WO2007119005A2 - Spectroscopy device - Google Patents

Spectroscopy device Download PDF

Info

Publication number
WO2007119005A2
WO2007119005A2 PCT/FR2007/000629 FR2007000629W WO2007119005A2 WO 2007119005 A2 WO2007119005 A2 WO 2007119005A2 FR 2007000629 W FR2007000629 W FR 2007000629W WO 2007119005 A2 WO2007119005 A2 WO 2007119005A2
Authority
WO
WIPO (PCT)
Prior art keywords
zone
irradiation
biological sample
injection
measuring
Prior art date
Application number
PCT/FR2007/000629
Other languages
French (fr)
Other versions
WO2007119005A3 (en
Inventor
Fabien Chauchard
Véronique Bellon-Maurel
Jean-Michel Roger
Original Assignee
Centre National De Machinisme Agricole Du Genie Rural Des Eaux Et Des Forets, Cemagref
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De Machinisme Agricole Du Genie Rural Des Eaux Et Des Forets, Cemagref filed Critical Centre National De Machinisme Agricole Du Genie Rural Des Eaux Et Des Forets, Cemagref
Publication of WO2007119005A2 publication Critical patent/WO2007119005A2/en
Publication of WO2007119005A3 publication Critical patent/WO2007119005A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence

Definitions

  • the present invention relates to a device and a method of spectroscopy.
  • the biological sample When light irradiates a biological sample, two types of interactions usually occur. First, the biological sample absorbs part of the light due to the ratio of the vibration frequency of the chemical compounds it contains to the wavelength of the incident wave. The determination of an absorption coefficient ⁇ a thus makes it possible to characterize the chemical composition of the sample. Secondly, since biological products are heterogeneous (cell, cell nuclei, mitochondria, etc.), abrupt changes in refractive index occur in the medium. This has the effect that photons undergo multiple changes of direction. This phenomenon is called diffusion. The determination of a diffusion coefficient ⁇ s thus makes it possible to characterize the physics of the sample. The determination of the diffusion coefficient ⁇ s is particularly used in the medical field, in particular for differentiating between cancerous tumors and healthy tissues.
  • the determination of the diffusion coefficient ⁇ s also makes it possible to calculate the irradiation power of a laser to burn a restricted area of tissue and to determine the rate of oxygenation of the blood.
  • Many fields are increasingly interested in the determination of a reduced diffusion coefficient ⁇ s ', that is to say the determination of a diffusion coefficient considering an isotropic diffusion, to characterize soils, powders, flours, purees, pharmaceutical tablets, fruits or turbid solutions.
  • Experimental methods have been developed to determine the diffusion coefficient . These methods include time-resolved spectroscopy, phase-modulation spectroscopy and spatially resolved spectroscopy. The simplest and least expensive method to implement is spatially resolved spectroscopy.
  • the change in the pfd (p) (expressed in W / cm 2 ) re-emitted by the biological sample as a function of the distance p (expressed in cm) between the measurement zone and the irradiation zone can be be modeled by a function.
  • this function was given by Farrell.
  • the change in refractive index at the surface where p 2 "(l / ⁇ s') 2, the function is of the form:
  • the power I 0 is very difficult to estimate because it depends not only on the light source but also on additional factors, such as the diameter of the irradiation fiber, its numerical aperture and the coupling of the light. in the sample. Thus, the power I 0 is generally unknown.
  • a method consists of dividing the re-transmitted pfd R (p) by a reference surface power R (P 1 ), which gives the equation:
  • Another method is to estimate the power Io from a medium with known optical properties. Once the power Io has been estimated, a biological sample is analyzed assuming that the light source remains stable. Another method consists in measuring the total reflection using an integrating sphere, in order to obtain an additional relation making it possible to determine the coefficients ⁇ a and ⁇ s '.
  • Another method is to use a beam splitter to measure the power I 0 .
  • These methods have the disadvantage of lacking precision because it is difficult to accurately estimate the power I 0 , especially since the power I 0 is not necessarily constant over time.
  • these methods are complex to implement, so expensive.
  • the object of the present invention is to propose a device and a method of spectroscopy which avoid at least some of the aforementioned disadvantages and which make it possible to determine a diffusion coefficient ⁇ s ' and / or an absorption coefficient ⁇ a without having to estimate the radiating power I 0 .
  • the subject of the invention is a spectroscopy device comprising:
  • irradiation means for irradiating an irradiation zone of a biological sample to be analyzed, and measurement means able to measure a light power re-emitted by respective measuring surfaces of said biological sample
  • re-injection means capable of capturing a light power re-emitted by a recovery zone of said biological sample, and of re-injecting said detected luminous power into a re-injection zone of said biological sample, characterized in that the distance between said re-injection zone and said irradiation zone is greater than the distance between said irradiation zone and said recovery zone.
  • said irradiation means comprise an optical irradiation fiber.
  • said re-injection means comprise an optical re-injection fiber.
  • said optical irradiation fiber is an optical fiber of annular section, said optical re-injection fiber being disposed at the center of said optical irradiation fiber, so that said recovery zone is substantially in the center of said annular irradiation zone.
  • said re-injection means comprise two mirrors, each mirror having a reflecting surface inclined with respect to the surface of said biological sample to allow the diversion and re-injection of the captured power.
  • said measurement means comprise a set of measurement optical fibers capable of cooperating with a spectrometer.
  • said measuring means comprise a set of optical fibers, each optical fiber of said set of optical fibers being connected to a spectrometer.
  • said measuring means comprise means for scanning the surface of said biological sample adapted to cooperate with an optical measurement fiber.
  • said measuring means comprise a CCD strip disposed against a face of said biological sample.
  • the subject of the invention is also a spectroscopy method comprising the steps of:
  • FIG. 1 is a simplified schematic view of a spectroscopy device according to one embodiment of the invention.
  • FIG. 2 is a simplified schematic view of the spectroscopy device of FIG. 1 showing in greater detail the irradiation zone, the recovery zone and the measurement zones of the biological sample to be analyzed;
  • FIG. 3 is a simplified schematic view of the measurement means of the spectroscopy device of FIG. 1;
  • - Figure 4 is a view similar to Figure 3 showing an alternative embodiment of the measuring means
  • - Figure 5 is a view similar to Figure 3 showing another alternative embodiment of the measuring means
  • FIG. 6 is a simplified schematic view showing an alternative embodiment of the re-injection means of the spectroscopy device of FIG. 1; and FIG. 7 is a view similar to FIG. 6 showing another alternative embodiment of the re-injection means of the spectroscopy device of FIG. 1.
  • the device 1 comprises irradiation means, which comprise an optical irradiation fiber F 1 and a light source 2.
  • irradiation means which comprise an optical irradiation fiber F 1 and a light source 2.
