WO2007136390A1 - Analyte sensor - Google Patents

Analyte sensor Download PDF

Info

Publication number
WO2007136390A1
WO2007136390A1 PCT/US2006/031496 US2006031496W WO2007136390A1 WO 2007136390 A1 WO2007136390 A1 WO 2007136390A1 US 2006031496 W US2006031496 W US 2006031496W WO 2007136390 A1 WO2007136390 A1 WO 2007136390A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
host
biointerface
analyte
fluid
Prior art date
Application number
PCT/US2006/031496
Other languages
French (fr)
Inventor
James H. Brauker
Robert Boock
Monica Rixman
Peter C. Simpson
Mark Brister
Original Assignee
Dexcom, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/077,715 external-priority patent/US7497827B2/en
Application filed by Dexcom, Inc. filed Critical Dexcom, Inc.
Publication of WO2007136390A1 publication Critical patent/WO2007136390A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • A61B5/14865Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/411Detecting or monitoring allergy or intolerance reactions to an allergenic agent or substance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6848Needles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/08Sensors provided with means for identification, e.g. barcodes or memory chips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • A61B5/1473Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/414Evaluating particular organs or parts of the immune or lymphatic systems
    • A61B5/418Evaluating particular organs or parts of the immune or lymphatic systems lymph vessels, ducts or nodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • Biointerface membranes are provided which can be utilized with implantable devices, such as devices for the detection of analyte concentrations in a biological sample. More particularly, methods for monitoring glucose levels in a biological fluid sample using an implantable analyte detection device incorporating such membranes are provided.
  • analyte sensing devices One of the most heavily investigated analyte sensing devices is the implantable glucose device for detecting glucose levels in hosts with diabetes. Despite the increasing number of individuals diagnosed with diabetes and recent advances in the field of implantable glucose monitoring devices, currently used devices are unable to provide data safely and reliably for certain periods of time. There are two commonly used types of subcutaneously implantable glucose sensing devices. These types include those that are implanted transcutaneously and those that are wholly implanted.
  • an analyte sensing device adapted for implantation into a host's tissue
  • a sensor configured to measure an analyte in a host
  • the sensor comprises a biointerface configured to promote at least one function selected from the group consisting of increasing fluid bulk surrounding at least a portion of the sensor in vivo, increasing bulk fluid flow surrounding at least a portion of the sensor in vivo, and increasing diffusion rates surrounding at least a portion of the sensor in vivo.
  • the biointerface comprises a spacer.
  • the spacer comprises a mesh.
  • the spacer comprises a hydrogel.
  • the hydrogel comprises from about 20 wt. % to about 99 wt. % water.
  • the hydrogel comprises from about 80 wt. % to about 99 wt. % water.
  • the spacer comprises a shedding layer.
  • the spacer is a fibrous structure.
  • the spacer is a porous polymer membrane.
  • the spacer comprises a material selected from the group consisting of polysulfone, polytetrafluoroethylene, polyvinylidene difluoride, polyacrylonitrile, silicone, polytetrafluoroethylene, expanded polytetrafluoroethylene, polyethylene-co-tetrafluoroethylene, polyolefin, polyester, polycarbonate, biostable polytetrafluoroethylene, polyurethane, polypropylene, polyvinylchloride, polyvinylidene fluoride, polyvinyl alcohol, polybutylene terephthalate, polymethylmethacrylate, polyether ether ketone, polyamides, cellulosic polymer, poly(ethylene oxide), poly(propylene oxide), hydrogel polymer, poly(2-hydroxyethyl methacrylate), hydroxyethyl methacrylate, high density polyethylene, acrylic copolymer, nylon, polyvinyl difluoride, polyanhydride,
  • the spacer comprises a material selected from the group consisting of metal, ceramic, hydroxyapeptite, alumina, zirconia, carbon fiber, aluminum, calcium phosphate, titanium, titanium alloy, nintinol, stainless steel, CoCr alloy, and combinations thereof.
  • the spacer has an average nominal pore size of from about 0.6 ⁇ m to about 20 ⁇ m. [0016] In an embodiment of the first aspect, at least 50% of the pores of the spacer have an average size of from about 0.6 ⁇ m to about 20 ⁇ m.
  • the biointerface is configured to provide a fluid pocket.
  • the biointerface comprises a roughened surface.
  • the roughened surface is a vasodilating surface.
  • the biointerface comprises an irregular surface.
  • the biointerface comprises a nanoporous material, a swellable material, or a collapsible material.
  • the biointerface comprises an irritating superstructure.
  • the irritating superstructure comprises a coiled silver wire.
  • the biointerface comprises a biodegradable material.
  • the biodegradable material is a biodegradable polymer.
  • the biodegradable polymer comprises an irritating polymer.
  • the spacer comprises a self- assembling material.
  • the self-assembling material comprises a self-assembling peptide.
  • the biointerface comprises a bioactive agent.
  • the bioactive agent is selected from the group consisting of anti-barrier cell agent, an anti-infective agent, a necrosing agent, an inflammatory agent, a growth factor, an angiogenic factor, an adjuvant, an antiplatelet agent, an anticoagulant, an ACE inhibitor, a cytotoxic agent, a vascularization compound, an anti-sense molecule, an enzyme, a metal, a hydrophilic biodegradable polymer, a glycolic acid-based polymer, a lactic acid-based polymer, polyethylene oxide, silver, and combinations thereof.
  • the senor is configured to measure a signal that is indicative of a quantity of the analyte within a fluid surrounding at least a portion of the sensor.
  • the fluid surrounding at least a portion of the sensor comprises wound fluid.
  • the. device further comprises electronics operably connected to the sensor and adapted for detecting a signal from the sensor, wherein the signal is indicative of a quantity of analyte within the host.
  • the device further comprises a housing adapted for placement adjacent to the host's skin, wherein at least a portion of the electronics are disposed in the housing.
  • the senor is adapted for short-term implantation.
  • the senor is a transcutaneous sensor.
  • an analyte sensing device adapted for implantation into a host's tissue, comprising a sensor for measuring an analyte in the host, wherein the sensor comprises a biointerface configured to irritate a surrounding in vivo environment.
  • the biointerface comprises a shedding layer.
  • the biointerface comprises a roughened surface.
  • the biointerface comprises an irritating superstructure.
  • the irritating superstructure comprises a coiled silver wire.
  • the biointerface comprises an irregular surface.
  • the biointerface comprises a biodegradable material.
  • the biodegradable material is a biodegradable polymer.
  • the biodegradable polymer comprises an irritating polymer.
  • the biointerface comprises a bioactive agent.
  • the bioactive agent is selected from the group consisting of an anti-barrier cell agent, an anti-infective agent, a necrosing agent, an inflammatory agent, a growth factor, an angiogenic factor, an adjuvant, an antiplatelet agent, an anticoagulant, an ACE inhibitor, a cytotoxic agent, a vascularization compound, an anti-sense molecule, an enzyme, a metal, a hydrophilic biodegradable polymer, a glycolic acid-based polymer, a lactic acid-based polymer, polyethylene oxide, silver, and combinations thereof.
  • the senor is configured to measure a signal that is indicative of a quantity of the analyte within a fluid surrounding at least a portion of the sensor.
  • the fluid surrounding at least a portion of the sensor comprises wound fluid.
  • the device further comprises electronics operably connected to the sensor and adapted for detecting a signal from the sensor, wherein the signal is indicative of a quantity of the analyte within the host.
  • the device further comprises a housing adapted for placement adjacent to the host's skin, wherein at least a portion of the electronics are disposed in the housing.
  • the senor is adapted for short- term implantation
  • the senor is a transcutaneous sensor.
  • an analyte sensing device adapted for implantation into a host's tissue, comprising a sensor for measuring an analyte in a host, wherein the sensor comprises a biointerface configured to suppress wound healing around at least a portion of the sensor in vivo.
  • the biointerface comprises a scavenging agent.
  • the biointerface comprises a bioactive agent.
  • the bioactive agent is selected from the group consisting of an anti-inflammatory agent, an anti-infective agent, an anesthetic, a growth factor, an angiogenic factor, an immunosuppressive agent, an antiplatelet agent, an anticoagulant, a scavenging agent, an anti-histamine, and combinations thereof.
  • the bioactive agent comprises an anti-histamine.
  • the biointerface comprises an architecture configured to suppress wounding.
  • the biointerface comprises an antiinflammatory architecture.
  • the biointerface comprises a proinflammatory architecture.
  • the biointerface comprises an artificial protective coating.
  • the artificial protective coating comprises a substance selected from the group consisting of albumin, fibrin, collagen, endothelial cells, wound closure chemicals, blood products, platelet-rich plasma, growth factors, and combinations thereof.
  • the senor is configured to measure a signal that is indicative of a quantity of the analyte within a fluid surrounding at least a portion of the sensor.
  • the fluid surrounding at least a portion of the sensor comprises wound fluid.
  • the device further comprises electronics operably connected to the sensor and adapted for detecting a signal from the sensor, wherein the signal is indicative of a quantity of the analyte within the host.
  • the device further comprises a housing adapted for placement adjacent to the host's skin, wherein at least a portion of the electronics are disposed in the housing.
  • the senor is adapted for short-term implantation [0069] In an embodiment of the third aspect, the sensor is a transcutaneous sensor.
  • a method for detecting an analyte in a host comprising providing an analyte sensing device adapted for transcutaneous insertion into the host, the device comprising a sensor for measuring the analyte in the host, wherein the sensor is configured to reduce noise in vivo; inserting the sensor through the host's skin and into the host; waiting a first period of time, during which first period of time the sensor remains in the host, wherein the first period of time is sufficient for at least partial wound healing to occur; initiating a sensor function; and detecting a signal from the sensor, wherein the signal is indicative of a concentration of an analyte in the host.
  • the first time period is at least about 1 hour.
  • the first time period is at least about 24 hours.
  • the first period of time is from about 1 hour to about 48 hours.
  • the method further comprises a step of waiting a second period of time during which the sensor remains in the host, wherein the step of waiting a second period of time is conducted after the step of initiating a sensor function and before the step of detecting a signal from the sensor.
  • the second period of time is at least about 1 hour.
  • the second period of time is at least about 24 hours.
  • the second period of time is from about 1 hour to about 48 hours.
  • Fig. IA is a graph of intermittent, sedentary noise in a non-diabetic host wearing a STS glucose sensor.
  • the upper line shows the sensor signal.
  • the lower line shows the noise within the sensor signal.
  • Fig. IB is a graph illustrating nighttime noise in a non-diabetic host wearing a STS glucose sensor built without enzyme. The black line shows the sensor signal from the sensor without enzyme.
  • Fig. 1C is a graph comparing glucose measurements from blood samples collected from the lower abdomen (diamonds, dashed line) and the fingertip (squares, solid line) using a lancet, in a normal host that has high levels of nighttime noise. Measurements were made with a hand-held glucose monitor.
  • Fig. ID is a graph comparing signals from samples collected from the lower abdomen (diamonds, dashed line) and the fingertip (squares, solid line) using a lancet, in a normal host that has low levels of nighttime noise. Measurements were made with a hand-held glucose monitor.
  • Fig. IE is a photograph of an approximately 3-inch portion of the abdomen (where samples were collected) of the host of Fig. 1C.
  • Fig. IF is a photo of the index and middle fingers (where samples were collected) of the host of Fig. 1C.
  • FIG. 2A is an illustration of classical three-layered foreign body response to a conventional synthetic membrane implanted under the skin.
  • Fig. 2B is a side schematic view of adipose cell contact with an inserted transcutaneous sensor or an implanted sensor.
  • Fig. 2C is a side schematic view of a biointerface membrane preventing adipose cell contact with an inserted transcutaneous sensor or an implanted sensor.
  • FIG. 3 A is an expanded view of an exemplary embodiment of a continuous analyte sensor.
  • Fig. 3B is a cross-sectional view through the sensor of Fig. 3 A on line B-B.
  • Fig. 4A is a side schematic view of a transcutaneous analyte sensor in one embodiment.
  • Fig. 4B is a side schematic view of a transcutaneous analyte sensor in an alternative embodiment.
  • Fig. 4C is a side schematic view of a wholly implantable analyte sensor in one embodiment.
  • Fig. 4D is a side schematic view of a wholly implantable analyte sensor in an alternative embodiment.
  • Fig. 4E is a side schematic view of a wholly implantable analyte sensor in another alternative embodiment.
  • Fig. 4F is a side view of one embodiment of an implanted sensor inductively coupled to an electronics unit within a functionally useful distance on the host's skin.
  • Fig. 4G is a side view of one embodiment of an implanted sensor inductively coupled to an electronics unit implanted in the host's tissue at a functionally useful distance.
  • Fig. 5A is a cross-sectional schematic view of a membrane of a preferred embodiment that facilitates vascularization of the first domain without barrier cell layer formation.
  • Fig. 5B is a cross-sectional schematic view of the membrane of Fig. 5A showing contractile forces caused by the fibrous tissue of the FBR.
  • Fig. 6 is a flow chart that illustrates the process of forming a biointerface- coated small structured sensor in one embodiment.
  • Fig. 7 is a flow chart that illustrates the process of forming a biointerface- coated sensor in an alternative embodiment.
  • Fig. 8 is a flow chart that illustrates the process of forming a biointerface- coated sensor in another alternative embodiment.
  • Fig. 9 is a flow chart that illustrates the process of forming a biointerface- wrapped sensor in one embodiment.
  • Fig. 10 is a flow chart that illustrates the process of forming a sensing biointerface in one embodiment.
  • Fig. 1 IA is a scanning electron micrograph showing a cross-sectional view of a cut porous silicone tube.
  • the scale line equals 500 ⁇ m.
  • Fig. HB is a scanning electron micrograph of a sugar mold formed on a sensor, prior to silicone application.
  • the scale line equals 100 ⁇ m.
  • biointerface is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to any structure or substance that interfaces between host (tissue or body fluid) and an implantable device.
  • biointerface membrane as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a membrane that functions as an interface between host (tissue or body fluid) and an implantable device.
  • interface is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to 1) a common boundary, such as the surface, place, or point where two things touch each other or meet, or 2) a point of interaction, including the place, situation, or way in which two things act together or affect each other, or the point of connection between things.
  • carrier cell layer is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a part of a foreign body response that forms a cohesive monolayer of cells (for example, macrophages and foreign body giant cells) that substantially block the transport of molecules and other substances to the implantable device.
  • cell processes as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to pseudopodia of a cell.
  • cellular attachment is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to adhesion of cells and/or cell processes to a material at the molecular level, and/or attachment of cells and/or cell processes to microporous material surfaces or macroporous material surfaces.
  • BIOPORETM cell culture support marketed by Millipore (Bedford, MA) 5 and as described in Brauker et ⁇ al, U.S. Pat. No. 5,741,330.
  • solid portions as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to portions of a membrane's material having a mechanical structure that demarcates cavities, voids, pores, or other non-solid portions.
  • co-continuous is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a solid portion or cavity or pore wherein an unbroken curved line in three dimensions can be drawn between two sides of a membrane.
  • biostable as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to materials that are relatively resistant to degradation by processes that are encountered in vivo.
  • bioresorbable or “bioabsorbable” as used herein are broad terms, and are to be given their ordinary “ and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to materials that can be absorbed, or lose substance, in a biological system.
  • nonbioresorbable or “nonbioabsorbable” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to materials that are not substantially absorbed, or do not substantially lose substance, in a biological system.
  • analyte as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a substance or chemical constituent in a biological fluid (for example, blood, interstitial fluid, cerebral spinal fluid, lymph fluid or urine) that can be analyzed. Analytes can include naturally occurring substances, artificial substances, metabolites, and/or reaction products. In some embodiments, the analyte for measurement by the sensing regions, devices, and methods is glucose.
  • analytes include but not limited to acarboxyprothrombin; acylcarnitine; adenine phosphoribosyl transferase; adenosine deaminase; albumin; alpha-fetoprotein; amino acid profiles (arginine (Krebs cycle), histidine/urocanic acid, homocysteine, phenylalanine/tyrosine, tryptophan); andrenostenedione; antipyrine; arabinitol enantiomers; arginase; benzoylecgonine (cocaine); biotinidase; biopterin; c-reactive protein; carnitine; carnosinase; CD4; ceruloplasmin; chenodeoxycholic acid; chloroquine; cholesterol; cholinesterase; conjugated 1- ⁇ hydroxy- cholic acid; Cortisol; creatine kinase; creatine kinase
  • Salts, sugar, protein, fat, vitamins, and hormones naturally occurring in blood or interstitial fluids can also constitute analytes in certain embodiments.
  • the analyte can be naturally present in the biological fluid, for example, a metabolic product, a hormone, an antigen, an antibody, and the like.
  • the analyte can be introduced into the body, for example, a contrast agent for imaging, a radioisotope, a chemical agent, a fluorocarbon-based synthetic blood, or a drug or pharmaceutical composition, including but not limited to insulin; ethanol; cannabis (marijuana, tetrahydrocannabinol, hashish); inhalants (nitrous oxide, amyl nitrite, butyl nitrite, chlorohydrocarbons, hydrocarbons); cocaine (crack cocaine); stimulants (amphetamines, methamphetamines, Ritalin, Cylert, Preludin, Didrex, PreState, Voranil, Sandrex, Plegine); depressants (barbituates, methaqualone, tranquilizers such as Valium, Librium, Miltown, Serax, Equanil, Tranxene); hallucinogens (phencyclidine, lysergic acid, mescaline, peyote, p
  • Analytes such as neurochemicals and other chemicals generated within the body can also be analyzed, such as, for example, ascorbic acid, uric acid, dopamine, noradrenaline, 3-methoxytyramine (3MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxytryptamine (5HT), 5-hydroxyindoleacetic acid (FHIAA), and histamine.
  • host as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to mammals, preferably humans.
  • continuous analyte sensing is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the period in which monitoring of analyte concentration is continuously, continually, and/or intermittently (but regularly) performed, for example, from about every 5 seconds or less to about 10 minutes or more, preferably from about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, or 60 second to about 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 3.75, 4.00, 4.25, 4.50, 4.75, 5.00, 5.25, 5.50, 5.75, 6.00, 6.25, 6.50, 6.75, 7.00, 7.25, 7.50, 7.75, 8.00, 8.25, 8.50, 8.75, 9.00, 9.25, 9.50 or 9.75 minutes.
  • analyte measuring device for example, the sensing region can comprise a non-conductive body, a working electrode, a reference electrode, and a counter electrode (optional), forming an electrochemically reactive surface at one location on the body and an electronic connection at another location on the body, and a sensing membrane affixed to the body and covering the electrochemically reactive surface.
  • a biological sample for example, blood or interstitial fluid, or a component thereof contacts, either directly or after passage through one or more membranes, an enzyme, for example, glucose oxidase.
  • an enzyme for example, glucose oxidase.
  • the reaction of the biological sample or component thereof results in the formation of reaction products that permit a determination of the analyte level, for example, glucose, in the biological sample.
  • the sensing membrane further comprises an enzyme domain, for example, an enzyme layer, and an electrolyte phase, for example, a free-flowing liquid phase comprising an electrolyte- containing fluid described further below.
  • the terms are broad enough to include the entire device, or only the sensing portion thereof (or something in between).
  • electrochemically reactive surface is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the surface of an electrode where an electrochemical reaction takes place.
  • hydrogen peroxide produced by an enzyme-catalyzed reaction of an analyte being detected reacts can create a measurable electronic current.
  • glucose oxidase produces H 2 O 2 peroxide as a byproduct.
  • the H 2 O 2 reacts with the surface of the working electrode to produce two protons (2H + ), two electrons (2e " ) and one molecule of oxygen (O 2 ), which produces the electronic current being detected.
  • a reducible species for example, O 2 is reduced at the electrode surface so as to balance the current generated by the working electrode.
  • sensing membrane is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a permeable or semi-permeable membrane that can comprise one or more domains and that is constructed of materials having a thickness of a few microns or more, and that are permeable to reactants and/or co-reactants employed in determining the analyte of interest.
  • a sensing membrane can comprise an immobilized glucose oxidase enzyme, which catalyzes an electrochemical reaction with glucose and oxygen to permit measurement of a concentration of glucose.
  • proximal is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a region near to a point of reference, such as an origin or a point of attachment.
  • distal is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a region spaced relatively far from a point of reference, such as an origin or a point of attachment.
  • operably connected is broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to one or more components linked to another component(s) in a manner that facilitates transmission of signals between the components.
  • one or more electrodes can be used to detect an analyte in a sample and convert that information into a signal; the signal can then be transmitted to an electronic circuit.
  • the electrode is "operably linked" to the electronic circuit.
  • adhere and "attach” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to, hold, bind, or stick, for example, by gluing, bonding, grasping, interpenetrating, or fusing.
  • bioactive agent as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to any substance that has an effect on or elicits a response from living tissue.
  • bioerodible or “biodegradable” as used herein are a broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to materials that are enzymatically degraded or chemically degraded in vivo into simpler components.
  • a biodegradable material includes a biodegradable polymer that is broken down into simpler components by the body.
  • small diameter sensor small structured sensor
  • micro-sensor refers without limitation to sensing mechanisms that are less than about 2 mm in at least one dimension, and more preferably less than about 1 mm in at least one dimension.
  • the sensing mechanism is less than about 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.5, 0.4, 0.3, 0.2, or 0.1 mm.
  • the sensing mechanism is a needle-type sensor, wherein the diameter is less than about 1 mm, see, for example, U.S. Patent No. 6,613,379 to Ward et al. and co-pending U.S. Patent Application 11/077,715, filed on March 10, 2005 and entitled, "TRANSCUTANEOUS ANALYTE SENSOR,” both of which are incorporated herein by reference in their entirety.
  • the sensing mechanism includes electrodes deposited on a planar substrate, wherein the thickness of the implantable portion is less than about 1 mm, see, for example U.S. Patent No. 6,175,752 to Say et al. and U.S. Patent No. 5,779,665 to Mastrototaro et al., both of which are incorporated herein by reference in their entirety.
  • electrospinning is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a process by which fibers are drawn out from a viscous polymer solution or melt by applying an electric field to a droplet of the solution (most often at a metallic needle tip). The electric field draws this droplet into a structure called a Taylor cone. If the viscosity and surface tension of the solution are appropriately tuned, varicose breakup (electrospray) is avoided and a stable jet is formed. A bending instability results in a whipping process which stretches and elongates this fiber until it has a diameter of micrometers (or nanometers).
  • interferants are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to effects and/or species that interfere with the measurement of an analyte of interest in a sensor to produce a signal that does not accurately represent the analyte measurement.
  • interfering species are compounds with oxidation potentials that overlap with the oxidation potential of the analyte to be measured.
  • drift is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a progressive increase or decrease in signal over time that is unrelated to changes in host systemic analyte concentrations, such as host postprandial glucose concentrations, for example. While not wishing to be bound by theory, it is believed that drift can be the result of a local decrease in glucose transport to the sensor, due to cellular invasion, which surrounds the sensor and forms a FBC, for example. It is also believed that an insufficient amount of interstitial fluid is surrounding the sensor, which results in reduced oxygen and/or glucose transport to the sensor, for example. An increase in local interstitial fluid can slow or reduce drift and thus improve sensor performance.
  • sensing region is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the region of a monitoring device responsible for the detection of a particular analyte.
  • the sensing region generally comprises a non-conductive body, a working electrode (anode), a reference electrode (optional), and/or a counter electrode (cathode) passing through and secured within the body forming electrochemically reactive surfaces on the body and an electronic connective means at another location on the body, and a multi-domain membrane affixed to the body and covering the electrochemically reactive surface.
  • domain is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a region of the membrane system that can be a layer, a uniform or non-uniform gradient (for example, an anisotropic region of a membrane), or a portion of a membrane.
  • membrane system is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a permeable or semi-permeable membrane that can be comprised of two or more domains and is typically constructed of materials of a few microns thickness or more, which is permeable to oxygen and is optionally permeable to, e.g., glucose or another analyte.
  • the membrane system comprises an immobilized glucose oxidase enzyme, which enables a reaction to occur between glucose and oxygen whereby a concentration of glucose can be measured.
  • processor module and "microprocessor,” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to a computer system, state machine, processor, or the like designed to perform arithmetic or logic operations using logic circuitry that responds to and processes the basic instructions that drive a computer.
  • STS short-term sensor
  • a short period of time e.g., short-term
  • the sensor is used during a short period of time, such as, for 1 day or less, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 24, or 15 days.
  • the sensor is used for a short period of time, such as prior to tissue ingrowth or FBC formation.
  • a STS is transcutaneous.
  • bulk fluid flow is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the movement of fluid(s) within an area or space, or in or out of the area or space.
  • the fluid moves in and/or out of a fluid pocket surrounding the sensor.
  • the fluid moves within the fluid pocket.
  • the fluid moves by convection (e.g., the circulatory motion that occurs in a fluid at a non-uniform temperature owing to the variation of its density and the action of gravity).
  • fluid influx is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the movement of fluid(s) into the locality of an implanted sensor.
  • fluid efflux is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the movement of fluid(s) out of the locality of an implanted sensor.
  • adipose as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to fat under the skin and surrounding major organs.
  • adipose tissue is fat tissue.
  • an “adipocyte” is a fat cell.
  • edema as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to an abnormal infiltration and excess accumulation of serous fluid in connective tissue or in a serous cavity.
  • edematous fluid is the fluid an edema.
  • shedding layer is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a layer of material (e.g., incorporated into a biointerface) that leaches or releases molecules or components into the surrounding area.
  • a shedding layer includes, a coating of a biodegradable material (e.g., polyvinylalcohol or polyethylene oxide) that is eroded by tissue surrounding the sensor.
  • the shedding layer includes a polymer hydrogel that degrades and is engulfed by circulating macrophages, which can be stimulated to release inflammatory factors.
  • noise is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a signal detected by the sensor that is substantially non-analyte related (e.g., non-glucose related) and can result in less accurate sensor performance.
  • One type of noise has been observed during the few hours (e.g., about 2 to about 36 hours) after sensor insertion. After the first 24-36 hours, the noise often disappears, but in some hosts, the noise can last for about three to four days.
  • nanoporous is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to materials consist of a regular organic or inorganic framework supporting a regular, porous structure having pores roughly in the nanometer range (e.g., between IxIO "7 and 0.2xl0 "9 m).
  • implantable sensors measure a signal (e.g., counts) related to an analyte of interest in a host.
  • a signal e.g., counts
  • an electrochemical sensor can measure glucose, creatinine, or urea in a host, such as an animal, especially a human.
  • the signal is converted mathematically to a numeric value indicative of analyte status, such as analyte concentration. It is not unusual for a sensor to experience a certain level of noise.
  • Noise is a broad term and is used in its ordinary sense, including, without limitation, a signal detected by the sensor that is substantially non-analyte related (e.g., non-glucose related) and can result in reduced sensor performance.
  • Noise can be caused by a variety of factors, such as interfering species, macro- or micro-motion, ischemia, pH changes, temperature changes, pressure, stress, or even unknown sources of mechanical, electrical and/or biochemical noise for example. Since noise can obscure analyte data, reduction of noise is desirable.
  • the sensor data stream is monitored, signal artifacts are detected and data processing is based at least in part on whether or not a signal artifact has been detected, such as described in U.S. Publication No. US-2005-0043598-A1.
  • Fig. IA illustrates this phenomenon of noise associated with the above- described intermittent sedentary activity during the first few days of insertion of a STS glucose sensor containing active enzyme (in a non-diabetic host).
  • the X-axis represents time; the left Y-axis represents sensor signal in counts (e.g., signal to be converted into glucose level in mg/dL) and the right Y-axis represents noise within the sensor signal in counts
  • Fig. IB shows one example of the experimental results, in a non-diabetic host wearing a STS glucose sensor built without enzyme. When the host was asleep, the no-enzyme sensor showed large, sustained positive signals that resembled glucose peaks, but could not represent actual glucose concentration because the sensor lacked enzyme. In the morning, when the host awoke and moved around, the no-enzyme signal rapidly corrected, becoming measurably reduced and smoother. From these results, the inventors believe that a reactant was diffusing to the electrodes and producing the unexpected positive signal.
  • intermittent, sedentary noise is caused by an interferant that is likely produced by local cellular activity (e.g., associated with wound healing) at the site of sensor insertion.
  • Physiologic activity at a wound site is complex and involves the interaction of a variety of body processes.
  • wound healing fluid transport within the body (e.g., lymph transport) and tissue response to implanted materials (e.g., foreign body response). Each of these processes is discussed in greater detail below.
  • a foreign body When a foreign body is inserted into a host, it creates a wound, by breaking the skin and some of the underlying tissue, thereby initiating the wound-healing cascade of events.
  • a wound is also produced, when a sensor, such as an implantable glucose sensor, is implanted into the subcutaneous tissue.
  • wounding occurs at least from the penetration of the sharp needle or device, which can be used to deliver the sensor.
  • the wound can be relatively extensive, including bruising and/or bleeding, or it can be relatively benign, with little tissue damage and little or virtually no bleeding.
  • Wound healing is initiated immediately upon wounding and is directed by a series of signaling cascades. Wound healing has four main phases: 1) hemostasis, 2) inflammation, 3) granulation, and 4) remodeling, which are discussed in more detail below.
  • the "hemostasis” phase begins during the first few seconds and minutes after wounding and entails a cascade of molecular events that lead to cessation of bleeding, and the formation of a fibrin scaffold that will be used as a support for cellular responses that follow.
  • blood platelets are activated by exposure to extravascular collagen and release soluble mediators (growth factors and cAMP) and adhesive glycoproteins that cause the platelets to aggregate and form a fibrin clot.
  • growth factors and cAMP soluble mediators
  • Neutrophils and monocytes are attracted to the wound by platelet-derived growth factor (PDGR) and transforming growth factor beta (TGF- ⁇ ), to clean the wound of infectious material, foreign matter and devitalized tissue.
  • PDGR platelet-derived growth factor
  • TGF- ⁇ transforming growth factor beta
  • VEGF Vascular endothelial growth factor
  • TGF- ⁇ transforming growth factor alpha
  • bFGF basic fibroblast growth factor
  • Angiogenesis is a physiological process involving the growth of new blood vessels from pre-existing vessels. Platelet secreted PDGF also activates and recruits fibroblasts to produce extracellular matrix components.
  • the "inflammation" stage begins within the first 24 hours after injury and can last for several weeks in normal wounds and significantly longer in chronic nonhealing wounds. This occurs within several hours after implantation, and is the stage that most closely correlates with the anomalous behavior of the short-term sensor (STS). Inflammation involves the influx of polymorphonuclear cells and the formation of an edematous fluid pocket surrounding the implant.
  • the vascular epithelium becomes highly permeable to cells and fluid so that invading cells (neutrophils, monocytes, and macrophages) can get to the wound site.
  • Mast cells in the wound site release enzymes, histamine, and active amines can cause swelling, redness, heat, and pain depending on the severity of the wound.
  • the "granulation" phase occurs after several days, involving the full participation of a large number of macrophages, and the initiation of fibrosis and vascularization.
  • fibroblasts proliferate and deposit granulation tissue components (various types of collagen, elastin, and proteoglycans).
  • Angiogenesis also takes place at this time, Angiogenesis is stimulated by local low oxygen tension.
  • Oxygen promotes angiogenesis by binding hypoxia-inducible factor (HIF) within capillary endothelial cells.
  • HIF hypoxia-inducible factor
  • Low pH, high lactate levels, bFGF, and TGF- ⁇ also stimulate angiogenesis.
  • Epithelial cells also proliferate and form a new epidermis over the wound.
  • the "remodeling" phase occurs after several weeks and is not relevant to sensors used for short periods of time, such as about 1 to 3' days, or up to about 7 days or more, or up to about 2 weeks. In the case of long-term wholly implantable sensors, this process is involved in remodeling tissue around the wholly implantable sensor.
  • the rate of these responses can vary dramatically in a host population, especially among diabetics, who are known to suffer from vascular and wound-healing disorders. Moreover, there is wide variability in the amount, texture, morphology, color, and vascularity of subcutaneous tissue. Therefore it is to be expected that the rate of progress of the wound-healing response, and the quality of the response can vary dramatically among hosts.
  • Fig. 1C illustrates the difference in responses of finger and abdominal tissue to oral sugar consumption, in a first non-diabetic volunteer host (Host 1).
  • the solid line shows glucose concentration at the fingertip.
  • the dashed line shows glucose concentration at the lower abdomen.
  • Fig. ID illustrates the difference in responses of finger and abdominal tissue to oral sugar consumption, in a second volunteer non-diabetic host (Host 2).
  • the solid line shows glucose concentration at the fingertip.
  • the dashed line shows glucose concentration at the lower abdomen.
  • the amount of wounding varies between individuals as well as between body sites of a single individual.
  • Host l's lower abdomen exhibited extensive bruising (e.g., approximately 20 hours after completing the study).
  • Host l's fingertips had very little observable wounding the next day (Fig. IF).
  • Host 2 sustained little visible wounding the next day (from the lancet), at either the lower abdomen or fingertips.
  • Subcutaneous tissue in different hosts can be relatively fat free in cases of very athletic people, or can be mostly composed of fat as in the majority of people.
  • the fat comes in a wide array of textures from very white, puffy fat to very dense, fibrous fat. Some fat is very yellow and dense in appearance; some is very clear, puffy, and white in appearance, while in other cases it is more red or brown in appearance.
  • the fat can be several inches thick or only 1 cm thick. It can be very vascular or relatively nonvascular.
  • Many diabetes hosts have some subcutaneous scar tissue due to years of insulin pump use or insulin injection. At times, sensors can come to rest in such a scarred area.
  • the subcutaneous tissue can even vary greatly from one location to another in the abdomen of a given host. Moreover, by chance, the sensor can come to rest near a more densely vascularized area of a given host or in a less vascularized area.
  • Fig. 2B is a side schematic view of adipose cell contact with an inserted transcutaneous sensor or an implanted sensor 34.
  • the sensor is firmly inserted into a small space with adipose cells pressing up against the surface. Close association of the adipose cells with the sensor can also occur, for example wherein the surface of the sensor is hydrophobic.
  • the adipose cells 200 can physically block the surface of the sensor.
  • adipose cells are about 120 microns in diameter and are typically fed by tiny capillaries 205.
  • very few capillaries can actually come near the surface of the sensor. This can be analogous to covering the surface of the sensor with an impermeable material such as plastic wrap, for example. Even if there were a few small holes in the plastic wrap, the sensor's function would likely be compromised. Additionally, the surrounding tissue has a low metabolic rate and therefore does not require high amounts of glucose and oxygen.
  • the sensor's signal can be noisy and the signal can be suppressed due to close association of the sensor surface with the adipose cells and decreased availability of oxygen and glucose both for physical- mechanical reasons and physiological reasons.
  • the sensor When the sensor is pressed against the adipose tissue, it is believed that that very few capillaries come near the surface of the sensor. Additionally, the surrounding tissue has a low metabolic rate and therefore does not require high amounts of glucose and oxygen. While not wishing to be bound by hypothesis, it is believed that during this period (prior to the formation of an edematous pocket and the influx of cells and glucose) the sensor signal can be noisy and suppressed due to close association of the sensor surface with the adipose cells and lack of availability of oxygen and glucose both for physical-mechanical reasons and physiological reasons. While not wishing to be bound by theory, it is believed that the short- term sensor measures wound fluid surrounding the sensor. Thus, if the rate of edema collection (e.g., collection of wound fluid into a fluid pocket) can be increased then early noise can be alleviated or reduced. Lymph System and Fluid Transport
  • the circulatory and lymph systems are the body's means of moving fluids, cells, protein, lipids, and the like throughout the body in an organized fashion. The two systems parallel each other, throughout the body.
  • the circulatory system is a closed system that relies on a pump (the heart) for control of bulk flow.
  • the lymph system is an open system with no central pump.
  • the lymph system relies upon pressure differentials, local muscle contraction, among other things, for fluid movement. Gravity and inactivity can have dramatic effects on lymph movement throughout the body, and consequently on noise and sensor function.
  • Lymph forms when dissolved proteins and solutes filter out of the circulatory system into the surrounding tissues, because of local differences in luminal hydrostatic and osmotic pressure.
  • the fluid within the extracellular spaces is called interstitial fluid.
  • a portion of the interstitial fluid flows back into the circulatory system, while the remaining fluid is collected into the lymph capillaries through valve-like openings between the endothelial cells of the lymph capillaries.
  • Lymph is generally a clear and transparent semifluid medium. It is known in the art that normal cellular metabolism produces waste species that are removed from the local environment by the lymphatics. Lymph contains a "lymphatic load" of protein, water, lymphocytes, cellular components, metabolic waste and particles, and fat. The lymphatics return the lymph to the circulatory system at the thoracic duct. It is known that lymph has almost the same composition as the original interstitial fluid.
  • the lymph system In contrast to the circulatory system, the lymph system is an open system with no central pump. Lymph capillaries take in fluid through "open junctions,” until they are filled to capacity. When the pressure inside the capillary is greater than that of the surrounding interstitial tissue, the open junctions close. The lymph moves freely toward larger, downstream portions of the lymph system, where pressure is lower. As the lymph moves forward, it is picked up by "lymph collectors,” which have valves that prevent fluid back-flow. Larger portions of the lymph system segmentally contract, to push the lymph forward, from one segment to the next. Breathing movements and skeletal muscle contractions also push the lymph forward. Eventually, the lymph is returned to the circulatory system via the thoracic duct.
  • Lymph capillaries are delicate and easily flattened. When lymph capillaries are flattened, fluid cannot enter them. Consequently, lymph flow is impeded by a local collapse of the lymph capillaries. Gravity and local pinching of lymph capillaries affect the movement of lymph. For example, it is well known in the medical community that a tourniquet placed on the upper arm can impede lymph flow out of the arm. It is also known that during sleep lymph pools on the side of the body on which a person is lying. In another example, sitting can pinch some of the lower lymphatics, causing lymph to pool in the legs over an extended period of time.
  • noise e.g., signal
  • sedentary activities such as sleeping, watching television or reading a book.
  • the inventors have demonstrated experimentally that early intermittent, sedentary noise is, at least in part, the result of unknown interferants that affect the sensor during periods of sustained inactivity.
  • electroactive interferants such as electroactive metabolites from cellular metabolism and wound healing, interfere with sensor function and cause early intermittent, sedentary noise.
  • Local lymph pooling when parts of the body are compressed or when the body is inactive can cause, in part, this local build up of interferants (e.g., electroactive metabolites).
  • Interferants can include but are not limited to compounds with electroactive acidic, amine or sulfhydryl groups, urea, lactic acid, phosphates, citrates, peroxides, amino acids (e.g., L- arginine), amino acid precursors or break-down products, nitric oxide (NO), NO-donors, NO- precursors or other electroactive species or metabolites produced during cell metabolism and/or wound healing, for example.
  • FBR foreign body response
  • FBC foreign body capsule
  • insertion or implantation of a device can result in an acute inflammatory reaction resolving to chronic inflammation with concurrent building of fibrotic tissue, such as is described in detail above.
  • a mature FBC including primarily contractile fibrous tissue forms around the device.
  • Fig. 2A is a schematic drawing that illustrates a classical FBR to a conventional cell-impermeable synthetic membrane 10 implanted under the skin.
  • the innermost FBR layer 12 adjacent to the device, is composed generally of macrophages and foreign body giant cells 14 (herein referred to as the "barrier cell layer"). These cells form a monolayer of closely opposed cells over the entire surface of a microscopically smooth membrane, a macroscopically smooth (but microscopically rough) membrane, or a microporous (i.e., average pore size of less than about 1 ⁇ m) membrane.
  • a membrane can be adhesive or non-adhesive to cells; however, its relatively smooth surface causes the downward tissue contracture 21 (discussed below) to translate directly to the cells at the device-tissue interface 26.
  • the intermediate FBR layer 16 (herein referred to as the "fibrous zone"), lying distal to the first layer with respect to the device, is a wide zone (about 30 to 100 ⁇ m) composed primarily of fibroblasts 18, fibrous matrixes, and contractile fibrous tissue 20.
  • the organization of the fibrous zone, and particularly the contractile fibrous tissue 20 contributes to the formation of the monolayer of closely opposed cells due to the contractile forces 21 around the surface of the foreign body (for example, membrane 10).
  • the outermost FBR layer 22 is loose connective granular tissue containing new blood vessels 24 (herein referred to as the "vascular zone"). Over time, this FBR tissue becomes muscular in nature and contracts around the foreign body so that the foreign body remains tightly encapsulated. Accordingly, the downward forces 21 press against the tissue-device interface 26, and without any counteracting forces, aid in the formation of a barrier cell layer 14 that blocks and/or refracts the transport of analytes 23 (for example, glucose) across the tissue- device interface 26.
  • analytes 23 for example, glucose
  • a consistent feature, of the innermost layers 12, 16, is that they are devoid of blood vessels. This has led to widely supported speculation that poor transport of molecules across the device-tissue interface 26 is due to a lack of vascularization near the interface. See Scharp et al, World J. Surg., 8:221-229 (1984); and Colton et al, J. Biomech. Eng., 113:152-170 (1991). Previous efforts to overcome this problem have been aimed at increasing local vascularization at the device-tissue interface, but have achieved only limited success.
  • a barrier cell layer 14 prevents the passage of molecules that cannot diffuse through the layer.
  • glucose transporters on one side of the cell and exit on the other side. Instead, it is likely that any glucose that enters the cell is phosphorylated and remains within the cell.
  • the only cells known to facilitate transport of glucose from one side of the cell to another are endothelial cells. Consequently, little glucose reaches the implant's membrane through the barrier cell layer.
  • the known art purports to increase the local vascularization in order to increase solute availability. See Brauker et al. , U.S. Pat.
  • barrier cell layer blocks and/or reflects the analytes 23 from transport across the device-tissue interface 26.
  • Noise is a broad term and is used in its ordinary sense, including, without limitation, a signal detected by the sensor that is unrelated to analyte concentration and can result in less accurate sensor performance.
  • One type of noise has been observed during the few hours (e.g., about 2 to about 36 hours) after sensor insertion. After the first few hours to 36 hours, the noise often disappears, but in some hosts, the noise can last longer.
  • these inflammatory cells can biodegrade many artificial biomaterials (some of which were, until recently, considered nonbiodegradable).
  • tissue macrophages When activated by a foreign body, tissue macrophages degranulate, releasing hypochlorite (bleach) and other oxidative species. Hypochlorite and other oxidative species are known to break down a variety of polymers.
  • hypochlorite and other oxidative species are known to break down a variety of polymers.
  • the foreign body response is the dominant event surrounding extended implantation of an implanted device, and can be managed or manipulated to support rather than hinder or block analyte transport.
  • preferred embodiments employ materials that promote vascularized tissue ingrowth, for example within a porous biointerface membrane.
  • tissue in-growth into a porous biointerface material surrounding a long-term sensor can promote sensor function over extended periods of time (e.g., weeks, months, or years). It has been observed that in-growth and formation of a tissue bed can take up to about 3 weeks or more. Tissue ingrowth and tissue bed formation is believed to be part of the foreign body response. As will be discussed herein, the foreign body response can be manipulated by the use of porous biointerface materials that surround the sensor and promote ingrowth of tissue and microvasculature over time.
  • Long-term use sensors (LTS) for use over a period of weeks, months or even years, have also been produced. LTS can be wholly implantable, and placed within the host's soft tissue below the skin, for example.
  • a long-term sensor including a biointerface including but not limited to, for example, porous biointerface materials including a solid portion and interconnected cavities, all of which are described in more detail elsewhere herein, can be employed to improve sensor function in the long-term (e.g., after tissue ingrowth). Reduction of Intermittent, Sedentary Noise
  • noise can occur during the first few hours or days after sensor implantation, during periods of inactivity. While not wishing to be bound by theory, the inventors believe noise that occurs during these early intermittent sedentary time periods can be caused by a local increase in interferants (e.g., electroactive metabolites) that disrupt sensor function, resulting in apparent glucose signals that are generally unrelated to the host's glucose concentration. Accordingly, the noise intensity and/or number of intermittent, sedentary noise occurrences can be reduced or eliminated by reducing the local concentration of interferants produced during normal cellular metabolism and/or wound healing.
  • interferants e.g., electroactive metabolites
  • a wounding response initiated when the sensor e.g., a glucose sensor
  • interferents away from the sensor during sedentary periods can result in increased intermittent, sedentary noise.
  • it interferent concentration is reduced, such as by increasing fluid bulk, bulk fluid flow, or diffusion rates (e.g., with vasodilation agents or inflammatory agents), prolonging wounding (e.g., with irritating structures or agents) or promoting wound healing's inflammation stage, then noise can be reduced.
  • the present invention provides, among other things, devices, and methods for reducing or eliminating noise caused by intermittent interferant build-up in the area surrounding an inserted sensor during the first few hours or days post-implantation.
  • these devices and methods contemplate, among other things, increasing bulk fluid flow in and/or out of the sensor locality, increased fluid bulk, production of increased or continued wounding of the insertion site, suppression, and/or prevention of wounding during and after sensor insertion, and combinations thereof.
  • Those knowledgeable in the art will recognize that the various structures and bioactive agents disclosed herein can be employed in a plurality of combinations, depending upon the desired effect and the noise reduction strategy selected. IncreasinR Fluid Bulk or Bulk Fluid Flow
  • a STS can be a transcutaneous device, in that a portion of the device can be inserted through the host's skin and into the underlying soft tissue while a portion of the device remains on the surface of the host's skin.
  • preferred embodiments employ materials that promote formation of a fluid pocket around the sensor, for example architectures such as porous biointerface membrane, matrices or other membrane/mechanical structures that create a space between the sensor and the surrounding tissue.
  • the concentration of interferants (e.g., electroactive metabolites) surrounding the sensor can be reduced by, among other things, increasing fluid bulk (e.g., a fluid pocket), an increased bulk fluid flow and/or an increased diffusion rate around at least a portion of the sensor, such as the sensing portion of the sensor.
  • fluid bulk e.g., a fluid pocket
  • diffusion rate around at least a portion of the sensor, such as the sensing portion of the sensor.
  • One embodiment of the present invention provides a device with reduced intermittent sedentary noise having an architecture that allows and/or promotes increased fluid bulk and/or increased bulk fluid flow in the area surrounding at least a portion of an implanted sensor in vivo.
  • a variety of structures can be incorporated into the sensor to allow and/or promote increased (e.g., to stimulate or to promote) fluid bulk, bulk fluid flow, and/or diffusion rate.
  • These structures can include but are not limited to spacers, meshes, shedding layers, roughened surfaces, machineable materials, nanoporous materials, shape-memory materials, porous memory materials, self-assembly materials, collapsible materials, biodegradable materials, combinations thereof, and the like.
  • Structures that promote increased fluid bulk and/or increased bulk fluid flow can also include but are not limited to structures that promote fluid influx or efflux (e.g., fluid influx-promoting architecture, fluid efflux-promoting architecture), that promote vasodilation (e.g., vasodilating architecture), that promote inflammation (e.g., inflammatory architecture), that promote wound healing or perpetuate wounding (e.g., wound-healing architecture and wounding architecture, respectively), that promote angiogenesis (e.g., angiogenic architecture), that suppress inflammation (e.g., an anti-inflammatory architecture) or combinations thereof.
  • fluid influx or efflux e.g., fluid influx-promoting architecture, fluid efflux-promoting architecture
  • vasodilation e.g., vasodilating architecture
  • inflammation e.g., inflammatory architecture
  • wound healing or perpetuate wounding e.g., wound-healing architecture and wounding architecture, respectively
  • angiogenesis e.g., angiogenic architecture
  • a porous material that results in increased fluid bulk, bulk fluid flow and/or diffusion rate, as well as formation of close vascular structures is a porous polymer membrane, such as but not limited to polytetrafluoroethylene (PTFE), polysulfone, polyvinylidene difiuoride, polyacrylonitrile, silicone, polytetrafluoroethylene, expanded polytetrafluoroethylene, polyethylene-co-tetrafluoroethylene, polyolefin, polyester, polycarbonate, biostable polytetrafluoroethylene, homopolymers, copolymers, terpolymers of polyurethanes, polypropylene (PP), polyvinylchloride (PVC) 5 polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polybutylene terephthalate (PBT), polymethylmethacrylate (PMMA), polyether ether ketone (PEEK), polyamides, polyurethanes, polypropylene
  • the structural elements which provide the three-dimensional conformation, can include fibers, strands, globules, cones or rods of amorphous or uniform geometry that is smooth or rough. These elements, hereafter referred to as "strands,” have in general one dimension larger than the other two and the smaller dimensions do not exceed five microns.
  • the porous polymer membrane material as described above, consists of strands that define "apertures" formed by a frame of the interconnected strands.
  • the apertures have an average size of no more than about 20 ⁇ m in any but the longest dimension.
  • the apertures of the material form a framework of interconnected apertures, defining "cavities" that are no greater than an average of about 20 ⁇ m in any but the longest dimension.
  • the porous polymer membrane material has at least some apertures having a sufficient size to allow at least some vascular structures to be created within the cavities. At least some of these apertures, while allowing vascular structures to form within the cavities, prevent connective tissue from forming therein because of size restrictions.
  • the porous membrane has frames of elongated strands of material that are less than 5 microns in all but the longest dimension and the frames define apertures which interconnect to form three-dimensional cavities which permit substantially all inflammatory cells migrating into the cavities to maintain a rounded morphology.
  • the porous material promotes vascularization adjacent but not substantially into the porous material upon implantation into a host.
  • Exemplary materials include but are not limited to polyethylene, polypropylene, polytetrafluoroethylene (PTFE), cellulose acetate, cellulose nitrate, polycarbonate, polyester, nylon, polysulfone, mixed esters of cellulose, poly vinylidene difluoride, silicone, polyacrylonitrile, and the like.
  • a short-term sensor is provided with a spacer adapted to provide a fluid pocket between the sensor and the host's tissue. It is believed that this spacer, for example a bioiriterface material, matrix, mesh, hydrogel and like structures and the resultant fluid pocket provide for oxygen and/or glucose transport to the sensor.
  • this spacer for example a bioiriterface material, matrix, mesh, hydrogel and like structures and the resultant fluid pocket provide for oxygen and/or glucose transport to the sensor.
  • FIG. 2C is a side schematic view of a biointerface membrane as the spacer preventing adipose cell contact with an inserted transcutaneous sensor or an implanted sensor in one exemplary embodiment.
  • a porous biointerface membrane 68 surrounds the sensor 34, covering the sensing mechanism (e.g., at least a working electrode 38) and is configured to fill with fluid in vivo, thereby creating a fluid pocket surrounding the sensor. Accordingly, the adipose cells surrounding the sensor are held a distance away (such as the thickness of the porous biointerface membrane, for example) from the sensor surface.
  • porous biointerface membrane fills with fluid (e.g., creates a fluid pocket)
  • fluid e.g., creates a fluid pocket
  • oxygen and glucose are transported to the sensing mechanism in quantities sufficient to maintain accurate sensor function.
  • interferants are diluted, suppressing or reducing interference with sensor function.
  • a short-term sensor (or short-term function of a long-term sensor) including a biointerface, including but not limited to, for example, porous biointerface materials, mesh cages, and the like, all of which are described in more detail elsewhere herein, can be employed to improve sensor function in the short-term (e.g., first few hours to days).
  • Porous biointerface membranes need not necessarily include interconnected cavities for creating a fluid pocket in the short-term.
  • the device includes a physical spacer between the sensor and the surrounding tissue.
  • a spacer allows for a liquid sheath to form around at least a portion of the sensor, such as the area surrounding the electrodes, for example.
  • a fluid sheath can provide a fluid bulk that dilutes or buffers interferants while promoting glucose and oxygen transport to the sensor.
  • the spacer is a mesh or optionally a fibrous structure.
  • Suitable mesh materials are known in the art and include open-weave meshes fabricated of biocompatible materials such as but not limited to PLA, PGA, PP, nylon and the like.
  • Mesh spacers can be applied directly to the sensing mechanism or over a biointerface membrane, such as a porous biointerface membrane disclosed elsewhere herein.
  • Mesh spacers can act as a fluid influx- or efflux-promoting structure and provides the advantage of relatively more rapid fluid movement, mixing and/or diffusion within the mesh to reduce local interferant concentrations and increasing glucose and oxygen concentrations.
  • the increased fluid volume within the mesh can also promote increased fluid movement in and out of the area, which brings in glucose and oxygen while removing or diluting interferants.
  • a physical spacer can reduce the effect of lymph pooling due to local compression (during sedentary activity) by mechanically maintaining the fluid pocket.
  • the area surrounding the sensor can be compressed. For example, if the sensor is on the right side of the host's abdomen and he lies down on that side for a few hours, the lymphatics on the abdominal right side will be pinched off.
  • the tissue is compressed/pinched, fluid will not be able to move into the pinched lymphatic capillaries and interferants (from local tissue metabolism) can build up and cause noise.
  • the host gets up, the compression/pinching is relieved and the interferants can be removed via the lymphatics. Since a spacer can maintain the fluid bulk around the sensor during local compression, the effect of interferant concentration increases can be suppressed or reduced, thereby reducing noise and promoting optimal sensor function.
  • the senor is wrapped with a single layer of open weave polypropylene (PP) biocompatible mesh.
  • PP polypropylene
  • the mesh holds the surrounding tissue away from the sensor surface and allows an influx of extracellular fluid to enter the spaces within the mesh, thereby creating a fluid pocket around the sensor.
  • fluid can mix substantially rapidly as extracellular fluid enters and leaves the fluid pocket or due to host movement.
  • Interferants are carried by the fluid and therefore can be mixed and/or diluted. Since the host can wear the sensor for a plurality of days, sedentary periods will inevitably occur. During these periods interferants can accumulate. However, the increased fluid volume provided by the mesh can substantially buffer accumulated interferants until the sedentary period ends. When the sedentary period is over, any accumulated interferants can be diluted or carried away by an influx or efflux of fluid.
  • a mesh can be applied to a sensor either symmetrically or asymmetrically.
  • the mesh can be tightly wrapped around the sensor.
  • a strip of mesh can be applied to only one side of the sensor.
  • the mesh can form a flat envelope about a few millimeters to about a centimeter wide, with the sensor sandwiched within the envelope.
  • the mesh can cover only a portion of the sensor, such as the portion containing the electrochemically reactive surface(s). In other embodiments, the mesh can cover the entire sensor.
  • noise can be reduced by inclusion of a hydrogel on the surface of at least a portion of the sensor, such as the sensing region.
  • a hydrogel is a network of super absorbent (they can contain 20%-99% or weight % water, preferably 80% to over 99% weight % water) natural or synthetic polymer chains. Hydrogels are sometimes found as a colloidal gel in which water is the dispersion medium. Since hydrogels are nonporous, fluid and interferants within the hydrogel move by diffusion. Accordingly, the movement of molecules within hydrogels is relatively slower than that possible within mesh-based fluid pockets as described above.
  • the hydrogel can be biodegradable. A biodegradable hydrogel can provide a fluid pocket that gradually diminishes and is eventually eliminated by the surrounding tissue.
  • a hydrogel includes a flexible, water-swellable, film (as disclosed elsewhere herein) having a "dry film" thickness of from about 0.05 micron or less to about 20 microns or more, more preferably from about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, 1.5, 2, 2.5, 3, or 3.5 to about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 19.5 microns, and more preferably from about 2, 2.5 or 3 microns to about 3.5, 4, 4.5, or 5 microns.
  • “Dry film” thickness refers to the thickness of a cured film cast from a coating formulation by standard coating techniques.
  • the hydrogel material can be applied to the entire sensor or a portion of it, using any method known in the art, such as but not limited to dipping, painting, spraying, wrapping, and the like.
  • scavenging agents e.g., bioactive agents that can scavenge, bind-up or substantially inactivate interferants
  • the hydrogel or other aspect of the device e.g., membrane system. Scavenging agents can suppress prolonged wounding and inflammation by removing irritating substances from the locality of the sensor.
  • One exemplary scavenging agent embodiment incorporates an H 2 O 2 - degrading enzyme, such as but not limited to glutathione peroxidase (GSH peroxidase), heme-containing peroxidases, eosinophil peroxidase, thyroid peroxidase or horseradish peroxidase (HRP) into the hydrogel to degrade the available H 2 O 2 and produce oxygen.
  • GSH peroxidase glutathione peroxidase
  • heme-containing peroxidases heme-containing peroxidases
  • eosinophil peroxidase eosinophil peroxidase
  • thyroid peroxidase thyroid peroxidase
  • HRP horseradish peroxidase
  • the scavenging agent can act within the hydrogel or can be released into the local environment to act outside the hydrogel.
  • a mesh and a hydrogel can be used in combination to provide greater mechanical support (to hold the surrounding tissue away from the sensor) while slowing down the diffusion rate within the mesh-hydrogel layer.
  • a PP mesh can be applied to the sensor followed by spraying a dry hydrogel material onto the PP-wrapped sensor.
  • the hydrogel can be dried within the mesh before application to the sensor.
  • the hydrogel can absorb fluid from the surrounding tissue, expand and fill the mesh pores.
  • the hydrogel can be biodegradable.
  • the hydrogel can initially slow fluid movement. But as the hydrogel is biodegraded, the pores of the mesh are opened up and fluid movement can speed up or increase.
  • Shape-memory materials can be used as an alternative to a mesh, to form a fluid pocket around the sensor.
  • Shape-memory materials are metals or polymers that "remember" their geometries.
  • Shape-memory metals include copper-zinc-aluminum, copper-aluminum-nickel, and nickel-titanium (NiTi) alloys.
  • Shape-memory polymers include materials such as polynorbornene, segmented poly(epsilon-caprolactone) polyurethanes, poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymers, and the like, for example.
  • a shape-memory material can be deformed from its "original” conformation and regains its original geometry by itself in response to a force, such as temperature or pressure.
  • a porous memory material that has been collapsed into a flat, nonporous sheet can be applied to the exterior of the sensor as a flat film. After insertion into the body, increased temperature or moisture exposure can stimulate the memory material to transform to a 3 -dimensional, porous architecture that promotes fluid pocket formation, for example.
  • nanoporous materials which act as molecular sieves, can be used to exclude interferants surrounding the sensor.
  • a swellable material e.g., a material having an initial volume that absorbs fluid, such as water, when it contacts the fluid to become a second volume that is greater than the initial volume
  • collapsible material e.g., a material having an initial volume that collapse to a second volume that is smaller than the initial volume
  • materials with differing characteristics can be applied in combination, such as alternating bands or layers, to suppress uniform capsule formation.
  • alternating bands of collapsible and non-collapsible swellable material can be applied around a portion of the sensor.
  • both materials swell with fluid from the surrounding tissue.
  • only the segments of collapsible material can deform. Since the material surrounding the sensor will be irregular, it can disrupt formation of a continuous cell layer, thereby reducing noise and extending sensor life.
  • Another aspect of the present invention employs wound irritation either by physical structure or chemical irritants, to stimulate and/or prolong the wound healing process.
  • an irritating architecture stimulates adjacent cells to release soluble mediators of wound healing and/or inflammation.
  • the released soluble mediators are believed to increase the rates of hemostasis and inflammation (e.g., promoting fluid bulk increase or an increase in bulk fluid flow) and resulting in dilution/removal of irritants and noise reduction.
  • an irritating biointerface includes a structure having a roughened surface, which can rub or poke adjacent cells in vivo.
  • the sensor surface can be roughened by coating the sensor with a machineable material that is or can be etched to form ridges, bristles, spikes, grids, grooves, circles, spirals, dots, bumps, pits or the like, for example.
  • the material can be any convenient, biocompatible material, such as machined porous structures that are overlaid on the sensor, such as but not limited to machineable metal matrix composites, bone substrates such as hydroxyapatite, coral hydroxyapatite and ⁇ -tricalcium phosphate (TCP), porous titanium (Ti) mixtures made by sintering of elemental powders, bioglasses (calcium and silicon-based porous glass), ceramics and the like.
  • the material can be "machined” by any convenient means, such as but not limited to scraping, etching, lathing or lasering, for example.
  • Micro-motion of the sensor can increase the irritating effect of a roughened surface.
  • Micro-motion is an inherent property of any implanted device, such as an implanted glucose sensor.
  • Micro-motion of the device e.g., minute movements of the device within the host
  • host movements ranging from breathing and small local muscle movements to gross motor movements, such as walking, running or even getting up and sitting down.
  • External forces such as external pressure application, can also cause micromotion.
  • Micro-motion includes movement of the sensor back and forth, rotation, twisting and/or turning.
  • the sensor's rough surface can rub more vigorously against the surrounding tissue, causing increased or extended wounding, resulting in additional stimulation of the wound healing process and increases in fluid bulk, bulk fluid flow and/or fluid pocket formation, with a concomitant reduction in noise.
  • an irritating architecture is formed from self- assembly materials.
  • Self-assembly biomaterials comprise specific polypeptides that are designed a priori to self-assemble into targeted nano- and microscopic structures.
  • Intramolecular self-assembling molecules are often complex polymers with the ability to assemble from the random coil conformation into a well-defined stable structure (secondary and tertiary structure).
  • a variety of self-assembly materials known in the art can find use in the present embodiment. For example, PuraMatrixTM (3DM Inc., Cambridge, MA, USA) can be used to create synthetic self-assembling peptide nanofiber scaffolds and defined 3-D microenvironments.
  • an irritating superstructure is applied to the working electrode or the completed sensor.
  • a "superstructure,” as used herein is a broad term and used in its ordinary sense, including, without limitation, to refer to any structure built on something else, such as but not limited to the overlying portion of a structure.
  • An irritating superstructure can include any substantial structure that prevents cell attachment and is irritating to the surrounding tissue in vivo.
  • an irritating superstructure can include large spaces, such as at least about 50 ⁇ m wide and at least about 50 ⁇ m deep. Cells surrounding the sensor can be prevented from attachment in the spaces within the superstructure, allowing fluid to fill these spaces.
  • an irritating superstructure takes advantage of sensor micromotion, to prevent cell attachment and stimulate fluid pocket formation.
  • an irritating superstructure is comprised of ridges at least about 0.25 to 0.50 ⁇ m in diameter and about 50 ⁇ m high, and separated by at least about 0.25 to 0.50 ⁇ m.
  • an exposed silver wire is applied to the sensor exterior to form grooves about 50 ⁇ m wide and about 50 ⁇ m deep. Since silver is pro-inflammatory and stimulates fluid influx from the surrounding tissues, the combination of an irritating superstructure and a chemical irritant could promote an increased rate of fluid influx or prolong irritation and fluid influx.
  • the configuration (e.g., diameter) of the reference electrode 30 can be changed (e.g., increased in size and/or coil spacing) such that the reference electrode, itself, becomes an irritating superstructure, with or without a coating 32 as disclosed elsewhere herein.
  • irritation and fluid pocket formation can also be induced by inclusion of irritating chemicals or agents that promote fluid influx or efflux, vasodilating agents, inflammatory agents, wounding agents, some wound-healing agents and the like.
  • irritation and fluid pocket forming agents can include but are not limited to enzymes, cytotoxic or necrosing agents (e.g., pactataxyl, actinomycin, doxorubicin, daunorubicin, epirubicin, bleomycin, plicamycin, mitomycin), cyclophosphamide, chlorambucil, uramustine, melphalan, bryostatins, inflammatory bacterial cell wall components, histamines, pro-inflammatory factors and the like.
  • Chemical systems/methods of irritation include any materials that do not adversely affect the performance or safety of the device such as pro-inflammatory agents.
  • pro-inflammatory agents are irritants or other substances that induce chronic inflammation and chronic granular response at the wound-site.
  • Chemical systems/methods of irritation can be applied to the exterior of the sensor by any useful means known in the art, such as by dipping, spraying or painting, for example.
  • the completed sensor is dipped into a dilute solution of histamine for about five seconds and dried at room temperature.
  • the histamine can be solublized and stimulate an accelerated wound healing response, causing an influx of fluid and inflammatory cell migration to the sensor within the first few hours of sensor implantation, such as about 2 to 5 hours, or longer.
  • necrosing agent e.g., compounds that stimulate tissue devitalization
  • bleomycin a dilute necrosing agent
  • the necrosing agent can leach off the sensor and devitalize a small amount of tissue around the sensing portion of the sensor.
  • wound healing rapidly ensues, resulting in vasodilatation, fluid influx and an influx of macrophages and polymorphonuclear leukocytes, which remove the devitalized tissue.
  • the space created by the removal of the devitalized tissue is filled with fluid and acts as a substantial fluid pocket.
  • Chemical systems/methods of irritation can also be incorporated into an exterior sensor structure, such as the biointerface membrane (described below) or a shedding layer that releases the irritating agent into the local environment.
  • a "shedding layer” releases (e.g., sheds or leaches) molecules into the local vicinity of the sensor and can speed up osmotic fluid shifts.
  • a shedding layer can provide a mild irritation and encourage a mild inflammatory/foreign body response, thereby preventing cells from stabilizing and building up an ordered, fibrous capsule and promoting fluid pocket formation.
  • a shedding layer can be constructed of any convenient, biocompatible material, include but not limited to hydrophilic, degradable materials such as poly vinylalcohol (PVA), PGC, Polyethylene oxide (PEO), polyethylene glycol-polyvinylpyrrolidone (PEG- PVP) blends, PEG-sucrose blends, hydrogels such as polyhydroxyethyl methacrylate (pHEMA), polymethyl methacrylate (PMMA) or other polymers with quickly degrading ester linkages.
  • PVA poly vinylalcohol
  • PGC Polyethylene oxide
  • PEG- PVP polyethylene glycol-polyvinylpyrrolidone
  • PEG-sucrose blends PEG-sucrose blends
  • hydrogels such as polyhydroxyethyl methacrylate (pHEMA), polymethyl methacrylate (PMMA) or other polymers with quickly degrading ester linkages.
  • absorbable suture materials which degrade to compounds with acid residues, can be used.
  • these compounds include glycolic acid and lactic acid based polymers, polyglactin, polydioxone, polydyconate, poly(dioxanone), poly(trimethylene carbonate) copolymers, and poly (-caprolactone) homopolymers and copolymers, and the like.
  • the shedding layer can be a layer of materials listed elsewhere herein for the first domain, including copolymers or blends with hydrophilic polymers such as polyvinylpyrrolidone (PVP), polyhydroxyethyl methacrylate, polyvinylalcohol, polyacrylic acid, polyethers, such as polyethylene glycol, and block copolymers thereof including, for example, di-block, tri-block, alternating, random and graft copolymers (block copolymers are discussed in U.S. Patent Nos. 4,803,243 and 4,686,044, hereby incorporated by reference).
  • the shedding layer is comprised of polyurethane and a hydrophilic polymer.
  • the hydrophilic polymer can be polyvinylpyrrolidone.
  • the shedding layer is polyurethane comprising not less than 5 weight percent polyvinylpyrrolidone and not more than 45 weight percent polyvinylpyrrolidone.
  • the shedding layer comprises not less than 20 weight percent polyvinylpyrrolidone and not more than 35 weight percent polyvinylpyrrolidone and, most preferably, polyurethane comprising about 27 weight percent polyvinylpyrrolidone.
  • the shedding layer can include a silicone elastomer, such as a silicone elastomer and a poly(ethylene oxide) and poly(propylene oxide) co-polymer blend, as disclosed in copending U.S. patent application 11/404,417, filed 4/14/2006 and entitled "SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS.”
  • the silicone elastomer is a dimethyl- and methylhydrogen-siloxane copolymer.
  • the silicone elastomer comprises vinyl substituents.
  • the silicone elastomer is an elastomer produced by curing a MED-4840 mixture.
  • the copolymer comprises hydroxy substituents.
  • the co-polymer is a triblock poly(ethylene oxide)- poly(propylene oxide)-poly(ethylene oxide) polymer.
  • the co-polymer is a triblock poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) polymer.
  • the co-polymer is a PLURONIC® polymer.
  • the copolymer is PLURONIC® F-127.
  • at least a portion of the co-polymer is cross-linked. In one embodiment, from about 5% w/w to about 30 % w/w of the membrane is the co-polymer.
  • a shedding layer can take any shape or geometry, symmetrical or asymmetrical, to promote fluid influx in a desired location of the sensor, such as the sensor head or the electrochemically reactive surfaces, for example.
  • Shedding layers can be located on one side of sensor or both sides.
  • the shedding layer can be applied to only a small portion of the sensor or the entire sensor.
  • a shedding layer comprising polyethylene oxide (PEO) is applied to the exterior of the sensor, where the tissue surrounding the sensor can directly access the shedding layer.
  • PEO polyethylene oxide
  • PEO leaches out of the shedding layer and is ingested by local cells that release pro-inflammatory factors.
  • the pro-inflammatory factors diffuse through the surrounding tissue and stimulate an inflammation response that includes an influx of fluid. Accordingly, early noise can be reduced or eliminated and sensor function can be improved.
  • the shedding layer is applied to the sensor in combination with an outer porous layer, such as a mesh or a porous biointerface as disclosed elsewhere herein.
  • an outer porous layer such as a mesh or a porous biointerface as disclosed elsewhere herein.
  • local cells access the shedding layer through the through pores of a porous silicone biointerface.
  • the shedding layer material is applied to the sensor prior to application of the porous silicone.
  • the shedding layer material can be absorbed into the lower portion of the porous silicone (e.g., the portion of the porous silicone that will be proximal to the sensor after the porous silicone has been applied to the sensor) prior to application of the porous silicone to the sensor.
  • Vasodilatation e.g., the portion of the porous silicone that will be proximal to the sensor after the porous silicone has been applied to the sensor
  • increased fluid bulk, bulk fluid flow and/or diffusion rates can reduce local interferant concentrations (e.g., electroactive species produced via cellular metabolism in the local area) and promote glucose and oxygen influx or transport, thereby reducing noise frequency or amplitude and improving early sensor performance.
  • increased fluid bulk, fluid bulk flow and/or diffusion rates can be promoted by vasodilation. Vasodilation occurs when the tight junctions of the endothelial layer of the micro vasculature open. This allows serum and certain inflammatory cells to leave the circulatory system and enter the extracellular matrix (ECM). A portion of the fluid in the ECM can move back into the vasculature.
  • ECM extracellular matrix
  • Vasodilation promotes "bulk fluid transport" (e.g., bulk fluid flow) in and out of the local region and/or increase in fluid bulk around at least a portion of the sensor. Increased fluid bulk and/or bulk fluid transport ensures homeostasis with the local environment and the blood system. Furthermore, rapid diffusion of solutes may be facilitated by permeabilization of the blood vessels and increased local temperature due to inflammation. Fluids leaving the local extracellular spaces remove metabolites, such as the interferants discussed herein. Preferably, as interferants are carried with the moving fluid, noise is reduced and sensor function improved.
  • bioactive agents that promote vasodilation are included in sensor construction.
  • the bioactive agents promote an influx of fluid, causing an increase in fluid bulk. Noise is reduced as the larger fluid volume reduces the interferant concentration.
  • the bioactive agents promote an efflux of fluid out of the local area. Noise is reduced as the leaving fluid carries interferants away with it.
  • bioactive agents include but are not limited to blood-brain barrier disruptive agents and vasodilating agents, such as mannitol, sodium thiosulfate, VEGF/VPF, NO, NO-donors, leptin, bradykinin, histamines, blood components, platelet rich plasma (PRP) and the like.
  • blood-brain barrier disruptive agents and vasodilating agents such as mannitol, sodium thiosulfate, VEGF/VPF, NO, NO-donors, leptin, bradykinin, histamines, blood components, platelet rich plasma (PRP) and the like.
  • Bioactive agents can be added during manufacture of the sensor by incorporating the desired bioactive agent in the manufacturing material for one or more sensor layers or into an exterior biomaterial, such as a porous silicone membrane.
  • bioactive agents can be mixed with a solution during membrane formation, which is subsequently applied onto the sensor during manufacture.
  • the completed sensor can be dipped into or sprayed with a solution of a bioactive agent, for example.
  • the amount of bioactive agent can be controlled by varying its concentration, varying the indwell time during dipping, applying multiple layers until a desired thickness is reached, and the like, as disclosed elsewhere herein.
  • VEGF is a bioactive agent that is known to be a vasodilator and can promote fluid influx from the micro vasculature.
  • VEGF is sprayed onto the exterior of the completed sensor. After insertion, VEGF is directly released into the local environment when the VEGF-coated sensor is implanted into a host. The released VEGF stimulates vasodilation around the implanted sensor.
  • VEGF is mixed into the biointerface material prior to sensor construction. After the sensor is inserted, VEGF leaches form the biointerface, causing vasodilation around the sensor.
  • upstream or downstream components of the VEGF signaling cascade can be incorporated into the sensor, to affect vasodilatation around the implanted sensor.
  • biodegradable or bioerodible material can be employed to release bioactive agents in a controlled manner.
  • VEGF is incorporated into a biodegradable material (e.g., shedding layer or hydrogel) that is applied to the sensor exterior.
  • a biodegradable material e.g., shedding layer or hydrogel
  • the rate of bioactive agent release can be manipulated by the selection of the biodegradable material and the thickness of the biodegradable material layer.
  • constant bioactive agent release can be achieved for a predetermined extended period of time and possibly promote vasodilatation and fluid influx during that period of time.
  • the bioactive agent is microencapsulated before application to the sensor.
  • microencapsulated VEGF can be sprayed onto a completed sensor or incorporated into a structure, such as an outer mesh layer or a shedding layer.
  • Microencapsulation can offer increased flexibility in controlling bioactive agent release rate, time of release occurrence and/or release duration.
  • vasodilation is achieved by matrix metalloproteinases (MMP) incorporation into the sensor.
  • MMPs can degrade the proteins that keep blood vessel walls solid. This proteolysis allows endothelial cells to escape into the interstitial matrix and concomitantly fluid to enter and leave the vasculature. Accordingly, MMPs can promote interferant concentration reduction and intermittent, sedentary noise reduction or elimination.
  • angiogenic and/or preangiogenic compounds or factors are included in the sensor to promote vasodilation.
  • Angiogenesis is the physiological process involving the growth of new blood vessels from pre-existing vessels. Formation of new vessels can reduce the frequency or magnitude of intermittent, sedentary noise by increasing fluid flow, for example.
  • Angiogenic agents include, but are not limited to, Basic Fibroblast Growth Factor (bFGF), (also known as Heparin Binding Growth Factor-II and Fibroblast Growth Factor II), Acidic Fibroblast Growth Factor (aFGF), (also known as Heparin Binding Growth Factor-I and Fibroblast Growth Factor-I), Vascular Endothelial Growth Factor (VEGF), Platelet Derived Endothelial Cell Growth Factor BB (PDEGF-BB), Angiopoietin-1, Transforming Growth Factor Beta (TGF-Beta), Transforming Growth Factor Alpha (TGF- Alpha), Hepatocyte Growth Factor, Tumor Necrosis Factor- Alpha (TNF- Alpha), Placental Growth Factor (PLGF), Angiogenin, Interleukin-8 (IL-8), Hypoxia Inducible Factor-I (HIF-I), Angiotensin-Converting Enzyme (ACE) Inhibitor Quinaprilat, Angiotropin,
  • Wound suppression to reduce noise is an alternative aspect of the preferred embodiment.
  • Wound suppression includes any systems or methods by which an amount of wounding that occurs upon sensor insertion is reduced and/or eliminated. While not wishing to be bound by theory, it is believed that if wounding is suppressed or at least significantly reduced, the sensor will be surrounded by substantially normal tissue (e.g., tissue that is substantially similar to the tissue prior to sensor insertion). Substantially normal tissue is believed to have a lower metabolism than wounded tissue, producing fewer interferants and reducing early noise.
  • Wounds can be suppressed or minimized by adaptation of the sensor's architecture to one that either suppresses wounding or promotes rapid healing, such as an architecture that does not cause substantial wounding (e.g., an architecture configured to prevent wounding), an architecture that promotes wound healing, an anti-inflammatory architecture, and the like.
  • the sensor is configured to have a low profile, a zero-footprint or a smooth surface.
  • the sensor can be formed of substantially thin wires, such as wires about 50-150 ⁇ m in diameter, for example.
  • the senor is small enough to fit within a very small gauge needle, such as a 30, 31, 32, 33, ⁇ 34, or 35-gauge needle (or smaller) on the Stubs scale, for example.
  • a very small needle the more reduces the amount of wounding during insertion.
  • a very small needle can reduce the amount of tissue disruption and thereby reduce the subsequent wound healing response.
  • the sensor's surface is smoothed with a lubricious coating, to reduce wounding upon sensor insertion.
  • Wounding can also be reduced by inclusion of wound-suppressive agents that either reduce the amount of initial wounding or suppress the wound healing process.
  • a wound- suppressing agent such as an anti-inflammatory, an immunosuppressive agent, an anti- infective agent, or a scavenging agent
  • application of a wound- suppressing agent, such as an anti-inflammatory, an immunosuppressive agent, an anti- infective agent, or a scavenging agent to the sensor can create a locally quiescent environment and suppress wound healing.
  • bodily processes such as the increased cellular metabolism associated with wound healing, can minimally affect the sensor. If the tissue surrounding the sensor is undisturbed, it can continue its normal metabolism and promote sensor function.
  • anti-histamines can suppress or eliminate early sedentary noise. Namely, it has been shown that oral anti-histamines taken at nighttime can result in substantially diminished early sedentary noise. While not wishing to be bound by theory, it is believed that histamines, which are chemicals released during wounding, produce electrochemical interference in the sensor signal. Namely, histamine release is believed to promote release of electrochemical interferants, which in certain circumstances produce "noise" on the sensor signal.
  • one embodiment of the present invention provides for a sensor including an anti-histamine.
  • Anti-histamines are any drugs that serve to reduce or eliminate the effects mediated by histamine.
  • Some examples of conventional anti-histamines suitable for incorporation into or onto the present invention include, but are not limited to first-generation Hi-receptor antagonists: ethylenediamines (e.g., mepyramine (pyrilamine), antazoline), ethanolamines (e.g., diphenhydramine, carbinoxamine, doxylamine, clemastine, and dimenhydrinate), alkylamines (pheniramine, chlorphenamine (chlorpheniramine), dexchlorphenamine, brompheniramine, and triprolidine), piperazines (cyclizine, hydroxyzine, and meclizine), and tricyclics (promethazine, alimemazine (trimeprazine), cyproheptadine, and azatadine).
  • Second-generation H 1 -receptor antagonists are newer antihistamine drugs that are much more selective for peripheral H 1 receptors in preference to the central nervous system histaminergic and cholinergic receptors. This selectivity significantly reduces the occurrence of adverse drug reactions compared with first-generation agents, while still providing effective relief of allergic conditions. Both systemic (acrivastine, astemizole, cetirizine, loratadine, mizolastine) and topical (azelastine, levocabastine, and olopatadine) could be used.
  • cromoglicate cromolyn
  • nedocromil cromoglicate
  • Anti-histamine can be incorporated into the sensor by any convenient system or technique known to those skilled in the art.
  • antihistamine is incorporated into a biodegradable shedding layer. As the shedding layer is degraded, the anti-histamine is released into the surrounding area, to suppress histamine release and down-stream inflammation processes, thereby suppressing interferant build up and improving sensor function.
  • anti-histamine is sprayed on the surface of the completed sensor and dried. Upon insertion, the anti-histamine is solublized, suppresses histamine production and downstream inflammation mediators, thereby reducing noise.
  • wounding can be suppressed by the inclusion of anti-inflammatory agents.
  • anti-inflammatory agents reduce acute and/or chronic inflammation adjacent to the implant, in order to decrease the formation of a FBC capsule to reduce or prevent barrier cell layer formation.
  • Suitable antiinflammatory agents include but are not limited to, for example, nonsteroidal antiinflammatory drugs (NSAIDs) such as acetometaphen, aminosalicylic acid, aspirin, celecoxib, choline magnesium trisalicylate, diclofenac potassium, diclofenac sodium, diflunisal, etodolac, fenoprofen, flurbiprofen, ibuprofen, indomethacin, interleukin (IL)-IO, IL-6 mutein, anti-IL-6 iNOS inhibitors (for example, L-NAME or L-NMDA), Interferon, ketoprofen, ketorolac, leflunomide, melenamic acid, mycophenolic acid, mizoribine, nabumetone, naproxen, naproxen sodium, oxaprozin, piroxicam, rofecoxib, salsalate, sulindac, and tolmetin; and corticosteroids such as cor
  • glucocorticoids stimulate the movement of lipocortin-1 into the extracellular space, where it binds to leukocyte membrane receptors and inhibits various inflammatory events: such as epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes.
  • various inflammatory mediators lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.
  • the senor is coated with dexamethasone or dexamethasone is incorporated into a protective layer or film, such as a hydrophilic silicone protective film.
  • a protective layer or film such as a hydrophilic silicone protective film.
  • the dexamethasone is released from the surface of the sensor and interacts with the surrounding tissue, thereby reducing or eliminating local inflammation and early noise.
  • an immunosuppressive and/or immunomodulatory agent is included in the sensor to suppress wound healing and/or fluid pocket formation, thereby reducing noise.
  • immunosuppressive and/or immunomodulatory agents interfere directly with several key mechanisms necessary for involvement of different cellular elements in the inflammatory response.
  • Suitable immunosuppressive and/or immunomodulatory agents include anti-proliferative, cell-cycle inhibitors, (for example, paclitaxel, cytochalasin D, infiximab), taxol, actinomycin, mitomycin, thospromote VEGF, estradiols, NO donors, QP-2, tacrolimus, tranilast, actinomycin, everolimus, methothrexate, mycophenolic acid, angiopeptin, vincristing, mitomycine, statins, C MYC antisense, sirolimus (and analogs), RestenASE, 2-chloro-deoxyadenosine, PCNA Ribozyme, batimstat, prolyl hydroxylase inhibitors, PP ARy ligands (for example troglitazone, rosiglitazone, pioglitazone), halofuginone, C-proteinase inhibitors, probucol, BCP671, EPC antibodies, catch
  • the biointerface comprises a pro-inflammatory architecture configured to promote substantially rapid fluid influx (e.g., due to inflammation and the like) after sensor insertion followed by an extended quiescent period (e.g., during which wound healing is suppressed).
  • substantially rapid fluid influx e.g., due to inflammation and the like
  • an extended quiescent period e.g., during which wound healing is suppressed.
  • an anti-infective agent is incorporated into the sensor, to prevent a local infection that would stimulate inflammation around the sensor. Accordingly, the inflammation signal cascade and concomitant metabolic changes will be suppressed, resulting in noise suppression.
  • anti-infective agents are substances capable of acting against infection by inhibiting the spread of an infectious agent or by killing the infectious agent outright, which can serve to reduce immuno-response without inflammatory response at the implant site.
  • Anti-infective agents include, but are not limited to, anthelmintics (mebendazole), antibiotics including aminoclycosides (gentamici ⁇ , neomycin, tobramycin), antifungal antibiotics (amphotericin b, fluconazole, griseofulvin, itraconazole, ketoconazole, nystatin, micatin, tolnaftate), cephalosporins (cefaclor, cefazolin, cefotaxime, ceftazidime, ceftriaxone, cefuroxime, cephalexin), beta-lactam antibiotics (cefotetan, meropenem), chloramphenicol, macrolides (azithromycin, clarithromycin, erythromycin), penicillins (penicillin G sodium salt, amoxicillin, ampicillin, dicloxacillin, nafcillin, piperacillin, ticarcillin), tetracyclines (doxy
  • interferant scavengers can be applied to the sensor, to remove electroactive interferants. While not wishing to be bound by theory, it is believed that removal of electroactive interferants around the sensor can reduce early noise and promote increased sensor sensitivity during the first few hours or days of sensor use.
  • Interferant scavengers can include enzymes, such as superoxide dismutase (SOD), thioredoxin, glutathione peroxidase and catalase, anti-oxidants, such as uric acid and vitamin C, iron compounds, Heme compounds, and some heavy metals.
  • SOD superoxide dismutase
  • thioredoxin glutathione peroxidase and catalase
  • anti-oxidants such as uric acid and vitamin C, iron compounds, Heme compounds, and some heavy metals.
  • a hydrogel containing SOD and horseradish peroxidase (HRP) is coated on the surface of the sensor.
  • HRP horseradish peroxidase
  • the SOD decomposes superoxide radicals from the surrounding cells into O 2 and H 2 O 2 .
  • the H 2 O 2 is subsequently broken down into water by HRP.
  • electroactive interferants such as superoxide and hydrogen peroxide, can be removed and oxygen provided for the glucose oxidase component of the sensor.
  • At least a portion of the sensor is coated with an artificial protective coating to reduce wounding.
  • protective coating is a broad term and is used in its ordinary sense, including, without limitation, a coating of proteins and other molecules, such as those found in serous fluid. While not wishing to be bound by theory, it is believed that after the first about 2 to about 36 hours of sensor insertion, the host's biological processes provide a protective coating surrounding the sensor that protects the sensor from these endogenous interferants ' or other in vivo effects. In one exemplary embodiment, at least a portion of the sensor is coated with an artificial protective coating.
  • the artificial protective coating components can include but are not limited to albumin, fibrin, collagen, endothelial cells, wound closure chemicals, blood products, platelet-rich plasma, growth factors and the like.
  • a protective coating can be applied to the sensor in any convenient way, such as but not limited to dipping the sensor into a mixture of protective coating components, spraying or incorporating the protective coating components into a biointerface membrane.
  • a protective film can prevent sensor degradation associated with the local environment and promote integration of the biointerface into the surrounding tissue.
  • a silicone coating or hydrophilic shedding layer can be applied to the sensor. While not wishing to be bound by theory, it is believed that a silicone bioprotective coating or shedding layer can promote formation and maintenance of a fluid pocket around the sensor, to enhance glucose and fluid transport as well as clearance of interferants.
  • a silicone bioprotective coating can create a local environment with enhanced vascular permeability and/or vascularization. Such a coating is believed to speed up the inflammatory response to achieve a substantially consistent wound environment more quickly than without the coating.
  • a silicone bioprotective coating is believed to be able to subdue the inflammatory response to reduce production of cellular byproducts that are believed to be electrochemical interferants.
  • a silicone bioprotective coating can consist of one or more layer(s) formed from a composition that, in addition to providing high oxygen solubility, allows for the transport of glucose or other such water-soluble molecules (for example, drugs).
  • these layers comprise a blend of a silicone polymer with a hydrophilic polymer.
  • hydrophilic polymer it is meant that the polymer has a substantially hydrophilic domain in which aqueous substances can easily dissolve.
  • the hydrophilic polymer has a molecular weight of at least about 1000 g/mol, 5,000 g/mol, 8,000 g/mol, 10,000 g/mol, or 15,000 g/mol.
  • the hydrophilic polymer comprises both a hydrophilic domain and a partially hydrophobic domain (e.g., a copolymer).
  • the hydrophobic domain(s) facilitate the blending of the hydrophilic polymer with the hydrophobic silicone polymer.
  • the hydrophobic domain is itself a polymer (i.e., a polymeric hydrophobic domain).
  • the hydrophobic domain is not a simple molecular head group but is rather polymeric.
  • the molecular weight of any covalently continuous hydrophobic domain within the hydrophilic polymer is at least about 500 g/mol, 700 g/mol, 1000 g/mol, 2000 g/mol, 5000 g/mol, or 8,000 g/mol. In various embodiments, the molecular weight of any covalently continuous hydrophilic domain within the hydrophilic polymer is at least about 500 g/mol, 700 g/mol, 1000 g/mol, 2000 g/mol, 5000 g/mol, or 8,000 g/mol. In various embodiments, the layers comprise a blend of a silicone polymer with a hydrophilic polymer as disclosed in copending U.S. patent application 11/404,417, filed 4/14/2006 and entitled "SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS.”
  • a shedding layer composed of a hydrophilic silicone film and a necrosing agent can be applied in combination to at least a portion of the sensor.
  • the silicone film can suppress protein adherence to the sensor surface while the necrosing agent can devitalize a small portion of tissue adjacent to the sensor, stimulating formation of a fluid pocket around the liydrophilic silicone film.
  • the increased volume of fluid surrounding the sensor dilutes interferants while the shedding layer provides a physical separation between the sensor and the surrounding tissue.
  • a mesh sprayed with dexamethasone is wrapped around the exterior of the sensor.
  • the mesh can provide a physical spacer for a fluid pocket while the dexamethasone inhibits inflammation.
  • fluid can fill the mesh and the dexamethasone can promote normal tissue metabolism around the sensor by inhibiting an influx of inflammatory cells. Consequently, glucose and oxygen can travel freely between the tissue and the sensor through the fluid filled mesh without a buildup of interferants, even during periods of tissue compression, thereby promoting sensor sensitivity and thereby reducing noise.
  • the analyte sensors 34 of the preferred embodiments include a sensing mechanism 36 with a small structure (e.g., small structured-, micro- or small diameter sensor, see Fig. 3A), for example, a needle-type sensor, in at least a portion thereof.
  • a small structure preferably refers to an architecture with at least one dimension less than about 1 mm.
  • the small structured sensing mechanism can be wire-based, substrate based, or any other architecture.
  • the term "small structure” can also refer to slightly larger structures, such as those having their smallest dimension being greater than about 1 mm, however, the architecture (e.g., mass or size) is designed to minimize the foreign body response due to size and/or mass.
  • a biointerface membrane is formed onto the sensing mechanism 36 as described in more detail below.
  • Fig. 3 A is an expanded view of an exemplary embodiment of a continuous analyte sensor 34, also referred to as a transcutaneous analyte sensor, or needle-type sensor, particularly illustrating the sensing mechanism 36.
  • the sensing mechanism comprises a small structure as defined herein and is adapted for insertion under the host's skin, and the remaining body of the sensor (e.g., electronics, etc) can reside ex vivo.
  • the analyte sensor 34 includes two electrodes, i.e., a working electrode 38 and at least one additional electrode 30, which can function as a counter and/or reference electrode, hereinafter referred to as the reference electrode 30.
  • each electrode is formed from a fine wire with a diameter of from about 0.001 or less to about 0.010 inches or more, for example, and is formed from, e.g., a plated insulator, a plated wire, or bulk electrically conductive material.
  • a variety of known transcutaneous sensor configurations can be employed with the transcutaneous analyte sensor system of the preferred embodiments, such as are described in U.S. Patent No. 6,695,860 to Ward et ⁇ l., U.S. Patent No. 6,565,509 to Say et ⁇ l., U.S. Patent No. 6,248,067 to Causey III, et ⁇ l, and U.S. Patent No. 6,514,718 to Heller et ⁇ l.
  • the working electrode comprises a wire formed from a conductive material, such as platinum, platinum-iridium, palladium, graphite, gold, carbon, conductive polymer, alloys, or the like.
  • a conductive material such as platinum, platinum-iridium, palladium, graphite, gold, carbon, conductive polymer, alloys, or the like.
  • the electrodes can by formed by a variety of manufacturing techniques (bulk metal processing, deposition of metal onto a substrate, or the like), it can be advantageous to form the electrodes from plated wire (e.g., platinum on steel wire) or bulk metal (e.g., platinum wire).
  • electrodes formed from bulk metal wire provide superior performance (e.g., in contrast to deposited electrodes), including increased stability of assay, simplified manufacturability, resistance to contamination (e.g., which can be introduced in deposition processes), and improved surface reaction (e.g. , due to purity of material) without peeling or delamination.
  • the working electrode 38 is configured to measure the concentration of an " analyte.
  • the working electrode measures the hydrogen peroxide produced by an enzyme catalyzed reaction of the analyte being detected and creates a measurable electronic current.
  • glucose oxidase produces hydrogen peroxide as a byproduct
  • hydrogen peroxide reacts with the surface of the working electrode producing two protons (2H + ), two electrons (2e " ) and one molecule of oxygen (O 2 ), which produces the electronic current being detected.
  • the working electrode 38 is covered with an insulating material, for example, a non-conductive polymer. Dip-coating, spray-coating, vapor-deposition, or other coating or deposition techniques can be used to deposit the insulating material on the working electrode.
  • the insulating material comprises parylene, which can be an advantageous polymer coating for its strength, lubricity, and electrical insulation properties. Generally, parylene is produced by vapor deposition and polymerization of para-xylylene (or its substituted derivatives). However, any suitable insulating material can be used, for example, fluorinated polymers, polyethyleneterephthalate, polyurethane, polyimide, other nonconducting polymers, or the like.
  • Glass or ceramic materials can also be employed.
  • Other materials suitable for use include surface energy modified coating systems such as are marketed under the trade names AMC18, AMC148, AMC141, and AMC321 by Advanced Materials Components Express of Bellafonte, PA.
  • the working electrode cannot require a coating of insulator.
  • the reference electrode 30, which can function as a reference electrode alone, or as a dual reference and counter electrode, is formed from silver, silver/silver chloride, or the like.
  • the electrodes are juxtapositioned and/or twisted with or around each other; however other configurations are also possible.
  • the reference electrode 30 is helically wound around the working electrode 38 as illustrated in Fig. 3A.
  • the assembly of wires can then be optionally coated together with an insulating material, similar to that described above, in order to provide an insulating attachment (e.g., securing together of the working and reference electrodes).
  • a portion of the coated assembly structure can be stripped or otherwise removed, for example, by hand, excimer lasing, chemical etching, laser ablation, grit-blasting (e.g., with sodium bicarbonate or other suitable grit), or the like, to expose the electroactive surfaces.
  • grit-blasting e.g., with sodium bicarbonate or other suitable grit
  • a portion of the electrode can be masked prior to depositing the insulator in order to maintain an exposed electroactive surface area.
  • grit blasting is implemented to expose the electroactive surfaces, preferably utilizing a grit material that is sufficiently hard to ablate the polymer material, while being sufficiently soft so as to minimize or avoid damage to the underlying metal electrode (e.g., a platinum electrode).
  • a grit material that is sufficiently hard to ablate the polymer material, while being sufficiently soft so as to minimize or avoid damage to the underlying metal electrode (e.g., a platinum electrode).
  • grit a variety of "grit” materials can be used (e.g., sand, talc, walnut shell, ground plastic, sea salt, and the like)
  • sodium bicarbonate is an advantageous grit-material because it is sufficiently hard to ablate, e.g., a parylene coating without damaging, e.g., an underlying platinum conductor.
  • One additional advantage of sodium bicarbonate blasting includes its polishing action on the metal as it strips the polymer layer, thereby eliminating a cleaning step that might otherwise be necessary.
  • a radial window is formed through the insulating material to expose a circumferential electroactive surface of the working electrode.
  • sections of electroactive surface of the reference electrode are exposed.
  • the sections of electroactive surface can be masked during deposition of an outer insulating layer or etched after deposition of an outer insulating layer.
  • cellular attack or migration of cells to the sensor can cause reduced sensitivity and/or function of the device, particularly after the first day of implantation.
  • the exposed electroactive surface is distributed circumferentially about the sensor (e.g., as in a radial window)
  • the available surface area for reaction can be sufficiently distributed so as to minimize the effect of local cellular invasion of the sensor on the sensor signal.
  • a tangential exposed electroactive window can be formed, for example, by stripping only one side of the coated assembly structure.
  • the window can be provided at the tip of the coated assembly structure such that the electroactive surfaces are exposed at the tip of the sensor.
  • Other methods and configurations for exposing electroactive surfaces can also be employed.
  • the above-exemplified sensor has an overall diameter of not more than about 0.020 inches (about 0.51 mm), more preferably not more than about 0.018 inches (about 0.46 mm), and most preferably not more than about 0.016 inches (0.41 mm).
  • the working electrode has a diameter of from about 0.001 inches or less to about 0.010 inches or more, preferably from about 0.002 inches to about 0.008 inches, and more preferably from about 0.004 inches to about 0.005 inches.
  • the length of the window can be from about 0.1 mm (about 0.004 inches) or less to about 2 mm (about 0.078 inches) or more, and preferably from about 0.5 mm (about 0.02 inches) to about 0.75 mm (0.03 inches).
  • the exposed surface area of the working electrode is preferably from about 0.000013 in 2 (0.0000839cm 2 ) or less to about 0.0025 in 2 (0.016129 cm 2 ) or more (assuming a diameter of from about 0.001 inches to about 0.010 inches and a length of from about 0.004 inches to about 0.078 inches).
  • the preferred exposed surface area of the working electrode is selected to produce an analyte signal with a current in the picoAmp range, such as is described in more detail elsewhere herein.
  • a current in the picoAmp range can be dependent upon a variety of factors, for example the electronic circuitry design (e.g., sample rate, current draw, A/D converter bit resolution, etc.), the membrane system (e.g., permeability of the analyte through the membrane system), and the exposed surface area of the working electrode.
  • the exposed electroactive working electrode surface area can be selected to have a value greater than or less than the above-described ranges taking into consideration alterations in the membrane system and/or electronic circuitry.
  • the exposed surface area of the working (and/or other) electrode can be increased by altering the cross-section of the electrode itself.
  • the cross-section of the working electrode can be defined by a cross, star, cloverleaf, ribbed, dimpled, ridged, irregular, or other non-circular configuration; thus, for any predetermined length of electrode, a specific increased surface area can be achieved (as compared to the area achieved by a circular cross-section).
  • Increasing the surface area of the working electrode can be advantageous in providing an increased signal responsive to the analyte concentration, which in turn can be helpful in improving the signal-to-noise ratio, for example.
  • additional electrodes can be included within the assembly, for example, a three-electrode system (working, reference, and counter electrodes) and/or an additional working electrode (e.g., an electrode which can be used to generate oxygen, which is configured as a baseline subtracting electrode, or which is configured for measuring additional analytes).
  • a three-electrode system working, reference, and counter electrodes
  • an additional working electrode e.g., an electrode which can be used to generate oxygen, which is configured as a baseline subtracting electrode, or which is configured for measuring additional analytes.
  • U.S. Patent No. 7,081,195 and U.S. Publication No. US-2005-0143635-A1 describe some systems and methods for implementing and using additional working, counter, and/or reference electrodes.
  • the two working electrodes are juxtapositioned (e.g., extend parallel to each other), around which the reference electrode is disposed (e.g., helically wound).
  • the working electrodes can be formed in a double-, triple-, quad-, etc.
  • the resulting electrode system can be configured with an appropriate membrane system, wherein the first working electrode is configured to measure a first signal comprising glucose and baseline and the additional working electrode is configured to measure a baseline signal consisting of baseline only (e.g., configured to be substantially similar to the first working electrode without an enzyme disposed thereon.)
  • the baseline signal can be subtracted from the first signal to produce a glucose-only signal that is substantially not host to fluctuations in the baseline and/or interfering species on the signal. Accordingly, the above-described dimensions can be altered as desired.
  • the working electrode comprises a tube with a reference electrode disposed or coiled inside, including an insulator there between.
  • the reference electrode comprises a tube with a working electrode disposed or coiled inside, including an insulator there between.
  • a polymer (e.g., insulating) rod is provided, wherein the electrodes are deposited (e.g., electro-plated) thereon.
  • a metallic (e.g., steel) rod is provided, coated with an insulating material, onto which the working and reference electrodes are deposited.
  • one or more working electrodes are helically wound around a reference electrode.
  • the methods of preferred embodiments are especially well suited for use with small structured-, micro- or small diameter sensors, the methods can also be suitable for use with larger diameter sensors, e.g., sensors of 1 mm to about 2 mm or more in diameter.
  • the sensing mechanism includes electrodes deposited on a planar substrate, wherein the thickness of the implantable portion is less than about 1 mm, see, for example U.S. Patent No. 6,175,752 to Say et al. and U.S. Patent No. 5,779,665 to Mastrototaro et al., both of which are incorporated herein by reference in their entirety.
  • a sensing membrane 32 is disposed over the electroactive surfaces of the sensor 34 and includes one or more domains or layers (Fig. 3B, for example).
  • the sensing membrane functions to control the flux of a biological fluid there through and/or to protect sensitive regions of the sensor from contamination by the biological fluid, for example.
  • Some conventional electrochemical enzyme-based analyte sensors generally include a sensing membrane that controls the flux of the analyte being measured, protects the electrodes from contamination of the biological fluid, and/or provides an enzyme that catalyzes the reaction of the analyte with a co-factor, for example. See, e.g., U.S. Publication No. 2005-0245799-A1 and U.S. Publication No. US-2006-0020187-Al . l
  • the sensing membranes of the preferred embodiments can include any membrane configuration suitable for use with any analyte sensor (such as described in more detail above).
  • the sensing membranes of the preferred embodiments include one or more domains, all or some of which can be adhered to or deposited on the analyte sensor as is appreciated by one skilled in the art.
  • the sensing membrane generally provides one or more of the following functions: 1) protection of the exposed electrode surface from the biological environment, 2) diffusion resistance (limitation) of the analyte, 3) a catalyst for enabling an enzymatic reaction, 4) limitation or blocking of interfering species, and 5) hydrophilicity at the electrochemically reactive surfaces of the sensor interface, such as described in the above-referenced co-pending U.S. Patent Applications. Electrode Domain
  • the membrane system comprises an optional electrode domain.
  • the electrode domain is provided to ensure that an electrochemical reaction occurs between the electroactive surfaces of the working electrode and the reference electrode, and thus the electrode domain is preferably situated more proximal to the electroactive surfaces than the enzyme domain.
  • the electrode domain includes a semipermeable coating that maintains a layer of water at the electrochemically reactive surfaces of the sensor, for example, a humectant in a binder material can be employed as an electrode domain; this allows for the full transport of ions in the aqueous environment.
  • the electrode domain can also assist in stabilizing the operation of the sensor by overcoming electrode start-up and drifting problems caused by inadequate electrolyte.
  • the material that forms the electrode domain can also protect against pH-mediated damage that can result from the formation of a large pH gradient due to the electrochemical activity of the electrodes.
  • the electrode domain includes a flexible, water- swellable, hydrogel film having a "dry film” thickness of from about 0.05 micron or less to about 20 microns or more, more preferably from about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, 1.5, 2, 2.5, 3, or 3.5 to about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 19.5 microns, and more preferably from about 2, 2.5 or 3 microns to about 3.5, 4, 4.5, or 5 microns.
  • “Dry film” thickness refers to the thickness of a cured film cast from a coating formulation by standard coating techniques.
  • the electrode domain is formed of a curable mixture of a urethane polymer and a hydrophilic polymer.
  • Particularly preferred coatings are formed of a polyurethane polymer having carboxylate functional groups and non-ionic hydrophilic polyether segments, wherein the polyurethane polymer is crosslinked with a water soluble carbodiimide (e.g., l-ethyl-3-(3- dimethylaminopropyl)carbodiimide (EDC))) in the presence of polyvinylpyrrolidone and cured at a moderate temperature of about 5O 0 C.
  • a water soluble carbodiimide e.g., l-ethyl-3-(3- dimethylaminopropyl)carbodiimide (EDC)
  • the electrode domain is deposited by spray or dip-coating the electroactive surfaces of the sensor. More preferably, the electrode domain is formed by dip- coating the electroactive surfaces in an electrode solution and curing the domain for a time of from about 15 to about 30 minutes at a temperature of from about 40 to about 55 0 C (and can be accomplished under vacuum (e.g., 20 to 30 mmHg)).
