WO2007139116A1 - クロス共重合体の製造方法、得られるクロス共重合体、及びその用途 - Google Patents

クロス共重合体の製造方法、得られるクロス共重合体、及びその用途 Download PDF

Info

Publication number
WO2007139116A1
WO2007139116A1 PCT/JP2007/060917 JP2007060917W WO2007139116A1 WO 2007139116 A1 WO2007139116 A1 WO 2007139116A1 JP 2007060917 W JP2007060917 W JP 2007060917W WO 2007139116 A1 WO2007139116 A1 WO 2007139116A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
copolymer
carbon atoms
cross
substituted
Prior art date
Application number
PCT/JP2007/060917
Other languages
English (en)
French (fr)
Inventor
Toru Arai
Masaru Hasegawa
Ayumu Tsukamoto
Akira Miyama
Shigeru Suzuki
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to US12/302,818 priority Critical patent/US8722831B2/en
Priority to EP07744336A priority patent/EP2022806B1/en
Priority to JP2008517948A priority patent/JP5435942B2/ja
Publication of WO2007139116A1 publication Critical patent/WO2007139116A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F295/00Macromolecular compounds obtained by polymerisation using successively different catalyst types without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article

Definitions

  • the present invention relates to a specific cross-copolymer excellent in softness, or excellent in softness and transparency, a thread and a composition thereof, and an application.
  • Ethylene styrene (aromatic vinyl compound) copolymers are known (Patent Document 1).
  • This copolymer exhibits properties as an elastomer, and further exhibits mechanical properties similar to that of soft PVC, and has functions such as oil resistance and scratch resistance.
  • an ethylene styrene copolymer having a isotactic stereoregularity in an alternating structure of ethylene and styrene contained in the copolymer is also known (Patent Documents 2 and 3). Since this copolymer has limited crystallinity (microcrystallinity) based on an alternating structure compared to a copolymer without stereoregularity, it further improves mechanical properties, such as heat resistance and oil resistance. There is a feature that improves the function.
  • the above ethylene-styrene copolymers have statistical copolymerization (so-called random copolymerization) described by Bernoulli, first-order, or second-order Markov statistics.
  • the heat resistance is essentially insufficient, and the compatibility with styrenic polymers is insufficient.
  • the mechanical properties are also more similar to soft PVC compared to olefin polymers such as LLDPE (Linear Low Density Polyethylene), but the mechanical properties are more similar to soft PVC.
  • cross-copolymers described in the examples all have polyethylene crystallinity and a crystalline melting point, and the softness is greatly lost as compared with the ethylene-styrene copolymer. Also transparency Compared with the styrene copolymer, it is greatly reduced and substantially opaque.
  • Patent Document 1 Japanese Patent No. 2623070
  • Patent Document 2 JP-A-9 309925,
  • Patent Document 3 Japanese Patent Laid-Open No. 11-130808
  • Patent Document 4 Reissue Table 00Z037517
  • the present invention improves the heat resistance and compatibility of a conventional ethylene-monoaromatic vinyl polymer copolymer, and further has a softness with low crystallinity compared to a conventional cross-copolymer. And a novel cross-copolymer excellent in transparency and compatibility and a resin composition thereof.
  • the present invention relates to a method for producing a cross-copolymer comprising a coordination polymerization step and a subsequent polymerization process such as a key-on polymerization step.
  • a polymerization catalyst Using a polymerization catalyst, copolymerization of olefin monomer, aromatic bee compound monomer and aromatic polyene is carried out, and the aromatic bee compound unit content is 15 mol% or more and 40 mol% or less.
  • An olefin-aromatic vinylene compound-aromatic polyene copolymer having an aromatic polyene unit content of 0.01 mol% to 3 mol% and the balance being olefin fine content is synthesized, and then ionic polymerization is performed.
  • polymerization is carried out using a vinyl polymerization initiator in the coexistence of the olefin-aromatic vinyl compound-aromatic polymer copolymer and a vinyl polymer compound monomer.
  • a vinyl polymerization initiator in the coexistence of the olefin-aromatic vinyl compound-aromatic polymer copolymer and a vinyl polymer compound monomer.
  • cross-copolymers characterized by Is the law.
  • it is a soft cloth copolymer having an A hardness of 50 or more and 85 or less obtained by this production method.
  • it is a transparent cloth copolymer obtained by the specific production method of the present invention and having a 1 mm-thick sheet having a haze of 25% or less.
  • the cross-copolymer obtained by the production method of the present invention is superior in heat resistance and compatibility as compared with a conventional ethylene-monoaromatic vinyl compound copolymer, and compared with a conventional cross-copolymer. It has excellent softness and transparency.
  • FIG. 1 TEM photograph of the cross-copolymer obtained in Example 4 (using a finem press-molded at 180 ° C).
  • FIG. 2 TEM photograph of the polymer obtained in Comparative Example 1 (using a film press-molded at 180 ° C).
  • the method for producing a cross-copolymer of the present invention is a production method comprising a coordination polymerization step and a subsequent polymerization step comprising an anion polymerization step, wherein the single-site coordination is performed as the coordination polymerization step.
  • aromatic Zokubi - Louis ⁇ product unit content is more than 15 mol% 40 mol 0/0, preferably 20 mole 0/0 over 40 mole 0/0 or less, aromatic Po Lin unit including weight 0.01 mol% to 3 mol% or less, preferably 0.01 mol% or more 0.5 mol% or less, the balance being
  • the olefin unit content of olefin-monoaromatic vinyl compound-aromatic polyene copolymer was synthesized, and the olefin-aromatic vinyl compound-aromatic polyene copolymer was then used as a cation polymerization process.
  • Polymers and key-on polymerizable bees Presence of objects monomers, ⁇ - characterized by polymerization using an on-polymerization initiator.
  • the cross-copolymer obtained by this method is composed of an olefin-monoaromatic belief compound that is the main chain and an ion-polymerizable monomer that is a cross-chain to the aromatic polyene copolymer. It is considered that the polymer chain includes a structure (cross-copolymerization structure or Segregated star copolymer structure) in which the polymer chain is bonded via a main chain aromatic polyene unit.
  • the structure and the content ratio of the present cross-copolymer are arbitrary, and the cross-copolymer of the present invention is defined as a copolymer (polymer) obtained by the production method of the present invention. .
  • the composition of the olefin-aromatic vinyl compound / aromatic polyene copolymer obtained in the coordination polymerization process has an aromatic vinyl compound unit content of 15 mol% to 40 mol%, and the aromatic polyene unit. Content 0.01 mol% or more 3 mol 0 /.
  • the composition of the olefin-aromatic bi-aromatic compound-aromatic polyene copolymer is increased by a known general method. Force that can be controlled within the above range Most easily, it can be achieved by changing the monomer charge composition ratio or changing the olefin (ethylene) partial pressure.
  • the cross copolymer obtained by the present invention has a total crystal melting heat including olefin crystallinity and other crystallinity of 40 jZg or less, preferably 30 jZg or less.
  • the total crystal melting heat can be determined by DSC (Differential Scanning Calorimetry) to determine the total power of the peak areas derived from the melting point observed in the range of 50 ° C to 150 ° C.