  • One end 4 of the fiber F 1 is connected to the light source 2 and the other end 3 of the fiber F 1 is arranged in line with an irradiation zone S f1 (FIG. 2) of a biological sample 6 to be analyzed.
  • the fiber F 1 is for example an optical fiber of annular section of radius substantially equal to 0.275 cm.
  • the irradiation zone Sf 1 has an annular shape, as shown in FIG.
  • the device 1 comprises means for re-injection of light.
  • the re-injection means comprise an optical re-injection fiber F 2 .
  • An end 7 of the fiber F 2 is disposed in line with a recovery zone S ⁇ of the sample 6.
  • the recovery zone Sf 2 is at a short distance P f2 from the irradiation zone S f1 .
  • the other end 9 of the fiber F 2 is arranged in line with a re-injection zone Sj of the sample 6.
  • the re-injection zone Sj is at a distance pi from the irradiation zone S f1 which is greater than the distance P f2 between the irradiation zone S f1 and the recovery zone Sf 2 , that is to say that Pi> P f2 -
  • the fiber F 2 has for example a radius substantially equal to 0.075 cm.
  • the numerical aperture of the fiber F 2 is substantially equal to the numerical aperture of the fiber F 1 .
  • the end 7 of the fiber F 2 is example located in the center of the annular fiber, so that the recovery zone S f2 is in the center of the ring forming the irradiation zone S f1 ( Figure 2).
  • the re-injection distance pi is for example substantially equal to 1.4 cm.
  • the device 1 comprises means for measuring the power re-emitted by the sample 6.
  • the measurement means comprise a set of measuring optical fibers F M -
  • Each measurement fiber FM has an end 15 disposed at the right of a measurement zone SM of sample 6 (FIG. 2), respectively.
  • the measurement zones S M associated with each FM measuring fiber respectively are for example aligned on a straight line passing through the center of the irradiation zone S f1 and by the center of the re-injection zone S f2 .
  • the measuring means comprise a photodetector 17 (FIG.
  • the set of optical fibers comprises for example ten optical fibers F M , each optical fiber FM having a radius substantially equal to 0.05 cm.
  • a radiating power irradiates the irradiation zone S f1 of the sample 6, as is symbolized by arrows 20 (FIG. 2).
  • a portion of the radiating power is diffused inside the sample 6 isotropically.
  • a re-transmitted power is thus re-emitted towards the outside of the sample 6 by the surface 21 of the sample 6.
  • the re-injection fiber F 2 captures the power re-emitted by the recovery zone S f2 .
  • the power picked up by the fiber F 2 is transmitted along the fiber F 2 , as symbolized by an arrow 21, and is then re-injected into the sample 6 at the re-injection zone Sj, such as that this is symbolized by an arrow 22.
  • Each measurement fiber FM captures the re-transmitted power to the outside of the sample 6 from the associated measurement zone SM. It will be noted that the power captured by the measurement fibers FM comes on the one hand from the irradiation power supplied by the irradiation fiber F 1 and on the other hand from the re-injection power provided by the re-injection fiber F 2 . The power captured by each measuring fiber F M is transmitted to the spectrometer 17.
  • the optical properties of the sample 6 do not vary between the different measurement zones SM. It is also assumed that the distance pi is large enough to neglect the portion of the power captured by the re-injection fiber F 2 which comes from the re-injected power compared to the portion of the power captured by the fiber F 2 which comes from the power of 'irradiation.
  • the power captured by the measuring fibers F M is equal to the power resulting from the addition of two isotropic sources S 1 and S 2 ( Figure 1) located at the same depth z 0 in the middle.
  • the re-injected power can be calculated as the product of the power captured Q by the attenuation A f , that is to say that the re-injected power is equal to A f .Q.
  • the power re-emitted to the outside of the sample 6 due to the re-injection is therefore equal to:
  • R 101 (P) R (p) + R '(p)
  • Equation E5 can be simplified using equation E4, which gives the equation:
  • RtAp to / (/ - 'cii, p) + f * f2AfIoz $ f ( ⁇ c ⁇ i ⁇ ⁇ -
  • Equation E7 can be simplified by using equation E6, which gives:
  • equation E8 Contrary to the equation E2 used in the prior art, equation E7 (or equation E8) contains two variables ⁇ eff and zo which describe the optical properties of the medium, which makes it possible to deduce the coefficients ⁇ a and ⁇ s '.
  • the extraction of the coefficients ⁇ a and ⁇ s ' from equation E8 can be performed by several methods, not described in detail, which use for example neural networks, least squares or support vector machines.
  • the measuring means may comprise several spectrometers 25 (FIG. 4), for example as many spectrometers 25 as measuring fibers F M.
  • each measuring fiber F M is connected to a spectrometer 25, respectively, as shown in FIG. 4. It will be noted that in this configuration the measurement means do not comprise a coupling module.
  • the measuring means may comprise an optical mechanism 26 (FIG. 5) able to scan the surface 21 of the sample 6.
  • the set of measurement fibers may comprise a single fiber FM.
  • FIG. arrows 27 symbolize a set of re-transmitted power rays reflected on the optical mechanism 26.
  • the optical mechanism transmits one of the rays in the FM fiber, depending on its current position.
  • the measuring means may comprise a CCD strip 28 (Charge-Coupled Device, not shown) glued against the surface of the sample 6 or any other device making it possible to measure the power re-transmitted on the surface of the sample 6.
  • CCD strip 28 Charge-Coupled Device, not shown
  • the re-injection means may comprise a mirror 29 (FIG. 6) whose reflecting face 30 is oriented towards the sample 6, in a manner substantially parallel to the surface 21 of the sample 6. It will be noted that, in this case, the re-injection is carried out by direct reflection, that is to say that the re-injection zone Sj is substantially merged with the recovery zone S f2 . The hypothesis of neglecting the portion of the power captured by the F2 fiber from the re-injection is no longer valid.
  • the re-injection means may also comprise several mirrors, for example two mirrors 31 and 32 (FIG. 7).
  • Each mirror 31, 32 has a reflecting face inclined at an angle of approximately 45 ° with respect to the surface 21 of the sample 6.
  • the power re-emitted by the recovery zone S ⁇ is reflected on the mirror 31 in the direction of the mirror 32, then is reflected on the mirror 32 towards the re-injection zone Sj, as is symbolized by the arrow 34.
  • prisms could also be used to allow light deflection before re-injection.
  • the measuring means may comprise an optical measurement fiber FM (FIG. 8) disposed in line with the surface 21 of the sample 6 and movable in a plane parallel to the surface 21 of the sample 6.
  • a piezoelectric device 40 supplied with electrical energy and controlled by a control device 41, cooperates with the fiber FM to move it.
  • a motion amplification lens 42 is disposed between the fiber FM and the surface 21 of the sample 6 to amplify the shift of the measuring area SM during a displacement of the fiber FM.
  • a The vibration of the fiber FM makes it possible, by means of the lens 42, to carry out measurements on measuring zones SM sufficiently far apart from each other.
  • the irradiation means comprise a bulb 43 disposed near the surface 21 of the sample 6.
  • the re-injection means comprise two prisms 44 and 45 arranged in such a way that the power re-emitted by the recovery zone is reflected on the prism 44 towards the prism 45, then is reflected on the prism 45 towards the re-injection zone s ,, as it is symbolized by the arrows 46.

