァ クチユエータ構造体 22により電磁駆動方式のァクチユエータが構成される。コィノレ酉己 線 31に電流を流すことにより、記録媒体 21 (移動部 13)を記録面 21Cに対し平行な 方向に移動させるための力を作り出すことができる。
[0039] 第 1熱緩衝層 23は、ァクチユエータ構造体 22から記録媒体 21への熱の伝導を抑 制する。第 1熱緩衝層 23は、図 1に示すように、記録媒体 21とァクチユエータ 22との 間に配置されている。第 1熱緩衝層 23は例えばポリイミド樹脂または紫外線硬化榭 脂により形成されている。また、第 1熱緩衝層 23の厚さはおよそ 20 μ πιであることが望 ましいが、 20 / mよりも厚くてもよい。また、第 1熱緩衝層 23の熱伝導率は、記録媒体 21の熱伝導率よりも小さい。具体的には、第 1熱緩衝層 23の熱伝導率は例えばおよ そ 0.29W/(mK)である。
[0040] 第 2熱緩衝層 24は、第 1熱緩衝層 23から漏れた熱を拡散する。第 2熱緩衝層 24は 、記録媒体 21と第 1熱緩衝層 23との間に配置されている。第 2熱緩衝層 24は例えば 白金または銅により形成されている。また、第 2熱緩衝層 24の厚さは 1 /i m以下であ ることが望ましい。また、第 2熱緩衝層 24の熱伝導率は、第 1熱緩衝層 23の熱伝導 率よりも大きレ、。具体的には、第 2熱緩衝層 24の熱伝導率は例えばおよそ 72W/(mK) である。
[0041] 放熱層 25は、ァクチユエータ構造体 22から発せられる熱を移動部 13の下方に逃 がす。放熱層 25は、ァクチユエータ構造体 22の下方に配置されている。放熱層 25 は熱抵抗が小さい材料、例えば銅により形成されている。また、放熱層 25の厚さは例 えばおよそ 10 z mである。また、放熱層 25とァクチユエータ構造体 22との間には、コ ィル配線 23と放熱層 25と間を電気的に絶縁するための絶縁層 26が設けられている 。また、各支持部 14は放熱層 25に接続されている。
[0042] プローブ 33は、記録媒体 21の上方に配置され、記録面 21Cに対し情報の記録ま たは読み取りを行う。プローブ 33の先端径は例えばおよそ 50nmである。
[0043] 図 3は移動部 13の縦断面の一部を拡大して示している。これより、図 3を用い、第 1 熱緩衝層 23および第 2熱緩衝層 24の熱緩衝作用、並びに放熱層 25の放熱作用に ついて説明する。
[0044] 移動部 13を記録面 21Cに対し平行な方向に移動させるために、ァクチユエータを 駆動する。ァクチユエータを駆動するとき、コイル配線 31に電流を流す。コイル配線 3 1に電流を流すことにより、コイル配線 31は熱を発する。コイル配線 31のピッチは例 えば 500 μ mであるため、熱の発生は局所的である。
[0045] コイル配線 31から発せられた熱の一部は、ァクチユエータ構造体 22の基板 22A内 部を伝導し、ァクチユエータ構造体 22の上方に向かって進む。
[0046] ァクチユエータ構造体 22上には第 1熱緩衝層 23が配置されている。第 1熱緩衝層 23は上述したように熱伝導率が小さい。したがって、ァクチユエータ構造体 22の上方 に向かって進む熱の大部分は第 1熱緩衝層 23により遮られる。
[0047] ァクチユエータ構造体 22の上方に向かって進む熱の大部分は第 1熱緩衝層 23に より遮られるものの、この熱の一部は第 1熱緩衝層 23を貫いて伝導し、第 1熱緩衝層 23の上方に漏れる。
[0048] 第 1熱緩衝層 23上には第 2熱緩衝層 24が配置されている。第 2熱緩衝層 24は上 述したように熱伝導率が第 1熱緩衝層 23の熱伝導率よりも大きい。したがって、第 1 熱緩衝層 23から漏れた熱は第 2熱緩衝 24において拡散する。すなわち、たとえコィ ル配線 23から発せられた熱の一部が第 1熱緩衝層 23内を局所的に伝導してきたと しても、この局所的な熱は第 2熱緩衝層 24において記録面 21Cに対しほぼ平行な方 向に広範囲に広がる。