  • Crystallization occurs based on the ethylene chain structure when the aromatic vinyl compound content in the olefin-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization process is less than 15 mol%. As a result, the heat of crystal fusion increases, and the softness and dimensional stability during molding are lost. Further, when the aromatic beer compound unit content is higher than 0 mol%, the glass transition temperature of the finally obtained cross-copolymer becomes high, the low temperature characteristics are deteriorated, and the softness at room temperature is deteriorated. Is preferable because it may be damaged.
  • the present production method is a cloth in which the mass proportion of the olefin-aromatic beluie compound-aromatic polyene copolymer obtained in the coordination polymerization step is finally obtained through the anion polymerization step. It is preferably 40% by mass or more and 90% by mass or less with respect to the copolymer mass, more preferably 50% by mass or more and 90% by mass or less, and most preferably 55% by mass or more and 90% by mass or less.
  • This is a featured manufacturing method.
  • the cross-copolymer obtained by this production method preferably has an A hardness of 50 or more and 85 or less, and particularly preferably an A hardness of 60 or more and 85 or less.
  • the mass ratio of the olefin-aromatic vinyl compound-aromatic polyethylene copolymer obtained in this coordination polymerization process is, for example, the amount of ethylene produced in this polymerization process by monitoring ethylene consumption or polymer concentration and composition. It can be controlled by calculating the mass of the coalescence. In order to reduce the mass ratio, for example, the above-mentioned monitoring may be performed, and the time of the coordination polymerization process may be shortened while calculating the mass of the copolymer to be produced, so that the ion polymerization process may be started early. In order to increase the mass ratio, the polymerization time is lengthened and the anion polymerization process is started. Can be delayed.
  • a monomer-polymerizable vinyl compound monomer used in the polymer polymerization process may be additionally added at the start of the polymer polymerization process or during the process.
  • the mass ratio of the aromatic vinyl compound or aromatic polyene copolymer obtained in this coordination polymerization process can be arbitrarily changed by adding an additional amount of the ion polymerizable vinyl compound monomer. it can.
  • the present production method uses the same copolymer having a weight average molecular weight of not more than 150,000 and not less than 30,000 of the olefin-aromatic vinyl compound / aromatic polyene copolymer obtained in the coordination polymerization step. It is a manufacturing method of a cross copolymer.
  • the transparent cloth copolymer obtained by this production method has a 1 mm-thick sheet having a haze of 25% or less and a total light transmittance of 75% or more.
  • the weight average molecular weight of the olefin-aromatic vinyl compound-aromatic polyethylene copolymer obtained in the coordination polymerization step can be controlled by a known method, but in general, by appropriately changing the polymerization temperature. Can be controlled.
  • the present production method comprises the step of preparing a copolymer having a weight average molecular weight of 150,000 or less and 30,000 or more of the olefin-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization step.
  • the composition of the olefin-aromatic beluoi compound-aromatic polyene copolymer obtained in the coordination polymerization process has an aromatic vinyl compound content of 20 mol% or more and 40 mol% or less.
  • the content of the aromatic polyene unit in the olefin-aromatic beluoi compound-aromatic polyene copolymer obtained in the coordination polymerization step of the present production method is 0.01 mol% or more and 3 mol% or more. % Or less. If it is less than 01 mol%, the properties as a cross-copolymer are not sufficient, and if it is higher than 3 mol%, the moldability becomes poor. Considering the mechanical properties and molding strength of the final cross-copolymer (which can be evaluated by fluidity and MFR (Melt Flow Rate)), the preferred aromatic polyene unit content is 0.01 mol.
  • the aromatic polyene unit content is from 0.02 mol% to 0.2 mol%. Furthermore, the aromatic polyene unit content is in the range of 0.02 mol% to 0.2 mol%.
  • the physical properties of the cross-copolymer are preferred because the functionality of the olefin-aromatic vinyl copolymer, which is the main chain, is sufficiently vigorous.
  • the aromatic polyene content is 0.2 mol% or more, the average chain length between the aromatic polyene units of the main chain is shortened, and the main chain olefin-aromatic birui compound is one. In some cases, the functionality of the aromatic polyene copolymer is not fully viable.
  • the cross-copolymer obtained by the production method of the present invention exhibits good compatibility with aromatic beryl polymer compounds and propylene polymers such as polystyrene, and is mixed with these.
  • aromatic beryl polymer compounds and propylene polymers such as polystyrene
  • the physical properties of these polymers can be improved or used as a compatibilizing agent.
  • a single site coordination polymerization catalyst is used for the coordination polymerization step of this production method.
  • a single site coordination polymerization catalyst composed of a transition metal compound represented by the following general formula (1) or (6) and a cocatalyst is used.
  • a and B may be the same or different, unsubstituted or substituted benzoindul group, unsubstituted or substituted cyclopentagel group, unsubstituted or substituted indenyl group, or unsubstituted or substituted fluorenyl group
  • a substituted cyclopentaphenanthryl group, a substituted benzoindul group, a substituted cyclopentagel group, a substituted indur group, or a substituted fluorenyl group means that one or more hydrogen atoms that can be substituted have 1 to 20 carbon atoms.
  • Alkyl groups aryl groups having 6 to 10 carbon atoms, alkyl aryl groups having 7 to 20 carbon atoms, halogen atoms, OS1R groups, SiR groups or PR groups (wherein R is 1 to 10 carbon atoms)
  • a cyclopentaphenanthryl group, a benzoindenyl group, a cyclopentagel group, an indur group, or a fluorenyl group Preferably, A and B may be the same or different. At least one of A and B is an unsubstituted or substituted benzoindenyl group represented by the general formula (2), (3), (4), Or a group selected from an unsubstituted or substituted n-denyl group represented by the general formula (5).
  • a and B may be the same or different, and A and B are both unsubstituted or substituted benzoindenyl groups of the general formulas (2), (3), (4), or An unsubstituted or substituted n-denyl group represented by the general formula (5) is also a selected group.
  • R1 to R3 are each hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an alkyl having 7 to 20 carbon atoms.
  • Aryl group, halogen atom, OS1R group, SiR group or PR group R is carbon number 1 ⁇ : L0 charcoal
  • R1, R2, and R3 may be the same or different from each other, and adjacent Rl and R2 groups may be combined to form a 5- to 8-membered aromatic ring or aliphatic ring.
  • benzo 1-indul group also known as benzo (e) indur group
  • 6 benzo 1 indur group 6, 7
  • benzo-1-indulyl group examples include a-acenaphtho-1-indul group, 3-cyclopenta [c] phenanthryl group, and 1-cyclopenta [1] phenanthryl group.
  • R4 is hydrogen, alkyl group having 1 to 20 carbon atoms, aryl group having 6 to 10 carbon atoms, alkylaryl group having 7 to 20 carbon atoms, halogen atom, OSi R group, SiR, respectively.
  • Group or PR group R represents a hydrocarbon group having 1 to 10 carbon atoms
  • R4 may be the same or different from each other.
  • the non-indenyl group represented by the above general formula includes: More preferably, in the formula, A and B may be the same or different, and both are unsubstituted or substituted benzoindenyl groups represented by the general formulas (2), (3) and (4), It is a group selected from the non-substituted or substituted n-denyl group represented by 5).