  • a preferred insertion rate of from about 1 to about 3 inches per minute, with a preferred dwell time of from about 0.5 to about 2 minutes, and a preferred withdrawal rate of from about 0.25 to about 2 inches per minute provide a functional coating.
  • the electroactive surfaces of the electrode system are dip-coated one time (one layer) and cured at 50 0 C under vacuum for 20 minutes.
  • interference domain and/or enzyme domain the domain adjacent to the electroactive surfaces
  • sufficient hydrophilicity can be provided in the interference domain and/or enzyme domain (the domain adjacent to the electroactive surfaces) so as to provide for the full transport of ions in the aqueous environment (e.g. without a distinct electrode domain).
  • an optional interference domain is provided, which generally includes a polymer domain that restricts the flow of one or more interferants.
  • the interference domain functions as a molecular sieve that allows analytes and other substances that are to be measured by the electrodes to pass through, while preventing passage of other substances, including interferants such as ascorbate and urea (see U.S. Patent No 6,001,067 to Shults).
  • Some known interferants for a glucose-oxidase based electrochemical sensor include acetaminophen, ascorbic acid, bilirubin, cholesterol, creatinine, dopamine, ephedrine, ibuprofen, L-dopa, methyldopa, salicylate, tetracycline, tolazamide, tolbutamide, triglycerides, and uric acid.
  • the interference domain includes a thin, hydrophobic membrane that is non-swellable and restricts diffusion of low molecular weight species.
  • the interference domain is permeable to relatively low molecular weight substances, such as hydrogen peroxide, but restricts the passage of higher molecular weight substances, including glucose and ascorbic acid.
  • Other systems and methods for reducing or eliminating interference species that can be applied to the membrane system of the preferred embodiments are described in U.S. Patent No. 7,074,307, U.S. Publication No. US-2005-0176136-A1, U.S. Patent No. 7,081,195 and U.S. Publication No. US-2005-0143635-A1.
  • a distinct interference domain is not included.
  • the interference domain is deposited onto the electrode domain (or directly onto the electroactive surfaces when a distinct electrode domain is not included) for a domain thickness of from about 0.05 micron or less to about 20 microns or more, more preferably from about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, 1.5, 2, 2.5, 3, or 3.5 to about 4, 5 ' , 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 19.5 microns, and more preferably from about 2, 2.5 or 3 microns to about 3.5, 4, 4.5, or 5 microns.
  • Thicker membranes can also be useful, but thinner membranes are generally preferred because they have a lower impact on the rate of diffusion of hydrogen peroxide from the enzyme membrane to the electrodes.
  • the thin thickness of the interference domains conventionally used can introduce variability in the membrane system processing. For example, if too much or too little interference domain is incorporated within a membrane system, the performance of the membrane can be adversely affected.
  • the membrane system further includes an enzyme domain (e.g., Fig. 3B, 46) disposed more distally from the electroactive surfaces than the interference domain (or electrode domain when a distinct interference is not included).
  • the enzyme domain is directly deposited onto the electroactive surfaces (when neither an electrode or interference domain is included; e.g., Fig. 3B, 44).
  • the enzyme domain provides an enzyme to catalyze the reaction of the analyte and its co-reactant, as described in more detail below.
  • the enzyme domain includes glucose oxidase, however other oxidases, for example, galactose oxidase or uricase oxidase, can also be used.
  • the sensor's response is preferably limited by neither enzyme activity nor co-reactant concentration. Because enzymes, including glucose oxidase, are subject to deactivation as a function of time even in ambient conditions, this behavior is compensated for in forming the enzyme domain.
  • the enzyme domain is constructed of aqueous dispersions of colloidal polyurethane polymers including the enzyme.
  • the enzyme domain is constructed from an oxygen enhancing material, for example, silicone or fluorocarbon, in order to provide a supply of excess oxygen during transient ischemia.
  • the enzyme is immobilized within the domain. See U.S. Publication No. US- 2005-0054909-A1.
  • the enzyme domain is deposited onto the interference domain for a domain thickness of from about 0.05 micron or less to about 20 microns or more, more preferably from about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, 1.5, 2, 2.5, 3, or 3.5 to about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 19.5 microns, and more preferably from about 2, 2.5 or 3 microns to about 3.5, 4, 4.5, or 5 microns.
  • the enzyme domain is deposited onto the electrode domain or directly onto the electroactive surfaces.
  • the enzyme domain 46 is deposited by spray or dip coating.
  • the enzyme domain is formed by dip- coating the electrode domain into an enzyme domain solution and curing the domain for from about 15 to about 30 minutes at a temperature of from about 40 to about 55 0 C (and can be accomplished under vacuum (e.g., 20 to 30 mmHg)).
  • a preferred insertion rate of from about 1 inch per minute to about 3 inches per minute, with a preferred dwell time of from about 0.5 minutes to about 2 minutes, and a preferred withdrawal rate of from about 0.25 inch per minute to about 2 inches per minute provide a functional coating.
  • the enzyme domain is formed by dip coating two times (namely, forming two layers) in a coating solution and curing at 50 0 C under vacuum for 20 minutes.
  • the enzyme domain can be formed by dip-coating and/or spray-coating one or more layers at a predetermined concentration of the coating solution, insertion rate, dwell time, withdrawal rate, and/or desired thickness.
  • the membrane system includes a resistance domain disposed more distal from the electroactive surfaces than the enzyme domain (e.g., Fig.3B, 48).
  • the resistance domain can be modified for other analytes and co-reactants as well.
  • an immobilized enzyme-based glucose sensor employing oxygen as co-reactant is preferably supplied with oxygen in non-rate-limiting excess in order for the sensor to respond linearly to changes in glucose concentration, while not responding to changes in oxygen concentration. Specifically, when a glucose-monitoring reaction is oxygen limited, linearity is not achieved above minimal concentrations of glucose.
  • a linear response to glucose levels can be obtained only for glucose concentrations of up to about 40 mg/dL. However, in a clinical setting, a linear response to glucose levels is desirable up to at least about 400 mg/dL.
  • the resistance domain includes a semi permeable membrane that controls the flux of oxygen and glucose to the underlying enzyme domain, preferably rendering oxygen in a non-rate-limiting excess.
  • the resistance domain exhibits an oxygen to glucose permeability ratio of from about 50:1 or less to about 400:1 or more, preferably about 200:1.
  • one-dimensional reactant diffusion is adequate to provide excess oxygen at all reasonable glucose and oxygen concentrations found in the subcutaneous matrix (See Rhodes et al, Anal. Chem., 66:1520-1529 (1994)).
  • a lower ratio of oxygen-to-glucose can be sufficient to provide excess oxygen by using a high oxygen solubility domain (for example, a silicone or fluorocarbon-based material or domain) to enhance the supply/transport of oxygen to the enzyme domain. If more oxygen is supplied to the enzyme, then more glucose can also be supplied to the enzyme without creating an oxygen rate-limiting excess.
  • the resistance domain is formed from a silicone composition, such as is described in U.S. Publication No. US-2005-0090607-A1.
  • the resistance domain includes a polyurethane membrane with both hydrophilic and hydrophobic regions to control the diffusion of glucose and oxygen to an analyte sensor, the membrane being fabricated easily and reproducibly from commercially available materials.
  • a suitable hydrophobic polymer component is a polyurethane, or polyetherurethaneurea.
  • Polyurethane is a polymer produced by the condensation reaction of a diisocyanate and a difunctional hydroxyl-containing material.
  • a polyurethaneurea is a polymer produced by the condensation reaction of a diisocyanate and a difunctional amine-containing material.
  • Preferred diisocyanates include aliphatic diisocyanates containing from about 4 to about 8 methylene units.
  • Diisocyanates containing cycloaliphatie moieties can also be useful in the preparation of the polymer and copolymer components of the membranes of preferred embodiments.
  • the material that forms the basis of the hydrophobic matrix of the resistance domain can be any of those known in the art as appropriate for use as membranes in sensor devices and as having sufficient permeability to allow relevant compounds to pass through it, for example, to allow an oxygen molecule to pass through the membrane from the sample under examination in order to reach the active enzyme or electrochemical electrodes.
  • non-polyurethane type membranes examples include vinyl polymers, polyethers, polyesters, polyamides, inorganic polymers such as polysiloxanes and polycarbosiloxanes, natural polymers such as cellulosic and protein based materials, and mixtures or combinations thereof.
  • the hydrophilic polymer component is polyethylene oxide as disclosed in copending U.S. Patent Application No. 11/404,417, filed April 14, 2006 and entitled "SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS.”
  • one useful hydrophobic-hydrophilic copolymer component is a polyurethane polymer that includes about 20% hydrophilic polyethylene oxide.
  • the polyethylene oxide portions of the copolymer are thermodynamically driven to separate from the hydrophobic portions of the copolymer and the hydrophobic polymer component.
  • the 20% polyethylene oxide-based soft segment portion of the copolymer used to form the final blend affects the water pick-up and subsequent glucose permeability of the membrane.
  • the resistance domain is deposited onto the enzyme domain to yield a domain thickness of from about 0.05 micron or less to about 20 microns or more, more preferably from about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, 1.5, 2, 2.5, 3, or 3.5 to about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 19.5 microns, and more preferably from about 2, 2.5 or 3 microns to about 3.5, 4, 4.5, or 5 microns.
  • the resistance domain is deposited onto the enzyme domain by spray coating or dip coating. In certain embodiments, spray coating is the preferred deposition technique.
  • One additional advantage of spray-coating the resistance domain as described in the preferred embodiments includes formation of a membrane system that substantially blocks or resists ascorbate (a known electrochemical interferant in hydrogen peroxide-measuring glucose sensors). While not wishing to be bound by theory, it is believed that during the process of depositing the resistance domain as described in the preferred embodiments, a structural morphology is formed, characterized in that ascorbate does not substantially permeate there through.
  • the resistance domain is deposited on the enzyme domain by spray-coating a solution of from about 1 wt. % to about 5 wt. % polymer and from about 95 wt. % to about 99 wt. % solvent.
  • a solution of resistance domain material including a solvent
  • Tetrahydrofuran (THF) is one solvent that minimally or negligibly affects the enzyme of the enzyme domain upon spraying. Other solvents can also be suitable for use, as is appreciated by one skilled in the art.
  • the resistance domain is spray-coated and subsequently cured for a time of from about 15 to about 90 minutes at a temperature of from about 40 to about 60 0 C (and can be accomplished under vacuum ⁇ e.g., 20 to 30 mmHg)).
  • a cure time of up to about 90 minutes or more can be advantageous to ensure complete drying of the resistance domain. While not wishing to be bound by theory, it is believed that complete drying of the resistance domain aids in stabilizing the sensitivity of the glucose sensor signal. It reduces drifting of the signal sensitivity over time, and complete drying is believed to stabilize performance of the glucose sensor signal in lower oxygen environments.
  • the resistance domain is formed by spray-coating at least six layers (namely, rotating the sensor seventeen times by 120° for at least six layers of 360° coverage) and curing at 50°C under vacuum for 60 minutes.
  • the resistance domain can be formed by dip-coating or spray-coating any layer or plurality of layers, depending upon the concentration of the solution, insertion rate, dwell time, withdrawal rate, and/or the desired thickness of the resulting film.
  • sensors with the membrane system of the preferred embodiments including an electrode domain and/or interference domain, an enzyme domain, and a resistance domain, provide stable signal response to increasing glucose levels of from about 40 to about 400 mg/dL, and sustained function (at least 90% signal strength) even at low oxygen levels (for example, at about 0.6 mg/L O 2 ). While not wishing to be bound by theory, it is believed that the resistance domain provides sufficient resistivity, or the enzyme domain provides sufficient enzyme, such that oxygen limitations are seen at a much lower concentration of oxygen as compared to prior art sensors.
  • a sensor signal with a current in the picoAmp range is preferred, which is described in more detail elsewhere herein.
  • the ability to produce a signal with a current in the picoAmp range can be dependent upon a combination of factors, including the electronic circuitry design (e.g., A/D converter, bit resolution, and the like), the membrane system (e.g., permeability of the analyte through the resistance domain, enzyme concentration, and/or electrolyte availability to the electrochemical reaction at the electrodes), and the exposed surface area of the working electrode.
  • the resistance domain can be designed to be more or less restrictive to the analyte depending upon to the design of the electronic circuitry, membrane system, and/or exposed electroactive surface area of the working electrode.
  • the membrane system is designed with a sensitivity of from about 1 pA/mg/dL to about 100 pA/mg/dL, preferably from about 5 pA/mg/dL to 25 pA/mg/dL, and more preferably from about 4 to about 7 pA/mg/dL. While not wishing to be bound by any particular theory, it is believed that membrane systems designed with a sensitivity in the preferred ranges permit measurement of the analyte signal in low analyte and/or low oxygen situations.
  • sensors of some embodiments described herein include an optional interference domain in order to block or reduce one or more interferants
  • sensors with the membrane system of the preferred embodiments, including an electrode domain, an enzyme domain, and a resistance domain have been shown to inhibit ascorbate without an additional interference domain.
  • the membrane system of the preferred embodiments, including an electrode domain, an enzyme domain, and a resistance domain has been shown to be substantially non-responsive to ascorbate in physiologically acceptable ranges. While not wishing to be bound by theory, it is believed that the process of depositing the resistance domain by spray coating, as described herein, results in a structural morphology that is substantially resistance resistant to ascorbate.
  • sensors can be built without distinct or deposited interference domains, which are non-responsive to interferants. While not wishing to be bound by theory, it is believed that a simplified multilayer membrane system, more robust multilayer manufacturing process, and reduced variability caused by the thickness and associated oxygen and glucose sensitivity of the deposited micron-thin interference domain can be provided. Additionally, the optional polymer-based interference domain, which usually inhibits hydrogen peroxide diffusion, is eliminated, thereby enhancing the amount of hydrogen peroxide that passes through the membrane system. Oxygen Conduit
  • certain sensors depend upon an enzyme within the membrane system through which the host's bodily fluid passes and in which the analyte (for example, glucose) within the bodily fluid reacts in the presence of a co-reactant (for example, oxygen) to generate a product.
  • the product is then measured using electrochemical methods, and thus the output of an electrode system functions as a measure of the analyte.
  • the sensor is a glucose oxidase based glucose sensor
  • the species measured at the working electrode is H 2 O 2 .
  • An enzyme, glucose oxidase catalyzes the conversion of oxygen and glucose to hydrogen peroxide and gluconate according to the following reaction: Glucose + O 2 ⁇ Gluconate + H 2 O 2
  • H 2 O 2 Because for each glucose molecule reacted there is a proportional change in the product, H 2 O 2 , one can monitor the change in H 2 O 2 to determine glucose concentration. Oxidation of H 2 O 2 by the working electrode is balanced by reduction of ambient oxygen, enzyme generated H 2 O 2 and other reducible species at a counter electrode, for example. See Fraser, D.M., "An Introduction to In Vivo Biosensing: Progress and Problems.” In “Biosensors and the Body,” D.M. Fraser, ed., 1997, pp. 1-56 John Wiley and Sons, New York))
  • glucose concentration is generally about one hundred times or more that of the oxygen concentration. Consequently, oxygen is a limiting reactant in the electrochemical reaction, and when insufficient oxygen is provided to the sensor, the sensor is unable to accurately measure glucose concentration. Thus, depressed sensor function or inaccuracy is believed to be a result of problems in availability of oxygen to the enzyme and/or electroactive surface(s).
  • an oxygen conduit for example, a high oxygen solubility domain formed from silicone or fluorochemicals
  • the oxygen conduit can be formed as a part of the coating (insulating) material or can be a separate conduit associated with the assembly of wires that forms the sensor.
  • Fig. 3B is a cross-sectional view through the sensor of Fig. 3 A on line B-B, showing an exposed electroactive surface of at least a working electrode 38 surrounded by a sensing membrane.
  • the sensing membranes of the preferred embodiments include a plurality of domains or layers, for example, an interference domain 44, an enzyme domain 46, and a resistance domain 48, and can include additional domains, such as an electrode domain, a cell impermeable domain, and/or an oxygen domain (not shown), such as described in more detail in the above-cited co-pending U.S. Patent Applications.
  • a sensing membrane modified for other sensors for example, by including fewer or additional domains is within the scope of the preferred embodiments.
  • one or more domains of the sensing membranes are formed from materials such as silicone, polytetrafluoroethylene, polyethylene-co-tetrafluoroethylene, polyolefin, polyester, polycarbonate, biostable polytetrafluoroethylene, homopolymers, copolymers, terpolymers of polyurethanes, polypropylene (PP), polyvinylchloride (PVC), polyvinylidene fluoride (PVDF), polybutylene terephthalate (PBT), polymethylmethacrylate (PMMA), polyether ether ketone (PEEK), polyurethanes, cellulosic polymers, poly(ethylene oxide), poly(propylene oxide) and copolymers and blends thereof, polysulfones and block copolymers thereof including, for example, di-block, tri-block, alternating, random and graft copolymers.
  • the sensing membrane can be deposited on the electroactive surfaces of the electrode material using known thin or thick film techniques (for example, spraying, electro-depositing, dipping, or the like).
  • the sensing membrane that surrounds the working electrode does not have to be the same structure as the sensing membrane that surrounds a reference electrode, etc.
  • the enzyme domain deposited over the working electrode does not necessarily need to be deposited over the reference and/or counter electrodes.
  • the senor is an enzyme-based electrochemical sensor, wherein the working electrode 38 measures the hydrogen peroxide produced by the enzyme catalyzed reaction of glucose being detected and creates a measurable electronic current (for example, detection of glucose utilizing glucose oxidase produces hydrogen peroxide as a by-product, H 2 O 2 reacts with the surface of the working electrode producing two protons (2H + ), two electrons (2e " ) and one molecule of oxygen (O 2 ) which produces the electronic current being detected), such as described in more detail above and as is appreciated by one skilled in the art.
  • one or more potentiostat is employed to monitor the electrochemical reaction at the electroactive surface of the working electrode(s).
  • the potentiostat applies a constant potential to the working electrode and its associated reference electrode to determine the current produced at the working electrode.
  • the current that is produced at the working electrode (and flows through the circuitry to the counter electrode) is substantially proportional to the amount of H 2 O 2 that diffuses to the working electrode.
  • the output signal is typically a raw data stream that is used to provide a useful value of the measured analyte concentration in a host to the host or doctor, for example.
  • Some alternative analyte sensors that can benefit from the systems and methods of the preferred embodiments include U.S. Patent No. 5,711,861 to Ward et al., U.S. Patent No. 6,642,015 to Vachon et al., U.S. Patent No. 6,654,625 to Say et al., U.S. Patent 6,565,509 to Say et al., U.S. Patent No. 6,514,718 to Heller, U.S. Patent No. 6,465,066 to Essenfeld et al., U.S. Patent No. 6,214,185 to Offenbacher et al., U.S. Patent No. 5,310,469 to Cunningham et al., and U.S.
  • Fig. 4A is a side schematic view of a transcutaneous analyte sensor 50 in one embodiment.
  • the sensor 50 includes a mounting unit 52 adapted for mounting on the skin of a host, a small diameter sensor 34 (as defined herein) adapted for transdermal insertion through the skin of a host, and an electrical connection configured to provide secure electrical contact between the sensor and the electronics preferably housed within the mounting unit 52.
  • the mounting unit 52 is designed to maintain the integrity of the sensor in the host so as to reduce or eliminate translation of motion between the mounting unit, the host, and/or the sensor. See U.S. Publication No. US-2006-0020187-A1.
  • a biointerface membrane is formed onto the sensing mechanism 34 as described in more detail below.
  • Fig. 4B is a side schematic view of a transcutaneous analyte sensor 54 in an alternative embodiment.
  • the sensor 54 includes a mounting unit 52 wherein the sensing mechanism 34 comprises a small structure as defined herein and is tethered to the mounting unit 52 via a cable 56 (alternatively, a wireless connection can be utilized).
  • the mounting unit is adapted for mounting on the skin of a host and is operably connected via a tether, or the like, to a small structured sensor 34 adapted for transdermal insertion through the skin of a host and measurement of the analyte therein; see, for example, U.S. Patent No. 6,558,330 to Causey III, et al., which is incorporated herein by reference in its entirety.
  • a biointerface membrane is formed onto the sensing mechanism 34 as described in more detail below.
  • the short-term sensor of the preferred embodiments can be inserted into a variety of locations on the host's body, such as the abdomen, the thigh, the upper arm, and the neck or behind the ear.
  • locations on the host's body such as the abdomen, the thigh, the upper arm, and the neck or behind the ear.
  • the preferred embodiments illustrate insertion through the abdominal region, the systems and methods described herein are limited neither to the abdominal nor to the subcutaneous insertions.
  • these systems and methods can be implemented and/or modified for other insertion sites and can be dependent upon the type, configuration, and dimensions of the analyte sensor.
  • an analyte-sensing device adapted for transcutaneous short-term insertion into the host.
  • the device includes a sensor, for measuring the analyte in the host, a porous, biocompatible matrix covering at least a portion of the sensor, and an applicator, for inserting the sensor through the host's skin.
  • the sensor has architecture with at least one dimension less than about 1 mm. Examples of such a structure are shown in Figures 4 A and 4B, as described elsewhere herein. However, one skilled in the art will recognize that alternative configurations are possible and can be desirable, depending upon factors such as intended location of insertion, for example.
  • the sensor is inserted through the host's skin and into the underlying tissue, such as soft tissue or fatty tissue.
  • fluid moves into the spacer, e.g., a biocompatible matrix or membrane, creating a fluid-filled pocket therein.
  • This process can occur immediately or can take place over a period of time, such as several minutes or hours post insertion.
  • a signal from the sensor is then detected, such as by the sensor electronics unit located in the mounting unit on the surface of the host's skin.
  • the sensor can be used continuously for a short period of days, such as 1 to 14 days.
  • the host can repeat the insertion and detection steps as many times as desired.
  • the sensor can be removed after about 3 days, and then another sensor inserted, and so on.
  • the sensor is removed after about 3, 5, 7, 10 or 14 days, followed by insertion of a new sensor, and so on.
  • transcutaneous analyte sensors are described in co- pending U.S. Patent Application 11/360,250, filed February 22, 2006 and entitled “ANALYTE SENSOR.”
  • transcutaneous analyte sensors comprise the sensor and a mounting unit with electronics associated therewith.
  • the mounting unit includes a base adapted for mounting on the skin of a host, a sensor adapted for transdermal insertion through the skin of a host, and one or more contacts configured to provide secure electrical contact between the sensor and the sensor electronics.
  • the mounting unit is designed to maintain the integrity of the sensor in the host so as to reduce or eliminate translation of motion between the mounting unit, the host, and/or the sensor.
  • the base can be formed from a variety of hard or soft materials, and preferably comprises a low profile for minimizing protrusion of the device from the host during use.
  • the base is formed at least partially from a flexible material, which is believed to provide numerous advantages over conventional transcutaneous sensors, which, unfortunately, can suffer from motion-related artifacts associated with the host's movement when the host is using the device. For example, when a transcutaneous analyte sensor is inserted into the host, various movements of the sensor (for example, relative movement between the in vivo portion and the ex vivo portion, movement of the skin, and/or movement within the host (dermis or subcutaneous)) create stresses on the device and can produce noise in the sensor signal.
  • the mounting unit is provided with an adhesive pad, preferably disposed on the mounting unit's back surface and preferably including a releasable backing layer.
  • an adhesive pad can be placed over some or all of the sensor system after sensor insertion is complete to ensure adhesion, and optionally to ensure an airtight seal or watertight seal around the wound exit-site (or sensor insertion site).
  • Appropriate adhesive pads can be chosen and designed to stretch, elongate, conform to, and/or aerate the region (e.g., host's skin).
  • the adhesive pad is formed from spun-laced, open- or closed-cell foam, and/or non-woven fibers, and includes an adhesive disposed thereon, however a variety of adhesive pads appropriate for adhesion to the host's skin can be used, as is appreciated by one skilled in the art of medical adhesive pads.
  • a double-sided adhesive pad is used to adhere the mounting unit to the host's skin.
  • the adhesive pad includes a foam layer, for example, a layer wherein the foam is disposed between the adhesive pad's side edges and acts as a shock absorber.
  • the surface area of the adhesive pad is greater than the surface area of the mounting unit's back surface.
  • the adhesive pad can be sized with substantially the same surface area as the back surface of the base portion.
  • the adhesive pad has a surface area on the side to be mounted on the host's skin that is greater than about 1, 1.25, 1.5, 1.75, 2, 2.25, or 2.5, times the surface area of the back surface of the mounting unit base.
  • Such a greater surface area can increase adhesion between the mounting unit and the host's skin, minimize movement between the mounting unit and the host's skin, and/or protect the wound exit-site (sensor insertion site) from environmental and/or biological contamination.
  • the adhesive pad can be smaller in surface area than the back surface assuming a sufficient adhesion can be accomplished.
  • the adhesive pad is substantially the same shape as the back surface of the base, although other shapes can also be advantageously employed, for example, butterfly-shaped, round, square, or rectangular.
  • the adhesive pad backing can be designed for two-step release, for example, a primary release wherein only a portion of the adhesive pad is initially exposed to allow adjustable positioning of the device, and a secondary release wherein the remaining adhesive pad is later exposed to firmly and securely adhere the device to the host's skin once appropriately positioned.
  • the adhesive pad is preferably waterproof.
  • a stretch-release adhesive pad is provided on the back surface of the base portion to enable easy release from the host's skin at the end of the useable life of the sensor,.
  • the adhesive pad can be bonded using a bonding agent activated by or accelerated by an ultraviolet, acoustic, radio frequency, or humidity cure.
  • a eutectic bond of first and second composite materials can form a strong adhesion.
  • the surface of the mounting unit can be pretreated utilizing ozone, plasma, chemicals, or the like, in order to enhance the bondability of the surface.
  • a bioactive agent is preferably applied locally at the insertion site prior to or during sensor insertion.
  • Suitable bioactive agents include those which are known to discourage or prevent bacterial growth and infection, for example, anti-inflammatory agents, antimicrobials, antibiotics, or the like. It is believed that the diffusion or presence of a bioactive agent can aid in prevention or elimination of bacteria adjacent to the exit-site. Additionally or alternatively, the bioactive agent can be integral with or coated on the adhesive pad, or no bioactive agent at all is employed.
  • an applicator for inserting the sensor through the host's skin at the appropriate insertion angle with the aid of a needle, and for subsequent removal of the needle using a continuous push-pull action.
  • the applicator comprises an applicator body that guides the applicator and includes an applicator body base configured to mate with the mounting unit during insertion of the sensor into the host.
  • the mate between the applicator body base and the mounting unit can use any known mating configuration, for example, a snap-fit, a press-fit, an interference-fit, or the like, to discourage separation during use.
  • One or more release latches enable release of the applicator body base, for example, when the applicator body base is snap fit into the mounting unit.
  • the sensor electronics includes hardware, firmware, and/or software that enable measurement of levels of the analyte via the sensor.
  • the sensor electronics can comprise a potentiostat, a power source for providing power to the sensor, other components useful for signal processing, and preferably an RF module for transmitting data from the sensor electronics to a receiver.
  • Electronics can be affixed to a printed circuit board (PCB), or the like, and can take a variety of forms.
  • the electronics can take the form of an integrated circuit (IC), such as an Application- Specific Integrated Circuit (ASIC), a microcontroller, or a processor.
  • IC integrated circuit
  • ASIC Application- Specific Integrated Circuit
  • microcontroller or a processor.
  • sensor electronics comprise systems and methods for processing sensor analyte data. Examples of systems and methods for processing sensor analyte data are described in more detail below and in U.S. Publication No. US-2005-0027463-A1.
  • the sensor electronics are configured to releasably mate with the mounting unit.
  • the electronics are configured with programming, for example initialization, calibration reset, failure testing, or the like, each time it is initially inserted into the mounting unit and/or each time it initially communicates with the sensor.
  • a potentiostat which is operably connected to an electrode system (such as described above) provides a voltage to the electrodes, which biases the sensor to enable measurement of a current signal indicative of the analyte concentration in the host (also referred to as the analog portion).
  • the potentiostat includes a resistor that translates the current into voltage.
  • a current to frequency converter is provided that is configured to continuously integrate the measured current, for example, using a charge counting device.
  • An A/D converter digitizes the analog signal into a digital signal, also referred to as "counts" for processing. Accordingly, the resulting raw data stream in counts, also referred to as raw sensor data, is directly related to the current measured by the potentiostat.
  • a processor module includes the central control unit that controls the processing of the sensor electronics.
  • the processor module includes a microprocessor, however a computer system other than a microprocessor can be used to process data as described herein, for example an ASIC can be used for some or all of the sensor's central processing.
  • the processor typically provides semi-permanent storage of data, for example, storing data such as sensor identifier (ID) and programming to process data streams (for example, programming for data smoothing and/or replacement of signal artifacts such as is described in U.S. Publication No. US-2005-0043598-A1.
  • the processor additionally can be used for the system's cache memory, for example for temporarily storing recent sensor data.
  • the processor module comprises memory storage components such as ROM, RAM, dynamic-RAM, static-RAM, non-static RAM, EEPROM, rewritable ROMs, flash memory, or the like.
  • the processor module comprises a digital filter, for example, an HR or FIR filter, configured to smooth the raw data stream from the A/D converter.
  • digital filters are programmed to filter data sampled at a predetermined time interval (also referred to as a sample rate.)
  • these time intervals determine the sample rate of the digital filter.
  • the processor module can be programmed to request a digital value from the A/D converter at a predetermined time interval, also referred to as the acquisition time.
  • the values obtained by the processor are advantageously averaged over the acquisition time due the continuity of the current measurement. Accordingly, the acquisition time determines the sample rate of the digital filter.
  • the processor module is configured with a programmable acquisition time, namely, the predetermined time interval for requesting the digital value from the A/D converter is programmable by a user within the digital circuitry of the processor module. An acquisition time of from about 2 seconds to about 512 seconds is preferred; however any acquisition time can be programmed into the processor module.
  • a programmable acquisition time is advantageous in optimizing noise filtration, time lag, and processing/battery power.
  • the processor module is configured to build the data packet for transmission to an outside source, for example, an RF transmission to a receiver as described in more detail below.
  • the data packet comprises a plurality of bits that can include a sensor ID code, raw data, filtered data, and/or error detection or correction.
  • the processor module can be configured to transmit any combination of raw and/or filtered data.
  • the processor module further comprises a transmitter portion that determines the transmission interval of the sensor data to a receiver, or the like.
  • the transmitter portion which determines the interval of transmission, is configured to be programmable.
  • a coefficient can be chosen (e.g., a number of from about 1 to about 100, or more), wherein the coefficient is multiplied by the acquisition time (or sampling rate), such as described above, to define the transmission interval of the data packet.
  • the transmission interval is programmable between about 2 seconds and about 850 minutes, more preferably between about 30 second and 5 minutes; however, any transmission interval can be programmable or programmed into the processor module.
  • a variety of alternative systems and methods for providing a programmable transmission ' interval can also be employed.
  • data transmission can be customized to meet a variety of design criteria (e.g., reduced battery consumption, timeliness of reporting sensor values, etc.)
  • Conventional glucose sensors measure current in the nanoAmp range.
  • the preferred embodiments are configured to measure the current flow in the picoAmp range, and in some embodiments, femtoAmps. Namely, for every unit (mg/dL) of glucose measured, at least one picoAmp of current is measured.
  • the analog portion of the A/D converter is configured to continuously measure the current flowing at the working electrode and to convert the current measurement to digital values representative of the current.
  • the current flow is measured by a charge counting device (e.g., a capacitor).
  • a signal is provided, whereby a high sensitivity maximizes the signal received by a minimal amount of measured hydrogen peroxide (e.g., minimal glucose requirements without sacrificing accuracy even in low glucose ranges), reducing the sensitivity to oxygen limitations in vivo (e.g., in oxygen- dependent glucose sensors).
  • a minimal amount of measured hydrogen peroxide e.g., minimal glucose requirements without sacrificing accuracy even in low glucose ranges
  • oxygen limitations in vivo e.g., in oxygen- dependent glucose sensors
  • a battery is operably connected to the sensor electronics and provides the power for the sensor.
  • the battery ' is a lithium manganese dioxide battery; however, any appropriately sized and powered battery can be used (for example, AAA, nickel-cadmium, zinc-carbon, alkaline, lithium, nickel-metal hydride, lithium-ion, zinc-air, zinc-mercury oxide, silver-zinc, and/or hermetically-sealed).
  • the battery is rechargeable, and/or a plurality of batteries can be used to power the system.
  • the sensor can be transcutaneously powered via an inductive coupling, for example.
  • a quartz crystal is operably connected to the processor and maintains system time for the computer system as a whole, for example for the programmable acquisition time within the processor module.
  • Optional temperature probe can be provided, wherein the temperature probe is located on the electronics assembly or the glucose sensor itself.
  • the temperature probe can be used to measure ambient temperature in the vicinity of the glucose sensor. This temperature measurement can be used to add temperature compensation to the calculated glucose value.
  • An RF module is operably connected to the processor and transmits the sensor data from the sensor to a receiver within a wireless transmission via antenna.
  • a second quartz crystal provides the time base for the RF carrier frequency used for data transmissions from the RF transceiver.
  • other mechanisms such as optical, infrared radiation (IR), ultrasonic, or the like, can be used to transmit and/or receive data.
  • the hardware and software are designed for low power requirements to increase the longevity of the device (for example, to enable a life of from about 3 to about 24 months, or more) with maximum RF transmittance from the in vivo environment to the ex vivo environment for wholly implantable sensors (for example, a distance of from about one to ten meters or more).
  • a high frequency carrier signal of from about 402 MHz to about 433 MHz is employed in order to maintain lower power requirements.
  • the carrier frequency is adapted for physiological attenuation levels, which is accomplished by tuning the RF module in a simulated in vivo environment to ensure RF functionality after implantation; accordingly, the preferred glucose sensor can sustain sensor function for 3 months, 6 months, 12 months, or 24 months or more.
  • output signal (from the sensor electronics) is sent to a receiver (e.g., a computer or other communication station).
  • the output signal is typically a raw data stream that is used to provide a useful value of the measured analyte concentration to a patient or a doctor, for example.
  • the raw data stream can be continuously or periodically algorithmically smoothed or otherwise modified to dimmish outlying points that do not accurately represent the analyte concentration, for example due to signal noise or other signal artifacts, such as described in U.S. Patent No. 6,931,327.
  • start-up mode When a sensor is first implanted into host tissue, the sensor and receiver are initialized. This can be referred to as start-up mode, and involves optionally resetting the sensor data and calibrating the sensor 32. In selected embodiments, mating the electronics unit 16 to the mounting unit triggers a start-up mode. In other embodiments, the start-up mode is triggered by the receiver. Receiver
  • the sensor electronics are wirelessly connected to a receiver via one- or two-way RF transmissions or the like.
  • a wired connection is also contemplated.
  • the receiver provides much of the processing and display of the sensor data, and can be selectively worn and/or removed at the host's convenience.
  • the sensor system can be discreetly worn, and the receiver, which provides much of the processing and display of the sensor data, can be selectively worn and/or removed at the host's convenience.
  • the receiver includes programming for retrospectively and/or prospectively initiating a calibration, converting sensor data, updating the calibration, evaluating received reference and sensor data, and evaluating the calibration for the analyte sensor, such as described in more detail with reference to co-pending U.S. Publication No. US-2005- 0027463-A1.
  • Fig. 4C is a side schematic view of a wholly implantable analyte sensor 58 in one embodiment.
  • the sensor includes a sensor body 60 suitable for subcutaneous implantation and includes a small structured sensor 34 as defined herein. Published U.S. Patent Application No. 2004/0199059 to Brauker et al. describe systems and methods suitable for the sensor body 60, and is incorporated herein by reference in its entirety.
  • a biointerface membrane 68 is formed onto the sensing mechanism 34 as described in more detail elsewhere herein.
  • the sensor body 60 includes sensor electronics and preferably communicates with a receiver as described in more detail, above.
  • Fig. 4D is a side schematic view of a wholly implantable analyte sensor 62 in an alternative embodiment.
  • the sensor 62 includes a sensor body 60 and a small structured sensor 34 as defined herein.
  • the sensor body 60 includes sensor electronics and preferably communicates with a receiver as described in more detail, above.
  • a biointerface membrane 68 is formed onto the sensing mechanism 34 as described in more detail elsewhere herein.
  • a matrix or framework 64 surrounds the sensing mechanism 34 for protecting the sensor from some foreign body processes, for example, by causing tissue to compress against or around the framework 64 rather than the sensing mechanism 34.
  • the optional protective framework 64 is formed from a two- dimensional or three-dimensional flexible, semi-rigid, or rigid matrix ⁇ e.g., mesh), and which includes spaces or pores through which the analyte can pass.
  • the framework is incorporated as a part of the biointerface membrane, however a separate framework can be provided. While not wishing to be bound by theory, it is believed that the framework 64 protects the small structured sensing mechanism from mechanical forces created in vivo.
  • Fig. 4E is a side schematic view of a wholly implantable analyte sensor 66 in another alternative embodiment.
  • the sensor 66 includes a sensor body 60 and a small structured sensor 34, as defined herein, with a biointerface membrane 68 such as described in more detail elsewhere herein.
  • a framework 64 protects the sensing mechanism 34 such as described in more detail above.
  • the sensor body 60 includes sensor electronics and preferably communicates with a receiver as described in more detail, above.
  • the sensing device which is adapted to be wholly implanted into the host, such as in the soft tissue beneath the skin, is implanted subcutaneously, such as in the abdomen of the host, for example.
  • the sensor architecture is less than about 0.5 mm in at least one dimension, for example a wire-based sensor with a diameter of less than about 0.5 mm.
  • the sensor can be 0.5 mm thick, 3 mm in length and 2 cm in width, such as possibly a narrow substrate, needle, wire, rod, sheet or pocket.
  • a plurality of about 1 mm wide wires about 5 mm in length could be connected at their first ends, producing a forked sensor structure.
  • a 1 mm wide sensor could be coiled, to produce a planar, spiraled sensor structure.
  • tissue ingrowth within the biointerface.
  • the length of time required for tissue ingrowth varies from host to host, such as about a week to about 3 weeks, although other time periods are also possible.
  • a signal can be detected from the sensor, as described elsewhere herein and in U.S. Publication No. 2005-0245799- Al. Long-term sensors can remain implanted and produce glucose signal information from months to years, as described in the above-cited patent application.
  • the device is configured such that the sensing unit is separated from the electronics unit by a tether or cable, or a similar structure, similar to that illustrated in Fig. 4B.
  • a tether or cable or a similar structure, similar to that illustrated in Fig. 4B.
  • One skilled in the art will recognize that a variety of known and useful means can be used to tether the sensor to the electronics. While not wishing to be bound by theory, it is believed that the FBR to the electronics unit alone can be greater than the FBR to the sensing unit alone, due to the electronics unit's greater mass, for example. Accordingly, separation of the sensing and electronics units effectively reduces the FBR to the sensing unit and results in improved device function.
  • an analyte sensor is designed with separate electronics and sensing units, wherein the sensing unit is inductively coupled to the electronics unit.
  • the electronics unit provides power to the sensing unit and/or enables communication of data therebetween.
  • Figs. 3F and 3 G illustrate exemplary systems that employ inductive coupling between an electronics unit 52 and a sensing unit 58.
  • Fig. 4F is a side view of one embodiment of an implanted sensor inductively coupled to an electronics unit within a functionally useful distance on the host's skin.
  • Fig. 4F illustrates a sensing unit 58, including a sensing mechanism 34, biointerface 68 and small electronics chip 216 implanted below the host's skin 212, within the host's tissue 210.
  • the majority of the electronics associated with the sensor are housed in an electronics unit 52 (also referred to as a mounting unit) located within suitably close proximity on the host's skin.
  • the electronics unit 52 is inductively coupled to the small electronics chip 216 on the sensing unit 58 and thereby transmits power to the sensor and/or collects data, for example.
  • the small electronics chip 216 coupled to the sensing unit 58 provides the necessary electronics to provide a bias potential to the sensor, measure the signal output, and/or other necessary requirements to allow the sensing mechanism 58 to function (e.g., chip 216 can include an ASIC (application specific integrated circuit), antenna, and other necessary components appreciated by one skilled in the art).
  • ASIC application specific integrated circuit
  • the implanted sensor additionally includes a capacitor to provide necessary power for device function.
  • a portable scanner e.g., wand-like device is used to collect data stored on the circuit and/or to recharge the device.
  • inductive coupling enables power to be transmitted to the sensor for continuous power, recharging, and the like.
  • inductive coupling utilizes appropriately spaced and oriented antennas (e.g., coils) on the sensing unit and the electronics unit so as to efficiently transmit/receive power (e.g., current) and/or data communication therebetween.
  • antennas e.g., coils
  • One or more coils in each of the sensing and electronics unit can provide the necessary power induction and/or data transmission.
  • the sensing mechanism can be, for example, a wire- based sensor as described in more detail with reference to Figs. 4 A and 4B and as described in published U.S. Patent Application US2006-0020187, or a planar substrate-based sensor such as described in U.S. Patent No. 6,175,752 to Say et al. and U.S. Patent No. 5,779,665 to Mastrototaro et al., all of which are incorporated herein by reference in their entirety.
  • the biointerface 68 can be any suitable biointerface as described in more detail elsewhere herein, for example, a layer of porous biointerface membrane material, a mesh cage and the like.
  • the biointerface 68 is a single- or multi-layer sheet (e.g., pocket) of porous membrane material, such as ePTFE, in which the sensing mechanism 34 is incorporated.
  • Fig. 4G is a side view of on embodiment of an implanted sensor inductively coupled to an electronics unit implanted in the host's tissue at a functionally useful distance.
  • Fig. 4G illustrates a sensor unit 58 and an electronics unit 52 similar to that described with reference to Fig. 4F, above, however both are implanted beneath the host's skin in a suitably close proximity.
  • the configuration of the sensing unit can be optimized to minimize and/or modify the host's tissue response, for example with minimal mass as described in more detail elsewhere.
  • the senor includes a porous material disposed over some portion thereof, which modifies the host's tissue response to the sensor.
  • the porous material surrounding the sensor advantageously enhances and extends sensor performance and lifetime in the short-term by slowing or reducing cellular migration to the sensor and associated degradation that would otherwise be caused by cellular invasion if the sensor were directly exposed to the in vivo environment.
  • the porous material can provide stabilization of the sensor via tissue ingrowth into the porous material in the long-term.
  • Suitable porous materials include silicone, polytetrafluoroethylene, expanded polytetrafluoroethylene, polyethylene-co-tetrafluoroethylene, polyolefm, polyester, polycarbonate, biostable polytetrafluoroethylene, homopolymers, copolymers, terpolymers of polyurethanes, polypropylene (PP), polyvinylchloride (PVC), polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polybutylene terephthalate (PBT), polymethylmethacrylate (PMMA), polyether ether ketone (PEEK), polyamides, polyurethanes, cellulosic polymers, poly(ethylene oxide), poly(propylene oxide) and copolymers and blends thereof, polysulfones and block copolymers thereof including, for example, di-block, tri-block, alternating, random and graft copolymers, as well as metals, ceramics, cellulose, hydro
  • the porous material surrounding the sensor provides unique advantages in the short-term (e.g., one to 14 days) that can be used to enhance and extend sensor performance and lifetime. However, such materials can also provide advantages in the long-term too (e.g., greater than 14 days).
  • the in vivo portion of the sensor (the portion of the sensor that is implanted into the host's tissue) is encased (partially or fully) in a porous material.
  • the porous material can be wrapped around the sensor (for example, by wrapping the porous material around the sensor or by inserting the sensor into a section of porous material sized to receive the sensor).
  • the porous material can be deposited on the sensor (for example, by electrospinning of a polymer directly thereon).
  • the sensor is inserted into a selected section of porous biomaterial.
  • Other methods for surrounding the in vivo portion of the sensor with a porous material can also be used as is appreciated by one skilled in the art.
  • the porous material surrounding the sensor advantageously slows or reduces cellular migration to the sensor and associated degradation that would otherwise be caused by cellular invasion if the sensor were directly exposed to the in vivo environment.
  • the porous material provides a barrier that makes the migration of cells towards the sensor more tortuous and therefore slower (providing short-term advantages). It is believed that this reduces or slows the sensitivity loss normally observed in a short-term sensor over time.
  • the porous material is a high oxygen solubility material, such as porous silicone
  • the high oxygen solubility porous material surrounds some of or the entire in vivo portion of the sensor.
  • a lower ratio of oxygen- to-glucose can be sufficient to provide excess oxygen by using a high oxygen soluble domain (for example, a silicone- or fluorocarbon-based material) to enhance the supply/transport of oxygen to the enzyme membrane and/or electroactive surfaces. It is believed that some signal noise normally seen by a conventional sensor can be attributed to an oxygen deficit. Silicone has high oxygen permeability, thus promoting oxygen transport to the enzyme layer.
  • glucose concentration can be less of a limiting factor.
  • more oxygen can also be supplied to the enzyme without creating an oxygen rate-limiting excess.
  • silicone materials provide enhanced bio-stability when compared to other polymeric materials such as polyurethane. .
  • modifying a small structured sensor with a biointerface structure, material, matrix, and/or membrane that creates a space appropriate for filling with fluid in vivo can enhance sensor performance.
  • the small structured sensor includes a porous biointerface material, which allows fluid from the surrounding tissues to form a fluid-filled pocket around at least a portion of the sensor. It is believed that the fluid-filled pocket provides a sufficient source of analyte-containing fluid for accurate sensor measurement in the short-term.
  • inclusion of bioactive agents can modify the host's tissue response, for example to reduce or eliminate tissue ingrowth or other cellular responses into the biointerface.
  • modifying a small structured sensor with a structure, material, and/or membrane/matrix that allows tissue ingrowth without barrier cell formation can enhance sensor performance.
  • a vascularized bed of tissue for long-term analyte sensor measurement a porous biointerface membrane, including a plurality of interconnected cavities and a solid portion, covering at least the sensing portion of a small structured sensor allows vascularized tissue ingrowth therein.
  • Vascularized tissue ingrowth provides a sufficient source of analyte-containing tissue in the long-term.
  • inclusion of bioactive agents can modify the host's tissue response, for example to reduce or eliminate barrier cell layer formation within the membrane.
  • first domain includes an architecture, including cavity size, configuration, and/or overall thickness, that modifies the host's tissue response, for example, by creating a fluid pocket, encouraging vascularized tissue ingrowth, disrupting downward tissue contracture, resisting fibrous tissue growth adjacent to the device, and/or discouraging barrier cell formation.
  • the biointerface preferably covers at least the sensing mechanism of the sensor and can be of any shape or size, including uniform, asymmetrically, or axi-symmetrically covering or surrounding a sensing mechanism or sensor.
  • a second domain is optionally provided that is impermeable to cells and/or cell processes.
  • a bioactive agent is optionally provided that is incorporated into the at least one of the first domain, the second domain, the sensing membrane, or other part of the implantable device, wherein the bioactive agent is configured to modify a host tissue response.
  • Fig. 5 A is a cross-sectional schematic view of a biointerface membrane 70 in vivo in one exemplary embodiment, wherein the membrane comprises a first domain 72 and an optional second domain 74.
  • the architecture of the biointerface membrane provides a space between the sensor and the host's tissue that allows a fluid filled ⁇ pocket to form for transport of fluid therein.
  • the architecture of the membrane provides a robust, implantable membrane that facilitates the transport of analytes through vascularized tissue ingrowth without the formation of a barrier cell layer.
  • the first domain 72 comprises a solid portion 76 and a plurality of interconnected three-dimensional cavities 78 formed therein.
  • the cavities 78 have sufficient size and structure to allow invasive cells, such as fibroblasts 75, a fibrous matrix 77, and blood vessels 79 to enter into the apertures 80 that define the entryway into each cavity 78, and to pass through the interconnected cavities toward the interface 82 between the first and second domains.
  • the cavities comprise an architecture that encourages the ingrowth of vascular tissue in vivo, as indicated by the blood vessels 79 formed throughout the cavities. Because of the vascularization within the cavities, solutes 73 (for example, oxygen, glucose and other analytes) pass through the first domain with relative ease, and/or the diffusion distance (namely, distance that the glucose diffuses) is reduced.
  • the first domain of the biointerface membrane includes an architecture that supports tissue ingrowth, disrupts contractile forces typically found in a foreign body response, encourages vascularity within the membrane, and disrupts the formation of a barrier cell layer.
  • the first domain of the biointerface membrane includes an architecture that creates a fluid-filled space surrounding an implanted device, which allows the passage of the analyte, but protects sensitive portions of the device from substantial fibrous tissue ingrowth and associated forces.
  • the first domain also referred to as the cell disruptive domain, comprises an open-celled configuration comprising interconnected cavities and solid portions.
  • the distribution of the solid portion and cavities of the first domain preferably includes a substantially co-continuous solid domain and includes more than one cavity in three dimensions substantially throughout the entirety of the first domain.
  • some short- term embodiments cannot require co-continuity of the cavities.
  • cells can enter into the cavities; however, they cannot travel through or wholly exist within the solid portions.
  • the cavities permit most substances to pass through, including, for example, cells and molecules.
  • ePTFE expanded polytetrafluoraethylene
  • Fig. 5B is an illustration of the membrane of Fig. 5 A, showing contractile forces 81 caused by the fibrous tissue in the long- term (e.g., after about 3 weeks), for example, from the fibroblasts and fibrous matrix, of the FBR.
  • the architecture of the first domain including the cavity interconnectivity and multiple-cavity depth, (namely, two or more cavities in three dimensions throughout a substantial portion of the first domain) can affect the tissue contracture that typically occurs around a foreign body.
  • the architecture of the first domain of the biointerface membrane, including the interconnected cavities and solid portion is advantageous because the contractile forces caused by the downward tissue contracture that can otherwise cause cells to flatten against the device and occlude the transport of analytes, is instead translated to, disrupted by, and/or counteracted by the forces 81 that contract around the solid portions 76 (for example, throughout the interconnected cavities 78) away from the device. That is, the architecture of the solid portions 76 and cavities 78 of the first domain cause contractile forces 81 to disperse away from the interface between the first domain 72 and second domain 74. Without the organized contracture of fibrous tissue toward the tissue-device interface 82 typically found in a FBC (Fig.
  • macrophages and foreign body giant cells do not form a substantial monolayer of cohesive cells (namely, a barrier cell layer) and therefore the transport of molecules across the second domain and/or membrane is not blocked, as indicated by free transport of analyte 73 through the first and second domains in Figs. 5 A and 5B.
  • the first domain can be manufactured by forming particles, for example, sugar granules, salt granules, and other natural or synthetic uniform or non-uniform particles, in a mold, wherein the particles have shapes and sizes substantially corresponding to the desired cavity dimensions, such as described in more detail below.
  • the particles are made to coalesce to provide the desired interconnectivity between the cavities.
  • the desired material for the solid portion can be introduced into the mold using methods common in the art of polymer processing, for example, injecting, pressing, vacuuming, vapor depositing, pouring, and the like.
  • the coalesced particles are then dissolved, melted, etched, or otherwise removed, leaving interconnecting cavities within the solid portion.
  • sieving can be used to determine the dimensions of the particles, which substantially correspond to the dimensions of resulting cavities.
  • sieving also referred to as screening, the particles are added to the sieve and then shaken to produce overs and unders. The overs are the particles that remain on the screen and the unders are the particles that pass through the screen.
  • the cavity size of the cavities 78 of the first domain is substantially defined by the particle size(s) used in creating the cavities.
  • the particles used to form the cavities can be substantially spherical, thus the dimensions below describe a diameter of the particle and/or a diameter of the cavity.
  • the particles used to form the cavities can be non-spherical (for example, rectangular, square, diamond, or other geometric or non-geometric shapes), thus the dimensions below describe one dimension (for example, shortest, average, or longest) of the particle and/or cavity.
  • a variety of different particle sizes can be used in the manufacture of the first domain.
  • the dimensions of the particles can be somewhat smaller or larger than the dimensions of the resulting cavities, due to dissolution or other precipitation that can occur during the manufacturing process.
  • the first domain 72 can be defined using alternative methods.
  • fibrous non-woven or woven materials, or other such materials, such as electrospun, felted, velvet, scattered, or aggregate materials are manufactured by forming the solid portions without particularly defining the cavities therebetween.
  • structural elements that provide the three-dimensional conformation can include fibers, strands, globules, cones, and/or rods of amorphous or uniform geometry. These elements are hereinafter referred to as "strands.”
  • the solid portion of the first domain can include a plurality of strands, which generally define apertures formed by a frame of the interconnected strands.
  • the apertures of the material form a framework of interconnected cavities. Formed in this manner, the first domain is defined by a cavity size of about 0.6 to about 1 mm in at least one dimension.
  • the porous biointerface membranes can be loosely categorized into at least two groups: those having a micro-architecture and those having a macro-architecture.
  • Figs. 5A and 5B illustrate one preferred embodiment wherein the biointerface membrane includes a macro-architecture as defined herein.
  • the cavity size of a macro-architecture provides a configuration and overall thickness that encourages vascular tissue ingrowth and disrupts tissue contracture that is believed to cause barrier cell formation in the long-term in vivo (as indicated by the blood vessels 19 formed throughout the cavities), while providing a long-term, robust structure.
  • a substantial number of the cavities 78 are greater than or equal to about 20 ⁇ m in one dimension.
  • a substantial number of the cavities are greater than or equal to about 30, 40, 50, 60, 70, 80, 90, 100, 120, 180, 160, 180, 200, 280, 280, 320, 360, 400, 500,600, 700 ⁇ m, and preferably less than about 1 mm in one dimension.
  • the biointerface membrane can also be formed with a micro-architecture as defined herein.
  • a micro-architecture as defined herein.
  • the cavities of a micro-architecture have a sufficient size and structure to allow inflammatory cells to partially or completely enter into the cavities.
  • the micro-architecture does not allow extensive ingrowth of vascular and connective tissues within the cavities. Therefore, in some embodiments, the micro-architecture of preferred embodiments is defined by the actual size of the cavity, wherein the cavities are formed from a mold, for example, such as described in more detail above.
  • the majority of the mold dimensions are less than about 20 ⁇ m in at least one dimension.
  • the micro-architecture is defined by a strand size of less than about 6 ⁇ m in all but the longest dimension, and a sufficient number of cavities are provided of a size and structure to allow inflammatory cells, for example, macrophages, to completely enter through the apertures that define the cavities, without extensive ingrowth of vascular and connective tissues.
  • the micro-architecture is characterized, or defined, by standard pore size tests, such as the bubble point test.
  • the micro-architecture is selected with a nominal pore size of from about 0.6 ⁇ m to about 20 ⁇ m. In some embodiments, the nominal pore size from about 1, 2, 3, 4, 5, 6, 7, 8, or 9 ⁇ m to about 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19 ⁇ m. It has been found that a porous polymer membrane having an average nominal pore size of about 0.6 to about 20 ⁇ m functions satisfactorily in creating a vascular bed within the micro-architecture at the device-tissue interface.
  • nominal pore size in the context of the micro-architecture in certain embodiments is derived from methods of analysis common to membrane, such as the ability of the membrane to filter particles of a particular size, or the resistance of the membrane to the flow of fluids. Because of the amorphous, random, and irregular nature of most of these commercially available membranes, the "nominal pore size" designation cannot actually indicate the size or shape of the apertures and cavities, which in reality have a high degree of variability.
  • the term "nominal pore size” is a manufacturer's convention used to identify a particular membrane of a particular commercial source which has a certain bubble point; as used herein, the term “pore” does not describe the size of the cavities of the material in the preferred embodiments.
  • the bubble point measurement is described in Pharmaceutical Technology, May 1983, pp. 76 to 82.
  • the optimum dimensions, architecture (for example, micro-architecture or macro-architecture), and overall structural integrity of the membrane can be adjusted according to the parameters of the device that it supports. For example, if the membrane is employed with a glucose-measuring device, the mechanical requirements of the membrane can be greater for devices having greater overall weight and surface area when compared to those that are relatively smaller.
  • improved vascular tissue ingrowth in the long-term is observed when the first domain has a thickness that accommodates a depth of at least two cavities throughout a substantial portion of the thickness.
  • Improved vascularization results at least in part from multi-layered interconnectivity of the cavities, such as in the preferred embodiments, as compared to a surface topography such as seen in the prior art, for example, wherein the first domain has a depth of only one cavity throughout a substantial portion thereof.
  • the multi-layered interconnectivity of the cavities enables vascularized tissue to grow into various layers of cavities in a manner that provides mechanical anchoring of the device with the surrounding tissue. Such anchoring resists movement that can occur in vivo, which results in reduced sheer stress and scar tissue formation.
  • the optimum depth or number of cavities can vary depending upon the parameters of the device that it supports. For example, if the membrane is employed with a glucose-measuring device, the anchoring that is required of the membrane is greater for devices having greater overall weight and surface area as compared to those that are relatively smaller.
  • the thickness of the first domain can be optimized for decreased time-to- vascularize in vivo, that is, vascular tissue ingrowth can occur somewhat faster with a membrane that has a thin first domain as compared to a membrane that has a relatively thicker first domain. Decreased time-to-vascularize results in faster stabilization and functionality of the biointerface in vivo. For example, in a subcutaneous implantable glucose device, consistent and increasing functionality of the device is at least in part a function of consistent and stable glucose transport across the biointerface membrane, which is at least in part a function of the vascularization thereof. Thus, quicker start-up time and/or shortened time lag (as when, for example, the diffusion path of the glucose through the membrane is reduced) can be achieved by decreasing the thickness of the first domain.
  • the thickness of the first domain is typically from about 20 ⁇ m to about 2000 ⁇ m, preferably from about 50, 60, 70, 80, 90, or 100 ⁇ m to about 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, or 1900 ⁇ m, and most preferably from about 150, 200, 250, 300, 350, or 400 ⁇ m to about 450, 500, 550, 600, 650, 700, or 750 ⁇ m.
  • a thinner or thicker cell disruptive domain can be desired.
  • the solid portion preferably includes one or more materials such as silicone, polytetrafluoroethylene, expanded polytetrafluoroethylene, polyethylene-co- tetrafluoroethylene, polyolefin, polyester, polycarbonate, biostable polytetrafluoroethylene, homopolymers, copolymers, terpolymers of polyurethanes, polypropylene (PP), polyvinylchloride (PVC), polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polybutylene terephthalate (PBT), polymethylmethacrylate (PMMA), polyether ether ketone (PEEK), polyamides, polyurethanes, cellulosic polymers, polysulfones and block copolymers thereof including, for example, di-block, tri-block, alternating, random and graft copolymers.
  • materials such as silicone, polytetrafluoroethylene, expanded polytetrafluoroethylene, polyethylene
  • the material selected for the first domain is an elastomeric material, for example, silicone, which is able to absorb stresses that can occur in vivo, such that sheer and other environmental forces are significantly minimized at the second domain.
  • the solid portion can comprises a silicone composition with a hydrophile such as Polyethylene Glycol (PEG) covalently incorporated or grafted therein, such as described in U.S. Publication No. US-2005-0090607-A1 or as disclosed in copending U.S. patent application 11/404,417, filed 4/14/2006 and entitled "SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS.”
  • PEG Polyethylene Glycol
  • One preferred material that can be used to form the solid portion of the biointerface matrix is a material that allows the passage of the analyte (e.g., glucose) there through.
  • the biointerface matrix can be formed from a silicone polymer/hydrophobic-hydrophilic polymer blend.
  • the hydrophobic- hydrophilic polymer for use in the blend can be any suitable hydrophobic-hydrophilic polymer, including but not limited to components such as polyvinylpyrrolidone (PVP), polyhydroxyethyl methacrylate, polyvinylalcohol, polyacrylic acid, polyethers such as polyethylene glycol or polypropylene oxide, and copolymers thereof, including, for example, di-block, tri-block, alternating, random, comb, star, dendritic, and graft copolymers (block copolymers are discussed in U.S. Patent Nos. 4,803,243 and 4,686,044, which are incorporated herein by reference).
  • PVP polyvinylpyrrolidone
  • PVP polyhydroxyethyl methacrylate
  • polyvinylalcohol polyacrylic acid
  • polyethers such as polyethylene glycol or polypropylene oxide
  • copolymers thereof including, for example, di-block, tri-block, alternating, random, comb,
  • the hydrophobic-hydrophilic polymer is a copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO).
  • Suitable such polymers include, but are not limited to, PEO-PPO diblock copolymers, PPO-PEO-PPO triblock copolymers, PEO-PPO-PEO triblock copolymers, alternating block copolymers of PEO-PPO, random copolymers of ethylene oxide and propylene oxide, and blends thereof.
  • the copolymers can be optionally substituted with hydroxy substituents.
  • Commercially available examples of PEO and PPO copolymers include the PLURONIC® brand of polymers available from BASF®.
  • PLURONIC® F- 127 is used.
  • Other PLURONIC® polymers include PPO-PEO-PPO triblock copolymers (e.g., PLURONIC® R products).
  • Other suitable commercial polymers include, but are not limited to, SYNPERONICS® products available from UNIQEMA®.
  • the silicone polymer for use in the silicone/hydrophobic-hydrophilic polymer blend can be any suitable silicone polymer.
  • the silicone polymer is a liquid silicone rubber that can be vulcanized using a metal- (e.g., platinum), peroxide-, heat-, ultraviolet-, or other radiation-catalyzed process.
  • the silicone polymer is a dimethyl- and methylhydrogen-siloxane copolymer.
  • the copolymer has vinyl substituents.
  • commercially available silicone polymers can be used.
  • commercially available silicone polymer precursor compositions can be used to prepare the blends, such as described below.
  • MED-4840 available from NUSIL® Technology LLC is used as a precursor to the silicone polymer used in the blend.
  • MED-4840 consists of a 2-part silicone elastomer precursor including vinyl-functionalized dimethyl- and methylhydrogen- siloxane copolymers, amorphous silica, a platinum catalyst, a crosslinker, and an inhibitor. The two components can be mixed together and heated to initiate vulcanization, thereby forming an elastomeric solid material.
  • Suitable silicone polymer precursor systems include, but are not limited to, MED-2174 peroxide-cured liquid silicone rubber available from NUSIL® Technology LLC, SILASTIC® MDX4-4210 platinum-cured biomedical grade elastomer available from DOW CORNING®, and Implant Grade Liquid Silicone Polymer (durometers 10-50) available from Applied Silicone Corporation.
  • Silicone polymer/hydrophobic-hydrophilic polymer blends are described in more detail in U.S. Patent Application No 11/404,417, entitled “SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS 5 " filed on April 14, 2006.
  • elastomeric materials with a memory of the original configuration can withstand greater stresses without affecting the configuration, and thus the function, of the device.
  • the first domain can include a macro-architecture and a micro-architecture located within at least a portion of the macro-architecture, such as is described in U.S. Publication No. US-2005-0251083-A1.
  • the macro- architecture includes a porous structure with interconnected cavities such as described with reference to the solid portion of the first domain, wherein at least some portion of the cavities of the first domain are filled with the micro-architecture that includes a fibrous or other fine structured material that aids in preventing formation of a barrier cell layer, for example in pockets in the bottom of the cavities of the macro-architecture adjacent to the implantable device.
  • non-resorbable implant materials can be used in forming the first domain, including but not limited to, metals, ceramics, cellulose, polyacrylonitrile-polyvinyl chloride (PAN-PVC), high density polyethylene, acrylic copolymers, nylon, polyvinyl difluoride, polyanhydrides, poly(l-lysine), hydroxyethylmethacrylate, alumina, zirconia, carbon fiber, aluminum, titanium, titanium alloy, nintinol, stainless steel, and CoCr alloy.
  • PAN-PVC polyacrylonitrile-polyvinyl chloride
  • high density polyethylene acrylic copolymers
  • nylon polyvinyl difluoride
  • polyanhydrides poly(l-lysine)
  • hydroxyethylmethacrylate alumina, zirconia
  • carbon fiber aluminum, titanium, titanium alloy, nintinol, stainless steel, and CoCr alloy.
  • Figs. 5A and 5B illustrate the optional second domain of the membrane.
  • the second domain is impermeable to cells or cell processes, and is composed of a biostable material.
  • the second domain is comprised of polyurethane and a hydrophilic polymer, such as is described in U.S. Patent No. 6,862,465 to Shults et al. , which is incorporated herein by reference in its entirety.
  • the outermost layer of the sensing membrane 32 can function as a cell impermeable domain and therefore a second domain cannot be a discrete component of the biointerface membrane.
  • the materials preferred for the second domain prevent or hinder cell entry or contact with device elements underlying the membrane and prevent or hinder the adherence of cells, thereby further discouraging formation of a barrier cell layer. Additionally, because of the resistance of the materials to barrier cell layer formation, membranes prepared therefrom are robust long-term in vivo.
  • the thickness of the cell impermeable biomaterial of the second domain is typically about l ⁇ m or more, preferably from about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200 ⁇ m to about 500, 600, 700, 800, 900, or 1000 ⁇ m.
  • thicker or thinner cell impermeable domains can be desired.
  • the function of the cell impermeable domain is accomplished by the implantable device, or a portion of the implantable device, which can or cannot include a distinct domain or layer.
  • the characteristics of the cell impermeable membrane prevent or hinder cells from entering the membrane, but permit or facilitate transport of the analyte of interest or a substance indicative of the concentration or presence of the analyte.
  • the second domain similar to the first domain, is preferably constructed of a biodurable material (for example, a material durable for a period of several years in vivo) that is impermeable to host cells, for example, macrophages, such as described above.
  • the biointerface membrane is permeable to oxygen and glucose or a substance indicative of the concentration of glucose.
  • the membrane is employed in a drug delivery device or other device for delivering a substance to the body, the cell impermeable membrane is permeable to the drug or other substance dispensed from the device.
  • the membrane is semi-permeable, for example, impermeable to immune cells and soluble factors responsible for rejecting transplanted tissue, but permeable to the ingress of glucose and oxygen for the purpose of sustaining the transplanted tissue; additionally, the second domain is permeable to the egress of the gene product of interest (for example, insulin).
  • the gene product of interest for example, insulin
  • the cell disruptive (first) domain and the cell impermeable (second) domain can be secured to each other by any suitable method as is known in the art.
  • the cell impermeable domain can simply be layered or cast upon the porous cell disruptive domain so as to form a mechanical attachment.
  • chemical and/or mechanical attachment methods can be suitable for use.
  • Chemical attachment methods can include adhesives, glues, lamination, and/or wherein a thermal bond is formed through the application of heat and pressure, and the like.
  • Suitable adhesives are those capable of forming a bond between the materials that make up both the barrier cell disruptive domain and the cell impermeable domain, and include liquid and/or film applied adhesives.
  • An appropriate material can be designed that can be used for preparing both domains such that the composite is prepared in one step, thereby forming a unitary structure.
  • the materials can be designed so that they can be covalently cured to one another.
  • the second domain comprises a part of the implantable device, it can be attached to or simply lie adjacent to the first domain.
  • the adhesive can comprise a biocompatible material.
  • adhesives not generally considered to have a high degree of biocompatibility can also be employed.
  • Adhesives with varying degrees of biocompatibility suitable for use include acrylates, for example, cyanoacrylates, epoxies, methacrylates, polyurethanes, and other polymers, resins, RTV silicone, and crosslinking agents as are known in the art.
  • a layer of woven or non-woven material (such as ePTFE) is cured to the first domain after which the material is bonded to the second domain, which allows a good adhesive interface between the first and second domains using a biomaterial known to respond well at the tissue-device interface, for example.
  • the biointerface membranes include a bioactive agent, which is incorporated into at least one of the first and second domains 72, 74 of the biointerface membrane, or which is incorporated into the device (e.g., sensing membrane 32) and adapted to diffuse through the first and/or second domains, in order to modify the tissue response of the host to the membrane.
  • the architectures of the first and second domains have been shown to create a fluid pocket, support vascularized tissue ingrowth, to interfere with and resist barrier cell layer formation, and to facilitate the transport of analytes across the membrane.
  • the bioactive agent can further enhance formation of a fluid pocket, alter or enhance vascularized tissue ingrowth, resistance to barrier cell layer formation, and thereby facilitate the passage of analytes 73 across the device-tissue interface 82.
  • the biointerface includes a bioactive agent
  • the bioactive agent is incorporated into at least one of the first and second domains of the biointerface membrane, or into the device and adapted to diffuse through the first and/or second domains, in order to modify the tissue response of the host to the membrane.
  • the architectures of the first and second domains support vascularized tissue growth in or around the biointerface membrane, interfere with and resist barrier cell layer formation, and/or allow the transport of analytes across the membrane.
  • certain outside influences for example, faulty surgical techniques, acute or chronic movement of the implant, or other surgery-, host-, and/or implantation site-related conditions, can create acute and/or chronic inflammation at the implant site.
  • the biointerface membrane architecture alone cannot be sufficient to overcome the acute and/or chronic inflammation.
  • the membrane architecture can benefit from additional mechanisms that aid in reducing this acute and/or chronic inflammation that can produce a barrier cell layer and/or a fibrotic capsule surrounding the implant, resulting in compromised solute transport through the membrane.
  • the inflammatory response to biomaterial implants can be divided into two phases.
  • the first phase consists of mobilization of mast cells and then infiltration of predominantly polymorphonuclear (PMN) cells.
  • This phase is termed the acute inflammatory phase.
  • chronic cell types that comprise the second phase of inflammation replace the PMNs.
  • Macrophage and lymphocyte cells predominate during this phase. While not wishing to be bound by any particular theory, it is believed that short-term stimulation of vascularization, or short-term inhibition of scar formation or barrier cell layer formation, provides protection from scar tissue formation, thereby providing a stable platform for sustained maintenance of the altered foreign body response, for example.
  • bioactive intervention can modify the foreign body response in the early weeks of foreign body capsule formation and alter the long-term behavior of the foreign body capsule. Additionally, it is believed that in some circumstances the biointerface membranes of the preferred embodiments can benefit from bioactive intervention to overcome sensitivity of the membrane to implant procedure, motion of the implant, or other factors, which are known to otherwise cause inflammation, scar formation, and hinder device function in vivo.
  • bioactive agents that are believed to modify tissue response include anti-inflammatory agents, anti-infective agents, anesthetics, inflammatory agents, growth factors, angiogenic (growth) factors, adjuvants, immunosuppressive agents, antiplatelet agents, anticoagulants, ACE inhibitors, cytotoxic agents, anti-barrier cell compounds, vascularization compounds, anti-sense molecules, and the like.
  • preferred bioactive agents include SlP (Sphingosine-1 -phosphate), Monobutyrin, Cyclosporin A, Anti-thrombospondin-2, Rapamycin (and its derivatives), and Dexamethasone.
  • other bioactive agents, biological materials for example, proteins
  • non-bioactive substances can incorporated into the membranes of preferred embodiments.
  • Bioactive agents suitable for use in the preferred embodiments are loosely organized into two groups: anti-barrier cell agents and vascularization agents. These designations reflect functions that are believed to provide short-term solute transport through the biointerface membrane, and additionally extend the life of a healthy vascular bed and hence solute transport through the biointerface membrane long-term in vivo. However, not all bioactive agents can be clearly categorized into one or other of the above groups; rather, bioactive agents generally comprise one or more varying mechanisms for modifying tissue response and can be generally categorized into one or both of the above-cited categories.
  • anti-barrier cell agents include compounds exhibiting affects on macrophages and foreign body giant cells (FBGCs). It is believed that anti-barrier cell agents prevent closure of the barrier to solute transport presented by macrophages and FBGCs at the device-tissue interface during FBC maturation.
  • FBGCs foreign body giant cells
  • Anti-barrier cell agents generally include mechanisms that inhibit foreign body giant cells and/or occlusive cell layers.
  • Super Oxide Dismutase (SOD) Mimetic which utilizes a manganese catalytic center within a porphyrin like molecule to mimic native SOD and effectively remove superoxide for long periods, thereby inhibiting FBGC formation at the surfaces of biomaterials in vivo, is incorporated into a biointerface membrane of a preferred embodiment.
  • Anti-barrier cell agents can include anti-inflammatory and/or immunosuppressive mechanisms that affect early FBC formation.
  • Cyclosporine which stimulates very high levels of neovascularization around biomaterials, can be incorporated into a biointerface membrane of a preferred embodiment (see U.S. Patent No. 5,569,462 to Martinson et al).
  • Dexamethasone which abates the intensity of the FBC response at the tissue-device interface, can be incorporated into a biointerface membrane of a preferred embodiment.
  • Rapamycin which is a potent specific inhibitor of some macrophage inflammatory functions, can be incorporated into a biointerface membrane of a preferred embodiment.
  • Suitable medicaments, pharmaceutical compositions, therapeutic agents, or other desirable substances can be incorporated into the membranes of preferred embodiments, including, but not limited to, anti-inflammatory agents, anti-infective agents, necrosing agents, and anesthetics.
  • anti-inflammatory agents reduce acute and/or chronic inflammation adjacent to the implant, in order to decrease the formation of a FBC capsule to reduce or prevent barrier cell layer formation.
  • Suitable anti-inflammatory agents include but are not limited to, for example, nonsteroidal anti-inflammatory drugs (NSAIDs) such as acetometaphen, aminosalicylic acid, aspirin, celecoxib, choline magnesium trisalicylate, diclofenac potassium, diclofenac sodium, diflunisal, etodolac, fenoprofen, flurbiprofen, ibuprofen, indomethacin, interleukin (IL)-IO, IL-6 mutein, anti-IL-6 iNOS inhibitors (for example, L-NAME or L-NMDA), Interferon, ketoprofen, ketorolac, leflunomide, melenamic acid, mycophenolic acid, mizoribine, nabumetone, naproxen, naproxen
  • immunosuppressive and/or immunomodulatory agents interfere directly with several key mechanisms necessary for involvement of different cellular elements in the inflammatory response.
  • Suitable immunosuppressive and/or immunomodulatory agents include antiproliferative, cell-cycle inhibitors, (for example, paclitaxol (e.g., Sirolimus), cytochalasin D, inf ⁇ ximab), taxol, actinomycin, mitomycin, thospromote VEGF, estradiols, NO donors, leptin, QP-2, tacrolimus, tranilast, actinomycin, everolimus, methothrexate, mycophenolic acid, angiopeptin, vincristing, mitomycine, statins, C MYC antisense, sirolimus (and analogs), RestenASE, 2-chloro-deoxyadenosine, PCNA Ribozyme, batimstat, prolyl hydroxylase inhibitors, PPAR ⁇ ligands (
  • anti-infective agents are substances capable of acting against infection by inhibiting the spread of an infectious agent or by killing the infectious agent outright, which can serve to reduce immuno-response without inflammatory response at the implant site.
  • Anti-infective agents include, but are not limited to, anthelmintics (mebendazole), antibiotics including aminoclycosides (gentamicin, neomycin, tobramycin), antifungal antibiotics (amphotericin b, fluconazole, griseofulvin, itraconazole, ketoconazole, nystatin, micatin, tolnaftate), cephalosporins (cefaclor, cefazolin, cefotaxime, ceftazidime, ceftriaxone, cefuroxime, cephalexin), beta-lactam antibiotics (cefotetan, meropenem), chloramphenicol, macrolides (azithromycin, clarithromycin, erythromycin), penicillins (penicillin G sodium salt, amoxicillin, ampicillin, dicloxacillin, nafcillin, piperacillin, ticarcillin), tetracyclines (doxy
  • necrosing agents are any drugs that cause tissue necrosis or cell death.
  • necrosing agents include cisplatin, BCNU, taxol or taxol derivatives, and the like.
  • vascularization agents include substances with direct or indirect angiogenic properties.
  • vascularization agents can additionally affect formation of barrier cells in vivo.
  • indirect angiogenesis it is meant that the angiogenesis can be mediated through inflammatory or immune stimulatory pathways. It is not fully known how agents that induce local vascularization indirectly inhibit barrier-cell formation, however it is believed that some barrier-cell effects can result indirectly from the effects of vascularization agents.
  • Vascularization agents include mechanisms that promote neovascularization around the membrane and/or minimize periods of ischemia by increasing vascularization close to the tissue-device interface.
  • Sphingosine-1 -Phosphate (SlP) which is a phospholipid possessing potent angiogenic activity, is incorporated into a biointerface membrane of a preferred embodiment.
  • Monobutyrin which is a potent vasodilator and angiogenic lipid product of adipocytes, is incorporated into a biointerface membrane of a preferred embodiment.
  • an anti-sense molecule for example, thrombospondin-2 anti-sense, which increases vascularization, is incorporated into a biointerface membrane.
  • Vascularization agents can include mechanisms that promote inflammation, which is believed to cause accelerated neovascularization in vivo.
  • a xenogenic carrier for example, bovine collagen, which by its foreign nature invokes an immune response, stimulates neovascularization, and is incorporated into a biointerface membrane of the preferred embodiments.
  • Lipopolysaccharide which is a potent immunostimulant, is incorporated into a biointerface membrane.
  • a protein for example, a bone morphogenetic protein (BMP), which is known to modulate bone healing in tissue, is incorporated into a biointerface membrane of a preferred embodiment.
  • BMP bone morphogenetic protein
  • angiogenic agents are substances capable of stimulating neovascularization, which can accelerate and sustain the development of a vascularized tissue bed at the tissue-device interface.
  • Angiogenic agents include, but are not limited to, copper ions, iron ions, tridodecylmethylammonium chloride, Basic Fibroblast Growth Factor (bFGF), (also known as Heparin Binding Growth Factor-II and Fibroblast Growth Factor II), Acidic Fibroblast Growth Factor (aFGF), (also known as Heparin Binding Growth Factor-I and Fibroblast Growth Factor-I), Vascular Endothelial Growth Factor (VEGF), Platelet Derived Endothelial Cell Growth Factor BB (PDEGF-BB), Angiopoietin-1, Transforming Growth Factor Beta (TGF-Beta), Transforming Growth Factor Alpha (TGF-Alpha), Hepatocyte Growth Factor, Tumor Necrosis Factor-Alpha (TNF-Alpha), TGF-
  • pro-inflammatory agents are substances capable of stimulating an immune response in host tissue, which can accelerate or sustain formation of a mature vascularized tissue bed.
  • pro-inflammatory agents are generally irritants or other substances that induce chronic inflammation and chronic granular response at the implantation-site. While not wishing to be bound by theory, it is believed that formation of high tissue granulation induces blood vessels, which supply an adequate, or rich supply of analytes to the device-tissue interface.
  • Pro-inflammatory agents include, but are not limited to, xenogenic carriers, Lipopolysaccharides, S. aureus peptidoglycan, and proteins.
  • membranes of preferred embodiments include various pharmacological agents, excipients, and other substances well known in the art of pharmaceutical formulations.
  • U.S. Publication No. US-2005-0031689-A1 discloses a variety of systems and methods by which the bioactive agent can be incorporated into the biointerface membranes and/or implantable device.
  • the bioactive agent is preferably incorporated into the biointerface membrane and/or implantable device, in some embodiments the bioactive agent can be administered concurrently with, prior to, or after implantation of the device systemically, for example, by oral administration, or locally, for example, by subcutaneous injection near the implantation site.
  • a combination of bioactive agent incorporated in the biointerface membrane and bioactive agent administration locally and/or systemically can be preferred in certain embodiments.
  • bioactive agents of the preferred embodiments can be optimized for short- and/or long-term release.
  • the bioactive agents of the preferred embodiments are designed to aid or overcome factors associated with short-term effects (for example, acute inflammation) of the foreign body response, which can begin as early as the time of implantation and extend up to about one month after implantation.
  • the bioactive agents of the preferred embodiments are designed to aid or overcome factors associated with long-term effects, for example, chronic inflammation, barrier cell layer formation, or build-up of fibrotic tissue of the foreign body response, which can begin as early as about one week after implantation and extend for the life of the implant, for example, months to years.
  • the bioactive agents of the preferred embodiments combine short- and long-term release to exploit the benefits of both.
  • U.S. Publication No. US-2005-0031689-A1 discloses a variety of systems and methods for release of the bioactive agents.
  • the amount of loading of the bioactive agent into the biointerface membrane can depend upon several factors.
  • the bioactive agent dosage and duration can vary with the intended use of the biointerface membrane, for example, cell transplantation, analyte measuring-device, and the like; differences among hosts in the effective dose of bioactive agent; location and methods of loading the bioactive agent; and release rates associated with bioactive agents and optionally their carrier matrix. Therefore, one skilled in the art will appreciate the variability in the levels of loading the bioactive agent, for the reasons described above.
  • U.S. Publication No. US-2005-0031689-A1 to Shults et al. discloses a variety of systems and methods for loading of the bioactive agents.
  • the biointerface membrane of the preferred embodiments can be formed onto the sensor using techniques such as electrospinning, molding, weaving, direct- writing, lyophilizing, wrapping, and the like.
  • Figs. 6 to 10 describe systems and methods for the formation of porous biointerface membranes, including interconnected cavities and solid portion(s).
  • a cell impermeable (second domain) can additionally be formed using known thin film techniques, such as dip coating, spray coating, spin coating, tampo printing, and the like, prior to formation of the interconnected cavities and solid portion(s).
  • the porous biointerface membrane e.g., first domain
  • the sensing membrane can be formed directly onto the sensing membrane.
  • Fig. 6 is a flow chart that illustrates the process 150 of forming a biointerface-coated small structured sensor in one embodiment.
  • the biointerface membrane includes woven or non-woven fibers formed directly onto the sensor. Generally, fibers can be deposited onto the sensor using methods suitable for formation of woven- or non-woven fibrous materials.
  • the biointerface membrane is electrospun directly onto the sensor; electrospinning advantageously allows the biointerface membranes to be made with small consistent fiber diameters that are fused at the nodes and are without aggregation.
  • the biointerface membrane is directly written onto the sensor; direct writing can advantageously allow uniform deposition of stored patterns (e.g., in a computer system) for providing consistent and reproducible architectures.
  • a curing step is included either during or after the writing step to solidify the material being written (e.g., heat, UV curing, radiation, etc.). Direct writing is described in more detail, below.
  • one or more dispensers dispense a polymeric material used to form the fibers.
  • a variety of polymeric materials are contemplated for use with the preferred embodiments, including one or more of silicone, polytetrafiuoroethylene, expanded polytetrafluoroethylene, polyethylene-co-tetrafluoroethylene, polyolefm, polyester, polycarbonate, biostable polytetrafluoroethylene, homopolymers, copolymers, terpolymers of polyurethanes, polypropylene (PP), polyvinylchloride (PVC), polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polybutylene terephthalate (PBT), polymethylmethacrylate (PMMA), polyether ether ketone (PEEK), polyamides, polyurethanes, cellulosic polymers, poly(ethylene oxide), poly(propylene oxide) and copolymers and blends thereof, polysulfones
  • the coating process can be performed in a vacuum or in a gaseous medium, which environment can affect the architecture of the biointerface membrane as is appreciated by one skilled in the art.
  • the dispenser dispenses a charged liquefied polymer within an electric field, to thereby form a jet of polymer fibers, for example, such as described in PCT International Publication No. WO 2005/032400, which is incorporated herein by reference in its entirety.
  • a dispenser dispenses a polymer solution using a nozzle with a valve, or the like, for example as described in U.S. Publication No. US-2004-0253365-A1.
  • a variety of nozzles and/or dispensers can be used to dispense a polymeric material to form the woven or non- woven fibers of the biointerface membrane.
  • a direct-write patterning system is suitable for either fine- pattern micro dispensing and/or fine-focused laser-beam writing over flat or conformal surfaces to create exact replicas of a preferred biointerface structure.
  • the biointerface materials described herein can be deposited using these integrated tool technologies for the direct-write deposition and laser micromachining of a wide variety of biointerface architectures described herein.
  • the direct-write patterning system can provide the capability for concurrent detection and imaging methods during additive and subtractive processes.
  • alternative embodiments of the direct- writing deposition technique utilize a tool in which constituent materials can be dispensed through multiple, discrete dispensing heads.
  • the biointerface structure is directly written onto a removable substrate, after which the substrate is removed and the biointerface applied to the sensor (e.g., wrapped around the sensor or the sensor is inserted into the biointerface).
  • the dispenser(s) is moved relative to the sensor and/or the sensor is moved relative to the dispenser(s) so as to coat the sensor with the fibers.
  • the dispenser(s) can change the direction and/or magnitude of the electric field during motion in order to effect the orientation of the polymer fibers on the sensor.
  • the path of the dispenser is preferably selected so as to coat the portions of or the entire object.
  • the dispenser can be moved along a helix path, a circular path, a zigzag path, or the like.
  • the dispenser can move rotationally and/or translationally relative to the sensor.
  • the number of sweeps is preferably selected according to the desired architecture of the biointerface membrane. Additionally, the density of the fibers and/or the type of liquefied polymer can be changed from one sweep to the other to thereby control the architecture of the membrane.
  • the dispenser is programmed to write a pattern that creates the desired membrane architecture, including the interconnected cavities and solid portion(s). Namely, the dispenser is programmed to move in the x, y, and optionally z direction in order to create the desired membrane architecture. See, for example, U.S. Publication No. US-2004- 0253365-A1 cited above.
  • the senor is moved in a rotational or translational motion, which can be performed in combination with, or instead of, movement of the dispenser. In this step, the sensor is moved so as to ensure coating throughout the entirety of the biointerface region (or a portion thereof).
  • a substantially circumscribing biointerface membrane e.g., for a substantially cylindrically shaped sensing sensor
  • the sensor can be rotated so to aid in coating the entire circumference of the sensor.
  • a substantially planar biointerface membrane e.g., for a substantially planar sensor
  • the sensor can be translated so as to aid in coating the desired planar surface area.
  • Fig. 7 is a flow chart that illustrates the process 160 of forming a biointerface-coated sensor in an alternative embodiment.
  • the interconnected cavities and solid portion(s) of the biointerface membrane are amorphous in configuration, such as illustrated in Figs. 5A and 5B, for example.
  • a selectively removable porogen e.g., porous mold
  • selectively removable particles for example, sugar crystals
  • materials suitable as selectively removable mold material include thermoplastic polymers such as waxes, paraffin, polyethylene, nylon, polycarbonate, or polystyrene in naturally available particles or processed into specific sizes, shapes, molded forms, spheres or fibers, salt or other particles which cannot be made to inherently stick together coated with sugar, and certain drug crystals such as gentamycin, tetracycline, or cephalosporins.
  • any dissolvable, burnable, meltable, or otherwise removable particle which can be made to stick together, could be used.
  • the particles Preferably, the particles have shapes and sizes substantially corresponding to the desired cavity dimensions, such as described in more detail above.
  • the particles are made to adhere to the sensor by environmental conditions, for example, humidity can be used to cause sugar to adhere to the sensor.
  • the particles are made to coalesce to provide the desired interconnectivity between the cavities.
  • sugar crystals are exposed to a humid environment sufficient to cause coalescence of the sugar crystals.
  • other molds can be used in the place of the particles described above, for example, coral, self-assembly beads, etched and broken silicon pieces, glass frit pieces, and the like, as shown in Fig. 1 IB.
  • a material e.g., a moldable or conformable material
  • a material is filled or coated into the interconnected cavities of the mold using methods common in the art of polymer processing, for example, injecting, pressing, vacuuming, vapor depositing, extruding, pouring, and the like.
  • materials suitable for the resulting porous device include polymers, metals, metal alloys, ceramics, biological derivatives, and combinations thereof, in solid or fiber form.
  • silicone is pressed into the interconnected cavities of the mold.
  • the material is substantially cured or solidified to form the solid portion(s) of the biointerface membrane.
  • Solidification of the material can be accelerated by supplying dry air (which can be heated) to the material, for example. Additionally, freezing, freeze drying or vacuum desiccation, with or without added heat, can also be utilized to cause the material to solidify.
  • a skin or any excess material can be removed (e.g., shaved, etched, or the like) after curing.
  • an outer skin of silicone is removed to expose the interconnected cavities at an outer surface.
  • the selectively removable porogen e.g., porous mold
  • the selectively removable porogen is readily removable without significantly altering the final product (or product material). This removal can be by dissolution by some solvent that does not significantly dissolve the final product material.
  • the mold material can be melted (or burned) out of the final product material if the melting point (or burning point) of the mold material is below that of the final product material.
  • water is used to dissolve the sugar crystals.
  • Fig. 8 is a flow chart that illustrates the process 170 of forming a biointerface-coated small structured sensor in another alternative embodiment.
  • the interconnected cavities and solid portion(s) of the biointerface membrane are amorphous in configuration, such as illustrated in Figs. 4 A and 4B, for example, and the solid portion is molded around the sensor.
  • a selectively removable porogen is formed by filling a shaped cavity with selectively removable particles, for example, sugar crystals, wherein the sensor is located within the shaped cavity, and wherein the selectively removable particles substantially surround the sensor. Additional examples of materials suitable as selectively removable mold material are described with reference to block 162, above.
  • the shaped cavity mold is formed from a selectively removable material (e.g., sacrificial cavity mold) similar the selectively removable particles described above.
  • a selectively removable material e.g., sacrificial cavity mold
  • One such example includes a tube formed from a dissolvable polymer.
  • the shaped cavity can be a non-selectively removable material, and instead, a sacrificial layer of selectively removable material is formed directly onto the cavity walls, enabling the removal of the biointerface membrane after dissolution of the sacrificial layer.
  • the shape of the cavity mold substantially corresponds to the desired final shape of the biointerface membrane.
  • the cavity mold is substantially cylindrical, for example using a syringe or cannula as the cavity mold.
  • the particles are made to coalesce to provide the desired interconnectivity between the cavities.
  • sugar crystals are exposed to humidity or spray of water sufficient to cause coalescence of the sugar crystals.
  • other molds can be used in the place of the particles described above, for example, coral, self-assembly beads, etched and broken silicon pieces, glass frit pieces, and the like.
  • a material e.g., a moldable or conformable material
  • a material is filled into the interconnected cavities of the mold using methods common in the art of polymer processing, for example, injecting, pressing, vacuuming, vapor depositing, pouring, and the like. Examples of materials suitable for the resulting porous device are described in more detail with reference to block 164, above.
  • silicone is pressed into the interconnected cavities of the mold.
  • the material is substantially cured or solidified to form the solid portion(s) of the biointerface membrane. Solidification of the material can be accelerated as described in more detail with reference to block 166, above.
  • the selectively removable porogen is dissolved, melted, etched, or otherwise removed, leaving interconnecting cavities within the solid portion surrounding the sensor.
  • the sacrificial layer can be removed before, during, or after the removal of the selectively removable porogen.
  • the final product is removed from the cavity mold before, during, or after the removal of the selectively removable porogen.
  • the selectively removable porogen is readily removable without significantly altering the final product (or product material). This removal can be by dissolution by some solvent that does not significantly dissolve the final product material.
  • the mold material can be melted (or burned) out of the final product material if the melting point (or burning point) of the mold material is below that of the final product material.
  • a sacrificial tube forms the mold cavity; wherein the sacrificial tube is removed prior to, during, or after dissolution of the selectively removable porogen.
  • Fig. 9 is a flow chart that illustrates the process 180 of forming a biointerface-wrapped sensor in one embodiment.
  • the interconnected cavities and solid portion(s) of the biointerface membrane can be fibrous or amorphous in configuration.
  • substantially any biointerface membrane with an architecture as described in more detail above, which is formed in substantially any manner, can be used with this embodiment.
  • a sensor is manufactured and provided, wherein the sensor is formed with a small structure as defined herein.
  • a biointerface membrane with an architecture as described herein is manufactured in substantially any desired manner, wherein the biointerface membrane is formed substantially as a sheet or tube of membrane.
  • Biointerface membranes suitable for wrapping around the sensor and providing the desired host interface are described in more detail above (see section entitled, "Architecture of the First Domain.")
  • the biointerface membrane is wrapped around the sensor manually, or using an automated device, as can be appreciated by one skilled in the art. Namely, the biointerface membrane is wrapped such that it substantially surrounds the sensor, or the sensing mechanism of the sensor (e.g., the electroactive surfaces or sensing membrane).
  • the number of wraps can be from less than 1 to about 100, preferably 1, VA, 2, 2 1 A, 3, 3 1 A, 4, 5, 6, 7, 8, 9, 10, or more. The number of wraps depends on the architecture of the sheet of biointerface membrane, and the desired architecture of the biointerface surrounding the sensor.
  • the circumference (or a portion thereof (e.g., an edge)) of the biointerface membrane with an architecture as described herein can be adhered or otherwise attached or sealed to form a substantially consistent outer surface (of the biointerface membrane).
  • the biointerface membrane is wrapped around the sensor one time, wherein the "wrap" includes a tubular biointerface membrane configured to slide over the sensor (or sensing mechanism), for example, be stretching the tubular biointerface membrane and inserting the sensor therein.
  • Fig. 10 is a flow chart that illustrates the process 190 of forming a sensing biointerface in one embodiment.
  • the sensor is inserted into the biointerface membrane so that it is encompassed therein.
  • a biointerface membrane is manufactured in substantially any desired manner. Biointerface membranes suitable for the sensing biointerface are described in more detail above (see for example, section entitled, "Architecture of the First Domain").
  • the biointerface membrane is molded into the desired final shape to surround the sensor and implant into a host.
  • the biointerface membrane can be provided as a sheet of bulk material.
  • a particularly shaped or sized biointerface membrane can be (optionally) cut.
  • the biointerface membrane is provided in bulk, e.g., as a sheet of material, the desire shape or size can be cut there from.
  • bulk biointerface membrane sheet is preferably of the appropriate thickness for the desired final product.
  • the biointerface membrane (bulk sheet) is compressed, for example between two substantially rigid structures, and the final size/shape biointerface membrane cut there from, after which the biointerface membrane is released. While not wishing to be bound by theory, it is believed that by compressing the biointerface membrane during cutting, a more precise shape can be achieved. Biointerface membranes can have sufficient elasticity, such that the thickness is returned after release from compression, as is appreciated by one skilled in the art.
  • a sensor is inserted into the biointerface membrane.
  • the sensor is inserted into the membrane such that the sensing mechanism contacts at least one or more of the interconnected cavities so that the host analyte can be measured.
  • the biointerface can be formed from a material that allows the flux of the analyte there through.
  • the sensor is inserted with the aid of a needle.
  • the sensor is formed with appropriate sharpness and rigidity to enable insertion through the biointerface membrane.
  • an anchoring mechanism such as a barb, is provided on the sensor, in order to anchor the sensor within the biointerface membrane (and/or host tissue).
  • an anchoring mechanism such as a barb
  • a variety of additional or alternative aspects can be provided to implement the biointerface membrane surrounded sensors of the preferred embodiments.
  • a porous membrane material applied to the sensor can act as a spacer between the sensor and the surrounding tissue at the site of sensor insertion, in either the short-term or long-term sensors.
  • a spacer from 60-300 microns thick can be created of porous silicone having pore sizes of 0.6 microns and greater (e.g., up to about 1,000 microns or more).
  • the adipose cells When inserted into the tissues, the adipose cells come to rest against the outermost aspects of the porous membrane, rather than against the surface of the sensor (Fig. 2C), allowing open space for transport of water-soluble molecules such as oxygen and glucose.
  • Porous membrane material can be manufactured and applied to a sensor using any advantageous method known to one skilled in the art. As discussed elsewhere, porous membranes can be manufactured from a variety of useful materials known in the art, depending upon the desired membrane parameters.
  • Fig. 1 IA is a scanning electron micrograph showing a cross-section of an exemplary porous silicone tube that does not contain a sensor. Note the open porous structure of cavities and channels within the solidified silicone. Porous silicone can be manufactured and applied to the sensor by a variety of means.
  • the material in Fig. 1 IA was formed by sieving sugar to give crystals having a size and shape approximate to that of the desired pore size. The sugar was humidified and then compressed into a mold. The mold was then baked, to harden the sugar within the mold. Silicone was forced into the mold and then cured. After the silicone was cured, the mold was removed and the sugar dissolved away. A sensor could subsequently be inserted into the porous silicone tube.
  • Fig. 1 IB is a scanning electron micrograph of sugar molded onto a sensor.
  • a sugar mold was formed directly on the sensor. Note the clumps of sugar crystals attached to the surface of the sensor.
  • the sensor was placed into the mold, which was then filled with humidified sugar crystals. The mold containing the sensor and sugar was baked to solidify the sugar on the surface of the sensor. The sensor, with sugar crystals attached, was removed from the mold, in order to prepare the electron micrograph.
  • the sensor can be rolled in the humidified sugar, to attach a layer of sugar to the sensor surface, and then baked to solidify the sugar.
  • the sugarcoated sensor can be rolled in humidified sugar additional times to form a thicker sugar mold (i.e., 2 or more layers) around the sensor.
  • silicone is pumped or injected into the solidified sugar and cured. After curing, the sugar is removed, such as by washing, to give a porous silicone covered sensor.
  • porous silicone is pre-formed as a sheet or plug and then applied to the sensor.
  • a sugar mold lacking a sensor therein is formed using the usual means.
  • silicone is injected into the mold and then cured. After the mold material is removed from the cured silicone, the sensor is inserted into the plug, thereby creating a sensor having a porous silicone biointerface membrane.
  • a thin sheet of porous silicone is manufactured and then wrapped around the sensor.
  • a thin porous silicone sheet is manufactured by pressing a thin layer of sieved, humidified sugar into a Petri dish. The sugar is baked. Silicone is applied to the sugar mold by injection, pressing, or the like, and then cured. The sugar is removed from the porous silicone sheet, such as by washing. The manufactured porous silicone is then wrapped around the sensor to form a biointerface membrane of a desired thickness.
  • the biointerface membrane can be wrapped in a layer of ePTFE having a pore size of about 0.6 microns and above, to create a layer about 12-100 microns thick. See U.S. Patent No. 6,862,465.
  • the spacer can be either a smooth or porous hydrogel.
  • noise is reduced by first providing a device of the present invention, such as an implantable analyte sensor, preferably a glucose sensor.
  • the sensor is pre-inserted through the host's skin and into the host.
  • pre-insertion or "pre- inserted” as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to inserting a sensor a period of time (e.g., a "waiting period") before it is to be used, such as about 1-24 hours or longer, e.g., without operatively connecting the sensor to the electronics.
  • the period of time is associated with an amount of time necessary for wound healing to occur. For example, the wound healing process progresses for the first few hours or days.
  • interferents that build up around the sensor will be diluted or removed by bulk fluid flow and/or an increase in the fluid bulk around at least a portion of the sensor.
  • the host waits about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 hours or longer, before operatively connecting the electronics to the sensor. In another embodiment, the host can wait about 24, 36 or 48 hours or longer, before connecting the electronics. In yet another embodiment, the host can wait about 1-2, 2-4, 4-6, 6-8, 8-10, 10-12, 12-15, 12-24, 12-36, 12-48, 24-36 or 36-48 hours or longer, before operatively connecting the electronics.
  • a cap is provided to cover the electrical components (e.g., contacts), until the electronics are coupled to the sensor.
  • the cap can be manufactured of any convenient material, such as plastic, tape, foil , glass or a combination thereof.
  • the cap can attach to the sensor using any convenient method known to those of skill in the art. For example, the cap can attach with a snap fit, adhesive, pins, or the like. After the waiting period has been completed, the host can remove the cap and operably attach the electronics to the sensor.
  • a signal from the sensor is detected, as described in detail above.
  • the sensor will be used for a prescribed period of time, after operably connecting the electronics to the sensor (e.g., in addition to pre-insertion or a waiting period).
  • a 3-day sensor will be used for 3-days and then removed (after three days of data collection).
  • a 7-day sensor will be removed after seven days of data collection.
  • the sensor will be removed after that period of time.
  • noise can be reduced by sensor pre-insertion and/or overlapping sensor insertion as described in co- pending U.S. patent application 11/373,628, filed March 9, 2006 and entitled "SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA FOR SENSOR CALIBRATION.”
  • a second sensor can be pre-inserted into the host before removal of the first sensor.
  • the amount of time the second sensor is pre-inserted, before the first sensor corresponds to the waiting period required for wound healing, as described above. For example, if the waiting period is 6- hours, the host would pre-insert the second sensor at least about 6 hours before he removed the first sensor. In another example, if the waiting period is 24 hours, he would pre-insert the second sensor on the second-to-the-last day (e.g., about 24 hours before removal of the first sensor).
  • Pre-inserting a sensor waiting a period of time associated with wound healing and then operatively connecting the electronics, allows time for a fluid pocket to form and/or wound healing to progress, and thereby avoids presenting data to a user during the early time after sensor insertion when early, sedentary noise is most likely to occur, while maintaining the full period of sensor utility (e.g., number of days the sensor is to be used, such as but not limited to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 days).
  • full period of sensor utility e.g., number of days the sensor is to be used, such as but not limited to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 days.
  • the host can have daily use of a sensor without having days of disuse due to a waiting period such as can be necessitated by procedures such as calibration, break-in or wound healing.
  • the host is provided with an extended period of continuous use (instead of the intermittent periods of use required by some implantable analyte sensors, such as implantable glucose sensors) and is provided with substantially increased or improved information/data on his analyte levels (e.g., glucose concentration) so that he can make more informed treatment decisions. Accordingly, due to more informed treatment decisions, the host can benefit from improved disease management, with improved health and quality of life.