Abstract

The invention concerns a spectroscopy device (1) comprising: irradiation means (2, F<SUB>1</SUB>) for irradiating a biological sample (6) to be analyzed; and measuring means (F<SUB>M</SUB>) for measuring a light intensity retransmitted by respective measured zones of said biological sample. The invention is characterized in that it comprises reinjecting means (F<SUB>2</SUB>) for capturing a light intensity retransmitted by a recovery zone of said biological sample, and for reinjecting said captured light intensity on a zone for reinjecting (S<SUB>i</SUB>) said biological sample.

Description

DISPOSITIF DE SPECTROSCOPIE SPECTROSCOPY DEVICE
La présente invention a pour objets un dispositif et un procédé de spectroscopie.The present invention relates to a device and a method of spectroscopy.
Lorsque de la lumière irradie un échantillon biologique, il se produit généralement deux types d'interactions. Premièrement, l'échantillon biologique absorbe une partie de la lumière du fait du rapport entre la fréquence de vibration des composés chimiques qu'il contient et la longueur d'onde de l'onde incidente. La détermination d'un coefficient d'absorption μa permet donc de caractériser la composition chimique de l'échantillon. Deuxièmement, les produits biologiques étant hétérogènes (cellule, noyaux cellulaires, mitochondries,...) il se produit dans le milieu des changements brutaux d'indice de réfraction. Cela a pour effet que les photons subissent de multiples changement de direction. Ce phénomène est appelé diffusion. La détermination d'un coefficient de diffusion μs permet donc de caractériser la physique de l'échantillon. La détermination du coefficient de diffusion μs est particulièrement utilisée dans le domaine médical, notamment pour permettre de différentier des tumeurs cancéreuses et des tissus sains. La détermination du coefficient de diffusion μs permet également de calculer la puissance d'irradiation d'un laser pour brûler une zone restreinte de tissus et de déterminer le taux d'oxygénation du sang. De nombreux domaines s'intéressent de plus en plus à la détermination d'un coefficient de diffusion réduit μs', c'est-à-dire la détermination d'un coefficient de diffusion en considérant une diffusion isotrope, pour caractériser des sols, des poudres, des farines, des purées, des cachets pharmaceutiques, des fruits ou encore des solutions turbides. Des méthodes expérimentales ont été développées pour déterminer le coefficient de diffusion μs\ Ces méthodes comprennent la spectroscopie résolue en temps, la spectroscopie par modulation de phase et la spectroscopie résolue spatialement. La méthode la plus simple et la moins coûteuse à mettre en oeuvre est la spectroscopie résolue spatialement. Celle-ci permet en outre de réaliser une analyse non destructive et rapide, et d'utiliser des équipements portables (micro spectromètres). Classiquement, la spectroscopie résolue spatialement est mise en œuvre en irradiant par une onde lumineuse une zone d'irradiation d'un échantillon biologique à l'aide d'une fibre optique d'irradiation reliée à une source lumineuse et en effectuant un ensemble de mesures de la puissance surfacique ré-émise à la surface de l'échantillon, à différentes distances de la zone d'irradiation. Dans la suite de la description, on utilise l'expression puissance irradiante pour désigner l'onde lumineuse et l'expression puissance ré-émise pour désigner la partie de la puissance irradiante qui est diffusée par la surface de l'échantillon.When light irradiates a biological sample, two types of interactions usually occur. First, the biological sample absorbs part of the light due to the ratio of the vibration frequency of the chemical compounds it contains to the wavelength of the incident wave. The determination of an absorption coefficient μ a thus makes it possible to characterize the chemical composition of the sample. Secondly, since biological products are heterogeneous (cell, cell nuclei, mitochondria, etc.), abrupt changes in refractive index occur in the medium. This has the effect that photons undergo multiple changes of direction. This phenomenon is called diffusion. The determination of a diffusion coefficient μ s thus makes it possible to characterize the physics of the sample. The determination of the diffusion coefficient μ s is particularly used in the medical field, in particular for differentiating between cancerous tumors and healthy tissues. The determination of the diffusion coefficient μ s also makes it possible to calculate the irradiation power of a laser to burn a restricted area of tissue and to determine the rate of oxygenation of the blood. Many fields are increasingly interested in the determination of a reduced diffusion coefficient μ s ', that is to say the determination of a diffusion coefficient considering an isotropic diffusion, to characterize soils, powders, flours, purees, pharmaceutical tablets, fruits or turbid solutions. Experimental methods have been developed to determine the diffusion coefficient . These methods include time-resolved spectroscopy, phase-modulation spectroscopy and spatially resolved spectroscopy. The simplest and least expensive method to implement is spatially resolved spectroscopy. It also allows non-destructive and fast analysis and the use of portable equipment (micro spectrometers). Conventionally, spatially resolved spectroscopy is implemented by irradiating a radiation waveform of a biological sample with an irradiation optical fiber connected to a light source and performing a set of measurements the pfd re-emitted at the surface of the sample, at different distances from the irradiation zone. In the remainder of the description, the expression "radiative power" is used to designate the light wave and the expression "power re-emitted" to designate the part of the radiating power that is diffused by the surface of the sample.
L'évolution de la puissance surfacique R(p) (exprimée en W/cm2) ré-émise par l'échantillon biologique en fonction de la distance p (exprimée en cm) entre la zone de mesure et la zone d'irradiation peut être modélisée par une fonction. Pour une irradiation isotrope irradiant un échantillon considéré comme milieu semi infini, cette fonction a été donné par Farrell. Sans prendre en compte le changement d'indice de réfraction à la surface, lorsque p2»(l/μs')2, la fonction est de la forme :The change in the pfd (p) (expressed in W / cm 2 ) re-emitted by the biological sample as a function of the distance p (expressed in cm) between the measurement zone and the irradiation zone can be be modeled by a function. For an isotropic irradiation irradiating a sample considered as a semi infinite medium, this function was given by Farrell. Without taking into account the change in refractive index at the surface, where p 2 "(l / μ s') 2, the function is of the form:
Figure imgf000004_0001
Figure imgf000004_0001
où : zo=l/μs' représente la distance à laquelle les photons incidents provenant de la source lumineuse sont diffusés de manière isotrope (figure 1),where: z o = l / μ s ' represents the distance at which the incident photons coming from the light source are scattered isotropically (FIG. 1),
/OIT - V3/(/'« + /O est le coefficient d'atténuation efficace, et I0 est la puissance d'irradiation (exprimée en W)./ ILO - V 3/4 "(/" + / O is the effective attenuation coefficient, and I 0 is the irradiation power (expressed in W).
Dans la pratique, la puissance I0 est très difficile à estimer parce qu'elle dépend non seulement de la source lumineuse mais également de facteurs supplémentaires, tels que le diamètre de la fibre d'irradiation, son ouverture numérique et le couplage de la lumière dans l'échantillon. Ainsi, la puissance I0 est généralement inconnue. Pour éliminer la puissance I0 de l'équation El, une méthode consiste à diviser la puissance surfacique ré-émise R(p) par une puissance surfacique de référence R(P1), ce qui donne l'équation :In practice, the power I 0 is very difficult to estimate because it depends not only on the light source but also on additional factors, such as the diameter of the irradiation fiber, its numerical aperture and the coupling of the light. in the sample. Thus, the power I 0 is generally unknown. To eliminate the power I 0 from the equation E1, a method consists of dividing the re-transmitted pfd R (p) by a reference surface power R (P 1 ), which gives the equation:
Figure imgf000005_0001
A partir de l'équation E2, seul le coefficient d'atténuation efficace μeff peut être calculé, ce qui n'est pas suffisant pour déterminer le coefficient d'absorption μa et le coefficient de diffusion réduit μs'.
Figure imgf000005_0001
From equation E2, only the effective attenuation coefficient μ e ff can be calculated, which is not sufficient to determine the absorption coefficient μ a and the reduced diffusion coefficient μ s '.
Une relation supplémentaire entre les coefficients μa et μs' doit donc être utilisée. Plusieurs méthodes ont été proposées. Une méthode consiste à ajouter un absorbant dans l' échantillon biologique.An additional relation between the coefficients μ a and μ s ' must therefore be used. Several methods have been proposed. One method is to add an absorbent to the biological sample.
Une autre méthode consiste à estimer la puissance Io à partir d'un milieu comportant des propriétés optiques connues. Une fois que la puissance Io a été estimée, un échantillon biologique est analysé en supposant que la source lumineuse reste stable. Une autre méthode consiste à mesurer la réflexion totale en utilisant une sphère d'intégration, en vue d'obtenir une relation supplémentaire permettant de déterminer les coefficients μa et μs'.Another method is to estimate the power Io from a medium with known optical properties. Once the power Io has been estimated, a biological sample is analyzed assuming that the light source remains stable. Another method consists in measuring the total reflection using an integrating sphere, in order to obtain an additional relation making it possible to determine the coefficients μ a and μ s '.