  • Y has a bond with A and B, and as a substituent, hydrogen or a hydrocarbon group having 1 to 15 carbon atoms (This substituent may contain 1 to 3 other nitrogen atoms, oxygen atoms, sulfur atoms, phosphorus atoms, or silicon atoms), methylene group, silylene group, ethylene group, germylene group, or Boron group. The substituents may be different or the same.
  • Y may have a ring structure.
  • Y has a bond with A and B, and in addition, hydrogen or a hydrocarbon group having 1 to 15 carbon atoms as a substituent (this substituent has 1 to 3 nitrogen atoms, oxygen atoms, sulfur Methylene group or boron group having an atom, phosphorus atom, or silicon atom).
  • X is hydrogen, a hydroxyl group, a halogen, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a silyl group having a hydrocarbon substituent having 1 to 4 carbon atoms, or 1 to 20 carbon atoms.
  • Two X's may have a bond.
  • M is zirconium, hafnium, or titanium.
  • transition metal compound is preferably a racemate.
  • suitable examples of such transition metal compounds include transition metal compounds having a substituted methylene bridge structure specifically exemplified in EP-0872492A2, JP-A-11 130808, JP-A-9 309925, and WO01Z068719.
  • transition metal compounds represented by the following general formula (6) can also be suitably used.
  • Cp is an unsubstituted or substituted cyclopentaphenanthryl group, an unsubstituted or substituted benzoindul group, an unsubstituted or substituted cyclopentagenyl group, an unsubstituted or substituted nudur group, or an unsubstituted or substituted fluorenyl group Power is the group chosen.
  • a substituted cyclopentaphenanthryl group, a substituted benzoindul group, a substituted cyclopentaenyl group, a substituted indenyl group, or a substituted fluorenyl group is an alkyl group in which at least one substitutable hydrogen is 1 to 20 carbon atoms, Aryl group with 6 to 10 carbon atoms, 7 to 2 carbon atoms 0 alkylaryl group, halogen atom, OSiR group, SiR group or PR group (R is any
  • a cyclopentaphenanthryl group a benzoindulur group, a cyclopentagel group, an indur group, or a fluoro group substituted with a hydrocarbon group having 1 to 10 carbon atoms.
  • Y ′ is a methylene group, a silylene group, an ethylene group, a germylene group, or a boron group that has a bond with Cp and Z and also has hydrogen or a hydrocarbon group having 1 to 15 carbon atoms.
  • the substituents may be different or the same.
  • Y ′ may have a cyclic structure.
  • Z contains a nitrogen atom, an oxygen atom or a sulfur atom, and is a ligand coordinated to M ′ with a nitrogen atom, oxygen atom or sulfur atom, and has a bond with Y ′, and also has hydrogen or a carbon number of 1 to 15 It is a group having a substituent.
  • M is zirconium, hafnium, or titanium.
  • X ′ is hydrogen, halogen, alkyl group having 1 to 15 carbon atoms, aryl group having 6 to 10 carbon atoms, alkylaryl group having 8 to 12 carbon atoms, and hydrocarbon substituent having 14 carbon atoms.
  • n is an integer of 1 or 2.
  • Transition metal compounds represented by the general formula (6) are described in W099Z14221 publication EP416815 publication and US6254956 publication.
  • a single site coordination polymerization catalyst composed of the transition metal compound represented by the general formula (1) and a co-catalyst is used.
  • a cocatalyst used in the coordination polymerization step of this production method a known cocatalyst conventionally used in combination with a transition metal compound can be used.
  • an alumoxane or boron compound such as methylaluminoxane (or methylalumoxane or MAO) is preferably used.
  • alkylaluminum such as triisobutylaluminum and triethylaluminum may be used together with these alumoxanes and boron compounds.
  • Examples of powerful promoters include EP-0872492A 2, JP-A-11-130808, JP-A-9-309925, WO00 / 20426, EP0985689A2, JP-A-6-184179. It is described in Examples include promoters and alkylaluminum compounds.
  • a co-catalyst such as alumoxane is used for the metal of the transition metal compound at an aluminum atom Z transition metal atom it of 0.1 to L00000, preferably 10 to L0000. If it is less than 0.1, the transition metal compound cannot be activated effectively, and if it exceeds 100000, it is economically disadvantageous.
  • a boron compound When a boron compound is used as the cocatalyst, a force used in a ratio of boron atom to transition metal atom of 0.01 to 100, preferably 0.1 to 10, particularly preferably 1. If it is less than 0.01, the transition metal compound cannot be activated effectively, and if it exceeds 100, it is economically disadvantageous.
  • the transition metal compound and the cocatalyst may be mixed and prepared outside the polymerization facility, or may be mixed in the facility during the polymerization.
  • the olefins used in the present invention include ethylene, C3-C20 at-olefins, that is, propylene, 1-butene, 1-hexene, 4-methyl-1 pentene, 1-octene, burcyclohexane, and cyclic olefins. That is, cyclopentene and norbornene.
  • ethylene or a mixture of ethylene and ⁇ -olefin, ie, propylene, 1-butene, 1-hexene, or 1-octene is used, and ethylene is more preferably used.
  • the aromatic beryl compound used in the present invention includes styrene and various substituted styrenes such as ⁇ -methyl styrene, m-methylol styrene, o-methylol styrene, o-t-butyl styrene, Examples include m-t-butynole styrene, p-t-butynole styrene, p-chlorostyrene, o-chlorostyrene, and the like. Industrially, styrene, p-methylstyrene, p-chlorostyrene, particularly preferably styrene is used.
  • the aromatic polyene used in the present invention has 10 to 30 carbon atoms, and has a plurality of double bonds (bule groups) and one or more aromatic groups and is capable of coordination polymerization.
  • An aromatic polyene in which one of the double bonds (vinyl group) is used for coordination polymerization and the remaining double bond is polymerized.
  • at least one kind or a mixture of two or more kinds of orthodibulubenzene, paradibulubenzene, and metadibulubenzene is preferably used.
  • polymerization is performed in a liquid monomer without using a solvent, or pentane, hexane, heptane, cyclohexane, benzene, toluene, ethylbenzene, xylene, black-substituted benzene, black-substituted
  • saturated aliphatic or aromatic hydrocarbons such as toluene, methylene chloride, and chloroform, or halogenated hydrocarbons alone or in a mixed solvent.
  • a mixed alkane solvent, cyclohexane, toluene, ethylbenzene or the like is used.
  • the polymerization form may be either solution polymerization or slurry polymerization.
  • known methods such as batch polymerization, continuous polymerization, prepolymerization, and multistage polymerization can be used as necessary.
  • Pipe-shaped polymerization cans include various known mixers such as dynamic or static mixers and static mixers that also remove heat, and known coolers equipped with heat-removing thin tubes. You may have various coolers. Also, have a patch-type prepolymerization can. Furthermore, methods such as gas phase polymerization can be used.
  • the polymerization temperature is suitably 78 ° C to 200 ° C. Polymerization temperatures lower than -78 ° C are industrially disadvantageous, and if it exceeds 200 ° C, transition metal compounds decompose, which is not suitable.