Abstract

Biointerface membranes are provided which can be utilized with implantable device, such as devices for detection of analyte concentrations in a biological sample. More particularly, methods for monitoring glucose levies in a biological fluid sample using an implantable analyte detection device incorporating such membranes are provided. Preferably the device comprises a biointerface membrane (68) as a spacer preventing adipose cell (200) from contact with an inserted transcutaneous sensor (34).

Description

ANALYTE SENSOR
RELATED APPLICATIONS
[0001] This application is a continuation-in-part of U.S. Application No. 11/439,630, filed May 23, 2006, which is a continuation-in-part of U.S. Application No. 11/077,715, filed March 10, 2005, which claims the benefit of U.S. Provisional Application No. 60/587,787 filed July 13, 2004; U.S. Provisional Application No. 60/587,800 filed July 13, 2004; U.S. Provisional Application No. 60/614,683 filed September 30, 2004; and U.S. Provisional Application No. 60/614,764 filed September 30, 2004. U.S. Application No. 11/439,630 claims the benefit of U.S. Provisional Application No. 60/683,923 filed May 23, 2005. Each of the aforementioned applications is incorporated by reference herein in its entirety, and each is hereby expressly made a part of this specification.
FIELD OF THE INVENTION
[0002] Biointerface membranes are provided which can be utilized with implantable devices, such as devices for the detection of analyte concentrations in a biological sample. More particularly, methods for monitoring glucose levels in a biological fluid sample using an implantable analyte detection device incorporating such membranes are provided.
BACKGROUND OF THE INVENTION
[0003] One of the most heavily investigated analyte sensing devices is the implantable glucose device for detecting glucose levels in hosts with diabetes. Despite the increasing number of individuals diagnosed with diabetes and recent advances in the field of implantable glucose monitoring devices, currently used devices are unable to provide data safely and reliably for certain periods of time. There are two commonly used types of subcutaneously implantable glucose sensing devices. These types include those that are implanted transcutaneously and those that are wholly implanted.
SUMMARY OF THE INVENTION
[0004] Accordingly, in a first aspect, an analyte sensing device adapted for implantation into a host's tissue is provided, comprising a sensor configured to measure an analyte in a host, wherein the sensor comprises a biointerface configured to promote at least one function selected from the group consisting of increasing fluid bulk surrounding at least a portion of the sensor in vivo, increasing bulk fluid flow surrounding at least a portion of the sensor in vivo, and increasing diffusion rates surrounding at least a portion of the sensor in vivo.
[0005] In an embodiment of the first aspect, the biointerface comprises a spacer.
[0006] In an embodiment of the first aspect, the spacer comprises a mesh.
[0007] In an embodiment of the first aspect, the spacer comprises a hydrogel.
[0008] In an embodiment of the first aspect, the hydrogel comprises from about 20 wt. % to about 99 wt. % water.
[0009] In an embodiment of the first aspect, the hydrogel comprises from about 80 wt. % to about 99 wt. % water.
[0010] In an embodiment of the first aspect, the spacer comprises a shedding layer.
[0011] In an embodiment of the first aspect, the spacer is a fibrous structure.
[0012] In an embodiment of the first aspect, the spacer is a porous polymer membrane.
[0013] In an embodiment of the first aspect, the spacer comprises a material selected from the group consisting of polysulfone, polytetrafluoroethylene, polyvinylidene difluoride, polyacrylonitrile, silicone, polytetrafluoroethylene, expanded polytetrafluoroethylene, polyethylene-co-tetrafluoroethylene, polyolefin, polyester, polycarbonate, biostable polytetrafluoroethylene, polyurethane, polypropylene, polyvinylchloride, polyvinylidene fluoride, polyvinyl alcohol, polybutylene terephthalate, polymethylmethacrylate, polyether ether ketone, polyamides, cellulosic polymer, poly(ethylene oxide), poly(propylene oxide), hydrogel polymer, poly(2-hydroxyethyl methacrylate), hydroxyethyl methacrylate, high density polyethylene, acrylic copolymer, nylon, polyvinyl difluoride, polyanhydride, poly(l-lysine), poly (L-lactic acid), hydroxyethylmethacrylate, homopolymers thereof, copolymers thereof, di-block copolymers thereof, tri-block copolymers thereof, alternating copolymers thereof, random copolymers thereof, graft copolymers thereof, terpolymers thereof, and blends thereof.
[0014] In an embodiment of the first aspect, the spacer comprises a material selected from the group consisting of metal, ceramic, hydroxyapeptite, alumina, zirconia, carbon fiber, aluminum, calcium phosphate, titanium, titanium alloy, nintinol, stainless steel, CoCr alloy, and combinations thereof.
[0015] In an embodiment of the first aspect, the spacer has an average nominal pore size of from about 0.6 μm to about 20 μm. [0016] In an embodiment of the first aspect, at least 50% of the pores of the spacer have an average size of from about 0.6 μm to about 20 μm.
[0017] In an embodiment of the first aspect, the biointerface is configured to provide a fluid pocket.
[0018] In an embodiment of the first aspect, the biointerface comprises a roughened surface.
[0019] In an embodiment of the first aspect, the roughened surface is a vasodilating surface.
[0020] In an embodiment of the first aspect, the biointerface comprises an irregular surface.
[0021] In an embodiment of the first aspect, the biointerface comprises a nanoporous material, a swellable material, or a collapsible material.
[0022] In an embodiment of the first aspect, the biointerface comprises an irritating superstructure.
[0023] In an embodiment of the first aspect, the irritating superstructure comprises a coiled silver wire.
[0024] In an embodiment of the first aspect, the biointerface comprises a biodegradable material.
[0025] In an embodiment of the first aspect, the biodegradable material is a biodegradable polymer.
[0026] In an embodiment of the first aspect, the biodegradable polymer comprises an irritating polymer.
' [0027] In an embodiment of the first aspect, the spacer comprises a self- assembling material.
[0028] In an embodiment of the first aspect, the self-assembling material comprises a self-assembling peptide.
[0029] In an embodiment of the first aspect, the biointerface comprises a bioactive agent.
[0030] In an embodiment of the first aspect, the bioactive agent is selected from the group consisting of anti-barrier cell agent, an anti-infective agent, a necrosing agent, an inflammatory agent, a growth factor, an angiogenic factor, an adjuvant, an antiplatelet agent, an anticoagulant, an ACE inhibitor, a cytotoxic agent, a vascularization compound, an anti-sense molecule, an enzyme, a metal, a hydrophilic biodegradable polymer, a glycolic acid-based polymer, a lactic acid-based polymer, polyethylene oxide, silver, and combinations thereof.
[0031] In an embodiment of the first aspect, the sensor is configured to measure a signal that is indicative of a quantity of the analyte within a fluid surrounding at least a portion of the sensor.
[0032] In an embodiment of the first aspect, the fluid surrounding at least a portion of the sensor comprises wound fluid.
[0033] In an embodiment of the first aspect, the. device further comprises electronics operably connected to the sensor and adapted for detecting a signal from the sensor, wherein the signal is indicative of a quantity of analyte within the host.
[0034] In an embodiment of the first aspect, the device further comprises a housing adapted for placement adjacent to the host's skin, wherein at least a portion of the electronics are disposed in the housing.
[0035] In an embodiment of the first aspect, the sensor is adapted for short-term implantation.
[0036] In an embodiment of the first aspect, the sensor is a transcutaneous sensor.
[0037] In a second aspect, an analyte sensing device adapted for implantation into a host's tissue is provided, comprising a sensor for measuring an analyte in the host, wherein the sensor comprises a biointerface configured to irritate a surrounding in vivo environment.
[0038] In an embodiment of the second aspect, the biointerface comprises a shedding layer.
[0039] In an embodiment of the second aspect, the biointerface comprises a roughened surface.
[0040] In an embodiment of the second aspect, the biointerface comprises an irritating superstructure.
[0041] In an embodiment of the second aspect, the irritating superstructure comprises a coiled silver wire.
[0042] In an embodiment of the second aspect, the biointerface comprises an irregular surface.
[0043] In an embodiment of the second aspect, the biointerface comprises a biodegradable material.
[0044] In an embodiment of the second, aspect, the biodegradable material is a biodegradable polymer. [0045] In an embodiment of the second aspect, the biodegradable polymer comprises an irritating polymer.
[0046] In an embodiment of the second aspect, the biointerface comprises a bioactive agent.
[0047] In an embodiment of the second aspect, the bioactive agent is selected from the group consisting of an anti-barrier cell agent, an anti-infective agent, a necrosing agent, an inflammatory agent, a growth factor, an angiogenic factor, an adjuvant, an antiplatelet agent, an anticoagulant, an ACE inhibitor, a cytotoxic agent, a vascularization compound, an anti-sense molecule, an enzyme, a metal, a hydrophilic biodegradable polymer, a glycolic acid-based polymer, a lactic acid-based polymer, polyethylene oxide, silver, and combinations thereof.
[0048] In an embodiment of the second aspect, the sensor is configured to measure a signal that is indicative of a quantity of the analyte within a fluid surrounding at least a portion of the sensor.
[0049] In an embodiment of the second aspect, the fluid surrounding at least a portion of the sensor comprises wound fluid.
[0050] In an embodiment of the second aspect, the device further comprises electronics operably connected to the sensor and adapted for detecting a signal from the sensor, wherein the signal is indicative of a quantity of the analyte within the host.
[0051] In an embodiment of the second aspect, the device further comprises a housing adapted for placement adjacent to the host's skin, wherein at least a portion of the electronics are disposed in the housing.
[0052] In an embodiment of the second aspect, the sensor is adapted for short- term implantation
[0053] In an embodiment of the second aspect, the sensor is a transcutaneous sensor.
[0054] In a third aspect, an analyte sensing device adapted for implantation into a host's tissue is provided, comprising a sensor for measuring an analyte in a host, wherein the sensor comprises a biointerface configured to suppress wound healing around at least a portion of the sensor in vivo.
[0055] In an embodiment of the third aspect, the biointerface comprises a scavenging agent. [0056] In an embodiment of the third aspect, the biointerface comprises a bioactive agent.
[0057] In an embodiment of the third aspect, the bioactive agent is selected from the group consisting of an anti-inflammatory agent, an anti-infective agent, an anesthetic, a growth factor, an angiogenic factor, an immunosuppressive agent, an antiplatelet agent, an anticoagulant, a scavenging agent, an anti-histamine, and combinations thereof.
[0058] In an embodiment of the third aspect, the bioactive agent comprises an anti-histamine.
[0059] In an embodiment of the third aspect, the biointerface comprises an architecture configured to suppress wounding.
[0060] In an embodiment of the third aspect, the biointerface comprises an antiinflammatory architecture.
[0061] In an embodiment of the third aspect, the biointerface comprises a proinflammatory architecture.
[0062] In an embodiment of the third aspect, the biointerface comprises an artificial protective coating.
[0063] In an embodiment of the third aspect, the artificial protective coating comprises a substance selected from the group consisting of albumin, fibrin, collagen, endothelial cells, wound closure chemicals, blood products, platelet-rich plasma, growth factors, and combinations thereof.
[0064] In an embodiment of the third aspect, the sensor is configured to measure a signal that is indicative of a quantity of the analyte within a fluid surrounding at least a portion of the sensor.
[0065] In an embodiment of the third aspect, the fluid surrounding at least a portion of the sensor comprises wound fluid.
[0066] In an embodiment of the third aspect, the device further comprises electronics operably connected to the sensor and adapted for detecting a signal from the sensor, wherein the signal is indicative of a quantity of the analyte within the host.
[0067] In an embodiment of the third aspect, the device further comprises a housing adapted for placement adjacent to the host's skin, wherein at least a portion of the electronics are disposed in the housing.
[0068] In an embodiment of the third aspect, the sensor is adapted for short-term implantation [0069] In an embodiment of the third aspect, the sensor is a transcutaneous sensor.
[0070] In a fourth aspect, a method for detecting an analyte in a host is provided, comprising providing an analyte sensing device adapted for transcutaneous insertion into the host, the device comprising a sensor for measuring the analyte in the host, wherein the sensor is configured to reduce noise in vivo; inserting the sensor through the host's skin and into the host; waiting a first period of time, during which first period of time the sensor remains in the host, wherein the first period of time is sufficient for at least partial wound healing to occur; initiating a sensor function; and detecting a signal from the sensor, wherein the signal is indicative of a concentration of an analyte in the host.
[0071] In an embodiment of the fourth aspect, the first time period is at least about 1 hour.
[0072] In an embodiment of the fourth aspect, the first time period is at least about 24 hours.
[0073] In an embodiment of the fourth aspect, the first period of time is from about 1 hour to about 48 hours.
[0074] In an embodiment of the fourth aspect, the method further comprises a step of waiting a second period of time during which the sensor remains in the host, wherein the step of waiting a second period of time is conducted after the step of initiating a sensor function and before the step of detecting a signal from the sensor.
[0075] In an embodiment of the fourth aspect, the second period of time is at least about 1 hour.
[0076] In an embodiment of the fourth aspect, the second period of time is at least about 24 hours.
[0077] In an embodiment of the fourth aspect, the second period of time is from about 1 hour to about 48 hours.
BRIEF DESCRIPTION OF THE DRAWINGS
[0078] Fig. IA is a graph of intermittent, sedentary noise in a non-diabetic host wearing a STS glucose sensor. The upper line shows the sensor signal. The lower line shows the noise within the sensor signal.
[0079] Fig. IB is a graph illustrating nighttime noise in a non-diabetic host wearing a STS glucose sensor built without enzyme. The black line shows the sensor signal from the sensor without enzyme. [0080] Fig. 1C is a graph comparing glucose measurements from blood samples collected from the lower abdomen (diamonds, dashed line) and the fingertip (squares, solid line) using a lancet, in a normal host that has high levels of nighttime noise. Measurements were made with a hand-held glucose monitor.
[0081] Fig. ID is a graph comparing signals from samples collected from the lower abdomen (diamonds, dashed line) and the fingertip (squares, solid line) using a lancet, in a normal host that has low levels of nighttime noise. Measurements were made with a hand-held glucose monitor.
[0082] Fig. IE is a photograph of an approximately 3-inch portion of the abdomen (where samples were collected) of the host of Fig. 1C.
[0083] Fig. IF is a photo of the index and middle fingers (where samples were collected) of the host of Fig. 1C.
[0084] Fig. 2A is an illustration of classical three-layered foreign body response to a conventional synthetic membrane implanted under the skin.
[0085] Fig. 2B is a side schematic view of adipose cell contact with an inserted transcutaneous sensor or an implanted sensor.
[0086] Fig. 2C is a side schematic view of a biointerface membrane preventing adipose cell contact with an inserted transcutaneous sensor or an implanted sensor.
[0087] Fig. 3 A is an expanded view of an exemplary embodiment of a continuous analyte sensor.
[0088] Fig. 3B is a cross-sectional view through the sensor of Fig. 3 A on line B-B.
[0089] Fig. 4A is a side schematic view of a transcutaneous analyte sensor in one embodiment.
[0090] Fig. 4B is a side schematic view of a transcutaneous analyte sensor in an alternative embodiment.
[0091] Fig. 4C is a side schematic view of a wholly implantable analyte sensor in one embodiment.
[0092] Fig. 4D is a side schematic view of a wholly implantable analyte sensor in an alternative embodiment.
[0093] Fig. 4E is a side schematic view of a wholly implantable analyte sensor in another alternative embodiment. [0094] Fig. 4F is a side view of one embodiment of an implanted sensor inductively coupled to an electronics unit within a functionally useful distance on the host's skin.
[0095] Fig. 4G is a side view of one embodiment of an implanted sensor inductively coupled to an electronics unit implanted in the host's tissue at a functionally useful distance.
[0096] Fig. 5A is a cross-sectional schematic view of a membrane of a preferred embodiment that facilitates vascularization of the first domain without barrier cell layer formation.
[0097] Fig. 5B is a cross-sectional schematic view of the membrane of Fig. 5A showing contractile forces caused by the fibrous tissue of the FBR.
[0098] Fig. 6 is a flow chart that illustrates the process of forming a biointerface- coated small structured sensor in one embodiment.
[0099] Fig. 7 is a flow chart that illustrates the process of forming a biointerface- coated sensor in an alternative embodiment.
[0100] Fig. 8 is a flow chart that illustrates the process of forming a biointerface- coated sensor in another alternative embodiment.
[0101] Fig. 9 is a flow chart that illustrates the process of forming a biointerface- wrapped sensor in one embodiment.
[0102] Fig. 10 is a flow chart that illustrates the process of forming a sensing biointerface in one embodiment.
[0103] Fig. 1 IA is a scanning electron micrograph showing a cross-sectional view of a cut porous silicone tube. The scale line equals 500 μm.
[0104] Fig. HB is a scanning electron micrograph of a sugar mold formed on a sensor, prior to silicone application. The scale line equals 100 μm.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0105] The following description and examples illustrate a preferred embodiment of the present invention in detail. Those of skill in the art will recognize that there are numerous variations and modifications of this invention that are encompassed by its scope. Accordingly, the description of a preferred embodiment should not be deemed to limit the scope of the present invention. Definitions
[0106] In order to facilitate an understanding of the preferred embodiment, a number of terms are defined below.
[0107] The term "biointerface" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to any structure or substance that interfaces between host (tissue or body fluid) and an implantable device.
[0108] The term "biointerface membrane" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a membrane that functions as an interface between host (tissue or body fluid) and an implantable device.
[0109] The term "interface" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to 1) a common boundary, such as the surface, place, or point where two things touch each other or meet, or 2) a point of interaction, including the place, situation, or way in which two things act together or affect each other, or the point of connection between things.
[0110] The term "barrier cell layer" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a part of a foreign body response that forms a cohesive monolayer of cells (for example, macrophages and foreign body giant cells) that substantially block the transport of molecules and other substances to the implantable device.
[0111] The term "cell processes" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to pseudopodia of a cell.
[0112] The term "cellular attachment" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to adhesion of cells and/or cell processes to a material at the molecular level, and/or attachment of cells and/or cell processes to microporous material surfaces or macroporous material surfaces. One example of a material used in the prior art that encourages cellular attachment to its porous surfaces is the BIOPORE™ cell culture support marketed by Millipore (Bedford, MA)5 and as described in Brauker et{al, U.S. Pat. No. 5,741,330.
[0113] The term "solid portions" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to portions of a membrane's material having a mechanical structure that demarcates cavities, voids, pores, or other non-solid portions.
[0114] The term "co-continuous" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a solid portion or cavity or pore wherein an unbroken curved line in three dimensions can be drawn between two sides of a membrane.
[0115] The term "biostable" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to materials that are relatively resistant to degradation by processes that are encountered in vivo.
[0116] The terms "bioresorbable" or "bioabsorbable" as used herein are broad terms, and are to be given their ordinary" and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to materials that can be absorbed, or lose substance, in a biological system.
[0117] The terms "nonbioresorbable" or "nonbioabsorbable" as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to materials that are not substantially absorbed, or do not substantially lose substance, in a biological system.
[0118] The term "analyte" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a substance or chemical constituent in a biological fluid (for example, blood, interstitial fluid, cerebral spinal fluid, lymph fluid or urine) that can be analyzed. Analytes can include naturally occurring substances, artificial substances, metabolites, and/or reaction products. In some embodiments, the analyte for measurement by the sensing regions, devices, and methods is glucose. However, other analytes are contemplated as well, including but not limited to acarboxyprothrombin; acylcarnitine; adenine phosphoribosyl transferase; adenosine deaminase; albumin; alpha-fetoprotein; amino acid profiles (arginine (Krebs cycle), histidine/urocanic acid, homocysteine, phenylalanine/tyrosine, tryptophan); andrenostenedione; antipyrine; arabinitol enantiomers; arginase; benzoylecgonine (cocaine); biotinidase; biopterin; c-reactive protein; carnitine; carnosinase; CD4; ceruloplasmin; chenodeoxycholic acid; chloroquine; cholesterol; cholinesterase; conjugated 1-β hydroxy- cholic acid; Cortisol; creatine kinase; creatine kinase MM isoenzyme; cyclosporin A; d- penicillamine; de-ethylchloroquine; dehydroepiandrosterone sulfate; DNA (acetylator polymoφhism, alcohol dehydrogenase, alpha 1 -antitrypsin, cystic fibrosis, Duchenne/Becker muscular dystrophy, glucose-6-phosphate dehydrogenase, hemoglobin A, hemoglobin S, hemoglobin C, hemoglobin D, hemoglobin E, hemoglobin F, D-Punjab, beta-thalassemia, hepatitis B virus, HCMV, HIV-I, HTLV-I, Leber hereditary optic neuropathy, MCAD, RNA, PKU, Plasmodium vivax, sexual differentiation, 21-deoxy Cortisol); desbutylhalofantrine; dihydropteridine reductase; diptheria/tetanus antitoxin; erythrocyte arginase; erythrocyte protoporphyrin; esterase D; fatty acids/acylglycines; free β-human chorionic gonadotropin; free erythrocyte porphyrin; free thyroxine (FT4); free tri-iodothyronine (FT3); fumarylacetoacetase; galactose/gal-1 -phosphate; galactose- 1 -phosphate uridy transferase; gentamicin; glucose-6-phosphate dehydrogenase; glutathione; glutathione perioxidase; glycocholic acid; glycosylated hemoglobin; halofantrine; hemoglobin variants; hexosaminidase A; human erythrocyte carbonic anhydrase I; 17-alpha-hydroxyprogesterone; hypoxanthine phosphoribosyl transferase; immunoreactive trypsin; lactate; lead; lipoproteins ((a), B/A-l, β); lysozyme; mefloquine; netilmicin; phenobarbitone; phenytoin; phytanic/pristanic acid; progesterone; prolactin; prolidase; purine nucleoside phosphorylase; quinine; reverse tri-iodothyronine (rT3); selenium; serum pancreatic lipase; sissomicin; somatomedin C; specific antibodies (adenovirus, anti-nuclear antibody, anti-zeta antibody, arbovirus, Aujeszky's disease virus, dengue virus, Dracunculus medinensis, Echinococcus granulosus, Entamoeba histolytica, enterovirus, Giardia duodenalisa, Helicobacter pylori, hepatitis B virus, herpes virus, HIV-I, IgE (atopic disease), influenza virus, Leishmania donovani, leptospira, measles/mumps/rubella, Mycobacterium leprae, Mycoplasma pneumoniae, Myoglobin, Onchocerca volvulus, parainfluenza virus, Plasmodium falciparum, poliovirus, Pseudomonas aeruginosa, respiratory syncytial virus, rickettsia (scrub typhus), Schistosoma mansoni, Toxoplasma gondii, Trepenoma pallidium, Trypanosoma cruzi/rangeli, vesicular stomatis virus, Wuchereria bancrofti, yellow fever virus); specific antigens (hepatitis B virus, HIV-I); succinylacetone; sulfadoxine; theophylline; thyrotropin (TSH); thyroxine (T4); thyroxine-binding globulin; trace elements; transferrin; UDP-galactose-4- epimerase; urea; uroporphyrinogen I synthase; vitamin A; white blood cells; and zinc protoporphyrin. Salts, sugar, protein, fat, vitamins, and hormones naturally occurring in blood or interstitial fluids can also constitute analytes in certain embodiments. The analyte can be naturally present in the biological fluid, for example, a metabolic product, a hormone, an antigen, an antibody, and the like. Alternatively, the analyte can be introduced into the body, for example, a contrast agent for imaging, a radioisotope, a chemical agent, a fluorocarbon-based synthetic blood, or a drug or pharmaceutical composition, including but not limited to insulin; ethanol; cannabis (marijuana, tetrahydrocannabinol, hashish); inhalants (nitrous oxide, amyl nitrite, butyl nitrite, chlorohydrocarbons, hydrocarbons); cocaine (crack cocaine); stimulants (amphetamines, methamphetamines, Ritalin, Cylert, Preludin, Didrex, PreState, Voranil, Sandrex, Plegine); depressants (barbituates, methaqualone, tranquilizers such as Valium, Librium, Miltown, Serax, Equanil, Tranxene); hallucinogens (phencyclidine, lysergic acid, mescaline, peyote, psilocybin); narcotics (heroin, codeine, morphine, opium, meperidine, Percocet, Percodan, Tussionex, Fentanyl, Darvon, Talwin, Lomotil); designer drugs (analogs of fentanyl, meperidine, amphetamines, methamphetamines, and phencyclidine, for example, Ecstasy); anabolic steroids; and nicotine. The metabolic products of drugs and pharmaceutical compositions are also contemplated analytes. Analytes such as neurochemicals and other chemicals generated within the body can also be analyzed, such as, for example, ascorbic acid, uric acid, dopamine, noradrenaline, 3-methoxytyramine (3MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxytryptamine (5HT), 5-hydroxyindoleacetic acid (FHIAA), and histamine.
[0119] The term "host" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to mammals, preferably humans.
[0120] The phrase "continuous analyte sensing" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the period in which monitoring of analyte concentration is continuously, continually, and/or intermittently (but regularly) performed, for example, from about every 5 seconds or less to about 10 minutes or more, preferably from about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, or 60 second to about 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 3.75, 4.00, 4.25, 4.50, 4.75, 5.00, 5.25, 5.50, 5.75, 6.00, 6.25, 6.50, 6.75, 7.00, 7.25, 7.50, 7.75, 8.00, 8.25, 8.50, 8.75, 9.00, 9.25, 9.50 or 9.75 minutes.
[0121] The terms "analyte measuring device," "sensor," "sensing region," and "sensing mechanism" as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to an area of an analyte- monitoring device that enables the detection of a particular analyte. For example, the sensing region can comprise a non-conductive body, a working electrode, a reference electrode, and a counter electrode (optional), forming an electrochemically reactive surface at one location on the body and an electronic connection at another location on the body, and a sensing membrane affixed to the body and covering the electrochemically reactive surface. During general operation of the device, a biological sample, for example, blood or interstitial fluid, or a component thereof contacts, either directly or after passage through one or more membranes, an enzyme, for example, glucose oxidase. The reaction of the biological sample or component thereof results in the formation of reaction products that permit a determination of the analyte level, for example, glucose, in the biological sample. In some embodiments, the sensing membrane further comprises an enzyme domain, for example, an enzyme layer, and an electrolyte phase, for example, a free-flowing liquid phase comprising an electrolyte- containing fluid described further below. The terms are broad enough to include the entire device, or only the sensing portion thereof (or something in between).
[0122] The term "electrochemically reactive surface" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the surface of an electrode where an electrochemical reaction takes place. In a working electrode, hydrogen peroxide produced by an enzyme-catalyzed reaction of an analyte being detected reacts can create a measurable electronic current. For example, in the detection of glucose, glucose oxidase produces H2O2 peroxide as a byproduct. The H2O2 reacts with the surface of the working electrode to produce two protons (2H+), two electrons (2e") and one molecule of oxygen (O2), which produces the electronic current being detected. In a counter electrode, a reducible species, for example, O2 is reduced at the electrode surface so as to balance the current generated by the working electrode. [0123] The term "sensing membrane" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a permeable or semi-permeable membrane that can comprise one or more domains and that is constructed of materials having a thickness of a few microns or more, and that are permeable to reactants and/or co-reactants employed in determining the analyte of interest. As an example, a sensing membrane can comprise an immobilized glucose oxidase enzyme, which catalyzes an electrochemical reaction with glucose and oxygen to permit measurement of a concentration of glucose.
[0124] The term "proximal as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a region near to a point of reference, such as an origin or a point of attachment.
[0125] The term "distal" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a region spaced relatively far from a point of reference, such as an origin or a point of attachment.
[0126] The terms "operably connected," "operably linked" and "operatively coupled" as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to one or more components linked to another component(s) in a manner that facilitates transmission of signals between the components. For example, one or more electrodes can be used to detect an analyte in a sample and convert that information into a signal; the signal can then be transmitted to an electronic circuit. In this example, the electrode is "operably linked" to the electronic circuit.
[0127] The term "adhere" and "attach" as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to, hold, bind, or stick, for example, by gluing, bonding, grasping, interpenetrating, or fusing.
[0128] The term "bioactive agent" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to any substance that has an effect on or elicits a response from living tissue. [0129] The term "bioerodible" or "biodegradable" as used herein are a broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to materials that are enzymatically degraded or chemically degraded in vivo into simpler components. One example of a biodegradable material includes a biodegradable polymer that is broken down into simpler components by the body.
[0130] The terms "small diameter sensor," "small structured sensor," and "micro- sensor," as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to sensing mechanisms that are less than about 2 mm in at least one dimension, and more preferably less than about 1 mm in at least one dimension. In some embodiments, the sensing mechanism (sensor) is less than about 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.5, 0.4, 0.3, 0.2, or 0.1 mm. In some embodiments, the sensing mechanism is a needle-type sensor, wherein the diameter is less than about 1 mm, see, for example, U.S. Patent No. 6,613,379 to Ward et al. and co-pending U.S. Patent Application 11/077,715, filed on March 10, 2005 and entitled, "TRANSCUTANEOUS ANALYTE SENSOR," both of which are incorporated herein by reference in their entirety. In some alternative embodiments, the sensing mechanism includes electrodes deposited on a planar substrate, wherein the thickness of the implantable portion is less than about 1 mm, see, for example U.S. Patent No. 6,175,752 to Say et al. and U.S. Patent No. 5,779,665 to Mastrototaro et al., both of which are incorporated herein by reference in their entirety.
[0131] The term "electrospinning" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a process by which fibers are drawn out from a viscous polymer solution or melt by applying an electric field to a droplet of the solution (most often at a metallic needle tip). The electric field draws this droplet into a structure called a Taylor cone. If the viscosity and surface tension of the solution are appropriately tuned, varicose breakup (electrospray) is avoided and a stable jet is formed. A bending instability results in a whipping process which stretches and elongates this fiber until it has a diameter of micrometers (or nanometers).
[0132] The terms "interferants," "interferents" and "interfering species," as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to effects and/or species that interfere with the measurement of an analyte of interest in a sensor to produce a signal that does not accurately represent the analyte measurement. In one example of an electrochemical sensor, interfering species are compounds with oxidation potentials that overlap with the oxidation potential of the analyte to be measured.
[0133] The term "drift," as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a progressive increase or decrease in signal over time that is unrelated to changes in host systemic analyte concentrations, such as host postprandial glucose concentrations, for example. While not wishing to be bound by theory, it is believed that drift can be the result of a local decrease in glucose transport to the sensor, due to cellular invasion, which surrounds the sensor and forms a FBC, for example. It is also believed that an insufficient amount of interstitial fluid is surrounding the sensor, which results in reduced oxygen and/or glucose transport to the sensor, for example. An increase in local interstitial fluid can slow or reduce drift and thus improve sensor performance.
[0134] The term "sensing region" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the region of a monitoring device responsible for the detection of a particular analyte. The sensing region generally comprises a non-conductive body, a working electrode (anode), a reference electrode (optional), and/or a counter electrode (cathode) passing through and secured within the body forming electrochemically reactive surfaces on the body and an electronic connective means at another location on the body, and a multi-domain membrane affixed to the body and covering the electrochemically reactive surface.
[0135] The term "domain" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a region of the membrane system that can be a layer, a uniform or non-uniform gradient (for example, an anisotropic region of a membrane), or a portion of a membrane.
[0136] The term "membrane system," as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a permeable or semi-permeable membrane that can be comprised of two or more domains and is typically constructed of materials of a few microns thickness or more, which is permeable to oxygen and is optionally permeable to, e.g., glucose or another analyte. In one example, the membrane system comprises an immobilized glucose oxidase enzyme, which enables a reaction to occur between glucose and oxygen whereby a concentration of glucose can be measured.
[0137] The terms "processor module" and "microprocessor," as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to a computer system, state machine, processor, or the like designed to perform arithmetic or logic operations using logic circuitry that responds to and processes the basic instructions that drive a computer.
[0138] The term "STS" or short-term sensor as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to sensors used during a short period of time (e.g., short-term), such as 1-3 days, 1-7 days, or longer. In some embodiments, the sensor is used during a short period of time, such as, for 1 day or less, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 24, or 15 days. In some embodiments, the sensor is used for a short period of time, such as prior to tissue ingrowth or FBC formation. In some embodiments, a STS is transcutaneous.
[0139] The term "bulk fluid flow," as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the movement of fluid(s) within an area or space, or in or out of the area or space. In one embodiment, the fluid moves in and/or out of a fluid pocket surrounding the sensor. In another embodiment, the fluid moves within the fluid pocket. In yet another embodiment, the fluid moves by convection (e.g., the circulatory motion that occurs in a fluid at a non-uniform temperature owing to the variation of its density and the action of gravity).
[0140] The term "fluid influx," as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the movement of fluid(s) into the locality of an implanted sensor. [0141] The term "fluid efflux," as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the movement of fluid(s) out of the locality of an implanted sensor.
[0142] The term "adipose" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to fat under the skin and surrounding major organs. For example, "adipose tissue" is fat tissue. In another example, an "adipocyte" is a fat cell.
[0143] The term "edema" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to an abnormal infiltration and excess accumulation of serous fluid in connective tissue or in a serous cavity. In one example, edematous fluid is the fluid an edema.
[0144] The term "comprising" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and without limitation to is synonymous with "including," "containing," or "characterized by," and is inclusive or open-ended and does not exclude additional, unrecited elements or method steps.
[0145] The term "shedding layer" as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a layer of material (e.g., incorporated into a biointerface) that leaches or releases molecules or components into the surrounding area. One example of a shedding layer includes, a coating of a biodegradable material (e.g., polyvinylalcohol or polyethylene oxide) that is eroded by tissue surrounding the sensor. In another example, the shedding layer includes a polymer hydrogel that degrades and is engulfed by circulating macrophages, which can be stimulated to release inflammatory factors.
[0146] The term "noise," as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a signal detected by the sensor that is substantially non-analyte related (e.g., non-glucose related) and can result in less accurate sensor performance. One type of noise has been observed during the few hours (e.g., about 2 to about 36 hours) after sensor insertion. After the first 24-36 hours, the noise often disappears, but in some hosts, the noise can last for about three to four days.
[0147] The term "nanoporous," as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to materials consist of a regular organic or inorganic framework supporting a regular, porous structure having pores roughly in the nanometer range (e.g., between IxIO"7 and 0.2xl0"9 m).
[0148] All references cited herein, including but not limited to published and unpublished applications, patents, and literature references, are incorporated herein by reference in their entirety and are hereby made a part of this specification. To the extent publications and patents or patent applications incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.
[0149] All numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification are to be understood as being modified in all instances by the term "about." Accordingly, unless indicated to the contrary, the numerical parameters set forth herein are approximations that can vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of any claims in any application claiming priority to the present application, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.
Overview Noise
[0150] Generally, implantable sensors measure a signal (e.g., counts) related to an analyte of interest in a host. For example, an electrochemical sensor can measure glucose, creatinine, or urea in a host, such as an animal, especially a human. Generally, the signal is converted mathematically to a numeric value indicative of analyte status, such as analyte concentration. It is not unusual for a sensor to experience a certain level of noise. "Noise," as used herein, is a broad term and is used in its ordinary sense, including, without limitation, a signal detected by the sensor that is substantially non-analyte related (e.g., non-glucose related) and can result in reduced sensor performance. Noise can be caused by a variety of factors, such as interfering species, macro- or micro-motion, ischemia, pH changes, temperature changes, pressure, stress, or even unknown sources of mechanical, electrical and/or biochemical noise for example. Since noise can obscure analyte data, reduction of noise is desirable.
[0151] There are a variety of ways noise can be recognized and/or analyzed. In preferred embodiments, the sensor data stream is monitored, signal artifacts are detected and data processing is based at least in part on whether or not a signal artifact has been detected, such as described in U.S. Publication No. US-2005-0043598-A1.
[0152] It was observed that some inserted sensors functioned more poorly during the first few hours or days after insertion than they did later. This was exemplified by noise and/or a suppression of the signal during the first about 2-36 hours or more after insertion. These anomalies often resolved spontaneously, after which the sensors became less noisy, had improved sensitivity, and were more accurate than during the early period. Moreover, the noise predominated when hosts were sleeping or sedentary for a period of time.
[0153] Fig. IA illustrates this phenomenon of noise associated with the above- described intermittent sedentary activity during the first few days of insertion of a STS glucose sensor containing active enzyme (in a non-diabetic host). The X-axis represents time; the left Y-axis represents sensor signal in counts (e.g., signal to be converted into glucose level in mg/dL) and the right Y-axis represents noise within the sensor signal in counts
(determined algorithmically according to copending U.S. patent application / , , filed
August 2, 2006 and entitled "SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM" herein incorporated by reference in its entirety). An enzymatic glucose sensor was built, including enzyme, as described in U.S. Publication No. US-2005-0020187-A1. During the day, the sensor signal (upper line) varied and substantially correlated with glucose concentration. But, when the host went to sleep at about midnight, noise (lower line) began to occur. Between midnight and 6AM, when the host was asleep, there was a lot of noise, as evidenced by the large number of high peaks in the noise plot (lower line). When the host awoke and began moving around, at about 6 AM, the noise dissipated and signal substantially represented glucose concentration again.
[0154] Studies using enzymatic-type glucose sensors built without enzyme were tested in non-diabetic individuals. These sensors (without enzyme) do not react with or measure glucose and therefore provide a signal due to non-glucose effects (e.g., baseline, interferants, and noise). These studies demonstrated that the noise observed during sedentary periods was caused by something other than glucose concentration. Fig. IB shows one example of the experimental results, in a non-diabetic host wearing a STS glucose sensor built without enzyme. When the host was asleep, the no-enzyme sensor showed large, sustained positive signals that resembled glucose peaks, but could not represent actual glucose concentration because the sensor lacked enzyme. In the morning, when the host awoke and moved around, the no-enzyme signal rapidly corrected, becoming measurably reduced and smoother. From these results, the inventors believe that a reactant was diffusing to the electrodes and producing the unexpected positive signal.
[0155] Additional, in vitro experiments were conducted to determine if a sensor (e.g., electrode) component might have leached into the area surrounding the sensor. These in vitro experiments provided evidence that the non-glucose signals (observed during host sedentary periods) were not produced by contaminants of the sensor itself, or products of the chemical reaction at the electrodes, because the noise and non-glucose peaks did not occur in vitro.
[0156] While not wishing to be bound by theory, it is believed that intermittent, sedentary noise is caused by an interferant that is likely produced by local cellular activity (e.g., associated with wound healing) at the site of sensor insertion. Physiologic activity at a wound site is complex and involves the interaction of a variety of body processes. In order to fully understand the cause of intermittent, sedentary noise (as well as solutions), we must understand wound healing, fluid transport within the body (e.g., lymph transport) and tissue response to implanted materials (e.g., foreign body response). Each of these processes is discussed in greater detail below. Wound Healing
[0157] When a foreign body is inserted into a host, it creates a wound, by breaking the skin and some of the underlying tissue, thereby initiating the wound-healing cascade of events. A wound is also produced, when a sensor, such as an implantable glucose sensor, is implanted into the subcutaneous tissue. For short-term use sensors, as described elsewhere herein, wounding occurs at least from the penetration of the sharp needle or device, which can be used to deliver the sensor. The wound can be relatively extensive, including bruising and/or bleeding, or it can be relatively benign, with little tissue damage and little or virtually no bleeding. Wound healing is initiated immediately upon wounding and is directed by a series of signaling cascades. Wound healing has four main phases: 1) hemostasis, 2) inflammation, 3) granulation, and 4) remodeling, which are discussed in more detail below.
[0158] The "hemostasis" phase begins during the first few seconds and minutes after wounding and entails a cascade of molecular events that lead to cessation of bleeding, and the formation of a fibrin scaffold that will be used as a support for cellular responses that follow. During hemostasis, blood platelets are activated by exposure to extravascular collagen and release soluble mediators (growth factors and cAMP) and adhesive glycoproteins that cause the platelets to aggregate and form a fibrin clot. Neutrophils and monocytes are attracted to the wound by platelet-derived growth factor (PDGR) and transforming growth factor beta (TGF-β), to clean the wound of infectious material, foreign matter and devitalized tissue. Vascular endothelial growth factor (VEGF or VPF), transforming growth factor alpha (TGF-α) and basic fibroblast growth factor (bFGF), which are also secreted by activated platelets, activate endothelial cells that begin angiogenesis. "Angiogenesis" is a physiological process involving the growth of new blood vessels from pre-existing vessels. Platelet secreted PDGF also activates and recruits fibroblasts to produce extracellular matrix components.
[0159] The "inflammation" stage begins within the first 24 hours after injury and can last for several weeks in normal wounds and significantly longer in chronic nonhealing wounds. This occurs within several hours after implantation, and is the stage that most closely correlates with the anomalous behavior of the short-term sensor (STS). Inflammation involves the influx of polymorphonuclear cells and the formation of an edematous fluid pocket surrounding the implant. The vascular epithelium becomes highly permeable to cells and fluid so that invading cells (neutrophils, monocytes, and macrophages) can get to the wound site. Mast cells in the wound site release enzymes, histamine, and active amines can cause swelling, redness, heat, and pain depending on the severity of the wound. In most needle track wounds, the extent of the reaction is not sufficient to cause noticeable welling, redness, heat, or pain. Neutrophils, monocytes and macrophages release proinflammatory cytokines (IL-I, IL-6, IL-8 and TNF-α) and cleanse the wound by engulfing bacteria, debris and devitalized tissue. These cells are highly active phagocytic cells with high metabolic requirements, and in an early wound they are proliferating exponentially, creating a need for oxygen, glucose and other molecules. Fibroblasts and epithelial cells are recruited and activated by PDGF, TGF-β, TGF-α, insulin-like growth factor 1 (IGF-I) and FGF, in preparation for the next phase of wound healing.
[0160] The "granulation" phase occurs after several days, involving the full participation of a large number of macrophages, and the initiation of fibrosis and vascularization. During the proliferative phase of wound healing, fibroblasts proliferate and deposit granulation tissue components (various types of collagen, elastin, and proteoglycans). Angiogenesis also takes place at this time, Angiogenesis is stimulated by local low oxygen tension. Oxygen promotes angiogenesis by binding hypoxia-inducible factor (HIF) within capillary endothelial cells. When oxygen is low around capillary endothelial cells, HIF levels inside the cells increase and stimulate the production of VEGF, which stimulates angiogenesis. Low pH, high lactate levels, bFGF, and TGF-β also stimulate angiogenesis. Epithelial cells also proliferate and form a new epidermis over the wound.
[0161] The "remodeling" phase occurs after several weeks and is not relevant to sensors used for short periods of time, such as about 1 to 3' days, or up to about 7 days or more, or up to about 2 weeks. In the case of long-term wholly implantable sensors, this process is involved in remodeling tissue around the wholly implantable sensor.
[0162] The rate of these responses can vary dramatically in a host population, especially among diabetics, who are known to suffer from vascular and wound-healing disorders. Moreover, there is wide variability in the amount, texture, morphology, color, and vascularity of subcutaneous tissue. Therefore it is to be expected that the rate of progress of the wound-healing response, and the quality of the response can vary dramatically among hosts.
[0163] Dramatic differences in wounding and noise exist among individuals. Some people wound easily (e.g., bruise more easily or have more bleeding) while others do not. Some people exhibit more noise (e.g., are noisier) in their sensor signal than others. In one example, a glucose tracking study was performed with two non-diabetic volunteer hosts. Samples were collected from the fingertip and the lower abdomen, (e.g., where some short- term sensors are usually implanted). Concurrent blood samples were collected from both the fingertip and abdomen, using a lancet device. The collected blood samples were measured with a hand-held glucose meter.
[0164] Fig. 1C illustrates the difference in responses of finger and abdominal tissue to oral sugar consumption, in a first non-diabetic volunteer host (Host 1). The solid line (with squares) shows glucose concentration at the fingertip. The dashed line (with diamonds) shows glucose concentration at the lower abdomen. When Host 1 ingested about 100 gm of oral sucrose, there was a dramatic and rapid increase in glucose signal from the fingertip samples. Host l's abdominal signal exhibited a slower and reduced rise, when compared with the fingertip samples.
[0165] Fig. ID illustrates the difference in responses of finger and abdominal tissue to oral sugar consumption, in a second volunteer non-diabetic host (Host 2). The solid line (with squares) shows glucose concentration at the fingertip. The dashed line (with diamonds) shows glucose concentration at the lower abdomen. When Host 2 was challenged with sucrose consumption, he exhibited little difference between his fingertip and abdominal samples. These data suggest that sensors implanted in different individuals can behave differently.
[0166] Different individuals experience relatively different amounts of intermittent, sedentary noise. For example, Host 1, when wearing a short-term sensor, typically was known to experience high levels of nighttime noise, whereas Host 2 experienced very little noise at any time while wearing an exemplary STS.
[0167] In addition, the amount of wounding varies between individuals as well as between body sites of a single individual. For example, the next day, Host l's lower abdomen exhibited extensive bruising (e.g., approximately 20 hours after completing the study). Note the many bruises 250, 252 in Fig. IE. However, Host l's fingertips had very little observable wounding the next day (Fig. IF). In contrast, Host 2 (not shown) sustained little visible wounding the next day (from the lancet), at either the lower abdomen or fingertips.
[0168] When a sensor is first inserted into the subcutaneous tissue, it comes into contact with a wide variety of possible tissue conformations. Subcutaneous tissue in different hosts can be relatively fat free in cases of very athletic people, or can be mostly composed of fat as in the majority of people. The fat comes in a wide array of textures from very white, puffy fat to very dense, fibrous fat. Some fat is very yellow and dense in appearance; some is very clear, puffy, and white in appearance, while in other cases it is more red or brown in appearance. The fat can be several inches thick or only 1 cm thick. It can be very vascular or relatively nonvascular. Many diabetes hosts have some subcutaneous scar tissue due to years of insulin pump use or insulin injection. At times, sensors can come to rest in such a scarred area. The subcutaneous tissue can even vary greatly from one location to another in the abdomen of a given host. Moreover, by chance, the sensor can come to rest near a more densely vascularized area of a given host or in a less vascularized area.
[0169] Fig. 2B is a side schematic view of adipose cell contact with an inserted transcutaneous sensor or an implanted sensor 34. In this case, the sensor is firmly inserted into a small space with adipose cells pressing up against the surface. Close association of the adipose cells with the sensor can also occur, for example wherein the surface of the sensor is hydrophobic. For example, the adipose cells 200 can physically block the surface of the sensor.
[0170] Typically adipose cells are about 120 microns in diameter and are typically fed by tiny capillaries 205. When the sensor is pressed against the fat tissue, as shown in Fig. 2B, very few capillaries can actually come near the surface of the sensor. This can be analogous to covering the surface of the sensor with an impermeable material such as plastic wrap, for example. Even if there were a few small holes in the plastic wrap, the sensor's function would likely be compromised. Additionally, the surrounding tissue has a low metabolic rate and therefore does not require high amounts of glucose and oxygen. While not wishing to be bound by theory, it is believed that, during this early period, the sensor's signal can be noisy and the signal can be suppressed due to close association of the sensor surface with the adipose cells and decreased availability of oxygen and glucose both for physical- mechanical reasons and physiological reasons.
[0171] Because of the host-to-host variability, the location variability in a given host, and the random possibility of hitting a favorable or unfavorable spot in a host, every time an implantable device (e.g., a sensor) is inserted into a host it has the chance of responding differently than it did in another host or at another time or place in the same host. For example, another host can insert a needle or device on day 1 and have no bleeding or bruising, but when she inserts another needle or device on day 3 she can have bleeding with an associated bruise. The wound healing response in a bloody wound will be expected to be considerably different than in a less traumatized wound. As another example, another host can have produced considerable trauma on insertion of a needle/device, without visible bleeding or bruising.
[0172] In the case of a less traumatic wound, we believe the inflammatory phase of the wound response would be delayed for some length of time. In the case of a more traumatized wound, we believe it would be accelerated. For example, a fluid pocket can take hours to form in the less traumatic wound whereas it could take much less time in the case of the more traumatic wound.
[0173] In the case of a less traumatic wound, when an implantable device, such as a glucose sensor, is initially inserted, relatively little tissue damage occurs. The device finds itself firmly inserted into a small space with adipose tissue pressing up against the surface. Because the surface of the sensor (e.g., a STS sensor as described herein) is mainly very hydrophobic, it can associate very closely with the adipose tissue. Because no edema (e.g., wound fluid) is forming or is forming slowly, there will be very little fluid around the sensor for glucose transport. Accordingly, adipose cells can physically block the surface of the sensor. When the sensor is pressed against the adipose tissue, it is believed that that very few capillaries come near the surface of the sensor. Additionally, the surrounding tissue has a low metabolic rate and therefore does not require high amounts of glucose and oxygen. While not wishing to be bound by hypothesis, it is believed that during this period (prior to the formation of an edematous pocket and the influx of cells and glucose) the sensor signal can be noisy and suppressed due to close association of the sensor surface with the adipose cells and lack of availability of oxygen and glucose both for physical-mechanical reasons and physiological reasons. While not wishing to be bound by theory, it is believed that the short- term sensor measures wound fluid surrounding the sensor. Thus, if the rate of edema collection (e.g., collection of wound fluid into a fluid pocket) can be increased then early noise can be alleviated or reduced. Lymph System and Fluid Transport
[0174] The circulatory and lymph systems are the body's means of moving fluids, cells, protein, lipids, and the like throughout the body in an organized fashion. The two systems parallel each other, throughout the body. The circulatory system is a closed system that relies on a pump (the heart) for control of bulk flow. In contrast, the lymph system is an open system with no central pump. The lymph system relies upon pressure differentials, local muscle contraction, among other things, for fluid movement. Gravity and inactivity can have dramatic effects on lymph movement throughout the body, and consequently on noise and sensor function.
[0175] Lymph forms when dissolved proteins and solutes filter out of the circulatory system into the surrounding tissues, because of local differences in luminal hydrostatic and osmotic pressure. The fluid within the extracellular spaces is called interstitial fluid. A portion of the interstitial fluid flows back into the circulatory system, while the remaining fluid is collected into the lymph capillaries through valve-like openings between the endothelial cells of the lymph capillaries.
[0176] Lymph is generally a clear and transparent semifluid medium. It is known in the art that normal cellular metabolism produces waste species that are removed from the local environment by the lymphatics. Lymph contains a "lymphatic load" of protein, water, lymphocytes, cellular components, metabolic waste and particles, and fat. The lymphatics return the lymph to the circulatory system at the thoracic duct. It is known that lymph has almost the same composition as the original interstitial fluid.
[0177] In contrast to the circulatory system, the lymph system is an open system with no central pump. Lymph capillaries take in fluid through "open junctions," until they are filled to capacity. When the pressure inside the capillary is greater than that of the surrounding interstitial tissue, the open junctions close. The lymph moves freely toward larger, downstream portions of the lymph system, where pressure is lower. As the lymph moves forward, it is picked up by "lymph collectors," which have valves that prevent fluid back-flow. Larger portions of the lymph system segmentally contract, to push the lymph forward, from one segment to the next. Breathing movements and skeletal muscle contractions also push the lymph forward. Eventually, the lymph is returned to the circulatory system via the thoracic duct.
[0178] Lymph capillaries are delicate and easily flattened. When lymph capillaries are flattened, fluid cannot enter them. Consequently, lymph flow is impeded by a local collapse of the lymph capillaries. Gravity and local pinching of lymph capillaries affect the movement of lymph. For example, it is well known in the medical community that a tourniquet placed on the upper arm can impede lymph flow out of the arm. It is also known that during sleep lymph pools on the side of the body on which a person is lying. In another example, sitting can pinch some of the lower lymphatics, causing lymph to pool in the legs over an extended period of time.
[0179] As discussed with reference to Fig. IB, above, the inventors have found that, soon after insertion of a sensor, noise (e.g., signal) not associated with glucose concentration can occur intermittently during sedentary activities, such as sleeping, watching television or reading a book. The inventors have demonstrated experimentally that early intermittent, sedentary noise is, at least in part, the result of unknown interferants that affect the sensor during periods of sustained inactivity.
[0180] While not wishing to be bound by theory, it is believed that a local build up of electroactive interferants, such as electroactive metabolites from cellular metabolism and wound healing, interfere with sensor function and cause early intermittent, sedentary noise. Local lymph pooling, when parts of the body are compressed or when the body is inactive can cause, in part, this local build up of interferants (e.g., electroactive metabolites). Interferants can include but are not limited to compounds with electroactive acidic, amine or sulfhydryl groups, urea, lactic acid, phosphates, citrates, peroxides, amino acids (e.g., L- arginine), amino acid precursors or break-down products, nitric oxide (NO), NO-donors, NO- precursors or other electroactive species or metabolites produced during cell metabolism and/or wound healing, for example. Foreign Body Response
[0181] Devices and probes that are transcutaneously inserted or implanted into subcutaneous tissue conventionally elicit a foreign body response (FBR), which includes invasion of inflammatory cells that ultimately forms a foreign body capsule (FBC), as part of the body's response to the introduction of a foreign material. Specifically, insertion or implantation of a device, for example, a glucose sensing device, can result in an acute inflammatory reaction resolving to chronic inflammation with concurrent building of fibrotic tissue, such as is described in detail above. Eventually, over a period of two to three weeks, a mature FBC, including primarily contractile fibrous tissue forms around the device. See Shanker and Greisler, Inflammation and Biomaterials in Greco RS, ed., "Implantation Biology: The Host Response and Biomedical Devices" pp 68-80, CRC Press (1994). The FBC surrounding conventional implanted devices has been shown to hinder or block the transport of analytes across the device-tissue interface. Thus, continuous extended life analyte transport (e.g., beyond the first few days) in vivo has been conventionally believed to be unreliable or impossible.
[0182] Fig. 2A is a schematic drawing that illustrates a classical FBR to a conventional cell-impermeable synthetic membrane 10 implanted under the skin. There are three main layers of a FBR. The innermost FBR layer 12, adjacent to the device, is composed generally of macrophages and foreign body giant cells 14 (herein referred to as the "barrier cell layer"). These cells form a monolayer of closely opposed cells over the entire surface of a microscopically smooth membrane, a macroscopically smooth (but microscopically rough) membrane, or a microporous (i.e., average pore size of less than about 1 μm) membrane. A membrane can be adhesive or non-adhesive to cells; however, its relatively smooth surface causes the downward tissue contracture 21 (discussed below) to translate directly to the cells at the device-tissue interface 26. The intermediate FBR layer 16 (herein referred to as the "fibrous zone"), lying distal to the first layer with respect to the device, is a wide zone (about 30 to 100 μm) composed primarily of fibroblasts 18, fibrous matrixes, and contractile fibrous tissue 20. The organization of the fibrous zone, and particularly the contractile fibrous tissue 20, contributes to the formation of the monolayer of closely opposed cells due to the contractile forces 21 around the surface of the foreign body (for example, membrane 10). The outermost FBR layer 22 is loose connective granular tissue containing new blood vessels 24 (herein referred to as the "vascular zone"). Over time, this FBR tissue becomes muscular in nature and contracts around the foreign body so that the foreign body remains tightly encapsulated. Accordingly, the downward forces 21 press against the tissue-device interface 26, and without any counteracting forces, aid in the formation of a barrier cell layer 14 that blocks and/or refracts the transport of analytes 23 (for example, glucose) across the tissue- device interface 26.
[0183] A consistent feature, of the innermost layers 12, 16, is that they are devoid of blood vessels. This has led to widely supported speculation that poor transport of molecules across the device-tissue interface 26 is due to a lack of vascularization near the interface. See Scharp et al, World J. Surg., 8:221-229 (1984); and Colton et al, J. Biomech. Eng., 113:152-170 (1991). Previous efforts to overcome this problem have been aimed at increasing local vascularization at the device-tissue interface, but have achieved only limited success.
[0184] Although local vascularization can aid in sustenance of local tissue over time, the presence of a barrier cell layer 14 prevents the passage of molecules that cannot diffuse through the layer. For example, when applied to an implantable glucose-measuring device, it is unlikely that glucose would enter the cell via glucose transporters on one side of the cell and exit on the other side. Instead, it is likely that any glucose that enters the cell is phosphorylated and remains within the cell. The only cells known to facilitate transport of glucose from one side of the cell to another are endothelial cells. Consequently, little glucose reaches the implant's membrane through the barrier cell layer. The known art purports to increase the local vascularization in order to increase solute availability. See Brauker et al. , U.S. Pat. No. 5,741,330. However, it has been observed by the inventors that once the monolayer of cells (barrier cell layer) is established adjacent to a membrane, increasing angiogenesis is not sufficient to increase transport of molecules such as glucose and oxygen across the device-tissue interface 26. In fact, the barrier cell layer blocks and/or reflects the analytes 23 from transport across the device-tissue interface 26.
[0185] Referring now to short-term sensors, or the short-term function of long- term sensors, it is believed that certain aspects of the FBR in the first few days can play a role in noise. It has been observed that some sensors function more poorly during the first few hours after insertion than they do later. This is exemplified by noise and/or a suppression of the signal during the first few hours (e.g., about 2 to about 36 hours) after insertion. These anomalies often resolve spontaneously after which the sensors become less noisy, have improved sensitivity, and are more accurate than during the early period. It has been observed that some transcutaneous sensors and wholly implantable sensors are subject to noise for a period of time after application to the host (i.e., inserted transcutaneously or wholly implanted below the skin). "Noise," as used herein, is a broad term and is used in its ordinary sense, including, without limitation, a signal detected by the sensor that is unrelated to analyte concentration and can result in less accurate sensor performance. One type of noise has been observed during the few hours (e.g., about 2 to about 36 hours) after sensor insertion. After the first few hours to 36 hours, the noise often disappears, but in some hosts, the noise can last longer.
[0186] Referring now to long-term function of a sensor, after a few days to two or more weeks of implantation, many prior art devices typically lose their function. In some applications, cellular attack or migration of cells to the sensor can cause reduced sensitivity and/or function of the device, particularly after the first day of implantation. See also, for example, U.S. Pat. No. 5,791,344 and Gross et at. and "Performance Evaluation of the MiniMed Continuous Monitoring System During Host home Use," Diabetes Technology and Therapeutics, (2000) 2(l):49-56, which have reported a glucose oxidase-based device, approved for use in humans by the Food and Drug Administration, that functions well for several days following implantation but loses function quickly after the several days (e.g., a few days up to about 14 days).
[0187] It is believed that this lack of device function is most likely due to cells, such as polymorphonuclear cells and monocytes, which migrate to the sensor site during the first few days after implantation. These cells consume local glucose and oxygen. If there is an overabundance of such cells, they can deplete glucose and/or oxygen before it is able to reach the device enzyme layer, thereby reducing the sensitivity of the device or rendering it non-functional. Further inhibition of device function can be due to inflammatory cells, for example, macrophages, that associate with the implantable device (for example, align at an interface) and physically block the transport of glucose into the device (for example, by formation of a barrier cell layer). Additionally, these inflammatory cells can biodegrade many artificial biomaterials (some of which were, until recently, considered nonbiodegradable). When activated by a foreign body, tissue macrophages degranulate, releasing hypochlorite (bleach) and other oxidative species. Hypochlorite and other oxidative species are known to break down a variety of polymers. [0188] In some circumstances, for example in long-term sensors, it is believed that the foreign body response is the dominant event surrounding extended implantation of an implanted device, and can be managed or manipulated to support rather than hinder or block analyte transport. In another aspect, in order to extend the lifetime of the sensor, preferred embodiments employ materials that promote vascularized tissue ingrowth, for example within a porous biointerface membrane. For example tissue in-growth into a porous biointerface material surrounding a long-term sensor can promote sensor function over extended periods of time (e.g., weeks, months, or years). It has been observed that in-growth and formation of a tissue bed can take up to about 3 weeks or more. Tissue ingrowth and tissue bed formation is believed to be part of the foreign body response. As will be discussed herein, the foreign body response can be manipulated by the use of porous biointerface materials that surround the sensor and promote ingrowth of tissue and microvasculature over time. Long-term use sensors (LTS), for use over a period of weeks, months or even years, have also been produced. LTS can be wholly implantable, and placed within the host's soft tissue below the skin, for example.
[0189] Accordingly, a long-term sensor including a biointerface, including but not limited to, for example, porous biointerface materials including a solid portion and interconnected cavities, all of which are described in more detail elsewhere herein, can be employed to improve sensor function in the long-term (e.g., after tissue ingrowth). Reduction of Intermittent, Sedentary Noise
[0190] As discussed above, noise can occur during the first few hours or days after sensor implantation, during periods of inactivity. While not wishing to be bound by theory, the inventors believe noise that occurs during these early intermittent sedentary time periods can be caused by a local increase in interferants (e.g., electroactive metabolites) that disrupt sensor function, resulting in apparent glucose signals that are generally unrelated to the host's glucose concentration. Accordingly, the noise intensity and/or number of intermittent, sedentary noise occurrences can be reduced or eliminated by reducing the local concentration of interferants produced during normal cellular metabolism and/or wound healing.
[0191] In some circumstances, the inventors believe that intermittent, sedentary noise can be addressed either by affecting wounding and/or the wound healing process. For example, in some circumstances a wounding response initiated when the sensor (e.g., a glucose sensor) is implanted can lead to in insubstantial transport of interferents away from the sensor during sedentary periods, which can result in increased intermittent, sedentary noise. Thus, it interferent concentration is reduced, such as by increasing fluid bulk, bulk fluid flow, or diffusion rates (e.g., with vasodilation agents or inflammatory agents), prolonging wounding (e.g., with irritating structures or agents) or promoting wound healing's inflammation stage, then noise can be reduced.
[0192] The present invention provides, among other things, devices, and methods for reducing or eliminating noise caused by intermittent interferant build-up in the area surrounding an inserted sensor during the first few hours or days post-implantation. As will be discussed in greater detail below, these devices and methods contemplate, among other things, increasing bulk fluid flow in and/or out of the sensor locality, increased fluid bulk, production of increased or continued wounding of the insertion site, suppression, and/or prevention of wounding during and after sensor insertion, and combinations thereof. Those knowledgeable in the art will recognize that the various structures and bioactive agents disclosed herein can be employed in a plurality of combinations, depending upon the desired effect and the noise reduction strategy selected. IncreasinR Fluid Bulk or Bulk Fluid Flow
[0193] Analyte sensors for in vivo use over various lengths of time have been developed. For example, sensors to be used for a short period of time, such as about 1 to about 14 days, have been produced. Herein, this sensor will be referred to as a short-term sensor (STS). A STS can be a transcutaneous device, in that a portion of the device can be inserted through the host's skin and into the underlying soft tissue while a portion of the device remains on the surface of the host's skin. In one aspect, in order to overcome the problems associated with noise, such as intermittent, sedentary noise, or other sensor function in the short-term (e.g., short-term sensors or short-term function of long-term sensors), preferred embodiments employ materials that promote formation of a fluid pocket around the sensor, for example architectures such as porous biointerface membrane, matrices or other membrane/mechanical structures that create a space between the sensor and the surrounding tissue.
[0194] The concentration of interferants (e.g., electroactive metabolites) surrounding the sensor can be reduced by, among other things, increasing fluid bulk (e.g., a fluid pocket), an increased bulk fluid flow and/or an increased diffusion rate around at least a portion of the sensor, such as the sensing portion of the sensor. One embodiment of the present invention provides a device with reduced intermittent sedentary noise having an architecture that allows and/or promotes increased fluid bulk and/or increased bulk fluid flow in the area surrounding at least a portion of an implanted sensor in vivo.
[0195] A variety of structures can be incorporated into the sensor to allow and/or promote increased (e.g., to stimulate or to promote) fluid bulk, bulk fluid flow, and/or diffusion rate. These structures can include but are not limited to spacers, meshes, shedding layers, roughened surfaces, machineable materials, nanoporous materials, shape-memory materials, porous memory materials, self-assembly materials, collapsible materials, biodegradable materials, combinations thereof, and the like. Structures that promote increased fluid bulk and/or increased bulk fluid flow can also include but are not limited to structures that promote fluid influx or efflux (e.g., fluid influx-promoting architecture, fluid efflux-promoting architecture), that promote vasodilation (e.g., vasodilating architecture), that promote inflammation (e.g., inflammatory architecture), that promote wound healing or perpetuate wounding (e.g., wound-healing architecture and wounding architecture, respectively), that promote angiogenesis (e.g., angiogenic architecture), that suppress inflammation (e.g., an anti-inflammatory architecture) or combinations thereof.
[0196] In one embodiment, a porous material that results in increased fluid bulk, bulk fluid flow and/or diffusion rate, as well as formation of close vascular structures, is a porous polymer membrane, such as but not limited to polytetrafluoroethylene (PTFE), polysulfone, polyvinylidene difiuoride, polyacrylonitrile, silicone, polytetrafluoroethylene, expanded polytetrafluoroethylene, polyethylene-co-tetrafluoroethylene, polyolefin, polyester, polycarbonate, biostable polytetrafluoroethylene, homopolymers, copolymers, terpolymers of polyurethanes, polypropylene (PP), polyvinylchloride (PVC)5 polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polybutylene terephthalate (PBT), polymethylmethacrylate (PMMA), polyether ether ketone (PEEK), polyamides, polyurethanes, cellulosic polymers, poly(ethylene oxide), poly(propylene oxide) and copolymers and blends thereof, polysulfones and block copolymers thereof including, for example, di-block, tri-block, alternating, random and graft copolymers, as well as metals, ceramics, cellulose, hydrogel polymers, poly (2- hydroxyethyl methacrylate, pHEMA), hydroxyethyl methacrylate, (HEMA), polyacrylonitrile- polyvinyl chloride (PAN-PVC), high density polyethylene, acrylic copolymers, nylon, polyvinyl difluoride, polyanhydrides, poly(l-lysine), poly (L-lactic acid), and hydroxyethylmethacrylate, having an average nominal pore size of at least about 0.6 to 20 μm, using conventional methods for determination of pore size in the trade. In one embodiment, at least approximately 50% of the pores of the membrane have an average size of approximately 0.6 to about 20 μm, such as described in U.S. Patent 5,882,354. In this exemplary embodiment, the structural elements, which provide the three-dimensional conformation, can include fibers, strands, globules, cones or rods of amorphous or uniform geometry that is smooth or rough. These elements, hereafter referred to as "strands," have in general one dimension larger than the other two and the smaller dimensions do not exceed five microns.
[0197] In another further embodiment, the porous polymer membrane material, as described above, consists of strands that define "apertures" formed by a frame of the interconnected strands. The apertures have an average size of no more than about 20 μm in any but the longest dimension. The apertures of the material form a framework of interconnected apertures, defining "cavities" that are no greater than an average of about 20 μm in any but the longest dimension. In another embodiment the porous polymer membrane material has at least some apertures having a sufficient size to allow at least some vascular structures to be created within the cavities. At least some of these apertures, while allowing vascular structures to form within the cavities, prevent connective tissue from forming therein because of size restrictions.
[0198] In a further embodiment, the porous membrane has frames of elongated strands of material that are less than 5 microns in all but the longest dimension and the frames define apertures which interconnect to form three-dimensional cavities which permit substantially all inflammatory cells migrating into the cavities to maintain a rounded morphology. Additionally, the porous material promotes vascularization adjacent but not substantially into the porous material upon implantation into a host. Exemplary materials include but are not limited to polyethylene, polypropylene, polytetrafluoroethylene (PTFE), cellulose acetate, cellulose nitrate, polycarbonate, polyester, nylon, polysulfone, mixed esters of cellulose, poly vinylidene difluoride, silicone, polyacrylonitrile, and the like.
[0199] In some embodiments, a short-term sensor is provided with a spacer adapted to provide a fluid pocket between the sensor and the host's tissue. It is believed that this spacer, for example a bioiriterface material, matrix, mesh, hydrogel and like structures and the resultant fluid pocket provide for oxygen and/or glucose transport to the sensor.
[0200] Fig. 2C is a side schematic view of a biointerface membrane as the spacer preventing adipose cell contact with an inserted transcutaneous sensor or an implanted sensor in one exemplary embodiment. In this illustration, a porous biointerface membrane 68 surrounds the sensor 34, covering the sensing mechanism (e.g., at least a working electrode 38) and is configured to fill with fluid in vivo, thereby creating a fluid pocket surrounding the sensor. Accordingly, the adipose cells surrounding the sensor are held a distance away (such as the thickness of the porous biointerface membrane, for example) from the sensor surface. Accordingly, as the porous biointerface membrane fills with fluid (e.g., creates a fluid pocket), oxygen and glucose are transported to the sensing mechanism in quantities sufficient to maintain accurate sensor function. Additionally, as discussed elsewhere herein, interferants are diluted, suppressing or reducing interference with sensor function.
[0201] Accordingly, a short-term sensor (or short-term function of a long-term sensor) including a biointerface, including but not limited to, for example, porous biointerface materials, mesh cages, and the like, all of which are described in more detail elsewhere herein, can be employed to improve sensor function in the short-term (e.g., first few hours to days). Porous biointerface membranes need not necessarily include interconnected cavities for creating a fluid pocket in the short-term.
[0202] In certain embodiments, the device includes a physical spacer between the sensor and the surrounding tissue. A spacer allows for a liquid sheath to form around at least a portion of the sensor, such as the area surrounding the electrodes, for example. A fluid sheath can provide a fluid bulk that dilutes or buffers interferants while promoting glucose and oxygen transport to the sensor.
[0203] In some embodiments, the spacer is a mesh or optionally a fibrous structure. Suitable mesh materials are known in the art and include open-weave meshes fabricated of biocompatible materials such as but not limited to PLA, PGA, PP, nylon and the like. Mesh spacers can be applied directly to the sensing mechanism or over a biointerface membrane, such as a porous biointerface membrane disclosed elsewhere herein. Mesh spacers can act as a fluid influx- or efflux-promoting structure and provides the advantage of relatively more rapid fluid movement, mixing and/or diffusion within the mesh to reduce local interferant concentrations and increasing glucose and oxygen concentrations. The increased fluid volume within the mesh can also promote increased fluid movement in and out of the area, which brings in glucose and oxygen while removing or diluting interferants.
[0204] Furthermore, a physical spacer can reduce the effect of lymph pooling due to local compression (during sedentary activity) by mechanically maintaining the fluid pocket. When the host is sedentary (e.g., lies down to sleep) the area surrounding the sensor can be compressed. For example, if the sensor is on the right side of the host's abdomen and he lies down on that side for a few hours, the lymphatics on the abdominal right side will be pinched off. When' the tissue is compressed/pinched, fluid will not be able to move into the pinched lymphatic capillaries and interferants (from local tissue metabolism) can build up and cause noise. When the host gets up, the compression/pinching is relieved and the interferants can be removed via the lymphatics. Since a spacer can maintain the fluid bulk around the sensor during local compression, the effect of interferant concentration increases can be suppressed or reduced, thereby reducing noise and promoting optimal sensor function.
[0205] In one exemplary embodiment, the sensor is wrapped with a single layer of open weave polypropylene (PP) biocompatible mesh. When the sensor is inserted, the mesh holds the surrounding tissue away from the sensor surface and allows an influx of extracellular fluid to enter the spaces within the mesh, thereby creating a fluid pocket around the sensor. Within the fluid pocket, fluid can mix substantially rapidly as extracellular fluid enters and leaves the fluid pocket or due to host movement. Interferants are carried by the fluid and therefore can be mixed and/or diluted. Since the host can wear the sensor for a plurality of days, sedentary periods will inevitably occur. During these periods interferants can accumulate. However, the increased fluid volume provided by the mesh can substantially buffer accumulated interferants until the sedentary period ends. When the sedentary period is over, any accumulated interferants can be diluted or carried away by an influx or efflux of fluid.
[0206] In an alternative embodiment, a mesh can be applied to a sensor either symmetrically or asymmetrically. For example, the mesh can be tightly wrapped around the sensor. In another example, a strip of mesh can be applied to only one side of the sensor. In yet another example, the mesh can form a flat envelope about a few millimeters to about a centimeter wide, with the sensor sandwiched within the envelope. In some embodiments, the mesh can cover only a portion of the sensor, such as the portion containing the electrochemically reactive surface(s). In other embodiments, the mesh can cover the entire sensor.
[0207] In another alternative embodiment, noise can be reduced by inclusion of a hydrogel on the surface of at least a portion of the sensor, such as the sensing region. A hydrogel is a network of super absorbent (they can contain 20%-99% or weight % water, preferably 80% to over 99% weight % water) natural or synthetic polymer chains. Hydrogels are sometimes found as a colloidal gel in which water is the dispersion medium. Since hydrogels are nonporous, fluid and interferants within the hydrogel move by diffusion. Accordingly, the movement of molecules within hydrogels is relatively slower than that possible within mesh-based fluid pockets as described above. Optionally, the hydrogel can be biodegradable. A biodegradable hydrogel can provide a fluid pocket that gradually diminishes and is eventually eliminated by the surrounding tissue.
[0208] In a further embodiment, a hydrogel includes a flexible, water-swellable, film (as disclosed elsewhere herein) having a "dry film" thickness of from about 0.05 micron or less to about 20 microns or more, more preferably from about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, 1.5, 2, 2.5, 3, or 3.5 to about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 19.5 microns, and more preferably from about 2, 2.5 or 3 microns to about 3.5, 4, 4.5, or 5 microns. "Dry film" thickness refers to the thickness of a cured film cast from a coating formulation by standard coating techniques. The hydrogel material can be applied to the entire sensor or a portion of it, using any method known in the art, such as but not limited to dipping, painting, spraying, wrapping, and the like.
[0209] In certain embodiments, scavenging agents (e.g., bioactive agents that can scavenge, bind-up or substantially inactivate interferants) can be incorporated into the hydrogel or other aspect of the device (e.g., membrane system). Scavenging agents can suppress prolonged wounding and inflammation by removing irritating substances from the locality of the sensor.
[0210] One exemplary scavenging agent embodiment incorporates an H2O2- degrading enzyme, such as but not limited to glutathione peroxidase (GSH peroxidase), heme-containing peroxidases, eosinophil peroxidase, thyroid peroxidase or horseradish peroxidase (HRP) into the hydrogel to degrade the available H2O2 and produce oxygen. The scavenging agent can act within the hydrogel or can be released into the local environment to act outside the hydrogel.
[0211] In a further embodiment, a mesh and a hydrogel can be used in combination to provide greater mechanical support (to hold the surrounding tissue away from the sensor) while slowing down the diffusion rate within the mesh-hydrogel layer. For example, a PP mesh can be applied to the sensor followed by spraying a dry hydrogel material onto the PP-wrapped sensor. Alternatively, the hydrogel can be dried within the mesh before application to the sensor. Upon sensor implantation, the hydrogel can absorb fluid from the surrounding tissue, expand and fill the mesh pores. In a further example, the hydrogel can be biodegradable. In this example, the hydrogel can initially slow fluid movement. But as the hydrogel is biodegraded, the pores of the mesh are opened up and fluid movement can speed up or increase. [0212] A variety of alterative materials can be used to create architectures that create a fluid pocket. For example, shape-memory materials can be used as an alternative to a mesh, to form a fluid pocket around the sensor. Shape-memory materials are metals or polymers that "remember" their geometries. Shape-memory metals (e.g., memory metals or smart wire) include copper-zinc-aluminum, copper-aluminum-nickel, and nickel-titanium (NiTi) alloys. Shape-memory polymers include materials such as polynorbornene, segmented poly(epsilon-caprolactone) polyurethanes, poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymers, and the like, for example. A shape-memory material can be deformed from its "original" conformation and regains its original geometry by itself in response to a force, such as temperature or pressure.
[0213] In one embodiment, a porous memory material that has been collapsed into a flat, nonporous sheet can be applied to the exterior of the sensor as a flat film. After insertion into the body, increased temperature or moisture exposure can stimulate the memory material to transform to a 3 -dimensional, porous architecture that promotes fluid pocket formation, for example.
[0214] In an alternative embodiment, nanoporous materials, which act as molecular sieves, can be used to exclude interferants surrounding the sensor. In another alternative embodiment, a swellable material (e.g., a material having an initial volume that absorbs fluid, such as water, when it contacts the fluid to become a second volume that is greater than the initial volume) or collapsible material (e.g., a material having an initial volume that collapse to a second volume that is smaller than the initial volume) can produce or maintain a fluid pocket.
[0215] In yet another embodiment, materials with differing characteristics can be applied in combination, such as alternating bands or layers, to suppress uniform capsule formation. For example, alternating bands of collapsible and non-collapsible swellable material can be applied around a portion of the sensor. Upon implantation, both materials swell with fluid from the surrounding tissue. However, only the segments of collapsible material can deform. Since the material surrounding the sensor will be irregular, it can disrupt formation of a continuous cell layer, thereby reducing noise and extending sensor life. Wound Irritation
[0216] Another aspect of the present invention employs wound irritation either by physical structure or chemical irritants, to stimulate and/or prolong the wound healing process. Preferably, an irritating architecture stimulates adjacent cells to release soluble mediators of wound healing and/or inflammation. The released soluble mediators are believed to increase the rates of hemostasis and inflammation (e.g., promoting fluid bulk increase or an increase in bulk fluid flow) and resulting in dilution/removal of irritants and noise reduction.
[0217] Accordingly, one embodiment of an irritating biointerface includes a structure having a roughened surface, which can rub or poke adjacent cells in vivo. The sensor surface can be roughened by coating the sensor with a machineable material that is or can be etched to form ridges, bristles, spikes, grids, grooves, circles, spirals, dots, bumps, pits or the like, for example. The material can be any convenient, biocompatible material, such as machined porous structures that are overlaid on the sensor, such as but not limited to machineable metal matrix composites, bone substrates such as hydroxyapatite, coral hydroxyapatite and β-tricalcium phosphate (TCP), porous titanium (Ti) mixtures made by sintering of elemental powders, bioglasses (calcium and silicon-based porous glass), ceramics and the like. The material can be "machined" by any convenient means, such as but not limited to scraping, etching, lathing or lasering, for example.
[0218] Micro-motion of the sensor can increase the irritating effect of a roughened surface. Micro-motion is an inherent property of any implanted device, such as an implanted glucose sensor. Micro-motion of the device (e.g., minute movements of the device within the host) is caused by host movements, ranging from breathing and small local muscle movements to gross motor movements, such as walking, running or even getting up and sitting down. External forces, such as external pressure application, can also cause micromotion. Micro-motion includes movement of the sensor back and forth, rotation, twisting and/or turning. Accordingly, as the sensor is moved by micro-motion, the sensor's rough surface can rub more vigorously against the surrounding tissue, causing increased or extended wounding, resulting in additional stimulation of the wound healing process and increases in fluid bulk, bulk fluid flow and/or fluid pocket formation, with a concomitant reduction in noise.
[0219] In another embodiment, an irritating architecture is formed from self- assembly materials. Self-assembly biomaterials comprise specific polypeptides that are designed a priori to self-assemble into targeted nano- and microscopic structures. Intramolecular self-assembling molecules are often complex polymers with the ability to assemble from the random coil conformation into a well-defined stable structure (secondary and tertiary structure). A variety of self-assembly materials known in the art can find use in the present embodiment. For example, PuraMatrix™ (3DM Inc., Cambridge, MA, USA) can be used to create synthetic self-assembling peptide nanofiber scaffolds and defined 3-D microenvironments.
[0220] In an exemplary embodiment of an irritating biointerface, an irritating superstructure is applied to the working electrode or the completed sensor. A "superstructure," as used herein is a broad term and used in its ordinary sense, including, without limitation, to refer to any structure built on something else, such as but not limited to the overlying portion of a structure. An irritating superstructure can include any substantial structure that prevents cell attachment and is irritating to the surrounding tissue in vivo. In one example, an irritating superstructure can include large spaces, such as at least about 50μm wide and at least about 50μm deep. Cells surrounding the sensor can be prevented from attachment in the spaces within the superstructure, allowing fluid to fill these spaces. In some exemplary embodiments, an irritating superstructure takes advantage of sensor micromotion, to prevent cell attachment and stimulate fluid pocket formation.
[0221] In one exemplary embodiment, an irritating superstructure is comprised of ridges at least about 0.25 to 0.50 μm in diameter and about 50 μm high, and separated by at least about 0.25 to 0.50 μm. In another exemplary embodiment, an exposed silver wire, at least about 0.25 to 0.50 μm in diameter, is applied to the sensor exterior to form grooves about 50 μm wide and about 50 μm deep. Since silver is pro-inflammatory and stimulates fluid influx from the surrounding tissues, the combination of an irritating superstructure and a chemical irritant could promote an increased rate of fluid influx or prolong irritation and fluid influx. In yet another exemplary embodiment, with reference to the embodiment shown in Fig. 3 A, the configuration (e.g., diameter) of the reference electrode 30 can be changed (e.g., increased in size and/or coil spacing) such that the reference electrode, itself, becomes an irritating superstructure, with or without a coating 32 as disclosed elsewhere herein.
[0222] Inflammation and fluid pocket formation can also be induced by inclusion of irritating chemicals or agents that promote fluid influx or efflux, vasodilating agents, inflammatory agents, wounding agents, some wound-healing agents and the like. In some embodiments, irritation and fluid pocket forming agents can include but are not limited to enzymes, cytotoxic or necrosing agents (e.g., pactataxyl, actinomycin, doxorubicin, daunorubicin, epirubicin, bleomycin, plicamycin, mitomycin), cyclophosphamide, chlorambucil, uramustine, melphalan, bryostatins, inflammatory bacterial cell wall components, histamines, pro-inflammatory factors and the like. Chemical systems/methods of irritation include any materials that do not adversely affect the performance or safety of the device such as pro-inflammatory agents. Generally, pro-inflammatory agents are irritants or other substances that induce chronic inflammation and chronic granular response at the wound-site.
[0223] Chemical systems/methods of irritation can be applied to the exterior of the sensor by any useful means known in the art, such as by dipping, spraying or painting, for example. In one exemplary embodiment, the completed sensor is dipped into a dilute solution of histamine for about five seconds and dried at room temperature. Upon insertion into a host, the histamine can be solublized and stimulate an accelerated wound healing response, causing an influx of fluid and inflammatory cell migration to the sensor within the first few hours of sensor implantation, such as about 2 to 5 hours, or longer.
[0224] In another exemplary embodiment, only the operative sensing portion of the sensor is painted with a dilute necrosing agent (e.g., compounds that stimulate tissue devitalization), such as bleomycin) and dried. When the dried sensor is inserted into the host, the necrosing agent can leach off the sensor and devitalize a small amount of tissue around the sensing portion of the sensor. Generally, wound healing rapidly ensues, resulting in vasodilatation, fluid influx and an influx of macrophages and polymorphonuclear leukocytes, which remove the devitalized tissue. The space created by the removal of the devitalized tissue is filled with fluid and acts as a substantial fluid pocket.
[0225] Chemical systems/methods of irritation can also be incorporated into an exterior sensor structure, such as the biointerface membrane (described below) or a shedding layer that releases the irritating agent into the local environment. For example, in some embodiments, a "shedding layer" releases (e.g., sheds or leaches) molecules into the local vicinity of the sensor and can speed up osmotic fluid shifts. In some embodiments, a shedding layer can provide a mild irritation and encourage a mild inflammatory/foreign body response, thereby preventing cells from stabilizing and building up an ordered, fibrous capsule and promoting fluid pocket formation.
[0226] A shedding layer can be constructed of any convenient, biocompatible material, include but not limited to hydrophilic, degradable materials such as poly vinylalcohol (PVA), PGC, Polyethylene oxide (PEO), polyethylene glycol-polyvinylpyrrolidone (PEG- PVP) blends, PEG-sucrose blends, hydrogels such as polyhydroxyethyl methacrylate (pHEMA), polymethyl methacrylate (PMMA) or other polymers with quickly degrading ester linkages. In certain embodiment, absorbable suture materials, which degrade to compounds with acid residues, can be used. The acid residues are chemical irritants that stimulate inflammation and wound healing. In certain embodiments, these compounds include glycolic acid and lactic acid based polymers, polyglactin, polydioxone, polydyconate, poly(dioxanone), poly(trimethylene carbonate) copolymers, and poly (-caprolactone) homopolymers and copolymers, and the like.
[0227] In other exemplary embodiments, the shedding layer can be a layer of materials listed elsewhere herein for the first domain, including copolymers or blends with hydrophilic polymers such as polyvinylpyrrolidone (PVP), polyhydroxyethyl methacrylate, polyvinylalcohol, polyacrylic acid, polyethers, such as polyethylene glycol, and block copolymers thereof including, for example, di-block, tri-block, alternating, random and graft copolymers (block copolymers are discussed in U.S. Patent Nos. 4,803,243 and 4,686,044, hereby incorporated by reference). In one preferred embodiment, the shedding layer is comprised of polyurethane and a hydrophilic polymer. For example, the hydrophilic polymer can be polyvinylpyrrolidone. In one embodiment of this aspect of the invention, the shedding layer is polyurethane comprising not less than 5 weight percent polyvinylpyrrolidone and not more than 45 weight percent polyvinylpyrrolidone. Preferably, the shedding layer comprises not less than 20 weight percent polyvinylpyrrolidone and not more than 35 weight percent polyvinylpyrrolidone and, most preferably, polyurethane comprising about 27 weight percent polyvinylpyrrolidone.
[0228] In other exemplary embodiments, the shedding layer can include a silicone elastomer, such as a silicone elastomer and a poly(ethylene oxide) and poly(propylene oxide) co-polymer blend, as disclosed in copending U.S. patent application 11/404,417, filed 4/14/2006 and entitled "SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS." In one embodiment, the silicone elastomer is a dimethyl- and methylhydrogen-siloxane copolymer. In one embodiment, the silicone elastomer comprises vinyl substituents. In one embodiment, the silicone elastomer is an elastomer produced by curing a MED-4840 mixture. In one embodiment, the copolymer comprises hydroxy substituents. In one embodiment, the co-polymer is a triblock poly(ethylene oxide)- poly(propylene oxide)-poly(ethylene oxide) polymer. In one embodiment, the co-polymer is a triblock poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) polymer. In one embodiment, the co-polymer is a PLURONIC® polymer. In one embodiment, the copolymer is PLURONIC® F-127. In one embodiment, at least a portion of the co-polymer is cross-linked. In one embodiment, from about 5% w/w to about 30 % w/w of the membrane is the co-polymer.
[0229] A shedding layer can take any shape or geometry, symmetrical or asymmetrical, to promote fluid influx in a desired location of the sensor, such as the sensor head or the electrochemically reactive surfaces, for example. Shedding layers can be located on one side of sensor or both sides. In another example, the shedding layer can be applied to only a small portion of the sensor or the entire sensor.
[0230] In one exemplary embodiment, a shedding layer comprising polyethylene oxide (PEO) is applied to the exterior of the sensor, where the tissue surrounding the sensor can directly access the shedding layer. PEO leaches out of the shedding layer and is ingested by local cells that release pro-inflammatory factors. The pro-inflammatory factors diffuse through the surrounding tissue and stimulate an inflammation response that includes an influx of fluid. Accordingly, early noise can be reduced or eliminated and sensor function can be improved.
[0231] In another exemplary embodiment, the shedding layer is applied to the sensor in combination with an outer porous layer, such as a mesh or a porous biointerface as disclosed elsewhere herein. In one embodiment, local cells access the shedding layer through the through pores of a porous silicone biointerface. In one example, the shedding layer material is applied to the sensor prior to application of the porous silicone. In another example, the shedding layer material can be absorbed into the lower portion of the porous silicone (e.g., the portion of the porous silicone that will be proximal to the sensor after the porous silicone has been applied to the sensor) prior to application of the porous silicone to the sensor. Vasodilatation
[0232] As discussed elsewhere herein, increased fluid bulk, bulk fluid flow and/or diffusion rates can reduce local interferant concentrations (e.g., electroactive species produced via cellular metabolism in the local area) and promote glucose and oxygen influx or transport, thereby reducing noise frequency or amplitude and improving early sensor performance. In addition to the structural and chemical systems/methods discussed above, increased fluid bulk, fluid bulk flow and/or diffusion rates can be promoted by vasodilation. Vasodilation occurs when the tight junctions of the endothelial layer of the micro vasculature open. This allows serum and certain inflammatory cells to leave the circulatory system and enter the extracellular matrix (ECM). A portion of the fluid in the ECM can move back into the vasculature. Another portion of the ECM fluid can leave the area via the lymphatics. Vasodilation promotes "bulk fluid transport" (e.g., bulk fluid flow) in and out of the local region and/or increase in fluid bulk around at least a portion of the sensor. Increased fluid bulk and/or bulk fluid transport ensures homeostasis with the local environment and the blood system. Furthermore, rapid diffusion of solutes may be facilitated by permeabilization of the blood vessels and increased local temperature due to inflammation. Fluids leaving the local extracellular spaces remove metabolites, such as the interferants discussed herein. Preferably, as interferants are carried with the moving fluid, noise is reduced and sensor function improved.
[0233] In some exemplary embodiments of the present invention, bioactive agents that promote vasodilation are included in sensor construction. In one example, the bioactive agents promote an influx of fluid, causing an increase in fluid bulk. Noise is reduced as the larger fluid volume reduces the interferant concentration. In another example, the bioactive agents promote an efflux of fluid out of the local area. Noise is reduced as the leaving fluid carries interferants away with it.
[0234] A variety of bioactive agents can be found useful in preferred embodiments. Exemplary bioactive agents include but are not limited to blood-brain barrier disruptive agents and vasodilating agents, such as mannitol, sodium thiosulfate, VEGF/VPF, NO, NO-donors, leptin, bradykinin, histamines, blood components, platelet rich plasma (PRP) and the like.
[0235] Bioactive agents can be added during manufacture of the sensor by incorporating the desired bioactive agent in the manufacturing material for one or more sensor layers or into an exterior biomaterial, such as a porous silicone membrane. For example, bioactive agents can be mixed with a solution during membrane formation, which is subsequently applied onto the sensor during manufacture. Alternatively, the completed sensor can be dipped into or sprayed with a solution of a bioactive agent, for example. The amount of bioactive agent can be controlled by varying its concentration, varying the indwell time during dipping, applying multiple layers until a desired thickness is reached, and the like, as disclosed elsewhere herein.
[0236] VEGF is a bioactive agent that is known to be a vasodilator and can promote fluid influx from the micro vasculature. In one embodiment, VEGF is sprayed onto the exterior of the completed sensor. After insertion, VEGF is directly released into the local environment when the VEGF-coated sensor is implanted into a host. The released VEGF stimulates vasodilation around the implanted sensor. In another embodiment, VEGF is mixed into the biointerface material prior to sensor construction. After the sensor is inserted, VEGF leaches form the biointerface, causing vasodilation around the sensor. In an alternative embodiment, upstream or downstream components of the VEGF signaling cascade can be incorporated into the sensor, to affect vasodilatation around the implanted sensor.
[0237] In one embodiment, biodegradable or bioerodible material can be employed to release bioactive agents in a controlled manner. In one exemplary embodiment, VEGF is incorporated into a biodegradable material (e.g., shedding layer or hydrogel) that is applied to the sensor exterior. Upon implantation, the surrounding tissue begins to degrade the biodegradable material. As the material degrades, VEGF is released into the local environment in a desired rate-limiting manner. The rate of bioactive agent release (e.g., VEGF) can be manipulated by the selection of the biodegradable material and the thickness of the biodegradable material layer. Thus, constant bioactive agent release can be achieved for a predetermined extended period of time and possibly promote vasodilatation and fluid influx during that period of time.
[0238] In an alternative embodiment, the bioactive agent is microencapsulated before application to the sensor. For example, microencapsulated VEGF can be sprayed onto a completed sensor or incorporated into a structure, such as an outer mesh layer or a shedding layer. Microencapsulation can offer increased flexibility in controlling bioactive agent release rate, time of release occurrence and/or release duration.
[0239] In still another embodiment, vasodilation is achieved by matrix metalloproteinases (MMP) incorporation into the sensor. MMPs can degrade the proteins that keep blood vessel walls solid. This proteolysis allows endothelial cells to escape into the interstitial matrix and concomitantly fluid to enter and leave the vasculature. Accordingly, MMPs can promote interferant concentration reduction and intermittent, sedentary noise reduction or elimination.
[0240] In another embodiment, angiogenic and/or preangiogenic compounds or factors are included in the sensor to promote vasodilation. Angiogenesis is the physiological process involving the growth of new blood vessels from pre-existing vessels. Formation of new vessels can reduce the frequency or magnitude of intermittent, sedentary noise by increasing fluid flow, for example. Angiogenic agents include, but are not limited to, Basic Fibroblast Growth Factor (bFGF), (also known as Heparin Binding Growth Factor-II and Fibroblast Growth Factor II), Acidic Fibroblast Growth Factor (aFGF), (also known as Heparin Binding Growth Factor-I and Fibroblast Growth Factor-I), Vascular Endothelial Growth Factor (VEGF), Platelet Derived Endothelial Cell Growth Factor BB (PDEGF-BB), Angiopoietin-1, Transforming Growth Factor Beta (TGF-Beta), Transforming Growth Factor Alpha (TGF- Alpha), Hepatocyte Growth Factor, Tumor Necrosis Factor- Alpha (TNF- Alpha), Placental Growth Factor (PLGF), Angiogenin, Interleukin-8 (IL-8), Hypoxia Inducible Factor-I (HIF-I), Angiotensin-Converting Enzyme (ACE) Inhibitor Quinaprilat, Angiotropin, Thrombospondin, Peptide KGHK, Low Oxygen Tension, Lactic Acid, Insulin, Leptin, Copper Sulphate, Estradiol, prostaglandins, cox inhibitors, endothelial cell binding agents (for example, decorin or vimentin), glenipin, hydrogen peroxide, nicotine, and Growth Hormone. Wound Suppression
[0241] Wound suppression to reduce noise is an alternative aspect of the preferred embodiment. Wound suppression includes any systems or methods by which an amount of wounding that occurs upon sensor insertion is reduced and/or eliminated. While not wishing to be bound by theory, it is believed that if wounding is suppressed or at least significantly reduced, the sensor will be surrounded by substantially normal tissue (e.g., tissue that is substantially similar to the tissue prior to sensor insertion). Substantially normal tissue is believed to have a lower metabolism than wounded tissue, producing fewer interferants and reducing early noise.
[0242] Wounds can be suppressed or minimized by adaptation of the sensor's architecture to one that either suppresses wounding or promotes rapid healing, such as an architecture that does not cause substantial wounding (e.g., an architecture configured to prevent wounding), an architecture that promotes wound healing, an anti-inflammatory architecture, and the like. In one exemplary embodiment, the sensor is configured to have a low profile, a zero-footprint or a smooth surface. For example, the sensor can be formed of substantially thin wires, such as wires about 50-150 μm in diameter, for example. Preferably, the sensor is small enough to fit within a very small gauge needle, such as a 30, 31, 32, 33, < 34, or 35-gauge needle (or smaller) on the Stubs scale, for example. In general, a smaller needle, the more reduces the amount of wounding during insertion. For example, a very small needle can reduce the amount of tissue disruption and thereby reduce the subsequent wound healing response. In an alterative embodiment, the sensor's surface is smoothed with a lubricious coating, to reduce wounding upon sensor insertion.
[0243] Wounding can also be reduced by inclusion of wound-suppressive agents that either reduce the amount of initial wounding or suppress the wound healing process. While not wishing to be bound by theory, it is believed that application of a wound- suppressing agent, such as an anti-inflammatory, an immunosuppressive agent, an anti- infective agent, or a scavenging agent, to the sensor can create a locally quiescent environment and suppress wound healing. In a quiescent environment, bodily processes, such as the increased cellular metabolism associated with wound healing, can minimally affect the sensor. If the tissue surrounding the sensor is undisturbed, it can continue its normal metabolism and promote sensor function.
[0244] It has been observed that anti-histamines can suppress or eliminate early sedentary noise. Namely, it has been shown that oral anti-histamines taken at nighttime can result in substantially diminished early sedentary noise. While not wishing to be bound by theory, it is believed that histamines, which are chemicals released during wounding, produce electrochemical interference in the sensor signal. Namely, histamine release is believed to promote release of electrochemical interferants, which in certain circumstances produce "noise" on the sensor signal.
[0245] Further, the inventors believe that during sedentary periods (e.g., sleeping or long periods of sitting) host immobility can cause local pooling of the interstitial and/or lymph fluids, which results in a back up of lymph surrounding the sensor with a corresponding build-up of electroactive species as a result of normal cellular metabolism. Pooling of the wound fluid- around the sensor can suppress the usual movement of the wound fluids that would enable accurate analyte measurement. The lack of fluid movement results in modified sample fluid, including but not limited to a local increase in electroactive species (e.g., histamines or other resulting products) during these periods of intermittent sedentary noise. When the host moves or shifts body position, the fluid is released and fluid flow is restored, allowing an influx of oxygen and glucose and removal of electroactive metabolic species (e.g., interfering species).
[0246] Accordingly, one embodiment of the present invention provides for a sensor including an anti-histamine. Anti-histamines are any drugs that serve to reduce or eliminate the effects mediated by histamine. Some examples of conventional anti-histamines suitable for incorporation into or onto the present invention include, but are not limited to first-generation Hi-receptor antagonists: ethylenediamines (e.g., mepyramine (pyrilamine), antazoline), ethanolamines (e.g., diphenhydramine, carbinoxamine, doxylamine, clemastine, and dimenhydrinate), alkylamines (pheniramine, chlorphenamine (chlorpheniramine), dexchlorphenamine, brompheniramine, and triprolidine), piperazines (cyclizine, hydroxyzine, and meclizine), and tricyclics (promethazine, alimemazine (trimeprazine), cyproheptadine, and azatadine).
[0247] Additionally, Second-generation H1 -receptor antagonists are newer antihistamine drugs that are much more selective for peripheral H1 receptors in preference to the central nervous system histaminergic and cholinergic receptors. This selectivity significantly reduces the occurrence of adverse drug reactions compared with first-generation agents, while still providing effective relief of allergic conditions. Both systemic (acrivastine, astemizole, cetirizine, loratadine, mizolastine) and topical (azelastine, levocabastine, and olopatadine) could be used.
[0248] In some alternative embodiments, other inhibitors of histamine release, which appear to stabilize the mast cells to suppress degranulation and mediator release, can be used (e.g., cromoglicate (cromolyn) and nedocromil).
[0249] Anti-histamine can be incorporated into the sensor by any convenient system or technique known to those skilled in the art. In one exemplary embodiment, antihistamine is incorporated into a biodegradable shedding layer. As the shedding layer is degraded, the anti-histamine is released into the surrounding area, to suppress histamine release and down-stream inflammation processes, thereby suppressing interferant build up and improving sensor function. In another exemplary embodiment, anti-histamine is sprayed on the surface of the completed sensor and dried. Upon insertion, the anti-histamine is solublized, suppresses histamine production and downstream inflammation mediators, thereby reducing noise.
[0250] Other agents that suppress the body's response to wounding can also be incorporated into the sensor or the present invention. In one embodiment, wounding can be suppressed by the inclusion of anti-inflammatory agents. Generally, anti-inflammatory agents reduce acute and/or chronic inflammation adjacent to the implant, in order to decrease the formation of a FBC capsule to reduce or prevent barrier cell layer formation. Suitable antiinflammatory agents include but are not limited to, for example, nonsteroidal antiinflammatory drugs (NSAIDs) such as acetometaphen, aminosalicylic acid, aspirin, celecoxib, choline magnesium trisalicylate, diclofenac potassium, diclofenac sodium, diflunisal, etodolac, fenoprofen, flurbiprofen, ibuprofen, indomethacin, interleukin (IL)-IO, IL-6 mutein, anti-IL-6 iNOS inhibitors (for example, L-NAME or L-NMDA), Interferon, ketoprofen, ketorolac, leflunomide, melenamic acid, mycophenolic acid, mizoribine, nabumetone, naproxen, naproxen sodium, oxaprozin, piroxicam, rofecoxib, salsalate, sulindac, and tolmetin; and corticosteroids such as cortisone, hydrocortisone, methylprednisolone, prednisone, prednisolone, betamethasone, beclomethasone dipropionate, budesonide, dexamethasone sodium phosphate, flunisolide, fluticasone propionate, paclitaxel, tacrolimus, tranilast, triamcinolone acetonide, betamethasone, fluocinolone, fluocinonide, betamethasone dipropionate, betamethasone valerate, desonide, desoximetasone, fluocinolone, triamcinolone, triamcinolone acetonide, clobetasol propionate, and dexamethasone.
[0251] In one example, glucocorticoids stimulate the movement of lipocortin-1 into the extracellular space, where it binds to leukocyte membrane receptors and inhibits various inflammatory events: such as epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes.
[0252] In one exemplary embodiment, the sensor is coated with dexamethasone or dexamethasone is incorporated into a protective layer or film, such as a hydrophilic silicone protective film. In vivo, the dexamethasone is released from the surface of the sensor and interacts with the surrounding tissue, thereby reducing or eliminating local inflammation and early noise.
[0253] In another embodiment, an immunosuppressive and/or immunomodulatory agent is included in the sensor to suppress wound healing and/or fluid pocket formation, thereby reducing noise. Generally, immunosuppressive and/or immunomodulatory agents interfere directly with several key mechanisms necessary for involvement of different cellular elements in the inflammatory response. Suitable immunosuppressive and/or immunomodulatory agents include anti-proliferative, cell-cycle inhibitors, (for example, paclitaxel, cytochalasin D, infiximab), taxol, actinomycin, mitomycin, thospromote VEGF, estradiols, NO donors, QP-2, tacrolimus, tranilast, actinomycin, everolimus, methothrexate, mycophenolic acid, angiopeptin, vincristing, mitomycine, statins, C MYC antisense, sirolimus (and analogs), RestenASE, 2-chloro-deoxyadenosine, PCNA Ribozyme, batimstat, prolyl hydroxylase inhibitors, PP ARy ligands (for example troglitazone, rosiglitazone, pioglitazone), halofuginone, C-proteinase inhibitors, probucol, BCP671, EPC antibodies, catchins, glycating agents, endothelin inhibitors (for example, Ambrisentan, Tesosentan, Bosentan), Statins (for example, Cerivasttin), E. coli heat-labile enterotoxin, and advanced coatings. While not wishing to be bound by theory, it is believed that inflammation suppression will promote a quiescent sensor environment and a substantially normal local metabolism.
[0254] In another embodiment, the biointerface comprises a pro-inflammatory architecture configured to promote substantially rapid fluid influx (e.g., due to inflammation and the like) after sensor insertion followed by an extended quiescent period (e.g., during which wound healing is suppressed). While not wishing to be bound by theory, it is believed that, within a wound healing time line, a brief period of inflammation, followed by wound healing suppression can promote initial fluid pocket formation with subsequent suppression of interferent concentration increase. Initial fluid pocket formation can facilitate analyte (e.g., glucose) and oxygen transport from the surrounding tissues to the working electrode. The subsequent suppression of interferent build-up can reduce noise.
[0255] In yet another embodiment, an anti-infective agent is incorporated into the sensor, to prevent a local infection that would stimulate inflammation around the sensor. Accordingly, the inflammation signal cascade and concomitant metabolic changes will be suppressed, resulting in noise suppression. Generally, anti-infective agents are substances capable of acting against infection by inhibiting the spread of an infectious agent or by killing the infectious agent outright, which can serve to reduce immuno-response without inflammatory response at the implant site. Anti-infective agents include, but are not limited to, anthelmintics (mebendazole), antibiotics including aminoclycosides (gentamiciή, neomycin, tobramycin), antifungal antibiotics (amphotericin b, fluconazole, griseofulvin, itraconazole, ketoconazole, nystatin, micatin, tolnaftate), cephalosporins (cefaclor, cefazolin, cefotaxime, ceftazidime, ceftriaxone, cefuroxime, cephalexin), beta-lactam antibiotics (cefotetan, meropenem), chloramphenicol, macrolides (azithromycin, clarithromycin, erythromycin), penicillins (penicillin G sodium salt, amoxicillin, ampicillin, dicloxacillin, nafcillin, piperacillin, ticarcillin), tetracyclines (doxycycline, minocycline, tetracycline), bacitracin; clindamycin; colistimethate sodium; polymyxin b sulfate; vancomycin; antivirals including acyclovir, amantadine, didanosine, efavirenz, foscarnet, ganciclovir, indinavir, lamivudine, nelfinavir, ritonavir, saquinavir, silver, stavudine, valacyclovir, valganciclovir, zidovudine; quinolones (ciprofloxacin, levofloxacin); sulfonamides (sulfadiazine, sulfisoxazole); sulfones (dapsone); furazolidone; metronidazole; pentamidine; sulfanilamidum crystallinum; gatifloxacin; and sulfamethoxazole/trimethoprim. While not wishing to be bound by theory, it is believed that infection suppression will promote a quiescent sensor environment and a substantially normal local metabolism. [0256] In another embodiment, interferant scavengers can be applied to the sensor, to remove electroactive interferants. While not wishing to be bound by theory, it is believed that removal of electroactive interferants around the sensor can reduce early noise and promote increased sensor sensitivity during the first few hours or days of sensor use. Interferant scavengers can include enzymes, such as superoxide dismutase (SOD), thioredoxin, glutathione peroxidase and catalase, anti-oxidants, such as uric acid and vitamin C, iron compounds, Heme compounds, and some heavy metals. In one exemplary embodiment, a hydrogel containing SOD and horseradish peroxidase (HRP) is coated on the surface of the sensor. After sensor implantation, the SOD decomposes superoxide radicals from the surrounding cells into O2 and H2O2. The H2O2 is subsequently broken down into water by HRP. Thus, electroactive interferants, such as superoxide and hydrogen peroxide, can be removed and oxygen provided for the glucose oxidase component of the sensor.
[0257] In another embodiment, at least a portion of the sensor is coated with an artificial protective coating to reduce wounding. The term "protective coating" as used herein is a broad term and is used in its ordinary sense, including, without limitation, a coating of proteins and other molecules, such as those found in serous fluid. While not wishing to be bound by theory, it is believed that after the first about 2 to about 36 hours of sensor insertion, the host's biological processes provide a protective coating surrounding the sensor that protects the sensor from these endogenous interferants 'or other in vivo effects. In one exemplary embodiment, at least a portion of the sensor is coated with an artificial protective coating. The artificial protective coating components can include but are not limited to albumin, fibrin, collagen, endothelial cells, wound closure chemicals, blood products, platelet-rich plasma, growth factors and the like. A protective coating can be applied to the sensor in any convenient way, such as but not limited to dipping the sensor into a mixture of protective coating components, spraying or incorporating the protective coating components into a biointerface membrane. Advantageously, a protective film can prevent sensor degradation associated with the local environment and promote integration of the biointerface into the surrounding tissue.
[0258] In a further embodiment, a silicone coating or hydrophilic shedding layer can be applied to the sensor. While not wishing to be bound by theory, it is believed that a silicone bioprotective coating or shedding layer can promote formation and maintenance of a fluid pocket around the sensor, to enhance glucose and fluid transport as well as clearance of interferants. A silicone bioprotective coating can create a local environment with enhanced vascular permeability and/or vascularization. Such a coating is believed to speed up the inflammatory response to achieve a substantially consistent wound environment more quickly than without the coating. Furthermore, a silicone bioprotective coating is believed to be able to subdue the inflammatory response to reduce production of cellular byproducts that are believed to be electrochemical interferants.
[0259] In one embodiment, a silicone bioprotective coating can consist of one or more layer(s) formed from a composition that, in addition to providing high oxygen solubility, allows for the transport of glucose or other such water-soluble molecules (for example, drugs). In one embodiment, these layers comprise a blend of a silicone polymer with a hydrophilic polymer. By "hydrophilic polymer," it is meant that the polymer has a substantially hydrophilic domain in which aqueous substances can easily dissolve. In one embodiment, the hydrophilic polymer has a molecular weight of at least about 1000 g/mol, 5,000 g/mol, 8,000 g/mol, 10,000 g/mol, or 15,000 g/mol. In one embodiment, the hydrophilic polymer comprises both a hydrophilic domain and a partially hydrophobic domain (e.g., a copolymer). The hydrophobic domain(s) facilitate the blending of the hydrophilic polymer with the hydrophobic silicone polymer. In one embodiment, the hydrophobic domain is itself a polymer (i.e., a polymeric hydrophobic domain). For example, in one embodiment, the hydrophobic domain is not a simple molecular head group but is rather polymeric. In various embodiments, the molecular weight of any covalently continuous hydrophobic domain within the hydrophilic polymer is at least about 500 g/mol, 700 g/mol, 1000 g/mol, 2000 g/mol, 5000 g/mol, or 8,000 g/mol. In various embodiments, the molecular weight of any covalently continuous hydrophilic domain within the hydrophilic polymer is at least about 500 g/mol, 700 g/mol, 1000 g/mol, 2000 g/mol, 5000 g/mol, or 8,000 g/mol. In various embodiments, the layers comprise a blend of a silicone polymer with a hydrophilic polymer as disclosed in copending U.S. patent application 11/404,417, filed 4/14/2006 and entitled "SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS."
[0260] Many of the above disclosed methods and structures for forming a fluid pocket, diluting interferants, reducing noise and the like can be used in combination to facilitate a desired effect or outcome. For example, in one embodiment, a shedding layer composed of a hydrophilic silicone film and a necrosing agent can be applied in combination to at least a portion of the sensor. The silicone film can suppress protein adherence to the sensor surface while the necrosing agent can devitalize a small portion of tissue adjacent to the sensor, stimulating formation of a fluid pocket around the liydrophilic silicone film. Preferably, the increased volume of fluid surrounding the sensor dilutes interferants while the shedding layer provides a physical separation between the sensor and the surrounding tissue.
[0261] In another exemplary embodiment, a mesh sprayed with dexamethasone is wrapped around the exterior of the sensor. The mesh can provide a physical spacer for a fluid pocket while the dexamethasone inhibits inflammation. Preferably, fluid can fill the mesh and the dexamethasone can promote normal tissue metabolism around the sensor by inhibiting an influx of inflammatory cells. Consequently, glucose and oxygen can travel freely between the tissue and the sensor through the fluid filled mesh without a buildup of interferants, even during periods of tissue compression, thereby promoting sensor sensitivity and thereby reducing noise.
Sensing Mechanism
[0262] In general, the analyte sensors 34 of the preferred embodiments include a sensing mechanism 36 with a small structure (e.g., small structured-, micro- or small diameter sensor, see Fig. 3A), for example, a needle-type sensor, in at least a portion thereof. As used herein a "small structure" preferably refers to an architecture with at least one dimension less than about 1 mm. The small structured sensing mechanism can be wire-based, substrate based, or any other architecture. In some alternative embodiments, the term "small structure" can also refer to slightly larger structures, such as those having their smallest dimension being greater than about 1 mm, however, the architecture (e.g., mass or size) is designed to minimize the foreign body response due to size and/or mass. In the preferred embodiments, a biointerface membrane is formed onto the sensing mechanism 36 as described in more detail below.
[0263] Fig. 3 A is an expanded view of an exemplary embodiment of a continuous analyte sensor 34, also referred to as a transcutaneous analyte sensor, or needle-type sensor, particularly illustrating the sensing mechanism 36. Preferably, the sensing mechanism comprises a small structure as defined herein and is adapted for insertion under the host's skin, and the remaining body of the sensor (e.g., electronics, etc) can reside ex vivo. In the illustrated embodiment, the analyte sensor 34, includes two electrodes, i.e., a working electrode 38 and at least one additional electrode 30, which can function as a counter and/or reference electrode, hereinafter referred to as the reference electrode 30.
[0264] In some exemplary embodiments, each electrode is formed from a fine wire with a diameter of from about 0.001 or less to about 0.010 inches or more, for example, and is formed from, e.g., a plated insulator, a plated wire, or bulk electrically conductive material. Although the illustrated electrode configuration and associated text describe one preferred method of forming a transcutaneous sensor, a variety of known transcutaneous sensor configurations can be employed with the transcutaneous analyte sensor system of the preferred embodiments, such as are described in U.S. Patent No. 6,695,860 to Ward et αl., U.S. Patent No. 6,565,509 to Say et αl., U.S. Patent No. 6,248,067 to Causey III, et αl, and U.S. Patent No. 6,514,718 to Heller et αl.
[0265] In preferred embodiments, the working electrode comprises a wire formed from a conductive material, such as platinum, platinum-iridium, palladium, graphite, gold, carbon, conductive polymer, alloys, or the like. Although the electrodes can by formed by a variety of manufacturing techniques (bulk metal processing, deposition of metal onto a substrate, or the like), it can be advantageous to form the electrodes from plated wire (e.g., platinum on steel wire) or bulk metal (e.g., platinum wire). It is believed that electrodes formed from bulk metal wire provide superior performance (e.g., in contrast to deposited electrodes), including increased stability of assay, simplified manufacturability, resistance to contamination (e.g., which can be introduced in deposition processes), and improved surface reaction (e.g. , due to purity of material) without peeling or delamination.
[0266] The working electrode 38 is configured to measure the concentration of an "analyte. In an enzymatic electrochemical sensor for detecting glucose, for example, the working electrode measures the hydrogen peroxide produced by an enzyme catalyzed reaction of the analyte being detected and creates a measurable electronic current. For example, in the detection of glucose wherein glucose oxidase produces hydrogen peroxide as a byproduct, hydrogen peroxide reacts with the surface of the working electrode producing two protons (2H+), two electrons (2e") and one molecule of oxygen (O2), which produces the electronic current being detected.
[0267] The working electrode 38 is covered with an insulating material, for example, a non-conductive polymer. Dip-coating, spray-coating, vapor-deposition, or other coating or deposition techniques can be used to deposit the insulating material on the working electrode. In one embodiment, the insulating material comprises parylene, which can be an advantageous polymer coating for its strength, lubricity, and electrical insulation properties. Generally, parylene is produced by vapor deposition and polymerization of para-xylylene (or its substituted derivatives). However, any suitable insulating material can be used, for example, fluorinated polymers, polyethyleneterephthalate, polyurethane, polyimide, other nonconducting polymers, or the like. Glass or ceramic materials can also be employed. Other materials suitable for use include surface energy modified coating systems such as are marketed under the trade names AMC18, AMC148, AMC141, and AMC321 by Advanced Materials Components Express of Bellafonte, PA. In some alternative embodiments, however, the working electrode cannot require a coating of insulator.
[0268] Preferably, the reference electrode 30, which can function as a reference electrode alone, or as a dual reference and counter electrode, is formed from silver, silver/silver chloride, or the like. Preferably, the electrodes are juxtapositioned and/or twisted with or around each other; however other configurations are also possible. In one example, the reference electrode 30 is helically wound around the working electrode 38 as illustrated in Fig. 3A. The assembly of wires can then be optionally coated together with an insulating material, similar to that described above, in order to provide an insulating attachment (e.g., securing together of the working and reference electrodes).
[0269] In embodiments wherein an outer insulator is disposed, a portion of the coated assembly structure can be stripped or otherwise removed, for example, by hand, excimer lasing, chemical etching, laser ablation, grit-blasting (e.g., with sodium bicarbonate or other suitable grit), or the like, to expose the electroactive surfaces. Alternatively, a portion of the electrode can be masked prior to depositing the insulator in order to maintain an exposed electroactive surface area. In one exemplary embodiment, grit blasting is implemented to expose the electroactive surfaces, preferably utilizing a grit material that is sufficiently hard to ablate the polymer material, while being sufficiently soft so as to minimize or avoid damage to the underlying metal electrode (e.g., a platinum electrode). Although a variety of "grit" materials can be used (e.g., sand, talc, walnut shell, ground plastic, sea salt, and the like), in some preferred embodiments, sodium bicarbonate is an advantageous grit-material because it is sufficiently hard to ablate, e.g., a parylene coating without damaging, e.g., an underlying platinum conductor. One additional advantage of sodium bicarbonate blasting includes its polishing action on the metal as it strips the polymer layer, thereby eliminating a cleaning step that might otherwise be necessary.
[0270] In some embodiments, a radial window is formed through the insulating material to expose a circumferential electroactive surface of the working electrode. Additionally, sections of electroactive surface of the reference electrode are exposed. For example, the sections of electroactive surface can be masked during deposition of an outer insulating layer or etched after deposition of an outer insulating layer. In some applications, cellular attack or migration of cells to the sensor can cause reduced sensitivity and/or function of the device, particularly after the first day of implantation. However, when the exposed electroactive surface is distributed circumferentially about the sensor (e.g., as in a radial window), the available surface area for reaction can be sufficiently distributed so as to minimize the effect of local cellular invasion of the sensor on the sensor signal. Alternatively, a tangential exposed electroactive window can be formed, for example, by stripping only one side of the coated assembly structure. In other alternative embodiments, the window can be provided at the tip of the coated assembly structure such that the electroactive surfaces are exposed at the tip of the sensor. Other methods and configurations for exposing electroactive surfaces can also be employed.
[0271] Preferably, the above-exemplified sensor has an overall diameter of not more than about 0.020 inches (about 0.51 mm), more preferably not more than about 0.018 inches (about 0.46 mm), and most preferably not more than about 0.016 inches (0.41 mm). In some embodiments, the working electrode has a diameter of from about 0.001 inches or less to about 0.010 inches or more, preferably from about 0.002 inches to about 0.008 inches, and more preferably from about 0.004 inches to about 0.005 inches. The length of the window can be from about 0.1 mm (about 0.004 inches) or less to about 2 mm (about 0.078 inches) or more, and preferably from about 0.5 mm (about 0.02 inches) to about 0.75 mm (0.03 inches). In such embodiments, the exposed surface area of the working electrode is preferably from about 0.000013 in2 (0.0000839cm2) or less to about 0.0025 in2 (0.016129 cm2) or more (assuming a diameter of from about 0.001 inches to about 0.010 inches and a length of from about 0.004 inches to about 0.078 inches). The preferred exposed surface area of the working electrode is selected to produce an analyte signal with a current in the picoAmp range, such as is described in more detail elsewhere herein. However, a current in the picoAmp range can be dependent upon a variety of factors, for example the electronic circuitry design (e.g., sample rate, current draw, A/D converter bit resolution, etc.), the membrane system (e.g., permeability of the analyte through the membrane system), and the exposed surface area of the working electrode. Accordingly, the exposed electroactive working electrode surface area can be selected to have a value greater than or less than the above-described ranges taking into consideration alterations in the membrane system and/or electronic circuitry. In preferred embodiments of a glucose sensor, it can be advantageous to minimize the surface area of the working electrode while maximizing the diffusivity of glucose in order to optimize the signal- to-noise ratio while maintaining sensor performance in both high and low glucose concentration ranges.
[0272] In some alternative embodiments, the exposed surface area of the working (and/or other) electrode can be increased by altering the cross-section of the electrode itself. For example, in some embodiments the cross-section of the working electrode can be defined by a cross, star, cloverleaf, ribbed, dimpled, ridged, irregular, or other non-circular configuration; thus, for any predetermined length of electrode, a specific increased surface area can be achieved (as compared to the area achieved by a circular cross-section). Increasing the surface area of the working electrode can be advantageous in providing an increased signal responsive to the analyte concentration, which in turn can be helpful in improving the signal-to-noise ratio, for example.
[0273] In some alternative embodiments, additional electrodes can be included within the assembly, for example, a three-electrode system (working, reference, and counter electrodes) and/or an additional working electrode (e.g., an electrode which can be used to generate oxygen, which is configured as a baseline subtracting electrode, or which is configured for measuring additional analytes). U.S. Patent No. 7,081,195 and U.S. Publication No. US-2005-0143635-A1 describe some systems and methods for implementing and using additional working, counter, and/or reference electrodes. In one implementation wherein the sensor comprises two working electrodes, the two working electrodes are juxtapositioned (e.g., extend parallel to each other), around which the reference electrode is disposed (e.g., helically wound). In some embodiments wherein two or more working electrodes are provided, the working electrodes can be formed in a double-, triple-, quad-, etc. helix configuration along the length of the sensor (for example, surrounding a reference electrode, insulated rod, or other support structure.) The resulting electrode system can be configured with an appropriate membrane system, wherein the first working electrode is configured to measure a first signal comprising glucose and baseline and the additional working electrode is configured to measure a baseline signal consisting of baseline only (e.g., configured to be substantially similar to the first working electrode without an enzyme disposed thereon.) In this way, the baseline signal can be subtracted from the first signal to produce a glucose-only signal that is substantially not host to fluctuations in the baseline and/or interfering species on the signal. Accordingly, the above-described dimensions can be altered as desired. Although the preferred embodiments illustrate one electrode configuration including one bulk metal wire helically wound around another bulk metal wire, other electrode configurations are also contemplated. In an alternative embodiment, the working electrode comprises a tube with a reference electrode disposed or coiled inside, including an insulator there between. Alternatively, the reference electrode comprises a tube with a working electrode disposed or coiled inside, including an insulator there between. In another alternative embodiment, a polymer (e.g., insulating) rod is provided, wherein the electrodes are deposited (e.g., electro-plated) thereon. In yet another alternative embodiment, a metallic (e.g., steel) rod is provided, coated with an insulating material, onto which the working and reference electrodes are deposited. In yet another alternative embodiment, one or more working electrodes are helically wound around a reference electrode.
[0274] While the methods of preferred embodiments are especially well suited for use with small structured-, micro- or small diameter sensors, the methods can also be suitable for use with larger diameter sensors, e.g., sensors of 1 mm to about 2 mm or more in diameter.
[0275] In some alternative embodiments, the sensing mechanism includes electrodes deposited on a planar substrate, wherein the thickness of the implantable portion is less than about 1 mm, see, for example U.S. Patent No. 6,175,752 to Say et al. and U.S. Patent No. 5,779,665 to Mastrototaro et al., both of which are incorporated herein by reference in their entirety.
Sensing Membrane
[0276] Preferably, a sensing membrane 32 is disposed over the electroactive surfaces of the sensor 34 and includes one or more domains or layers (Fig. 3B, for example). In general, the sensing membrane functions to control the flux of a biological fluid there through and/or to protect sensitive regions of the sensor from contamination by the biological fluid, for example. Some conventional electrochemical enzyme-based analyte sensors generally include a sensing membrane that controls the flux of the analyte being measured, protects the electrodes from contamination of the biological fluid, and/or provides an enzyme that catalyzes the reaction of the analyte with a co-factor, for example. See, e.g., U.S. Publication No. 2005-0245799-A1 and U.S. Publication No. US-2006-0020187-Al . l
[0277] The sensing membranes of the preferred embodiments can include any membrane configuration suitable for use with any analyte sensor (such as described in more detail above). In general, the sensing membranes of the preferred embodiments include one or more domains, all or some of which can be adhered to or deposited on the analyte sensor as is appreciated by one skilled in the art. In one embodiment, the sensing membrane generally provides one or more of the following functions: 1) protection of the exposed electrode surface from the biological environment, 2) diffusion resistance (limitation) of the analyte, 3) a catalyst for enabling an enzymatic reaction, 4) limitation or blocking of interfering species, and 5) hydrophilicity at the electrochemically reactive surfaces of the sensor interface, such as described in the above-referenced co-pending U.S. Patent Applications. Electrode Domain
[0278] In some embodiments, the membrane system comprises an optional electrode domain. The electrode domain is provided to ensure that an electrochemical reaction occurs between the electroactive surfaces of the working electrode and the reference electrode, and thus the electrode domain is preferably situated more proximal to the electroactive surfaces than the enzyme domain. Preferably, the electrode domain includes a semipermeable coating that maintains a layer of water at the electrochemically reactive surfaces of the sensor, for example, a humectant in a binder material can be employed as an electrode domain; this allows for the full transport of ions in the aqueous environment. The electrode domain can also assist in stabilizing the operation of the sensor by overcoming electrode start-up and drifting problems caused by inadequate electrolyte. The material that forms the electrode domain can also protect against pH-mediated damage that can result from the formation of a large pH gradient due to the electrochemical activity of the electrodes.