Une autre méthode consiste à utiliser un séparateur de faisceau pour mesurer la puissance I0. Ces méthodes présentent l'inconvénient de manquer de précision puisqu'il est difficile d'estimer précisément la puissance I0, d'autant plus que la puissance I0 n'est pas nécessairement constante dans le temps. En outre, ces méthodes sont complexes à mettre en oeuvre, donc coûteuses.Another method is to use a beam splitter to measure the power I 0 . These methods have the disadvantage of lacking precision because it is difficult to accurately estimate the power I 0 , especially since the power I 0 is not necessarily constant over time. In addition, these methods are complex to implement, so expensive.
La présente invention a pour but de proposer un dispositif et un procédé de spectroscopie qui évitent au moins certains des inconvénients précités et qui permettent de déterminer un coefficient de diffusion μs' et/ou un coefficient d'absorption μa sans avoir à estimer la puissance irradiante I0. A cet effet, l'invention a pour objet un dispositif de spectroscopie comportant :The object of the present invention is to propose a device and a method of spectroscopy which avoid at least some of the aforementioned disadvantages and which make it possible to determine a diffusion coefficient μ s ' and / or an absorption coefficient μ a without having to estimate the radiating power I 0 . For this purpose, the subject of the invention is a spectroscopy device comprising:
- des moyens d'irradiation destinés à irradier une zone d'irradiation d'un échantillon biologique à analyser, et - des moyens de mesure aptes à mesurer une puissance lumineuse ré-émise par des surfaces de mesure respectives dudit échantillon biologique,irradiation means for irradiating an irradiation zone of a biological sample to be analyzed, and measurement means able to measure a light power re-emitted by respective measuring surfaces of said biological sample,
- des moyens de ré-injection aptes à capter une puissance lumineuse ré-émise par une zone de récupération dudit échantillon biologique, et à ré-injecter ladite puissance lumineuse captée sur une zone de ré-injection dudit échantillon biologique, caractérisé en ce que la distance entre ladite zone de ré-injection et ladite zone d'irradiation est supérieure à la distance entre ladite zone d'irradiation et ladite zone de récupération.re-injection means capable of capturing a light power re-emitted by a recovery zone of said biological sample, and of re-injecting said detected luminous power into a re-injection zone of said biological sample, characterized in that the distance between said re-injection zone and said irradiation zone is greater than the distance between said irradiation zone and said recovery zone.
Avantageusement, lesdits moyens d'irradiation comprennent une fibre optique d'irradiation. Selon un mode de réalisation de l'invention, lesdits moyens de ré-injection comprennent une fibre optique de ré-injection.Advantageously, said irradiation means comprise an optical irradiation fiber. According to one embodiment of the invention, said re-injection means comprise an optical re-injection fiber.
Selon un mode de réalisation de l'invention, ladite fibre optique d'irradiation est une fibre optique de section annulaire, ladite fibre optique de ré-injection étant disposée au centre de ladite fibre optique d'irradiation, de manière que ladite zone de récupération se trouve sensiblement au centre de ladite zone d'irradiation annulaire.According to one embodiment of the invention, said optical irradiation fiber is an optical fiber of annular section, said optical re-injection fiber being disposed at the center of said optical irradiation fiber, so that said recovery zone is substantially in the center of said annular irradiation zone.
Selon un mode de réalisation de l'invention lesdits moyens de ré-injection comprennent deux miroirs, chaque miroir comportant une face réfléchissante inclinée par rapport à la surface dudit échantillon biologique pour permettre la déviation et la ré-injection de la puissance captée. Selon un mode de réalisation de l'invention, lesdits moyens de mesure comprennent un ensemble de fibres optiques de mesure aptes à coopérer avec un spectromètre.According to one embodiment of the invention said re-injection means comprise two mirrors, each mirror having a reflecting surface inclined with respect to the surface of said biological sample to allow the diversion and re-injection of the captured power. According to one embodiment of the invention, said measurement means comprise a set of measurement optical fibers capable of cooperating with a spectrometer.
Selon un mode de réalisation de l'invention, lesdits moyens de mesure comprennent un ensemble de fibres optiques, chaque fibre optique dudit ensemble de fibres optiques étant reliée à un spectromètre. Selon un mode de réalisation de l'invention, lesdits moyens de mesure comprennent un moyen de balayage de la surface dudit échantillon biologique apte à coopérer avec une fibre optique de mesure.According to one embodiment of the invention, said measuring means comprise a set of optical fibers, each optical fiber of said set of optical fibers being connected to a spectrometer. According to one embodiment of the invention, said measuring means comprise means for scanning the surface of said biological sample adapted to cooperate with an optical measurement fiber.
Selon un mode de réalisation de l'invention, lesdits moyens de mesure comprennent une barrette CCD disposée contre une face dudit échantillon biologique.According to one embodiment of the invention, said measuring means comprise a CCD strip disposed against a face of said biological sample.
L'invention a également pour objet un procédé de spectroscopie comprenant les étapes consistant à :The subject of the invention is also a spectroscopy method comprising the steps of:
- irradier une zone d'irradiation d'un échantillon biologique à analyser, - capter une puissance lumineuse ré-émise par une zone de récupération dudit échantillon biologique,irradiating an irradiation zone of a biological sample to be analyzed, capturing a light power re-emitted by a recovery zone of said biological sample,
- ré-injecter au moins une portion de la puissance lumineuse captée sur une zone de ré-injection dudit échantillon biologique, la distance entre ladite zone de ré-injection et ladite zone d'irradiation étant supérieure à la distance entre ladite zone d'irradiation et ladite zone de récupération,re-injecting at least a portion of the light power captured on a re-injection zone of said biological sample, the distance between said re-injection zone and said irradiation zone being greater than the distance between said irradiation zone; and said recovery zone,
- mesurer la puissance lumineuse ré-émise par plusieurs zones de mesure dudit échantillon biologique situées à différentes distances de la zone d'irradiation, etmeasuring the luminous power re-emitted by several measurement zones of said biological sample located at different distances from the irradiation zone, and
- déterminer au moins une caractéristique dudit échantillon biologique en fonction desdites mesures effectuées. L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description explicative détaillée qui va suivre, d'un mode de réalisation de l'invention donné à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés. Sur ces dessins :determining at least one characteristic of said biological sample as a function of said measurements made. The invention will be better understood, and other objects, details, features and advantages thereof will appear more clearly in the following detailed explanatory description of an embodiment of the invention given as a purely illustrative and non-limiting example, with reference to the accompanying schematic drawings. On these drawings:
- la figure 1 est une vue schématique simplifiée d'un dispositif de spectroscopie selon un mode de réalisation de l'invention ;FIG. 1 is a simplified schematic view of a spectroscopy device according to one embodiment of the invention;
- la figure 2 est une vue schématique simplifiée du dispositif de spectroscopie de la figure 1 montrant plus en détails la zone d'irradiation, la zone de récupération et les zones de mesure de l'échantillon biologique à analyser ; - la figure 3 est une vue schématique simplifiée des moyens de mesure du dispositif de spectroscopie de la figure 1 ;FIG. 2 is a simplified schematic view of the spectroscopy device of FIG. 1 showing in greater detail the irradiation zone, the recovery zone and the measurement zones of the biological sample to be analyzed; FIG. 3 is a simplified schematic view of the measurement means of the spectroscopy device of FIG. 1;
- la figure 4 est une vue similaire à la figure 3 montrant une variante de réalisation des moyens de mesure ; - la figure 5 est est une vue similaire à la figure 3 montrant une autre variante de réalisation des moyens de mesure ;- Figure 4 is a view similar to Figure 3 showing an alternative embodiment of the measuring means; - Figure 5 is a view similar to Figure 3 showing another alternative embodiment of the measuring means;
- la figure 6 est est une vue schématique simplifiée montrant une variante de réalisation des moyens de ré-injection du dispositif de spectroscopie de la figure 1 ; et - la figure 7 est une vue similaire à la figure 6 montrant une autre variante de réalisation des moyens de ré-injection du dispositif de spectroscopie de la figure 1.FIG. 6 is a simplified schematic view showing an alternative embodiment of the re-injection means of the spectroscopy device of FIG. 1; and FIG. 7 is a view similar to FIG. 6 showing another alternative embodiment of the re-injection means of the spectroscopy device of FIG. 1.
En se référant aux figures 1 à 3, on voit un dispositif de spectroscopie 1 selon un mode de réalisation de l'invention. Le dispositif 1 comporte des moyens d'irradiation, qui comprennent une fibre optique d'irradiation F1 et une source lumineuse 2. Une extrémité 4 de la fibre F1 est reliée à la source lumineuse 2 et l'autre extrémité 3 de la fibre F1 est disposée au droit d'une zone d'irradiation Sf1 (figure 2) d'un échantillon biologique 6 à analyser. La fibre F1 est par exemple une fibre optique de section annulaire de rayon sensiblement égal à 0.275 cm. La zone d'irradation Sf1 a dans ce cas une forme annulaire, comme cela est représenté sur la figure 2.Referring to Figures 1 to 3, there is shown a spectroscopy device 1 according to one embodiment of the invention. The device 1 comprises irradiation means, which comprise an optical irradiation fiber F 1 and a light source 2. One end 4 of the fiber F 1 is connected to the light source 2 and the other end 3 of the fiber F 1 is arranged in line with an irradiation zone S f1 (FIG. 2) of a biological sample 6 to be analyzed. The fiber F 1 is for example an optical fiber of annular section of radius substantially equal to 0.275 cm. In this case, the irradiation zone Sf 1 has an annular shape, as shown in FIG.