  • the pressure at the time of polymerization is suitably 0.1 atm to 100 atm, preferably 1 to 30 atm, particularly industrially particularly preferably 1 to L0 atm.
  • the olefin-aromatic vinyl compound obtained in the coordination polymerization step of the production method of the present invention has an aromatic poly-vinyl copolymer unit content of 15 to 40 mol% of aromatic vinyl compound unit.
  • the composition has an aromatic polyene unit content of 0.01 mol% or more and 3 mol% or less, and the balance is olefin unit content.
  • the transition metal compound of the single-site coordination polymerization catalyst most preferably used has a structure represented by the general formula (1), and A and B may be the same or different. Are both selected from unsubstituted or substituted cyclopentaphenanthryl group, unsubstituted or substituted benzoindulyl group, and unsubstituted or substituted indenyl group, and have a bond with Y 1 B and others.
  • the transition metal compound is racemic.
  • the resulting olefin-aromatic vinyl compound aromatic-polyene copolymer in this composition range has an alternating structure of olefin-aromatic vinyl compounds, preferably ethylene-aromatic vinyl compounds.
  • the alternating structure has a isotactic stereoregularity, and therefore, the cross-copolymer of the present invention has a microcrystalline property derived from the alternating structure.
  • the present olefin-aromatic birui compound-aromatic polyene copolymer can give better mechanical properties and oil resistance based on the microcrystallinity of the alternating structure compared to the case where there is no stereoregularity. This characteristic can finally be inherited by the cross-copolymer of the present invention.
  • the crystalline melting point due to the microcrystalline nature of the alternating structure of olefin-aromatic vinyl compound-aromatic polyene copolymer is generally in the range of 50 ° C to 120 ° C, and its heat of crystal melting by DSC is preferably 40jZg or less, preferably Is less than 30jZg.
  • the cross copolymer of the present invention as a whole can have a heat of crystal fusion of 40 jZg or less, preferably 30 jZg or less.
  • the crystallinity of the heat of crystal melting within this range does not adversely affect the softness and moldability of the present cross-copolymer, but rather is advantageous in terms of oil resistance and excellent mechanical properties.
  • the mass proportion of the olefin-aromatic vinyl compound aromatic polyene copolymer obtained in the coordination polymerization step is based on the mass of the cross-copolymer finally obtained through the anion polymerization step.
  • a hardness of 50 or more and 85 or less, preferably A hardness of 50 or more and 80 or less can be exhibited.
  • Olefin-aromatic vinyl compound obtained by coordination polymerization process The mass of the aromatic polyene copolymer is 40% of the mass of the cross-copolymer.
  • the content is less than% by mass, for example, when the polymer polymerized in the key-on polymerization process is a rigid polymer such as polystyrene, the resulting cross-copolymer has a higher A hardness than the range of the present invention, and has a softness. Will be lost.
  • the mass of the olefin olefin aromatic vinyl copolymer / aromatic polyene copolymer obtained in the coordination polymerization process is higher than 90% by mass of the cross copolymer mass, it is polymerized in the ion polymerization process.
  • the characteristics of the polymer chain are not fully exhibited.
  • the properties of the polymer chain polymerized in the ion polymerization process include heat resistance and compatibility with the polystyrene polymer.
  • the olefin, aromatic vinyl compound, aromatic polyene copolymer obtained in the coordination polymerization step and the monomer polymerizable vinyl compound are coexisted in the presence of the monomer.
  • -Polymerization is performed using an on-polymerization initiator.
  • Any of the monomer-polymerizable bur compound monomers can be used in the cation polymerization step.
  • the monomer for vinyl-polymerizable vinyl compounds styrene, P-methylol styrene, ⁇ tertiary butyl styrene, p chloro styrene, OC-methylol styrene, urnaphthalene, bur anthracene
  • Aromatic bur compounds such as butane, gen compounds such as butadiene and isoprene, acrylic acid esters such as methyl acrylate, methacrylic acid esters such as methyl methacrylate and the like, and mixtures thereof.
  • an aromatic vinyl compound or a mixture of an aromatic vinyl compound and a monomer capable of polymerizing these monomers most preferably an aromatic vinyl compound is used.
  • aromatic polyene that is not polymerized in the coordination polymerization step and remains in the polymerization solution may be polymerized.
  • the ion polymerization step of the present invention is carried out after the above-described coordination polymerization step.
  • the copolymer obtained in the coordination polymerization step is subjected to an arbitrary polymer recovery method such as a crumb forming method, a steam stripping method, a devolatilization tank, a direct desolvation method using a devolatilization extruder, etc.
  • an arbitrary polymer recovery method such as a crumb forming method, a steam stripping method, a devolatilization tank, a direct desolvation method using a devolatilization extruder, etc.
  • it may be separated from the polymerization solution and purified for use in the ion polymerization process.
  • the residual olefin is released from the polymerized solution after coordination polymerization, with or without release, the next key ion weight. It is economically preferable to use it for a joint process.
  • One of the features of the present invention is that a polymer solution containing the
  • the solvent in the anion polymerization step is particularly preferably a mixed alkane solvent, cyclohexane, benzene, or the like that does not cause inconvenience such as chain transfer during the anion polymerization, but the polymerization temperature is 150 ° C or lower. If present, other solvents such as toluene and ethylbenzene can be used.
  • any known method used in the ion polymerization can be used.
  • the polymerization temperature is suitably -78 ° C to 200 ° C.
  • Polymerization temperatures lower than -78 ° C are industrially disadvantageous, and if they exceed 150 ° C, chain transfer and the like occur, which is not appropriate.
  • industrially preferred is 0 ° C to 200 ° C, particularly preferred is 30 ° C to 150 ° C.
  • the pressure at the time of polymerization is suitably 0.1 atm to 100 atm, preferably 1 to 30 atm, particularly industrially particularly preferably 1 to: LO atm.
  • a known ion polymerization initiator can be used in the ion polymerization step of the present invention.
  • an alkyl lithium compound is a lithium salt or a sodium salt such as biphenyl, naphthalene, or pyrene, and particularly preferably sec-butyl lithium or n (normal) -propyl lithium.
  • a polyfunctional initiator, a dilithium compound, or a trilithium compound may be used.
  • a known key-on polymerization terminal coupling agent may be used.
  • the amount of the initiator is not less than the equivalent of the oxygen atom contained therein, particularly preferably not less than 2 equivalent. It is preferable to use it.
  • the amount is sufficiently smaller than the oxygen atom equivalent in methylalumoxane, so the amount of initiator should be reduced. Is possible.
  • the length of the cross chain and the molecular weight of the homopolymer that has not been cross-linked can be arbitrarily changed by appropriately adjusting the amount of the initiator.
  • the length of the cross-chain part can be estimated from the molecular weight of a homopolymer that has not been cross-linked, but the length is preferably 5000 to 150,000 as a weight average molecular weight. More preferably, it is 5000 or more and 100,000 or less, and particularly preferably 5000 or more and 50,000 or less. Further, its molecular weight distribution (MwZMn) is preferably 3 or less, particularly preferably 1.5 or less.
  • the present invention provides a method for producing a cross-copolymer, in which the monomer polymerization monomer used in the polymerization process is preferably an aromatic vinyl monomer. is there.