[0279] In one embodiment, the electrode domain includes a flexible, water- swellable, hydrogel film having a "dry film" thickness of from about 0.05 micron or less to about 20 microns or more, more preferably from about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, 1.5, 2, 2.5, 3, or 3.5 to about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 19.5 microns, and more preferably from about 2, 2.5 or 3 microns to about 3.5, 4, 4.5, or 5 microns. "Dry film" thickness refers to the thickness of a cured film cast from a coating formulation by standard coating techniques.
[0280] In certain embodiments, the electrode domain is formed of a curable mixture of a urethane polymer and a hydrophilic polymer. Particularly preferred coatings are formed of a polyurethane polymer having carboxylate functional groups and non-ionic hydrophilic polyether segments, wherein the polyurethane polymer is crosslinked with a water soluble carbodiimide (e.g., l-ethyl-3-(3- dimethylaminopropyl)carbodiimide (EDC))) in the presence of polyvinylpyrrolidone and cured at a moderate temperature of about 5O0C.
[0281] Preferably, the electrode domain is deposited by spray or dip-coating the electroactive surfaces of the sensor. More preferably, the electrode domain is formed by dip- coating the electroactive surfaces in an electrode solution and curing the domain for a time of from about 15 to about 30 minutes at a temperature of from about 40 to about 55 0C (and can be accomplished under vacuum (e.g., 20 to 30 mmHg)). In embodiments wherein dip-coating is used to deposit the electrode domain, a preferred insertion rate of from about 1 to about 3 inches per minute, with a preferred dwell time of from about 0.5 to about 2 minutes, and a preferred withdrawal rate of from about 0.25 to about 2 inches per minute provide a functional coating. However, values outside of those set forth above can be acceptable or even desirable in certain embodiments, for example, dependent upon viscosity and surface tension as is appreciated by one skilled in the art. In one embodiment, the electroactive surfaces of the electrode system are dip-coated one time (one layer) and cured at 500C under vacuum for 20 minutes.
[0282] Although an independent electrode domain is described herein, in some embodiments, sufficient hydrophilicity can be provided in the interference domain and/or enzyme domain (the domain adjacent to the electroactive surfaces) so as to provide for the full transport of ions in the aqueous environment (e.g. without a distinct electrode domain). Interference Domain
[0283] In some embodiments, an optional interference domain is provided, which generally includes a polymer domain that restricts the flow of one or more interferants. In some embodiments, the interference domain functions as a molecular sieve that allows analytes and other substances that are to be measured by the electrodes to pass through, while preventing passage of other substances, including interferants such as ascorbate and urea (see U.S. Patent No 6,001,067 to Shults). Some known interferants for a glucose-oxidase based electrochemical sensor include acetaminophen, ascorbic acid, bilirubin, cholesterol, creatinine, dopamine, ephedrine, ibuprofen, L-dopa, methyldopa, salicylate, tetracycline, tolazamide, tolbutamide, triglycerides, and uric acid.
[0284] Several polymer types that can be utilized as a base material for the interference domain include polyurethanes, polymers having pendant ionic groups, and polymers having controlled pore size, for example. In one embodiment, the interference domain includes a thin, hydrophobic membrane that is non-swellable and restricts diffusion of low molecular weight species. The interference domain is permeable to relatively low molecular weight substances, such as hydrogen peroxide, but restricts the passage of higher molecular weight substances, including glucose and ascorbic acid. Other systems and methods for reducing or eliminating interference species that can be applied to the membrane system of the preferred embodiments are described in U.S. Patent No. 7,074,307, U.S. Publication No. US-2005-0176136-A1, U.S. Patent No. 7,081,195 and U.S. Publication No. US-2005-0143635-A1. In some alternative embodiments, a distinct interference domain is not included.
[0285] In preferred embodiments, the interference domain is deposited onto the electrode domain (or directly onto the electroactive surfaces when a distinct electrode domain is not included) for a domain thickness of from about 0.05 micron or less to about 20 microns or more, more preferably from about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, 1.5, 2, 2.5, 3, or 3.5 to about 4, 5', 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 19.5 microns, and more preferably from about 2, 2.5 or 3 microns to about 3.5, 4, 4.5, or 5 microns. Thicker membranes can also be useful, but thinner membranes are generally preferred because they have a lower impact on the rate of diffusion of hydrogen peroxide from the enzyme membrane to the electrodes. Unfortunately, the thin thickness of the interference domains conventionally used can introduce variability in the membrane system processing. For example, if too much or too little interference domain is incorporated within a membrane system, the performance of the membrane can be adversely affected. Enzyme Domain
[0286] In preferred embodiments, the membrane system further includes an enzyme domain (e.g., Fig. 3B, 46) disposed more distally from the electroactive surfaces than the interference domain (or electrode domain when a distinct interference is not included). In some embodiments, the enzyme domain is directly deposited onto the electroactive surfaces (when neither an electrode or interference domain is included; e.g., Fig. 3B, 44). In the preferred embodiments, the enzyme domain provides an enzyme to catalyze the reaction of the analyte and its co-reactant, as described in more detail below. Preferably, the enzyme domain includes glucose oxidase, however other oxidases, for example, galactose oxidase or uricase oxidase, can also be used.
[0287] For an enzyme-based electrochemical glucose sensor to perform well, the sensor's response is preferably limited by neither enzyme activity nor co-reactant concentration. Because enzymes, including glucose oxidase, are subject to deactivation as a function of time even in ambient conditions, this behavior is compensated for in forming the enzyme domain. Preferably, the enzyme domain is constructed of aqueous dispersions of colloidal polyurethane polymers including the enzyme. However, in alternative embodiments the enzyme domain is constructed from an oxygen enhancing material, for example, silicone or fluorocarbon, in order to provide a supply of excess oxygen during transient ischemia. Preferably, the enzyme is immobilized within the domain. See U.S. Publication No. US- 2005-0054909-A1.
[0288] In preferred embodiments, the enzyme domain is deposited onto the interference domain for a domain thickness of from about 0.05 micron or less to about 20 microns or more, more preferably from about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, 1.5, 2, 2.5, 3, or 3.5 to about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 19.5 microns, and more preferably from about 2, 2.5 or 3 microns to about 3.5, 4, 4.5, or 5 microns. However in some embodiments, the enzyme domain is deposited onto the electrode domain or directly onto the electroactive surfaces. Preferably, the enzyme domain 46 is deposited by spray or dip coating. More preferably, the enzyme domain is formed by dip- coating the electrode domain into an enzyme domain solution and curing the domain for from about 15 to about 30 minutes at a temperature of from about 40 to about 55 0C (and can be accomplished under vacuum (e.g., 20 to 30 mmHg)). In embodiments wherein dip-coating is used to deposit the enzyme domain at room temperature, a preferred insertion rate of from about 1 inch per minute to about 3 inches per minute, with a preferred dwell time of from about 0.5 minutes to about 2 minutes, and a preferred withdrawal rate of from about 0.25 inch per minute to about 2 inches per minute provide a functional coating. However, values outside of those set forth above can be acceptable or even desirable in certain embodiments, for example, dependent upon viscosity and surface tension as is appreciated by one skilled in the art. In one embodiment, the enzyme domain is formed by dip coating two times (namely, forming two layers) in a coating solution and curing at 500C under vacuum for 20 minutes. However, in some embodiments, the enzyme domain can be formed by dip-coating and/or spray-coating one or more layers at a predetermined concentration of the coating solution, insertion rate, dwell time, withdrawal rate, and/or desired thickness. Resistance Domain
[0289] In preferred embodiments, the membrane system includes a resistance domain disposed more distal from the electroactive surfaces than the enzyme domain (e.g., Fig.3B, 48). Although the following description is directed to a resistance domain for a glucose sensor, the resistance domain can be modified for other analytes and co-reactants as well.
[0290] There exists a molar excess of glucose relative to the amount of oxygen in blood; that is, for every free oxygen molecule in extracellular fluid, there are typically more than 100 glucose molecules present (see Updike et ah, Diabetes Care 5:207-21(1982)). However, an immobilized enzyme-based glucose sensor employing oxygen as co-reactant is preferably supplied with oxygen in non-rate-limiting excess in order for the sensor to respond linearly to changes in glucose concentration, while not responding to changes in oxygen concentration. Specifically, when a glucose-monitoring reaction is oxygen limited, linearity is not achieved above minimal concentrations of glucose. Without a semipermeable membrane situated over the enzyme domain to control the flux of glucose and oxygen, a linear response to glucose levels can be obtained only for glucose concentrations of up to about 40 mg/dL. However, in a clinical setting, a linear response to glucose levels is desirable up to at least about 400 mg/dL.
[0291] The resistance domain includes a semi permeable membrane that controls the flux of oxygen and glucose to the underlying enzyme domain, preferably rendering oxygen in a non-rate-limiting excess. As a result, the upper limit of linearity of glucose measurement is extended to a much higher value than that which is achieved without the resistance domain. In one embodiment, the resistance domain exhibits an oxygen to glucose permeability ratio of from about 50:1 or less to about 400:1 or more, preferably about 200:1. As a result, one-dimensional reactant diffusion is adequate to provide excess oxygen at all reasonable glucose and oxygen concentrations found in the subcutaneous matrix (See Rhodes et al, Anal. Chem., 66:1520-1529 (1994)).
[0292] In alternative embodiments, a lower ratio of oxygen-to-glucose can be sufficient to provide excess oxygen by using a high oxygen solubility domain (for example, a silicone or fluorocarbon-based material or domain) to enhance the supply/transport of oxygen to the enzyme domain. If more oxygen is supplied to the enzyme, then more glucose can also be supplied to the enzyme without creating an oxygen rate-limiting excess. In alternative embodiments, the resistance domain is formed from a silicone composition, such as is described in U.S. Publication No. US-2005-0090607-A1.
[0293] In a preferred embodiment, the resistance domain includes a polyurethane membrane with both hydrophilic and hydrophobic regions to control the diffusion of glucose and oxygen to an analyte sensor, the membrane being fabricated easily and reproducibly from commercially available materials. A suitable hydrophobic polymer component is a polyurethane, or polyetherurethaneurea. Polyurethane is a polymer produced by the condensation reaction of a diisocyanate and a difunctional hydroxyl-containing material. A polyurethaneurea is a polymer produced by the condensation reaction of a diisocyanate and a difunctional amine-containing material. Preferred diisocyanates include aliphatic diisocyanates containing from about 4 to about 8 methylene units. Diisocyanates containing cycloaliphatie moieties can also be useful in the preparation of the polymer and copolymer components of the membranes of preferred embodiments. The material that forms the basis of the hydrophobic matrix of the resistance domain can be any of those known in the art as appropriate for use as membranes in sensor devices and as having sufficient permeability to allow relevant compounds to pass through it, for example, to allow an oxygen molecule to pass through the membrane from the sample under examination in order to reach the active enzyme or electrochemical electrodes. Examples of materials which can be used to make non-polyurethane type membranes include vinyl polymers, polyethers, polyesters, polyamides, inorganic polymers such as polysiloxanes and polycarbosiloxanes, natural polymers such as cellulosic and protein based materials, and mixtures or combinations thereof.
[0294] In a preferred embodiment, the hydrophilic polymer component is polyethylene oxide as disclosed in copending U.S. Patent Application No. 11/404,417, filed April 14, 2006 and entitled "SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS." For example, one useful hydrophobic-hydrophilic copolymer component is a polyurethane polymer that includes about 20% hydrophilic polyethylene oxide. The polyethylene oxide portions of the copolymer are thermodynamically driven to separate from the hydrophobic portions of the copolymer and the hydrophobic polymer component. The 20% polyethylene oxide-based soft segment portion of the copolymer used to form the final blend affects the water pick-up and subsequent glucose permeability of the membrane.
[0295] In preferred embodiments, the resistance domain is deposited onto the enzyme domain to yield a domain thickness of from about 0.05 micron or less to about 20 microns or more, more preferably from about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, 1.5, 2, 2.5, 3, or 3.5 to about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 19.5 microns, and more preferably from about 2, 2.5 or 3 microns to about 3.5, 4, 4.5, or 5 microns. Preferably, the resistance domain is deposited onto the enzyme domain by spray coating or dip coating. In certain embodiments, spray coating is the preferred deposition technique. The spraying process atomizes and mists the solution, and therefore most or all of the solvent is evaporated prior to the coating material settling on the underlying domain, thereby minimizing contact of the solvent with the enzyme. One additional advantage of spray-coating the resistance domain as described in the preferred embodiments includes formation of a membrane system that substantially blocks or resists ascorbate (a known electrochemical interferant in hydrogen peroxide-measuring glucose sensors). While not wishing to be bound by theory, it is believed that during the process of depositing the resistance domain as described in the preferred embodiments, a structural morphology is formed, characterized in that ascorbate does not substantially permeate there through.
[0296] In preferred embodiments, the resistance domain is deposited on the enzyme domain by spray-coating a solution of from about 1 wt. % to about 5 wt. % polymer and from about 95 wt. % to about 99 wt. % solvent. In spraying a solution of resistance domain material, including a solvent, onto the enzyme domain, it is desirable to mitigate or substantially reduce any contact with enzyme of any solvent in the spray solution that can deactivate the underlying enzyme of the enzyme domain. Tetrahydrofuran (THF) is one solvent that minimally or negligibly affects the enzyme of the enzyme domain upon spraying. Other solvents can also be suitable for use, as is appreciated by one skilled in the art.
[0297] Although a variety of spraying or deposition techniques can be used, spraying the resistance domain material and rotating the sensor at least one time by 180° can provide adequate coverage by the resistance domain. Spraying the resistance domain material and rotating the sensor at least two times by 120 degrees provides even greater coverage (one layer of 360° coverage), thereby ensuring resistivity to glucose, such as is described in more detail above.
[0298] In preferred embodiments, the resistance domain is spray-coated and subsequently cured for a time of from about 15 to about 90 minutes at a temperature of from about 40 to about 600C (and can be accomplished under vacuum {e.g., 20 to 30 mmHg)). A cure time of up to about 90 minutes or more can be advantageous to ensure complete drying of the resistance domain. While not wishing to be bound by theory, it is believed that complete drying of the resistance domain aids in stabilizing the sensitivity of the glucose sensor signal. It reduces drifting of the signal sensitivity over time, and complete drying is believed to stabilize performance of the glucose sensor signal in lower oxygen environments.
[0299] In one embodiment, the resistance domain is formed by spray-coating at least six layers (namely, rotating the sensor seventeen times by 120° for at least six layers of 360° coverage) and curing at 50°C under vacuum for 60 minutes. However, the resistance domain can be formed by dip-coating or spray-coating any layer or plurality of layers, depending upon the concentration of the solution, insertion rate, dwell time, withdrawal rate, and/or the desired thickness of the resulting film.
[0300] Advantageously, sensors with the membrane system of the preferred embodiments, including an electrode domain and/or interference domain, an enzyme domain, and a resistance domain, provide stable signal response to increasing glucose levels of from about 40 to about 400 mg/dL, and sustained function (at least 90% signal strength) even at low oxygen levels (for example, at about 0.6 mg/L O2). While not wishing to be bound by theory, it is believed that the resistance domain provides sufficient resistivity, or the enzyme domain provides sufficient enzyme, such that oxygen limitations are seen at a much lower concentration of oxygen as compared to prior art sensors.
[0301] In preferred embodiments, a sensor signal with a current in the picoAmp range is preferred, which is described in more detail elsewhere herein. However, the ability to produce a signal with a current in the picoAmp range can be dependent upon a combination of factors, including the electronic circuitry design (e.g., A/D converter, bit resolution, and the like), the membrane system (e.g., permeability of the analyte through the resistance domain, enzyme concentration, and/or electrolyte availability to the electrochemical reaction at the electrodes), and the exposed surface area of the working electrode. For example, the resistance domain can be designed to be more or less restrictive to the analyte depending upon to the design of the electronic circuitry, membrane system, and/or exposed electroactive surface area of the working electrode.
[0302] Accordingly, in preferred embodiments, the membrane system is designed with a sensitivity of from about 1 pA/mg/dL to about 100 pA/mg/dL, preferably from about 5 pA/mg/dL to 25 pA/mg/dL, and more preferably from about 4 to about 7 pA/mg/dL. While not wishing to be bound by any particular theory, it is believed that membrane systems designed with a sensitivity in the preferred ranges permit measurement of the analyte signal in low analyte and/or low oxygen situations. Namely, conventional analyte sensors have shown reduced measurement accuracy in low analyte ranges due to lower availability of the analyte to the sensor and/or have shown increased signal noise in high analyte ranges due to insufficient oxygen necessary to react with the amount of analyte being measured. While not wishing to be bound by theory, it is believed that the membrane systems of the preferred embodiments, in combination with the electronic circuitry design and exposed electrochemical reactive surface area design, support measurement of the analyte in the picoAmp range, which enables an improved level of resolution and accuracy in both low and high analyte ranges not seen in the prior art.
[0303] Although sensors of some embodiments described herein include an optional interference domain in order to block or reduce one or more interferants, sensors with the membrane system of the preferred embodiments, including an electrode domain, an enzyme domain, and a resistance domain, have been shown to inhibit ascorbate without an additional interference domain. Namely, the membrane system of the preferred embodiments, including an electrode domain, an enzyme domain, and a resistance domain, has been shown to be substantially non-responsive to ascorbate in physiologically acceptable ranges. While not wishing to be bound by theory, it is believed that the process of depositing the resistance domain by spray coating, as described herein, results in a structural morphology that is substantially resistance resistant to ascorbate. Interference-free Membrane Systems
[0304] In general, it is believed that appropriate solvents and/or deposition methods can be chosen for one or more of the domains of the membrane system that form one or more transitional domains such that interferants do not substantially permeate there through. Thus, sensors can be built without distinct or deposited interference domains, which are non-responsive to interferants. While not wishing to be bound by theory, it is believed that a simplified multilayer membrane system, more robust multilayer manufacturing process, and reduced variability caused by the thickness and associated oxygen and glucose sensitivity of the deposited micron-thin interference domain can be provided. Additionally, the optional polymer-based interference domain, which usually inhibits hydrogen peroxide diffusion, is eliminated, thereby enhancing the amount of hydrogen peroxide that passes through the membrane system. Oxygen Conduit
[0305] As described above, certain sensors depend upon an enzyme within the membrane system through which the host's bodily fluid passes and in which the analyte (for example, glucose) within the bodily fluid reacts in the presence of a co-reactant (for example, oxygen) to generate a product. The product is then measured using electrochemical methods, and thus the output of an electrode system functions as a measure of the analyte. For example, when the sensor is a glucose oxidase based glucose sensor, the species measured at the working electrode is H2O2. An enzyme, glucose oxidase, catalyzes the conversion of oxygen and glucose to hydrogen peroxide and gluconate according to the following reaction: Glucose + O2 → Gluconate + H2O2
[0306] Because for each glucose molecule reacted there is a proportional change in the product, H2O2, one can monitor the change in H2O2 to determine glucose concentration. Oxidation of H2O2 by the working electrode is balanced by reduction of ambient oxygen, enzyme generated H2O2 and other reducible species at a counter electrode, for example. See Fraser, D.M., "An Introduction to In Vivo Biosensing: Progress and Problems." In "Biosensors and the Body," D.M. Fraser, ed., 1997, pp. 1-56 John Wiley and Sons, New York))
[0307] In vivo, glucose concentration is generally about one hundred times or more that of the oxygen concentration. Consequently, oxygen is a limiting reactant in the electrochemical reaction, and when insufficient oxygen is provided to the sensor, the sensor is unable to accurately measure glucose concentration. Thus, depressed sensor function or inaccuracy is believed to be a result of problems in availability of oxygen to the enzyme and/or electroactive surface(s).
[0308] Accordingly, in an alternative embodiment, an oxygen conduit (for example, a high oxygen solubility domain formed from silicone or fluorochemicals) is provided that extends from the ex vivo portion of the sensor to the in vivo portion of the sensor to increase oxygen availability to the enzyme. The oxygen conduit can be formed as a part of the coating (insulating) material or can be a separate conduit associated with the assembly of wires that forms the sensor.
[0309] Fig. 3B is a cross-sectional view through the sensor of Fig. 3 A on line B-B, showing an exposed electroactive surface of at least a working electrode 38 surrounded by a sensing membrane. In general, the sensing membranes of the preferred embodiments include a plurality of domains or layers, for example, an interference domain 44, an enzyme domain 46, and a resistance domain 48, and can include additional domains, such as an electrode domain, a cell impermeable domain, and/or an oxygen domain (not shown), such as described in more detail in the above-cited co-pending U.S. Patent Applications. However, it is understood that a sensing membrane modified for other sensors, for example, by including fewer or additional domains is within the scope of the preferred embodiments. In some embodiments, one or more domains of the sensing membranes are formed from materials such as silicone, polytetrafluoroethylene, polyethylene-co-tetrafluoroethylene, polyolefin, polyester, polycarbonate, biostable polytetrafluoroethylene, homopolymers, copolymers, terpolymers of polyurethanes, polypropylene (PP), polyvinylchloride (PVC), polyvinylidene fluoride (PVDF), polybutylene terephthalate (PBT), polymethylmethacrylate (PMMA), polyether ether ketone (PEEK), polyurethanes, cellulosic polymers, poly(ethylene oxide), poly(propylene oxide) and copolymers and blends thereof, polysulfones and block copolymers thereof including, for example, di-block, tri-block, alternating, random and graft copolymers. Co-pending U.S. Patent Application 10/838,912, which is incorporated herein by reference in its entirety, describes biointerface and sensing membrane configurations and materials that can be applied to the preferred embodiments.
[0310] The sensing membrane can be deposited on the electroactive surfaces of the electrode material using known thin or thick film techniques (for example, spraying, electro-depositing, dipping, or the like). The sensing membrane that surrounds the working electrode does not have to be the same structure as the sensing membrane that surrounds a reference electrode, etc. For example, the enzyme domain deposited over the working electrode does not necessarily need to be deposited over the reference and/or counter electrodes.
[0311] In the illustrated embodiment, the sensor is an enzyme-based electrochemical sensor, wherein the working electrode 38 measures the hydrogen peroxide produced by the enzyme catalyzed reaction of glucose being detected and creates a measurable electronic current (for example, detection of glucose utilizing glucose oxidase produces hydrogen peroxide as a by-product, H2O2 reacts with the surface of the working electrode producing two protons (2H+), two electrons (2e") and one molecule of oxygen (O2) which produces the electronic current being detected), such as described in more detail above and as is appreciated by one skilled in the art. Preferably, one or more potentiostat is employed to monitor the electrochemical reaction at the electroactive surface of the working electrode(s). The potentiostat applies a constant potential to the working electrode and its associated reference electrode to determine the current produced at the working electrode. The current that is produced at the working electrode (and flows through the circuitry to the counter electrode) is substantially proportional to the amount of H2O2 that diffuses to the working electrode. The output signal is typically a raw data stream that is used to provide a useful value of the measured analyte concentration in a host to the host or doctor, for example.
[0312] Some alternative analyte sensors that can benefit from the systems and methods of the preferred embodiments include U.S. Patent No. 5,711,861 to Ward et al., U.S. Patent No. 6,642,015 to Vachon et al., U.S. Patent No. 6,654,625 to Say et al., U.S. Patent 6,565,509 to Say et al., U.S. Patent No. 6,514,718 to Heller, U.S. Patent No. 6,465,066 to Essenpreis et al., U.S. Patent No. 6,214,185 to Offenbacher et al., U.S. Patent No. 5,310,469 to Cunningham et al., and U.S. Patent No. 5,683,562 to Shaffer et al., U.S. Patent 6,579,690 to Bonnecaze et al., U.S. Patent 6,484,046 to Say et al., U.S. Patent 6,512,939 to Colvin et al., U.S. Patent 6,424,847 to Mastrototaro et al., U.S. Patent 6,424,847 to Mastrototaro et al, for example. All of the above patents are not inclusive of all applicable analyte sensors; in general, it should be understood that the disclosed embodiments are applicable to a variety of analyte sensor configurations.
Exemplary Sensor Configurations
[0313] Fig. 4A is a side schematic view of a transcutaneous analyte sensor 50 in one embodiment. The sensor 50 includes a mounting unit 52 adapted for mounting on the skin of a host, a small diameter sensor 34 (as defined herein) adapted for transdermal insertion through the skin of a host, and an electrical connection configured to provide secure electrical contact between the sensor and the electronics preferably housed within the mounting unit 52. In general, the mounting unit 52 is designed to maintain the integrity of the sensor in the host so as to reduce or eliminate translation of motion between the mounting unit, the host, and/or the sensor. See U.S. Publication No. US-2006-0020187-A1. Preferably, a biointerface membrane is formed onto the sensing mechanism 34 as described in more detail below.
[0314] Fig. 4B is a side schematic view of a transcutaneous analyte sensor 54 in an alternative embodiment. The sensor 54 includes a mounting unit 52 wherein the sensing mechanism 34 comprises a small structure as defined herein and is tethered to the mounting unit 52 via a cable 56 (alternatively, a wireless connection can be utilized). The mounting unit is adapted for mounting on the skin of a host and is operably connected via a tether, or the like, to a small structured sensor 34 adapted for transdermal insertion through the skin of a host and measurement of the analyte therein; see, for example, U.S. Patent No. 6,558,330 to Causey III, et al., which is incorporated herein by reference in its entirety. In the preferred embodiments, a biointerface membrane is formed onto the sensing mechanism 34 as described in more detail below.
[0315] The short-term sensor of the preferred embodiments can be inserted into a variety of locations on the host's body, such as the abdomen, the thigh, the upper arm, and the neck or behind the ear. Although the preferred embodiments illustrate insertion through the abdominal region, the systems and methods described herein are limited neither to the abdominal nor to the subcutaneous insertions. One skilled in the art appreciates that these systems and methods can be implemented and/or modified for other insertion sites and can be dependent upon the type, configuration, and dimensions of the analyte sensor.
[0316] In one embodiment, an analyte-sensing device adapted for transcutaneous short-term insertion into the host is provided. For example, the device includes a sensor, for measuring the analyte in the host, a porous, biocompatible matrix covering at least a portion of the sensor, and an applicator, for inserting the sensor through the host's skin. In some embodiments, the sensor has architecture with at least one dimension less than about 1 mm. Examples of such a structure are shown in Figures 4 A and 4B, as described elsewhere herein. However, one skilled in the art will recognize that alternative configurations are possible and can be desirable, depending upon factors such as intended location of insertion, for example. The sensor is inserted through the host's skin and into the underlying tissue, such as soft tissue or fatty tissue.
[0317] After insertion, fluid moves into the spacer, e.g., a biocompatible matrix or membrane, creating a fluid-filled pocket therein. This process can occur immediately or can take place over a period of time, such as several minutes or hours post insertion. A signal from the sensor is then detected, such as by the sensor electronics unit located in the mounting unit on the surface of the host's skin. In general, the sensor can be used continuously for a short period of days, such as 1 to 14 days. After use, the sensor is simply removed from the host's skin. In preferred embodiments, the host can repeat the insertion and detection steps as many times as desired. In some implementations, the sensor can be removed after about 3 days, and then another sensor inserted, and so on. Similarly in other implementations, the sensor is removed after about 3, 5, 7, 10 or 14 days, followed by insertion of a new sensor, and so on.
[0318] Some examples of transcutaneous analyte sensors are described in co- pending U.S. Patent Application 11/360,250, filed February 22, 2006 and entitled "ANALYTE SENSOR." In general, transcutaneous analyte sensors comprise the sensor and a mounting unit with electronics associated therewith.
[0319] In general, the mounting unit includes a base adapted for mounting on the skin of a host, a sensor adapted for transdermal insertion through the skin of a host, and one or more contacts configured to provide secure electrical contact between the sensor and the sensor electronics. The mounting unit is designed to maintain the integrity of the sensor in the host so as to reduce or eliminate translation of motion between the mounting unit, the host, and/or the sensor.
[0320] The base can be formed from a variety of hard or soft materials, and preferably comprises a low profile for minimizing protrusion of the device from the host during use. In some embodiments, the base is formed at least partially from a flexible material, which is believed to provide numerous advantages over conventional transcutaneous sensors, which, unfortunately, can suffer from motion-related artifacts associated with the host's movement when the host is using the device. For example, when a transcutaneous analyte sensor is inserted into the host, various movements of the sensor (for example, relative movement between the in vivo portion and the ex vivo portion, movement of the skin, and/or movement within the host (dermis or subcutaneous)) create stresses on the device and can produce noise in the sensor signal. It is believed that even small movements of the skin can translate to discomfort and/or motion-related artifact, which can be reduced or obviated by a flexible or articulated base. Thus, by providing flexibility and/or articulation of the device against the host's skin, better conformity of the sensor system to the regular use and movements of the host can be achieved. Flexibility or articulation is believed to increase adhesion (with the use of an adhesive pad) of the mounting unit onto the skin, thereby decreasing motion-related artifact that can otherwise translate from the host's movements and reduced sensor performance.
[0321] In certain embodiments, the mounting unit is provided with an adhesive pad, preferably disposed on the mounting unit's back surface and preferably including a releasable backing layer. Thus, removing the backing layer and pressing the base portion of the mounting unit onto the host's skin adheres the mounting unit to the host's skin. Additionally or alternatively, an adhesive pad can be placed over some or all of the sensor system after sensor insertion is complete to ensure adhesion, and optionally to ensure an airtight seal or watertight seal around the wound exit-site (or sensor insertion site). Appropriate adhesive pads can be chosen and designed to stretch, elongate, conform to, and/or aerate the region (e.g., host's skin).
[0322] In preferred embodiments, the adhesive pad is formed from spun-laced, open- or closed-cell foam, and/or non-woven fibers, and includes an adhesive disposed thereon, however a variety of adhesive pads appropriate for adhesion to the host's skin can be used, as is appreciated by one skilled in the art of medical adhesive pads. In some embodiments, a double-sided adhesive pad is used to adhere the mounting unit to the host's skin. In other embodiments, the adhesive pad includes a foam layer, for example, a layer wherein the foam is disposed between the adhesive pad's side edges and acts as a shock absorber.
[0323] In some embodiments, the surface area of the adhesive pad is greater than the surface area of the mounting unit's back surface. Alternatively, the adhesive pad can be sized with substantially the same surface area as the back surface of the base portion. Preferably, the adhesive pad has a surface area on the side to be mounted on the host's skin that is greater than about 1, 1.25, 1.5, 1.75, 2, 2.25, or 2.5, times the surface area of the back surface of the mounting unit base. Such a greater surface area can increase adhesion between the mounting unit and the host's skin, minimize movement between the mounting unit and the host's skin, and/or protect the wound exit-site (sensor insertion site) from environmental and/or biological contamination. In some alternative embodiments, however, the adhesive pad can be smaller in surface area than the back surface assuming a sufficient adhesion can be accomplished.
[0324] In some embodiments, the adhesive pad is substantially the same shape as the back surface of the base, although other shapes can also be advantageously employed, for example, butterfly-shaped, round, square, or rectangular. The adhesive pad backing can be designed for two-step release, for example, a primary release wherein only a portion of the adhesive pad is initially exposed to allow adjustable positioning of the device, and a secondary release wherein the remaining adhesive pad is later exposed to firmly and securely adhere the device to the host's skin once appropriately positioned. The adhesive pad is preferably waterproof. Preferably, a stretch-release adhesive pad is provided on the back surface of the base portion to enable easy release from the host's skin at the end of the useable life of the sensor,.
[0325] In some circumstances, it has been found that a conventional bond between the adhesive pad and the mounting unit can not be sufficient, for example, due to humidity that can cause release of the adhesive pad from the mounting unit. Accordingly, in some embodiments, the adhesive pad can be bonded using a bonding agent activated by or accelerated by an ultraviolet, acoustic, radio frequency, or humidity cure. In some embodiments, a eutectic bond of first and second composite materials can form a strong adhesion. In some embodiments, the surface of the mounting unit can be pretreated utilizing ozone, plasma, chemicals, or the like, in order to enhance the bondability of the surface. [0326] A bioactive agent is preferably applied locally at the insertion site prior to or during sensor insertion. Suitable bioactive agents include those which are known to discourage or prevent bacterial growth and infection, for example, anti-inflammatory agents, antimicrobials, antibiotics, or the like. It is believed that the diffusion or presence of a bioactive agent can aid in prevention or elimination of bacteria adjacent to the exit-site. Additionally or alternatively, the bioactive agent can be integral with or coated on the adhesive pad, or no bioactive agent at all is employed.
[0327] In some embodiments, an applicator is provided for inserting the sensor through the host's skin at the appropriate insertion angle with the aid of a needle, and for subsequent removal of the needle using a continuous push-pull action. Preferably, the applicator comprises an applicator body that guides the applicator and includes an applicator body base configured to mate with the mounting unit during insertion of the sensor into the host. The mate between the applicator body base and the mounting unit can use any known mating configuration, for example, a snap-fit, a press-fit, an interference-fit, or the like, to discourage separation during use. One or more release latches enable release of the applicator body base, for example, when the applicator body base is snap fit into the mounting unit.
[0328] The sensor electronics includes hardware, firmware, and/or software that enable measurement of levels of the analyte via the sensor. For example, the sensor electronics can comprise a potentiostat, a power source for providing power to the sensor, other components useful for signal processing, and preferably an RF module for transmitting data from the sensor electronics to a receiver. Electronics can be affixed to a printed circuit board (PCB), or the like, and can take a variety of forms. For example, the electronics can take the form of an integrated circuit (IC), such as an Application- Specific Integrated Circuit (ASIC), a microcontroller, or a processor. Preferably, sensor electronics comprise systems and methods for processing sensor analyte data. Examples of systems and methods for processing sensor analyte data are described in more detail below and in U.S. Publication No. US-2005-0027463-A1.
[0329] In this embodiment, after insertion of the sensor using the applicator, and subsequent release of the applicator from the mounting unit, the sensor electronics are configured to releasably mate with the mounting unit. In one embodiment, the electronics are configured with programming, for example initialization, calibration reset, failure testing, or the like, each time it is initially inserted into the mounting unit and/or each time it initially communicates with the sensor. Sensor Electronics
[0330] The following description of electronics associated with the sensor is applicable to a variety of continuous analyte sensors, such as non-invasive, minimally invasive, and/or invasive (e.g., transcutaneous and wholly implantable) sensors. For example, the sensor electronics and data processing as well as the receiver electronics and data processing described below can be incorporated into the wholly implantable glucose sensor disclosed in U.S. Publication No. US-2005-0245799-A1 and U.S. Publication No. US-2006- 0015020-A1.
[0331] In one embodiment, a potentiostat, which is operably connected to an electrode system (such as described above) provides a voltage to the electrodes, which biases the sensor to enable measurement of a current signal indicative of the analyte concentration in the host (also referred to as the analog portion). In some embodiments, the potentiostat includes a resistor that translates the current into voltage. In some alternative embodiments, a current to frequency converter is provided that is configured to continuously integrate the measured current, for example, using a charge counting device. An A/D converter digitizes the analog signal into a digital signal, also referred to as "counts" for processing. Accordingly, the resulting raw data stream in counts, also referred to as raw sensor data, is directly related to the current measured by the potentiostat.
[0332] A processor module includes the central control unit that controls the processing of the sensor electronics. In some embodiments, the processor module includes a microprocessor, however a computer system other than a microprocessor can be used to process data as described herein, for example an ASIC can be used for some or all of the sensor's central processing. The processor typically provides semi-permanent storage of data, for example, storing data such as sensor identifier (ID) and programming to process data streams (for example, programming for data smoothing and/or replacement of signal artifacts such as is described in U.S. Publication No. US-2005-0043598-A1. The processor additionally can be used for the system's cache memory, for example for temporarily storing recent sensor data. In some embodiments, the processor module comprises memory storage components such as ROM, RAM, dynamic-RAM, static-RAM, non-static RAM, EEPROM, rewritable ROMs, flash memory, or the like.
[0333] In some embodiments, the processor module comprises a digital filter, for example, an HR or FIR filter, configured to smooth the raw data stream from the A/D converter. Generally, digital filters are programmed to filter data sampled at a predetermined time interval (also referred to as a sample rate.) In some embodiments, wherein the potentiostat is configured to measure the analyte at discrete time intervals, these time intervals determine the sample rate of the digital filter. In some alternative embodiments, wherein the potentiostat is configured to continuously measure the analyte, for example, using a current-to-frequency converter as described above, the processor module can be programmed to request a digital value from the A/D converter at a predetermined time interval, also referred to as the acquisition time. In these alternative embodiments, the values obtained by the processor are advantageously averaged over the acquisition time due the continuity of the current measurement. Accordingly, the acquisition time determines the sample rate of the digital filter. In preferred embodiments, the processor module is configured with a programmable acquisition time, namely, the predetermined time interval for requesting the digital value from the A/D converter is programmable by a user within the digital circuitry of the processor module. An acquisition time of from about 2 seconds to about 512 seconds is preferred; however any acquisition time can be programmed into the processor module. A programmable acquisition time is advantageous in optimizing noise filtration, time lag, and processing/battery power.
[0334] Preferably, the processor module is configured to build the data packet for transmission to an outside source, for example, an RF transmission to a receiver as described in more detail below. Generally, the data packet comprises a plurality of bits that can include a sensor ID code, raw data, filtered data, and/or error detection or correction. The processor module can be configured to transmit any combination of raw and/or filtered data.
[0335] In some embodiments, the processor module further comprises a transmitter portion that determines the transmission interval of the sensor data to a receiver, or the like. In some embodiments, the transmitter portion, which determines the interval of transmission, is configured to be programmable. In one such embodiment, a coefficient can be chosen (e.g., a number of from about 1 to about 100, or more), wherein the coefficient is multiplied by the acquisition time (or sampling rate), such as described above, to define the transmission interval of the data packet. Thus, in some embodiments, the transmission interval is programmable between about 2 seconds and about 850 minutes, more preferably between about 30 second and 5 minutes; however, any transmission interval can be programmable or programmed into the processor module. However, a variety of alternative systems and methods for providing a programmable transmission ' interval can also be employed. By providing a programmable transmission interval, data transmission can be customized to meet a variety of design criteria (e.g., reduced battery consumption, timeliness of reporting sensor values, etc.)
[0336] Conventional glucose sensors measure current in the nanoAmp range. In contrast to conventional glucose sensors, the preferred embodiments are configured to measure the current flow in the picoAmp range, and in some embodiments, femtoAmps. Namely, for every unit (mg/dL) of glucose measured, at least one picoAmp of current is measured. Preferably, the analog portion of the A/D converter is configured to continuously measure the current flowing at the working electrode and to convert the current measurement to digital values representative of the current. In one embodiment, the current flow is measured by a charge counting device (e.g., a capacitor). Thus, a signal is provided, whereby a high sensitivity maximizes the signal received by a minimal amount of measured hydrogen peroxide (e.g., minimal glucose requirements without sacrificing accuracy even in low glucose ranges), reducing the sensitivity to oxygen limitations in vivo (e.g., in oxygen- dependent glucose sensors).
[0337] A battery is operably connected to the sensor electronics and provides the power for the sensor. In one embodiment, the battery'is a lithium manganese dioxide battery; however, any appropriately sized and powered battery can be used (for example, AAA, nickel-cadmium, zinc-carbon, alkaline, lithium, nickel-metal hydride, lithium-ion, zinc-air, zinc-mercury oxide, silver-zinc, and/or hermetically-sealed). In some embodiments, the battery is rechargeable, and/or a plurality of batteries can be used to power the system. The sensor can be transcutaneously powered via an inductive coupling, for example. In some embodiments, a quartz crystal is operably connected to the processor and maintains system time for the computer system as a whole, for example for the programmable acquisition time within the processor module.
[0338] Optional temperature probe can be provided, wherein the temperature probe is located on the electronics assembly or the glucose sensor itself. The temperature probe can be used to measure ambient temperature in the vicinity of the glucose sensor. This temperature measurement can be used to add temperature compensation to the calculated glucose value.
[0339] An RF module is operably connected to the processor and transmits the sensor data from the sensor to a receiver within a wireless transmission via antenna. In some embodiments, a second quartz crystal provides the time base for the RF carrier frequency used for data transmissions from the RF transceiver. In some alternative embodiments, however, other mechanisms, such as optical, infrared radiation (IR), ultrasonic, or the like, can be used to transmit and/or receive data.
[0340] In the RF telemetry module of the preferred embodiments, the hardware and software are designed for low power requirements to increase the longevity of the device (for example, to enable a life of from about 3 to about 24 months, or more) with maximum RF transmittance from the in vivo environment to the ex vivo environment for wholly implantable sensors (for example, a distance of from about one to ten meters or more). Preferably, a high frequency carrier signal of from about 402 MHz to about 433 MHz is employed in order to maintain lower power requirements. Additionally, in wholly implantable devices, the carrier frequency is adapted for physiological attenuation levels, which is accomplished by tuning the RF module in a simulated in vivo environment to ensure RF functionality after implantation; accordingly, the preferred glucose sensor can sustain sensor function for 3 months, 6 months, 12 months, or 24 months or more.
[0341] In some embodiments, output signal (from the sensor electronics) is sent to a receiver (e.g., a computer or other communication station). The output signal is typically a raw data stream that is used to provide a useful value of the measured analyte concentration to a patient or a doctor, for example. In some embodiments, the raw data stream can be continuously or periodically algorithmically smoothed or otherwise modified to dimmish outlying points that do not accurately represent the analyte concentration, for example due to signal noise or other signal artifacts, such as described in U.S. Patent No. 6,931,327.
[0342] When a sensor is first implanted into host tissue, the sensor and receiver are initialized. This can be referred to as start-up mode, and involves optionally resetting the sensor data and calibrating the sensor 32. In selected embodiments, mating the electronics unit 16 to the mounting unit triggers a start-up mode. In other embodiments, the start-up mode is triggered by the receiver. Receiver
[0343] In some embodiments, the sensor electronics are wirelessly connected to a receiver via one- or two-way RF transmissions or the like. However, a wired connection is also contemplated. The receiver provides much of the processing and display of the sensor data, and can be selectively worn and/or removed at the host's convenience. Thus, the sensor system can be discreetly worn, and the receiver, which provides much of the processing and display of the sensor data, can be selectively worn and/or removed at the host's convenience. Particularly, the receiver includes programming for retrospectively and/or prospectively initiating a calibration, converting sensor data, updating the calibration, evaluating received reference and sensor data, and evaluating the calibration for the analyte sensor, such as described in more detail with reference to co-pending U.S. Publication No. US-2005- 0027463-A1.
[0344] Fig. 4C is a side schematic view of a wholly implantable analyte sensor 58 in one embodiment. The sensor includes a sensor body 60 suitable for subcutaneous implantation and includes a small structured sensor 34 as defined herein. Published U.S. Patent Application No. 2004/0199059 to Brauker et al. describe systems and methods suitable for the sensor body 60, and is incorporated herein by reference in its entirety. In the preferred embodiments, a biointerface membrane 68 is formed onto the sensing mechanism 34 as described in more detail elsewhere herein. The sensor body 60 includes sensor electronics and preferably communicates with a receiver as described in more detail, above.
[0345] Fig. 4D is a side schematic view of a wholly implantable analyte sensor 62 in an alternative embodiment. The sensor 62 includes a sensor body 60 and a small structured sensor 34 as defined herein. The sensor body 60 includes sensor electronics and preferably communicates with a receiver as described in more detail, above.
[0346] In preferred embodiments, a biointerface membrane 68 is formed onto the sensing mechanism 34 as described in more detail elsewhere herein. Preferably, a matrix or framework 64 surrounds the sensing mechanism 34 for protecting the sensor from some foreign body processes, for example, by causing tissue to compress against or around the framework 64 rather than the sensing mechanism 34.
[0347] In general, the optional protective framework 64 is formed from a two- dimensional or three-dimensional flexible, semi-rigid, or rigid matrix {e.g., mesh), and which includes spaces or pores through which the analyte can pass. In some embodiments, the framework is incorporated as a part of the biointerface membrane, however a separate framework can be provided. While not wishing to be bound by theory, it is believed that the framework 64 protects the small structured sensing mechanism from mechanical forces created in vivo.
[0348] Fig. 4E is a side schematic view of a wholly implantable analyte sensor 66 in another alternative embodiment. The sensor 66 includes a sensor body 60 and a small structured sensor 34, as defined herein, with a biointerface membrane 68 such as described in more detail elsewhere herein. Preferably, a framework 64 protects the sensing mechanism 34 such as described in more detail above. The sensor body 60 includes sensor electronics and preferably communicates with a receiver as described in more detail, above.
[0349] In certain embodiments, the sensing device, which is adapted to be wholly implanted into the host, such as in the soft tissue beneath the skin, is implanted subcutaneously, such as in the abdomen of the host, for example. One skilled in the art appreciates a variety of suitable implantation sites available due to the sensor's small size. In some embodiments, the sensor architecture is less than about 0.5 mm in at least one dimension, for example a wire-based sensor with a diameter of less than about 0.5 mm. In another exemplary embodiment, for example, the sensor can be 0.5 mm thick, 3 mm in length and 2 cm in width, such as possibly a narrow substrate, needle, wire, rod, sheet or pocket. In another exemplary embodiment, a plurality of about 1 mm wide wires about 5 mm in length could be connected at their first ends, producing a forked sensor structure. In still another embodiment, a 1 mm wide sensor could be coiled, to produce a planar, spiraled sensor structure. Although a few examples are cited above, numerous other useful embodiments are contemplated by the present invention, as is appreciated by one skilled in the art.
[0350] Post implantation, a period of time is allowed for tissue ingrowth within the biointerface. The length of time required for tissue ingrowth varies from host to host, such as about a week to about 3 weeks, although other time periods are also possible. Once a mature bed of vascularized tissue has grown into the biointerface, a signal can be detected from the sensor, as described elsewhere herein and in U.S. Publication No. 2005-0245799- Al. Long-term sensors can remain implanted and produce glucose signal information from months to years, as described in the above-cited patent application.
[0351] In certain embodiments, the device is configured such that the sensing unit is separated from the electronics unit by a tether or cable, or a similar structure, similar to that illustrated in Fig. 4B. One skilled in the art will recognize that a variety of known and useful means can be used to tether the sensor to the electronics. While not wishing to be bound by theory, it is believed that the FBR to the electronics unit alone can be greater than the FBR to the sensing unit alone, due to the electronics unit's greater mass, for example. Accordingly, separation of the sensing and electronics units effectively reduces the FBR to the sensing unit and results in improved device function. As described elsewhere herein, the architecture and/or composition of the sensing unit (e.g., inclusion of a biointerface with certain bioactive agents) can be implemented to further reduce the foreign body response to the tethered sensing unit. [0352] In another embodiment, an analyte sensor is designed with separate electronics and sensing units, wherein the sensing unit is inductively coupled to the electronics unit. In this embodiment, the electronics unit provides power to the sensing unit and/or enables communication of data therebetween. Figs. 3F and 3 G illustrate exemplary systems that employ inductive coupling between an electronics unit 52 and a sensing unit 58.
[0353] Fig. 4F is a side view of one embodiment of an implanted sensor inductively coupled to an electronics unit within a functionally useful distance on the host's skin. Fig. 4F illustrates a sensing unit 58, including a sensing mechanism 34, biointerface 68 and small electronics chip 216 implanted below the host's skin 212, within the host's tissue 210. In this example, the majority of the electronics associated with the sensor are housed in an electronics unit 52 (also referred to as a mounting unit) located within suitably close proximity on the host's skin. The electronics unit 52 is inductively coupled to the small electronics chip 216 on the sensing unit 58 and thereby transmits power to the sensor and/or collects data, for example. The small electronics chip 216 coupled to the sensing unit 58 provides the necessary electronics to provide a bias potential to the sensor, measure the signal output, and/or other necessary requirements to allow the sensing mechanism 58 to function (e.g., chip 216 can include an ASIC (application specific integrated circuit), antenna, and other necessary components appreciated by one skilled in the art).
[0354] In yet another embodiment, the implanted sensor additionally includes a capacitor to provide necessary power for device function. A portable scanner (e.g., wand-like device) is used to collect data stored on the circuit and/or to recharge the device.
[0355] In general, inductive coupling, as described herein, enables power to be transmitted to the sensor for continuous power, recharging, and the like. Additionally, inductive coupling utilizes appropriately spaced and oriented antennas (e.g., coils) on the sensing unit and the electronics unit so as to efficiently transmit/receive power (e.g., current) and/or data communication therebetween. One or more coils in each of the sensing and electronics unit can provide the necessary power induction and/or data transmission.
[0356] In this embodiment, the sensing mechanism can be, for example, a wire- based sensor as described in more detail with reference to Figs. 4 A and 4B and as described in published U.S. Patent Application US2006-0020187, or a planar substrate-based sensor such as described in U.S. Patent No. 6,175,752 to Say et al. and U.S. Patent No. 5,779,665 to Mastrototaro et al., all of which are incorporated herein by reference in their entirety. The biointerface 68 can be any suitable biointerface as described in more detail elsewhere herein, for example, a layer of porous biointerface membrane material, a mesh cage and the like. In one exemplary embodiment, the biointerface 68 is a single- or multi-layer sheet (e.g., pocket) of porous membrane material, such as ePTFE, in which the sensing mechanism 34 is incorporated.
[0357] Fig. 4G is a side view of on embodiment of an implanted sensor inductively coupled to an electronics unit implanted in the host's tissue at a functionally useful distance. Fig. 4G illustrates a sensor unit 58 and an electronics unit 52 similar to that described with reference to Fig. 4F, above, however both are implanted beneath the host's skin in a suitably close proximity.
[0358] In general, it is believed that when the electronics unit 52, which carries the majority of the mass of the implantable device, is separate from the sensing unit 58, a lesser foreign body response will occur surrounding the sensing unit (e.g., as compared to a device of greater mass, for example, a device including certain electronics and/or power supply). Thus, the configuration of the sensing unit, including a biointerface, can be optimized to minimize and/or modify the host's tissue response, for example with minimal mass as described in more detail elsewhere. Biointerface
[0359] In some embodiments, the sensor includes a porous material disposed over some portion thereof, which modifies the host's tissue response to the sensor. In some embodiments, the porous material surrounding the sensor advantageously enhances and extends sensor performance and lifetime in the short-term by slowing or reducing cellular migration to the sensor and associated degradation that would otherwise be caused by cellular invasion if the sensor were directly exposed to the in vivo environment. Alternatively, the porous material can provide stabilization of the sensor via tissue ingrowth into the porous material in the long-term. Suitable porous materials include silicone, polytetrafluoroethylene, expanded polytetrafluoroethylene, polyethylene-co-tetrafluoroethylene, polyolefm, polyester, polycarbonate, biostable polytetrafluoroethylene, homopolymers, copolymers, terpolymers of polyurethanes, polypropylene (PP), polyvinylchloride (PVC), polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polybutylene terephthalate (PBT), polymethylmethacrylate (PMMA), polyether ether ketone (PEEK), polyamides, polyurethanes, cellulosic polymers, poly(ethylene oxide), poly(propylene oxide) and copolymers and blends thereof, polysulfones and block copolymers thereof including, for example, di-block, tri-block, alternating, random and graft copolymers, as well as metals, ceramics, cellulose, hydrogel polymers, poly (2- hydroxyethyl methacrylate, pHEMA), hydroxyethyl methacrylate, (HEMA), polyacrylonitrile- polyvinyl chloride (PAN-PVC), high density polyethylene, acrylic copolymers, nylon, polyvinyl difluoride, polyanhydrides, poly(l-lysine), poly (L-lactic acid), hydroxyethylmethacrylate, hydroxyapeptite, alumina, zirconia, carbon fiber, aluminum, calcium phosphate, titanium, titanium alloy, nintinol, stainless steel, and CoCr alloy, or the like, such as are described in U.S. Publication No. US-2005-0031689-A1 and U.S. Publication No. US-2005-0112169-A1.
[0360] In some embodiments, the porous material surrounding the sensor provides unique advantages in the short-term (e.g., one to 14 days) that can be used to enhance and extend sensor performance and lifetime. However, such materials can also provide advantages in the long-term too (e.g., greater than 14 days). Particularly, the in vivo portion of the sensor (the portion of the sensor that is implanted into the host's tissue) is encased (partially or fully) in a porous material. The porous material can be wrapped around the sensor (for example, by wrapping the porous material around the sensor or by inserting the sensor into a section of porous material sized to receive the sensor). Alternately, the porous material can be deposited on the sensor (for example, by electrospinning of a polymer directly thereon). In yet other alternative embodiments, the sensor is inserted into a selected section of porous biomaterial. Other methods for surrounding the in vivo portion of the sensor with a porous material can also be used as is appreciated by one skilled in the art.
[0361] The porous material surrounding the sensor advantageously slows or reduces cellular migration to the sensor and associated degradation that would otherwise be caused by cellular invasion if the sensor were directly exposed to the in vivo environment. Namely, the porous material provides a barrier that makes the migration of cells towards the sensor more tortuous and therefore slower (providing short-term advantages). It is believed that this reduces or slows the sensitivity loss normally observed in a short-term sensor over time.
[0362] In an embodiment wherein the porous material is a high oxygen solubility material, such as porous silicone, the high oxygen solubility porous material surrounds some of or the entire in vivo portion of the sensor. In some embodiments, a lower ratio of oxygen- to-glucose can be sufficient to provide excess oxygen by using a high oxygen soluble domain (for example, a silicone- or fluorocarbon-based material) to enhance the supply/transport of oxygen to the enzyme membrane and/or electroactive surfaces. It is believed that some signal noise normally seen by a conventional sensor can be attributed to an oxygen deficit. Silicone has high oxygen permeability, thus promoting oxygen transport to the enzyme layer. By enhancing the oxygen supply through the use of a silicone composition, for example, glucose concentration can be less of a limiting factor. In other words, if more oxygen is supplied to the enzyme and/or electroactive surfaces, then more glucose can also be supplied to the enzyme without creating an oxygen rate-limiting excess. While not being bound by any particular theory, it is believed that silicone materials provide enhanced bio-stability when compared to other polymeric materials such as polyurethane. .
[0363] In certain aspects, modifying a small structured sensor with a biointerface structure, material, matrix, and/or membrane that creates a space appropriate for filling with fluid in vivo can enhance sensor performance. In some embodiments, the small structured sensor includes a porous biointerface material, which allows fluid from the surrounding tissues to form a fluid-filled pocket around at least a portion of the sensor. It is believed that the fluid-filled pocket provides a sufficient source of analyte-containing fluid for accurate sensor measurement in the short-term. Additionally or alternatively, inclusion of bioactive agents can modify the host's tissue response, for example to reduce or eliminate tissue ingrowth or other cellular responses into the biointerface.
[0364] In some aspects, modifying a small structured sensor with a structure, material, and/or membrane/matrix that allows tissue ingrowth without barrier cell formation can enhance sensor performance. For example, a vascularized bed of tissue for long-term analyte sensor measurement. In some embodiments, a porous biointerface membrane, including a plurality of interconnected cavities and a solid portion, covering at least the sensing portion of a small structured sensor allows vascularized tissue ingrowth therein. Vascularized tissue ingrowth provides a sufficient source of analyte-containing tissue in the long-term. Additionally or alternatively, inclusion of bioactive agents can modify the host's tissue response, for example to reduce or eliminate barrier cell layer formation within the membrane.
[0365] When used herein, the terms "membrane" and "matrix" are meant to be interchangeable. In these embodiments first domain is provided that includes an architecture, including cavity size, configuration, and/or overall thickness, that modifies the host's tissue response, for example, by creating a fluid pocket, encouraging vascularized tissue ingrowth, disrupting downward tissue contracture, resisting fibrous tissue growth adjacent to the device, and/or discouraging barrier cell formation. The biointerface preferably covers at least the sensing mechanism of the sensor and can be of any shape or size, including uniform, asymmetrically, or axi-symmetrically covering or surrounding a sensing mechanism or sensor.
[0366] A second domain is optionally provided that is impermeable to cells and/or cell processes. A bioactive agent is optionally provided that is incorporated into the at least one of the first domain, the second domain, the sensing membrane, or other part of the implantable device, wherein the bioactive agent is configured to modify a host tissue response.
[0367] Fig. 5 A is a cross-sectional schematic view of a biointerface membrane 70 in vivo in one exemplary embodiment, wherein the membrane comprises a first domain 72 and an optional second domain 74. In the short-term, the architecture of the biointerface membrane provides a space between the sensor and the host's tissue that allows a fluid filled pocket to form for transport of fluid therein. In the long-term, the architecture of the membrane provides a robust, implantable membrane that facilitates the transport of analytes through vascularized tissue ingrowth without the formation of a barrier cell layer.
[0368] The first domain 72 comprises a solid portion 76 and a plurality of interconnected three-dimensional cavities 78 formed therein. In this embodiment, the cavities 78 have sufficient size and structure to allow invasive cells, such as fibroblasts 75, a fibrous matrix 77, and blood vessels 79 to enter into the apertures 80 that define the entryway into each cavity 78, and to pass through the interconnected cavities toward the interface 82 between the first and second domains. The cavities comprise an architecture that encourages the ingrowth of vascular tissue in vivo, as indicated by the blood vessels 79 formed throughout the cavities. Because of the vascularization within the cavities, solutes 73 (for example, oxygen, glucose and other analytes) pass through the first domain with relative ease, and/or the diffusion distance (namely, distance that the glucose diffuses) is reduced.
Architecture of the First Domain
[0369] In some embodiments, the first domain of the biointerface membrane includes an architecture that supports tissue ingrowth, disrupts contractile forces typically found in a foreign body response, encourages vascularity within the membrane, and disrupts the formation of a barrier cell layer. In some alternative embodiments, the first domain of the biointerface membrane includes an architecture that creates a fluid-filled space surrounding an implanted device, which allows the passage of the analyte, but protects sensitive portions of the device from substantial fibrous tissue ingrowth and associated forces. [0370] In general, the first domain, also referred to as the cell disruptive domain, comprises an open-celled configuration comprising interconnected cavities and solid portions. The distribution of the solid portion and cavities of the first domain preferably includes a substantially co-continuous solid domain and includes more than one cavity in three dimensions substantially throughout the entirety of the first domain. However, some short- term embodiments cannot require co-continuity of the cavities. Generally, cells can enter into the cavities; however, they cannot travel through or wholly exist within the solid portions. The cavities permit most substances to pass through, including, for example, cells and molecules. One example of a suitable material is expanded polytetrafluoraethylene (ePTFE).
[0371] Reference is now made to Fig. 5B, which is an illustration of the membrane of Fig. 5 A, showing contractile forces 81 caused by the fibrous tissue in the long- term (e.g., after about 3 weeks), for example, from the fibroblasts and fibrous matrix, of the FBR. Specifically, the architecture of the first domain, including the cavity interconnectivity and multiple-cavity depth, (namely, two or more cavities in three dimensions throughout a substantial portion of the first domain) can affect the tissue contracture that typically occurs around a foreign body.
[0372] The architecture of the first domain of the biointerface membrane, including the interconnected cavities and solid portion, is advantageous because the contractile forces caused by the downward tissue contracture that can otherwise cause cells to flatten against the device and occlude the transport of analytes, is instead translated to, disrupted by, and/or counteracted by the forces 81 that contract around the solid portions 76 (for example, throughout the interconnected cavities 78) away from the device. That is, the architecture of the solid portions 76 and cavities 78 of the first domain cause contractile forces 81 to disperse away from the interface between the first domain 72 and second domain 74. Without the organized contracture of fibrous tissue toward the tissue-device interface 82 typically found in a FBC (Fig. 5B), macrophages and foreign body giant cells do not form a substantial monolayer of cohesive cells (namely, a barrier cell layer) and therefore the transport of molecules across the second domain and/or membrane is not blocked, as indicated by free transport of analyte 73 through the first and second domains in Figs. 5 A and 5B.
[0373] Various methods are suitable for use in manufacturing the first domain in order to create an architecture with preferred dimensions and overall structure. The first domain can be manufactured by forming particles, for example, sugar granules, salt granules, and other natural or synthetic uniform or non-uniform particles, in a mold, wherein the particles have shapes and sizes substantially corresponding to the desired cavity dimensions, such as described in more detail below. In some methods, the particles are made to coalesce to provide the desired interconnectivity between the cavities. The desired material for the solid portion can be introduced into the mold using methods common in the art of polymer processing, for example, injecting, pressing, vacuuming, vapor depositing, pouring, and the like. After the solid portion material is cured or solidified, the coalesced particles are then dissolved, melted, etched, or otherwise removed, leaving interconnecting cavities within the solid portion. In such embodiments, sieving can be used to determine the dimensions of the particles, which substantially correspond to the dimensions of resulting cavities. In sieving, also referred to as screening, the particles are added to the sieve and then shaken to produce overs and unders. The overs are the particles that remain on the screen and the unders are the particles that pass through the screen. Other methods and apparatus known in the art are also suitable for use in determining particle size, for example, air classifiers, which apply opposing air flows and centrifugal forces to separate particles having sizes down to 2 μm, can be used to determine particle size when particles are smaller than 100 μm.
[0374] In one embodiment, the cavity size of the cavities 78 of the first domain is substantially defined by the particle size(s) used in creating the cavities. In some embodiments, the particles used to form the cavities can be substantially spherical, thus the dimensions below describe a diameter of the particle and/or a diameter of the cavity. In some alternative embodiments, the particles used to form the cavities can be non-spherical (for example, rectangular, square, diamond, or other geometric or non-geometric shapes), thus the dimensions below describe one dimension (for example, shortest, average, or longest) of the particle and/or cavity.
[0375] In some embodiments, a variety of different particle sizes can be used in the manufacture of the first domain. In some embodiments, the dimensions of the particles can be somewhat smaller or larger than the dimensions of the resulting cavities, due to dissolution or other precipitation that can occur during the manufacturing process.
[0376] Although one method of manufacturing porous domains is described above, a variety of methods known to one of ordinary skill in the art can be employed to create the structures of preferred embodiments, see section entitled, "Formation of the Biointerface onto the Sensor," below. For example, molds can be used in the place of the particles described above, such as coral, self-assembly beads, etched or broken silicon pieces, glass frit pieces, and the like. The dimensions of the mold can define the cavity sizes, which can be determined by measuring the cavities of a model final product, and/or by other measuring techniques known in the art, for example, by a bubble point test. In U.S. Patent. No. 3,929,971, Roy discloses a method of making a synthetic membrane having a porous microstructure by converting calcium carbonate coral materials to hydroxyapatite while at the same time retaining the unique microstructure of the coral material.
[0377] Other methods of forming a three-dimensional first domain can be used, for example holographic lithography, stereolithography, and the like, wherein cavity sizes are defined and precisely formed by the lithographic or other such process to form a lattice of unit cells, as described in U.S. Publication No. US-2005-0251083-A1, and in U.S. Patent No. 6,520,997, which discloses a photolithographic process for creating a porous membrane.
[0378] The first domain 72 can be defined using alternative methods. In an alternative preferred embodiment, fibrous non-woven or woven materials, or other such materials, such as electrospun, felted, velvet, scattered, or aggregate materials, are manufactured by forming the solid portions without particularly defining the cavities therebetween. Accordingly, in these alternative embodiments, structural elements that provide the three-dimensional conformation can include fibers, strands, globules, cones, and/or rods of amorphous or uniform geometry. These elements are hereinafter referred to as "strands." The solid portion of the first domain can include a plurality of strands, which generally define apertures formed by a frame of the interconnected strands. The apertures of the material form a framework of interconnected cavities. Formed in this manner, the first domain is defined by a cavity size of about 0.6 to about 1 mm in at least one dimension.
[0379] Referring to the dimensions and architecture of the first domain 72, the porous biointerface membranes can be loosely categorized into at least two groups: those having a micro-architecture and those having a macro-architecture.
[0380] Figs. 5A and 5B illustrate one preferred embodiment wherein the biointerface membrane includes a macro-architecture as defined herein. In general, the cavity size of a macro-architecture provides a configuration and overall thickness that encourages vascular tissue ingrowth and disrupts tissue contracture that is believed to cause barrier cell formation in the long-term in vivo (as indicated by the blood vessels 19 formed throughout the cavities), while providing a long-term, robust structure. Referring to the macro- architecture, a substantial number of the cavities 78, defined using any of the methods described above, are greater than or equal to about 20 μm in one dimension. In some other embodiments, a substantial number of the cavities are greater than or equal to about 30, 40, 50, 60, 70, 80, 90, 100, 120, 180, 160, 180, 200, 280, 280, 320, 360, 400, 500,600, 700 μm, and preferably less than about 1 mm in one dimension.
[0381] The biointerface membrane can also be formed with a micro-architecture as defined herein. Generally, at least some of the cavities of a micro-architecture have a sufficient size and structure to allow inflammatory cells to partially or completely enter into the cavities. However, in contrast to the macro-architecture, the micro-architecture does not allow extensive ingrowth of vascular and connective tissues within the cavities. Therefore, in some embodiments, the micro-architecture of preferred embodiments is defined by the actual size of the cavity, wherein the cavities are formed from a mold, for example, such as described in more detail above. However, in the context of the micro-architecture it is preferable that the majority of the mold dimensions, whether particles, beads, crystals, coral, self-assembly beads, etched or broken silicon pieces, glass frit pieces, or other mold elements that form cavities, are less than about 20 μm in at least one dimension.
[0382] In some alternative embodiments, wherein the biointerface membrane is formed from a substantially fibrous material, the micro-architecture is defined by a strand size of less than about 6 μm in all but the longest dimension, and a sufficient number of cavities are provided of a size and structure to allow inflammatory cells, for example, macrophages, to completely enter through the apertures that define the cavities, without extensive ingrowth of vascular and connective tissues.
[0383] In certain embodiments, the micro-architecture is characterized, or defined, by standard pore size tests, such as the bubble point test. The micro-architecture is selected with a nominal pore size of from about 0.6 μm to about 20 μm. In some embodiments, the nominal pore size from about 1, 2, 3, 4, 5, 6, 7, 8, or 9 μm to about 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19 μm. It has been found that a porous polymer membrane having an average nominal pore size of about 0.6 to about 20 μm functions satisfactorily in creating a vascular bed within the micro-architecture at the device-tissue interface. The term "nominal pore size" in the context of the micro-architecture in certain embodiments is derived from methods of analysis common to membrane, such as the ability of the membrane to filter particles of a particular size, or the resistance of the membrane to the flow of fluids. Because of the amorphous, random, and irregular nature of most of these commercially available membranes, the "nominal pore size" designation cannot actually indicate the size or shape of the apertures and cavities, which in reality have a high degree of variability. Accordingly, as used herein with reference to the micro-architecture, the term "nominal pore size" is a manufacturer's convention used to identify a particular membrane of a particular commercial source which has a certain bubble point; as used herein, the term "pore" does not describe the size of the cavities of the material in the preferred embodiments. The bubble point measurement is described in Pharmaceutical Technology, May 1983, pp. 76 to 82.
[0384] The optimum dimensions, architecture (for example, micro-architecture or macro-architecture), and overall structural integrity of the membrane can be adjusted according to the parameters of the device that it supports. For example, if the membrane is employed with a glucose-measuring device, the mechanical requirements of the membrane can be greater for devices having greater overall weight and surface area when compared to those that are relatively smaller.
[0385] In some embodiments, improved vascular tissue ingrowth in the long-term is observed when the first domain has a thickness that accommodates a depth of at least two cavities throughout a substantial portion of the thickness. Improved vascularization results at least in part from multi-layered interconnectivity of the cavities, such as in the preferred embodiments, as compared to a surface topography such as seen in the prior art, for example, wherein the first domain has a depth of only one cavity throughout a substantial portion thereof. The multi-layered interconnectivity of the cavities enables vascularized tissue to grow into various layers of cavities in a manner that provides mechanical anchoring of the device with the surrounding tissue. Such anchoring resists movement that can occur in vivo, which results in reduced sheer stress and scar tissue formation. The optimum depth or number of cavities can vary depending upon the parameters of the device that it supports. For example, if the membrane is employed with a glucose-measuring device, the anchoring that is required of the membrane is greater for devices having greater overall weight and surface area as compared to those that are relatively smaller.
[0386] The thickness of the first domain can be optimized for decreased time-to- vascularize in vivo, that is, vascular tissue ingrowth can occur somewhat faster with a membrane that has a thin first domain as compared to a membrane that has a relatively thicker first domain. Decreased time-to-vascularize results in faster stabilization and functionality of the biointerface in vivo. For example, in a subcutaneous implantable glucose device, consistent and increasing functionality of the device is at least in part a function of consistent and stable glucose transport across the biointerface membrane, which is at least in part a function of the vascularization thereof. Thus, quicker start-up time and/or shortened time lag (as when, for example, the diffusion path of the glucose through the membrane is reduced) can be achieved by decreasing the thickness of the first domain.
[0387] The thickness of the first domain is typically from about 20 μm to about 2000 μm, preferably from about 50, 60, 70, 80, 90, or 100 μm to about 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, or 1900 μm, and most preferably from about 150, 200, 250, 300, 350, or 400 μm to about 450, 500, 550, 600, 650, 700, or 750 μm. However, in some alternative embodiments a thinner or thicker cell disruptive domain (first domain) can be desired.
[0388] The solid portion preferably includes one or more materials such as silicone, polytetrafluoroethylene, expanded polytetrafluoroethylene, polyethylene-co- tetrafluoroethylene, polyolefin, polyester, polycarbonate, biostable polytetrafluoroethylene, homopolymers, copolymers, terpolymers of polyurethanes, polypropylene (PP), polyvinylchloride (PVC), polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polybutylene terephthalate (PBT), polymethylmethacrylate (PMMA), polyether ether ketone (PEEK), polyamides, polyurethanes, cellulosic polymers, polysulfones and block copolymers thereof including, for example, di-block, tri-block, alternating, random and graft copolymers. In some embodiments, the material selected for the first domain is an elastomeric material, for example, silicone, which is able to absorb stresses that can occur in vivo, such that sheer and other environmental forces are significantly minimized at the second domain. The solid portion can comprises a silicone composition with a hydrophile such as Polyethylene Glycol (PEG) covalently incorporated or grafted therein, such as described in U.S. Publication No. US-2005-0090607-A1 or as disclosed in copending U.S. patent application 11/404,417, filed 4/14/2006 and entitled "SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS."
[0389] One preferred material that can be used to form the solid portion of the biointerface matrix is a material that allows the passage of the analyte (e.g., glucose) there through. For example, the biointerface matrix can be formed from a silicone polymer/hydrophobic-hydrophilic polymer blend. In one embodiment, The hydrophobic- hydrophilic polymer for use in the blend can be any suitable hydrophobic-hydrophilic polymer, including but not limited to components such as polyvinylpyrrolidone (PVP), polyhydroxyethyl methacrylate, polyvinylalcohol, polyacrylic acid, polyethers such as polyethylene glycol or polypropylene oxide, and copolymers thereof, including, for example, di-block, tri-block, alternating, random, comb, star, dendritic, and graft copolymers (block copolymers are discussed in U.S. Patent Nos. 4,803,243 and 4,686,044, which are incorporated herein by reference). In one embodiment, the hydrophobic-hydrophilic polymer is a copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO). Suitable such polymers include, but are not limited to, PEO-PPO diblock copolymers, PPO-PEO-PPO triblock copolymers, PEO-PPO-PEO triblock copolymers, alternating block copolymers of PEO-PPO, random copolymers of ethylene oxide and propylene oxide, and blends thereof. In some embodiments, the copolymers can be optionally substituted with hydroxy substituents. Commercially available examples of PEO and PPO copolymers include the PLURONIC® brand of polymers available from BASF®. In one embodiment, PLURONIC® F- 127 is used. Other PLURONIC® polymers include PPO-PEO-PPO triblock copolymers (e.g., PLURONIC® R products). Other suitable commercial polymers include, but are not limited to, SYNPERONICS® products available from UNIQEMA®.
[0390] The silicone polymer for use in the silicone/hydrophobic-hydrophilic polymer blend can be any suitable silicone polymer. In some embodiments, the silicone polymer is a liquid silicone rubber that can be vulcanized using a metal- (e.g., platinum), peroxide-, heat-, ultraviolet-, or other radiation-catalyzed process. In some embodiments, the silicone polymer is a dimethyl- and methylhydrogen-siloxane copolymer. In some embodiments, the copolymer has vinyl substituents. In some embodiments, commercially available silicone polymers can be used. For example, commercially available silicone polymer precursor compositions can be used to prepare the blends, such as described below. In one embodiment, MED-4840 available from NUSIL® Technology LLC is used as a precursor to the silicone polymer used in the blend. MED-4840 consists of a 2-part silicone elastomer precursor including vinyl-functionalized dimethyl- and methylhydrogen- siloxane copolymers, amorphous silica, a platinum catalyst, a crosslinker, and an inhibitor. The two components can be mixed together and heated to initiate vulcanization, thereby forming an elastomeric solid material. Other suitable silicone polymer precursor systems include, but are not limited to, MED-2174 peroxide-cured liquid silicone rubber available from NUSIL® Technology LLC, SILASTIC® MDX4-4210 platinum-cured biomedical grade elastomer available from DOW CORNING®, and Implant Grade Liquid Silicone Polymer (durometers 10-50) available from Applied Silicone Corporation.
[0391] Silicone polymer/hydrophobic-hydrophilic polymer blends are described in more detail in U.S. Patent Application No 11/404,417, entitled "SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS5" filed on April 14, 2006.
[0392] Additionally, elastomeric materials with a memory of the original configuration can withstand greater stresses without affecting the configuration, and thus the function, of the device.
[0393] In some embodiments, the first domain can include a macro-architecture and a micro-architecture located within at least a portion of the macro-architecture, such as is described in U.S. Publication No. US-2005-0251083-A1. For example, the macro- architecture includes a porous structure with interconnected cavities such as described with reference to the solid portion of the first domain, wherein at least some portion of the cavities of the first domain are filled with the micro-architecture that includes a fibrous or other fine structured material that aids in preventing formation of a barrier cell layer, for example in pockets in the bottom of the cavities of the macro-architecture adjacent to the implantable device.
[0394] In certain embodiments, other non-resorbable implant materials can be used in forming the first domain, including but not limited to, metals, ceramics, cellulose, polyacrylonitrile-polyvinyl chloride (PAN-PVC), high density polyethylene, acrylic copolymers, nylon, polyvinyl difluoride, polyanhydrides, poly(l-lysine), hydroxyethylmethacrylate, alumina, zirconia, carbon fiber, aluminum, titanium, titanium alloy, nintinol, stainless steel, and CoCr alloy.
Architecture of the Second Domain
[0395] Figs. 5A and 5B, illustrate the optional second domain of the membrane. The second domain is impermeable to cells or cell processes, and is composed of a biostable material. In one exemplary embodiment, the second domain is comprised of polyurethane and a hydrophilic polymer, such as is described in U.S. Patent No. 6,862,465 to Shults et al. , which is incorporated herein by reference in its entirety. Alternatively, the outermost layer of the sensing membrane 32 can function as a cell impermeable domain and therefore a second domain cannot be a discrete component of the biointerface membrane.
[0396] In general, the materials preferred for the second domain prevent or hinder cell entry or contact with device elements underlying the membrane and prevent or hinder the adherence of cells, thereby further discouraging formation of a barrier cell layer. Additionally, because of the resistance of the materials to barrier cell layer formation, membranes prepared therefrom are robust long-term in vivo. [0397] The thickness of the cell impermeable biomaterial of the second domain (also referred to as a cell impermeable domain) is typically about lμm or more, preferably from about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200 μm to about 500, 600, 700, 800, 900, or 1000 μm. In some embodiments, thicker or thinner cell impermeable domains can be desired. Alternatively, the function of the cell impermeable domain is accomplished by the implantable device, or a portion of the implantable device, which can or cannot include a distinct domain or layer.
[0398] The characteristics of the cell impermeable membrane prevent or hinder cells from entering the membrane, but permit or facilitate transport of the analyte of interest or a substance indicative of the concentration or presence of the analyte. Additionally the second domain, similar to the first domain, is preferably constructed of a biodurable material (for example, a material durable for a period of several years in vivo) that is impermeable to host cells, for example, macrophages, such as described above.
[0399] In embodiments wherein the biointerface membrane is employed in an implantable glucose-measuring device, the biointerface membrane is permeable to oxygen and glucose or a substance indicative of the concentration of glucose. In embodiments wherein the membrane is employed in a drug delivery device or other device for delivering a substance to the body, the cell impermeable membrane is permeable to the drug or other substance dispensed from the device. In embodiments wherein the membrane is employed for cell transplantation, the membrane is semi-permeable, for example, impermeable to immune cells and soluble factors responsible for rejecting transplanted tissue, but permeable to the ingress of glucose and oxygen for the purpose of sustaining the transplanted tissue; additionally, the second domain is permeable to the egress of the gene product of interest (for example, insulin).
[0400] The cell disruptive (first) domain and the cell impermeable (second) domain can be secured to each other by any suitable method as is known in the art. For example, the cell impermeable domain can simply be layered or cast upon the porous cell disruptive domain so as to form a mechanical attachment. Alternatively, chemical and/or mechanical attachment methods can be suitable for use. Chemical attachment methods can include adhesives, glues, lamination, and/or wherein a thermal bond is formed through the application of heat and pressure, and the like. Suitable adhesives are those capable of forming a bond between the materials that make up both the barrier cell disruptive domain and the cell impermeable domain, and include liquid and/or film applied adhesives. An appropriate material can be designed that can be used for preparing both domains such that the composite is prepared in one step, thereby forming a unitary structure. For example, when the cell disruptive domain and the cell impermeable domain comprise silicone, the materials can be designed so that they can be covalently cured to one another. However in some embodiments wherein the second domain comprises a part of the implantable device, it can be attached to or simply lie adjacent to the first domain.
[0401] In some embodiments wherein an adhesive is employed, the adhesive can comprise a biocompatible material. However, in some embodiments adhesives not generally considered to have a high degree of biocompatibility can also be employed. Adhesives with varying degrees of biocompatibility suitable for use include acrylates, for example, cyanoacrylates, epoxies, methacrylates, polyurethanes, and other polymers, resins, RTV silicone, and crosslinking agents as are known in the art. In some embodiments, a layer of woven or non-woven material (such as ePTFE) is cured to the first domain after which the material is bonded to the second domain, which allows a good adhesive interface between the first and second domains using a biomaterial known to respond well at the tissue-device interface, for example.
Bioactive Agents
[0402] In some alternative embodiment, the biointerface membranes include a bioactive agent, which is incorporated into at least one of the first and second domains 72, 74 of the biointerface membrane, or which is incorporated into the device (e.g., sensing membrane 32) and adapted to diffuse through the first and/or second domains, in order to modify the tissue response of the host to the membrane. The architectures of the first and second domains have been shown to create a fluid pocket, support vascularized tissue ingrowth, to interfere with and resist barrier cell layer formation, and to facilitate the transport of analytes across the membrane. However, the bioactive agent can further enhance formation of a fluid pocket, alter or enhance vascularized tissue ingrowth, resistance to barrier cell layer formation, and thereby facilitate the passage of analytes 73 across the device-tissue interface 82.
[0403] In embodiments wherein the biointerface includes a bioactive agent, the bioactive agent is incorporated into at least one of the first and second domains of the biointerface membrane, or into the device and adapted to diffuse through the first and/or second domains, in order to modify the tissue response of the host to the membrane. In general, the architectures of the first and second domains support vascularized tissue growth in or around the biointerface membrane, interfere with and resist barrier cell layer formation, and/or allow the transport of analytes across the membrane. However, certain outside influences, for example, faulty surgical techniques, acute or chronic movement of the implant, or other surgery-, host-, and/or implantation site-related conditions, can create acute and/or chronic inflammation at the implant site. When this occurs, the biointerface membrane architecture alone cannot be sufficient to overcome the acute and/or chronic inflammation. Alternatively, the membrane architecture can benefit from additional mechanisms that aid in reducing this acute and/or chronic inflammation that can produce a barrier cell layer and/or a fibrotic capsule surrounding the implant, resulting in compromised solute transport through the membrane.
[0404] In general, the inflammatory response to biomaterial implants can be divided into two phases. The first phase consists of mobilization of mast cells and then infiltration of predominantly polymorphonuclear (PMN) cells. This phase is termed the acute inflammatory phase. Over the course of days to weeks, chronic cell types that comprise the second phase of inflammation replace the PMNs. Macrophage and lymphocyte cells predominate during this phase. While not wishing to be bound by any particular theory, it is believed that short-term stimulation of vascularization, or short-term inhibition of scar formation or barrier cell layer formation, provides protection from scar tissue formation, thereby providing a stable platform for sustained maintenance of the altered foreign body response, for example.
[0405] Accordingly, bioactive intervention can modify the foreign body response in the early weeks of foreign body capsule formation and alter the long-term behavior of the foreign body capsule. Additionally, it is believed that in some circumstances the biointerface membranes of the preferred embodiments can benefit from bioactive intervention to overcome sensitivity of the membrane to implant procedure, motion of the implant, or other factors, which are known to otherwise cause inflammation, scar formation, and hinder device function in vivo.
[0406] In general, bioactive agents that are believed to modify tissue response include anti-inflammatory agents, anti-infective agents, anesthetics, inflammatory agents, growth factors, angiogenic (growth) factors, adjuvants, immunosuppressive agents, antiplatelet agents, anticoagulants, ACE inhibitors, cytotoxic agents, anti-barrier cell compounds, vascularization compounds, anti-sense molecules, and the like. In some embodiments, preferred bioactive agents include SlP (Sphingosine-1 -phosphate), Monobutyrin, Cyclosporin A, Anti-thrombospondin-2, Rapamycin (and its derivatives), and Dexamethasone. However, other bioactive agents, biological materials (for example, proteins), or even non-bioactive substances can incorporated into the membranes of preferred embodiments.
[0407] Bioactive agents suitable for use in the preferred embodiments are loosely organized into two groups: anti-barrier cell agents and vascularization agents. These designations reflect functions that are believed to provide short-term solute transport through the biointerface membrane, and additionally extend the life of a healthy vascular bed and hence solute transport through the biointerface membrane long-term in vivo. However, not all bioactive agents can be clearly categorized into one or other of the above groups; rather, bioactive agents generally comprise one or more varying mechanisms for modifying tissue response and can be generally categorized into one or both of the above-cited categories.
Anti-barrier cell agents
[0408] Generally, anti-barrier cell agents include compounds exhibiting affects on macrophages and foreign body giant cells (FBGCs). It is believed that anti-barrier cell agents prevent closure of the barrier to solute transport presented by macrophages and FBGCs at the device-tissue interface during FBC maturation.
[0409] Anti-barrier cell agents generally include mechanisms that inhibit foreign body giant cells and/or occlusive cell layers. For example, Super Oxide Dismutase (SOD) Mimetic, which utilizes a manganese catalytic center within a porphyrin like molecule to mimic native SOD and effectively remove superoxide for long periods, thereby inhibiting FBGC formation at the surfaces of biomaterials in vivo, is incorporated into a biointerface membrane of a preferred embodiment.
[0410] Anti-barrier cell agents can include anti-inflammatory and/or immunosuppressive mechanisms that affect early FBC formation. Cyclosporine, which stimulates very high levels of neovascularization around biomaterials, can be incorporated into a biointerface membrane of a preferred embodiment (see U.S. Patent No. 5,569,462 to Martinson et al). Alternatively, Dexamethasone, which abates the intensity of the FBC response at the tissue-device interface, can be incorporated into a biointerface membrane of a preferred embodiment. Alternatively, Rapamycin, which is a potent specific inhibitor of some macrophage inflammatory functions, can be incorporated into a biointerface membrane of a preferred embodiment. [0411] Other suitable medicaments, pharmaceutical compositions, therapeutic agents, or other desirable substances can be incorporated into the membranes of preferred embodiments, including, but not limited to, anti-inflammatory agents, anti-infective agents, necrosing agents, and anesthetics.
[0412] Generally, anti-inflammatory agents reduce acute and/or chronic inflammation adjacent to the implant, in order to decrease the formation of a FBC capsule to reduce or prevent barrier cell layer formation. Suitable anti-inflammatory agents include but are not limited to, for example, nonsteroidal anti-inflammatory drugs (NSAIDs) such as acetometaphen, aminosalicylic acid, aspirin, celecoxib, choline magnesium trisalicylate, diclofenac potassium, diclofenac sodium, diflunisal, etodolac, fenoprofen, flurbiprofen, ibuprofen, indomethacin, interleukin (IL)-IO, IL-6 mutein, anti-IL-6 iNOS inhibitors (for example, L-NAME or L-NMDA), Interferon, ketoprofen, ketorolac, leflunomide, melenamic acid, mycophenolic acid, mizoribine, nabumetone, naproxen, naproxen sodium, oxaprozin, piroxicam, rofecoxib, salsalate, sulindac, and tolmetin; and corticosteroids such as cortisone, hydrocortisone, methylprednisolone, prednisone, prednisolone, betamethesone, beclomethasone dipropionate, budesonide, dexamethasone sodium phosphate, flunisolide, fluticasone propionate, paclitaxel, tacrolimus, tranilast, triamcinolone acetonide, betamethasone, fluocinolone, fluocinonide, betamethasone dipropionate, betamethasone valerate, desonide, desoximetasone, fluocinolone, triamcinolone, triamcinolone acetonide, clobetasol propionate, and dexamethasone.
[0413] Generally, immunosuppressive and/or immunomodulatory agents interfere directly with several key mechanisms necessary for involvement of different cellular elements in the inflammatory response. Suitable immunosuppressive and/or immunomodulatory agents include antiproliferative, cell-cycle inhibitors, (for example, paclitaxol (e.g., Sirolimus), cytochalasin D, infϊximab), taxol, actinomycin, mitomycin, thospromote VEGF, estradiols, NO donors, leptin, QP-2, tacrolimus, tranilast, actinomycin, everolimus, methothrexate, mycophenolic acid, angiopeptin, vincristing, mitomycine, statins, C MYC antisense, sirolimus (and analogs), RestenASE, 2-chloro-deoxyadenosine, PCNA Ribozyme, batimstat, prolyl hydroxylase inhibitors, PPARγ ligands (for example troglitazone, rosiglitazone, pioglitazone), halofuginone, C-proteinase inhibitors, probϋcol, BCP671, EPC antibodies, catchins, glycating agents, endothelin inhibitors (for example, Ambrisentan, Tesosentan, Bosentan), Statins (for example, Cerivasttin), E. coli heat-labile enterotoxin, and advanced coatings. [0414] Generally, anti-infective agents are substances capable of acting against infection by inhibiting the spread of an infectious agent or by killing the infectious agent outright, which can serve to reduce immuno-response without inflammatory response at the implant site. Anti-infective agents include, but are not limited to, anthelmintics (mebendazole), antibiotics including aminoclycosides (gentamicin, neomycin, tobramycin), antifungal antibiotics (amphotericin b, fluconazole, griseofulvin, itraconazole, ketoconazole, nystatin, micatin, tolnaftate), cephalosporins (cefaclor, cefazolin, cefotaxime, ceftazidime, ceftriaxone, cefuroxime, cephalexin), beta-lactam antibiotics (cefotetan, meropenem), chloramphenicol, macrolides (azithromycin, clarithromycin, erythromycin), penicillins (penicillin G sodium salt, amoxicillin, ampicillin, dicloxacillin, nafcillin, piperacillin, ticarcillin), tetracyclines (doxycycline, minocycline, tetracycline), bacitracin; clindamycin; colistimethate sodium; polymyxin b sulfate; vancomycin; antivirals including acyclovir, amantadine, didanosine, efavirenz, foscarnet, ganciclovir, indinavir, lamivudine, nelfinavir, ritonavir, saquinavir, silver, stavudine, valacyclovir, valganciclovir, zidovudine; quinolones (ciprofloxacin, levofloxacin); sulfonamides (sulfadiazine, sulfisoxazole); sulfones (dapsone); furazolidone; metronidazole; pentamidine; sulfanilamidum crystallinum; gatifloxacin; and sulfamethoxazole/trimethoprim.
[0415] Generally, necrosing agents are any drugs that cause tissue necrosis or cell death. Necrosing agents include cisplatin, BCNU, taxol or taxol derivatives, and the like.
Vascularization Agents
[0416] Generally, vascularization agents include substances with direct or indirect angiogenic properties. In some cases, vascularization agents can additionally affect formation of barrier cells in vivo. By indirect angiogenesis, it is meant that the angiogenesis can be mediated through inflammatory or immune stimulatory pathways. It is not fully known how agents that induce local vascularization indirectly inhibit barrier-cell formation, however it is believed that some barrier-cell effects can result indirectly from the effects of vascularization agents.
[0417] Vascularization agents include mechanisms that promote neovascularization around the membrane and/or minimize periods of ischemia by increasing vascularization close to the tissue-device interface. Sphingosine-1 -Phosphate (SlP), which is a phospholipid possessing potent angiogenic activity, is incorporated into a biointerface membrane of a preferred embodiment. Monobutyrin, which is a potent vasodilator and angiogenic lipid product of adipocytes, is incorporated into a biointerface membrane of a preferred embodiment. In another embodiment, an anti-sense molecule (for example, thrombospondin-2 anti-sense), which increases vascularization, is incorporated into a biointerface membrane.
[0418] Vascularization agents can include mechanisms that promote inflammation, which is believed to cause accelerated neovascularization in vivo. In one embodiment, a xenogenic carrier, for example, bovine collagen, which by its foreign nature invokes an immune response, stimulates neovascularization, and is incorporated into a biointerface membrane of the preferred embodiments. In another embodiment, Lipopolysaccharide, which is a potent immunostimulant, is incorporated into a biointerface membrane. In another embodiment, a protein, for example, a bone morphogenetic protein (BMP), which is known to modulate bone healing in tissue, is incorporated into a biointerface membrane of a preferred embodiment.
[0419] Generally, angiogenic agents are substances capable of stimulating neovascularization, which can accelerate and sustain the development of a vascularized tissue bed at the tissue-device interface. Angiogenic agents include, but are not limited to, copper ions, iron ions, tridodecylmethylammonium chloride, Basic Fibroblast Growth Factor (bFGF), (also known as Heparin Binding Growth Factor-II and Fibroblast Growth Factor II), Acidic Fibroblast Growth Factor (aFGF), (also known as Heparin Binding Growth Factor-I and Fibroblast Growth Factor-I), Vascular Endothelial Growth Factor (VEGF), Platelet Derived Endothelial Cell Growth Factor BB (PDEGF-BB), Angiopoietin-1, Transforming Growth Factor Beta (TGF-Beta), Transforming Growth Factor Alpha (TGF-Alpha), Hepatocyte Growth Factor, Tumor Necrosis Factor-Alpha (TNF-Alpha), Placental Growth Factor (PLGF), Angiogenin, Interleukin-8 (IL-8), Hypoxia Inducible Factor-I (HIF-I), Angiotensin-Converting Enzyme (ACE) Inhibitor Quinaprilat, Angiotropin, Thrombospondin, Peptide KGHK, Low Oxygen Tension, Lactic Acid, Insulin, Leptin, Copper Sulphate, Estradiol, prostaglandins, cox inhibitors, endothelial cell binding agents (for example, decorin or vimentin), glenipin, hydrogen peroxide, nicotine, and Growth Hormone.
[0420] Generally, pro-inflammatory agents are substances capable of stimulating an immune response in host tissue, which can accelerate or sustain formation of a mature vascularized tissue bed. For example, pro-inflammatory agents are generally irritants or other substances that induce chronic inflammation and chronic granular response at the implantation-site. While not wishing to be bound by theory, it is believed that formation of high tissue granulation induces blood vessels, which supply an adequate, or rich supply of analytes to the device-tissue interface. Pro-inflammatory agents include, but are not limited to, xenogenic carriers, Lipopolysaccharides, S. aureus peptidoglycan, and proteins.
[0421] Other substances that can be incorporated into membranes of preferred embodiments include various pharmacological agents, excipients, and other substances well known in the art of pharmaceutical formulations.
[0422] U.S. Publication No. US-2005-0031689-A1 discloses a variety of systems and methods by which the bioactive agent can be incorporated into the biointerface membranes and/or implantable device. Although the bioactive agent is preferably incorporated into the biointerface membrane and/or implantable device, in some embodiments the bioactive agent can be administered concurrently with, prior to, or after implantation of the device systemically, for example, by oral administration, or locally, for example, by subcutaneous injection near the implantation site. A combination of bioactive agent incorporated in the biointerface membrane and bioactive agent administration locally and/or systemically can be preferred in certain embodiments.
[0423] Generally, numerous variables can affect the pharmacokinetics of bioactive agent release. The bioactive agents of the preferred embodiments can be optimized for short- and/or long-term release. In some embodiments, the bioactive agents of the preferred embodiments are designed to aid or overcome factors associated with short-term effects (for example, acute inflammation) of the foreign body response, which can begin as early as the time of implantation and extend up to about one month after implantation. In some embodiments, the bioactive agents of the preferred embodiments are designed to aid or overcome factors associated with long-term effects, for example, chronic inflammation, barrier cell layer formation, or build-up of fibrotic tissue of the foreign body response, which can begin as early as about one week after implantation and extend for the life of the implant, for example, months to years. In some embodiments, the bioactive agents of the preferred embodiments combine short- and long-term release to exploit the benefits of both. U.S. Publication No. US-2005-0031689-A1 discloses a variety of systems and methods for release of the bioactive agents.
[0424] The amount of loading of the bioactive agent into the biointerface membrane can depend upon several factors. For example, the bioactive agent dosage and duration can vary with the intended use of the biointerface membrane, for example, cell transplantation, analyte measuring-device, and the like; differences among hosts in the effective dose of bioactive agent; location and methods of loading the bioactive agent; and release rates associated with bioactive agents and optionally their carrier matrix. Therefore, one skilled in the art will appreciate the variability in the levels of loading the bioactive agent, for the reasons described above. U.S. Publication No. US-2005-0031689-A1 to Shults et al. discloses a variety of systems and methods for loading of the bioactive agents. Biointerface Membrane Formation onto the Sensor
[0425] Due to the small dimension(s) of the sensor (sensing mechanism) of the preferred embodiments, some conventional methods of porous membrane formation and/or porous membrane adhesion are inappropriate for the formation of the biointerface membrane onto the sensor as described herein. Accordingly, the following embodiments exemplify systems and methods for forming and/or adhering a biointerface membrane onto a small structured sensor as defined herein. For example, the biointerface membrane of the preferred embodiments can be formed onto the sensor using techniques such as electrospinning, molding, weaving, direct- writing, lyophilizing, wrapping, and the like.
[0426] Although Figs. 6 to 10 describe systems and methods for the formation of porous biointerface membranes, including interconnected cavities and solid portion(s). In some embodiments, a cell impermeable (second domain) can additionally be formed using known thin film techniques, such as dip coating, spray coating, spin coating, tampo printing, and the like, prior to formation of the interconnected cavities and solid portion(s). Alternatively, the porous biointerface membrane (e.g., first domain) can be formed directly onto the sensing membrane.
[0427] Fig. 6 is a flow chart that illustrates the process 150 of forming a biointerface-coated small structured sensor in one embodiment. In this embodiment, the biointerface membrane includes woven or non-woven fibers formed directly onto the sensor. Generally, fibers can be deposited onto the sensor using methods suitable for formation of woven- or non-woven fibrous materials. In some embodiments, the biointerface membrane is electrospun directly onto the sensor; electrospinning advantageously allows the biointerface membranes to be made with small consistent fiber diameters that are fused at the nodes and are without aggregation.
[0428] In some embodiments, the biointerface membrane is directly written onto the sensor; direct writing can advantageously allow uniform deposition of stored patterns (e.g., in a computer system) for providing consistent and reproducible architectures. In these embodiments, a curing step is included either during or after the writing step to solidify the material being written (e.g., heat, UV curing, radiation, etc.). Direct writing is described in more detail, below.
[0429] At block 152, one or more dispensers dispense a polymeric material used to form the fibers. A variety of polymeric materials are contemplated for use with the preferred embodiments, including one or more of silicone, polytetrafiuoroethylene, expanded polytetrafluoroethylene, polyethylene-co-tetrafluoroethylene, polyolefm, polyester, polycarbonate, biostable polytetrafluoroethylene, homopolymers, copolymers, terpolymers of polyurethanes, polypropylene (PP), polyvinylchloride (PVC), polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polybutylene terephthalate (PBT), polymethylmethacrylate (PMMA), polyether ether ketone (PEEK), polyamides, polyurethanes, cellulosic polymers, poly(ethylene oxide), poly(propylene oxide) and copolymers and blends thereof, polysulfones and block copolymers thereof including, for example, di-block, tri-block, alternating, random and graft copolymers.
[0430] The coating process can be performed in a vacuum or in a gaseous medium, which environment can affect the architecture of the biointerface membrane as is appreciated by one skilled in the art.
[0431] In embodiments wherein the biointerface is electrospun onto the sensor, the dispenser dispenses a charged liquefied polymer within an electric field, to thereby form a jet of polymer fibers, for example, such as described in PCT International Publication No. WO 2005/032400, which is incorporated herein by reference in its entirety.
[0432] In embodiments wherein the biointerface is directly-written onto the sensor, a dispenser dispenses a polymer solution using a nozzle with a valve, or the like, for example as described in U.S. Publication No. US-2004-0253365-A1. In general, a variety of nozzles and/or dispensers can be used to dispense a polymeric material to form the woven or non- woven fibers of the biointerface membrane.
[0433] In general, a direct-write patterning system is suitable for either fine- pattern micro dispensing and/or fine-focused laser-beam writing over flat or conformal surfaces to create exact replicas of a preferred biointerface structure. In certain embodiments, the biointerface materials described herein can be deposited using these integrated tool technologies for the direct-write deposition and laser micromachining of a wide variety of biointerface architectures described herein. Additionally, the direct-write patterning system can provide the capability for concurrent detection and imaging methods during additive and subtractive processes. [0434] In another aspect, alternative embodiments of the direct- writing deposition technique utilize a tool in which constituent materials can be dispensed through multiple, discrete dispensing heads. In yet another alternative embodiment, the biointerface structure is directly written onto a removable substrate, after which the substrate is removed and the biointerface applied to the sensor (e.g., wrapped around the sensor or the sensor is inserted into the biointerface).
[0435] At block 154, the dispenser(s) is moved relative to the sensor and/or the sensor is moved relative to the dispenser(s) so as to coat the sensor with the fibers. In embodiments wherein the biointerface membrane is electrospun onto the sensor, the dispenser(s) can change the direction and/or magnitude of the electric field during motion in order to effect the orientation of the polymer fibers on the sensor. Additionally, the path of the dispenser is preferably selected so as to coat the portions of or the entire object. In one exemplary embodiment, wherein it is desirable for the biointerface membrane to substantially circumscribe the sensor (e.g., a substantially cylindrical shape), the dispenser can be moved along a helix path, a circular path, a zigzag path, or the like. Additionally, the dispenser can move rotationally and/or translationally relative to the sensor. The number of sweeps is preferably selected according to the desired architecture of the biointerface membrane. Additionally, the density of the fibers and/or the type of liquefied polymer can be changed from one sweep to the other to thereby control the architecture of the membrane.
[0436] In embodiments wherein the biointerface membrane is directly written onto the sensor, the dispenser is programmed to write a pattern that creates the desired membrane architecture, including the interconnected cavities and solid portion(s). Namely, the dispenser is programmed to move in the x, y, and optionally z direction in order to create the desired membrane architecture. See, for example, U.S. Publication No. US-2004- 0253365-A1 cited above.
[0437] Although the preferred embodiments described moving the dispenser(s) relative to the sensor, alternatively, the dispenser can remain stationary and the sensor moved, as is appreciated by one skilled in the art.
[0438] In some embodiments, the sensor is moved in a rotational or translational motion, which can be performed in combination with, or instead of, movement of the dispenser. In this step, the sensor is moved so as to ensure coating throughout the entirety of the biointerface region (or a portion thereof). In one exemplary embodiment, wherein a substantially circumscribing biointerface membrane is desired (e.g., for a substantially cylindrically shaped sensing sensor) such as illustrated in Fig. 3A, the sensor can be rotated so to aid in coating the entire circumference of the sensor. In another exemplary embodiment, wherein a substantially planar biointerface membrane is desired (e.g., for a substantially planar sensor), the sensor can be translated so as to aid in coating the desired planar surface area.
[0439] Fig. 7 is a flow chart that illustrates the process 160 of forming a biointerface-coated sensor in an alternative embodiment. In this embodiment, the interconnected cavities and solid portion(s) of the biointerface membrane are amorphous in configuration, such as illustrated in Figs. 5A and 5B, for example.
[0440] At block 162, a selectively removable porogen (e.g., porous mold) is formed by spraying, coating, rolling, or otherwise forming selectively removable particles, for example, sugar crystals, onto the surface of the sensor. Additional examples of materials suitable as selectively removable mold material include thermoplastic polymers such as waxes, paraffin, polyethylene, nylon, polycarbonate, or polystyrene in naturally available particles or processed into specific sizes, shapes, molded forms, spheres or fibers, salt or other particles which cannot be made to inherently stick together coated with sugar, and certain drug crystals such as gentamycin, tetracycline, or cephalosporins. In general, any dissolvable, burnable, meltable, or otherwise removable particle, which can be made to stick together, could be used. Preferably, the particles have shapes and sizes substantially corresponding to the desired cavity dimensions, such as described in more detail above. In some embodiments, the particles are made to adhere to the sensor by environmental conditions, for example, humidity can be used to cause sugar to adhere to the sensor.
[0441] In some embodiments, the particles are made to coalesce to provide the desired interconnectivity between the cavities. In an exemplary porous silicone embodiment, sugar crystals are exposed to a humid environment sufficient to cause coalescence of the sugar crystals. In some alternative embodiments, other molds can be used in the place of the particles described above, for example, coral, self-assembly beads, etched and broken silicon pieces, glass frit pieces, and the like, as shown in Fig. 1 IB.
[0442] At block 164, a material (e.g., a moldable or conformable material) is filled or coated into the interconnected cavities of the mold using methods common in the art of polymer processing, for example, injecting, pressing, vacuuming, vapor depositing, extruding, pouring, and the like. Examples of materials suitable for the resulting porous device include polymers, metals, metal alloys, ceramics, biological derivatives, and combinations thereof, in solid or fiber form. In an exemplary porous silicone embodiment, silicone is pressed into the interconnected cavities of the mold.
[0443] At block 166, the material is substantially cured or solidified to form the solid portion(s) of the biointerface membrane. Solidification of the material can be accelerated by supplying dry air (which can be heated) to the material, for example. Additionally, freezing, freeze drying or vacuum desiccation, with or without added heat, can also be utilized to cause the material to solidify. In some circumstances, a skin or any excess material can be removed (e.g., shaved, etched, or the like) after curing. In the exemplary porous silicone embodiment, an outer skin of silicone is removed to expose the interconnected cavities at an outer surface.
[0444] At block 168, the selectively removable porogen (e.g., porous mold) is dissolved, melted, etched, or otherwise removed, leaving interconnecting cavities within the solid portion (Fig. HA). Preferably, the selectively removable porogen is readily removable without significantly altering the final product (or product material). This removal can be by dissolution by some solvent that does not significantly dissolve the final product material. Alternatively, the mold material can be melted (or burned) out of the final product material if the melting point (or burning point) of the mold material is below that of the final product material. In the exemplary porous silicone embodiment, water is used to dissolve the sugar crystals.
[0445] Fig. 8 is a flow chart that illustrates the process 170 of forming a biointerface-coated small structured sensor in another alternative embodiment. In this embodiment, the interconnected cavities and solid portion(s) of the biointerface membrane are amorphous in configuration, such as illustrated in Figs. 4 A and 4B, for example, and the solid portion is molded around the sensor.
[0446] At block 172, a selectively removable porogen is formed by filling a shaped cavity with selectively removable particles, for example, sugar crystals, wherein the sensor is located within the shaped cavity, and wherein the selectively removable particles substantially surround the sensor. Additional examples of materials suitable as selectively removable mold material are described with reference to block 162, above. In some embodiments, the shaped cavity mold is formed from a selectively removable material (e.g., sacrificial cavity mold) similar the selectively removable particles described above. One such example includes a tube formed from a dissolvable polymer. Alternatively, the shaped cavity can be a non-selectively removable material, and instead, a sacrificial layer of selectively removable material is formed directly onto the cavity walls, enabling the removal of the biointerface membrane after dissolution of the sacrificial layer.
[0447] Preferably the shape of the cavity mold substantially corresponds to the desired final shape of the biointerface membrane. In one exemplary embodiment, the cavity mold is substantially cylindrical, for example using a syringe or cannula as the cavity mold.
[0448] In some embodiments, the particles are made to coalesce to provide the desired interconnectivity between the cavities. In an exemplary porous silicone embodiment, sugar crystals are exposed to humidity or spray of water sufficient to cause coalescence of the sugar crystals. In some alternative embodiments, other molds can be used in the place of the particles described above, for example, coral, self-assembly beads, etched and broken silicon pieces, glass frit pieces, and the like.
[0449] At block 174, a material (e.g., a moldable or conformable material) is filled into the interconnected cavities of the mold using methods common in the art of polymer processing, for example, injecting, pressing, vacuuming, vapor depositing, pouring, and the like. Examples of materials suitable for the resulting porous device are described in more detail with reference to block 164, above. In an exemplary porous silicone embodiment, silicone is pressed into the interconnected cavities of the mold.
[0450] At block 176, the material is substantially cured or solidified to form the solid portion(s) of the biointerface membrane. Solidification of the material can be accelerated as described in more detail with reference to block 166, above.
[0451] At block 178, the selectively removable porogen is dissolved, melted, etched, or otherwise removed, leaving interconnecting cavities within the solid portion surrounding the sensor. In some embodiments, wherein a sacrificial layer is formed as described above, the sacrificial layer can be removed before, during, or after the removal of the selectively removable porogen. In some embodiments, the final product is removed from the cavity mold before, during, or after the removal of the selectively removable porogen.
[0452] Preferably, the selectively removable porogen is readily removable without significantly altering the final product (or product material). This removal can be by dissolution by some solvent that does not significantly dissolve the final product material. Alternatively, the mold material can be melted (or burned) out of the final product material if the melting point (or burning point) of the mold material is below that of the final product material. In one exemplary embodiment, a sacrificial tube forms the mold cavity; wherein the sacrificial tube is removed prior to, during, or after dissolution of the selectively removable porogen. One skilled in the art can appreciate a variety of modifications or combinations of the above described removal step without departing from the spirit of the invention.
[0453] Fig. 9 is a flow chart that illustrates the process 180 of forming a biointerface-wrapped sensor in one embodiment. In this embodiment, the interconnected cavities and solid portion(s) of the biointerface membrane can be fibrous or amorphous in configuration. In fact, substantially any biointerface membrane with an architecture as described in more detail above, which is formed in substantially any manner, can be used with this embodiment.
[0454] At block 182, a sensor is manufactured and provided, wherein the sensor is formed with a small structure as defined herein.
[0455] At block 184, a biointerface membrane with an architecture as described herein is manufactured in substantially any desired manner, wherein the biointerface membrane is formed substantially as a sheet or tube of membrane. Biointerface membranes suitable for wrapping around the sensor and providing the desired host interface are described in more detail above (see section entitled, "Architecture of the First Domain.")
[0456] At block 186, the biointerface membrane is wrapped around the sensor manually, or using an automated device, as can be appreciated by one skilled in the art. Namely, the biointerface membrane is wrapped such that it substantially surrounds the sensor, or the sensing mechanism of the sensor (e.g., the electroactive surfaces or sensing membrane). The number of wraps can be from less than 1 to about 100, preferably 1, VA, 2, 21A, 3, 31A, 4, 5, 6, 7, 8, 9, 10, or more. The number of wraps depends on the architecture of the sheet of biointerface membrane, and the desired architecture of the biointerface surrounding the sensor.
[0457] In some embodiments, the circumference (or a portion thereof (e.g., an edge)) of the biointerface membrane with an architecture as described herein can be adhered or otherwise attached or sealed to form a substantially consistent outer surface (of the biointerface membrane). In an aspect of this embodiment, the biointerface membrane is wrapped around the sensor one time, wherein the "wrap" includes a tubular biointerface membrane configured to slide over the sensor (or sensing mechanism), for example, be stretching the tubular biointerface membrane and inserting the sensor therein.
[0458] Fig. 10 is a flow chart that illustrates the process 190 of forming a sensing biointerface in one embodiment. In this embodiment, the sensor is inserted into the biointerface membrane so that it is encompassed therein. [0459] At block 192, a biointerface membrane is manufactured in substantially any desired manner. Biointerface membranes suitable for the sensing biointerface are described in more detail above (see for example, section entitled, "Architecture of the First Domain"). In some embodiments, the biointerface membrane is molded into the desired final shape to surround the sensor and implant into a host. Alternatively, the biointerface membrane can be provided as a sheet of bulk material.
[0460] At block 194, a particularly shaped or sized biointerface membrane can be (optionally) cut. Namely, in embodiments wherein the biointerface membrane is provided in bulk, e.g., as a sheet of material, the desire shape or size can be cut there from. In these embodiments, bulk biointerface membrane sheet is preferably of the appropriate thickness for the desired final product. In one exemplary embodiment, the biointerface membrane (bulk sheet) is compressed, for example between two substantially rigid structures, and the final size/shape biointerface membrane cut there from, after which the biointerface membrane is released. While not wishing to be bound by theory, it is believed that by compressing the biointerface membrane during cutting, a more precise shape can be achieved. Biointerface membranes can have sufficient elasticity, such that the thickness is returned after release from compression, as is appreciated by one skilled in the art.
[0461] At block 196, a sensor is inserted into the biointerface membrane. Preferably, the sensor is inserted into the membrane such that the sensing mechanism contacts at least one or more of the interconnected cavities so that the host analyte can be measured. Alternatively, the biointerface can be formed from a material that allows the flux of the analyte there through. In some embodiments, the sensor is inserted with the aid of a needle. Alternatively, the sensor is formed with appropriate sharpness and rigidity to enable insertion through the biointerface membrane.
[0462] In some embodiments, an anchoring mechanism, such as a barb, is provided on the sensor, in order to anchor the sensor within the biointerface membrane (and/or host tissue). A variety of additional or alternative aspects can be provided to implement the biointerface membrane surrounded sensors of the preferred embodiments.
[0463] A porous membrane material applied to the sensor can act as a spacer between the sensor and the surrounding tissue at the site of sensor insertion, in either the short-term or long-term sensors. For example, a spacer from 60-300 microns thick can be created of porous silicone having pore sizes of 0.6 microns and greater (e.g., up to about 1,000 microns or more). When inserted into the tissues, the adipose cells come to rest against the outermost aspects of the porous membrane, rather than against the surface of the sensor (Fig. 2C), allowing open space for transport of water-soluble molecules such as oxygen and glucose.
[0464] Porous membrane material can be manufactured and applied to a sensor using any advantageous method known to one skilled in the art. As discussed elsewhere, porous membranes can be manufactured from a variety of useful materials known in the art, depending upon the desired membrane parameters.
[0465] Fig. 1 IA is a scanning electron micrograph showing a cross-section of an exemplary porous silicone tube that does not contain a sensor. Note the open porous structure of cavities and channels within the solidified silicone. Porous silicone can be manufactured and applied to the sensor by a variety of means. The material in Fig. 1 IA, for example, was formed by sieving sugar to give crystals having a size and shape approximate to that of the desired pore size. The sugar was humidified and then compressed into a mold. The mold was then baked, to harden the sugar within the mold. Silicone was forced into the mold and then cured. After the silicone was cured, the mold was removed and the sugar dissolved away. A sensor could subsequently be inserted into the porous silicone tube.
[0466] Fig. 1 IB is a scanning electron micrograph of sugar molded onto a sensor. In this example, a sugar mold was formed directly on the sensor. Note the clumps of sugar crystals attached to the surface of the sensor. In this example, the sensor was placed into the mold, which was then filled with humidified sugar crystals. The mold containing the sensor and sugar was baked to solidify the sugar on the surface of the sensor. The sensor, with sugar crystals attached, was removed from the mold, in order to prepare the electron micrograph. In some embodiments, the sensor can be rolled in the humidified sugar, to attach a layer of sugar to the sensor surface, and then baked to solidify the sugar. In some embodiments, the sugarcoated sensor can be rolled in humidified sugar additional times to form a thicker sugar mold (i.e., 2 or more layers) around the sensor. In some embodiments, silicone is pumped or injected into the solidified sugar and cured. After curing, the sugar is removed, such as by washing, to give a porous silicone covered sensor.
[0467] In an alternative embodiment, porous silicone is pre-formed as a sheet or plug and then applied to the sensor. For example, a sugar mold lacking a sensor therein is formed using the usual means. As previously described, silicone is injected into the mold and then cured. After the mold material is removed from the cured silicone, the sensor is inserted into the plug, thereby creating a sensor having a porous silicone biointerface membrane.
Ill [U468J Alternatively, a thin sheet of porous silicone is manufactured and then wrapped around the sensor. For example, a thin porous silicone sheet is manufactured by pressing a thin layer of sieved, humidified sugar into a Petri dish. The sugar is baked. Silicone is applied to the sugar mold by injection, pressing, or the like, and then cured. The sugar is removed from the porous silicone sheet, such as by washing. The manufactured porous silicone is then wrapped around the sensor to form a biointerface membrane of a desired thickness.
[0469] In still another embodiment, other materials can be used to manufacture the biointerface membrane. For example, the sensor can be wrapped in a layer of ePTFE having a pore size of about 0.6 microns and above, to create a layer about 12-100 microns thick. See U.S. Patent No. 6,862,465. In yet another embodiment, the spacer can be either a smooth or porous hydrogel.
Methods of Use
[0470] One aspect of the present invention contemplates new methods of use to reduce noise. In one embodiment, noise is reduced by first providing a device of the present invention, such as an implantable analyte sensor, preferably a glucose sensor. The sensor is pre-inserted through the host's skin and into the host. The term "pre-insertion" or "pre- inserted" as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to inserting a sensor a period of time (e.g., a "waiting period") before it is to be used, such as about 1-24 hours or longer, e.g., without operatively connecting the sensor to the electronics. The period of time is associated with an amount of time necessary for wound healing to occur. For example, the wound healing process progresses for the first few hours or days. Preferably, interferents that build up around the sensor will be diluted or removed by bulk fluid flow and/or an increase in the fluid bulk around at least a portion of the sensor.
[0471] In one embodiment of the present method, the host waits about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 hours or longer, before operatively connecting the electronics to the sensor. In another embodiment, the host can wait about 24, 36 or 48 hours or longer, before connecting the electronics. In yet another embodiment, the host can wait about 1-2, 2-4, 4-6, 6-8, 8-10, 10-12, 12-15, 12-24, 12-36, 12-48, 24-36 or 36-48 hours or longer, before operatively connecting the electronics.
[0472] In some embodiments, a cap is provided to cover the electrical components (e.g., contacts), until the electronics are coupled to the sensor. The cap can be manufactured of any convenient material, such as plastic, tape, foil , glass or a combination thereof. The cap can attach to the sensor using any convenient method known to those of skill in the art. For example, the cap can attach with a snap fit, adhesive, pins, or the like. After the waiting period has been completed, the host can remove the cap and operably attach the electronics to the sensor.
[0473] After the electronics have been operatively connected to the sensor (e.g., the sensor electronics are connected to the sensor) , a signal from the sensor is detected, as described in detail above. The sensor will be used for a prescribed period of time, after operably connecting the electronics to the sensor (e.g., in addition to pre-insertion or a waiting period). For example, a 3-day sensor will be used for 3-days and then removed (after three days of data collection). In another example, a 7-day sensor will be removed after seven days of data collection. In the case of sensors configured for shorter or longer periods of use, the sensor will be removed after that period of time. In additional embodiments, noise can be reduced by sensor pre-insertion and/or overlapping sensor insertion as described in co- pending U.S. patent application 11/373,628, filed March 9, 2006 and entitled "SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA FOR SENSOR CALIBRATION."
[0474] In another embodiment, of the present invention, a second sensor can be pre-inserted into the host before removal of the first sensor. Preferably, the amount of time the second sensor is pre-inserted, before the first sensor, corresponds to the waiting period required for wound healing, as described above. For example, if the waiting period is 6- hours, the host would pre-insert the second sensor at least about 6 hours before he removed the first sensor. In another example, if the waiting period is 24 hours, he would pre-insert the second sensor on the second-to-the-last day (e.g., about 24 hours before removal of the first sensor).
[0475] Pre-inserting a sensor, waiting a period of time associated with wound healing and then operatively connecting the electronics, allows time for a fluid pocket to form and/or wound healing to progress, and thereby avoids presenting data to a user during the early time after sensor insertion when early, sedentary noise is most likely to occur, while maintaining the full period of sensor utility (e.g., number of days the sensor is to be used, such as but not limited to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 days). By pre- inserting a sensor, in a series of sensor used by a host (e.g., a host changes to a new 5-day sensor after every 5 days of use), the host can have daily use of a sensor without having days of disuse due to a waiting period such as can be necessitated by procedures such as calibration, break-in or wound healing. Advantageously, the host is provided with an extended period of continuous use (instead of the intermittent periods of use required by some implantable analyte sensors, such as implantable glucose sensors) and is provided with substantially increased or improved information/data on his analyte levels (e.g., glucose concentration) so that he can make more informed treatment decisions. Accordingly, due to more informed treatment decisions, the host can benefit from improved disease management, with improved health and quality of life.
[0476] Methods and devices that are suitable for use in conjunction with aspects of the preferred embodiments are disclosed in U.S. Patent No. 4,994,167; U.S. Patent No. 4,757,022; U.S. Patent No. 6,001,067; U.S. Patent No. 6,741,877; U.S. Patent No. 6,702,857; U.S. Patent No. 6,558,321; U.S. Patent No. 6,931,327; and U.S. Patent No. 6,862,465.
[0477] Methods and devices that are suitable for use in conjunction with aspects of the preferred embodiments are disclosed in U.S. Publication No. US-2005-0176136-A1; U.S. Publication No. US-2005-0251083-A1; U.S. Publication No. US-2005-0143635-A1; U.S. Publication No. US-2005-0181012-A1; U.S. Publication No. US-2005-0177036-A1; U.S. Publication No. US-2005-0124873-A1; U.S. Publication No. US-2005-0051440-A1; U.S. Publication No. US-2005-0115832-A1; U.S. Publication No. US-2005-0245799-A1; U.S. Publication No. US-2005-0245795-A1; U.S. Publication No. US-2005-0242479-A1; U.S. Publication No. US-2005-0182451 -Al; U.S. Publication No. US-2005-0056552-A1; U.S. Publication No. US-2005-0192557-A1; U.S. Publication No. US-2005-0154271-A1; U.S. Publication No. US-2004-0199059-A1; U.S. Publication No. US-2005-0054909-A1; U.S. Publication No. US-2005-0112169-A1; U.S. Publication No. US-2005-0051427-A1; U.S. Publication No. US-2003-0032874-A1; U.S. Publication No. US-2005-0103625-A1; U.S. Publication No. US-2005-0203360-A1; U.S. Publication No. US-2005-0090607-A1; U.S. Publication No. US-2005-0187720-A1; U.S. Publication No. US-2005-0161346-A1; U.S. Publication No. US-2006-0015020-A1; U.S. Publication No. US-2005-0043598-A1; U.S. Publication No. US-2003-0217966-A1; U.S. Publication No. US-2005-0033132-A1; U.S. Publication No. US-2005-0031689-A1; U.S. Publication No. US-2004-0045879-A1; U.S. Publication No. US-2004-0186362-A1; U.S. Publication No. US-2005-0027463-A1; U.S. Publication No. US-2005-0027181-A1; U.S. Publication No. US-2005-0027180-A1; U.S. Publication No. US-2006-0020187-A1; U.S. Publication No. US-2006-0036142-A1; U.S. Publication No. US -2006-0020192-Al; U.S. Publication No. US-2006-0036143-A1; U.S. Publication No. US-2006-0036140-A1; U.S. Publication No. US-2006-0019327-A1; U.S. Publication No. US-2006-0020186-A1; U.S. Publication No. US-2006-0020189-A1; U.S. Publication No. US-2006-0036139-A1; U.S. Publication No. US-2006-0020191-A1; U.S. Publication No. US-2006-0020188-A1; U.S. Publication No. US-2006-0036141-A1; U.S. Publication No. US-2006-0020190-A1; U.S. Publication No. US-2006-0036145-A1; U.S. Publication No. US-2006-0036144-A1; U.S. Publication No. US-2006-0016700-A1; U.S. Publication No. US-2006-0142651-A1; U.S. Publication No. US-2006-0086624-A1; U.S. Publication No. US-2006-0068208-A1; U.S. Publication No. US-2006-0040402-A1; U.S. Publication No. US-2006-0036142-A1; U.S. Publication No. US-2006-0036141-A1; U.S. Publication No. US-2006-0036143-A1; U.S. Publication No. US-2006-0036140-A1; U.S. Publication No. US-2006-0036139-A1; U.S. Publication No. US-2006-0142651-A1; U.S. Publication No. US-2006-0036145-A1; and U.S. Publication No. US-2006-0036144-A1.
[0478] Methods and devices that are suitable for use in conjunction with aspects of the preferred embodiments are disclosed in U.S. Application No. 09/447,227 filed November 22, 1999 and entitled "DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS"; U.S. Application No. 11/335,879 filed January 18, 2006 and entitled "CELLULOSIC-BASED INTERPERENCE DOMAIN FOR AN ANALYTE SENSOR"; U.S. Application No. 11/334,876 filed January 18, 2006 and entitled "TRANSCUTANEOUS ANALYTE SENSOR"; U.S. Application No. 11/333,837 filed January 17, 2006 and entitled "LOW OXYGEN IN VIVO ANALYTE SENSOR".
[0479] All references cited herein, including but not limited to published and unpublished applications, patents, and literature references, are incorporated herein by reference in their entirety and are hereby made a part of this specification. To the extent publications and patents or patent applications incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.
[0480] The term "comprising" as used herein is synonymous with "including," "containing," or "characterized by," and is inclusive or open-ended and does not exclude additional, unrecited elements or method steps.
[0481] All numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification are to be understood as being modified in all instances by the term "about." Accordingly, unless indicated to the contrary, the numerical parameters set forth herein are approximations that may vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of any claims in any application claiming priority to the present application, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.
[0482] The above description discloses several methods and materials of the present invention. This invention is susceptible to modifications in the methods and materials, as well as alterations in the fabrication methods and equipment. Such modifications will become apparent to those skilled in the art from a consideration of this disclosure or practice of the invention disclosed herein. Consequently, it is not intended that this invention be limited to the specific embodiments disclosed herein, but that it cover all modifications and alternatives coming within the true scope and spirit of the invention.