Le dispositif 1 comporte des moyens de ré-injection de lumière. Les moyens de ré-injection comprennent une fibre optique de ré-injection F2. Une extrémité 7 de la fibre F2 est disposée au droit d'une zone de récupération Sβ de l'échantillon 6. La zone de récupération Sf2 se trouve à une faible distance Pf2 de la zone d'irradiation Sf1. L'autre extrémité 9 de la fibre F2 est disposée au droit d'une zone de ré-injection Sj de l'échantillon 6. La zone de ré-injection Sj se trouve à une distance pi de la zone d'irradiation Sf1 qui est supérieure à la distance Pf2 entre la zone d'irradiation Sf1 et la zone de récupération Sf2, c'est-à-dire que Pi > Pf2- La fibre F2 a par exemple un rayon sensiblement égal à 0.075cm. L'ouverture numérique de la fibre F2 est sensiblement égale à l'ouverture numérique de la fibre F1. L'extrémité 7 de la fibre F2 est par exemple disposée au centre de la fibre annulaire, de manière que la zone de récupération Sf2 se trouve au centre de l'anneau formant la zone d'irradiation Sf1 (figure 2). La distance de ré-iηjection pi est par exemple sensiblement égale à 1.4cm.The device 1 comprises means for re-injection of light. The re-injection means comprise an optical re-injection fiber F 2 . An end 7 of the fiber F 2 is disposed in line with a recovery zone Sβ of the sample 6. The recovery zone Sf 2 is at a short distance P f2 from the irradiation zone S f1 . The other end 9 of the fiber F 2 is arranged in line with a re-injection zone Sj of the sample 6. The re-injection zone Sj is at a distance pi from the irradiation zone S f1 which is greater than the distance P f2 between the irradiation zone S f1 and the recovery zone Sf 2 , that is to say that Pi> P f2 - The fiber F 2 has for example a radius substantially equal to 0.075 cm. The numerical aperture of the fiber F 2 is substantially equal to the numerical aperture of the fiber F 1 . The end 7 of the fiber F 2 is example located in the center of the annular fiber, so that the recovery zone S f2 is in the center of the ring forming the irradiation zone S f1 (Figure 2). The re-injection distance pi is for example substantially equal to 1.4 cm.
Le dispositif 1 comporte des moyens de mesure de la puissance ré-émise par l'échantillon 6. Les moyens de mesure comportent un ensemble de fibres optiques de mesure FM- Chaque fibre de mesure FM a une extrémité 15 disposée au droit d'une zone de mesure SM de l'échantillon 6 (figure 2), respectivement. Les zones de mesure SM associées à chaque fibre de mesure FM respectivement sont par exemple alignées sur une droite passant par le centre de la zone d'irradiation Sf1 et par le centre de la zone de ré-injection Sf2. Les moyens de mesure comportent un photo-détecteur 17 (figure 3), par exemple un spectromètre, qui est relié à l'extrémité opposée 18 de chacune des fibres FM par le biais d'un module de couplage 19 qui comprend par exemple un switch, un multiplexeur et/ou un miroir tournant. L'ensemble de fibres optiques comporte par exemple dix fibres optiques FM, chaque fibre optique FM ayant un rayon sensiblement égal à 0.05cm.The device 1 comprises means for measuring the power re-emitted by the sample 6. The measurement means comprise a set of measuring optical fibers F M - Each measurement fiber FM has an end 15 disposed at the right of a measurement zone SM of sample 6 (FIG. 2), respectively. The measurement zones S M associated with each FM measuring fiber respectively are for example aligned on a straight line passing through the center of the irradiation zone S f1 and by the center of the re-injection zone S f2 . The measuring means comprise a photodetector 17 (FIG. 3), for example a spectrometer, which is connected to the opposite end 18 of each of the fibers F M via a coupling module 19 which comprises, for example, a switch, a multiplexer and / or a rotating mirror. The set of optical fibers comprises for example ten optical fibers F M , each optical fiber FM having a radius substantially equal to 0.05 cm.
On va maintenant décrire le fonctionnement du dispositif de spectroscopie 1.The operation of the spectroscopy device 1 will now be described.
Lorsque la source lumineuse 2 alimente la fibre d'irradiation F1, une puissance irradiante irradie la zone d'irradiation Sf1 de l'échantillon 6, tel que cela est symbolisé par des flèches 20 (figure 2). De manière connue, une portion de la puissance irradiante est diffusée à l'intérieur de l'échantillon 6 de manière isotrope. Une puissance ré-émise est ainsi ré-émise vers l'extérieur de l'échantillon 6 par la surface 21 de l'échantillon 6. La fibre de ré-injection F2 capte la puissance ré-émise par la zone de récupération Sf2. La puissance captée par la fibre F2 est transmise le long de la fibre F2, tel que cela est symbolisé par une flèche 21, puis est ré-injectée dans l'échantillon 6 au niveau de la zone de ré-injection Sj, tel que cela est symbolisé par une flèche 22.When the light source 2 supplies the irradiation fiber F 1 , a radiating power irradiates the irradiation zone S f1 of the sample 6, as is symbolized by arrows 20 (FIG. 2). In known manner, a portion of the radiating power is diffused inside the sample 6 isotropically. A re-transmitted power is thus re-emitted towards the outside of the sample 6 by the surface 21 of the sample 6. The re-injection fiber F 2 captures the power re-emitted by the recovery zone S f2 . The power picked up by the fiber F 2 is transmitted along the fiber F 2 , as symbolized by an arrow 21, and is then re-injected into the sample 6 at the re-injection zone Sj, such as that this is symbolized by an arrow 22.
Chaque fibre de mesure FM capte la puissance ré-émise vers l'extérieur de l'échantillon 6 depuis la zone de mesure SM associée. On notera que la puissance captée par les fibres de mesure FM provient d'une part de la puissance d'irradiation fournie par la fibre d'irradiation F1 et d'autre part de la puissance de ré-injection fournie par la fibre de ré-injection F2. La puissance captée par chaque fibre de mesure FM est transmise au spectromètre 17.Each measurement fiber FM captures the re-transmitted power to the outside of the sample 6 from the associated measurement zone SM. It will be noted that the power captured by the measurement fibers FM comes on the one hand from the irradiation power supplied by the irradiation fiber F 1 and on the other hand from the re-injection power provided by the re-injection fiber F 2 . The power captured by each measuring fiber F M is transmitted to the spectrometer 17.
Pour déterminer le coefficient de diffusion μs et le coefficient d'absorption μa à partir des mesures effectuées, on suppose que les propriétés optiques de l'échantillon 6 ne varient pas entre les différentes zones de mesure SM- On suppose également que la distance pi est suffisamment grande pour pouvoir négliger la portion de la puissance captée par la fibre de ré-injection F2 qui provient de la puissance ré-injectée par rapport à la portion de la puissance captée par la fibre F2 qui provient de la puissance d'irradiation. En outre, on notera que, comme les fibres F1 et F2 ont la même ouverture numérique, la puissance captée par les fibres de mesure FM est égale à la puissance provenant de l'addition de deux sources isotropes S1 et S2 (figure 1) situées à la même profondeur z0 dans le milieu.To determine the diffusion coefficient μ s and the absorption coefficient μ a from the measurements made, it is assumed that the optical properties of the sample 6 do not vary between the different measurement zones SM. It is also assumed that the distance pi is large enough to neglect the portion of the power captured by the re-injection fiber F 2 which comes from the re-injected power compared to the portion of the power captured by the fiber F 2 which comes from the power of 'irradiation. In addition, it will be noted that, since the fibers F 1 and F 2 have the same numerical aperture, the power captured by the measuring fibers F M is equal to the power resulting from the addition of two isotropic sources S 1 and S 2 (Figure 1) located at the same depth z 0 in the middle.
La puissance totale Q (exprimée en Watt) captée par la fibre F2 sur la zone Sf2 est donnée par l'équation :The total power Q (expressed in Watt) captured by the fiber F 2 on the zone Sf 2 is given by the equation:
Q = II R[Pp)ClS ≈ I0S0 [I f(μ,κ. ρ)dsQ = II R [Pp] ClS ≈ I 0 S 0 [I f (μ, κ . Ρ) ds
Si on suppose que R(p) est constant sur la surface Sf2 et en utilisant l'équation El on peut simplifier l'équation E3, ce qui donne :If we assume that R (p) is constant on the surface S f2 and using the equation E1 we can simplify the equation E3, which gives:
Figure imgf000010_0001
Figure imgf000010_0001
= Sf2hzof(μcfa pf2)
Figure imgf000010_0002
La fibre F2 atténue le signal à cause de l'absorption, de l'interface de la fibre
= Sf2hzof (μ c fa pf 2 )
Figure imgf000010_0002
The fiber F 2 attenuates the signal because of the absorption, the interface of the fiber
F2, de l'ouverture numérique de la fibre F2, et de la conception de la sonde. On note Af l'atténuation totale. La puissance ré-injectée peut être calculée comme le produit de la puissance captée Q par l'atténuation Af, c'est-à-dire que la puissance ré-injectée est égale à Af.Q. La puissance ré-émise vers l'extérieur de l'échantillon 6 du fait de la ré-injection est donc égale à :
Figure imgf000011_0001
F 2 , the numerical aperture of the fiber F 2 , and the design of the probe. We denote A f the total attenuation. The re-injected power can be calculated as the product of the power captured Q by the attenuation A f , that is to say that the re-injected power is equal to A f .Q. The power re-emitted to the outside of the sample 6 due to the re-injection is therefore equal to:
Figure imgf000011_0001
Ainsi, la puissance totale ré-émise est égale à :Thus, the total power re-transmitted is equal to:
R101 (P) = R(p) + R' (p)R 101 (P) = R (p) + R '(p)
= lux, f (fax, p) + Aflozlf{μe{ï, |p - p, I) / / /(//,,ff. p)ds= lux, f (fax, p) + Aflozlf {μ e {ï , | p - p, I) / / / (// ,, ff, p) ds
(E5)(E5)