  • the aromatic beryl compound monomer used in the coordination polymerization step and the aromatic beryl compound monomer used in the char polymerization step are the same.
  • the aromatic beryl compound monomer used in the coordination polymerization process is styrene, and the ar polymerizable monomer compound used in the ar polymerization process!
  • a method for producing a cross-copolymer characterized in that it is styrene, part or all of which is unreacted styrene in the coordination polymerization step.
  • the olefin-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization step has a weight average molecular weight of 150,000 or less and 30,000 or more. It is preferable to use a cross-copolymer production method. By this production method, a cross-copolymer excellent in transparency can be obtained, and the haze of a 1 mm thickness sheet is 25% or less, preferably 20% or less, or the total light transmittance of an lmm thickness sheet is 75%. % Or more, and preferably 80% or more of transparent cloth copolymer.
  • the aromatic beure compound monomer used in the coordination polymerization step and the aromatic bur compound monomer used in the key-on polymerization step are the same in the method for producing the transparent cross-copolymer. I prefer to be ⁇ .
  • the aromatic vinyl monomer monomer used in the coordination polymerization step is styrene
  • the monomer monomer used in the key polymerization step is styrene. Some or all of them are unreacted styrene in the coordination polymerization step.
  • the cross-copolymer of the present invention has a olefin (aromatic beryl compound) unit content in the main chain, or an olefin, an aromatic vinyl compound, and an aromatic polyene copolymer obtained by a coordination polymerization process.
  • the hardness can be easily changed by changing the mass ratio of the polymer to the mass of the cross-copolymer finally obtained through the anion polymerization step.
  • Heat resistance heat deformation resistance
  • Tg glass transition temperature
  • the cross-copolymer of the present invention has a tensile property closer to that of soft vinyl chloride compared to conventional ethylene styrene copolymers and other soft rosins.
  • the tensile property close to that of soft PVC here is that the relationship between elongation and stress is close to proportional, and the S-S curve has a large upward slope (the increase in stress with respect to elongation is large). is there.
  • the Rm value is in the range of about 0.15 to 0.5.
  • the Rm value of the cross-copolymer of the present invention can take a value almost in the same range as that of soft vinyl chloride, and has a tensile property similar to that of soft vinyl chloride, that is, texture.
  • the slope of the SS curve often decreases after the initial rise (the increase in stress with respect to elongation is small), and the Rm value is also roughly 0. Less than 12, showing different tensile properties and texture.
  • the cross-copolymer of the present invention alone exhibits excellent oil resistance at a temperature from room temperature to about 70 ° C.
  • This oil resistance can be evaluated by the rate of change in weight (swell rate) and the rate of change in mechanical properties after immersion in engine oil, which is representative of mineral oil, and olive oil, which is representative of vegetable oil.
  • conventional olefin-based and styrene-based soft resin thermaloplastic resin
  • Vinyl chloride has the oil resistance of the original vinyl chloride resin, but in the case of soft vinyl chloride, there is a drawback that it is hardened because the plasticizer is eluted.
  • the cross-copolymer of the present invention exhibits good scratch resistance and abrasion.
  • the abrasion resistance and abrasion resistance can be evaluated by a taber abrasion test or a scratch test.
  • the cross copolymer of the present invention exhibits good moldability.
  • the moldability can be indicated by the ratio of MFR values (eg «JISK7210) measured at different temperatures and with different weights.
  • MFR values eg «JISK7210
  • the ratio of the MFR values at 2kg and 10kg ratio of load 10kg and 2kg MFR: I / ⁇
  • the cross-copolymer of the present invention preferably has a value of not less than 0. OlgZlO and not more than 50 gZlO as the MFR value measured under the conditions of 200 ° C and a load of 2 kg. If the MFR value is lower or higher than this, special consideration may be required during the molding process.
  • the cross-copolymer of the present invention can be produced by a known method, for example, Special Table 2004-504928, Special Table 200 4 535270, Special Table 2001-520295, Special Table 2004-505120. it can.
  • the sulfonated cross copolymer can be suitably used as a moisture permeable membrane or an ion conductive membrane.
  • the cross copolymer of the present invention can be used as a composition with an aromatic beryl polymer compound or propylene polymer listed below.
  • the present cross copolymer can be used in the range of 1 to 99% by mass relative to the total mass of the composition.
  • the cross-copolymer of the present invention exhibits good compatibility with aromatic beryl polymer compounds and propylene polymers. For this reason, when this cross-copolymer is used in the range of 1 to 50% by mass relative to the total mass of the composition, for example, the impact resistance of the partner aromatic vinyl compound polymer (polystyrene, etc.) or polypropylene can be improved.
  • it can be used to adjust the physical properties (for example, elastic modulus) of this cross-copolymer and to improve heat resistance. effective.
  • the cross-copolymer of the present invention can be used as a compatibilizing agent for an aromatic beryl polymer compound and a propylene polymer.
  • the composition ratio of the aromatic vinyl compound polymer and the propylene polymer is arbitrary, and the present cross-copolymer can be used in the range of 1 to 70% by mass with respect to the total mass of the composition.
  • the cross-copolymer of the present invention can be used as a composition with a block copolymer-based polymer, and can be used in a range of 1 to 99% by mass relative to the total mass of the composition. . Since the cross-copolymer of the present invention has good softness and oil resistance, In a composition with a synthetic polymer, oil resistance can be imparted without impairing its softness and mechanical properties.
  • aromatic vinyl compound monomers used for aromatic vinyl compound polymers include styrene and various substituted styrenes such as ⁇ -methylstyrene, m-methylstyrene, o-methylolstyrene, o-t. —Butynole styrene, m-t butyl styrene, p-t-butyl styrene, ⁇ -methylol styrene and the like.
  • compounds having a plurality of vinyl groups in one molecule such as divinylbenzene are also exemplified.
  • a statistical copolymer between these plural aromatic vinyl compounds is also used.
  • the stereoregularity between the aromatic groups of the aromatic beluie compound may be atactic, isotactic, synzy tactic, or misalignment.
  • Monomers that can be copolymerized with aromatic beryl compounds include butadiene, isoprene, and other conjugated digens; acrylic acid, methacrylic acid, and amide derivatives and ester derivatives thereof; acrylonitrile, anhydrous Maleic acid and its derivatives are mentioned.
  • the type of copolymerization is statistical copolymerization.
  • the above aromatic vinyl compound-based polymer has a polystyrene-reduced weight average molecular weight of 30,000 or more, preferably 50,000 or more and 500,000 or less, preferably in order to express the physical properties and moldability as a practical resin. Must be less than 300,000. Further, a rubber component may be blended or grafted in order to impart impact resistance.
  • the aromatic beryl compound polymers used are, for example, isotactic polystyrene (i-PS), syndiotactic polystyrene (s-PS), atactic polystyrene (a-PS), rubber reinforced.
  • Styrene methacrylate ester copolymers such as polystyrene (HIPS), acrylonitrile-butadiene-styrene copolymer (ABS resin), styrene-acrylonitrile copolymer (AS resin), styrene-methyl methacrylate copolymer; styrene Examples thereof include gen copolymers (SBR and the like) and hydrogenated products thereof; styrene-maleic acid copolymers; styrene-imidated maleic acid copolymers, and the like.