Claims

1. An analyte sensing device adapted for implantation into a host's tissue, comprising: a sensor configured to measure an analyte in a host, wherein the sensor comprises a biointerface configured to promote at least one function selected from the group consisting of increasing fluid bulk surrounding at least a portion of the sensor in vivo, increasing bulk fluid flow surrounding at least a portion of the sensor in vivo, and increasing diffusion rates surrounding at least a portion of the sensor in vivo.
2. The device of claim 1 , wherein the biointerface comprises a spacer.
3. The device of claim 2, wherein the spacer comprises a mesh.
4. The device of claim 2, wherein the spacer comprises a hydrogel.
5. The device of claim 4, wherein the hydrogel comprises from about 20 wt. % to about 99 wt. % water.
6. The device of claim 4, wherein the hydrogel comprises from about 80 wt. % to about 99 wt. % water.
7. The device of claim 2, wherein the spacer comprises a shedding layer.
8. The device of claim 2, wherein the spacer is a fibrous structure.
9. The device of claim 2, wherein the spacer is a porous polymer membrane.
10. The device of claim 2, wherein the spacer comprises a material selected from the group consisting of polysulfone, polytetrafmoro ethylene, polyvinylidene difluoride, polyacrylonitrile, silicone, polytetrafluoroethylene, expanded polytetrafluoroethylene, polyethylene-co-tetrafluoroethylene, polyolefϊn, polyester, polycarbonate, biostable polytetrafluoroethylene, polyurethane, polypropylene, polyvinylchloride, polyvinylidene fluoride, polyvinyl alcohol, polybutylene terephthalate, polymethylmethacrylate, polyether ether ketone, polyamides, cellulosic polymer, poly(ethylene oxide), poly(propylene oxide), hydrogel polymer, poly(2-hydroxyethyl methacrylate), hydroxyethyl methacrylate, high density polyethylene, acrylic copolymer, nylon, polyvinyl difluoride, polyanhydride, poly(l- lysine), poly (L-lactic acid), hydroxyethylmethacrylate, homopolymers thereof, copolymers thereof, di-block copolymers thereof, tri-block copolymers thereof, alternating copolymers thereof, random copolymers thereof, graft copolymers thereof, terpolymers thereof, and blends thereof.
11. The device of claim 2, wherein the spacer comprises a material selected from the group consisting of metal, ceramic, hydroxyapeptite, alumina, zirconia, carbon fiber, aluminum, calcium phosphate, titanium, titanium alloy, nintinol, stainless steel, CoCr alloy, and combinations thereof.
12. The device of claim 2, wherein the spacer has an average nominal pore size of from about 0.6 μm to about 20 μm.
13. The device of claim 2, wherein at least 50% of the pores of the spacer have an average size of from about 0.6 μm to about 20 μm.
14. The device of claim 1, wherein the biointerface is configured to provide a fluid pocket.
15. The device of claim 1, wherein the biointerface comprises a roughened surface.
16. The device of claim 15, wherein the roughened surface is a vasodilating surface.
17. The device of claim 1, wherein the biointerface comprises an irregular surface.
18. The device of claim 1, wherein the biointerface comprises a nanoporous material, a swellable material, or a collapsible material.
19. The device of claim 1, wherein the biointerface comprises an irritating superstructure.
20. The device of claim 19, wherein the irritating superstructure comprises a coiled silver wire.
21. The device of claim 1, wherein the biointerface comprises a biodegradable material.
22. The device of claim 21, wherein the biodegradable material is a biodegradable polymer.
23. The claim of 22, wherein the biodegradable polymer comprises an irritating polymer.
24. The device of claim 2, wherein the spacer comprises a self-assembling material.
25. The device of claim 24, wherein the self-assembling material comprises a self- assembling peptide.
26. The device of claim 1 , wherein the biointerface comprises a bioactive agent.
27. The device of claim 25, wherein the bioactive agent is selected from the group consisting of anti-barrier cell agent, an anti-infective agent, a necrosing agent, an inflammatory agent, a growth factor, an angiogenic factor, an adjuvant, an antiplatelet agent, an anticoagulant, an ACE inhibitor, a cytotoxic agent, a vascularization compound, an anti-sense molecule, an enzyme, a metal, a hydrophilic biodegradable polymer, a glycolic acid-based polymer, a lactic acid-based polymer, polyethylene oxide, silver, and combinations thereof.
28. The device of claim 1, wherein the sensor is configured to measure a signal that is indicative of a quantity of the analyte within a fluid surrounding at least a portion of the sensor.
29. The device of claim 28, wherein the fluid surrounding at least a portion of the sensor comprises wound fluid.
30. The device of claim 1, further comprising electronics operably connected to the sensor and adapted for detecting a signal from the sensor, wherein the signal is indicative of a quantity of analyte within the host.
31. The device of claim 1, further comprising a housing adapted for placement adjacent to the host's skin, wherein at least a portion of the electronics are disposed in the housing.
32. The device of claim 1, wherein the sensor is adapted for short-term implantation.
33. The device of claim 1, wherein the sensor is a transcutaneous sensor.
34. An analyte sensing device adapted for implantation into a host's tissue, comprising: a sensor for measuring an analyte in the host, wherein the sensor comprises a biointerface configured to irritate a surrounding in vivo environment.
35. The device of claim 34, wherein the biointerface comprises a shedding layer.
36. The device of claim 34, wherein the biointerface comprises a roughened surface.
37. The device of claim 34, wherein the biointerface comprises an irritating superstructure.
38. The device of claim 37, wherein the irritating superstructure comprises a coiled silver wire.
39. The device of claim 34, wherein the biointerface comprises an irregular surface.
40. The device of claim 34, wherein the biointerface comprises a biodegradable material.
41. The device of claim 40, wherein the biodegradable material is a biodegradable polymer.
42. The claim of 40, wherein the biodegradable polymer comprises an irritating polymer.
43. The device of claim 34, wherein the biointerface comprises a bioactive agent.
44. The device of claim 43, wherein the bioactive agent is selected from the group consisting of an anti-barrier cell agent, an anti-infective agent, a necrosing agent, an inflammatory agent, a growth factor, an angiogenic factor, an adjuvant, an antiplatelet agent, an anticoagulant, an ACE inhibitor, a cytotoxic agent, a vascularization compound, an anti-sense molecule, an enzyme, a metal, a liydrophilic biodegradable polymer, a glycolic acid-based polymer, a lactic acid-based polymer, polyethylene oxide, silver, and combinations thereof.
45. The device of claim 34, wherein the sensor is configured to measure a signal that is indicative of a quantity of the analyte within a fluid surrounding at least a portion of the sensor.
46. The device of claim 34, wherein the fluid surrounding at least a portion of the sensor comprises wound fluid.
47. The device of claim 34, further comprising electronics operably connected to the sensor and adapted for detecting a signal from the sensor, wherein the signal is indicative of a quantity of the analyte within the host.
48. The device of claim 34, further comprising a housing adapted for placement adjacent to the host's skin, wherein at least a portion of the electronics are disposed in the housing.
49. The device of claim 34, wherein the sensor is adapted for short-term implantation
50. The device of claim 34, wherein the sensor is a transcutaneous sensor.
51. An analyte sensing device adapted for implantation into a host's tissue, comprising: a sensor for measuring an analyte in a host, wherein the sensor comprises a biointerface configured to suppress wound healing around at least a portion of the sensor in vivo.
52. The device of claim 51, wherein the biointerface comprises a scavenging agent.
53. The device of claim 51 , wherein the biointerface comprises a bioactive agent.
54. The device of claim 53, wherein the bioactive agent is selected from the group consisting of an anti-inflammatory agent, an anti-infective agent, an anesthetic, a growth factor, an angiogenic factor, an immunosuppressive agent, an antiplatelet agent, an anticoagulant, a scavenging agent, an anti-histamine, and combinations thereof.
55. The device of claim 53, wherein the bioactive agent comprises an antihistamine.
56. The device of claim 51, wherein the biointerface comprises an architecture configured to suppress wounding.
57. The device of claim 51, wherein the biointerface comprises an antiinflammatory architecture.
58. The device of claim 51, wherein the biointerface comprises a proinflammatory architecture.
59. The device of claim 51, wherein the biointerface comprises an artificial protective coating.
60. The device of claim 59, wherein the artificial protective coating comprises a substance selected from the group consisting of albumin, fibrin, collagen, endothelial cells, wound closure chemicals, blood products, platelet-rich plasma, growth factors, and combinations thereof.
61. The device of claim 51, wherein the sensor is configured to measure a signal that is indicative of a quantity of the analyte within a fluid surrounding at least a portion of the sensor.
.
62. The device of claim 61, wherein the fluid surrounding at least a portion of the sensor comprises wound fluid.
63. The device of claim 51, further comprising electronics operably connected to the sensor and adapted for detecting a signal from the sensor, wherein the signal is indicative of a quantity of the analyte within the host.
64. The device of claim 51, further comprising a housing adapted for placement adjacent to the host's skin, wherein at least a portion of the electronics are disposed in the housing.
65. The device of claim 51, wherein the sensor is adapted for short-term implantation
66. The device of claim 51 , wherein the sensor is a transcutaneous sensor.
67. A method for detecting an analyte in a host, comprising: providing an analyte sensing device adapted for transcutaneous insertion into the host, the device comprising a sensor for measuring the analyte in the host, wherein the sensor is configured to reduce noise in vivo; inserting the sensor through the host's skin and into the host; waiting a first period of time, during which first period of time the sensor remains in the host, wherein the first period of time is sufficient for at least partial wound healing to occur; initiating a sensor function; and detecting a signal from the sensor, wherein the signal is indicative of a concentration of an analyte in the host.
68. The method of claim 67, wherein the first time period is at least about 1 hour.
69. The method of claim 67, wherein the first time period is at least about 24 hours.
70. The method of claim 67, wherein the first period of time is from about 1 hour to about 48 hours.
71. The method of claim 67, further comprising a step of waiting a second period of time during which the sensor remains in the host, wherein the step of waiting a second period of time is conducted after the step of initiating a sensor function and before the step of detecting a signal from the sensor.
72. The method of claim 71, wherein the second period of time is at least about 1 hour.
73. The method of claim 71 , wherein the second period of time is at least about 24 hours.
74. The method of claim 71, wherein the second period of time is from about 1 hour to about 48 hours.
PCT/US2006/031496 2004-07-13 2006-08-10 Analyte sensor WO2007136390A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US58780004P 2004-07-13 2004-07-13
US58778704P 2004-07-13 2004-07-13
US61476404P 2004-09-30 2004-09-30
US61468304P 2004-09-30 2004-09-30
US11/077,715 US7497827B2 (en) 2004-07-13 2005-03-10 Transcutaneous analyte sensor
US68392305P 2005-05-23 2005-05-23
US11/439,630 2006-05-23
US11/439,630 US10022078B2 (en) 2004-07-13 2006-05-23 Analyte sensor

Publications (1)

Publication Number Publication Date
WO2007136390A1 true WO2007136390A1 (en) 2007-11-29

Family

ID=37695272

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2006/019889 WO2006127694A2 (en) 2004-07-13 2006-05-23 Analyte sensor
PCT/US2006/031496 WO2007136390A1 (en) 2004-07-13 2006-08-10 Analyte sensor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2006/019889 WO2006127694A2 (en) 2004-07-13 2006-05-23 Analyte sensor

Country Status (2)

Country Link
US (9) US10022078B2 (en)
WO (2) WO2006127694A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968450A (en) * 2010-09-29 2011-02-09 重庆大学 Embedded porphyrin sensor array-based saliva sugar and urine sugar detector
DE102016204541A1 (en) * 2016-03-18 2017-09-21 Technische Universität Dresden Method and device for the temporal and locally resolved detection of substance concentration in fluids

Families Citing this family (389)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593852A (en) * 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
JPH04278450A (en) * 1991-03-04 1992-10-05 Adam Heller Biosensor and method for analyzing subject
US9155496B2 (en) 1997-03-04 2015-10-13 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7657297B2 (en) * 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US7899511B2 (en) 2004-07-13 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7192450B2 (en) 2003-05-21 2007-03-20 Dexcom, Inc. Porous membranes for use with implantable devices
US6862465B2 (en) 1997-03-04 2005-03-01 Dexcom, Inc. Device and method for determining analyte levels
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US6134461A (en) 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
EP1397068A2 (en) 2001-04-02 2004-03-17 Therasense, Inc. Blood glucose tracking apparatus and methods
US7033371B2 (en) 2001-06-12 2006-04-25 Pelikan Technologies, Inc. Electric lancet actuator
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
CA2448902C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US10022078B2 (en) * 2004-07-13 2018-07-17 Dexcom, Inc. Analyte sensor
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US9795334B2 (en) * 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7813780B2 (en) 2005-12-13 2010-10-12 Medtronic Minimed, Inc. Biosensors and methods for making and using them
US20070227907A1 (en) 2006-04-04 2007-10-04 Rajiv Shah Methods and materials for controlling the electrochemistry of analyte sensors
US7993108B2 (en) 2002-10-09 2011-08-09 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
DE60336834D1 (en) 2002-10-09 2011-06-01 Abbott Diabetes Care Inc FUEL FEEDING DEVICE, SYSTEM AND METHOD
US7727181B2 (en) * 2002-10-09 2010-06-01 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
US9237865B2 (en) 2002-10-18 2016-01-19 Medtronic Minimed, Inc. Analyte sensors and methods for making and using them
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
AU2003303597A1 (en) 2002-12-31 2004-07-29 Therasense, Inc. Continuous glucose monitoring system and methods of use
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US7587287B2 (en) 2003-04-04 2009-09-08 Abbott Diabetes Care Inc. Method and system for transferring analyte test data
US7182738B2 (en) 2003-04-23 2007-02-27 Marctec, Llc Patient monitoring apparatus and method for orthosis and other devices
US7679407B2 (en) 2003-04-28 2010-03-16 Abbott Diabetes Care Inc. Method and apparatus for providing peak detection circuitry for data communication systems
US7875293B2 (en) * 2003-05-21 2011-01-25 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
ES2347248T3 (en) 2003-05-30 2010-10-27 Pelikan Technologies Inc. PROCEDURE AND APPLIANCE FOR FLUID INJECTION.
WO2004107964A2 (en) 2003-06-06 2004-12-16 Pelikan Technologies, Inc. Blood harvesting device with electronic control
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US8460243B2 (en) 2003-06-10 2013-06-11 Abbott Diabetes Care Inc. Glucose measuring module and insulin pump combination
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US8071028B2 (en) * 2003-06-12 2011-12-06 Abbott Diabetes Care Inc. Method and apparatus for providing power management in data communication systems
US7722536B2 (en) 2003-07-15 2010-05-25 Abbott Diabetes Care Inc. Glucose measuring device integrated into a holster for a personal area network device
EP1648298A4 (en) 2003-07-25 2010-01-13 Dexcom Inc Oxygen enhancing membrane systems for implantable devices
JP2007500336A (en) 2003-07-25 2007-01-11 デックスコム・インコーポレーテッド Electrode system for electrochemical sensors
US7494465B2 (en) 2004-07-13 2009-02-24 Dexcom, Inc. Transcutaneous analyte sensor
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US20100168657A1 (en) 2003-08-01 2010-07-01 Dexcom, Inc. System and methods for processing analyte sensor data
US7276029B2 (en) 2003-08-01 2007-10-02 Dexcom, Inc. System and methods for processing analyte sensor data
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US20050090607A1 (en) * 2003-10-28 2005-04-28 Dexcom, Inc. Silicone composition for biocompatible membrane
US7299082B2 (en) 2003-10-31 2007-11-20 Abbott Diabetes Care, Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
USD914881S1 (en) 2003-11-05 2021-03-30 Abbott Diabetes Care Inc. Analyte sensor electronic mount
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
EP2239567B1 (en) 2003-12-05 2015-09-02 DexCom, Inc. Calibration techniques for a continuous analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US8774886B2 (en) 2006-10-04 2014-07-08 Dexcom, Inc. Analyte sensor
EP1706026B1 (en) 2003-12-31 2017-03-01 Sanofi-Aventis Deutschland GmbH Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
EP1718198A4 (en) 2004-02-17 2008-06-04 Therasense Inc Method and system for providing data communication in continuous glucose monitoring and management system
US20050245799A1 (en) * 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
CA2572455C (en) 2004-06-04 2014-10-28 Therasense, Inc. Diabetes care host-client architecture and data management system
US20060020192A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20080242961A1 (en) * 2004-07-13 2008-10-02 Dexcom, Inc. Transcutaneous analyte sensor
US7640048B2 (en) 2004-07-13 2009-12-29 Dexcom, Inc. Analyte sensor
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US20090082693A1 (en) * 2004-12-29 2009-03-26 Therasense, Inc. Method and apparatus for providing temperature sensor module in a data communication system
US9398882B2 (en) * 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US8613703B2 (en) 2007-05-31 2013-12-24 Abbott Diabetes Care Inc. Insertion devices and methods
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US9636450B2 (en) * 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US8652831B2 (en) * 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
EP1835848A4 (en) * 2004-12-30 2009-07-29 Pelikan Technologies Inc Method and apparatus for analyte measurement test time
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US20090076360A1 (en) 2007-09-13 2009-03-19 Dexcom, Inc. Transcutaneous analyte sensor
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
CA2601441A1 (en) 2005-03-21 2006-09-28 Abbott Diabetes Care Inc. Method and system for providing integrated medication infusion and analyte monitoring system
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US8060174B2 (en) 2005-04-15 2011-11-15 Dexcom, Inc. Analyte sensing biointerface
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US7768408B2 (en) 2005-05-17 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US7620437B2 (en) 2005-06-03 2009-11-17 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
CN102440785A (en) 2005-08-31 2012-05-09 弗吉尼亚大学专利基金委员会 Sensor signal processing method and sensor signal processing device
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US7756561B2 (en) 2005-09-30 2010-07-13 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US7583190B2 (en) 2005-10-31 2009-09-01 Abbott Diabetes Care Inc. Method and apparatus for providing data communication in data monitoring and management systems
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
CA2636034A1 (en) * 2005-12-28 2007-10-25 Abbott Diabetes Care Inc. Medical device insertion
US9757061B2 (en) 2006-01-17 2017-09-12 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7736310B2 (en) 2006-01-30 2010-06-15 Abbott Diabetes Care Inc. On-body medical device securement
US8344966B2 (en) 2006-01-31 2013-01-01 Abbott Diabetes Care Inc. Method and system for providing a fault tolerant display unit in an electronic device
US9101279B2 (en) 2006-02-15 2015-08-11 Virtual Video Reality By Ritchey, Llc Mobile user borne brain activity data and surrounding environment data correlation system
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US7826879B2 (en) * 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7981034B2 (en) 2006-02-28 2011-07-19 Abbott Diabetes Care Inc. Smart messages and alerts for an infusion delivery and management system
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US9339217B2 (en) 2011-11-25 2016-05-17 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8583205B2 (en) 2008-03-28 2013-11-12 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US8224415B2 (en) * 2009-01-29 2012-07-17 Abbott Diabetes Care Inc. Method and device for providing offset model based calibration for analyte sensor
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US8219173B2 (en) 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US7618369B2 (en) 2006-10-02 2009-11-17 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US7801582B2 (en) * 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US7630748B2 (en) * 2006-10-25 2009-12-08 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
WO2007120381A2 (en) 2006-04-14 2007-10-25 Dexcom, Inc. Analyte sensor
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US20080004601A1 (en) * 2006-06-28 2008-01-03 Abbott Diabetes Care, Inc. Analyte Monitoring and Therapy Management System and Methods Therefor
US9119582B2 (en) 2006-06-30 2015-09-01 Abbott Diabetes Care, Inc. Integrated analyte sensor and infusion device and methods therefor
US8206296B2 (en) * 2006-08-07 2012-06-26 Abbott Diabetes Care Inc. Method and system for providing integrated analyte monitoring and infusion system therapy management
US8932216B2 (en) 2006-08-07 2015-01-13 Abbott Diabetes Care Inc. Method and system for providing data management in integrated analyte monitoring and infusion system
EP1892877B1 (en) * 2006-08-25 2008-12-03 Alcatel Lucent Digital signal receiver with Q-monitor
WO2008042673A1 (en) * 2006-09-29 2008-04-10 Philometron, Inc. Foreign body response detection in an implanted device
WO2008041984A1 (en) * 2006-10-04 2008-04-10 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
AU2007303239A1 (en) 2006-10-04 2008-04-10 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7831287B2 (en) 2006-10-04 2010-11-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8135548B2 (en) 2006-10-26 2012-03-13 Abbott Diabetes Care Inc. Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors
US8579853B2 (en) 2006-10-31 2013-11-12 Abbott Diabetes Care Inc. Infusion devices and methods
US20080161666A1 (en) * 2006-12-29 2008-07-03 Abbott Diabetes Care, Inc. Analyte devices and methods
US8121857B2 (en) * 2007-02-15 2012-02-21 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US8930203B2 (en) * 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
EP2129285B1 (en) 2007-03-26 2014-07-23 Dexcom, Inc. Analyte sensor
TW200912298A (en) * 2007-04-12 2009-03-16 Arkray Inc Analyzing tool
EP2137637A4 (en) 2007-04-14 2012-06-20 Abbott Diabetes Care Inc Method and apparatus for providing data processing and control in medical communication system
ES2784736T3 (en) 2007-04-14 2020-09-30 Abbott Diabetes Care Inc Procedure and apparatus for providing data processing and control in a medical communication system
CA2683721C (en) * 2007-04-14 2017-05-23 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
EP2146627B1 (en) 2007-04-14 2020-07-29 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
EP2146625B1 (en) 2007-04-14 2019-08-14 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9204827B2 (en) 2007-04-14 2015-12-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
EP1987761B1 (en) * 2007-05-03 2019-10-23 F. Hoffmann-La Roche AG Tube-like sensor for proving an analyte
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US7996158B2 (en) 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US10002233B2 (en) 2007-05-14 2018-06-19 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8133553B2 (en) 2007-06-18 2012-03-13 Zimmer, Inc. Process for forming a ceramic layer
US8309521B2 (en) 2007-06-19 2012-11-13 Zimmer, Inc. Spacer with a coating thereon for use with an implant device
CN103251414B (en) 2007-06-21 2017-05-24 雅培糖尿病护理公司 Device for detecting analyte level
JP5680960B2 (en) 2007-06-21 2015-03-04 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Health care device and method
US8641618B2 (en) * 2007-06-27 2014-02-04 Abbott Diabetes Care Inc. Method and structure for securing a monitoring device element
US8085151B2 (en) 2007-06-28 2011-12-27 Abbott Diabetes Care Inc. Signal converting cradle for medical condition monitoring and management system
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US7768386B2 (en) 2007-07-31 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
DE102007037166A1 (en) * 2007-08-07 2009-02-19 Endress + Hauser Flowtec Ag gauge
EP4098177A1 (en) 2007-10-09 2022-12-07 DexCom, Inc. Integrated insulin delivery system with continuous glucose sensor
US20110230973A1 (en) * 2007-10-10 2011-09-22 Zimmer, Inc. Method for bonding a tantalum structure to a cobalt-alloy substrate
US8608049B2 (en) * 2007-10-10 2013-12-17 Zimmer, Inc. Method for bonding a tantalum structure to a cobalt-alloy substrate
US8771500B2 (en) * 2007-10-22 2014-07-08 The University Of Connecticut Glucose sensors and methods of manufacture thereof
US8216138B1 (en) 2007-10-23 2012-07-10 Abbott Diabetes Care Inc. Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
IES20070774A2 (en) * 2007-10-24 2008-12-24 Nat Univ Ireland Maynooth Monitoring target endogenous species in the brain
WO2009055736A1 (en) 2007-10-25 2009-04-30 Dexcom, Inc. Systems and methods for processing sensor data
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
EP2055369A1 (en) * 2007-10-30 2009-05-06 Sensile Pat AG Sensitively permeable coated membrane
EP2212384B1 (en) * 2007-11-20 2014-07-16 Dow Corning Corporation Article comprising fibers and a method of forming the same
US20090164190A1 (en) * 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Physiological condition simulation device and method
US20090164239A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
US8241697B2 (en) 2007-12-20 2012-08-14 Abbott Point Of Care Inc. Formation of immobilized biological layers for sensing
US8268604B2 (en) * 2007-12-20 2012-09-18 Abbott Point Of Care Inc. Compositions for forming immobilized biological layers for sensing
US20090187256A1 (en) * 2008-01-21 2009-07-23 Zimmer, Inc. Method for forming an integral porous region in a cast implant
US20090198286A1 (en) * 2008-02-05 2009-08-06 Zimmer, Inc. Bone fracture fixation system
CA2715624A1 (en) * 2008-02-20 2009-08-27 Dexcom, Inc. Continuous medicament sensor system for in vivo use
CA2715628A1 (en) 2008-02-21 2009-08-27 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
US20090247856A1 (en) * 2008-03-28 2009-10-01 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
WO2009126942A2 (en) 2008-04-10 2009-10-15 Abbott Diabetes Care Inc. Method and system for sterilizing an analyte sensor
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US20090294277A1 (en) * 2008-05-30 2009-12-03 Abbott Diabetes Care, Inc. Method and system for producing thin film biosensors
US20090300616A1 (en) * 2008-05-30 2009-12-03 Abbott Diabetes Care, Inc. Automated task execution for an analyte monitoring system
US8591410B2 (en) 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
WO2010009172A1 (en) 2008-07-14 2010-01-21 Abbott Diabetes Care Inc. Closed loop control system interface and methods
EP2149957B1 (en) * 2008-07-30 2017-06-14 Harman Becker Automotive Systems GmbH Priority based power distribution arrangement
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US8622988B2 (en) 2008-08-31 2014-01-07 Abbott Diabetes Care Inc. Variable rate closed loop control and methods
EP2326944B1 (en) 2008-09-19 2020-08-19 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US9326707B2 (en) 2008-11-10 2016-05-03 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
EP2355705A4 (en) * 2008-11-11 2013-12-25 Isense Corp Long-term implantable biosensor
US20110244248A1 (en) * 2008-12-11 2011-10-06 Liu ying jun Coating and a method of coating
US8685093B2 (en) * 2009-01-23 2014-04-01 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US8126736B2 (en) * 2009-01-23 2012-02-28 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8560082B2 (en) 2009-01-30 2013-10-15 Abbott Diabetes Care Inc. Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
US20100198034A1 (en) 2009-02-03 2010-08-05 Abbott Diabetes Care Inc. Compact On-Body Physiological Monitoring Devices and Methods Thereof
US20100213057A1 (en) 2009-02-26 2010-08-26 Benjamin Feldman Self-Powered Analyte Sensor
US20100247775A1 (en) * 2009-03-31 2010-09-30 Abbott Diabetes Care Inc. Precise Fluid Dispensing Method and Device
WO2010121084A1 (en) 2009-04-15 2010-10-21 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
TW201041612A (en) * 2009-04-21 2010-12-01 Sensors For Med & Science Inc Protective shell for an in vivo sensor made from resorbable polymer
US9226701B2 (en) 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
WO2010129375A1 (en) 2009-04-28 2010-11-11 Abbott Diabetes Care Inc. Closed loop blood glucose control algorithm analysis
EP2425209A4 (en) 2009-04-29 2013-01-09 Abbott Diabetes Care Inc Method and system for providing real time analyte sensor calibration with retrospective backfill
WO2010127187A1 (en) 2009-04-29 2010-11-04 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US8377316B2 (en) * 2009-04-30 2013-02-19 Xerox Corporation Structure and method for creating surface texture of compliant coatings on piezo ink jet imaging drums
WO2010138856A1 (en) 2009-05-29 2010-12-02 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
EP2448485B1 (en) 2009-07-02 2021-08-25 Dexcom, Inc. Analyte sensor
US9351677B2 (en) 2009-07-02 2016-05-31 Dexcom, Inc. Analyte sensor with increased reference capacity
ES2776474T3 (en) 2009-07-23 2020-07-30 Abbott Diabetes Care Inc Continuous analyte measurement system
EP2456351B1 (en) 2009-07-23 2016-10-12 Abbott Diabetes Care, Inc. Real time management of data relating to physiological control of glucose levels
WO2011014851A1 (en) 2009-07-31 2011-02-03 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
WO2011026148A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
WO2011026147A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte signal processing device and methods
EP3988470B1 (en) 2009-08-31 2023-06-28 Abbott Diabetes Care Inc. Displays for a medical device
CA2765712A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Medical devices and methods
US9320461B2 (en) 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
EP2482724A2 (en) * 2009-09-30 2012-08-08 Dexcom, Inc. Transcutaneous analyte sensor
WO2011041531A1 (en) 2009-09-30 2011-04-07 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
EP2314739A1 (en) * 2009-10-22 2011-04-27 Gyeong-Man Kim Anti-migration casing for transponders
US8185181B2 (en) 2009-10-30 2012-05-22 Abbott Diabetes Care Inc. Method and apparatus for detecting false hypoglycemic conditions
US8660628B2 (en) 2009-12-21 2014-02-25 Medtronic Minimed, Inc. Analyte sensors comprising blended membrane compositions and methods for making and using them
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
WO2011112753A1 (en) 2010-03-10 2011-09-15 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
CA3135001A1 (en) 2010-03-24 2011-09-29 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US10092229B2 (en) 2010-06-29 2018-10-09 Abbott Diabetes Care Inc. Calibration of analyte measurement system
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US20120165636A1 (en) * 2010-07-22 2012-06-28 Feldman Benjamin J Systems and Methods for Improved In Vivo Analyte Sensor Function
FR2963989B1 (en) * 2010-08-19 2016-03-11 Univ Joseph Fourier BIOPILE WITH DIRECT TRANSFER
WO2012048168A2 (en) 2010-10-07 2012-04-12 Abbott Diabetes Care Inc. Analyte monitoring devices and methods
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
CA3177983A1 (en) 2011-02-28 2012-11-15 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
EP2685884B1 (en) * 2011-03-15 2020-09-23 Senseonics, Incorporated Integrated catalytic protection of oxidation sensitive materials
EP2693945B1 (en) 2011-04-08 2019-03-13 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
WO2012142502A2 (en) 2011-04-15 2012-10-18 Dexcom Inc. Advanced analyte sensor calibration and error detection
KR101952468B1 (en) * 2011-04-18 2019-02-26 노비오센스 비.브이. Electrochemical biosensor based on hollow coils
US9258670B2 (en) 2011-06-10 2016-02-09 Aliphcom Wireless enabled cap for a data-capable device
US9069380B2 (en) 2011-06-10 2015-06-30 Aliphcom Media device, application, and content management using sensory input
US20120315382A1 (en) * 2011-06-10 2012-12-13 Aliphcom Component protective overmolding using protective external coatings
US8446275B2 (en) 2011-06-10 2013-05-21 Aliphcom General health and wellness management method and apparatus for a wellness application using data from a data-capable band
WO2013044153A1 (en) 2011-09-23 2013-03-28 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9622691B2 (en) 2011-10-31 2017-04-18 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
WO2013066873A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
JP6443802B2 (en) 2011-11-07 2018-12-26 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Analyte monitoring apparatus and method
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
EP4344633A2 (en) 2011-12-11 2024-04-03 Abbott Diabetes Care, Inc. Analyte sensor methods
US20130267812A1 (en) 2012-04-04 2013-10-10 Dexcom, Inc. Transcutaneous analyte sensors, applicators therefor, and associated methods
US10453573B2 (en) 2012-06-05 2019-10-22 Dexcom, Inc. Dynamic report building
US10881339B2 (en) 2012-06-29 2021-01-05 Dexcom, Inc. Use of sensor redundancy to detect sensor failures
US10598627B2 (en) 2012-06-29 2020-03-24 Dexcom, Inc. Devices, systems, and methods to compensate for effects of temperature on implantable sensors
US20140012511A1 (en) 2012-07-09 2014-01-09 Dexcom, Inc. Systems and methods for leveraging smartphone features in continuous glucose monitoring
EP2890297B1 (en) 2012-08-30 2018-04-11 Abbott Diabetes Care, Inc. Dropout detection in continuous analyte monitoring data during data excursions
EP2895071B1 (en) * 2012-09-17 2017-05-17 Brains Online Holding B.V. Rod shaped implantable biosensor
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
WO2014052136A1 (en) 2012-09-26 2014-04-03 Abbott Diabetes Care Inc. Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
US9788765B2 (en) 2012-09-28 2017-10-17 Dexcom, Inc. Zwitterion surface modifications for continuous sensors
US20140213866A1 (en) 2012-10-12 2014-07-31 Dexcom, Inc. Sensors for continuous analyte monitoring, and related methods
US20140107450A1 (en) * 2012-10-12 2014-04-17 Dexcom, Inc. Sensors for continuous analyte monitoring, and related methods
US20140129151A1 (en) 2012-11-07 2014-05-08 Dexcom, Inc. Systems and methods for managing glycemic variability
US9585563B2 (en) 2012-12-31 2017-03-07 Dexcom, Inc. Remote monitoring of analyte measurements
US9730621B2 (en) 2012-12-31 2017-08-15 Dexcom, Inc. Remote monitoring of analyte measurements
WO2014108191A1 (en) * 2013-01-10 2014-07-17 Evonik Industries Ag Electronic device unit comprising a polymer coating
WO2014108189A1 (en) * 2013-01-10 2014-07-17 Evonik Industries Ag Insertion tool for electronic device units
EP3401818B1 (en) 2013-03-14 2023-12-06 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US10335075B2 (en) 2013-03-14 2019-07-02 Dexcom, Inc. Advanced calibration for analyte sensors
US9445445B2 (en) 2013-03-14 2016-09-13 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US10433773B1 (en) 2013-03-15 2019-10-08 Abbott Diabetes Care Inc. Noise rejection methods and apparatus for sparsely sampled analyte sensor data
US10076285B2 (en) 2013-03-15 2018-09-18 Abbott Diabetes Care Inc. Sensor fault detection using analyte sensor data pattern comparison
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
WO2014205205A1 (en) 2013-06-19 2014-12-24 Senseonics, Incorporated A remotely powered sensor with antenna location independent of sensing site
US9963556B2 (en) 2013-09-18 2018-05-08 Senseonics, Incorporated Critical point drying of hydrogels in analyte sensors
US11229382B2 (en) 2013-12-31 2022-01-25 Abbott Diabetes Care Inc. Self-powered analyte sensor and devices using the same
US20170185748A1 (en) 2014-03-30 2017-06-29 Abbott Diabetes Care Inc. Method and Apparatus for Determining Meal Start and Peak Events in Analyte Monitoring Systems
DK3128902T3 (en) 2014-04-10 2023-12-04 Dexcom Inc SENSOR FOR CONTINUOUS ANALYTE MONITORING
US20150289788A1 (en) 2014-04-10 2015-10-15 Dexcom, Inc. Sensors for continuous analyte monitoring, and related methods
US10441717B2 (en) 2014-04-15 2019-10-15 Insulet Corporation Monitoring a physiological parameter associated with tissue of a host to confirm delivery of medication
CA2990828A1 (en) * 2014-06-25 2015-12-30 William L. Hunter Polymers, systems and methods for using and monitoring polymers for use in medical polymers, implants, and procedures
US10318575B2 (en) * 2014-11-14 2019-06-11 Zorroa Corporation Systems and methods of building and using an image catalog
JP6717829B2 (en) * 2014-12-18 2020-07-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Hydration status indicator
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
WO2016183493A1 (en) 2015-05-14 2016-11-17 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
EP3319518A4 (en) 2015-07-10 2019-03-13 Abbott Diabetes Care Inc. System, device and method of dynamic glucose profile response to physiological parameters
US10368788B2 (en) * 2015-07-23 2019-08-06 California Institute Of Technology System and methods for wireless drug delivery on command
AU2016341945B2 (en) 2015-10-21 2019-06-13 Dexcom, Inc. Transcutaneous analyte sensors, applicators therefor, and associated methods
US20180353114A1 (en) * 2015-12-18 2018-12-13 Macquarie University Biological detection system
EP3397140A4 (en) 2015-12-28 2019-08-21 Dexcom, Inc. Systems and methods for remote and host monitoring communications
US20170188905A1 (en) 2015-12-30 2017-07-06 Dexcom, Inc. Biointerface layer for analyte sensors
US10568552B2 (en) 2016-03-31 2020-02-25 Dexcom, Inc. Systems and methods for display device and sensor electronics unit communication
US10354603B2 (en) * 2016-06-08 2019-07-16 Iris Technological Design Incorporated Computer display screen for concussion patients
CN115444410A (en) 2017-01-23 2022-12-09 雅培糖尿病护理公司 Applicator and assembly for inserting an in vivo analyte sensor
US11596330B2 (en) 2017-03-21 2023-03-07 Abbott Diabetes Care Inc. Methods, devices and system for providing diabetic condition diagnosis and therapy
US10669520B2 (en) * 2017-06-15 2020-06-02 Timothy Ray Ho Automated bioreactor sampling and glucose monitoring system
EP4008240A1 (en) 2017-06-23 2022-06-08 Dexcom, Inc. Transcutaneous analyte sensors, applicators therefor, and associated methods
US11331019B2 (en) * 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold
CN109419515B (en) 2017-08-23 2023-03-24 心脏起搏器股份公司 Implantable chemical sensor with staged activation
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US11382540B2 (en) 2017-10-24 2022-07-12 Dexcom, Inc. Pre-connected analyte sensors
US11241532B2 (en) 2018-08-29 2022-02-08 Insulet Corporation Drug delivery system with sensor having optimized communication and infusion site
US11076786B2 (en) * 2018-10-01 2021-08-03 The Florida International University Board Of Trustees Wound monitoring sensors and use thereof
USD1002852S1 (en) 2019-06-06 2023-10-24 Abbott Diabetes Care Inc. Analyte sensor device
US11478194B2 (en) 2020-07-29 2022-10-25 Biolinq Incorporated Continuous analyte monitoring system with microneedle array
USD999913S1 (en) 2020-12-21 2023-09-26 Abbott Diabetes Care Inc Analyte sensor inserter
US20220202322A1 (en) * 2020-12-31 2022-06-30 Abbott Diabetes Care Inc. Drug release compositions and methods for delivery
CN116997292A (en) 2021-04-02 2023-11-03 德克斯康公司 Personalized modeling of blood glucose concentration affected by personalized sensor characteristics and personalized physiological characteristics
SE545874C2 (en) 2021-05-08 2024-02-27 Biolinq Incorporated Fault detection for microneedle array based continuous analyte monitoring device
WO2022266070A1 (en) 2021-06-14 2022-12-22 Preh Holding, Llc Connected body surface care module
AU2022337136A1 (en) 2021-09-01 2024-03-21 Integrated Medical Sensors, Inc. Wired implantable monolithic integrated sensor circuit
WO2024050124A1 (en) 2022-09-02 2024-03-07 Dexcom, Inc. Devices and methods for measuring a concentration of a target analyte in a biological fluid in vivo

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986271A (en) * 1989-07-19 1991-01-22 The University Of New Mexico Vivo refillable glucose sensor
US5165407A (en) * 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
US20020151816A1 (en) * 2001-01-22 2002-10-17 Rich Collin A. Wireless MEMS capacitive sensor for physiologic parameter measurement
US20040008761A1 (en) * 2002-07-12 2004-01-15 Kelliher Timothy L. Faster modem method and apparatus
US6804544B2 (en) * 1995-11-22 2004-10-12 Minimed, Inc. Detection of biological molecules using chemical amplification and optical sensors
US20050033132A1 (en) * 1997-03-04 2005-02-10 Shults Mark C. Analyte measuring device