[0049] 第 2熱緩衝層 24において拡散した熱が記録媒体 21に伝導することがある。第 2熱 緩衝層 24において拡散した熱が記録媒体 21に伝導すると、記録媒体 21の温度が 上がる。しかし、コイル配線 23から発せられた熱の大部分は、第 1熱緩衝層 23によつ て遮られているので、記録媒体 21の温度上昇の程度は小さい。さらに、第 1熱緩衝 層 23から漏れた熱は、第 2熱緩衝層 24により拡散されているので、記録媒体 21の温 度分布はほぼ均一である。
[0050] 一方、コイル配線 23から発せられた熱の一部はァクチユエータ構造体 22の下方に 向かって伝導する。
[0051] ァクチユエータ構造体 22下には放熱層 25が配置されている。放熱層 25は上述し たように熱抵抗が小さい。これにより、ァクチユエータ構造体 22の下方に向かって伝 導する熱は放熱層 25により移動部 13の下方に逃げる。また、各支持部 14は放熱層 25に接続されている。これにより、放熱層 25に伝導した熱は各支持部 14を通じてハ ウジング 12側に向かって逃げる。この結果、コイル配線 31から発せられ記録媒体 21 に向かって伝導する熱の量が減り、それゆえ記録媒体 21の温度上昇の程度がより一 層小さくなる。
[0052] 以上説明したとおり、プローブメモリー装置 1は、ァクチユエータ構造体 22と記録媒 体 21との間に配置された第 1熱緩衝層 23を有している。これにより、ァクチユエータ 構造体 22において局所的に発せられた熱がァクチユエータ構造体 22から記録媒体 21に伝わるのを抑制することができる。
[0053] したがって、ァクチユエータ構造体 22と記録媒体 21とを記録面 21Cに対し垂直な 方向に重ねるように配置しても、ァクチユエータの駆動時に記録媒体 21の温度分布 が不均一になるのを抑制することができる。つまり、ァクチユエータ構造体 22と記録 媒体 21とを重ねるように配置することによりァクチユエータ構造体 22と記録媒体 21と をきわめて接近させても、記録媒体 21の温度分布が不均一になるのを抑制すること ができる。
[0054] これにより、記録面 21Cに対し平行な面を投影面とした場合におけるプローブメモリ 一装置 1の投影面積を小さくすることができ、プローブメモリー装置 1の小型化を図る こと力 Sできる。
[0055] これと同時に、記録媒体 21の不均一な熱膨張を抑制することができ、情報読み取り 信号におけるジッタを減少させ、情報の読み取りの精度を向上させることができる。
[0056] さらに、記録媒体 21の温度分布の不均一により、記録面 21Cに形成されるピットの 形状が不均一となるのを抑制することができ、情報記録の安定性を図ることができる。 [0057] そして、これらの効果は、第 1熱緩衝層 23の熱伝導率を記録媒体 21の熱伝導率よ りも小さくすることにより、より一層大きくなる。
[0058] さらに、第 1熱緩衝層 23の熱伝導率を小さくすることにより、第 1熱緩衝層 23の厚さ を薄くすることができ、プローブメモリー装置 1の薄型化を図ることができる。
[0059] また、プローブメモリー装置 1は、第 1熱緩衝層 23と記録媒体 21との間に配置され た第 2熱緩衝層 24を有している。そして、第 2熱緩衝層 24の熱伝導率は、第 1熱緩 衝層 23の熱伝導率よりも大きい。これにより、第 1熱緩衝層 23から漏れて記録媒体 2 1に向かって進む熱を拡散することができる。したがって、記録媒体 21の温度分布が 不均一になるのを抑制することができる。記録媒体 21の温度分布の不均一を抑制す る効果は、第 1熱緩衝層 23だけを設けた場合よりも、第 1熱緩衝層 23と第 2熱緩衝層 24とを設けた場合の方が大きレ、。
[0060] また、プローブメモリー装置 1は、ァクチユエータ構造体 22の下方に配置され、ァク チユエータ構造体 22が発する熱を放熱する放熱層 25を備えている。これにより、ァク チユエータ構造体 22から発せられた熱をァクチユエータ構造体 22の下方に逃がすこ とができる。したがって、ァクチユエータ構造体 22から発せられ記録媒体 21へ向けて 伝導する熱の量を減らすことができる。
[0061] (第 2実施形態)
図 4は、本発明の情報記憶装置の第 2実施形態である走査型プローブメモリー装置 の縦断面を示している。図 5は、図 4中のプローブメモリー装置 1を矢示 B— B方向か ら見た横断面を示している。