  • Propylene-based polymer Propylene homopolymer or propylene monomer units of 30 mass 0/0 or more, preferably (including i PP, homo PP, random PP, block PP) is a copolymer comprising more than 50 wt%, for example ⁇ isotactic polypropylene , Syndiotactic polypropylene (s-PP), atactic polypropylene (a-PP), propylene-ethylene block copolymer, propylene-ethylene random copolymer, and propylene-butene copolymer. If necessary, a copolymer obtained by copolymerizing gens such as butadiene and ⁇ - ⁇ gen may be used.
  • Examples thereof include an ethylene propylene copolymer (EPDM), an ethylene propylene-ethylidene norbornene copolymer, and the like.
  • the above propylene-based polymers have a polystyrene equivalent weight average molecular weight of 10,000 or more, preferably 30,000 or more and 500,000 or less, preferably 30 in order to develop physical properties and molding strength properties as practical resins. Ten thousand or less is required.
  • block copolymer having a diblock, triblock, multiblock, starblock or tapered block structure obtained by living polymerization by a cation polymerization or other polymerization method.
  • examples thereof include styrene butadiene block copolymer (SBS), styrene isoprene copolymer (SIS), and hydrogenated products thereof (SEBS and SIPS).
  • SBS styrene butadiene block copolymer
  • SIS styrene isoprene copolymer
  • SEBS and SIPS hydrogenated products thereof
  • the above block copolymer-based polymer has a polystyrene-reduced weight average molecular weight of 5000 or more, preferably 10,000 or more and 300,000 or less, preferably 200,000 or less, in order to express its physical properties and molding processability as a practical resin. is required.
  • cross-copolymer of the present invention can also be used as a composition with the following "other resin, elastomer, rubber”.
  • olefinic resin such as high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ethylene monocyclic polyolefin copolymer, etc.
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • ethylene monocyclic polyolefin copolymer etc.
  • propylene-based polymers polyamides such as nylon; polyimides; polyesters such as polyethylene terephthalate; polybutyl alcohol, natural rubber, silicone resin, and silicone rubber.
  • the cross-copolymer of the present invention can be blended with any known plasticizer conventionally used for other resins.
  • the plasticizer preferably used is an oxygen-containing or nitrogen-containing plasticizer, and is an ester plasticizer, an epoxy plasticizer, an ether plasticizer, or an amid plasticizer.
  • plasticizers have a relatively good compatibility with the olefin-aromatic beryl compound aromatic polyene copolymer used in the cross-copolymer of the present invention, and are difficult to prepolymer, and have a glass transition.
  • the degree of plasticity that can be evaluated by the degree to which the temperature is lowered can be suitably used.
  • an olefin-aromatic vinyl compound-aromatic polyene copolymer particularly an ethylene-aromatic bule compound used in the cross-copolymer of the present invention- It has the effect of promoting the crystallization of the isotactic structure of ethylene and aromatic beryl compound units in the dibutene benzene copolymer and increasing the crystallinity. It can also show the effect of improving oil resistance.
  • aromatic, aliphatic and alicyclic mineral oils are easily compatible with the ethylene-monoaromatic beryl compound aromatic polyene copolymer of this composition, and are easy to pour.
  • the degree of transition temperature lowering is too low to be evaluated by plasticity.
  • Mono-fatty acid esters such as glutamic acid esters, succinic acid esters, and acetic acid esters, phosphoric acid esters, and polyesters thereof.
  • epoxy plasticizer examples include epoxy soybean oil and epoxidized linseed oil.
  • amide plasticizers that can be suitably used in the present invention include sulfonic acid amides. These plasticizers may be used alone or in combination.
  • An ester plasticizer is particularly preferably used in the present invention. These plasticizers are excellent in compatibility with ethylene-aromatic vinyl compounds / aromatic polyene copolymers in this composition range, have excellent plasticizing effects (highly reduced glass transition temperature), and bleed. If there is little, there is an advantage of V.
  • a plasticizer for adipic acid ester or acetyl citrate ester is most preferably used in the present invention.
  • these plasticizers are used, there is an advantage that crystals are grown in a short time from melt molding in which the crystallization speed is remarkably fast and various physical properties are stabilized.
  • the plasticizer is used in an amount of 1 to 30 parts by weight, preferably 1 to 20 parts by weight, based on 100 parts by weight of the cross-copolymer or the resin composition of the present invention. It is as follows. If the amount is less than 1 part by mass, the above effects are insufficient, and if it exceeds 30 parts by mass, bleeding, excessive softening, and excessive stickiness may be caused.
  • the inorganic filler is also used to impart flame retardancy to the present cross copolymer.
  • the volume average particle diameter of the organic filler is, for example, 20 m or less, preferably 10 m or less. If the volume average particle size is less than 0.5 m or exceeds 20 ⁇ m, the mechanical properties (tensile strength, elongation at break, etc.) of the film are reduced, and flexibility and pinholes are generated. May be caused.
  • the volume average particle diameter is a volume average particle diameter measured by a laser diffraction method.
  • Examples of the inorganic filler include, for example, aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, calcium hydroxide, potassium hydroxide, barium hydroxide, triphenyl phosphate, ammonium polyphosphate, and polyphosphorus.
  • One or more compounds are used The In particular, the use of at least one selected from the group strength of hydroxyaluminum hydroxide, magnesium hydroxide, hydrated talcite, and magnesium carbonate power provides excellent flame retardancy.
  • the compounding amount of the inorganic filler is in the range of 1 to 300 parts by mass, preferably 5 to 200 parts by mass, with respect to 100 parts by mass of the present cross-copolymer or its resin composition. If the inorganic filler is less than 1 part by mass, flame retardancy may be inferior. On the other hand, when the inorganic filler exceeds 300 parts by mass, mechanical properties such as moldability and strength of the resin composition may be inferior.
  • the method for producing the resin composition, plasticizer composition, and filler composition of the present invention is not particularly limited, and a known appropriate blending method can be used.
  • melt mixing can be performed using a single-screw or twin-screw extruder, a Banbury single-type mixer, a plast mill, a kneader, a heating roll, or the like.
  • the raw materials Prior to melt mixing, the raw materials may be mixed uniformly with a Henschel mixer, a ribbon blender, a super mixer, a tumbler, or the like.
  • the melt mixing temperature is not particularly limited, but is generally 100 to 300 ° C, preferably 150 to 250 ° C.
  • the molding method for obtaining a molded body of the cross copolymer of the present invention or various compositions thereof vacuum molding, injection molding, blow molding, inflation molding, extrusion molding, profile extrusion molding, roll molding, Known molding methods such as calendering can be used, whereby various sheets, films, bags, tubes, containers, foamed materials, foamed sheets, wire covering materials, etc. can be formed.
  • the coconut resin and rosin composition described in the present invention do not basically contain halogen, they have basic characteristics such as high environmental adaptability and safety.
  • the thickness thereof is not particularly limited, but is generally 3 ⁇ m to 1 mm, preferably 10 ⁇ m to 0.5 mm.
  • a molding method such as inflation molding, T-die molding, calendar molding, roll molding or the like can be employed.