L'équation E5 peut être simplifiée en utilisant l'équation E4, ce qui donne l'équation :Equation E5 can be simplified using equation E4, which gives the equation:
RtAp) = to/(/-'ciï, p) + f*f2AfIoz$f(μcπi \ρ -
Figure imgf000011_0002
RtAp) = to / (/ - 'cii, p) + f * f2AfIoz $ f (μ cπi \ ρ -
Figure imgf000011_0002
Lorsque la zone de mesure SM est beaucoup plus proche de la zone d'irradiation Sf1 que de la zone de ré-injection S1, la composante R (p) peut être négligée, c'est-à-dire que Rtot(p)≈R(p). Ainsi, lorsque la valeur de référence P1 est choisie telle que Pi«pi, on a RtOt(Pi)=R(P1) et l'équation de la puissance normalisée est :When the measurement zone SM is much closer to the irradiation zone S f1 than to the re-injection zone S 1 , the component R (p) can be neglected, that is to say that R tot ( p) ≈R (p). Thus, when the reference value P 1 is chosen such that Pi "pi, we have R tOt (Pi) = R (P 1 ) and the equation of the normalized power is:
Figure imgf000011_0003
f(βrtr- p) , „ , „ IUh«. \p ~ p,\ I f , s ,
Figure imgf000011_0003
f (βrtr-p), "," IUh ". \ p ~ p, \ I f, s,
(E7) L'équation E7 peut être simplifiée en utilisant l'équation E6, ce qui donne :(E7) Equation E7 can be simplified by using equation E6, which gives:
Figure imgf000011_0004
Figure imgf000011_0004
(E8) Contrairement à l'équation E2 utilisée dans l'art antérieur, l'équation E7 (ou l'équation E8) contient deux variables μeff et zo qui décrivent les propriétés optiques du milieu, ce qui permet de déduire les coefficients μa et μs'. L'extraction des coefficients μa et μs' à partir de l'équation E8 peut être réalisée par plusieurs méthodes, non décrites en détails, qui utilisent par exemple des réseaux de neurones, des moindres carrés ou des machines à vecteurs de support.(E8) Contrary to the equation E2 used in the prior art, equation E7 (or equation E8) contains two variables μ eff and zo which describe the optical properties of the medium, which makes it possible to deduce the coefficients μ a and μ s '. The extraction of the coefficients μ a and μ s ' from equation E8 can be performed by several methods, not described in detail, which use for example neural networks, least squares or support vector machines.
Des simulations Monte-Carlo (L.-H. Wang, S. -L. Jacques, and L.-Q. Zheng,Monte-Carlo simulations (L.-H. Wang, S.-L. Jacques, and L.-Q. Zheng,
« Monte Carlo modeling of photon transport in multi-layered tissues », Computer methods and Programs in Biomedecine 47, 131-146 (1995)) ont été réalisées pour modéliser le fonctionnement du dispositif de spectroscopie 1. Ces simulations ont montré que trois mesures de puissance surfacique R(p) suffisaient pour calculer les coefficients d'absorption μa et de diffusion μs'- Ces mesures sont par exemple effectuées respectivement à proximité de la zone d'irradiation Sf1, à proximité de la zone de ré-injection s; et sensiblement à égale distance des zones d'irradiation Sf1 et de ré-injection s;."Monte Carlo modeling of photon transport in multi-layered tissues", Computer Methods and Programs in Biomedecine 47, 131-146 (1995)) were performed to model the operation of the spectroscopy device 1. These simulations showed that three measurements of pfd R (p) were sufficient to calculate the absorption coefficients μ a and diffusion μ s ' - These measurements are for example performed respectively close to the irradiation zone S f1 , near the re-injection zone s; and substantially equidistant from irradiation zones S f1 and re-injection s ;.
Des variantes sont possibles. Les moyens de mesure peuvent comporter plusieurs spectromètres 25 (figure 4), par exemple autant de spectromètres 25 que de fibres de mesure FM. Dans ce cas, chaque fibre de mesure FM est connectée à un spectromètre 25 respectivement, tel que cela est représenté sur la figure 4. On notera que dans cette configuration les moyens de mesure ne comprennent par de module de couplage.Variations are possible. The measuring means may comprise several spectrometers 25 (FIG. 4), for example as many spectrometers 25 as measuring fibers F M. In this case, each measuring fiber F M is connected to a spectrometer 25, respectively, as shown in FIG. 4. It will be noted that in this configuration the measurement means do not comprise a coupling module.
Les moyens de mesure peuvent comporter un mécanisme optique 26 (figure 5) apte à balayer la surface 21 de l'échantillon 6. Dans ce cas, l'ensemble de fibres de mesure peut comporter une unique fibre FM- Sur la figure 5, les flèches 27 symbolisent un ensemble de rayons de puissance ré-émise qui se réfléchissent sur le mécanisme optique 26. Le mécanisme optique transmet l'un des rayons dans la fibre FM, en fonction de sa position courante.The measuring means may comprise an optical mechanism 26 (FIG. 5) able to scan the surface 21 of the sample 6. In this case, the set of measurement fibers may comprise a single fiber FM. FIG. arrows 27 symbolize a set of re-transmitted power rays reflected on the optical mechanism 26. The optical mechanism transmits one of the rays in the FM fiber, depending on its current position.
Les moyens de mesure peuvent comporter une barrette CCD 28 (Charge- Coupled Device, non représentée) collée contre la surface de l'échantillon 6 ou tout autre dispositif permettant de mesurer la puissance ré-émise à la surface de l'échantillon 6.The measuring means may comprise a CCD strip 28 (Charge-Coupled Device, not shown) glued against the surface of the sample 6 or any other device making it possible to measure the power re-transmitted on the surface of the sample 6.
Les moyens de ré-injection peuvent comprendre un miroir 29 (figure 6) dont la face réfléchissante 30 est orientée vers l'échantillon 6, de manière sensiblement parallèle à la surface 21 de l'échantillon 6. On notera que, dans ce cas, la ré-injection est réalisée par réflexion directe, c'est-à-dire que la zone de ré-injection Sj est sensiblement confondue avec la zone de récupération Sf2. L'hypothèse consistant à négliger la portion de la puissance captée par la fibre F2 provenant de la ré-injection n'est donc plus valable.The re-injection means may comprise a mirror 29 (FIG. 6) whose reflecting face 30 is oriented towards the sample 6, in a manner substantially parallel to the surface 21 of the sample 6. It will be noted that, in this case, the re-injection is carried out by direct reflection, that is to say that the re-injection zone Sj is substantially merged with the recovery zone S f2 . The hypothesis of neglecting the portion of the power captured by the F2 fiber from the re-injection is no longer valid.
Les moyens de ré-injection peuvent également comprendre plusieurs miroirs, par exemple deux miroirs 31 et 32 (figure 7). Chaque miroir 31, 32 comporte une face réfléchissante inclinée d'un angle d'environ 45° par rapport à la surface 21 de l'échantillon 6. Dans ce cas, la puissance ré-émise par la zone de récupération Sβ se réfléchit sur le miroir 31 en direction du miroir 32, puis se réfléchit sur le miroir 32 en direction de la zone de ré-injection Sj, tel que cela est symbolisé par la flèche 34.The re-injection means may also comprise several mirrors, for example two mirrors 31 and 32 (FIG. 7). Each mirror 31, 32 has a reflecting face inclined at an angle of approximately 45 ° with respect to the surface 21 of the sample 6. In this case, the power re-emitted by the recovery zone Sβ is reflected on the mirror 31 in the direction of the mirror 32, then is reflected on the mirror 32 towards the re-injection zone Sj, as is symbolized by the arrow 34.
On notera que des prismes pourraient également être utilisés pour permettre une déviation de la lumière avant la ré-injection.Note that prisms could also be used to allow light deflection before re-injection.
Les moyens de mesure peuvent comprendre une fibre optique de mesure FM (figure 8) disposée au droit de la surface 21 de l'échantillon 6 et mobile dans un plan parallèle à la surface 21 de l'échantillon 6. Un dispositif piézo-électrique 40, alimenté en énergie électrique et commandé par un dispositif de commande 41, coopère avec la fibre FM pour la déplacer. Une lentille 42 d'amplification du mouvement est disposée entre la fibre FM et la surface 21 de l'échantillon 6 pour amplifier le décalage de la zone de mesure SM lors d'un déplacement de la fibre FM- En d'autres termes, une vibration de la fibre FM permet, par le biais de la lentille 42, de réaliser des mesures sur des zones de mesure SM suffisamment éloignées les unes des autres. Sur la figure 8, les moyens d'irradiation comprennent une ampoule 43 disposée à proximité de la surface 21 de l'échantillon 6. Les moyens de ré-injection comprennent deux prismes 44 et 45 disposés de manière que la puissance ré-émise par la zone de récupération se se réfléchisse sur le prisme 44 en direction du prisme 45, puis se réfléchisse sur le prisme 45 en direction de la zone de ré-injection s,, tel que cela est symbolisé par les flèches 46.The measuring means may comprise an optical measurement fiber FM (FIG. 8) disposed in line with the surface 21 of the sample 6 and movable in a plane parallel to the surface 21 of the sample 6. A piezoelectric device 40 , supplied with electrical energy and controlled by a control device 41, cooperates with the fiber FM to move it. A motion amplification lens 42 is disposed between the fiber FM and the surface 21 of the sample 6 to amplify the shift of the measuring area SM during a displacement of the fiber FM. In other words, a The vibration of the fiber FM makes it possible, by means of the lens 42, to carry out measurements on measuring zones SM sufficiently far apart from each other. In FIG. 8, the irradiation means comprise a bulb 43 disposed near the surface 21 of the sample 6. The re-injection means comprise two prisms 44 and 45 arranged in such a way that the power re-emitted by the recovery zone is reflected on the prism 44 towards the prism 45, then is reflected on the prism 45 towards the re-injection zone s ,, as it is symbolized by the arrows 46.
Bien que l'invention ait été décrite en relation avec un mode de réalisation particulier, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention. Although the invention has been described in connection with a particular embodiment, it is obvious that it is not limited thereto and that it comprises all the technical equivalents of the means described and their combinations if they are within the scope of the invention.