[0062] 図 4中のプローブメモリー装置 50は、図 1中のプローブメモリー装置 1と同様に、小 型であるにもかかわらず、膨大な記憶容量を有する。また、プローブメモリー装置 50 は、プローブメモリー装置 1と同様に、ポリマー樹脂から形成された記録面 61Cに、加 熱されたプローブ 73の先端を接触させ、これによりピットを形成することによって情報 を記録する方式を採用してレ、る。
[0063] 一方、プローブメモリー装置 50は、プローブメモリー装置 50と異なり、静電駆動式 のァクチユエータを備えてレ、る。
[0064] 図 4に示すように、プローブメモリー装置 50のハウジング 51とハウジング 52との間 の空間には、移動部 53が配置されている。移動部 53は、支持部 54により、記録面 6 1Cに対し平行な方向に移動可能な状態で支持されている。
[0065] 移動部 53は、記録媒体 61、ァクチユエータ構造体 62、第 1熱緩衝層 63、第 2熱緩 衝層 64、放熱層 65および絶縁層 66を備えている。これらの構成要素は、放熱層 65 、絶縁層 66、ァクチユエータ構造体 62、第 1熱緩衝層 63、第 2熱緩衝層 64および記 録媒体 61の順序で下から上へ積層されており、記録面 61 Cに対し平行な方向に一 体的に移動することができる。
[0066] 記録媒体 61、第 1熱緩衝層 63、第 2熱緩衝層 64、放熱層 65および絶縁層 66は、 図 1中の記録媒体 21、第 1熱緩衝層 23、第 2熱緩衝層 24、放熱層 25および絶縁層 26とそれぞれほぼ同じである。
[0067] ァクチユエータ構造体 62は、記録媒体 61 (移動部 53)を記録面 61Cに対し平行な 方向に移動させる静電駆動ァクチユエータの一部を構成している。ァクチユエータ構 造体 62は、記録媒体 61の下方に配置されている。ァクチユエータ構造体 62は、基 板 62Aおよび櫛歯電極 71を備えている。
[0068] 櫛歯電極 71は、図 5に示すように、基板 62Aの周囲に形成されている。一方、ハウ ジング 12の内側面には櫛歯電極 72が形成されている。櫛歯電極 71と櫛歯電極 72と は、空隙を介して嚙み合っている。櫛歯電極 71と櫛歯電極 72との間に電界を形成 することにより、記録媒体 61 (移動部 53)を記録面 61Cに対し平行な方向に移動させ るための力を作り出すことができる。
[0069] このような構成を有するプローブメモリー装置 50によっても、プローブメモリー装置 1 と同様の効果を得ることができる。
[0070] すなわち、櫛歯電極 71と記録媒体 61とを重ねるように配置することにより櫛歯電極 71と記録媒体 61とをきわめて接近させても、記録媒体 61の温度分布が不均一にな るのを抑制すること力できる。したがって、プローブメモリー装置 50の小型化を図るこ とができると共に、情報の読み取りの精度を向上させ、かつ情報記録の安定性を図る こと力 Sできる。
[0071] なお、図 1中のプローブメモリー装置 1において、記録面 21Cに対し平行な方向に おける第 1熱緩衝層 23の面の面積は、ァクチユエータ構造体 22の上面の面積、ある いは記録媒体 21の下面の面積とほぼ等しい。つまり、第 1熱緩衝層 22は、ァクチュ エータ構造体 22の上面上に全面的に積層されている。そして、第 2熱緩衝層 24も第 1熱緩衝層 23の上面上に全面的に積層されている。これにより、記録媒体 21、第 1 熱緩衝層 23、第 2熱緩衝層 24およびァクチユエータ構造体 22の製造の容易化を図 ること力 Sできる。
[0072] 例えば、ァクチユエータ構造体 22の基板 22Aの材料、第 1熱緩衝層 23の材料、第 2熱緩衝層 24の材料および記録媒体 21の材料が予め積層された広い面積を有する 多層平板材料を用意する。そして、この多層平板材料から、記録媒体 21の上面形状 に等しい形状を有するブロックを切り出す。このような簡単な工程を行うだけで、記録 媒体 21、第 1熱緩衝層 23、第 2熱緩衝層 24およびァクチユエータ構造体 22の基板 22Aからなる構造体を作り出すことが可能になる。
[0073] もっとも、ァクチユエータ構造体 22のコイル配線 31が形成されている領域に対応す る領域だけに第 1熱緩衝層を配置してもよい。