  • the film of the present invention is used for the purpose of improving physical properties, and other suitable films such as isotactic or syndiotactic polypropylene, high density polyethylene, low density polyethylene (LDPE or LLDPE), polystyrene, polyethylene terephthalate.
  • the film of the present invention can be multi-layered with films such as ethylene acetate butyl copolymer (EVA). Furthermore, the film of the present invention can have self-adhesiveness and adhesiveness by appropriately selecting the composition. However, when stronger self-adhesiveness is required, a multilayer film with another film having self-adhesiveness can be formed.
  • films such as ethylene acetate butyl copolymer (EVA).
  • EVA ethylene acetate butyl copolymer
  • the film made of the cross-copolymer film of the present invention has a tensile property close to that of the soft PVC indicated by the above Rm value. Therefore, it can be suitably used for laser (synthetic leather) applications in which soft vinyl chloride has been suitably used. At that time, the softness, oil resistance, and abrasion resistance of the present cross copolymer are great advantages.
  • the specific use of the film of the present invention is not particularly limited, it is useful as a general packaging material and container, and used for packaging films, stretch films, shrink films, various masking films, protective films, bags, and pouches. Can do.
  • the cross-copolymer of the present invention or a film having a resin composition mainly containing the cross-copolymer can be used as various tape substrates.
  • the resin composition mainly containing a cross-copolymer is contained in an amount of 50% by mass or more based on the mass of the tape base material excluding the above inorganic filler> (mainly the amount of lipid lipid). It shows that.
  • the resin is optional, but preferably the above “aromatic beer compound polymer”, “propylene polymer”, and Z or “block copolymer polymer”. It is. These are appropriately blended for adjusting the elastic modulus and modulus of the tape substrate and imparting heat resistance.
  • the above inorganic filler is preferably added in order to impart flame retardancy to the tape base material, and its blending amount is arbitrary within a known range.
  • the mass is 70% by mass or more.
  • the composition containing the present cross-copolymer is used as a tape base material to form an adhesive tape.
  • known pressure-sensitive adhesives, additives, and known molding methods are used for molding. Such adhesives, additives, and molding methods are described in, for example, Japanese Patent Publication No. 2000-111646.
  • Adhesive tapes that can also be used as a base material for this tape are various types of tapes for binding, sealing tapes, protective tapes, fixing tapes, various tapes for electronic materials, such as dicing tapes and knock grinding tapes. Alternatively, it can be suitably used as a tape substrate such as a masking tape. It is also useful as various labels.
  • the film of the present invention can be subjected to surface treatment such as corona, ozone, and plasma, application of an antifogging agent, application of a lubricant, printing, and the like.
  • the film of the present invention can be produced as a stretched film that has been stretched uniaxially or biaxially as required.
  • the films of the present invention may be bonded to each other or other materials such as thermoplastic resin by a technique such as fusion by a technique such as heat, ultrasonic wave, high frequency, adhesion by a solvent or the like. it can.
  • the film of the present invention has a thickness of, for example, 100 ⁇ m or more, it is used as a packaging tray for foods, electrical products and the like by techniques such as vacuum forming, compression molding, and pressure forming. Can be molded.
  • a known colorant, antioxidant, ultraviolet absorber, lubricant, stabilizer, and other additives may be blended in the tape base material as needed, as long as the effects of the present invention are not impaired. it can
  • the tape base material is usually an ethylene-aromatic vinyl compound-aromatic polyene copolymer, an aromatic vinyl compound resin, an olefin resin, and an inorganic filler.
  • an ethylene-aromatic vinyl compound-aromatic polyene copolymer an aromatic vinyl compound resin
  • an olefin resin an inorganic filler.
  • Or materials blended as necessary, such as fillers and the mixture is kneaded using a Banbury mixer, roll, extruder, etc., and the kneaded product is compression molded, force-rendered, injected It can be obtained by molding into a film by a known molding method such as molding or extrusion molding.
  • the thickness of the tape base material is not particularly limited depending on the application of the adhesive tape, and is, for example, 40 to 500 ⁇ m, preferably 70 to 200 ⁇ m, more preferably 80 to 160 ⁇ m.
  • the tape base material may have a single layer form or may have a multiple layer form.
  • the electron beam dose should be in the range of 10 to 150 Mrad (mega rads). A range of 15 to 25 Mrad is preferable. If the irradiation dose is less than lOMrad, the temperature dependence is not improved.
  • a cross-linking agent for promoting electron beam cross-linking may be added.
  • the crosslinking agent include low molecular weight compounds and oligomers having at least two carbon-carbon double bonds in the molecule, such as acrylate compounds, urethane acrylate oligomers, epoxy acrylates. It is a rate oligomer.
  • the pressure-sensitive adhesive tape of the present invention is constituted by providing a pressure-sensitive adhesive layer on at least one surface of the tape base material.
  • a pressure-sensitive adhesive all existing pressure-sensitive adhesives such as rubber-based, hot-melt-based, acrylic-based, and emulsion-based adhesives can be applied.
  • tackifiers, anti-aging agents, curing agents, and the like can be blended.
  • Base polymers of rubber adhesives include natural rubber, recycled rubber, silicone rubber, isoprene rubber, styrene butadiene rubber, polyisoprene, NBR, styrene-isoprene copolymer, styrene-isoprene-butadiene copolymer, etc. Is preferred.
  • a crosslinking agent, a softening agent, a filler, a flame retardant and the like can be added to the rubber-based pressure-sensitive adhesive as necessary.
  • an isocyanate-based crosslinking agent as a crosslinking agent
  • a liquid rubber as a softening agent
  • calcium carbonate as a filler
  • an inorganic flame retardant such as magnesium hydroxide and red phosphorus as a flame retardant.
  • Examples of the acrylic pressure-sensitive adhesive include a homopolymer of (meth) acrylic acid ester or a copolymer with a copolymerizable monomer.
  • Examples of (meth) acrylic acid esters or copolymerizable monomers include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, butyl ester, 2-ethylhexyl ester, octyl ester, etc.), (meth) Glycidyl acrylate, (meth) acrylic acid, itaconic acid, maleic anhydride, (meth) acrylic acid amide, (meth) acrylic acid N-hydroxyamide, (meth) acrylic acid alkylaminoalkyl ester (for example, dimethylaminoethyl) And metatalylate, t-butylaminoethyl methacrylate, etc.), butyl acetate, styrene, acrylonitrile and the like
  • the tackifier resin can be selected in consideration of the softening point, compatibility with each component, and the like.
  • examples include terpene resin, rosin resin, hydrogenated rosin resin, coumarone indene resin, styrene resin, aliphatic and alicyclic oils and their hydrogenated products, terpene phenol Mention may be made of rosin, xylene-based rosin, other aliphatic hydrocarbon rosins or aromatic hydrocarbon rosins.
  • the softening point of the tackifying resin is preferably 65 to 170 ° C, and moreover an alicyclic saturated hydrocarbon resin of a petroleum resin having a softening point of 65 to 130 ° C, and a softening point of 80 to 130 ° C.
  • the anti-aging agent is used to improve the rubber-based pressure-sensitive adhesive because it has an unsaturated double bond in the rubber molecule and is likely to deteriorate in the presence of oxygen or light.