Claims

REVENDICATIONS
1. Dispositif de spectroscopie (1) comportant : - des moyens d'irradiation (2, F1, 43) destinés à irradier une zone d'irradiation (Sf1) d'un échantillon biologique (6) à analyser, etSpectroscopy device (1) comprising: irradiation means (2, F 1 , 43) for irradiating an irradiation zone (S f1 ) of a biological sample (6) to be analyzed, and
- des moyens de mesure (FM, 17, 19, 26, 40, 41, 42) aptes à mesurer une puissance lumineuse ré-émise par des zones de mesure (SM) respectives dudit échantillon biologique, - des moyens de ré-injection (F2, 29, 31, 32, 44, 45) aptes à capter une puissance lumineuse ré-émise par une zone de récupération (Sf2) dudit échantillon biologique, et à ré-injecter ladite puissance lumineuse captée sur une zone de réinjection (s;) dudit échantillon biologique, caractérisé en ce que la distance (pi) entre ladite zone de ré-injection (Sj) et ladite zone d'irradiation (Sf1) est supérieure à la distance (Pf2) entre ladite zone d'irradiation (Sf1) et ladite zone de récupération (Sf2).measurement means (FM, 17, 19, 26, 40, 41, 42) able to measure a light power re-emitted by respective measuring zones (SM) of said biological sample, - re-injection means ( F 2 , 29, 31, 32, 44, 45) adapted to capture a light power re-transmitted by a recovery zone (S f2 ) of said biological sample, and to re-inject said captured light power onto a reinjection zone ( s;) of said biological sample, characterized in that the distance (pi) between said re-injection zone (Sj) and said irradiation zone (S f1 ) is greater than the distance (P f2 ) between said zone of irradiation (S f1 ) and said recovery zone (S f2 ).
2. Dispositif selon la revendication 1, caractérisé en ce que lesdits moyens d'irradiation comprennent une fibre optique d'irradiation (F1).2. Device according to claim 1, characterized in that said irradiation means comprise an optical fiber irradiation (F 1 ).
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que lesdits moyens de ré-injection comprennent une fibre optique de ré-injection (F2).3. Device according to claim 1 or 2, characterized in that said re-injection means comprise a re-injection optical fiber (F 2 ).
4. Dispositif selon la revendication 2 prise en combinaison avec la revendication 3, caractérisé en ce que ladite fibre optique d'irradiation (F1) est une fibre optique de section annulaire, ladite fibre optique de ré-injection (F2) étant disposée au centre de ladite fibre optique d'irradiation, de manière que ladite zone de récupération (Sf2) se trouve sensiblement au centre de ladite zone d'irradiation (Sf1) annulaire.4. Device according to claim 2 taken in combination with claim 3, characterized in that said optical fiber irradiation (F 1 ) is an optical fiber annular section, said optical fiber re-injection (F 2 ) being arranged at the center of said optical fiber irradiation, so that said recovery zone (S f2 ) is substantially in the center of said annular irradiation zone (S f1 ).
5. Dispositif selon la revendication 1 ou 2, caractérisé en ce que lesdits moyens de ré-injection comprennent deux miroirs (31, 32), chaque miroir comportant une face réfléchissante inclinée par rapport à une surface (21) dudit échantillon biologique pour permettre la déviation et la ré-injection de la puissance captée.5. Device according to claim 1 or 2, characterized in that said re-injection means comprise two mirrors (31, 32), each mirror having a reflecting face inclined with respect to a surface (21) of said biological sample to allow the diversion and re-injection of the captured power.
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdits moyens de mesure comprennent un ensemble de fibres optiques de mesure (FM) aptes à coopérer avec un spectromètre (17).6. Device according to any one of claims 1 to 5, characterized in that said measuring means comprise a set of measuring optical fibers (FM) capable of cooperating with a spectrometer (17).
7. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdits moyens de mesure comprennent un ensemble de fibres optiques de mesure (FM), chaque fibre optique dudit ensemble de fibres optiques de mesure étant reliée à un spectromètre (17). 7. Device according to any one of claims 1 to 5, characterized in that said measuring means comprise a set of measuring optical fibers (FM), each optical fiber of said set of measuring optical fibers being connected to a spectrometer ( 17).
8. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdits moyens de mesure comprennent un moyen de balayage (26) d'une surface (21) dudit échantillon biologique, apte à coopérer avec une fibre optique de mesure (FM).8. Device according to any one of claims 1 to 5, characterized in that said measuring means comprises a scanning means (26) of a surface (21) of said biological sample, adapted to cooperate with an optical fiber measurement (FM).
9. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdits moyens de mesure comprennent une barrette CCD disposée contre une surface (21) dudit échantillon biologique.9. Device according to any one of claims 1 to 5, characterized in that said measuring means comprise a CCD strip disposed against a surface (21) of said biological sample.
10. Procédé de spectroscopie comprenant les étapes consistant à :A spectroscopy method comprising the steps of:
- irradier une zone d'irradiation (Sf1) d'un échantillon biologique (6) à analyser, - capter une puissance lumineuse ré-émise par une zone de récupération (se) dudit échantillon biologique,- irradiating an irradiation zone (S f1 ) of a biological sample (6) to be analyzed, - capturing a light power re-emitted by a recovery zone (se) of said biological sample,
- ré-injecter au moins une portion de la puissance lumineuse captée sur une zone de ré-injection (SJ) dudit échantillon biologique, la distance (pi) entre ladite zone de ré-injection (si) et ladite zone d'irradiation (sπ) étant supérieure à la distance (Pf2) entre ladite zone d'irradiation (Sf1) et ladite zone de récupérationre-injecting at least a portion of the light power captured on a re-injection zone (SJ) of said biological sample, the distance (pi) between said re-injection zone (si) and said irradiation zone (sπ) ) being greater than the distance (P f2 ) between said irradiation zone (S f1 ) and said recovery zone
(Sf2)(Sf 2 )
- mesurer la puissance lumineuse ré-émise par plusieurs zones de mesure (SM) dudit échantillon biologique situées à différentes distances (p) de la zone d'irradiation, et déterminer au moins une caractéristique dudit échantillon biologique en fonction desdites mesures effectuées. measuring the luminous power re-emitted by several measurement zones (SM) of said biological sample located at different distances (p) from the irradiation zone, and determining at least one characteristic of said biological sample based on said measurements made.
PCT/FR2007/000629 2006-04-14 2007-04-13 Spectroscopy device WO2007119005A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0603369A FR2899972B1 (en) 2006-04-14 2006-04-14 SPATIALLY RESOLVED SPECTROSCOPY BIOLOGICAL SAMPLE ANALYSIS DEVICE AND METHOD
FR0603369 2006-04-14