[0074] 同様に、図 4中のプローブメモリー装置 50でも、第 1熱緩衝層 63および第 2熱緩衝 層 64を記録媒体 61の下面に対応するように全面的に形成することにより、記録媒体 61、第 1熱緩衝層 63、第 2熱緩衝層 64およびァクチユエータ構造体 62の基板 62A 力 なる構造体を容易に作り出すことが可能になる。もっとも、櫛歯電極 71が形成さ れている領域に対応する領域だけに第 1熱緩衝層を配置してもよい。
[0075] 第 1熱緩衝層 23、 63の材料および厚さは上述した具体例に限定されない。もっとも 、第 1熱緩衝層 23、 63の材料および厚さは、コイル 31または櫛歯電極 71から発せら れる熱エネルギーの大きさ、第 ;L熱緩衝層 23、 63の熱抑制効果の大きさ、記録媒体 21、 61の熱伝導率、記録媒体 21、 61の温度分布の不均一が情報の記録'読み取り に与える影響の程度、プローブメモリー装置 1、 50の薄型化の要請などを考慮して決 めることが望ましい。第 2熱緩衝層 24、 64の材料および厚さについても同様である。
[0076] また、第 1熱緩衝層 23、 63に、熱抵抗値が小さい材料を用いる場合には、第 1熱緩 衝層 23, 63の厚さを厚くする。例えば第 1熱緩衝層 23、 63に熱伝導率 3.0Wん mKの SiCを用いた場合には第 1熱緩衝層 23、 63の厚さを 90 z m以上にする。このような構 成によっても、記録媒体 21、 61の温度分布の不均一性を緩和することができる。 [0077] また、プローブメモリー装置 1、 50では、ァクチユエータ構造体 22上に、熱伝導率 の小さい第 1熱緩衝層 23、 63を配置し、第 1熱緩衝層 23、 63上に、熱伝導率の大き い第 2熱緩衝層 24、 64を配置する場合を例にあげた。しかし、本発明はこれに限ら れない。ァクチユエータ構造体 22上に、熱伝導率の大きい熱緩衝層を配置し、この 熱緩衝層上に、熱伝導率の小さい別の熱緩衝層を配置してもよい。まず熱源の近く で熱を拡散し、続いて拡散された熱の伝導を抑制する。これにより、記録媒体の温度 の上昇を抑えつつ、温度分布の均一化を図ることができる。
[0078] あるいは、ァクチユエータ構造体 22上に、熱伝導率の大きい熱緩衝層を配置し、こ の熱緩衝層上に、熱伝導率の小さい別の熱緩衝層を配置し、さらに当該別の熱緩衝 層上に、熱伝導率の大きいさらに別の熱緩衝層を配置するといつた 3層構造としても よい。まず熱源の近くで熱を拡散し、続いて拡散された熱の伝導を抑制し、続いて記 録媒体の直下で熱をさらに拡散する。このような構成によっても、記録媒体の温度の 上昇を抑えつつ、温度分布の均一化を図ることができる。
[0079] また、第 1熱緩衝層を、記録媒体とァクチユエータ構造体とを接着する接着材料に より形成してもよレ、。これにより、接着層と熱緩衝層とを単一の層によって構成するこ とができる。この構成は、プローブメモリー装置の薄型化に貢献する。
[0080] また、上述した説明では、記録面を熱変形させることにより情報を記録する方式の 走査型プローブメモリー装置を例にあげたが、本発明はこれに限られない。本発明 は、例えば、 SNDM (Scanning Nonlinear Dielectric Microscopy)方式の走查型プロ ーブメモリー装置にも適用することができる。この場合、強誘電体材料から形成され た記録層を有する記録媒体を用い、記録層の直下には電極を配置する。
[0081] また、この場合、第 1熱緩衝層上に配置された第 2熱緩衝層を、記録媒体の電極の 材料により形成してもよい。これにより、電極と熱緩衝層とを単一の層によって構成す ること力 Sできる。この構成は、プローブメモリー装置の薄型化に貢献する。
[0082] また、本発明は、請求の範囲および明細書全体から読み取るこのできる発明の要 旨または思想に反しない範囲で適宜変更可能であり、そのような変更を伴う情報記 憶装置もまた本発明の技術思想に含まれる。
産業上の利用可能性 本発明に係るプローブを用いた情報記憶装置は、例えば走査型プローブメモリー 装置など、プローブを用いて記録媒体に対し情報の記録または読み取りを行う情報 記憶装置に利用可能である。