Family Cites Families (1420)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19852258A1 (en) 1998-11-11 2000-05-18 Agfa Gevaert Ag Radiation-sensitive recording material for the production of waterless offset printing plates
US1564641A (en) 1922-04-10 1925-12-08 Chicago Miniature Lamp Works Detector for wireless systems
US1670285A (en) 1926-07-03 1928-05-15 William M Folberth Windshield cleaner
US2057029A (en) 1935-05-08 1936-10-13 Cameron Machine Co Machine for combining and winding two or more webs of flexible material
US2402306A (en) 1943-10-07 1946-06-18 Turkel Henry Retaining guard guide for needles
US2497894A (en) * 1944-10-14 1950-02-21 Nat Standard Co Method of electroplating fine wire of low elastic limit
US2719797A (en) 1950-05-23 1955-10-04 Baker & Co Inc Platinizing tantalum
US3210578A (en) 1962-01-12 1965-10-05 Westinghouse Electric Corp Multispeed motor connector
BE629985A (en) 1962-11-29
US3381371A (en) 1965-09-27 1968-05-07 Sanders Associates Inc Method of constructing lightweight antenna
US3556950A (en) 1966-07-15 1971-01-19 Ibm Method and apparatus for automatic electrochemical analysis
US3562352A (en) 1968-09-06 1971-02-09 Avco Corp Polysiloxane-polyurethane block copolymers
JPS4810633B1 (en) 1969-04-25 1973-04-05
SE392582B (en) 1970-05-21 1977-04-04 Gore & Ass PROCEDURE FOR THE PREPARATION OF A POROST MATERIAL, BY EXPANDING AND STRETCHING A TETRAFLUORETENE POLYMER PREPARED IN AN PASTE-FORMING EXTENSION PROCEDURE
USRE31916E (en) 1970-11-10 1985-06-18 Becton Dickinson & Company Electrochemical detection cell
US3933593A (en) * 1971-02-22 1976-01-20 Beckman Instruments, Inc. Rate sensing batch analysis method
US3791871A (en) * 1971-04-14 1974-02-12 Lockheed Aircraft Corp Electrochemical cell
US3728678A (en) * 1971-09-03 1973-04-17 Bell Telephone Labor Inc Error-correcting systems utilizing rate {178 {11 diffuse codes
CH559912A5 (en) 1971-09-09 1975-03-14 Hoffmann La Roche
GB1412983A (en) 1971-11-30 1975-11-05 Debell & Richardson Method of producing porous plastic materials
US3943918A (en) 1971-12-02 1976-03-16 Tel-Pac, Inc. Disposable physiological telemetric device
US3957651A (en) 1971-12-16 1976-05-18 Chemical Systems Incorporated Microporous polyester membranes and polymer assisted phase inversion process for their manufacture
US3780727A (en) 1972-02-25 1973-12-25 Hoffmann La Roche Cardiac pacer monitoring means with rate and pulse discrimination
US3775182A (en) 1972-02-25 1973-11-27 Du Pont Tubular electrochemical cell with coiled electrodes and compressed central spindle
US3874850A (en) 1972-07-24 1975-04-01 Radiometer As Blood analyzing method and apparatus
CS164231B2 (en) 1972-09-28 1975-11-07
US3838682A (en) 1972-12-29 1974-10-01 Primary Childrens Hospital Automated blood analysis system
US3908657A (en) 1973-01-15 1975-09-30 Univ Johns Hopkins System for continuous withdrawal of blood
US3826244A (en) 1973-07-20 1974-07-30 Us Health Education & Welfare Thumbtack microelectrode and method of making same
US3926760A (en) 1973-09-28 1975-12-16 Du Pont Process for electrophoretic deposition of polymer
US3898984A (en) 1974-02-04 1975-08-12 Us Navy Ambulatory patient monitoring system
US4067322A (en) 1974-07-19 1978-01-10 Johnson Joseph H Disposable, pre-gel body electrodes
US3966580A (en) 1974-09-16 1976-06-29 The University Of Utah Novel protein-immobilizing hydrophobic polymeric membrane, process for producing same and apparatus employing same
US3957613A (en) 1974-11-01 1976-05-18 General Electric Company Miniature probe having multifunctional electrodes for sensing ions and gases
US3982530A (en) 1975-04-22 1976-09-28 Egon Storch Penial appliance
US4036749A (en) 1975-04-30 1977-07-19 Anderson Donald R Purification of saline water
US3930462A (en) * 1975-05-08 1976-01-06 United Technologies Corporation Slurry dip tank
US4003621A (en) * 1975-06-16 1977-01-18 Technical Wire Products, Inc. Electrical connector employing conductive rectilinear elements
US4052754A (en) 1975-08-14 1977-10-11 Homsy Charles A Implantable structure
US3979274A (en) 1975-09-24 1976-09-07 The Yellow Springs Instrument Company, Inc. Membrane for enzyme electrodes
CH591237A5 (en) 1975-11-06 1977-09-15 Bbc Brown Boveri & Cie
US4016866A (en) 1975-12-18 1977-04-12 General Electric Company Implantable electrochemical sensor
US4040908A (en) 1976-03-12 1977-08-09 Children's Hospital Medical Center Polarographic analysis of cholesterol and other macromolecular substances
US4037563A (en) 1976-03-29 1977-07-26 John M. Pflueger Aquarium viewing window
US4024312A (en) 1976-06-23 1977-05-17 Johnson & Johnson Pressure-sensitive adhesive tape having extensible and elastic backing composed of a block copolymer
US4068660A (en) * 1976-07-12 1978-01-17 Deseret Pharmaceutical Co., Inc. Catheter placement assembly improvement
US4101395A (en) 1976-08-30 1978-07-18 Tokuyama Soda Kabushiki Kaisha Cathode-structure for electrolysis
JPS5388055A (en) 1977-01-13 1978-08-03 Toray Silicone Co Ltd Silicone rubber composition for shaft sealing
JPS5921500B2 (en) 1978-01-28 1984-05-21 東洋紡績株式会社 Enzyme membrane for oxygen electrode
US4172770A (en) 1978-03-27 1979-10-30 Technicon Instruments Corporation Flow-through electrochemical system analytical method
US4259540A (en) 1978-05-30 1981-03-31 Bell Telephone Laboratories, Incorporated Filled cables
DE2824630A1 (en) 1978-06-05 1979-12-13 Wacker Chemie Gmbh HEAT-CURABLE ORGANOPOLYSILOXANE COMPOUNDS
US4215703A (en) 1978-08-29 1980-08-05 Willson James K V Variable stiffness guide wire
US4225410A (en) 1978-12-04 1980-09-30 Technicon Instruments Corporation Integrated array of electrochemical sensors
US4255500A (en) 1979-03-29 1981-03-10 General Electric Company Vibration resistant electrochemical cell having deformed casing and method of making same
US4253469A (en) 1979-04-20 1981-03-03 The Narda Microwave Corporation Implantable temperature probe
USRE32361E (en) 1979-05-14 1987-02-24 Medtronic, Inc. Implantable telemetry transmission system for analog and digital data
JPS5627643A (en) 1979-08-14 1981-03-18 Toshiba Corp Electrochemical measuring device
US4319578A (en) * 1979-10-09 1982-03-16 General Mills, Inc. Micro pH electrode assembly for wire transmission
US4260725A (en) 1979-12-10 1981-04-07 Bausch & Lomb Incorporated Hydrophilic contact lens made from polysiloxanes which are thermally bonded to polymerizable groups and which contain hydrophilic sidechains
US4403984A (en) 1979-12-28 1983-09-13 Biotek, Inc. System for demand-based adminstration of insulin
US4369785A (en) 1980-02-21 1983-01-25 Contemporary Ocu-Flo, Inc. Surgical fluid flow system
US4686137A (en) 1980-02-29 1987-08-11 Thoratec Laboratories Corp. Moisture vapor permeable materials
US5120813A (en) 1980-02-29 1992-06-09 Th. Goldschmidt Ag Moisture vapor permeable materials
SE419903B (en) 1980-03-05 1981-08-31 Enfors Sven Olof enzyme electrode
NL8001420A (en) 1980-03-10 1981-10-01 Cordis Europ ELECTRODE COMPOSITIVE COMPOSITE, FOR AN ELECTROCHEMICAL MEASUREMENT, IN PARTICULAR AN ISFET-CONSTRUCTED COMPOSITION, AND METHOD FOR MANUFACTURING THE ASSEMBLY.
US4329993A (en) 1980-06-18 1982-05-18 American Hospital Supply Corporation Catheter with trans-luminal electrical conductor
EP0047013B1 (en) 1980-09-02 1986-01-22 Medtronic, Inc. Subcutaneously implantable lead with drug dispenser means
DE3134275C2 (en) 1980-09-10 1986-11-20 AVL AG, Schaffhausen Capillary body for a capillary reference electrode
IE51643B1 (en) 1980-10-15 1987-01-21 Smith & Nephew Ass Coated articles and materials suitable for coating
US4327725A (en) 1980-11-25 1982-05-04 Alza Corporation Osmotic device with hydrogel driving member
US4353888A (en) 1980-12-23 1982-10-12 Sefton Michael V Encapsulation of live animal cells
JPS57118152A (en) 1981-01-14 1982-07-22 Matsushita Electric Ind Co Ltd Enzyme electrode
US4436094A (en) * 1981-03-09 1984-03-13 Evreka, Inc. Monitor for continuous in vivo measurement of glucose concentration
JPS57156004A (en) 1981-03-20 1982-09-27 Nitto Electric Ind Co Ltd Gas separating membrane
US4826706A (en) 1981-04-29 1989-05-02 Phelps Dodge Industries, Inc. Method and apparatus for manufacturing magnet wire
US4442841A (en) * 1981-04-30 1984-04-17 Mitsubishi Rayon Company Limited Electrode for living bodies
US4990231A (en) 1981-06-12 1991-02-05 Raychem Corporation Corrosion protection system
FR2508305B1 (en) 1981-06-25 1986-04-11 Slama Gerard DEVICE FOR CAUSING A LITTLE BITE TO COLLECT A BLOOD DROP
US4378016A (en) 1981-07-15 1983-03-29 Biotek, Inc. Artificial endocrine gland containing hormone-producing cells
US4402694A (en) 1981-07-16 1983-09-06 Biotek, Inc. Body cavity access device containing a hormone source
US4419535A (en) 1981-07-31 1983-12-06 Hara Robert J O Multi-cable conduit for floors and walls
US4453537A (en) 1981-08-04 1984-06-12 Spitzer Daniel E Apparatus for powering a body implant device
DE3278334D1 (en) 1981-10-23 1988-05-19 Genetics Int Inc Sensor for components of a liquid mixture
US4431004A (en) 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
NL193256C (en) 1981-11-10 1999-04-02 Cordis Europ Sensor system.
JPS5886172A (en) 1981-11-18 1983-05-23 テルモ株式会社 Medical substance moving apparatus
US4432366A (en) 1981-11-27 1984-02-21 Cordis Corporation Reference electrode catheter
US4494950A (en) 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US4457339A (en) 1982-03-03 1984-07-03 Coulter Electronics, Inc. Multiprogrammable pinch valve module
US4403847A (en) 1982-03-29 1983-09-13 Eastman Kodak Company Electrographic transfer apparatus
FI831399L (en) 1982-04-29 1983-10-30 Agripat Sa KONTAKTLINS AV HAERDAD POLYVINYL ALCOHOL
US4493714A (en) 1982-05-06 1985-01-15 Teijin Limited Ultrathin film, process for production thereof, and use thereof for concentrating a specified gas in a gaseous mixture
FR2528693B1 (en) 1982-06-22 1985-01-11 Mabille Pierre DENTAL PROPHYLAXIS DEVICE
EP0098592A3 (en) 1982-07-06 1985-08-21 Fujisawa Pharmaceutical Co., Ltd. Portable artificial pancreas
US6248077B1 (en) 1982-07-19 2001-06-19 Edwards Lifesciences Corp. System for sensing a characteristic of fluid flowing to or from a body
DE3228551A1 (en) 1982-07-30 1984-02-02 Siemens AG, 1000 Berlin und 8000 München METHOD FOR DETERMINING SUGAR CONCENTRATION
US4571292A (en) * 1982-08-12 1986-02-18 Case Western Reserve University Apparatus for electrochemical measurements
US4579120A (en) 1982-09-30 1986-04-01 Cordis Corporation Strain relief for percutaneous lead
WO1984001715A1 (en) 1982-10-25 1984-05-10 Hellgren Lars G I Enzyme composition for therapeutical and/or non-therapeutical cleaning, the use thereof and preparation of the composition
US5059654A (en) 1983-02-14 1991-10-22 Cuno Inc. Affinity matrices of modified polysaccharide supports
US4614514A (en) 1983-02-16 1986-09-30 M/A Com, Inc. Microwave sterilizer
US4795435A (en) 1983-02-25 1989-01-03 E. R. Squibb & Sons, Inc. Device for protecting a wound
US4506680A (en) 1983-03-17 1985-03-26 Medtronic, Inc. Drug dispensing body implantable lead
CA1219040A (en) 1983-05-05 1987-03-10 Elliot V. Plotkin Measurement of enzyme-catalysed reactions
CA1226036A (en) 1983-05-05 1987-08-25 Irving J. Higgins Analytical equipment and sensor electrodes therefor
US5682884A (en) 1983-05-05 1997-11-04 Medisense, Inc. Strip electrode with screen printing
US4484987A (en) 1983-05-19 1984-11-27 The Regents Of The University Of California Method and membrane applicable to implantable sensor
US4650547A (en) 1983-05-19 1987-03-17 The Regents Of The University Of California Method and membrane applicable to implantable sensor
US4675346A (en) 1983-06-20 1987-06-23 Loctite Corporation UV curable silicone rubber compositions
US4663824A (en) 1983-07-05 1987-05-12 Matsushita Electric Industrial Co., Ltd. Aluminum electrolytic capacitor and a manufacturing method therefor
US4538616A (en) 1983-07-25 1985-09-03 Robert Rogoff Blood sugar level sensing and monitoring transducer
US4655880A (en) 1983-08-01 1987-04-07 Case Western Reserve University Apparatus and method for sensing species, substances and substrates using oxidase
US4565666A (en) * 1983-08-03 1986-01-21 Medtronic, Inc. Method of producing combination ion selective sensing electrode
US4486290A (en) 1983-08-03 1984-12-04 Medtronic, Inc. Combination ion selective sensing electrode
US4519973A (en) 1983-08-03 1985-05-28 Medtronic, Inc. Ion selective membranes for use in ion sensing electrodes
US4565665A (en) 1983-08-03 1986-01-21 Medtronic, Inc. Flow through ion selective electrode
US4600495A (en) 1983-08-03 1986-07-15 Medtronic, Inc. Flow through ion selective electrode
US4578215A (en) 1983-08-12 1986-03-25 Micro-Circuits Company Electrical conductivity-enhancing and protecting material
US4554927A (en) 1983-08-30 1985-11-26 Thermometrics Inc. Pressure and temperature sensor
EP0143517B1 (en) 1983-09-02 1989-04-05 Minntech Corporation Implantable parenteral hyperalimentation catheter system
GB2149918A (en) 1983-11-03 1985-06-19 John Anderson Sudden infant death syndrome monitor
US4867741A (en) 1983-11-04 1989-09-19 Portnoy Harold D Physiological draining system with differential pressure and compensating valves
GB8331422D0 (en) 1983-11-24 1984-01-04 Bates W & A Ltd Mixing particulate materials
US4527999A (en) 1984-03-23 1985-07-09 Abcor, Inc. Separation membrane and method of preparing and using same
JPS60231156A (en) 1984-04-30 1985-11-16 Kuraray Co Ltd Liquid junction type reference electrode
US4753652A (en) 1984-05-04 1988-06-28 Children's Medical Center Corporation Biomaterial implants which resist calcification
US4883057A (en) 1984-05-09 1989-11-28 Research Foundation, The City University Of New York Cathodic electrochemical current arrangement with telemetric application
US4583976A (en) 1984-05-31 1986-04-22 E. R. Squibb & Sons, Inc. Catheter support
CA1258496A (en) 1984-07-30 1989-08-15 Teruyoshi Uchida Insulated noble metal wire and porous membrane as po.sub.2 bioelectrode
US4828544A (en) 1984-09-05 1989-05-09 Quotidian No. 100 Pty Limited Control of blood flow
US5030333A (en) 1984-09-13 1991-07-09 Children's Hospital Medical Center Polarographic method for measuring both analyte and oxygen with the same detecting electrode of an electroenzymatic sensor
FR2570182B1 (en) 1984-09-13 1988-04-15 Framatome Sa VALIDATION METHOD OF THE VALUE OF A PARAMETER
US5171689A (en) 1984-11-08 1992-12-15 Matsushita Electric Industrial Co., Ltd. Solid state bio-sensor
US4602922A (en) 1984-11-09 1986-07-29 Research Foundation Of State University Of New York Method of making membranes for gas separation and the composite membranes
US5235003A (en) 1985-01-04 1993-08-10 Thoratec Laboratories Corporation Polysiloxane-polylactone block copolymers
US4963595A (en) 1985-01-04 1990-10-16 Thoratec Laboratories Corporation Polysiloxane-polylactone block copolymers
US4740468A (en) 1985-02-14 1988-04-26 Syntex (U.S.A.) Inc. Concentrating immunochemical test device and method
US4577642A (en) 1985-02-27 1986-03-25 Medtronic, Inc. Drug dispensing body implantable lead employing molecular sieves and methods of fabrication
US4838281A (en) 1985-02-28 1989-06-13 Alcon Laboratories, Inc. Linear suction control system
US4958148A (en) 1985-03-22 1990-09-18 Elmwood Sensors, Inc. Contrast enhancing transparent touch panel device
US5279294A (en) 1985-04-08 1994-01-18 Cascade Medical, Inc. Medical diagnostic system
US4787398A (en) 1985-04-08 1988-11-29 Garid, Inc. Glucose medical monitoring system
US4625730A (en) 1985-04-09 1986-12-02 The Johns Hopkins University Patient ECG recording control for an automatic implantable defibrillator
US5030310A (en) 1985-06-28 1991-07-09 Miles Inc. Electrode for electrochemical sensors
US4786394A (en) 1985-08-29 1988-11-22 Diamond Sensor Systems, Inc. Apparatus for chemical measurement of blood characteristics
US4805624A (en) 1985-09-09 1989-02-21 The Montefiore Hospital Association Of Western Pa Low-potential electrochemical redox sensors
US4592824A (en) 1985-09-13 1986-06-03 Centre Suisse D'electronique Et De Microtechnique S.A. Miniature liquid junction reference electrode and an integrated solid state electrochemical sensor including the same
US4680268A (en) 1985-09-18 1987-07-14 Children's Hospital Medical Center Implantable gas-containing biosensor and method for measuring an analyte such as glucose
US4890620A (en) * 1985-09-20 1990-01-02 The Regents Of The University Of California Two-dimensional diffusion glucose substrate sensing electrode
JPS6283649A (en) 1985-10-08 1987-04-17 Matsushita Electric Ind Co Ltd Blood-sugar measuring device
US4839296A (en) 1985-10-18 1989-06-13 Chem-Elec, Inc. Blood plasma test method
US4647643A (en) 1985-11-08 1987-03-03 Becton, Dickinson And Company Soft non-blocking polyurethanes
US4776343A (en) 1985-11-19 1988-10-11 Graphic Controls Corporation Disposable pressure transducer for use with a catheter
US4894339A (en) * 1985-12-18 1990-01-16 Seitaikinouriyou Kagakuhin Sinseizogijutsu Kenkyu Kumiai Immobilized enzyme membrane for a semiconductor sensor
JPS62174260A (en) 1986-01-20 1987-07-31 Shin Etsu Chem Co Ltd Fluorosilicone rubber composition
US4705503A (en) 1986-02-03 1987-11-10 Regents Of The University Of Minnesota Metabolite sensor including a chemical concentration sensitive flow controller for a drug delivery system
GB8602732D0 (en) 1986-02-04 1986-03-12 Univ Brunel Taking samples from patients
US4684538A (en) 1986-02-21 1987-08-04 Loctite Corporation Polysiloxane urethane compounds and adhesive compositions, and method of making and using the same
JPS62225513A (en) 1986-03-26 1987-10-03 Shin Etsu Chem Co Ltd Block-graft copolymer and production thereof
US4685463A (en) 1986-04-03 1987-08-11 Williams R Bruce Device for continuous in vivo measurement of blood glucose concentrations
JPS6340532A (en) 1986-04-05 1988-02-20 日本光電工業株式会社 Apparatus for monitoring blood component
JPS62240025A (en) 1986-04-10 1987-10-20 住友電気工業株式会社 Catheter type sensor
US4994167A (en) 1986-04-15 1991-02-19 Markwell Medical Institute, Inc. Biological fluid measuring device
US4757022A (en) 1986-04-15 1988-07-12 Markwell Medical Institute, Inc. Biological fluid measuring device
US4909908A (en) 1986-04-24 1990-03-20 Pepi Ross Electrochemical cncentration detector method
US4795542A (en) 1986-04-24 1989-01-03 St. Jude Medical, Inc. Electrochemical concentration detector device
US4789467A (en) 1986-04-30 1988-12-06 Baxter Travenol Laboratories, Inc. Automated disinfection system
CA1339465C (en) 1986-04-30 1997-09-16 Richard J. Massey Electrochemiluminescent assays
US4703756A (en) 1986-05-06 1987-11-03 The Regents Of The University Of California Complete glucose monitoring system with an implantable, telemetered sensor module
US4731726A (en) 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
GB8612861D0 (en) 1986-05-27 1986-07-02 Cambridge Life Sciences Immobilised enzyme biosensors
US4726381A (en) 1986-06-04 1988-02-23 Solutech, Inc. Dialysis system and method
US4763658A (en) 1986-06-04 1988-08-16 Solutech, Inc. Dialysis system 2nd method
US4750496A (en) 1987-01-28 1988-06-14 Xienta, Inc. Method and apparatus for measuring blood glucose concentration
US4703989A (en) 1986-06-13 1987-11-03 Cobe Laboratories, Inc. Electrical connectors for a liquid sensor
JPS636451A (en) 1986-06-27 1988-01-12 Terumo Corp Enzyme sensor
US4684558A (en) 1986-06-30 1987-08-04 Nepera Inc. Adhesive polyethylene oxide hydrogel sheet and its production
US4935346A (en) 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
EP0259668B1 (en) 1986-09-01 1990-12-12 Siemens Aktiengesellschaft Piston pump for a dosed medicament delivery device
US4763648A (en) 1986-09-12 1988-08-16 Migada, Inc. Method and apparatus for arterial and venous blood sampling
US4960691A (en) 1986-09-29 1990-10-02 Abbott Laboratories Chromatographic test strip for determining ligands or receptors
US5055171A (en) 1986-10-06 1991-10-08 T And G Corporation Ionic semiconductor materials and applications thereof
EP0264036B1 (en) 1986-10-16 1993-06-30 Abbott Laboratories Analytical device and method for detecting chlamydia trachomatis and neisseria gonorrhoeae
US5007929B1 (en) 1986-11-04 1994-08-30 Medical Products Dev Open-cell silicone-elastomer medical implant
AU617667B2 (en) 1986-11-04 1991-12-05 Allergan, Inc. Open-cell, silicone-elastomer medical implant and method for making
FR2607696B1 (en) 1986-12-03 1995-08-11 Gosserez Olivier IMPLANTABLE BREAST PROSTHESIS CONTRARY TO THE FORMATION OF A RETRACTILE SHELL
US4694861A (en) 1986-12-22 1987-09-22 Beckman Instruments, Inc. Rotary pinch valve
US5071769A (en) 1986-12-22 1991-12-10 Abbott Laboratories Method and device for ketone measurement
DE3700119A1 (en) 1987-01-03 1988-07-14 Inst Diabetestechnologie Gemei IMPLANTABLE ELECTROCHEMICAL SENSOR
US4891324A (en) 1987-01-07 1990-01-02 Syntex (U.S.A.) Inc. Particle with luminescer for assays
AT391063B (en) 1987-01-08 1990-08-10 Blum Gmbh Julius CONNECTING FITTING FOR FASTENING THE RAILING OF A DRAWER
US4934369A (en) 1987-01-30 1990-06-19 Minnesota Mining And Manufacturing Company Intravascular blood parameter measurement system
US5048525A (en) 1987-01-30 1991-09-17 Minnesota Mining And Manufacturing Company Blood parameter measurement system with compliant element
US4830013A (en) 1987-01-30 1989-05-16 Minnesota Mining And Manufacturing Co. Intravascular blood parameter measurement system
AT391998B (en) 1987-02-02 1990-12-27 Falko Dr Skrabal Device for determining the concentration of at least one medicinal substance in living organisms
US4734092A (en) 1987-02-18 1988-03-29 Ivac Corporation Ambulatory drug delivery device
US4777953A (en) 1987-02-25 1988-10-18 Ash Medical Systems, Inc. Capillary filtration and collection method for long-term monitoring of blood constituents
US4854322A (en) 1987-02-25 1989-08-08 Ash Medical Systems, Inc. Capillary filtration and collection device for long-term monitoring of blood constituents
US4781680A (en) 1987-03-02 1988-11-01 Vir Engineering Resealable injection site
GB8705907D0 (en) 1987-03-12 1987-04-15 Genetics Int Inc Ion selective electrodes
DE3875149T2 (en) 1987-03-27 1993-02-11 Isao Karube MINIATURIZED BIO-SENSOR WITH MINIATURIZED OXYGEN ELECTRODE AND ITS PRODUCTION PROCESS.
US4886562A (en) 1987-03-31 1989-12-12 The Boeing Company Method of manufacturing reinforced optical fiber
US4935345A (en) 1987-04-07 1990-06-19 Arizona Board Of Regents Implantable microelectronic biochemical sensor incorporating thin film thermopile
US4832034A (en) 1987-04-09 1989-05-23 Pizziconi Vincent B Method and apparatus for withdrawing, collecting and biosensing chemical constituents from complex fluids
US4759828A (en) 1987-04-09 1988-07-26 Nova Biomedical Corporation Glucose electrode and method of determining glucose
US5352348A (en) 1987-04-09 1994-10-04 Nova Biomedical Corporation Method of using enzyme electrode
EP0470652B1 (en) 1987-04-10 1996-12-18 The Flinders University Of South Australia Method and composition for the determination of sodium ions in fluids
DE3862797D1 (en) 1987-04-22 1991-06-20 Siemens Ag PISTON PUMP FOR A MEDICINE DOSING DEVICE.
US4976687A (en) 1987-05-11 1990-12-11 James Martin Apparatus for controlling the supplying of intravenous fluids
US4820281A (en) 1987-05-21 1989-04-11 Ivy Medical, Inc. Drop volume measurement system
US5540828A (en) 1987-06-08 1996-07-30 Yacynych; Alexander Method for making electrochemical sensors and biosensors having a polymer modified surface
US5286364A (en) 1987-06-08 1994-02-15 Rutgers University Surface-modified electochemical biosensor
US4810470A (en) 1987-06-19 1989-03-07 Miles Inc. Volume independent diagnostic device
JPH07122624B2 (en) 1987-07-06 1995-12-25 ダイキン工業株式会社 Biosensor
US4805625A (en) 1987-07-08 1989-02-21 Ad-Tech Medical Instrument Corporation Sphenoidal electrode and insertion method
US4925444A (en) 1987-08-07 1990-05-15 Baxter Travenol Laboratories, Inc. Closed multi-fluid delivery system and method
US4974929A (en) 1987-09-22 1990-12-04 Baxter International, Inc. Fiber optical probe connector for physiologic measurement devices
US4919649A (en) 1987-09-30 1990-04-24 Sherwood Medical Company Fluid delivery system
NL8702370A (en) 1987-10-05 1989-05-01 Groningen Science Park METHOD AND SYSTEM FOR GLUCOSE DETERMINATION AND USEABLE MEASURING CELL ASSEMBLY.
US4831070A (en) 1987-11-02 1989-05-16 Dow Corning Corporation Moldable elastomeric pressure sensitive adhesives
DE3855535T2 (en) 1987-11-04 1997-01-16 Igen Inc ELECTROCHEMILUMINESCENT RHENIUM FRACTIONS AND METHOD
GB8725936D0 (en) 1987-11-05 1987-12-09 Genetics Int Inc Sensing system
US5773286A (en) 1987-11-17 1998-06-30 Cytotherapeutics, Inc. Inner supported biocompatible cell capsules
US5006110A (en) 1987-12-01 1991-04-09 Pacesetter Infusion, Ltd. Air-in-line detector infusion system
US4852573A (en) 1987-12-04 1989-08-01 Kennedy Philip R Implantable neural electrode
NL8802307A (en) 1987-12-17 1989-07-17 Mr W M H Kerbosch B V Handelen DEVICE FOR CONTROLLING THE FLOW RATE OF AN INFUSION FLUID IN AN INFUSION SYSTEM.
US4813424A (en) 1987-12-23 1989-03-21 University Of New Mexico Long-life membrane electrode for non-ionic species
US4890621A (en) 1988-01-19 1990-01-02 Northstar Research Institute, Ltd. Continuous glucose monitoring and a system utilized therefor
US5362307A (en) 1989-01-24 1994-11-08 The Regents Of The University Of California Method for the iontophoretic non-invasive-determination of the in vivo concentration level of an inorganic or organic substance
US4934375A (en) 1988-03-04 1990-06-19 Spectramed, Inc. Flush-valve assembly for blood pressure measurement catheter
US4955861A (en) 1988-04-21 1990-09-11 Therex Corp. Dual access infusion and monitoring system
US4951657A (en) 1988-04-22 1990-08-28 Dow Corning Corporation Heat sealable membrane for transdermal drug release
US4793555A (en) 1988-04-22 1988-12-27 Dow Corning Corporation Container, method and composition for controlling the release of a volatile liquid from an aqueous mixture
US5244630A (en) 1988-04-22 1993-09-14 Abbott Laboratories Device for performing solid-phase diagnostic assay
US4952618A (en) 1988-05-03 1990-08-28 Minnesota Mining And Manufacturing Company Hydrocolloid/adhesive composition
US5034112A (en) 1988-05-19 1991-07-23 Nissan Motor Company, Ltd. Device for measuring concentration of nitrogen oxide in combustion gas
US5089424A (en) 1988-06-14 1992-02-18 Abbott Laboratories Method and apparatus for heterogeneous chemiluminescence assay
JPH022913A (en) 1988-06-16 1990-01-08 Bridgestone Corp Modified electrode
US4849458A (en) 1988-06-17 1989-07-18 Matrix Medica, Inc. Segmented polyether polyurethane
US4900305A (en) 1988-06-27 1990-02-13 Queen's University At Kingston Ambulatory infusion pump
CA1299653C (en) 1988-07-07 1992-04-28 Markwell Medical Institute, Inc. Biological fluid measuring device
US5208147A (en) 1988-07-21 1993-05-04 Radiometer A/S Means for measuring a characteristic in a sample fluid
GB8817421D0 (en) 1988-07-21 1988-08-24 Medisense Inc Bioelectrochemical electrodes
US4907857A (en) 1988-07-25 1990-03-13 Abbott Laboratories Optical fiber distribution system for an optical fiber sensor
EP0352631A3 (en) 1988-07-25 1991-07-10 Abbott Laboratories Optical fiber distribution system for an optical fiber sensor
US5328848A (en) 1988-07-25 1994-07-12 Abbott Laboratories Method for hydrating and calibrating a sterilizable fiber-optic catheter
US4863016A (en) 1988-07-25 1989-09-05 Abbott Laboratories Packaging for a sterilizable calibratable medical device
US4925268A (en) 1988-07-25 1990-05-15 Abbott Laboratories Fiber-optic physiological probes
GB8817997D0 (en) 1988-07-28 1988-09-01 Cambridge Life Sciences Enzyme electrodes & improvements in manufacture thereof
US4815471A (en) 1988-08-01 1989-03-28 Precision Interconnect Corporation Catheter assembly
EP0353328A1 (en) 1988-08-03 1990-02-07 Dräger Nederland B.V. A polarographic-amperometric three-electrode sensor
US5000194A (en) 1988-08-25 1991-03-19 Cochlear Corporation Array of bipolar electrodes
US4961434A (en) 1988-08-30 1990-10-09 Stypulkowski Paul H Array of recessed radially oriented bipolar electrodes
US5037497A (en) 1988-08-30 1991-08-06 Cochlear Corporation Method of fabricating an array of recessed radially oriented bipolar electrodes
US4994026A (en) 1988-08-31 1991-02-19 W. R. Grace & Co.-Conn. Gravity flow fluid balance system
US5098377A (en) 1988-09-06 1992-03-24 Baxter International Inc. Multimodal displacement pump and dissolution system for same
US5438984A (en) 1988-09-08 1995-08-08 Sudor Partners Apparatus and method for the collection of analytes on a dermal patch
US5096669A (en) 1988-09-15 1992-03-17 I-Stat Corporation Disposable sensing device for real time fluid analysis
US4960594A (en) 1988-09-22 1990-10-02 Derma-Lock Medical Corporation Polyurethane foam dressing
NL8802481A (en) 1988-10-10 1990-05-01 Texas Instruments Holland TRANSPONDER AND METHOD FOR MAKING THE SAME
US4957483A (en) 1988-10-21 1990-09-18 Den-Tal-Ez, Inc. Sterilizable syringe
DE68928994T2 (en) 1988-11-03 1999-12-16 Igen Int Inc ELECTROCHEMILUMINESCENT TEST PROCEDURE
CA2002083C (en) 1988-11-03 2001-01-09 Haresh P. Shah Enhanced electrochemiluminescence
WO1990005296A1 (en) 1988-11-03 1990-05-17 Igen, Inc. Electrochemiluminescent reaction utilizing amine-derived reductant
US5063081A (en) 1988-11-14 1991-11-05 I-Stat Corporation Method of manufacturing a plurality of uniform microfabricated sensing devices having an immobilized ligand receptor
US4974592A (en) 1988-11-14 1990-12-04 American Sensor Systems Corporation Continuous on-line blood monitoring system
US5212050A (en) 1988-11-14 1993-05-18 Mier Randall M Method of forming a permselective layer
US5200051A (en) 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US5009251A (en) 1988-11-15 1991-04-23 Baxter International, Inc. Fluid flow control
US4921480A (en) 1988-11-21 1990-05-01 Sealfon Andrew I Fixed volume infusion device
US5006050A (en) 1988-12-09 1991-04-09 James E. Cooke High accuracy disposable cassette infusion pump
JPH073321Y2 (en) 1988-12-10 1995-01-30 株式会社堀場製作所 Flow-through hydrogen peroxide electrode
US5372709A (en) 1988-12-13 1994-12-13 Bio-Flo Limited Fluid flow control apparatus
US5458631A (en) 1989-01-06 1995-10-17 Xavier; Ravi Implantable catheter with electrical pulse nerve stimulators and drug delivery system
US4940065A (en) 1989-01-23 1990-07-10 Regents Of The University Of California Surgically implantable peripheral nerve electrode
AT392847B (en) 1989-01-27 1991-06-25 Avl Verbrennungskraft Messtech SENSOR ELECTRODE ARRANGEMENT
US4967940A (en) 1989-02-21 1990-11-06 Minnesota Mining And Manufacturing Co. Method and apparatus for precision squeeze tube valving, pumping and dispensing of work fluid(s)
DK115989D0 (en) 1989-03-09 1989-03-09 Nordisk Gentofte METHOD AND METHOD FOR MEASURING A LIQUID COMPONENT
US5269891A (en) 1989-03-09 1993-12-14 Novo Nordisk A/S Method and apparatus for determination of a constituent in a fluid
WO1990010716A1 (en) 1989-03-10 1990-09-20 Gene-Trak Systems Immobilized oligonucleotide probes and uses therefor
EP0387696B1 (en) 1989-03-17 1997-08-27 Abbott Laboratories Method and device for improved reaction kinetics in nucleic acid hybridizations
JPH02298855A (en) 1989-03-20 1990-12-11 Assoc Univ Inc Electrochemical biosensor using immobilized enzyme and redox polymer
US5089112A (en) 1989-03-20 1992-02-18 Associated Universities, Inc. Electrochemical biosensor based on immobilized enzymes and redox polymers
CA1328359C (en) 1989-03-27 1994-04-12 Michael D. Mintz Fluid sample collection and delivery system and methods particularly adapted for body fluid sampling
US4989607A (en) 1989-03-30 1991-02-05 Preston Keusch Highly conductive non-stringy adhesive hydrophilic gels and medical electrode assemblies manufactured therefrom
US4986671A (en) 1989-04-12 1991-01-22 Luxtron Corporation Three-parameter optical fiber sensor and system
US4953552A (en) 1989-04-21 1990-09-04 Demarzo Arthur P Blood glucose monitoring system
GB8909613D0 (en) 1989-04-27 1989-06-14 Pickup John C Glucose-sensing electrode
US5145565A (en) 1989-05-01 1992-09-08 Spacelabs, Inc. Contamination-free method and apparatus for measuring body fluid chemical parameters
US5178957A (en) 1989-05-02 1993-01-12 Minnesota Mining And Manufacturing Company Noble metal-polymer composites and flexible thin-film conductors prepared therefrom
EP0396788A1 (en) 1989-05-08 1990-11-14 Dräger Nederland B.V. Process and sensor for measuring the glucose content of glucosecontaining fluids
US4988341A (en) 1989-06-05 1991-01-29 Eastman Kodak Company Sterilizing dressing device and method for skin puncture
US5045601A (en) 1989-06-13 1991-09-03 Biointerface Technologies, Inc. Pressure-sensitive adhesive compositions suitable for medical uses
US4927407A (en) 1989-06-19 1990-05-22 Regents Of The University Of Minnesota Cardiac assist pump with steady rate supply of fluid lubricant
CH677149A5 (en) 1989-07-07 1991-04-15 Disetronic Ag
US5431160A (en) 1989-07-19 1995-07-11 University Of New Mexico Miniature implantable refillable glucose sensor and material therefor
US5264104A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US4944299A (en) 1989-08-08 1990-07-31 Siemens-Pacesetter, Inc. High speed digital telemetry system for implantable device
US5101814A (en) 1989-08-11 1992-04-07 Palti Yoram Prof System for monitoring and controlling blood glucose
US5190041A (en) * 1989-08-11 1993-03-02 Palti Yoram Prof System for monitoring and controlling blood glucose
US5041092A (en) 1989-08-29 1991-08-20 Medical Engineering Corporation Urethral indwelling catheter with magnetically controlled drainage valve and method
CA1325149C (en) 1989-08-31 1993-12-14 Gavin Mcgregor Variable intensity remote controlled needleless injector
US5050612A (en) 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
US5002590A (en) 1989-09-19 1991-03-26 Bend Research, Inc. Countercurrent dehydration by hollow fibers
FR2652736A1 (en) 1989-10-06 1991-04-12 Neftel Frederic IMPLANTABLE DEVICE FOR EVALUATING THE RATE OF GLUCOSE.
DE3933373A1 (en) 1989-10-06 1991-04-18 Thomas Hoell Blood sensor system for analytical in-vivo measurement - has implantable sensor unit with electronics, sensor element positioning holder and penetration seal for element replacement tool
JPH03133440A (en) 1989-10-18 1991-06-06 Nishitomo:Kk Clinical thermometer for ladies
US5376556A (en) 1989-10-27 1994-12-27 Abbott Laboratories Surface-enhanced Raman spectroscopy immunoassay
IT1251509B (en) 1989-11-24 1995-05-16 Leonardo Cammilli IMPLANTABLE DEFIBRILLATOR WITH AUTOMATIC RECOGNITION OF VENTRICULAR FIBRILLATION, WITH PHARMACOLOGICAL ACTION
US5067491A (en) 1989-12-08 1991-11-26 Becton, Dickinson And Company Barrier coating on blood contacting devices
US5030199A (en) 1989-12-11 1991-07-09 Medical Engineering Corporation Female incontinence control device with magnetically operable valve and method
US5082550A (en) 1989-12-11 1992-01-21 The United States Of America As Represented By The Department Of Energy Enzyme electrochemical sensor electrode and method of making it
US5140985A (en) 1989-12-11 1992-08-25 Schroeder Jon M Noninvasive blood glucose measuring device
US5342789A (en) 1989-12-14 1994-08-30 Sensor Technologies, Inc. Method and device for detecting and quantifying glucose in body fluids
US5985129A (en) 1989-12-14 1999-11-16 The Regents Of The University Of California Method for increasing the service life of an implantable sensor
JP3105243B2 (en) 1989-12-14 2000-10-30 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア How to increase the useful life of an implantable sensor
FR2656423A1 (en) 1989-12-22 1991-06-28 Rhone Poulenc Chimie Electrochemical biosensor
US5243696A (en) 1989-12-29 1993-09-07 General Signal Corporation Programmable electronic display for a chart recorder
US5183549A (en) 1990-01-26 1993-02-02 Commtech International Management Corporation Multi-analyte sensing electrolytic cell
US5188591A (en) 1990-01-26 1993-02-23 Dorsey Iii James H Irrigation control valve for endoscopic instrument
CA2034285A1 (en) 1990-02-09 1991-08-10 Masao Yafuso Method and system for monitoring of blood constituents in vivo
US5109850A (en) 1990-02-09 1992-05-05 Massachusetts Institute Of Technology Automatic blood monitoring for medication delivery method and apparatus
US5108819A (en) 1990-02-14 1992-04-28 Eli Lilly And Company Thin film electrical component
US5127405A (en) 1990-02-16 1992-07-07 The Boc Group, Inc. Biomedical fiber optic probe with frequency domain signal processing
US5162407A (en) 1990-03-06 1992-11-10 Investors Diversified Capital, Inc. Silicone rubber sealant composition
US5031618A (en) 1990-03-07 1991-07-16 Medtronic, Inc. Position-responsive neuro stimulator
US5055198A (en) 1990-03-07 1991-10-08 Shettigar U Ramakrishna Autologous blood recovery membrane system and method
US5316008A (en) 1990-04-06 1994-05-31 Casio Computer Co., Ltd. Measurement of electrocardiographic wave and sphygmus
JPH07101215B2 (en) 1990-04-11 1995-11-01 国立身体障害者リハビリテーションセンター総長 Analytical method using biofunctional substance-immobilized electrode
US5713926A (en) 1990-04-25 1998-02-03 Cardiac Pacemakers, Inc. Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode
US5152746A (en) 1990-04-30 1992-10-06 Zimmer, Inc. Low pressure irrigation system
GB9009761D0 (en) 1990-05-01 1990-06-20 Secr Defence Substrate regenerating biosensor
US5331555A (en) 1990-05-11 1994-07-19 Sharp Kabushiki Kaisha Electronic apparatus
US5047627A (en) 1990-05-18 1991-09-10 Abbott Laboratories Configuration fiber-optic blood gas sensor bundle and method of making
IT1248934B (en) 1990-06-01 1995-02-11 Fidia Spa BIOCOMPATIBLE PERFORATED MEMBRANES, PROCESSES FOR THEIR PREPARATION, THEIR USE AS A SUPPORT FOR THE IN VITRO GROWTH OF EPITHELIAL CELLS, ARTIFICIAL LEATHER THUS OBTAINED AND THEIR USE IN LEATHER TRANSPLANTS
US5302440A (en) * 1990-06-04 1994-04-12 Elbert Davis Polymer coated contact surface
US5282844A (en) 1990-06-15 1994-02-01 Medtronic, Inc. High impedance, low polarization, low threshold miniature steriod eluting pacing lead electrodes
US5087312A (en) 1990-07-11 1992-02-11 Boehringer Mannheim Gmbh Thermopile having reduced thermal noise
US5250439A (en) 1990-07-19 1993-10-05 Miles Inc. Use of conductive sensors in diagnostic assays
AT398694B (en) 1990-07-19 1995-01-25 Avl Verbrennungskraft Messtech DEVICE FOR DETERMINING THE CONCENTRATION OF AT LEAST ONE SUBSTANCE IN ORGANIC TISSUE
US5202261A (en) 1990-07-19 1993-04-13 Miles Inc. Conductive sensors and their use in diagnostic assays
US5112455A (en) 1990-07-20 1992-05-12 I Stat Corporation Method for analytically utilizing microfabricated sensors during wet-up
JPH0820412B2 (en) 1990-07-20 1996-03-04 松下電器産業株式会社 Quantitative analysis method and device using disposable sensor
US5261892A (en) 1990-07-25 1993-11-16 Abbott Laboratories Sensor delivery device
US5176662A (en) 1990-08-23 1993-01-05 Minimed Technologies, Ltd. Subcutaneous injection set with improved cannula mounting arrangement
DK0546021T3 (en) 1990-08-28 1996-03-18 Meadox Medicals Inc Self-supporting woven blood vessel graft
EP0473065A3 (en) 1990-08-29 1992-08-26 Abbott Laboratories Simultaneous assay for detecting two or more analytes
KR960012335B1 (en) 1990-09-17 1996-09-18 후지쓰 가부시끼가이샤 Oxygen electrode
US5098659A (en) 1990-09-24 1992-03-24 Abbott Laboratories Apparatus for continuously monitoring a plurality of chemical analytes through a single optical fiber and method of making
EP0550641B1 (en) 1990-09-28 1994-05-25 Pfizer Inc. Dispensing device containing a hydrophobic medium
US5380536A (en) 1990-10-15 1995-01-10 The Board Of Regents, The University Of Texas System Biocompatible microcapsules
US5314471A (en) 1991-07-24 1994-05-24 Baxter International Inc. Tissue inplant systems and methods for sustaining viable high cell densities within a host
CA2070816A1 (en) 1990-10-31 1992-05-01 James H. Brauker Close vascularization implant material
US5713888A (en) 1990-10-31 1998-02-03 Baxter International, Inc. Tissue implant systems
US5545223A (en) 1990-10-31 1996-08-13 Baxter International, Inc. Ported tissue implant systems and methods of using same
US5344454A (en) 1991-07-24 1994-09-06 Baxter International Inc. Closed porous chambers for implanting tissue in a host
US5210017A (en) 1990-11-19 1993-05-11 Genentech, Inc. Ligand-mediated immunofunctional hormone binding protein assay method
US5135297A (en) 1990-11-27 1992-08-04 Bausch & Lomb Incorporated Surface coating of polymer objects
US5527288A (en) 1990-12-13 1996-06-18 Elan Medical Technologies Limited Intradermal drug delivery device and method for intradermal delivery of drugs
NL9002764A (en) 1990-12-14 1992-07-01 Tno ELECTRODE, FITTED WITH A POLYMER COATING WITH A REDOX ENZYM BOND TO IT.
US5224929A (en) 1990-12-21 1993-07-06 C. R. Bard, Inc. Irrigation/aspiration cannula and valve assembly
WO1992012255A1 (en) 1990-12-28 1992-07-23 Abbott Laboratories Simultaneous determination of multiple analytes using a time-resolved heterogeneous chemiluminescence assay
US5354449A (en) 1991-01-10 1994-10-11 Band David M pH electrode
AU1356792A (en) 1991-01-25 1992-08-27 Markwell Medical Institute, Inc. Implantable biological fluid measuring device
US5348788A (en) 1991-01-30 1994-09-20 Interpore Orthopaedics, Inc. Mesh sheet with microscopic projections and holes
IL100867A (en) 1991-02-06 1995-12-08 Igen Inc Method and apparatus for improved luminescence assays
IL100866A (en) 1991-02-06 1995-10-31 Igen Inc Method and apparatus for magnetic microparticulate based luminescence assay including plurality of magnets
DE4105222A1 (en) 1991-02-20 1992-08-27 Schaefer Wieland Dr Sc Single rod micro measurement chain for in vivo pharmacological use - has carbon fibre microelectrodes mounted on surface of metal counter electrode with insulation
US5207218A (en) 1991-02-27 1993-05-04 Medtronic, Inc. Implantable pulse generator
US5262305A (en) 1991-03-04 1993-11-16 E. Heller & Company Interferant eliminating biosensors
US5593852A (en) 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
JPH04278450A (en) 1991-03-04 1992-10-05 Adam Heller Biosensor and method for analyzing subject
US5632272A (en) 1991-03-07 1997-05-27 Masimo Corporation Signal processing apparatus
US5490505A (en) 1991-03-07 1996-02-13 Masimo Corporation Signal processing apparatus
US5119463A (en) 1991-04-09 1992-06-02 Abbott Laboratories Compound optical probe employing single optical waveguide
US5397848A (en) 1991-04-25 1995-03-14 Allergan, Inc. Enhancing the hydrophilicity of silicone polymers
DK0585368T3 (en) 1991-04-25 1998-03-16 Univ Brown Res Found Implantable biocompatible immuno-insulating vehicle for delivery of selected therapeutic products
DE4115414C2 (en) 1991-05-10 1995-07-06 Meinhard Prof Dr Knoll Process for the production of miniaturized chemo- and biosensor elements with an ion-selective membrane as well as carriers for these elements
US5271736A (en) 1991-05-13 1993-12-21 Applied Medical Research Collagen disruptive morphology for implants
JP3118015B2 (en) 1991-05-17 2000-12-18 アークレイ株式会社 Biosensor and separation and quantification method using the same
ATE170927T1 (en) 1991-05-30 1998-09-15 Abbott Lab ION CAPTURE ANALYSIS METHODS USING A CARBOXYMETHYLAMYLOSE CONJUGATE BINDING PARTNER
JP3084642B2 (en) 1991-05-30 2000-09-04 株式会社ジェルテック Pad for dressing and method of manufacturing the same
US5112301A (en) 1991-06-19 1992-05-12 Strato Medical Corporation Bidirectional check valve catheter
US5267564A (en) 1991-06-14 1993-12-07 Siemens Pacesetter, Inc. Pacemaker lead for sensing a physiologic parameter of the body
ES2099182T3 (en) 1991-06-26 1997-05-16 Ppg Industries Inc ELECTROCHEMICAL SENSOR ASSEMBLY.
US5284570A (en) 1991-06-26 1994-02-08 Ppg Industries, Inc. Fluid sample analyte collector and calibration assembly
US5273517A (en) 1991-07-09 1993-12-28 Haemonetics Corporation Blood processing method and apparatus with disposable cassette
JP2816262B2 (en) 1991-07-09 1998-10-27 工業技術院長 Carbon microsensor electrode and method of manufacturing the same
ES2137191T3 (en) 1991-07-10 1999-12-16 Igen Int Inc IMPROVED LUMINESCENCE TEST METHODS USING PARTICULATE CONCENTRATION AND CHEMIOLUMINISCENCE DETECTION.
US5362761A (en) 1991-07-11 1994-11-08 Lignyte Co., Ltd. Process for fabricating porous silicone product
US5766151A (en) 1991-07-16 1998-06-16 Heartport, Inc. Endovascular system for arresting the heart
JP2740587B2 (en) * 1991-07-18 1998-04-15 工業技術院長 Micro composite electrode and method of manufacturing the same
US5453278A (en) 1991-07-24 1995-09-26 Baxter International Inc. Laminated barriers for tissue implants
KR100334696B1 (en) 1991-08-05 2002-04-27 리차아드제이마세이 Prodrugs activated by targeted catalytic proteins
US5972630A (en) 1991-08-19 1999-10-26 Dade Behring Marburg Gmbh Homogeneous immunoassays using enzyme inhibitors
US5429129A (en) 1991-08-22 1995-07-04 Sensor Devices, Inc. Apparatus for determining spectral absorption by a specific substance in a fluid
US5604234A (en) 1991-09-05 1997-02-18 Abbott Laboratories Substituted thiol macrolactam immunomodulators
ES2089556T3 (en) 1991-09-13 1996-10-01 Rodney Arthur Stafford ELECTRONIC SYSTEM FOR THE IDENTIFICATION OF ANIMALS.
US5312361A (en) 1991-09-13 1994-05-17 Zadini Filiberto P Automatic cannulation device
GB9120144D0 (en) 1991-09-20 1991-11-06 Imperial College A dialysis electrode device
US5222980A (en) 1991-09-27 1993-06-29 Medtronic, Inc. Implantable heart-assist device
US5322063A (en) 1991-10-04 1994-06-21 Eli Lilly And Company Hydrophilic polyurethane membranes for electrochemical glucose sensors
US5681572A (en) 1991-10-18 1997-10-28 Seare, Jr.; William J. Porous material product and process
US5249576A (en) 1991-10-24 1993-10-05 Boc Health Care, Inc. Universal pulse oximeter probe
US5866217A (en) 1991-11-04 1999-02-02 Possis Medical, Inc. Silicone composite vascular graft
ZA929351B (en) 1991-12-11 1993-06-04 Igen Inc Electrochemiluminescent label for DNA assays.
PT681493E (en) 1991-12-18 2000-12-29 Icu Medical Inc MEDICAL VALVE
US5298645A (en) 1991-12-23 1994-03-29 Abbott Laboratories Polymeric buffering composition for fiber-optic physiological probe
US5310469A (en) 1991-12-31 1994-05-10 Abbott Laboratories Biosensor with a membrane containing biologically active material
WO1993013408A1 (en) 1991-12-31 1993-07-08 Abbott Laboratories Composite membrane
US5296144A (en) 1992-01-02 1994-03-22 World Trade Corporation Composite membrane of a hydrophilic asymmetric membrane coated with an organosiloxane block copolymer
DE69315450T2 (en) 1992-01-22 1998-05-20 Alaris Medical Systems Inc N D Condition determination of a liquid hose line
EP0624074A1 (en) 1992-02-01 1994-11-17 The Victoria University Of Manchester Electrode
NL9200207A (en) 1992-02-05 1993-09-01 Nedap Nv IMPLANTABLE BIOMEDICAL SENSOR DEVICE, IN PARTICULAR FOR MEASUREMENT OF THE GLUCOSE CONCENTRATION.
US5284140A (en) 1992-02-11 1994-02-08 Eli Lilly And Company Acrylic copolymer membranes for biosensors
US5265999A (en) 1992-03-05 1993-11-30 Eastman Kodak Company Apparatus for handling rolls of web material
US5423738A (en) 1992-03-13 1995-06-13 Robinson; Thomas C. Blood pumping and processing system
EP0631669B1 (en) 1992-03-20 2004-07-14 Abbott Laboratories Magnetically assisted binding assays using magnetically-labeled binding members
JP3003118B2 (en) 1992-03-27 2000-01-24 アボツト・ラボラトリーズ Method for providing a homogeneous reagent
US5376313A (en) 1992-03-27 1994-12-27 Abbott Laboratories Injection molding a plastic assay cuvette having low birefringence
DE69330785T2 (en) 1992-03-27 2002-06-20 Abbott Lab QUALITY CONTROL FOR ANALYTICAL PROCEDURES
EP1450162A3 (en) 1992-03-27 2004-09-15 Abbott Laboratories Cartridge feeder apparatus
EP1380842A3 (en) 1992-03-27 2009-12-30 Abbott Laboratories Test sample container assembly
US5372719A (en) 1992-03-30 1994-12-13 Perseptive Biosystems, Inc. Molecular imaging
DE69319771T2 (en) 1992-03-31 1999-04-22 Dainippon Printing Co Ltd Immobilized enzyme electrode, composition for its production and electrically conductive enzymes
US5382514A (en) * 1992-03-31 1995-01-17 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services In vivo angiogenesis assay
ES2167332T3 (en) 1992-04-01 2002-05-16 Baxter Int PROCEDURE AND SYSTEMS FOR THE IMPLANT OF LIVE CELLS IN GUESTS ORGANISMS.
AU4047893A (en) 1992-04-06 1993-11-08 Abbott Laboratories Method and device for detection of nucleic acid or analyte using total internal reflectance
US5985693A (en) 1994-09-30 1999-11-16 Elm Technology Corporation High density three-dimensional IC interconnection
AU3694793A (en) 1992-04-15 1993-10-21 Fisher & Paykel Limited Liquid supply apparatus
US5324322A (en) 1992-04-20 1994-06-28 Case Western Reserve University Thin film implantable electrode and method of manufacture
US5589563A (en) 1992-04-24 1996-12-31 The Polymer Technology Group Surface-modifying endgroups for biomedical polymers
DK0637323T3 (en) 1992-04-24 1999-05-25 Polymer Technology Group Inc Copolymers and non-porous, semi-permeable membrane thereof and its use for permeation of molecules with a predetermined size
US5302093A (en) 1992-05-01 1994-04-12 Mcgaw, Inc. Disposable cassette with negative head height fluid supply and method
US5287753A (en) * 1992-05-02 1994-02-22 Advanced Technology Laboratories, Inc. Continuous display of peak and mean blood flow velocities
US5437635A (en) 1992-05-06 1995-08-01 Mcgaw, Inc. Tube flow limiter, safety flow clip, and tube pincher mechanism
US5316452A (en) 1992-05-11 1994-05-31 Gilbert Corporation Dispensing assembly with interchangeable cartridge pumps
GB9211402D0 (en) 1992-05-29 1992-07-15 Univ Manchester Sensor devices
US5366756A (en) 1992-06-15 1994-11-22 United States Surgical Corporation Method for treating bioabsorbable implant material
US5344451A (en) 1992-06-24 1994-09-06 Dayton Michael P Synthetic reconstructive implant device
US5335658A (en) 1992-06-29 1994-08-09 Minnesota Mining And Manufacturing Company Intravascular blood parameter sensing system
US5330521A (en) 1992-06-29 1994-07-19 Cohen Donald M Low resistance implantable electrical leads
US5208313A (en) 1992-07-16 1993-05-04 Surface Coatings, Inc. Waterproof breathable polyurethane membranes and porous substrates protected therewith
JPH0634596A (en) 1992-07-20 1994-02-08 Fujitsu Ltd Oxygen electrode, biosensor and manufacture thereof
US5676651A (en) 1992-08-06 1997-10-14 Electric Boat Corporation Surgically implantable pump arrangement and method for pumping body fluids
US5330634A (en) 1992-08-28 1994-07-19 Via Medical Corporation Calibration solutions useful for analyses of biological fluids and methods employing same
JP2541081B2 (en) 1992-08-28 1996-10-09 日本電気株式会社 Biosensor and method of manufacturing and using biosensor
US5356782A (en) 1992-09-03 1994-10-18 Boehringer Mannheim Corporation Analytical test apparatus with on board negative and positive control
US6093546A (en) 1992-09-03 2000-07-25 Roche Diagnostics Process for preparing test elements
US5298144A (en) 1992-09-15 1994-03-29 The Yellow Springs Instrument Company, Inc. Chemically wired fructose dehydrogenase electrodes
US5376070A (en) 1992-09-29 1994-12-27 Minimed Inc. Data transfer system for an infusion pump
DK0670751T3 (en) 1992-10-01 2002-04-08 Univ Sydney Improved sensor wiring
GB9221099D0 (en) 1992-10-07 1992-11-18 Ecossensors Ltd Improvements in and relating to gas permeable membranes for amperometric gas electrodes
US5314406A (en) 1992-10-09 1994-05-24 Symbiosis Corporation Endoscopic electrosurgical suction-irrigation instrument
US5311013A (en) 1992-10-15 1994-05-10 Abbott Laboratories Optical fiber distribution system for an optical fiber sensor in a luminescent sensor system
US5258616A (en) 1992-10-15 1993-11-02 Abbott Laboratories Optical distribution system incorporating an improved absorbance-based optical fiber sensor
US5750029A (en) 1992-10-16 1998-05-12 Suprex Corporation Method and apparatus for determination of analyte concentration
US5387327A (en) * 1992-10-19 1995-02-07 Duquesne University Of The Holy Ghost Implantable non-enzymatic electrochemical glucose sensor
US5368224A (en) 1992-10-23 1994-11-29 Nellcor Incorporated Method for reducing ambient noise effects in electronic monitoring instruments
EP0721360A1 (en) 1992-11-09 1996-07-17 SIPIN, Anatole J. Controlled fluid transfer system
US5933136A (en) 1996-12-23 1999-08-03 Health Hero Network, Inc. Network media access control system for encouraging patient compliance with a treatment plan
US5307263A (en) * 1992-11-17 1994-04-26 Raya Systems, Inc. Modular microprocessor-based health monitoring system
US5956501A (en) 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
DE4336336A1 (en) 1992-11-23 1994-05-26 Lang Volker Cassette infusion system
US6256522B1 (en) 1992-11-23 2001-07-03 University Of Pittsburgh Of The Commonwealth System Of Higher Education Sensors for continuous monitoring of biochemicals and related method
ZA938555B (en) 1992-11-23 1994-08-02 Lilly Co Eli Technique to improve the performance of electrochemical sensors
FR2698535B1 (en) 1992-11-30 1995-01-20 Drevet Jean Baptiste Device for regulating and controlling the flow of cerebrospinal fluid in a drainage circuit.
US5285513A (en) 1992-11-30 1994-02-08 At&T Bell Laboratories Optical fiber cable provided with stabilized waterblocking material
US5342348A (en) * 1992-12-04 1994-08-30 Kaplan Aaron V Method and device for treating and enlarging body lumens
GB2273533B (en) 1992-12-18 1996-09-25 Minnesota Mining & Mfg Pumping cassette with integral manifold
US5626563A (en) 1993-01-12 1997-05-06 Minnesota Mining And Manufacturing Company Irrigation system with tubing cassette
US5587273A (en) 1993-01-21 1996-12-24 Advanced Microbotics Corporation Molecularly imprinted materials, method for their preparation and devices employing such materials
US5380491A (en) 1993-01-21 1995-01-10 Cdc Technologies, Inc. Apparatus for pumping and directing fluids for hematology testing
US5299571A (en) * 1993-01-22 1994-04-05 Eli Lilly And Company Apparatus and method for implantation of sensors
US5434087A (en) 1993-02-24 1995-07-18 Abbott Laboratories Folate immunoassay utilizing folate binding protein in a multiclonal antibody format
CA2156065A1 (en) 1993-03-17 1994-09-29 Rolf Wagner Macrocyclic amide and urea immunomodulators
US5457194A (en) 1993-03-17 1995-10-10 Abbott Laboratories Substituted aliphatic amine-containing macrocyclic immunomodulators
US5411866A (en) 1993-03-30 1995-05-02 National Research Council Of Canada Method and system for determining bioactive substances
WO1994022367A1 (en) 1993-03-30 1994-10-13 Pfizer Inc. Radiotelemetry impedance plethysmography device
US5667487A (en) 1993-04-07 1997-09-16 Henley; Julian L. Ionosonic drug delivery apparatus
US5387329A (en) 1993-04-09 1995-02-07 Ciba Corning Diagnostics Corp. Extended use planar sensors
US5425717A (en) 1993-05-07 1995-06-20 The Kendall Company Epidural catheter system utilizing splittable needle
US5824651A (en) 1993-05-10 1998-10-20 Universite De Montreal Process for modification of implant surface with bioactive conjugates for improved integration
WO1996005501A1 (en) 1993-05-14 1996-02-22 Igen, Inc. Apparatus and methods for carrying out electrochemiluminescence test measurements
WO1994026414A1 (en) 1993-05-17 1994-11-24 Syntex (U.S.A.) Inc. Reaction container for specific binding assays and method for its use
US5404877A (en) 1993-06-04 1995-04-11 Telectronics Pacing Systems, Inc. Leadless implantable sensor assembly and a cardiac emergency warning alarm
US5336102A (en) 1993-06-07 1994-08-09 Ford Motor Company Connector interface seal
US5380268A (en) 1993-06-07 1995-01-10 Wheeler; Douglas E. Body fluid flow control valve and method
US5352351A (en) 1993-06-08 1994-10-04 Boehringer Mannheim Corporation Biosensing meter with fail/safe procedures to prevent erroneous indications
SE9302157D0 (en) 1993-06-22 1993-06-22 Siemens-Elema Ab PROCEDURE AND DEVICE CLEANING A CATHETER
US5871499A (en) 1993-06-30 1999-02-16 Novatrix, Inc. Child birth assisting system
WO1995001138A1 (en) 1993-07-02 1995-01-12 Materials Evolution And Development Usa, Inc. Implantable system for cell growth control
JPH09503924A (en) 1993-07-16 1997-04-22 シグナス,インコーポレイテッド Non-invasive glucose monitor
US5545200A (en) 1993-07-20 1996-08-13 Medtronic Cardiorhythm Steerable electrophysiology catheter
US5417115A (en) 1993-07-23 1995-05-23 Honeywell Inc. Dielectrically isolated resonant microsensors
US5515851A (en) 1993-07-30 1996-05-14 Goldstein; James A. Angiographic fluid control system
DE4427363A1 (en) 1993-08-03 1995-03-09 A & D Co Ltd A disposable chemical sensor
US5358409A (en) 1993-08-31 1994-10-25 Cardiometrics, Inc. Rotary connector for flexible elongate member having electrical properties
DE4329898A1 (en) 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring device
AU7607494A (en) 1993-09-10 1995-03-27 Ottawa Heart Institute Research Corporation Electrohydraulic ventricular assist device
JP3102613B2 (en) 1993-09-16 2000-10-23 松下電器産業株式会社 Biosensor
FR2710413B1 (en) 1993-09-21 1995-11-03 Asulab Sa Measuring device for removable sensors.
JP3448061B2 (en) 1993-09-24 2003-09-16 アボツト・ラボラトリーズ Automatic continuous random access analysis system and its components
WO1995008355A1 (en) 1993-09-24 1995-03-30 Baxter International Inc. Methods for enhancing vascularization of implant devices
US5416026A (en) 1993-10-04 1995-05-16 I-Stat Corporation Method for detecting the change in an analyte due to hemolysis in a fluid sample
US5582184A (en) 1993-10-13 1996-12-10 Integ Incorporated Interstitial fluid collection and constituent measurement
JP3457322B2 (en) 1993-10-21 2003-10-14 アボツト・ラボラトリーズ Apparatus and method for detecting target ligand
JP3971454B2 (en) * 1993-10-29 2007-09-05 ザ トラスティーズ オブ ボストン ユニバーシティ Physiologically stable compositions of butyric acid, butyrate, and derivatives as anti-neoplastic agents
US5781455A (en) 1993-11-02 1998-07-14 Kyoto Daiichi Kagaku Co., Ltd. Article of manufacture comprising computer usable medium for a portable blood sugar value measuring apparatus
KR970010981B1 (en) 1993-11-04 1997-07-05 엘지전자 주식회사 Alcohol concentration measuring bio-sensor, manufacturing method and related apparatus
US5545220A (en) 1993-11-04 1996-08-13 Lipomatrix Incorporated Implantable prosthesis with open cell textured surface and method for forming same
US5814599A (en) 1995-08-04 1998-09-29 Massachusetts Insitiute Of Technology Transdermal delivery of encapsulated drugs
US6835898B2 (en) 1993-11-16 2004-12-28 Formfactor, Inc. Electrical contact structures formed by configuring a flexible wire to have a springable shape and overcoating the wire with at least one layer of a resilient conductive material, methods of mounting the contact structures to electronic components, and applications for employing the contact structures
US6336269B1 (en) * 1993-11-16 2002-01-08 Benjamin N. Eldridge Method of fabricating an interconnection element
US5791344A (en) 1993-11-19 1998-08-11 Alfred E. Mann Foundation For Scientific Research Patient monitoring system
US5497772A (en) 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
US5512248A (en) 1993-11-23 1996-04-30 Van; Jack F. J. Twin-probe blood sample diluting device
US5421923A (en) 1993-12-03 1995-06-06 Baxter International, Inc. Ultrasonic welding horn with sonics dampening insert
US5437824A (en) 1993-12-23 1995-08-01 Moghan Medical Corp. Method of forming a molded silicone foam implant having open-celled interstices
US5478751A (en) 1993-12-29 1995-12-26 Abbott Laboratories Self-venting immunodiagnositic devices and methods of performing assays
US5549675A (en) 1994-01-11 1996-08-27 Baxter International, Inc. Method for implanting tissue in a host
DE4401400A1 (en) 1994-01-19 1995-07-20 Ernst Prof Dr Pfeiffer Method and arrangement for continuously monitoring the concentration of a metabolite
US5378229A (en) 1994-01-25 1995-01-03 Cordis Corporation Check valve manifold assembly for use in angioplasty
US5522804A (en) 1994-02-15 1996-06-04 Lynn; Lawrence A. Aspiration, mixing, and injection syringe
US5549651A (en) 1994-05-25 1996-08-27 Lynn; Lawrence A. Luer-receiving medical valve and fluid transfer method
US5437999A (en) 1994-02-22 1995-08-01 Boehringer Mannheim Corporation Electrochemical sensor
US5711302A (en) * 1994-03-03 1998-01-27 Merit Medical Systems, Inc. Disposable transducer with digital processing and readout
US5482446A (en) 1994-03-09 1996-01-09 Baxter International Inc. Ambulatory infusion pump
US5531679A (en) 1994-03-14 1996-07-02 Schulman; Joseph H. Fluidic infusion system for catheter or probe
US5391250A (en) * 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5390671A (en) 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5431174A (en) 1994-04-04 1995-07-11 Via Medical Corporation Method of fluid delivery and collection
AUPM506894A0 (en) 1994-04-14 1994-05-05 Memtec Limited Novel electrochemical cells
US5451260A (en) 1994-04-15 1995-09-19 Cornell Research Foundation, Inc. Method and apparatus for CVD using liquid delivery system with an ultrasonic nozzle
US5569186A (en) * 1994-04-25 1996-10-29 Minimed Inc. Closed loop infusion pump system with removable glucose sensor
US5466356A (en) 1994-04-29 1995-11-14 Mine Safety Appliances Company Potentiostat circuit for electrochemical cells
US5584876A (en) 1994-04-29 1996-12-17 W. L. Gore & Associates, Inc. Cell excluding sheath for vascular grafts
DE4415896A1 (en) * 1994-05-05 1995-11-09 Boehringer Mannheim Gmbh Analysis system for monitoring the concentration of an analyte in the blood of a patient
US5651767A (en) 1994-05-06 1997-07-29 Alfred F. Mann Foundation For Scientific Research Replaceable catheter system for physiological sensors, stimulating electrodes and/or implantable fluid delivery systems
US5484404A (en) 1994-05-06 1996-01-16 Alfred E. Mann Foundation For Scientific Research Replaceable catheter system for physiological sensors, tissue stimulating electrodes and/or implantable fluid delivery systems
US5482473A (en) * 1994-05-09 1996-01-09 Minimed Inc. Flex circuit connector
DE59509994D1 (en) 1994-06-03 2002-02-21 Metrohm Ag Herisau Device for voltammetry, indicator electrode arrangement for such a device, in particular as part of a tape cassette, and row analysis method for voltammetry
US5624409A (en) 1994-06-10 1997-04-29 Fluidsense Corporation Variable-pulse dynamic fluid flow controller
AU2704995A (en) 1994-06-13 1996-01-05 Abbott Laboratories Plasma treatment of polymeric materials to enhance immobilization of analytes thereto
DE4422068A1 (en) * 1994-06-23 1996-01-04 Siemens Ag Electro-catalytic glucose sensor in catheter form
US5494562A (en) 1994-06-27 1996-02-27 Ciba Corning Diagnostics Corp. Electrochemical sensors
US5474552A (en) 1994-06-27 1995-12-12 Cb-Carmel Biotechnology Ltd. Implantable drug delivery pump
US5529066A (en) 1994-06-27 1996-06-25 Cb-Carmel Biotechnology Ltd. Implantable capsule for enhancing cell electric signals
US5429735A (en) 1994-06-27 1995-07-04 Miles Inc. Method of making and amperometric electrodes
US6218624B1 (en) 1994-07-05 2001-04-17 Belden Wire & Cable Company Coaxial cable
JPH10502638A (en) 1994-07-08 1998-03-10 バクスター、インターナショナル、インコーポレイテッド Implantable device containing tumor cells for cancer treatment
US5480711A (en) 1994-07-12 1996-01-02 Ruefer; Bruce G. Nano-porous PTFE biomaterial
US5853717A (en) 1994-07-20 1998-12-29 Cytotherapeutics, Inc. Methods and compositions of growth control for cells encapsulated within bioartificial organs
US5582593A (en) 1994-07-21 1996-12-10 Hultman; Barry W. Ambulatory medication delivery system
US5509888A (en) 1994-07-26 1996-04-23 Conceptek Corporation Controller valve device and method
US5591453A (en) 1994-07-27 1997-01-07 The Trustees Of The University Of Pennsylvania Incorporation of biologically active molecules into bioactive glasses
US5513636A (en) 1994-08-12 1996-05-07 Cb-Carmel Biotechnology Ltd. Implantable sensor chip
US5786141A (en) 1994-08-26 1998-07-28 Bard; Allen J. Electrogenerated chemiluminescence labels for analysis and/or referencing
US5462051A (en) 1994-08-31 1995-10-31 Colin Corporation Medical communication system
AT402452B (en) 1994-09-14 1997-05-26 Avl Verbrennungskraft Messtech PLANAR SENSOR FOR DETECTING A CHEMICAL PARAMETER OF A SAMPLE
US5624537A (en) 1994-09-20 1997-04-29 The University Of British Columbia - University-Industry Liaison Office Biosensor and interface membrane
US5486776A (en) 1994-09-29 1996-01-23 Xilinx, Inc. Antifuse-based programmable logic circuit
US5807406A (en) 1994-10-07 1998-09-15 Baxter International Inc. Porous microfabricated polymer membrane structures
US5552112A (en) 1995-01-26 1996-09-03 Quiclave, Llc Method and system for sterilizing medical instruments
ES2155534T3 (en) 1994-10-12 2001-05-16 Focal Inc ADMINISTRATION DIRECTED THROUGH BIODEGRADABLE POLYMERS.
US6045671A (en) 1994-10-18 2000-04-04 Symyx Technologies, Inc. Systems and methods for the combinatorial synthesis of novel materials
CA2159052C (en) 1994-10-28 2007-03-06 Rainer Alex Injection device
DE4438660A1 (en) 1994-10-28 1996-05-02 Boehringer Mannheim Gmbh Bioluminescence-labeled hapten conjugates for use in competitive immunoassays
US5516832A (en) 1994-11-03 1996-05-14 Dow Corning Corporation Curable silicone rubber composition
IE72524B1 (en) * 1994-11-04 1997-04-23 Elan Med Tech Analyte-controlled liquid delivery device and analyte monitor
US5866434A (en) 1994-12-08 1999-02-02 Meso Scale Technology Graphitic nanotubes in luminescence assays
US6014213A (en) 1994-12-12 2000-01-11 Visible Genetics Inc. High dynamic range apparatus for separation and detection of polynucleotide fragments
JP2807650B2 (en) * 1994-12-24 1998-10-08 ベーリンガー・マンハイム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Equipment for tissue characterization
US5590651A (en) 1995-01-17 1997-01-07 Temple University - Of The Commonwealth System Of Higher Education Breathable liquid elimination analysis
US5792767A (en) 1995-01-27 1998-08-11 Abbott Laboratories Bicyclic substituted hexahydrobenz e! isoindole alpha-1 adrenergic antagonists
US5837728A (en) 1995-01-27 1998-11-17 Molecular Design International 9-cis retinoic acid esters and amides and uses thereof
US5597823A (en) 1995-01-27 1997-01-28 Abbott Laboratories Tricyclic substituted hexahydrobenz [e]isoindole alpha-1 adrenergic antagonists
US5741319A (en) 1995-01-27 1998-04-21 Medtronic, Inc. Biocompatible medical lead
US5676820A (en) 1995-02-03 1997-10-14 New Mexico State University Technology Transfer Corp. Remote electrochemical sensor
US5575293A (en) 1995-02-06 1996-11-19 Promex, Inc. Apparatus for collecting and staging tissue
US5586553A (en) 1995-02-16 1996-12-24 Minimed Inc. Transcutaneous sensor insertion set
US5568806A (en) 1995-02-16 1996-10-29 Minimed Inc. Transcutaneous sensor insertion set
US5628619A (en) 1995-03-06 1997-05-13 Sabratek Corporation Infusion pump having power-saving modes
CN1192097C (en) 1995-03-10 2005-03-09 梅索磅秤技术有限公司 Multi-array, multi-specific electrochemiluminescence testing
US5582697A (en) 1995-03-17 1996-12-10 Matsushita Electric Industrial Co., Ltd. Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same
US5786439A (en) 1996-10-24 1998-07-28 Minimed Inc. Hydrophilic, swellable coatings for biosensors
US5607565A (en) 1995-03-27 1997-03-04 Coulter Corporation Apparatus for measuring analytes in a fluid sample
US5640470A (en) 1995-03-27 1997-06-17 Abbott Laboratories Fiber-optic detectors with terpolymeric analyte-permeable matrix coating
US5882494A (en) * 1995-03-27 1999-03-16 Minimed, Inc. Polyurethane/polyurea compositions containing silicone for biosensor membranes
TW393498B (en) 1995-04-04 2000-06-11 Novartis Ag The preparation and use of Polysiloxane-comprising perfluoroalkyl ethers
WO1996032076A1 (en) 1995-04-11 1996-10-17 Baxter Internatonal Inc. Tissue implant systems
FR2733104B1 (en) 1995-04-12 1997-06-06 Droz Francois SMALL-DIMENSIONAL ANSWERING MACHINE AND METHOD FOR MANUFACTURING SUCH ANSWERING MACHINES
US6656157B1 (en) 1995-04-20 2003-12-02 Acist Medical Systems, Inc. Infinitely refillable syringe
GB9509410D0 (en) 1995-05-10 1995-07-05 Imperial College Molecular imaging
US5714391A (en) 1995-05-17 1998-02-03 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a compound semiconductor thin film for a photoelectric or solar cell device
AU5920696A (en) 1995-05-18 1996-11-29 Igen, Inc. Method for derivitizing electrodes and assay methods using s uch derivitized electrodes
US6060640A (en) 1995-05-19 2000-05-09 Baxter International Inc. Multiple-layer, formed-in-place immunoisolation membrane structures for implantation of cells in host tissue
US5665065A (en) 1995-05-26 1997-09-09 Minimed Inc. Medication infusion device with blood glucose data input
ATE246212T1 (en) 1995-05-26 2003-08-15 Igen Inc MOLECULAR-IMBUILT PEARL POLYMERS AND STABILIZED SUSPENSION POLYMERIZATION OF THESE IN PERFLUOROCARBON LIQUIDS
US5584813A (en) 1995-06-07 1996-12-17 Minimed Inc. Subcutaneous injection set
US5630978A (en) 1995-06-07 1997-05-20 Yissum Research Development Co. Of The Hebrew University Of Jerusalem Preparation of biologically active molecules by molecular imprinting
US6165154A (en) 1995-06-07 2000-12-26 Deka Products Limited Partnership Cassette for intravenous-line flow-control system
US5626561A (en) 1995-06-07 1997-05-06 Gore Hybrid Technologies, Inc. Implantable containment apparatus for a therapeutical device and method for loading and reloading the device therein
US6020122A (en) 1995-06-07 2000-02-01 Abbott Laboratories Hepatitis C virus second envelope (HCV-E2) glycoprotein expression system
US5743262A (en) 1995-06-07 1998-04-28 Masimo Corporation Blood glucose monitoring system
CA2190628C (en) 1995-06-07 2000-05-30 Mark D. Butler An implantable containment apparatus for a therapeutical device and method for loading and reloading the device therein
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5656707A (en) 1995-06-16 1997-08-12 Regents Of The University Of Minnesota Highly cross-linked polymeric supports
US5637135A (en) 1995-06-26 1997-06-10 Capillary Technology Corporation Chromatographic stationary phases and adsorbents from hybrid organic-inorganic sol-gels
US5840148A (en) 1995-06-30 1998-11-24 Bio Medic Data Systems, Inc. Method of assembly of implantable transponder
US5995860A (en) 1995-07-06 1999-11-30 Thomas Jefferson University Implantable sensor and system for measurement and control of blood constituent levels
US5662616A (en) 1995-07-07 1997-09-02 Bousquet; Gerald G. Transcutaneous access device
US6183437B1 (en) 1995-07-10 2001-02-06 Frank J. Walker Electronic control unit and tubing assembly system for automatically controlling urinary irrigation
US5688239A (en) 1995-07-10 1997-11-18 Walker; Frank J. Urinary tract treating assembly with prostate flushing
US5800383A (en) 1996-07-17 1998-09-01 Aquarius Medical Corporation Fluid management system for arthroscopic surgery
US6024720A (en) 1995-07-18 2000-02-15 Aquarius Medical Corporation Fluid management system for arthroscopic surgery
US5611900A (en) * 1995-07-20 1997-03-18 Michigan State University Microbiosensor used in-situ
US5673694A (en) 1995-08-08 1997-10-07 Henry Ford Health System Method and apparatus for continuous measurement of central venous oxygen saturation
AUPN487495A0 (en) 1995-08-18 1995-09-14 Cardiac Crc Nominees Pty Limited A multipolar transmural probe
US5827223A (en) 1995-08-31 1998-10-27 Alaris Medical Systems, Inc. Upstream occulsion detection system
US5658802A (en) 1995-09-07 1997-08-19 Microfab Technologies, Inc. Method and apparatus for making miniaturized diagnostic arrays
US5735273A (en) 1995-09-12 1998-04-07 Cygnus, Inc. Chemical signal-impermeable mask
US5665215A (en) 1995-09-25 1997-09-09 Bayer Corporation Method and apparatus for making predetermined events with a biosensor
US5628890A (en) 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
US6689265B2 (en) 1995-10-11 2004-02-10 Therasense, Inc. Electrochemical analyte sensors using thermostable soybean peroxidase
US5972199A (en) 1995-10-11 1999-10-26 E. Heller & Company Electrochemical analyte sensors using thermostable peroxidase
DE19537952A1 (en) 1995-10-12 1997-04-17 Boehringer Mannheim Gmbh Method for the detection of an analyte
US5855613A (en) 1995-10-13 1999-01-05 Islet Sheet Medical, Inc. Retrievable bioartificial implants having dimensions allowing rapid diffusion of oxygen and rapid biological response to physiological change
US5965125A (en) 1995-10-25 1999-10-12 Transkaryotic Therapies, Inc. Hybrid matrix implants and explants
JP3592416B2 (en) 1995-10-31 2004-11-24 晃敏 吉田 Measuring device for intraocular substances
JP3570800B2 (en) 1995-11-01 2004-09-29 株式会社東海理化電機製作所 Catheter with sensor function
US5839439A (en) 1995-11-13 1998-11-24 Nellcor Puritan Bennett Incorporated Oximeter sensor with rigid inner housing and pliable overmold
US5711861A (en) * 1995-11-22 1998-01-27 Ward; W. Kenneth Device for monitoring changes in analyte concentration
US6162201A (en) 1995-12-01 2000-12-19 Cohen; Kenneth L. Internal urinary catheter
US5630921A (en) 1995-12-07 1997-05-20 Elsag International N.V. Electrochemical sensor
US6063637A (en) 1995-12-13 2000-05-16 California Institute Of Technology Sensors for sugars and other metal binding analytes
PT1704878E (en) 1995-12-18 2013-07-17 Angiodevice Internat Gmbh Crosslinked polymer compositions and methods for their use
JP3316820B2 (en) 1995-12-28 2002-08-19 シィグナス インコーポレィティド Apparatus and method for continuous monitoring of a physiological analyte of a subject
US5588560A (en) 1996-01-11 1996-12-31 Dow Corning Corporation Ergonomeric dispenser for viscous materials
US5637083A (en) 1996-01-19 1997-06-10 Pudenz-Schulte Medical Research Corporation Implantable adjustable fluid flow control valve
AU2260397A (en) 1996-01-31 1997-08-22 Trustees Of The University Of Pennsylvania, The Remote control drug delivery device
FI118509B (en) 1996-02-12 2007-12-14 Nokia Oyj A method and apparatus for predicting blood glucose levels in a patient
IL125755A (en) 1996-02-15 2003-05-29 Biosense Inc Catheter calibration and usage monitoring system
US6009343A (en) 1996-02-23 1999-12-28 Abbott Laboratories Enhanced transdermal transport of fluid using vacuum
US5833603A (en) 1996-03-13 1998-11-10 Lipomatrix, Inc. Implantable biosensing transponder
US5728296A (en) 1996-03-20 1998-03-17 Bio-Rad Laboratories, Inc. Selective recognition of solutes in chromatographic media by artificially created affinity
GB9606829D0 (en) 1996-03-30 1996-06-05 Jeffrey Peter Supplying materials etc
US5782880A (en) 1996-04-23 1998-07-21 Medtronic, Inc. Low energy pacing pulse waveform for implantable pacemaker
US6407195B2 (en) 1996-04-25 2002-06-18 3M Innovative Properties Company Tackified polydiorganosiloxane oligourea segmented copolymers and a process for making same
US5674236A (en) * 1996-04-30 1997-10-07 Medtronic, Inc. Lancet for capillary puncture blood samples
US6048691A (en) 1996-05-13 2000-04-11 Motorola, Inc. Method and system for performing a binding assay
US5857983A (en) * 1996-05-17 1999-01-12 Mercury Diagnostics, Inc. Methods and apparatus for sampling body fluid
US6015392A (en) * 1996-05-17 2000-01-18 Mercury Diagnostics, Inc. Apparatus for sampling body fluid
US5776324A (en) 1996-05-17 1998-07-07 Encelle, Inc. Electrochemical biosensors
KR0165522B1 (en) 1996-05-23 1999-03-20 김광호 Optimal point detector for non-invasive diagnosis of blood constituents and non-invasive diagnostic device using the same
US5954685A (en) 1996-05-24 1999-09-21 Cygnus, Inc. Electrochemical sensor with dual purpose electrode
US5964261A (en) 1996-05-29 1999-10-12 Baxter International Inc. Implantation assembly
US5914182A (en) 1996-06-03 1999-06-22 Gore Hybrid Technologies, Inc. Materials and methods for the immobilization of bioactive species onto polymeric substrates
ATE234129T1 (en) 1996-06-18 2003-03-15 Alza Corp DEVICE FOR IMPROVING TRANSDERMAL ADMINISTRATION OF MEDICATIONS OR EXTRACTION OF BODY FLUID
AU3596597A (en) 1996-07-08 1998-02-02 Animas Corporation Implantable sensor and system for in vivo measurement and control of fluid constituent levels
EP0944414B1 (en) 1996-07-11 2005-11-09 Medtronic, Inc. Minimally invasive implantable device for monitoring physiologic events
US5696314A (en) 1996-07-12 1997-12-09 Chiron Diagnostics Corporation Multilayer enzyme electrode membranes and methods of making same
US5707502A (en) * 1996-07-12 1998-01-13 Chiron Diagnostics Corporation Sensors for measuring analyte concentrations and methods of making same
US6325978B1 (en) 1998-08-04 2001-12-04 Ntc Technology Inc. Oxygen monitoring and apparatus
US5703359A (en) 1996-07-29 1997-12-30 Leybold Inficon, Inc. Composite membrane and support assembly
US6054142A (en) 1996-08-01 2000-04-25 Cyto Therapeutics, Inc. Biocompatible devices with foam scaffolds
US5783556A (en) 1996-08-13 1998-07-21 Genentech, Inc. Formulated insulin-containing composition
US5804048A (en) 1996-08-15 1998-09-08 Via Medical Corporation Electrode assembly for assaying glucose
US6174329B1 (en) 1996-08-22 2001-01-16 Advanced Cardiovascular Systems, Inc. Protective coating for a stent with intermediate radiopaque coating
US5763787A (en) 1996-09-05 1998-06-09 Rosemont Inc. Carrier assembly for fluid sensor
US5932175A (en) 1996-09-25 1999-08-03 Via Medical Corporation Sensor apparatus for use in measuring a parameter of a fluid sample
US5714123A (en) 1996-09-30 1998-02-03 Lifescan, Inc. Protective shield for a blood glucose strip
US6168568B1 (en) * 1996-10-04 2001-01-02 Karmel Medical Acoustic Technologies Ltd. Phonopneumograph system
US5963132A (en) 1996-10-11 1999-10-05 Avid Indentification Systems, Inc. Encapsulated implantable transponder
DE19642453C2 (en) 1996-10-15 1998-07-23 Bosch Gmbh Robert Arrangement for gas sensor electrodes
US6001068A (en) 1996-10-22 1999-12-14 Terumo Kabushiki Kaisha Guide wire having tubular connector with helical slits
DE29723400U1 (en) 1996-10-30 1998-09-10 Mercury Diagnostics Inc Synchronized analysis test system
DE69735127T2 (en) 1996-11-14 2006-08-31 Radiometer Medical Aps ENZYME SENSOR
DE69722451T2 (en) 1996-11-22 2004-05-19 Therakos, Inc. DEVICE FOR PUMPING A FLUID WITH A CONSTANT FLOW RATE
WO1998024358A2 (en) 1996-12-04 1998-06-11 Enact Health Management Systems System for downloading and reporting medical information
US6071249A (en) 1996-12-06 2000-06-06 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
US5804384A (en) 1996-12-06 1998-09-08 Vysis, Inc. Devices and methods for detecting multiple analytes in samples
US5810770A (en) 1996-12-13 1998-09-22 Stryker Corporation Fluid management pump system for surgical procedures
US5811487A (en) 1996-12-16 1998-09-22 Dow Corning Corporation Thickening silicones with elastomeric silicone polyethers
US5964993A (en) 1996-12-19 1999-10-12 Implanted Biosystems Inc. Glucose sensor
US5836989A (en) 1996-12-26 1998-11-17 Medtronic, Inc. Method and apparatus for controlling an implanted medical device in a time-dependent manner
US5914026A (en) 1997-01-06 1999-06-22 Implanted Biosystems Inc. Implantable sensor employing an auxiliary electrode
DE69807042T2 (en) 1997-01-17 2003-02-06 Metracor Technologies Inc METHOD FOR CALIBRATING SENSORS IN DIAGNOSTIC TEST METHODS
EP0986709A4 (en) 1997-01-17 2001-05-02 Niagara Pump Corp Linear peristaltic pump
US5928155A (en) 1997-01-24 1999-07-27 Cardiox Corporation Cardiac output measurement with metabolizable analyte containing fluid
US20070142776A9 (en) 1997-02-05 2007-06-21 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US5851197A (en) 1997-02-05 1998-12-22 Minimed Inc. Injector for a subcutaneous infusion set
US6607509B2 (en) 1997-12-31 2003-08-19 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US6093172A (en) 1997-02-05 2000-07-25 Minimed Inc. Injector for a subcutaneous insertion set
US6891317B2 (en) * 2001-05-22 2005-05-10 Sri International Rolled electroactive polymers
US5913833A (en) 1997-02-07 1999-06-22 Abbott Laboratories Method and apparatus for obtaining biological fluids
US5977241A (en) 1997-02-26 1999-11-02 Integument Technologies, Inc. Polymer and inorganic-organic hybrid composites and methods for making same
US6208894B1 (en) 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
WO1998037805A1 (en) 1997-02-26 1998-09-03 Diasense, Inc. Individual calibration of blood glucose for supporting noninvasive self-monitoring blood glucose
US7114502B2 (en) 1997-02-26 2006-10-03 Alfred E. Mann Foundation For Scientific Research Battery-powered patient implantable device
US6741877B1 (en) 1997-03-04 2004-05-25 Dexcom, Inc. Device and method for determining analyte levels
US6862465B2 (en) 1997-03-04 2005-03-01 Dexcom, Inc. Device and method for determining analyte levels
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US6558321B1 (en) 1997-03-04 2003-05-06 Dexcom, Inc. Systems and methods for remote monitoring and modulation of medical devices