Publications (2)

Publication Number Publication Date
WO2007119005A2 true WO2007119005A2 (en) 2007-10-25
WO2007119005A3 WO2007119005A3 (en) 2007-12-13

Family

ID=37654915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/000629 WO2007119005A2 (en) 2006-04-14 2007-04-13 Spectroscopy device

Country Status (2)

Country Link
FR (1) FR2899972B1 (en)
WO (1) WO2007119005A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2081017A1 (en) * 2008-01-16 2009-07-22 FOSS Analytical AB Offset probe
WO2010136728A1 (en) 2009-05-28 2010-12-02 Indatech Spectroscopy device and method for implementing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012216866A1 (en) * 2012-09-20 2014-03-20 Voith Patent Gmbh Method and device for determining properties and / or ingredients of a suspension

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770454A (en) * 1994-05-19 1998-06-23 Boehringer Mannheim Gmbh Method and aparatus for determining an analyte in a biological sample
US5825488A (en) * 1995-11-18 1998-10-20 Boehringer Mannheim Gmbh Method and apparatus for determining analytical data concerning the inside of a scattering matrix
US5935062A (en) * 1995-08-09 1999-08-10 Rio Grande Medical Technologies, Inc. Diffuse reflectance monitoring apparatus
US6219566B1 (en) * 1999-07-13 2001-04-17 Photonics Research Ontario Method of measuring concentration of luminescent materials in turbid media
US6241663B1 (en) * 1998-05-18 2001-06-05 Abbott Laboratories Method for improving non-invasive determination of the concentration of analytes in a biological sample
WO2001087151A2 (en) * 2000-05-08 2001-11-22 Abbott Laboratories Method and device for the noninvasive determination of hemoglobin and hematocrit
US6332093B1 (en) * 1998-08-06 2001-12-18 Art Recherches Et Technologies Avancees Inc./Art Advanced Research Technologies, Inc. Scanning module for imaging through scattering media
US6842635B1 (en) * 1998-08-13 2005-01-11 Edwards Lifesciences Llc Optical device
US6850656B1 (en) * 1998-10-07 2005-02-01 Ecole Polytechnique Federale De Lausanne Method and apparatus for measuring locally and superficially the scattering and absorption properties of turbid media
WO2006061565A1 (en) * 2004-12-09 2006-06-15 The Science And Technology Facilities Council Raman spectral analysis of sub-surface tissues and fluids

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4212007B2 (en) * 1996-11-26 2009-01-21 パナソニック電工株式会社 Blood component concentration analyzer
EP1139863B1 (en) * 1998-12-07 2002-09-11 Lea Medizintechnik GmbH Detection probe for optical spectroscopy and spectrometry
DE10163972B4 (en) * 2001-12-22 2005-10-27 Roche Diagnostics Gmbh Method and device for determining a light transport parameter and an analyte in a biological matrix

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770454A (en) * 1994-05-19 1998-06-23 Boehringer Mannheim Gmbh Method and aparatus for determining an analyte in a biological sample
US5935062A (en) * 1995-08-09 1999-08-10 Rio Grande Medical Technologies, Inc. Diffuse reflectance monitoring apparatus
US5825488A (en) * 1995-11-18 1998-10-20 Boehringer Mannheim Gmbh Method and apparatus for determining analytical data concerning the inside of a scattering matrix
US6241663B1 (en) * 1998-05-18 2001-06-05 Abbott Laboratories Method for improving non-invasive determination of the concentration of analytes in a biological sample
US6332093B1 (en) * 1998-08-06 2001-12-18 Art Recherches Et Technologies Avancees Inc./Art Advanced Research Technologies, Inc. Scanning module for imaging through scattering media
US6842635B1 (en) * 1998-08-13 2005-01-11 Edwards Lifesciences Llc Optical device
US6850656B1 (en) * 1998-10-07 2005-02-01 Ecole Polytechnique Federale De Lausanne Method and apparatus for measuring locally and superficially the scattering and absorption properties of turbid media
US6219566B1 (en) * 1999-07-13 2001-04-17 Photonics Research Ontario Method of measuring concentration of luminescent materials in turbid media
WO2001087151A2 (en) * 2000-05-08 2001-11-22 Abbott Laboratories Method and device for the noninvasive determination of hemoglobin and hematocrit
WO2006061565A1 (en) * 2004-12-09 2006-06-15 The Science And Technology Facilities Council Raman spectral analysis of sub-surface tissues and fluids

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2081017A1 (en) * 2008-01-16 2009-07-22 FOSS Analytical AB Offset probe
WO2009090118A1 (en) * 2008-01-16 2009-07-23 Foss Analytical Ab Offset probe
WO2010136728A1 (en) 2009-05-28 2010-12-02 Indatech Spectroscopy device and method for implementing same
FR2946144A1 (en) * 2009-05-28 2010-12-03 Ondalys SPECTROSCOPY DEVICE AND METHOD FOR IMPLEMENTING SAID METHOD

Also Published As

Publication number Publication date
FR2899972B1 (en) 2008-12-19
WO2007119005A3 (en) 2007-12-13
FR2899972A1 (en) 2007-10-19

Similar Documents

Publication Publication Date Title
EP2596329B1 (en) Particle detector and method for manufacturing such a detector
WO2020104750A1 (en) Probe suitable for measuring the composition of an oxidising gas
FR2960698A1 (en) ADJUSTABLE CATHODOLUMINESCENCE DETECTION SYSTEM AND MICROSCOPE USING SUCH A SYSTEM.
EP3069185A1 (en) Three-dimensional focusing device and method for a microscope
CA2999827A1 (en) Measurement system and temperature and/or shape change sensor using brillouin back-reflection analysis
FR2941045A1 (en) DEVICE AND METHOD FOR DETERMINING POLARIZATION INFORMATION AND POLARIMETRIC IMAGER
FR3054882A1 (en) ABSORPTION CAVITY WITH INPUT WAVE GUIDES AND OUTPUT FOR A BIOLOGICAL OR CHEMICAL SENSOR
WO2007119005A2 (en) Spectroscopy device
EP3054281B1 (en) Device for measuring an optical signal backscattered by a sample
WO1991006884A1 (en) Method for localized spectroscopic analysis of the light diffracted or absorbed by a substance placed in a near field
EP1994505A1 (en) Method of reconstructing an optical tomography image by fluorescence of an object having any outline
FR2998966A1 (en) PROBE FOR OPTICAL MEASUREMENTS IN TURBID ENVIRONMENT, AND OPTICAL MEASURING SYSTEM IMPLEMENTING THIS PROBE.
FR3054679A1 (en) SYSTEMS AND METHODS FOR FULL FIELD INTERFERENTIAL IMAGING
FR2735236A1 (en) Laser diode optical device for measuring gas calorific power
FR3084158A1 (en) METHOD AND DEVICE FOR CHARACTERIZING OPTICAL FILTERS
CA2894819A1 (en) Photoreflectance device
FR2879291A1 (en) BRAGG ANGLE NETWORK REFRACTOMETER USING THE OPTICAL POWER DIFRACTED TO THE CONTINUUM OF RADIATIVE MODES.
WO1989000281A1 (en) Transillumination imaging system using the antenna properties of heterodyne detection
FR2859531A1 (en) Device for in-line measuring characteristics of dispersed liquid-liquid or liquid-solid which can determine distribution of particle size in any concentration
WO2010136728A1 (en) Spectroscopy device and method for implementing same
EP0064110A1 (en) Light scattering photometer
WO2020016043A1 (en) Device for measuring a flux of matter by absorption of light, and corresponding measuring method
FR3077642A1 (en) DEVICE FOR DETECTION OF PHOTOLUMINESCENT MATERIALS IN SEA WATER
FR2990271A1 (en) ULTRASONIC LASER CONTROL OF SPECULAR REFLECTIVITY PARTS BASED ON TWO LEVEL SENSITIVITY DETECTION
FR2615952A1 (en) DEVICE FOR DETERMINING AT LEAST THE CONCENTRATION OF SOLID PARTICLES SUSPENDED IN A FLUID

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07731296

Country of ref document: EP

Kind code of ref document: A2