Claims

請求の範囲
[1] 記録面を有する平板状の記録媒体と、
前記記録面に対し垂直な方向を上下方向としたときに、前記記録媒体の上方に配 置され、前記記録面に対し情報の記録または読み取りを行うプローブと、
前記記録媒体の下方に配置され、前記記録媒体を前記記録面に対し平行な方向 に移動させるァクチユエータ構造体と、
前記記録媒体と前記ァクチユエータ構造体との間に配置され、前記ァクチユエータ 構造体力 前記記録媒体への熱の伝導を抑制する第 1熱緩衝層とを備えていること を特徴とする情報記憶装置。
[2] 前記第 1熱緩衝層の熱伝導率は、前記記録媒体の熱伝導率よりも小さいことを特 徴とする請求の範囲第 1項に記載の情報記憶装置。
[3] 前記記録媒体と前記第 1熱緩衝層との間に配置された第 2熱緩衝層を備え、
前記第 2熱緩衝層の熱伝導率は、前記第 1熱緩衝層の熱伝導率よりも大きいことを 特徴とする請求の範囲第 1項に記載の情報記憶装置。
[4] 前記ァクチユエータ構造体と前記第 1熱緩衝層との間に配置された第 3熱緩衝層を 備え、
前記第 3熱緩衝層の熱伝導率は、前記第 1熱緩衝層の熱伝導率よりも大きいことを 特徴とする請求の範囲第 1項に記載の情報記憶装置。
[5] 前記ァクチユエータ構造体は、前記記録媒体を移動させるための力を電磁駆動方 式により発生されるためのコイルを備えていることを特徴とする請求の範囲第 1項に 記載の情報記憶装置。
[6] 前記ァクチユエータ構造体は、前記記録媒体を移動させるための力を静電駆動方 式により発生されるための櫛歯電極を備えていることを特徴とする請求の範囲第 1項 に記載の情報記憶装置。
[7] 前記ァクチユエータ構造体の下方に配置され、前記ァクチユエータ構造体が発する 熱を逃がす放熱層を備えていることを特徴とする請求の範囲第 1項に記載の情報記 憶装置。
[8] 前記ァクチユエータ構造体、前記第 1熱緩衝層および前記記録媒体は、前記上下 方向に積層されており、これらは、前記ァクチユエータ構造体が作り出す駆動力によ り、前記記録面に対し平行な方向に一体的に移動することを特徴とする請求の範囲 第 1項に記載の情報記憶装置。
PCT/JP2007/057144 2006-03-30 2007-03-30 プローブを用いた情報記憶装置 WO2007114353A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008508666A JP4353337B2 (ja) 2006-03-30 2007-03-30 プローブを用いた情報記憶装置
EP07740580A EP2009629A4 (en) 2006-03-30 2007-03-30 INFORMATION STORAGE DEVICE COMPRISING THE USE OF A PROBE
US12/295,022 US7945963B2 (en) 2006-03-30 2007-03-30 Information memory apparatus using probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006095473 2006-03-30
JP2006-095473 2006-03-30

Publications (1)

Publication Number Publication Date
WO2007114353A1 true WO2007114353A1 (ja) 2007-10-11

Family

ID=38563621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057144 WO2007114353A1 (ja) 2006-03-30 2007-03-30 プローブを用いた情報記憶装置

Country Status (4)