US9155496B2 (en) * 1997-03-04 2015-10-13 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7192450B2 (en) * 2003-05-21 2007-03-20 Dexcom, Inc. Porous membranes for use with implantable devices
US7899511B2 (en) 2004-07-13 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7657297B2 (en) 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
GB9704737D0 (en) 1997-03-07 1997-04-23 Optel Instr Limited Biological measurement system
FR2760962B1 (en) 1997-03-20 1999-05-14 Sillonville Francis Klefstad REMOTE MEDICAL ASSISTANCE AND SURVEILLANCE SYSTEM
JP2001517991A (en) 1997-03-21 2001-10-09 ネルコー・ピューリタン・ベネット・インコーポレイテッド Data signal adaptive averaging method and apparatus
US6270455B1 (en) 1997-03-28 2001-08-07 Health Hero Network, Inc. Networked system for interactive communications and remote monitoring of drug delivery
US6068668A (en) 1997-03-31 2000-05-30 Motorola, Inc. Process for forming a semiconductor device
US5942442A (en) 1997-04-02 1999-08-24 The Perkin-Elmer Corporation Detection of low level analytes in samples using agglutination reaction capillary slide test and apparatus therefor
US5891740A (en) 1997-04-02 1999-04-06 The Perkin-Elmer Corporation Detection of low level hydrophobic analytes in environmental samples using agglutination reaction capillary slide test and apparatus therefor
US6121416A (en) 1997-04-04 2000-09-19 Genentech, Inc. Insulin-like growth factor agonist molecules
US5961451A (en) 1997-04-07 1999-10-05 Motorola, Inc. Noninvasive apparatus having a retaining member to retain a removable biosensor
ES2236634T3 (en) 1997-04-07 2005-07-16 Genentech, Inc. ANTI-VEGF ANTIBODIES.
US6059946A (en) 1997-04-14 2000-05-09 Matsushita Electric Industrial Co., Ltd. Biosensor
US5944661A (en) 1997-04-16 1999-08-31 Giner, Inc. Potential and diffusion controlled solid electrolyte sensor for continuous measurement of very low levels of transdermal alcohol
US5911219A (en) 1997-04-18 1999-06-15 Aylsworth; Alonzo C. Therapeutic gas flow meter and monitor
US5935785A (en) 1997-04-30 1999-08-10 Motorola, Inc. Binding assay methods
US6115634A (en) 1997-04-30 2000-09-05 Medtronic, Inc. Implantable medical device and method of manufacture
US5779665A (en) 1997-05-08 1998-07-14 Minimed Inc. Transdermal introducer assembly
US6018033A (en) 1997-05-13 2000-01-25 Purdue Research Foundation Hydrophilic, hydrophobic, and thermoreversible saccharide gels and forms, and methods for producing same
US5998224A (en) 1997-05-16 1999-12-07 Abbott Laboratories Magnetically assisted binding assays utilizing a magnetically responsive reagent
US5807312A (en) 1997-05-23 1998-09-15 Dzwonkiewicz; Mark R. Bolus pump apparatus
TW357517B (en) 1997-05-29 1999-05-01 Koji Akai Monitoring system
US6274686B1 (en) 1997-05-30 2001-08-14 Klaus Mosbach Amide containing molecular imprinted polymers
US7267665B2 (en) 1999-06-03 2007-09-11 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
US6558351B1 (en) 1999-06-03 2003-05-06 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
US5954643A (en) 1997-06-09 1999-09-21 Minimid Inc. Insertion set for a transcutaneous sensor
AU8031898A (en) * 1997-06-16 1999-01-04 Elan Medical Technologies Limited Methods of calibrating and testing a sensor for (in vivo) measurement of an analyte and devices for use in such methods
US6093167A (en) 1997-06-16 2000-07-25 Medtronic, Inc. System for pancreatic stimulation and glucose measurement
US5938636A (en) 1997-06-20 1999-08-17 The Bd Of Regents Of The University Of California Autoinfuser for resuscitation and method of infusion fluid injection
US5928182A (en) 1997-07-02 1999-07-27 Johnson & Johnson Professional, Inc. Pediatric programmable hydrocephalus valve
US6309526B1 (en) 1997-07-10 2001-10-30 Matsushita Electric Industrial Co., Ltd. Biosensor
US5861019A (en) 1997-07-25 1999-01-19 Medtronic Inc. Implantable medical device microstrip telemetry antenna
US5823802A (en) 1997-07-30 1998-10-20 General Motors Corporation Electrical connector with combination seal and contact member
WO1999009149A1 (en) 1997-08-01 1999-02-25 Massachusetts Institute Of Technology Three-dimensional polymer matrices
US5871514A (en) 1997-08-01 1999-02-16 Medtronic, Inc. Attachment apparatus for an implantable medical device employing ultrasonic energy
US6171276B1 (en) 1997-08-06 2001-01-09 Pharmacia & Upjohn Ab Automated delivery device and method for its operation
WO1999007277A1 (en) 1997-08-09 1999-02-18 Roche Diagnostics Gmbh Analytical device for in vivo analysis in the body of a patient
US5904666A (en) 1997-08-18 1999-05-18 L.Vad Technology, Inc. Method and apparatus for measuring flow rate and controlling delivered volume of fluid through a valve aperture
GB9717906D0 (en) * 1997-08-23 1997-10-29 Univ Manchester Sensor Devices And Analytical Methods
US6129823A (en) 1997-09-05 2000-10-10 Abbott Laboratories Low volume electrochemical sensor
US6051372A (en) 1997-09-09 2000-04-18 Nimbus Biotechnologie Gmbh Template induced patterning of surfaces and their reversible stabilization using phase transitions of the patterned material
US5999849A (en) 1997-09-12 1999-12-07 Alfred E. Mann Foundation Low power rectifier circuit for implantable medical device
US5999848A (en) 1997-09-12 1999-12-07 Alfred E. Mann Foundation Daisy chainable sensors and stimulators for implantation in living tissue
US5917346A (en) 1997-09-12 1999-06-29 Alfred E. Mann Foundation Low power current to frequency converter circuit for use in implantable sensors
US6259937B1 (en) 1997-09-12 2001-07-10 Alfred E. Mann Foundation Implantable substrate sensor
US20030166108A1 (en) * 1997-09-18 2003-09-04 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US6117290A (en) 1997-09-26 2000-09-12 Pepex Biomedical, Llc System and method for measuring a bioanalyte such as lactate
US8257725B2 (en) 1997-09-26 2012-09-04 Abbott Laboratories Delivery of highly lipophilic agents via medical devices
AU9599498A (en) * 1997-09-30 1999-04-23 M-Biotech, Inc. Biosensor
US7115884B1 (en) 1997-10-06 2006-10-03 Trustees Of Tufts College Self-encoding fiber optic sensor
US5879828A (en) 1997-10-10 1999-03-09 Minnesota Mining And Manufacturing Company Membrane electrode assembly
US5967986A (en) 1997-11-25 1999-10-19 Vascusense, Inc. Endoluminal implant with fluid flow sensing capability
US6409674B1 (en) 1998-09-24 2002-06-25 Data Sciences International, Inc. Implantable sensor with wireless communication
US6585763B1 (en) 1997-10-14 2003-07-01 Vascusense, Inc. Implantable therapeutic device and method
US6033366A (en) 1997-10-14 2000-03-07 Data Sciences International, Inc. Pressure measurement device
US6296615B1 (en) 1999-03-05 2001-10-02 Data Sciences International, Inc. Catheter with physiological sensor
US6081736A (en) * 1997-10-20 2000-06-27 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems adapted for long term use
US6088608A (en) * 1997-10-20 2000-07-11 Alfred E. Mann Foundation Electrochemical sensor and integrity tests therefor
US6119028A (en) 1997-10-20 2000-09-12 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
BR9812969A (en) 1997-10-23 2000-08-08 Morten Mernoe Infusion pumping system and infusion pump unit
US6032667A (en) 1997-10-30 2000-03-07 Instrumentarium Corporation Variable orifice pulse valve
US6319566B1 (en) 1997-11-12 2001-11-20 John C. Polanyi Method of molecular-scale pattern imprinting at surfaces
US6117643A (en) 1997-11-25 2000-09-12 Ut Battelle, Llc Bioluminescent bioreporter integrated circuit
DE19824036A1 (en) 1997-11-28 1999-06-02 Roche Diagnostics Gmbh Analytical measuring device with lancing device
US6155992A (en) 1997-12-02 2000-12-05 Abbott Laboratories Method and apparatus for obtaining interstitial fluid for diagnostic tests
US5990684A (en) 1997-12-02 1999-11-23 Merrill; John H. Method and apparatus for continuously monitoring an aqueous flow to detect and quantify ions
US6070093A (en) 1997-12-02 2000-05-30 Abbott Laboratories Multiplex sensor and method of use
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
DE19753847A1 (en) 1997-12-04 1999-06-10 Roche Diagnostics Gmbh Analytical test element with capillary channel
US6579690B1 (en) 1997-12-05 2003-06-17 Therasense, Inc. Blood analyte monitoring through subcutaneous measurement
US5902722A (en) 1997-12-05 1999-05-11 The Perkin-Elmer Corporation Method of detecting organisms in a sample
DE19755529A1 (en) 1997-12-13 1999-06-17 Roche Diagnostics Gmbh Analysis system for sample liquids
US6106486A (en) 1997-12-22 2000-08-22 Radi Medical Systems Ab Guide wire
US6893552B1 (en) * 1997-12-29 2005-05-17 Arrowhead Center, Inc. Microsensors for glucose and insulin monitoring
US6432050B1 (en) 1997-12-30 2002-08-13 Remon Medical Technologies Ltd. Implantable acoustic bio-sensing system and method
WO1999033504A1 (en) 1997-12-31 1999-07-08 Minimed Inc. Insertion device for an insertion set and method of using the same
WO1999038551A1 (en) 1998-02-02 1999-08-05 Medtronic, Inc. Implantable drug infusion device having a safety valve
US7070577B1 (en) 1998-02-02 2006-07-04 Medtronic, Inc Drive circuit having improved energy efficiency for implantable beneficial agent infusion or delivery device
US6198969B1 (en) 1998-02-12 2001-03-06 Advanced Bionics Corporation Implantable connector for multi-output neurostimulators
ATE308924T1 (en) 1998-02-17 2005-11-15 Abbott Lab DEVICE FOR SAMPLING AND ANALYZING INTERSTITIAL FLUID
US6027479A (en) 1998-02-27 2000-02-22 Via Medical Corporation Medical apparatus incorporating pressurized supply of storage liquid
US6134461A (en) * 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6103033A (en) 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
US6013113A (en) 1998-03-06 2000-01-11 Wilson Greatbatch Ltd. Slotted insulator for unsealed electrode edges in electrochemical cells
CA2265119C (en) 1998-03-13 2002-12-03 Cygnus, Inc. Biosensor, iontophoretic sampling system, and methods of use thereof
US5928130A (en) 1998-03-16 1999-07-27 Schmidt; Bruno Apparatus and method for implanting radioactive seeds in tissue
US5904708A (en) 1998-03-19 1999-05-18 Medtronic, Inc. System and method for deriving relative physiologic signals
KR100596109B1 (en) 1998-03-27 2006-07-05 제넨테크, 인크. Antagonists for Treatment of CD11/CD18 Adhesion Receptor Mediated Disorders
JP3104672B2 (en) * 1998-03-31 2000-10-30 日本電気株式会社 Current detection type sensor element and method of manufacturing the same
US6175767B1 (en) 1998-04-01 2001-01-16 James H. Doyle, Sr. Multichannel implantable inner ear stimulator
US6091975A (en) 1998-04-01 2000-07-18 Alza Corporation Minimally invasive detecting device
US6074775A (en) 1998-04-02 2000-06-13 The Procter & Gamble Company Battery having a built-in controller
US6340428B1 (en) 1998-04-02 2002-01-22 Matsushita Electric Industrial Co., Inc. Device and method for determining the concentration of a substrate
US6537318B1 (en) 1998-04-06 2003-03-25 Konjac Technologies, Llc Use of glucomannan hydrocolloid as filler material in prostheses
US6065154A (en) 1998-04-07 2000-05-23 Lifecor, Inc. Support garments for patient-worn energy delivery apparatus
US6534711B1 (en) 1998-04-14 2003-03-18 The Goodyear Tire & Rubber Company Encapsulation package and method of packaging an electronic circuit module
CA2320259C (en) 1998-04-27 2006-01-24 Surmodics, Inc. Bioactive agent release coating
US6223080B1 (en) 1998-04-29 2001-04-24 Medtronic, Inc. Power consumption reduction in medical devices employing multiple digital signal processors and different supply voltages
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
WO1999057734A1 (en) 1998-05-04 1999-11-11 Gamut Technology, Inc. Flexible armored communication cable and method of manufacture
US6233471B1 (en) 1998-05-13 2001-05-15 Cygnus, Inc. Signal processing for measurement of physiological analysis
WO1999058051A1 (en) 1998-05-13 1999-11-18 Cygnus, Inc. Monitoring of physiological analytes
US6393318B1 (en) 1998-05-13 2002-05-21 Cygnus, Inc. Collection assemblies, laminates, and autosensor assemblies for use in transdermal sampling systems
US6129757A (en) 1998-05-18 2000-10-10 Scimed Life Systems Implantable members for receiving therapeutically useful compositions
US5995208A (en) 1998-05-28 1999-11-30 Abbott Laboratories Intravascular oximetry catheter
US7540875B2 (en) 1998-06-01 2009-06-02 Avatar Design & Development, Inc. Surgical cutting tool with automatically retractable blade assembly
US6702972B1 (en) 1998-06-09 2004-03-09 Diametrics Medical Limited Method of making a kink-resistant catheter
US6077660A (en) 1998-06-10 2000-06-20 Abbott Laboratories Diagnostic assay requiring a small sample of biological fluid
US7344499B1 (en) * 1998-06-10 2008-03-18 Georgia Tech Research Corporation Microneedle device for extraction and sensing of bodily fluids
US6022366A (en) 1998-06-11 2000-02-08 Stat Medical Devices Inc. Lancet having adjustable penetration depth
US6346114B1 (en) 1998-06-11 2002-02-12 Stat Medical Devices, Inc. Adjustable length member such as a cap of a lancet device for adjusting penetration depth
US6339606B1 (en) 1998-06-16 2002-01-15 Princeton Lightwave, Inc. High power semiconductor light source
US6187062B1 (en) 1998-06-16 2001-02-13 Alcatel Current collection through thermally sprayed tabs at the ends of a spirally wound electrochemical cell
US6294281B1 (en) 1998-06-17 2001-09-25 Therasense, Inc. Biological fuel cell and method
US6077299A (en) 1998-06-22 2000-06-20 Eyetronic, Llc Non-invasively adjustable valve implant for the drainage of aqueous humor in glaucoma
US6290839B1 (en) 1998-06-23 2001-09-18 Clinical Micro Sensors, Inc. Systems for electrophoretic transport and detection of analytes
US6761816B1 (en) 1998-06-23 2004-07-13 Clinical Micro Systems, Inc. Printed circuit boards with monolayers and capture ligands
EP0967788A2 (en) 1998-06-26 1999-12-29 Hewlett-Packard Company Dynamic generation of multi-resolution and tile-based images from flat compressed images
US6842635B1 (en) 1998-08-13 2005-01-11 Edwards Lifesciences Llc Optical device
US6495023B1 (en) 1998-07-09 2002-12-17 Michigan State University Electrochemical methods for generation of a biological proton motive force and pyridine nucleotide cofactor regeneration
US6066088A (en) 1998-07-13 2000-05-23 Phillip Davis Inventions, Inc. Intraurethral magnetic valve
EP1457913B1 (en) 1998-07-31 2008-12-17 Abbott Laboratories Method of managing data for a plurality of analyte test instruments
US7077328B2 (en) 1998-07-31 2006-07-18 Abbott Laboratories Analyte test instrument system including data management system
US6272382B1 (en) 1998-07-31 2001-08-07 Advanced Bionics Corporation Fully implantable cochlear implant system
US6115622A (en) 1998-08-06 2000-09-05 Medtronic, Inc. Ambulatory recorder having enhanced sampling technique
US6554798B1 (en) 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US6248067B1 (en) 1999-02-05 2001-06-19 Minimed Inc. Analyte sensor and holter-type monitor system and method of using the same
US6558320B1 (en) 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6107083A (en) 1998-08-21 2000-08-22 Bayer Corporation Optical oxidative enzyme-based sensors
US6330464B1 (en) 1998-08-26 2001-12-11 Sensors For Medicine & Science Optical-based sensing devices
US6087182A (en) 1998-08-27 2000-07-11 Abbott Laboratories Reagentless analysis of biological samples
US6325788B1 (en) 1998-09-16 2001-12-04 Mckay Douglas William Treatment of wound or joint for relief of pain and promotion of healing
US6740518B1 (en) 1998-09-17 2004-05-25 Clinical Micro Sensors, Inc. Signal detection techniques for the detection of analytes
DE69913153D1 (en) 1998-09-17 2004-01-08 Cygnus Therapeutic Systems DEVICE FOR COMPRESSING A GEL / SENSOR UNIT
US8257724B2 (en) 1998-09-24 2012-09-04 Abbott Laboratories Delivery of highly lipophilic agents via medical devices
US20060240070A1 (en) 1998-09-24 2006-10-26 Cromack Keith R Delivery of highly lipophilic agents via medical devices
US5951521A (en) 1998-09-25 1999-09-14 Minimed Inc. Subcutaneous implantable sensor set having the capability to remove deliver fluids to an insertion site
US6254586B1 (en) 1998-09-25 2001-07-03 Minimed Inc. Method and kit for supplying a fluid to a subcutaneous placement site
US6402689B1 (en) 1998-09-30 2002-06-11 Sicel Technologies, Inc. Methods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors
WO2000018449A2 (en) 1998-09-30 2000-04-06 Minimed Inc. Communication station and software for interfacing with an infusion pump, analyte monitor, analyte meter, or the like
WO2000018289A1 (en) 1998-09-30 2000-04-06 Cygnus, Inc. Method and device for predicting physiological values
US6201980B1 (en) 1998-10-05 2001-03-13 The Regents Of The University Of California Implantable medical sensor system
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
CA2345043C (en) 1998-10-08 2009-08-11 Minimed, Inc. Telemetered characteristic monitor system
ATE241705T1 (en) 1998-10-23 2003-06-15 Pierre Beuret HEAT TREATMENT SYSTEM FOR A BATCH OF METALLIC WORKPIECES
US6016448A (en) 1998-10-27 2000-01-18 Medtronic, Inc. Multilevel ERI for implantable medical devices
US6248093B1 (en) 1998-10-29 2001-06-19 Minimed Inc. Compact pump drive system
US6057377A (en) 1998-10-30 2000-05-02 Sandia Corporation Molecular receptors in metal oxide sol-gel materials prepared via molecular imprinting
US6156013A (en) 1998-11-04 2000-12-05 Mahurkar; Sakharam D. Safety syringe
US6329488B1 (en) 1998-11-10 2001-12-11 C. R. Bard, Inc. Silane copolymer coatings
JP2002529204A (en) 1998-11-13 2002-09-10 エラン・フアルマ・インターナシヨナル・リミテツド System and method for delivering chemicals
US6371963B1 (en) * 1998-11-17 2002-04-16 Scimed Life Systems, Inc. Device for controlled endoscopic penetration of injection needle
US20030099682A1 (en) 1998-11-20 2003-05-29 Francis Moussy Apparatus and method for control of tissue/implant interactions
CA2351734A1 (en) 1998-11-20 2000-06-02 University Of Connecticut Generic integrated implantable potentiostat telemetry unit for electrochemical sensors
US6353226B1 (en) 1998-11-23 2002-03-05 Abbott Laboratories Non-invasive sensor capable of determining optical parameters in a sample having multiple layers
US6066083A (en) 1998-11-27 2000-05-23 Syntheon Llc Implantable brachytherapy device having at least partial deactivation capability
EP1135677A1 (en) 1998-12-02 2001-09-26 UT-Battelle, LLC In vivo biosensor apparatus and method of use
US6201993B1 (en) 1998-12-09 2001-03-13 Medtronic, Inc. Medical device telemetry receiver having improved noise discrimination
US6477479B1 (en) * 1998-12-11 2002-11-05 Symyx Technologies Sensor array for rapid materials characterization
CA2352974A1 (en) 1998-12-18 2000-06-22 John H. Livingston Insertion sets with micro-piercing members for use with medical devices and methods of using the same
US6447448B1 (en) 1998-12-31 2002-09-10 Ball Semiconductor, Inc. Miniature implanted orthopedic sensors
CN1191786C (en) 1999-01-04 2005-03-09 泰尔茂株式会社 Assembly having lancet and means for collecting and detecting body fluid
US6169155B1 (en) 1999-01-14 2001-01-02 Dow Corning Corporation Silicone gel composition and silicone gel produced therefrom
US6309384B1 (en) 1999-02-01 2001-10-30 Adiana, Inc. Method and apparatus for tubal occlusion
CA2365609A1 (en) 1999-02-12 2000-08-17 Cygnus, Inc. Devices and methods for frequent measurement of an analyte present in a biological system
US6424847B1 (en) 1999-02-25 2002-07-23 Medtronic Minimed, Inc. Glucose monitor calibration methods
AU3245500A (en) 1999-02-25 2000-09-14 Minimed, Inc. Test plug and cable for a glucose monitor
US6360888B1 (en) * 1999-02-25 2002-03-26 Minimed Inc. Glucose sensor package system
US8636648B2 (en) 1999-03-01 2014-01-28 West View Research, Llc Endoscopic smart probe
EP1169244B1 (en) 1999-03-12 2005-11-02 Glaxo Group Limited Metering valve
US6230059B1 (en) 1999-03-17 2001-05-08 Medtronic, Inc. Implantable monitor
US6099511A (en) 1999-03-19 2000-08-08 Merit Medical Systems, Inc. Manifold with check valve positioned within manifold body
US6106494A (en) 1999-03-19 2000-08-22 Stryker Corporation Self-contained fluid management pump system for surgical procedures
BR0009581A (en) 1999-04-07 2002-02-05 Spectrx Inc Test devices for detecting, and enabling the measurement of, an analyte in a fluid, and a monitoring system
US6285897B1 (en) 1999-04-07 2001-09-04 Endonetics, Inc. Remote physiological monitoring system
US6189536B1 (en) 1999-04-15 2001-02-20 Medtronic Inc. Method for protecting implantable devices
US6223083B1 (en) 1999-04-16 2001-04-24 Medtronic, Inc. Receiver employing digital filtering for use with an implantable medical device
US6368658B1 (en) 1999-04-19 2002-04-09 Scimed Life Systems, Inc. Coating medical devices using air suspension
WO2000064533A1 (en) 1999-04-22 2000-11-02 Cygnus, Inc. Methods and devices for removing interfering species
WO2000066204A1 (en) 1999-04-30 2000-11-09 University Of Southern California Implantable microbolus infusion pump
US6254061B1 (en) 1999-04-30 2001-07-03 Scimed Life Systems, Inc. Medical suction valve
US6465066B1 (en) 1999-05-11 2002-10-15 The Coca-Cola Company Packaged potable liquid and packaging for potable liquid
US6475750B1 (en) 1999-05-11 2002-11-05 M-Biotech, Inc. Glucose biosensor
US6300002B1 (en) 1999-05-13 2001-10-09 Moltech Power Systems, Inc. Notched electrode and method of making same
US6546268B1 (en) * 1999-06-02 2003-04-08 Ball Semiconductor, Inc. Glucose sensor
US7806886B2 (en) 1999-06-03 2010-10-05 Medtronic Minimed, Inc. Apparatus and method for controlling insulin infusion with state variable feedback
WO2000074767A2 (en) * 1999-06-08 2000-12-14 Altea Technologies, Inc. Apparatus for microporation of biological membranes using thin film tissue interface devices, and method therefor
KR100448539B1 (en) 1999-06-10 2004-09-13 마쯔시다덴기산교 가부시키가이샤 Electrochemical device for moving particles covered with protein
JP2000356275A (en) 1999-06-15 2000-12-26 Seiko Instruments Inc Variable pressure valve
GB2351153B (en) 1999-06-18 2003-03-26 Abbott Lab Electrochemical sensor for analysis of liquid samples
EP1192269A2 (en) 1999-06-18 2002-04-03 Therasense, Inc. MASS TRANSPORT LIMITED i IN VIVO /i ANALYTE SENSOR
US6991643B2 (en) 2000-12-20 2006-01-31 Usgi Medical Inc. Multi-barbed device for retaining tissue in apposition and methods of use
GB9915181D0 (en) 1999-06-29 1999-09-01 Drew Scient Ltd Amperometric sensor
US6306424B1 (en) 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
US7247138B2 (en) 1999-07-01 2007-07-24 Medtronic Minimed, Inc. Reusable analyte sensor site and method of using the same
US6368274B1 (en) * 1999-07-01 2002-04-09 Medtronic Minimed, Inc. Reusable analyte sensor site and method of using the same
US6413393B1 (en) 1999-07-07 2002-07-02 Minimed, Inc. Sensor including UV-absorbing polymer and method of manufacture
DE19935063A1 (en) 1999-07-28 2001-02-01 Basf Ag Graft polymers as gas hydrate inhibitors
US6310110B1 (en) 1999-07-30 2001-10-30 Michael A. Markowitz Molecularly-imprinted material made by template-directed synthesis
US6179806B1 (en) 1999-08-05 2001-01-30 Scimed Life Systems, Inc. Self-occluding catheter
US20020019330A1 (en) * 1999-08-11 2002-02-14 Richard Murray Novel methods of diagnosis of angiogenesis, compositions, and methods of screening for angiogenesis modulators
US6471689B1 (en) 1999-08-16 2002-10-29 Thomas Jefferson University Implantable drug delivery catheter system with capillary interface
WO2001012746A1 (en) * 1999-08-17 2001-02-22 Porex Technologies Corporation Self-sealing materials and devices comprising same
US6673022B1 (en) 1999-08-20 2004-01-06 Innerspace Medical, Inc. Gas column pressure monitoring catheters
US6346583B1 (en) 1999-08-25 2002-02-12 General Electric Company Polar solvent compatible polyethersiloxane elastomers
US6312469B1 (en) 1999-09-13 2001-11-06 Medtronic Inc. Lamina prosthesis for delivery of medical treatment
US6343225B1 (en) 1999-09-14 2002-01-29 Implanted Biosystems, Inc. Implantable glucose sensor
AU7582200A (en) 1999-09-15 2001-04-17 Midtronic Minimed, Inc. Glucose sensing molecules having selected fluorescent properties
US6251280B1 (en) 1999-09-15 2001-06-26 University Of Tennessee Research Corporation Imprint-coating synthesis of selective functionalized ordered mesoporous sorbents for separation and sensors
AT408182B (en) 1999-09-17 2001-09-25 Schaupp Lukas Dipl Ing Dr Tech DEVICE FOR VIVO MEASURING SIZES IN LIVING ORGANISMS
CA2385842C (en) 1999-09-20 2008-12-09 Roche Diagnostics Corporation Small volume biosensor for continuous analyte monitoring
US7063086B2 (en) 1999-09-23 2006-06-20 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US6387324B1 (en) 1999-09-30 2002-05-14 Therox, Inc. Apparatus and method for blood oxygenation
US7276146B2 (en) 2001-11-16 2007-10-02 Roche Diagnostics Operations, Inc. Electrodes, methods, apparatuses comprising micro-electrode arrays
JP2001104470A (en) 1999-10-04 2001-04-17 Seiko Instruments Inc Valve device and valve system using the same
US6464849B1 (en) 1999-10-07 2002-10-15 Pepex Biomedical, L.L.C. Sensor for measuring a bioanalyte such as lactate
US6541107B1 (en) 1999-10-25 2003-04-01 Dow Corning Corporation Nanoporous silicone resins having low dielectric constants
US6517508B1 (en) 1999-11-03 2003-02-11 Dsu Medical Corporation Set for blood processing
US6616819B1 (en) 1999-11-04 2003-09-09 Therasense, Inc. Small volume in vitro analyte sensor and methods
JP3985022B2 (en) 1999-11-08 2007-10-03 アークレイ株式会社 Body fluid measuring device and insertion body used by being inserted into the body fluid measuring device
US6527729B1 (en) 1999-11-10 2003-03-04 Pacesetter, Inc. Method for monitoring patient using acoustic sensor
JP3426549B2 (en) 1999-11-12 2003-07-14 本田技研工業株式会社 Exhaust pipe connection structure
US8268143B2 (en) 1999-11-15 2012-09-18 Abbott Diabetes Care Inc. Oxygen-effect free analyte sensor
WO2001036666A1 (en) 1999-11-15 2001-05-25 I-Stat Corporation Apparatus and method for assaying coagulation in fluid samples
US6875386B1 (en) 1999-11-17 2005-04-05 Isense Corp. Neovascularization promoting membrane for bioimplants
DE19956822B4 (en) 1999-11-25 2004-01-29 Siemens Ag Method for determining the NOx concentration
GB9928071D0 (en) 1999-11-29 2000-01-26 Polybiomed Ltd Blood compatible medical articles
WO2001040272A2 (en) 1999-12-01 2001-06-07 Selective Genetics, Inc. In situ bioreactors and methods of use thereof
US6612984B1 (en) 1999-12-03 2003-09-02 Kerr, Ii Robert A. System and method for collecting and transmitting medical data
US6520997B1 (en) 1999-12-08 2003-02-18 Baxter International Inc. Porous three dimensional structure
US6849052B2 (en) * 1999-12-13 2005-02-01 Arkray, Inc. Body fluid measuring apparatus with lancet and lancet holder used for the measuring apparatus
US6413395B1 (en) 1999-12-16 2002-07-02 Roche Diagnostics Corporation Biosensor apparatus
JP3852734B2 (en) 1999-12-20 2006-12-06 セイコーインスツル株式会社 Pressure variable valve device and set pressure adjusting device for the valve device
EP1248661B1 (en) 2000-01-21 2012-08-22 Medtronic MiniMed, Inc. Ambulatory medical apparatus and method having telemetry modifiable control software
WO2003008014A2 (en) 2000-01-21 2003-01-30 Medical Research Group Ambulatory medical apparatus with hand held communication device
US7369635B2 (en) 2000-01-21 2008-05-06 Medtronic Minimed, Inc. Rapid discrimination preambles and methods for using the same
US6427088B1 (en) 2000-01-21 2002-07-30 Medtronic Minimed, Inc. Ambulatory medical apparatus and method using telemetry system with predefined reception listening periods
WO2001054753A2 (en) 2000-01-21 2001-08-02 Medical Research Group, Inc. Microprocessor controlled ambulatory medical apparatus with hand held communication device
US6406672B1 (en) 2000-01-28 2002-06-18 Roche Diagnostics Plasma retention structure providing internal flow
US20020016535A1 (en) 2000-01-28 2002-02-07 Martin W. Blake Subcutaneous glucose measurement device
CA2395868C (en) 2000-02-10 2009-07-14 Medtronic Minimed, Inc. Improved analyte sensor and method of making the same
US7003336B2 (en) 2000-02-10 2006-02-21 Medtronic Minimed, Inc. Analyte sensor method of making the same
US6484045B1 (en) 2000-02-10 2002-11-19 Medtronic Minimed, Inc. Analyte sensor and method of making the same
US6895263B2 (en) 2000-02-23 2005-05-17 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US7890295B2 (en) 2000-02-23 2011-02-15 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
JP4010005B2 (en) 2000-02-29 2007-11-21 ニプロ株式会社 Device for adjusting injection speed of chemical injector
US6743253B2 (en) 2000-02-29 2004-06-01 Biomod Surfaces Polyurethane-sealed biocompatible device and method for its preparation
ES2420279T3 (en) 2000-03-02 2013-08-23 Microchips, Inc. Microfabricated devices and methods for storage and selective exposure of chemicals
US6706159B2 (en) 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
US6484132B1 (en) 2000-03-07 2002-11-19 Lockheed Martin Energy Research Corporation Condition assessment of nonlinear processes
GB0005564D0 (en) 2000-03-08 2000-05-03 Inverness Medical Ltd Measurjement of substances in liquid
US6498941B1 (en) 2000-03-09 2002-12-24 Advanced Cardiovascular Systems, Inc. Catheter based probe and method of using same for detecting chemical analytes
US6365670B1 (en) 2000-03-10 2002-04-02 Wacker Silicones Corporation Organopolysiloxane gels for use in cosmetics
JP2003527599A (en) 2000-03-17 2003-09-16 エフ.ホフマン−ラ ロシュ アーゲー Embedded analyte sensor
US6405066B1 (en) 2000-03-17 2002-06-11 The Regents Of The University Of California Implantable analyte sensor
US6612111B1 (en) 2000-03-27 2003-09-02 Lifescan, Inc. Method and device for sampling and analyzing interstitial fluid and whole blood samples
MXPA02009666A (en) 2000-03-28 2004-07-30 Inverness Medical Technology I Continuous process for manufacture of disposable electro-chemical sensor.
CA2404262C (en) 2000-03-29 2009-03-24 University Of Virginia Patent Foundation Method, system, and computer program product for the evaluation of glycemic control in diabetes from self-monitoring data
PL191428B1 (en) 2000-04-06 2006-05-31 Htl Strefa Sp Z Oo Puncturing depth adjusting assembly for puncturing devices
US6599281B1 (en) 2000-05-03 2003-07-29 Aspect Medical Systems, Inc. System and method for adaptive drug delivery
IT1314759B1 (en) 2000-05-08 2003-01-03 Menarini Farma Ind INSTRUMENTATION FOR MEASUREMENT AND CONTROL OF THE CONTENT OF GLUCOSIOLACTATE OR OTHER METABOLITES IN BIOLOGICAL FLUIDS
WO2001088524A1 (en) 2000-05-12 2001-11-22 Therasense, Inc. Electrodes with multilayer membranes and methods of using and making the electrodes
US7181261B2 (en) 2000-05-15 2007-02-20 Silver James H Implantable, retrievable, thrombus minimizing sensors
US7769420B2 (en) 2000-05-15 2010-08-03 Silver James H Sensors for detecting substances indicative of stroke, ischemia, or myocardial infarction
US6442413B1 (en) 2000-05-15 2002-08-27 James H. Silver Implantable sensor
WO2001088534A2 (en) * 2000-05-16 2001-11-22 Cygnus, Inc. Methods for improving performance and reliability of biosensors
US6459917B1 (en) 2000-05-22 2002-10-01 Ashok Gowda Apparatus for access to interstitial fluid, blood, or blood plasma components
WO2001090733A1 (en) * 2000-05-23 2001-11-29 Radiometer Medical A/S A sensor membrane, a method for the preparation thereof, a sensor and a layered membrane structure for such sensor
US6506168B1 (en) 2000-05-26 2003-01-14 Abbott Laboratories Apparatus and method for obtaining blood for diagnostic tests
US6487429B2 (en) 2000-05-30 2002-11-26 Sensys Medical, Inc. Use of targeted glycemic profiles in the calibration of a noninvasive blood glucose monitor
US20020132279A1 (en) 2000-05-30 2002-09-19 Linda Hockersmith Formula to manipulate blood glucose via the calculated ingestion of carbohydrate
US6991652B2 (en) 2000-06-13 2006-01-31 Burg Karen J L Tissue engineering composite
US6565535B2 (en) 2000-06-16 2003-05-20 Nardo Zaias Medical infusion and aspiration system
US6773565B2 (en) 2000-06-22 2004-08-10 Kabushiki Kaisha Riken NOx sensor
US6494830B1 (en) 2000-06-22 2002-12-17 Guidance Interactive Technologies, Inc. Handheld controller for monitoring/using medical parameters
US6400974B1 (en) 2000-06-29 2002-06-04 Sensors For Medicine And Science, Inc. Implanted sensor processing system and method for processing implanted sensor output
US6795068B1 (en) 2000-07-21 2004-09-21 Sony Computer Entertainment Inc. Prop input device and method for mapping an object from a two-dimensional camera image to a three-dimensional space for controlling action in a game program
EP1303212A1 (en) 2000-07-21 2003-04-23 Medtronic, Inc. Measurement and communication of body parameters
US6494882B1 (en) 2000-07-25 2002-12-17 Verimetra, Inc. Cutting instrument having integrated sensors
US6683535B1 (en) 2000-08-09 2004-01-27 Alderon Industries, Llc Water detection system and method
AU2001286518A1 (en) 2000-08-15 2002-02-25 University Of Kentucky Research Foundation Programmable multi-dose intranasal drug delivery device
WO2002017210A2 (en) 2000-08-18 2002-02-28 Cygnus, Inc. Formulation and manipulation of databases of analyte and associated values
US6553241B2 (en) 2000-08-31 2003-04-22 Mallinckrodt Inc. Oximeter sensor with digital memory encoding sensor expiration data
AU8857501A (en) 2000-09-08 2002-03-22 Insulet Corp Devices, systems and methods for patient infusion
US6572579B1 (en) 2000-09-13 2003-06-03 Image-Guided Neurologics, Inc. Drug delivery and catheter systems, apparatus and processes
US7404819B1 (en) 2000-09-14 2008-07-29 C.R. Bard, Inc. Implantable prosthesis
WO2002024065A1 (en) 2000-09-22 2002-03-28 Knobbe, Lim & Buckingham Method and apparatus for real-time estimation and control of pysiological parameters
FR2815199B1 (en) 2000-10-10 2003-01-17 Canon Kk CIRCULAR TURBOCODING METHODS OF LARGE MINIMUM DISTANCE, AND SYSTEMS FOR IMPLEMENTING THE SAME
WO2002033407A1 (en) 2000-10-17 2002-04-25 Abbott Laboratories Diagnostic assay for a sample of biological fluid
US7144496B2 (en) 2000-11-02 2006-12-05 Pall Corporation Biological fluid analysis device
ES2314781T3 (en) 2000-11-09 2009-03-16 Insulet Corporation TRANSCUTANEOUS SUPPLY MEANS.
US6695860B1 (en) 2000-11-13 2004-02-24 Isense Corp. Transcutaneous sensor insertion device
US6645142B2 (en) 2000-12-01 2003-11-11 Optiscan Biomedical Corporation Glucose monitoring instrument having network connectivity
EP1343557B1 (en) 2000-12-11 2004-09-22 Christoph Miethke Gmbh & Co. KG Hydrocephalus valve
US7052483B2 (en) 2000-12-19 2006-05-30 Animas Corporation Transcutaneous inserter for low-profile infusion sets
WO2005032400A2 (en) 2003-10-06 2005-04-14 Nicast Ltd. Method and apparatus for coating medical implants
JP2002189015A (en) 2000-12-20 2002-07-05 Sankyo Co Ltd Reaction-current measuring method by enzyme electrode
US6742635B2 (en) 2000-12-20 2004-06-01 Jr286 Inc. Sports bag including an attached mat
WO2002053193A2 (en) 2001-01-02 2002-07-11 The Charles Stark Draper Laboratory, Inc. Tissue engineering of three-dimensional vascularized using microfabricated polymer assembly technology
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US6793802B2 (en) 2001-01-04 2004-09-21 Tyson Bioresearch, Inc. Biosensors having improved sample application and measuring properties and uses thereof
US6666821B2 (en) 2001-01-08 2003-12-23 Medtronic, Inc. Sensor system
US7078582B2 (en) 2001-01-17 2006-07-18 3M Innovative Properties Company Stretch removable adhesive articles and methods
US20040197846A1 (en) 2001-01-18 2004-10-07 Linda Hockersmith Determination of glucose sensitivity and a method to manipulate blood glucose concentration
CA2435439A1 (en) 2001-01-22 2002-07-25 F. Hoffmann-La Roche Ag Lancet device having capillary action
US6547839B2 (en) 2001-01-23 2003-04-15 Skc Co., Ltd. Method of making an electrochemical cell by the application of polysiloxane onto at least one of the cell components
US6510329B2 (en) 2001-01-24 2003-01-21 Datex-Ohmeda, Inc. Detection of sensor off conditions in a pulse oximeter
KR20020063020A (en) 2001-01-26 2002-08-01 한국과학기술연구원 Method for Preparing Thin Fiber -Structured Polymer Webs
DE10104462A1 (en) 2001-02-01 2002-08-29 Draeger Medical Ag Respiratory flow sensor
US6520477B2 (en) 2001-02-01 2003-02-18 William Trimmer Micro pump
DE10105549A1 (en) 2001-02-06 2002-08-29 Roche Diagnostics Gmbh System for monitoring the concentration of analytes in body fluids
US7014610B2 (en) 2001-02-09 2006-03-21 Medtronic, Inc. Echogenic devices and methods of making and using such devices
AU2002248565A1 (en) 2001-02-15 2002-08-28 David A. Gough Membrane and electrode structure for implantable sensor
WO2002066986A2 (en) 2001-02-15 2002-08-29 Medtronic Minimed, Inc. Polymers functionalized with fluorescent boronate motifs
KR20030087001A (en) 2001-02-16 2003-11-12 제넨테크, 인크. Treatment Involving Dkk-1 or Antagonists Thereof
JP2004532670A (en) 2001-02-22 2004-10-28 インシュレット コーポレイション Modular infusion device and method
US20020133224A1 (en) 2001-03-13 2002-09-19 Clara Bajgar Drug eluting encapsulated stent
US6952603B2 (en) 2001-03-16 2005-10-04 Roche Diagnostics Operations, Inc. Subcutaneous analyte sensor
FR2822383B1 (en) 2001-03-23 2004-12-17 Perouse Lab PROSTHESIS FOR PLASTIC RECONSTRUCTION WITH IMPROVED HYDROPHILICITY PROPERTIES, AND METHOD FOR OBTAINING SAME
US6576102B1 (en) 2001-03-23 2003-06-10 Virotek, L.L.C. Electrochemical sensor and method thereof
US6572745B2 (en) 2001-03-23 2003-06-03 Virotek, L.L.C. Electrochemical sensor and method thereof
EP3210637B1 (en) * 2001-04-06 2021-01-27 F. Hoffmann-La Roche AG Infusion set
US7288085B2 (en) 2001-04-10 2007-10-30 Medtronic, Inc. Permanent magnet solenoid pump for an implantable therapeutic substance delivery device
US6574490B2 (en) 2001-04-11 2003-06-03 Rio Grande Medical Technologies, Inc. System for non-invasive measurement of glucose in humans
US6454710B1 (en) 2001-04-11 2002-09-24 Motorola, Inc. Devices and methods for monitoring an analyte
US6528584B2 (en) 2001-04-12 2003-03-04 The University Of Akron Multi-component polymeric networks containing poly(ethylene glycol)
DE10119036C1 (en) 2001-04-18 2002-12-12 Disetronic Licensing Ag Immersion sensor for measuring the concentration of an analyte using an oxidase
DE60214698T2 (en) 2001-04-30 2007-09-13 Medtronic, Inc., Minneapolis IMPLANTABLE MEDICAL DEVICE AND PLASTER SYSTEM
US6535764B2 (en) 2001-05-01 2003-03-18 Intrapace, Inc. Gastric treatment and diagnosis device and method
US20020188216A1 (en) 2001-05-03 2002-12-12 Kayyali Hani Akram Head mounted medical device
US6613379B2 (en) * 2001-05-08 2003-09-02 Isense Corp. Implantable analyte sensor
WO2002090528A1 (en) 2001-05-10 2002-11-14 Georgia Tech Research Corporation Soft tissue devices and methods of use
US20020177763A1 (en) 2001-05-22 2002-11-28 Burns David W. Integrated lancets and methods
US6960466B2 (en) 2001-05-31 2005-11-01 Instrumentation Laboratory Company Composite membrane containing a cross-linked enzyme matrix for a biosensor
JP2004535423A (en) 2001-06-01 2004-11-25 エフ.ホフマン−ラ ロシュ アーゲー New compounds for chemiluminescent procedures
WO2002099428A1 (en) 2001-06-01 2002-12-12 Roche Diagnostics Gmbh Luciferin hydrazides
US20040023253A1 (en) 2001-06-11 2004-02-05 Sandeep Kunwar Device structure for closely spaced electrodes
US6837988B2 (en) 2001-06-12 2005-01-04 Lifescan, Inc. Biological fluid sampling and analyte measurement devices and methods
US6793632B2 (en) 2001-06-12 2004-09-21 Lifescan, Inc. Percutaneous biological fluid constituent sampling and measurement devices and methods
US6501976B1 (en) * 2001-06-12 2002-12-31 Lifescan, Inc. Percutaneous biological fluid sampling and analyte measurement devices and methods
US6767341B2 (en) 2001-06-13 2004-07-27 Abbott Laboratories Microneedles for minimally invasive drug delivery
US6802827B2 (en) * 2001-06-26 2004-10-12 Stig O. Andersson Hypodermic implant device
JP2005505429A (en) 2001-06-28 2005-02-24 マイクロチップス・インコーポレーテッド Method for hermetically sealing a microchip reservoir device
GB0115793D0 (en) 2001-06-28 2001-08-22 Univ Cranfield A novel mediator for electrochemical detection
US6991702B2 (en) 2001-07-04 2006-01-31 Nag-Yong Kim Electronic spinning apparatus
US6569309B2 (en) 2001-07-05 2003-05-27 Asahi Kasei Kabushiki Kaisha Fuel cell type reactor and method for producing a chemical compound by using the same
US7150737B2 (en) 2001-07-13 2006-12-19 Sci/Med Life Systems, Inc. Methods and apparatuses for navigating the subarachnoid space
WO2003008013A2 (en) 2001-07-20 2003-01-30 Medical Research Group Ambulatory medical apparatus and method using a telemetry system with predefined reception listening methods
WO2003009207A1 (en) 2001-07-20 2003-01-30 Medical Research Group Ambulatory medical apparatus and method using a robust communication protocol
WO2003009208A1 (en) 2001-07-20 2003-01-30 Medical Research Group Method and apparatus for communicating between an ambulatory medical device and a control device via telemetry using randomized data
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US20030032874A1 (en) * 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US6544212B2 (en) 2001-07-31 2003-04-08 Roche Diagnostics Corporation Diabetes management system
US7481759B2 (en) 2001-08-03 2009-01-27 Cardiac Pacemakers, Inc. Systems and methods for treatment of coronary artery disease
AU2002327513B2 (en) 2001-08-22 2007-07-26 Instrumentation Laboratory Company Method and apparatus for calibrating electrochemical sensors
WO2003017745A2 (en) 2001-08-23 2003-03-06 Sciperio, Inc. Architecture tool and methods of use
US7456025B2 (en) 2001-08-28 2008-11-25 Porex Corporation Sintered polymer membrane for analyte detection device
US6663615B1 (en) 2001-09-04 2003-12-16 The Ohio State University Dual stage microvalve and method of use
US6997921B2 (en) 2001-09-07 2006-02-14 Medtronic Minimed, Inc. Infusion device and driving mechanism for same
US6770067B2 (en) 2001-09-07 2004-08-03 Medtronic Minimed, Inc. Infusion device and driving mechanism for same
US7323142B2 (en) 2001-09-07 2008-01-29 Medtronic Minimed, Inc. Sensor substrate and method of fabricating same
US6645219B2 (en) 2001-09-07 2003-11-11 Amira Medical Rotatable penetration depth adjusting arrangement
US6595756B2 (en) 2001-09-07 2003-07-22 Medtronic Minimed, Inc. Electronic control system and process for electromagnetic pump
WO2003025559A1 (en) 2001-09-11 2003-03-27 Arkray, Inc. Measuring instrument, installation body, and density measurer
US6830562B2 (en) 2001-09-27 2004-12-14 Unomedical A/S Injector device for placing a subcutaneous infusion set
US6802957B2 (en) 2001-09-28 2004-10-12 Marine Biological Laboratory Self-referencing enzyme-based microsensor and method of use
US6723077B2 (en) 2001-09-28 2004-04-20 Hewlett-Packard Development Company, L.P. Cutaneous administration system
GB0125094D0 (en) 2001-10-18 2001-12-12 Drew Scient Ltd Amperometric sensor
US6809507B2 (en) 2001-10-23 2004-10-26 Medtronic Minimed, Inc. Implantable sensor electrodes and electronic circuitry
US6923936B2 (en) 2001-10-23 2005-08-02 Medtronic Minimed, Inc. Sterile device and method for producing same
US7097775B2 (en) 2001-10-26 2006-08-29 Second Sight Medical Products, Inc. Coated microfluidic delivery system
US7061593B2 (en) 2001-11-08 2006-06-13 Optiscan Biomedical Corp. Device and method for in vitro determination of analyte concentrations within body fluids
US6705833B2 (en) 2001-11-15 2004-03-16 Hewlett-Packard Development Company, L.P. Airflow flapper valve
WO2003046062A1 (en) 2001-11-21 2003-06-05 Porex Corporation Discrete hydrophilic-hydrophobic porous materials and methods for making the same
US6814845B2 (en) 2001-11-21 2004-11-09 University Of Kansas Method for depositing an enzyme on an electrically conductive substrate
US20040030294A1 (en) 2001-11-28 2004-02-12 Mahurkar Sakharam D. Retractable needle single use safety syringe
US20050101841A9 (en) * 2001-12-04 2005-05-12 Kimberly-Clark Worldwide, Inc. Healthcare networks with biosensors
ATE406835T1 (en) 2001-12-17 2008-09-15 Danfoss As METHOD AND DEVICE FOR MONITORING ANALYTE CONCENTRATION BY OPTICAL DETECTION
US6952604B2 (en) 2001-12-21 2005-10-04 Becton, Dickinson And Company Minimally-invasive system and method for monitoring analyte levels
US6872927B2 (en) 2001-12-26 2005-03-29 Lambda Technologies, Inc. Systems and methods for processing pathogen-contaminated mail pieces
US7399277B2 (en) 2001-12-27 2008-07-15 Medtronic Minimed, Inc. System for monitoring physiological characteristics
US20050027182A1 (en) * 2001-12-27 2005-02-03 Uzair Siddiqui System for monitoring physiological characteristics
US7018336B2 (en) 2001-12-27 2006-03-28 Medtronic Minimed, Inc. Implantable sensor flush sleeve
US7524309B2 (en) 2001-12-28 2009-04-28 Medtronic Minimed, Inc. Variable length flexible conduit feeder
WO2003061475A1 (en) 2002-01-23 2003-07-31 Danfoss A/S Method and device for monitoring analyte concentration by use of differential osmotic pressure measurement
CA2474359A1 (en) * 2002-01-29 2003-08-07 Sicel Technologies, Inc. Implantable sensor housing and fabrication methods
US6863800B2 (en) * 2002-02-01 2005-03-08 Abbott Laboratories Electrochemical biosensor strip for analysis of liquid samples
US10022078B2 (en) 2004-07-13 2018-07-17 Dexcom, Inc. Analyte sensor
US8010174B2 (en) * 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US7238165B2 (en) 2002-02-21 2007-07-03 Design Mentor, Inc. Fluid pump
US20030157409A1 (en) 2002-02-21 2003-08-21 Sui-Yang Huang Polymer lithium battery with ionic electrolyte
US20030161937A1 (en) 2002-02-25 2003-08-28 Leiby Mark W. Process for coating three-dimensional substrates with thin organic films and products
US7311690B2 (en) 2002-02-25 2007-12-25 Novashunt Ag Implantable fluid management system for the removal of excess fluid
EP1487519B1 (en) 2002-02-26 2013-06-12 TecPharma Licensing AG Insertion device for an insertion set and method of using the same
US7101980B2 (en) 2002-03-01 2006-09-05 Roche Diagnostics Operations, Inc. Derivatives, conjugates, and antibodies for detecting ecstasy-class analytes
US20030170917A1 (en) 2002-03-01 2003-09-11 Roche Diagnostics Corporation Compounds, antibodies, reagent kits, methods of producing antibodies, and methods of detecting analytes
US7169907B2 (en) 2002-03-01 2007-01-30 Roche Diagnostics Operations, Inc. Derivatives, immunogens, and antibodies for detecting ecstasy-class drugs
US7419821B2 (en) 2002-03-05 2008-09-02 I-Stat Corporation Apparatus and methods for analyte measurement and immunoassay
US6998247B2 (en) 2002-03-08 2006-02-14 Sensys Medical, Inc. Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers
ES2612779T3 (en) * 2002-03-11 2017-05-18 Nitto Denko Corporation System of transdermal patches of drug administration, method of manufacture thereof and method of use thereof
US6936006B2 (en) 2002-03-22 2005-08-30 Novo Nordisk, A/S Atraumatic insertion of a subcutaneous device
DE60337038D1 (en) 2002-03-22 2011-06-16 Animas Technologies Llc Performance improvement of an analyte monitoring device
JP3808393B2 (en) 2002-03-28 2006-08-09 富士写真フイルム株式会社 Blood test unit and blood test apparatus
GB2388898B (en) 2002-04-02 2005-10-05 Inverness Medical Ltd Integrated sample testing meter
JP2003297163A (en) 2002-04-03 2003-10-17 Hitachi Cable Ltd Method for manufacturing enameled wire
US20030225437A1 (en) 2002-04-04 2003-12-04 Ferguson Patrick J. Device for retaining material
AU2003221808A1 (en) 2002-04-05 2003-10-27 Powerzyme, Inc. Analyte sensor
US7133712B2 (en) 2002-04-05 2006-11-07 Eyelab Group, Llc Method and apparatus for non-invasive monitoring of blood substances using self-sampled tears
US7813780B2 (en) 2005-12-13 2010-10-12 Medtronic Minimed, Inc. Biosensors and methods for making and using them
US20070227907A1 (en) 2006-04-04 2007-10-04 Rajiv Shah Methods and materials for controlling the electrochemistry of analyte sensors
US7153265B2 (en) 2002-04-22 2006-12-26 Medtronic Minimed, Inc. Anti-inflammatory biosensor for reduced biofouling and enhanced sensor performance
FI118172B (en) 2002-04-22 2007-08-15 Inion Ltd Surgical implant
US7069078B2 (en) 2002-04-22 2006-06-27 Medtronic, Inc. Insulin-mediated glucose uptake monitor
US6960192B1 (en) 2002-04-23 2005-11-01 Insulet Corporation Transcutaneous fluid delivery system
US6743635B2 (en) 2002-04-25 2004-06-01 Home Diagnostics, Inc. System and methods for blood glucose sensing
US7008979B2 (en) 2002-04-30 2006-03-07 Hydromer, Inc. Coating composition for multiple hydrophilic applications
US7368190B2 (en) 2002-05-02 2008-05-06 Abbott Diabetes Care Inc. Miniature biological fuel cell that is operational under physiological conditions, and associated devices and methods
US7060192B2 (en) 2002-05-09 2006-06-13 Lifescan, Inc. Methods of fabricating physiological sample collection devices
US7343188B2 (en) 2002-05-09 2008-03-11 Lifescan, Inc. Devices and methods for accessing and analyzing physiological fluid
EP1501566B1 (en) 2002-05-09 2008-08-13 Hemoteq AG Medical products comprising a haemocompatible coating, production and use thereof
US6801041B2 (en) 2002-05-14 2004-10-05 Abbott Laboratories Sensor having electrode for determining the rate of flow of a fluid
SE524166C2 (en) 2002-05-17 2004-07-06 Hemapure Ab Sensor unit and method for detecting a blood related parameter and system comprising such sensor unit
KR100441152B1 (en) 2002-05-20 2004-07-21 주식회사 인포피아 Biosensor
US20060258761A1 (en) 2002-05-22 2006-11-16 Robert Boock Silicone based membranes for use in implantable glucose sensors
WO2003101862A1 (en) 2002-05-31 2003-12-11 Dow Corning Toray Silicone Co.,Ltd. Cartridge for moisture-curable sealant
US20030225324A1 (en) 2002-06-03 2003-12-04 Anderson Edward J. Noninvasive detection of a physiologic Parameter within a body tissue of a patient
US8996090B2 (en) 2002-06-03 2015-03-31 Exostat Medical, Inc. Noninvasive detection of a physiologic parameter within a body tissue of a patient
EP1371419A1 (en) 2002-06-12 2003-12-17 F. Hoffmann-La Roche AG Method and device for detecting the presence of an analyte in a test sample
JP2005531759A (en) 2002-06-28 2005-10-20 ノヴェンバー アクティエンゲゼルシャフト Electrochemical detection apparatus and method
US7125722B2 (en) 2002-07-03 2006-10-24 Abbott Laboratories Apparatus and method for handling fluids for analysis
US6858020B2 (en) 2002-07-08 2005-02-22 Ideal Instrument, Inc. Vaccinator device
WO2004004807A1 (en) 2002-07-09 2004-01-15 Gambro Lundia Ab An infusion device for medical use.
US20040010207A1 (en) 2002-07-15 2004-01-15 Flaherty J. Christopher Self-contained, automatic transcutaneous physiologic sensing system
US20040068230A1 (en) 2002-07-24 2004-04-08 Medtronic Minimed, Inc. System for providing blood glucose measurements to an infusion device
US7072701B2 (en) 2002-07-26 2006-07-04 Cas Medical Systems, Inc. Method for spectrophotometric blood oxygenation monitoring
US6892093B2 (en) * 2002-08-01 2005-05-10 Ge Medical Systems Information Technologies Inc. Method and apparatus for real time display of filtered electrocardiogram data
US20040106741A1 (en) 2002-09-17 2004-06-03 Kriesel Joshua W. Nanofilm compositions with polymeric components
US7070591B2 (en) 2002-09-17 2006-07-04 Transoma Medical, Inc. Vascular access port with physiological sensor
US7150741B2 (en) 2002-09-20 2006-12-19 Advanced Neuromodulation Systems, Inc. Programmable dose control module
US6957655B2 (en) 2002-09-20 2005-10-25 Advanced Neuromodulation Systems, Inc. Apparatus for dosage control
US8303511B2 (en) 2002-09-26 2012-11-06 Pacesetter, Inc. Implantable pressure transducer system optimized for reduced thrombosis effect
US7162289B2 (en) * 2002-09-27 2007-01-09 Medtronic Minimed, Inc. Method and apparatus for enhancing the integrity of an implantable sensor device
EP1556103A1 (en) 2002-10-07 2005-07-27 Novo Nordisk A/S Needle device comprising a plurality of needles
US7207968B1 (en) 2002-10-07 2007-04-24 Harcinske John C Drinking dispenser for bedridden patients
ATE433775T1 (en) 2002-10-11 2009-07-15 Becton Dickinson Co INSULIN DELIVERY SYSTEM WITH SENSOR
US20040180391A1 (en) 2002-10-11 2004-09-16 Miklos Gratzl Sliver type autonomous biosensors
US20040074785A1 (en) * 2002-10-18 2004-04-22 Holker James D. Analyte sensors and methods for making them
US9237865B2 (en) 2002-10-18 2016-01-19 Medtronic Minimed, Inc. Analyte sensors and methods for making and using them
US20050272989A1 (en) 2004-06-04 2005-12-08 Medtronic Minimed, Inc. Analyte sensors and methods for making and using them
US6737158B1 (en) 2002-10-30 2004-05-18 Gore Enterprise Holdings, Inc. Porous polymeric membrane toughened composites
US7087017B2 (en) 2002-10-31 2006-08-08 Medtronic, Inc. Atraumatic sensor lead assemblies
US7248912B2 (en) 2002-10-31 2007-07-24 The Regents Of The University Of California Tissue implantable sensors for measurement of blood solutes
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
ATE472292T1 (en) 2002-12-10 2010-07-15 Koninkl Philips Electronics Nv WEARABLE DEVICE FOR BIOELECTRIC INTERACTION WITH MOTION ARTIFACT CORRECTING AGENTS
US20040120848A1 (en) 2002-12-20 2004-06-24 Maria Teodorczyk Method for manufacturing a sterilized and calibrated biosensor-based medical device
US7255690B2 (en) 2002-12-26 2007-08-14 Medtronic Minimed, Inc. Infusion device having piston operated driving mechanism and positive pressure reservoir
US6932584B2 (en) 2002-12-26 2005-08-23 Medtronic Minimed, Inc. Infusion device and driving mechanism and process for same with actuator for multiple infusion uses
US20040127818A1 (en) 2002-12-27 2004-07-01 Roe Steven N. Precision depth control lancing tip
AU2003303597A1 (en) 2002-12-31 2004-07-29 Therasense, Inc. Continuous glucose monitoring system and methods of use
US20040133131A1 (en) 2003-01-03 2004-07-08 Kuhn David L. In vivo ruminant health sensor
US7228162B2 (en) 2003-01-13 2007-06-05 Isense Corporation Analyte sensor
US7120483B2 (en) 2003-01-13 2006-10-10 Isense Corporation Methods for analyte sensing and measurement
US6902544B2 (en) 2003-01-22 2005-06-07 Codman & Shurtleff, Inc. Troubleshooting accelerator system for implantable drug delivery pumps
US20040158294A1 (en) 2003-02-12 2004-08-12 Medtronic, Inc. Self-powered implantable element
US20040161853A1 (en) 2003-02-13 2004-08-19 Zhongping Yang Implantable chemical sensor with rugged optical coupler
US6965791B1 (en) 2003-03-26 2005-11-15 Sorenson Medical, Inc. Implantable biosensor system, apparatus and method
US7070580B2 (en) 2003-04-01 2006-07-04 Unomedical A/S Infusion device and an adhesive sheet material and a release liner
WO2004087256A1 (en) * 2003-04-02 2004-10-14 Neurostream Technologies Inc. Implantable nerve signal sensing and stimulation device for treating foot drop and other neurological disorders
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
DE10315544B4 (en) 2003-04-04 2007-02-15 Roche Diagnostics Gmbh Method for producing a piercing and measuring device and device
US7048727B1 (en) 2003-04-18 2006-05-23 Gerald Moss Continuous feeding and decompressing device and method
US6797877B1 (en) 2003-04-28 2004-09-28 Jonn Maneely Company Electrical metallic tube, coupling, and connector apparatus and method
EP1475113A1 (en) 2003-05-08 2004-11-10 Novo Nordisk A/S External needle inserter
WO2004100926A2 (en) 2003-05-13 2004-11-25 Medtronic, Inc. Delivery of agents using hydrolyzable leaving groups
WO2004101017A2 (en) 2003-05-16 2004-11-25 Blue Membranes Gmbh Medical implants comprising biocompatible coatings
US7875293B2 (en) 2003-05-21 2011-01-25 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
US7687586B2 (en) * 2003-05-21 2010-03-30 Isense Corporation Biosensor membrane material
US20040254433A1 (en) 2003-06-12 2004-12-16 Bandis Steven D. Sensor introducer system, apparatus and method
JP2007524816A (en) 2003-06-20 2007-08-30 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Method for producing thin uniform reagent strip and its reagent
US20050118344A1 (en) 2003-12-01 2005-06-02 Pacetti Stephen D. Temperature controlled crimping
CA2694876A1 (en) 2003-07-01 2005-03-24 Eric R. Diebold Electrochemical affinity biosensor system and methods
US8425926B2 (en) 2003-07-16 2013-04-23 Yongxing Qiu Antimicrobial medical devices
DE10332283A1 (en) 2003-07-16 2005-02-03 Roche Diagnostics Gmbh System for taking body fluid
US20050051427A1 (en) 2003-07-23 2005-03-10 Brauker James H. Rolled electrode array and its method for manufacture
US7424318B2 (en) * 2003-12-05 2008-09-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US9763609B2 (en) * 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
WO2005012871A2 (en) 2003-07-25 2005-02-10 Dexcom, Inc. Increasing bias for oxygen production in an electrode system
WO2005019795A2 (en) 2003-07-25 2005-03-03 Dexcom, Inc. Electrochemical sensors including electrode systems with increased oxygen generation
EP1648298A4 (en) 2003-07-25 2010-01-13 Dexcom Inc Oxygen enhancing membrane systems for implantable devices
US7366556B2 (en) * 2003-12-05 2008-04-29 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20050176136A1 (en) 2003-11-19 2005-08-11 Dexcom, Inc. Afinity domain for analyte sensor
JP2007500336A (en) 2003-07-25 2007-01-11 デックスコム・インコーポレーテッド Electrode system for electrochemical sensors
US7467003B2 (en) * 2003-12-05 2008-12-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7460898B2 (en) * 2003-12-05 2008-12-02 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8282549B2 (en) 2003-12-09 2012-10-09 Dexcom, Inc. Signal processing for continuous analyte sensor
WO2007120442A2 (en) 2003-07-25 2007-10-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
DE10335131A1 (en) 2003-07-31 2005-02-24 Blue Membranes Gmbh Porous carbon moldings, e.g. for catalyst support; insulant, tube membrane, ex or in vivo cell culture substrate or scaffold or implant, are made by molding carbonizable polymer and removing filler or partial oxidation to form pores
US7519408B2 (en) 2003-11-19 2009-04-14 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US7494465B2 (en) * 2004-07-13 2009-02-24 Dexcom, Inc. Transcutaneous analyte sensor
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US7276029B2 (en) 2003-08-01 2007-10-02 Dexcom, Inc. System and methods for processing analyte sensor data
US8845536B2 (en) 2003-08-01 2014-09-30 Dexcom, Inc. Transcutaneous analyte sensor
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US7172075B1 (en) 2003-08-08 2007-02-06 Accord Partner Limited Defect free composite membranes, method for producing said membranes and use of the same
US7211074B2 (en) 2003-08-12 2007-05-01 Sherwood Services Ag Valved catheter
KR20110041579A (en) 2003-08-15 2011-04-21 애니머스 테크놀로지스 엘엘씨 Microprocessors, devices, and methods for use in monitoring of physiological analytes
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US7723099B2 (en) 2003-09-10 2010-05-25 Abbott Point Of Care Inc. Immunoassay device with immuno-reference electrode
US7682833B2 (en) 2003-09-10 2010-03-23 Abbott Point Of Care Inc. Immunoassay device with improved sample closure
US7433727B2 (en) 2003-09-24 2008-10-07 Legacy Good Samaritan Hospital And Medical Center Implantable biosensor
EP1681992B2 (en) 2003-09-30 2015-03-04 Roche Diagnostics GmbH Sensor with increased biocompatibility
US7481818B2 (en) 2003-10-20 2009-01-27 Lifescan Lancing device with a floating probe for control of penetration depth
US20050090607A1 (en) 2003-10-28 2005-04-28 Dexcom, Inc. Silicone composition for biocompatible membrane
US7299082B2 (en) 2003-10-31 2007-11-20 Abbott Diabetes Care, Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
EP1678489B1 (en) 2003-10-31 2007-04-25 Lifescan Scotland Ltd Method of reducing the effect of direct interference current in an electrochemical test strip
ATE476909T1 (en) 2003-11-13 2010-08-15 Medtronic Minimed Inc LONG-TERM ANALYT SENSOR ARRANGEMENT
US8414489B2 (en) 2003-11-13 2013-04-09 Medtronic Minimed, Inc. Fabrication of multi-sensor arrays
US7100628B1 (en) 2003-11-18 2006-09-05 Creare Inc. Electromechanically-assisted regulator control assembly
EP2239567B1 (en) 2003-12-05 2015-09-02 DexCom, Inc. Calibration techniques for a continuous analyte sensor
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
DE602004028164D1 (en) 2003-12-08 2010-08-26 Dexcom Inc SYSTEMS AND METHOD FOR IMPROVING ELECTROCHEMICAL ANALYTIC SENSORS
FR2864449A1 (en) 2003-12-29 2005-07-01 Ela Medical Sa ACTIVE IMPLANTABLE MEDICAL DEVICE, IN PARTICULAR A CARDIAC STIMULATOR, WITH IMPROVED MANAGEMENT OF AUTOMATIC AAI / DDD MODE SWITCHING IN THE PRESENCE OF PAROXYSTIC BAV
US7384397B2 (en) 2003-12-30 2008-06-10 Medtronic Minimed, Inc. System and method for sensor recalibration
US8147426B2 (en) 2003-12-31 2012-04-03 Nipro Diagnostics, Inc. Integrated diagnostic test system
US20050154264A1 (en) 2004-01-08 2005-07-14 International Business Machines Corporation Personal stress level monitor and systems and methods for using same
US20050182451A1 (en) 2004-01-12 2005-08-18 Adam Griffin Implantable device with improved radio frequency capabilities
US7637868B2 (en) 2004-01-12 2009-12-29 Dexcom, Inc. Composite material for implantable device
EP1711101A1 (en) 2004-01-15 2006-10-18 Glucon Inc. Wearable glucometer
DE102004002874A1 (en) 2004-01-20 2005-08-11 Roche Diagnostics Gmbh Analyzer for analysis of blood samples
US7254425B2 (en) 2004-01-23 2007-08-07 Abbott Laboratories Method for detecting artifacts in data
US7699964B2 (en) 2004-02-09 2010-04-20 Abbott Diabetes Care Inc. Membrane suitable for use in an analyte sensor, analyte sensor, and associated method
US8165651B2 (en) * 2004-02-09 2012-04-24 Abbott Diabetes Care Inc. Analyte sensor, and associated system and method employing a catalytic agent
US7364592B2 (en) 2004-02-12 2008-04-29 Dexcom, Inc. Biointerface membrane with macro-and micro-architecture
AU2005220150A1 (en) 2004-02-13 2005-09-15 The University Of North Carolina At Chapel Hill Functional materials and novel methods for the fabrication of microfluidic devices
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
WO2005084257A2 (en) 2004-02-26 2005-09-15 Vpn Solutions, Llc Composite thin-film glucose sensor
CN1934444A (en) 2004-03-05 2007-03-21 艾格麦迪卡瑞士股份有限公司 Analyte test system for determining the concentration of an analyte in a physiological fluid
DK1722670T3 (en) 2004-03-06 2014-01-06 Hoffmann La Roche Body fluid sampling device
EP1582874B1 (en) 2004-03-31 2008-07-09 Roche Diagnostics GmbH Modular analysing apparatus
KR20050099714A (en) 2004-04-12 2005-10-17 삼성전자주식회사 High dendsity low power glitchless clock selection circuit and digital processing system including the same
US9101302B2 (en) 2004-05-03 2015-08-11 Abbott Diabetes Care Inc. Analyte test device
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US20050245799A1 (en) 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
WO2005114218A2 (en) 2004-05-15 2005-12-01 Genentech, Inc. Cross-screening system and methods for detecting a molecule having binding affinity for a target molecule
US7125382B2 (en) 2004-05-20 2006-10-24 Digital Angel Corporation Embedded bio-sensor system
JP2008501037A (en) * 2004-06-01 2008-01-17 マイクロチップス・インコーポレーテッド Devices and methods for measuring and enhancing transport of drugs or analytes to / from medical implants
US20070100222A1 (en) 2004-06-14 2007-05-03 Metronic Minimed, Inc. Analyte sensing apparatus for hospital use
US7299081B2 (en) 2004-06-15 2007-11-20 Abbott Laboratories Analyte test device
ATE377194T1 (en) 2004-07-02 2007-11-15 Hoffmann La Roche DEVICE FOR RELIABLE ANALYSIS
EP1612561A1 (en) 2004-07-02 2006-01-04 Roche Diagnostics GmbH Instrument for efficient treatment of analytical devices
EP1614464A1 (en) 2004-07-03 2006-01-11 Roche Diagnostics GmbH Liquid reservoir connector
US20060015020A1 (en) * 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
DE102004033219A1 (en) 2004-07-09 2006-02-02 Roche Diagnostics Gmbh Method for the selective sterilization of diagnostic test elements
US7246551B2 (en) * 2004-07-09 2007-07-24 Protedyne Corporation Liquid handling device with surface features at a seal
US7640048B2 (en) 2004-07-13 2009-12-29 Dexcom, Inc. Analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US20080242961A1 (en) 2004-07-13 2008-10-02 Dexcom, Inc. Transcutaneous analyte sensor
US20060020192A1 (en) 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
EP3718479B1 (en) 2004-07-13 2021-12-15 Dexcom, Inc. Transcutaneous analyte sensor
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US8962165B2 (en) 2006-05-02 2015-02-24 The Penn State Research Foundation Materials and configurations for scalable microbial fuel cells
US7512432B2 (en) 2004-07-27 2009-03-31 Abbott Laboratories Sensor array
JP2008508504A (en) 2004-07-28 2008-03-21 エフ.ホフマン−ラ ロシュ アーゲー Pancreatic polypeptides as targets / markers for beta cell failure
US7438131B2 (en) * 2004-08-06 2008-10-21 Baker Hughes Incorporated Expandable injector pipe
US8137618B2 (en) 2004-08-18 2012-03-20 Abbott Laboratories Blood glucose monitoring kit
EP1782062A4 (en) 2004-08-24 2010-09-08 Univ South Florida Epoxy enhanced polymer membrane to increase durability of biosensors
US20060047215A1 (en) 2004-09-01 2006-03-02 Welch Allyn, Inc. Combined sensor assembly
JP2008511373A (en) 2004-09-03 2008-04-17 ノボ・ノルデイスク・エー/エス Method for calibrating a system for measuring the concentration of a body substance and apparatus for carrying out the method
US7468033B2 (en) 2004-09-08 2008-12-23 Medtronic Minimed, Inc. Blood contacting sensor
US20060065527A1 (en) 2004-09-24 2006-03-30 Sendx Medical, Inc. Polymeric reference electrode
US7608042B2 (en) 2004-09-29 2009-10-27 Intellidx, Inc. Blood monitoring system
US20060094945A1 (en) 2004-10-28 2006-05-04 Sontra Medical Corporation System and method for analyte sampling and analysis
JP2008519083A (en) 2004-11-09 2008-06-05 エフ.ホフマン−ラ ロシュ アーゲー Aminoquinazoline compounds
EP1843805A4 (en) 2004-11-09 2015-05-06 Angiotech Pharm Inc Antimicrobial needle coating for extended infusion
EP1836495A2 (en) 2004-11-17 2007-09-26 BioVeris Corporation Electrochemiluminescent assay
US20060122864A1 (en) 2004-12-02 2006-06-08 Gottesman Janell M Patient management network
CA2589355A1 (en) 2004-12-06 2005-12-06 Surmodics, Inc. Multifunctional medical articles
US7319769B2 (en) 2004-12-09 2008-01-15 Phonak Ag Method to adjust parameters of a transfer function of a hearing device as well as hearing device
EP1871527B1 (en) 2004-12-23 2017-09-27 Abbott Point of Care Inc. Molecular diagnostics system
US7697967B2 (en) * 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US20070027381A1 (en) 2005-07-29 2007-02-01 Therasense, Inc. Inserter and methods of use
US7418285B2 (en) 2004-12-29 2008-08-26 Abbott Laboratories Analyte test sensor and method of manufacturing the same
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US8613703B2 (en) 2007-05-31 2013-12-24 Abbott Diabetes Care Inc. Insertion devices and methods
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US7364562B2 (en) 2005-10-06 2008-04-29 Optiscan Biomedical Corp. Anti-clotting apparatus and methods for fluid handling system
US7241586B2 (en) 2005-02-17 2007-07-10 Medtronic Minimed, Inc. Polypeptide formulations and methods for making, using and characterizing them
US20090076360A1 (en) 2007-09-13 2009-03-19 Dexcom, Inc. Transcutaneous analyte sensor
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
CA2601441A1 (en) 2005-03-21 2006-09-28 Abbott Diabetes Care Inc. Method and system for providing integrated medication infusion and analyte monitoring system
WO2006102359A2 (en) 2005-03-23 2006-09-28 Abbott Laboratories Delivery of highly lipophilic agents via medical devices
US8280476B2 (en) 2005-03-29 2012-10-02 Arkal Medical, Inc. Devices, systems, methods and tools for continuous glucose monitoring
US20060224326A1 (en) 2005-03-31 2006-10-05 St Ores John W Integrated data collection and analysis for clinical study
WO2006110193A2 (en) 2005-04-08 2006-10-19 Dexcom, Inc. Cellulosic-based interference domain for an analyte sensor
DE102005017364B4 (en) 2005-04-14 2007-02-01 Roche Diagnostics Gmbh Analyzer with replaceable test field carrier
US8060174B2 (en) * 2005-04-15 2011-11-15 Dexcom, Inc. Analyte sensing biointerface
US20060257995A1 (en) 2005-04-15 2006-11-16 Peter Simpson Analyte sensing biointerface
JP5022621B2 (en) 2005-04-27 2012-09-12 三星エスディアイ株式会社 Cylindrical lithium secondary battery
US20060245131A1 (en) 2005-04-29 2006-11-02 Ramey Blaine E Electrical protection circuitry for a docking station base of a hand held meter and method thereof
US20060253085A1 (en) 2005-05-06 2006-11-09 Medtronic Minimed, Inc. Dual insertion set
US20060263839A1 (en) 2005-05-17 2006-11-23 Isense Corporation Combined drug delivery and analyte sensor apparatus
US20060275859A1 (en) 2005-05-17 2006-12-07 Kjaer Thomas Enzyme sensor including a water-containing spacer layer
JP2008541104A (en) 2005-05-17 2008-11-20 ラジオメーター・メディカル・アー・ペー・エス Enzyme sensor having a hydrous spacer layer
US8021299B2 (en) 2005-06-01 2011-09-20 Medtronic, Inc. Correlating a non-polysomnographic physiological parameter set with sleep states
US7976466B2 (en) 2005-06-02 2011-07-12 Isense Corporation Use of multiple data points and filtering in an analyte sensor
US7620437B2 (en) 2005-06-03 2009-11-17 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US7905999B2 (en) 2005-06-08 2011-03-15 Abbott Laboratories Biosensor strips and methods of preparing same
WO2007002580A2 (en) 2005-06-23 2007-01-04 Bioveris Corporation Diagnostic as say system with multi -well reagent container
WO2007002579A2 (en) 2005-06-23 2007-01-04 Bioveris Corporation Assay cartridges and methods for point of care instruments
EP1742039A1 (en) 2005-07-07 2007-01-10 F. Hoffmann-La Roche Ltd. Method for the determination of the concentration of a non-volatile analyte
CA2612635C (en) 2005-07-14 2013-03-12 I-Stat Corporation Photoformed silicone sensor membrane
ATE449097T1 (en) 2005-07-21 2009-12-15 Hoffmann La Roche PYRIDOÄ2,3-DÜPYRIMIDINE-2,4-DIAMINE COMPOUNDS AS PTPIB INHIBITORS
US20070093786A1 (en) 2005-08-16 2007-04-26 Medtronic Minimed, Inc. Watch controller for a medical device
US20070060870A1 (en) 2005-08-16 2007-03-15 Tolle Mike Charles V Controller device for an infusion pump
US20070060869A1 (en) 2005-08-16 2007-03-15 Tolle Mike C V Controller device for an infusion pump
US20070112261A1 (en) 2005-08-24 2007-05-17 Medtronic Minimed, Inc. Automobile Glucose Sensor Monitoring System and Method for Using the Same
US20070060801A1 (en) 2005-08-31 2007-03-15 Isense Corporation Transcutaneous introducer assembly
US7713240B2 (en) 2005-09-13 2010-05-11 Medtronic Minimed, Inc. Modular external infusion device
US9072476B2 (en) * 2005-09-23 2015-07-07 Medtronic Minimed, Inc. Flexible sensor apparatus
US7725148B2 (en) 2005-09-23 2010-05-25 Medtronic Minimed, Inc. Sensor with layered electrodes
US7756561B2 (en) 2005-09-30 2010-07-13 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US20080072663A1 (en) 2006-08-15 2008-03-27 Optiscan Biomedical Corporation Accurate and timely body fluid analysis
US20070173706A1 (en) 2005-11-11 2007-07-26 Isense Corporation Method and apparatus for insertion of a sensor
US7729737B2 (en) 2005-11-22 2010-06-01 Isense Corporation Method and apparatus for background current arrangements for a biosensor
US7922971B2 (en) 2005-11-30 2011-04-12 Abbott Diabetes Care Inc. Integrated meter for analyzing biological samples
US8105244B2 (en) 2005-11-30 2012-01-31 Abbott Diabetes Care Inc. Integrated sensor for analyzing biological samples
US20070129524A1 (en) 2005-12-06 2007-06-07 Sunkara Hari B Thermoplastic polyurethanes comprising polytrimethylene ether soft segments
US7759408B2 (en) 2005-12-21 2010-07-20 Bausch & Lomb Incorporated Silicon-containing monomers end-capped with polymerizable cationic hydrophilic groups
US20070179436A1 (en) 2005-12-21 2007-08-02 Braig James R Analyte detection system with periodic sample draw and laboratory-grade analyzer
CA2636034A1 (en) 2005-12-28 2007-10-25 Abbott Diabetes Care Inc. Medical device insertion
US8353881B2 (en) * 2005-12-28 2013-01-15 Abbott Diabetes Care Inc. Infusion sets for the delivery of a therapeutic substance to a patient
US7519409B2 (en) 2005-12-29 2009-04-14 Medtronic, Inc. Implantable cell/tissue-based biosensing device
US20070173712A1 (en) 2005-12-30 2007-07-26 Medtronic Minimed, Inc. Method of and system for stabilization of sensors
US7774038B2 (en) 2005-12-30 2010-08-10 Medtronic Minimed, Inc. Real-time self-calibrating sensor system and method
EP2004796B1 (en) 2006-01-18 2015-04-08 DexCom, Inc. Membranes for an analyte sensor
US8344966B2 (en) 2006-01-31 2013-01-01 Abbott Diabetes Care Inc. Method and system for providing a fault tolerant display unit in an electronic device
WO2007097754A1 (en) 2006-02-22 2007-08-30 Dexcom, Inc. Analyte sensor
CA2577760A1 (en) 2006-02-27 2007-08-27 Tyco Healthcare Group Lp Pressurized dip coating system
CA2630535C (en) 2006-02-27 2014-12-23 Edwards Lifesciences Corporation Method and apparatus for using flex circuit technology to create an electrode
US7586173B2 (en) 2006-02-27 2009-09-08 Edwards Lifesciences Corporation Method and apparatus for using flex circuit technology to create a reference electrode channel
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US20070233013A1 (en) 2006-03-31 2007-10-04 Schoenberg Stephen J Covers for tissue engaging members
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8478406B2 (en) 2006-04-24 2013-07-02 Medtronic, Inc. Apparatus and methods of delivering an enhanced refractory period stimulation therapy
US7684872B2 (en) 2006-04-26 2010-03-23 Medtronic, Inc. Contactless interconnect for transducers
US20070255126A1 (en) 2006-04-28 2007-11-01 Moberg Sheldon B Data communication in networked fluid infusion systems
US20070255125A1 (en) 2006-04-28 2007-11-01 Moberg Sheldon B Monitor devices for networked fluid infusion systems
US8092385B2 (en) 2006-05-23 2012-01-10 Intellidx, Inc. Fluid access interface
US7862622B2 (en) 2006-06-08 2011-01-04 College Park Industries, Inc. Prosthetic foot with adjustable heel height
GB0612834D0 (en) 2006-06-28 2006-08-09 Glysure Ltd Sensor calibration
US7468397B2 (en) 2006-06-30 2008-12-23 Bausch & Lomb Incorporated Polymerizable siloxane-quaternary amine copolymers
US9119582B2 (en) 2006-06-30 2015-09-01 Abbott Diabetes Care, Inc. Integrated analyte sensor and infusion device and methods therefor
WO2008014280A2 (en) 2006-07-25 2008-01-31 Glumetrics, Inc. Flourescent dyes for use in glucose sensing
US7871456B2 (en) 2006-08-10 2011-01-18 The Regents Of The University Of California Membranes with controlled permeability to polar and apolar molecules in solution and methods of making same
WO2008022021A2 (en) 2006-08-10 2008-02-21 Medtronic, Inc. Devices with photocatalytic surfaces and uses thereof
US8068331B2 (en) 2006-09-06 2011-11-29 Roche Diagnostics Operations, Inc. Enclosure to prevent fluid ingress of a device having a touch screen interface
EP1905514A1 (en) 2006-09-30 2008-04-02 Roche Diagnostics GmbH Device having a reversibly closable fluid valve
US7831287B2 (en) 2006-10-04 2010-11-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
WO2008048709A1 (en) 2006-10-15 2008-04-24 Roche Diagnostic Gmbh Diagnostic test element and process for its production
US7312042B1 (en) 2006-10-24 2007-12-25 Abbott Diabetes Care, Inc. Embossed cell analyte sensor and methods of manufacture
US8158081B2 (en) 2006-10-31 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring devices
US7740580B2 (en) 2006-10-31 2010-06-22 Abbott Diabetes Care Inc. Analyte monitoring
CA2668672C (en) 2006-11-29 2011-10-25 Medtronic Minimed, Inc. Methods and apparatuses for detecting medical device acceleration, temperature, and humidity conditions
EP2091430A4 (en) 2006-11-30 2010-01-06 Abbott Diabetes Care Inc Lyotropic liquid crystal coated analyte monitoring device and methods of use
US20080139910A1 (en) 2006-12-06 2008-06-12 Metronic Minimed, Inc. Analyte sensor and method of using the same
US20080139903A1 (en) 2006-12-08 2008-06-12 Isense Corporation Method and apparatus for insertion of a sensor using an introducer
US7802467B2 (en) 2006-12-22 2010-09-28 Abbott Diabetes Care Inc. Analyte sensors and methods of use
WO2008080591A1 (en) 2006-12-28 2008-07-10 Disetronic Licensing Ag Transmission module for a portable medical device
US8845530B2 (en) 2007-01-02 2014-09-30 Isense Corporation Resposable biosensor assembly and method of sensing
US8808515B2 (en) 2007-01-31 2014-08-19 Abbott Diabetes Care Inc. Heterocyclic nitrogen containing polymers coated analyte monitoring device and methods of use
US8738107B2 (en) 2007-05-10 2014-05-27 Medtronic Minimed, Inc. Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement
US8088097B2 (en) 2007-11-21 2012-01-03 Glumetrics, Inc. Use of an equilibrium intravascular sensor to achieve tight glycemic control
EP2989975B1 (en) 2007-02-06 2018-06-13 Medtronic MiniMed, Inc. Optical systems and methods for rationmetric measurement of blood glucose concentration
US7939664B2 (en) 2007-05-01 2011-05-10 Glumetrics Inc. Pyridinium boronic acid quenchers for use in analyte sensors
EP2122334B1 (en) 2007-02-06 2018-01-24 Medtronic Minimed, Inc. Method for polymerizing a monomer solution within a cavity to generate a smooth polymer surface
US7751863B2 (en) 2007-02-06 2010-07-06 Glumetrics, Inc. Optical determination of ph and glucose
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
EP1977829A1 (en) 2007-03-29 2008-10-08 Roche Diagnostics GmbH Device for performing multiple analyses in parallel
CA2680841A1 (en) 2007-04-04 2008-10-16 Isense Corporation Analyte sensing device having one or more sensing electrodes
EP2363062B1 (en) 2007-04-21 2017-11-22 Roche Diabetes Care GmbH Analytical system for detecting an analyte in a body fluid
WO2008134441A1 (en) 2007-04-26 2008-11-06 Isense Corporation Adhesive overbandage
WO2008137405A1 (en) 2007-05-01 2008-11-13 F. Hoffmann-La Roche Ag Management of inhalable insulin data
EP1987761B1 (en) 2007-05-03 2019-10-23 F. Hoffmann-La Roche AG Tube-like sensor for proving an analyte
CA3193045A1 (en) 2007-05-08 2008-11-13 Martin J. Fennell Analyte monitoring system and methods
EP2150814A2 (en) 2007-05-10 2010-02-10 Glumetrics, Inc. Device and methods for calibrating analyte sensors
PE20090329A1 (en) 2007-05-30 2009-03-27 Abbott Lab HUMANIZED ANTIBODIES AGAINST GLOBULOMER AB (20-42) AND ITS USES
US20090232801A1 (en) 2007-05-30 2009-09-17 Abbot Laboratories Humanized Antibodies Which Bind To AB (1-42) Globulomer And Uses Thereof
EP2152350A4 (en) 2007-06-08 2013-03-27 Dexcom Inc Integrated medicament delivery device for use with continuous analyte sensor
WO2009005983A2 (en) 2007-06-11 2009-01-08 Anthony Joseph Cesaroni Body temperature controlling system
US7691917B2 (en) 2007-06-14 2010-04-06 Bausch & Lomb Incorporated Silcone-containing prepolymers
EP2222686B1 (en) 2007-07-11 2015-06-17 Medtronic Minimed, Inc. Polyviologen boronic acid quenchers for use in analyte sensors
EP2181160B1 (en) 2007-08-06 2016-05-11 Medtronic Minimed, Inc. Hpts-mono cys-ma polymerizable fluorescent dyes for use in analyte sensors
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US9839395B2 (en) 2007-12-17 2017-12-12 Dexcom, Inc. Systems and methods for processing sensor data
CA2715628A1 (en) 2008-02-21 2009-08-27 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
US20090242399A1 (en) 2008-03-25 2009-10-01 Dexcom, Inc. Analyte sensor
WO2009129186A2 (en) 2008-04-17 2009-10-22 Glumetrics, Inc. Sensor for percutaneous intravascular deployment without an indwelling cannula
EP2326944B1 (en) 2008-09-19 2020-08-19 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
EP2236077A1 (en) 2009-03-31 2010-10-06 Sensile Pat AG Medical device for measuring an analyte concentration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986271A (en) * 1989-07-19 1991-01-22 The University Of New Mexico Vivo refillable glucose sensor
US5165407A (en) * 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
US6804544B2 (en) * 1995-11-22 2004-10-12 Minimed, Inc. Detection of biological molecules using chemical amplification and optical sensors
US20050033132A1 (en) * 1997-03-04 2005-02-10 Shults Mark C. Analyte measuring device
US20020151816A1 (en) * 2001-01-22 2002-10-17 Rich Collin A. Wireless MEMS capacitive sensor for physiologic parameter measurement
US20040008761A1 (en) * 2002-07-12 2004-01-15 Kelliher Timothy L. Faster modem method and apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968450A (en) * 2010-09-29 2011-02-09 重庆大学 Embedded porphyrin sensor array-based saliva sugar and urine sugar detector
CN101968450B (en) * 2010-09-29 2012-07-04 重庆大学 Embedded porphyrin sensor array-based saliva sugar and urine sugar detector
DE102016204541A1 (en) * 2016-03-18 2017-09-21 Technische Universität Dresden Method and device for the temporal and locally resolved detection of substance concentration in fluids
DE102016204541B4 (en) * 2016-03-18 2019-11-14 Technische Universität Dresden Method and device for the temporal and locally resolved detection of substance concentration in fluids

Also Published As

Publication number Publication date
US20210022653A1 (en) 2021-01-28
WO2006127694A2 (en) 2006-11-30
US20180303394A1 (en) 2018-10-25
US10022078B2 (en) 2018-07-17
US9986942B2 (en) 2018-06-05
US20070045902A1 (en) 2007-03-01
US20060270923A1 (en) 2006-11-30
WO2006127694A3 (en) 2007-04-12
US20060270922A1 (en) 2006-11-30
US20200359949A1 (en) 2020-11-19
US20070027370A1 (en) 2007-02-01
US20090036763A1 (en) 2009-02-05
US20180242894A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
US20210022653A1 (en) Analyte sensor
US20190335997A1 (en) Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US7828728B2 (en) Analyte sensor
USRE44695E1 (en) Dual electrode system for a continuous analyte sensor
US7896809B2 (en) Dual electrode system for a continuous analyte sensor
US10376143B2 (en) Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US20100185071A1 (en) Dual electrode system for a continuous analyte sensor
US10791928B2 (en) Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
EP2257794A1 (en) Polymer membranes for continuous analyte sensors
US20220296867A1 (en) Drug releasing membrane for analyte sensor
US20240108258A1 (en) Analyte sensor
US20230073214A1 (en) Bioactive releasing membrane for analyte sensor
WO2023043908A1 (en) Bioactive releasing membrane for analyte sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06801332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 25-02-2009

122 Ep: pct application non-entry in european phase

Ref document number: 06801332

Country of ref document: EP

Kind code of ref document: A1