Country Link
US (1) US7945963B2 (ja)
EP (1) EP2009629A4 (ja)
JP (1) JP4353337B2 (ja)
WO (1) WO2007114353A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008146798A (ja) * 2006-12-13 2008-06-26 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッドスライダ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412641A (en) 1992-05-07 1995-05-02 Canon Kabushiki Kaisha Information recording/reproducing apparatus for recording/reproducing information with probes
JP2005063511A (ja) * 2003-08-08 2005-03-10 Konica Minolta Opto Inc 光ヘッド
US20050243659A1 (en) 2004-04-16 2005-11-03 Rust Thomas F Methods for writing and reading highly resolved domains for high density data storage
WO2005122161A1 (fr) 2004-05-04 2005-12-22 Commissariat A L'energie Atomique Systeme d'enregistrement d'informations et procede d'utilisation d'un tel système
JP2006018880A (ja) * 2004-06-30 2006-01-19 Hitachi Ltd マルチプローブストレージ装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411589B1 (en) * 1998-07-29 2002-06-25 Hewlett-Packard Company System and method for forming electrostatically actuated data storage mechanisms
DE60117719T2 (de) * 2000-06-26 2006-11-16 Samsung Electronics Co., Ltd. Elektromagnetisches X-Y Positioniersystem für Nanodatenspeichersystem und Verfahren zur Herstellung von Spulen für dasselbige
US7869162B2 (en) * 2007-02-16 2011-01-11 Seagate Technology Llc Thin film structure with controlled lateral thermal spreading in the thin film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412641A (en) 1992-05-07 1995-05-02 Canon Kabushiki Kaisha Information recording/reproducing apparatus for recording/reproducing information with probes
JP2005063511A (ja) * 2003-08-08 2005-03-10 Konica Minolta Opto Inc 光ヘッド
US20050243659A1 (en) 2004-04-16 2005-11-03 Rust Thomas F Methods for writing and reading highly resolved domains for high density data storage
WO2005122161A1 (fr) 2004-05-04 2005-12-22 Commissariat A L'energie Atomique Systeme d'enregistrement d'informations et procede d'utilisation d'un tel système
JP2006018880A (ja) * 2004-06-30 2006-01-19 Hitachi Ltd マルチプローブストレージ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2009629A4 *

Also Published As

Publication number Publication date
EP2009629A1 (en) 2008-12-31
US7945963B2 (en) 2011-05-17
US20090178167A1 (en) 2009-07-09
JPWO2007114353A1 (ja) 2009-08-20
JP4353337B2 (ja) 2009-10-28
EP2009629A4 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP2007184074A (ja) マイクロアクチュエータ及びそれを採用した情報記録装置
JP2007287277A (ja) 磁気ヘッドスライダ及びヘッドジンバルアセンブリ
JP5055641B2 (ja) 情報記録再生装置
JP2010015664A (ja) 情報記録再生装置
JP4353337B2 (ja) プローブを用いた情報記憶装置
EP2003645A1 (en) Information storage device using probe
US20090285082A1 (en) Electric field read/write head, method of manufacturing the electric field read/write head, and information storage device including the electric field read/write head
JP4898436B2 (ja) データ記録方法及びこの方法を実施する、変形可能なメモリ支持体を有する装置
Lau et al. Fast electrothermally activated micro-positioner using a high-aspect-ratio micro-machined polymeric composite
US8576516B2 (en) Magnetic disc apparatus including a thermal actuator as part of a two-stage actuator
JP4099066B2 (ja) データ読出し/書込みシステム
JP2011159350A (ja) Memsメモリ用マイクロプローブ
JP3817521B2 (ja) 機械的データ処理
Yang et al. Probe recording technology using novel MEMS devices
KR100623028B1 (ko) 정전기력 z-축 구동장치가 집적된 압전 센서 스캐닝프루브 마이크로스코프나노정보저장장치의 헤더
US11462244B2 (en) Tape based storage device having actuator including pulling and clamping electrodes
Chen et al. Integrated fabrication of electrostatic microactuator for HDD R/W head positioning
JP4898705B2 (ja) 周辺の支持薄膜を含むデータ記録装置及び当該装置の製造方法
Yang et al. Improved design of polymeric composite electrothermal micro-actuator for high track density hard disk drives
KR100364720B1 (ko) 초미세 탐침형 픽업 소자 및 그 제조방법
JP4254243B2 (ja) 情報記録装置および情報記録方法
JP4293283B2 (ja) 情報再生装置、情報再生方法
JP5611590B2 (ja) 近接場光ヘッド及び情報記録再生装置
JP2006018880A (ja) マルチプローブストレージ装置
KR100746769B1 (ko) 정보 저장용 캔틸레버, 그를 갖는 정보 저장 장치 및 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740580

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008508666

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007740580

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12295022

Country of ref document: US