  • the anti-aging agent include a single substance or a mixture of a phenol type anti-aging agent, an amine type anti-aging agent, a benzimidazole type anti-aging agent, a dithiocarbamate anti-aging agent, a phosphorus anti-aging agent, etc. Can be mentioned.
  • Examples of the curing agent for acrylic pressure-sensitive adhesives include isocyanate-based, epoxy-based, and amine-based curing agents, and these may be used alone or as a mixture thereof.
  • Specific examples of the isocyanate curing agent include polyvalent isocyanate compounds such as 2,4 tolylene diisocyanate, 2,6 tolylene diisocyanate, 1,3 xylylene diisocyanate, and 1,4-xylene diene.
  • the means for applying to the tape substrate such as the pressure-sensitive adhesive, pressure-sensitive adhesive imparting agent and anti-aging agent constituting the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape is not particularly limited.
  • pressure-sensitive adhesives and pressure-sensitive adhesives An adhesive solution consisting of an imparting agent and an anti-aging agent is applied to one side of the tape substrate by a transfer method. There is a method of applying and drying.
  • the thickness of the pressure-sensitive adhesive layer can be appropriately selected within a range that does not impair the adhesiveness and handling properties, but the thickness of the pressure-sensitive adhesive layer varies depending on the use of the pressure-sensitive adhesive tape, but 5 to: LOO m, preferably 10-50 / ⁇ ⁇ . If it is thinner than this, the adhesive force and the rebound force may be reduced. On the other hand, if it is thicker than this, the coating performance may deteriorate.
  • the tape base material of the adhesive tape, binding tape, and sealing tape preferably satisfies the following conditions.
  • the cross-copolymer of the present invention can satisfy the following conditions when taped by the above-mentioned method, and can be suitably used as a tape base material for an adhesive tape, a binding tape, and a sealing tape.
  • the conditions for the tape substrate are as follows:
  • the initial elastic modulus (MPa) at room temperature in the MD direction is 50 MPa or more and less than 700 MPa
  • MD direction breaking strength (MPa) must be lOMPa or more and less than 70MPa
  • MD direction 10% modulus (tensile stress at 10% elongation) is 2MPa or more and less than 15MPa
  • MD ratio modulus (100% modulus Z10% modulus) is 1.6 or more and less than 5;
  • Heat shrinkage that is, an evaluation in which a 100mm square tape substrate is allowed to stand in an atmosphere of 110 ° C for 10 minutes and then set to a temperature of 23 ⁇ 2 ° C and humidity of 50 ⁇ 5% RH The MD shrinkage rate is less than 10% after standing in the test chamber for 20 minutes or more,
  • the cross-copolymer of the present invention can be made into a thermoplastic elastomer composition by dynamic addition treatment together with other polymers.
  • the cross-copolymer of the present invention is 50% by mass to 95% by mass, preferably 60% by mass to 95% by mass, and the other polymer is 5% by mass to 50% by mass, preferably 5% by mass.
  • It is a thermoplastic elastomer that contains 40% by mass or less and is obtained by dynamic heating treatment.
  • the “other polymer” refers to the above “aromatic beryl polymer compound polymer”, “propylene polymer”, “block copolymer polymer”, or “other resin, elastomer, rubber”. Is.
  • thermoplastic elastomer obtained by dynamic addition treatment containing the cross-copolymer of the present invention in an amount of 50% by mass to 95% by mass and a crystalline propylene-based polymer in an amount of 5% by mass to 50% by mass.
  • the crystalline propylene-based polymer has a stereoregularity of isotactic or syndiotactic among the above-mentioned propylene-based polymers, and has a crystalline melting point of 100 ° C to 170 ° C, preferably 120 °. It is a polymer that is C or higher and 170 ° C or lower.
  • the crystalline propylene polymer can be used alone or in combination.
  • thermoplastic elastomer composition of the present invention comprises: (A) a blend comprising the cross-copolymer of the present invention and (B) another polymer (such as a crystalline propylene polymer) as an organic peroxide. It can be obtained by dynamic vulcanization (dynamic heat treatment). Dynamic vulcanization is a technique in which dispersion and cross-linking occur simultaneously by strongly kneading various compounds in a molten state under conditions where the cross-linking agent reacts. AY Coran et al. (Rub. Chem. and Technol. vol. 53, 141 (1980)) and is widely known.
  • the dynamic vulcanization is carried out using a Banbury mixer, a closed kneader such as a pressure feeder, a single or twin screw extruder, and the like.
  • the kneading temperature is usually 130 to 300 ° C, preferably 150 to 250 ° C.
  • the kneading time is usually 1 to 30 minutes.
  • organic peroxides used for dynamic vulcanization include dichymyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) monohexane, 2,5-dimethyl-2, 5-Di (tert-butylperoxy) monohexyne-3, di-tert-butyl Examples include peroxide.
  • the organic peroxide is preferably a proportion of (A) 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the cross copolymer of the present invention.
  • a peroxide crosslinking aid such as maleimide compound and a polyfunctional vinyl monomer such as divinylbenzene and trimethylolpropane trimethacrylate should be added. I can do it.
  • the “plasticizer” and “inorganic filler” can be added during the dynamic vulcanization treatment.
  • “Plasticizer” is preferably used in an amount of 1 to 20 parts by mass with respect to 100 parts by mass of the polymer component
  • “inorganic filler” is preferably used in an amount of 1 to 200 parts by mass with respect to 100 parts by mass of the polymer component.
  • thermoplastic elastomer composition thus obtained can have both the high heat resistance of the crystalline propylene polymer and the softness, oil resistance, mechanical properties, etc. of the cross-copolymer of the present invention. .
  • the softness of the cross-copolymer of the present invention contributes to the development of this feature.
  • the fact that polyethylene crystallinity is substantially not present in the cross-copolymer of the present invention contributes to the improvement of compatibility with the crystalline propylene polymer.
  • Petroleum resin and Z or hydrogenated petroleum resin can be added to the cross-copolymer of the present invention to obtain a resin composition.
  • the composition is as described above.
  • the cross copolymer of the present invention is in the range of 70% to 99% by mass, petroleum resin and Z or hydrogenated petroleum resin in the range of 1% to 30% by mass.
  • the cross copolymer of the present invention is in the range of 80% by mass to 99% by mass and the hydrogenated petroleum resin in the range of 1% by mass to 20% by mass.
  • the processability (specified by the MFR value) can be widely controlled without impairing the original mechanical properties of the cross-copolymer, and can be adjusted to the MFR suitable for the molding process.
  • the blending amount of petroleum resin and Z or hydrogenated petroleum resin which has a molecular weight sufficiently lower than that of the cross-copolymer, increases the MFR of the present resin composition.
  • Those skilled in the art can easily adjust the MFR by adjusting the blending amount within the above range.
  • cross-coating can be achieved by blending petroleum resin and Z or hydrogenated petroleum resin within this range.
  • a hydrogenated petroleum resin having high colorless transparency is preferred for this purpose.
  • the resin composition has viscosity derived from petroleum resin and z or hydrogenated petroleum resin.
  • more than the above range can be added.
  • the cross-copolymer of the present invention is particularly excellent in softness, it is possible to make an oil-resistant material while maintaining softness and mechanical properties by using the above-mentioned block copolymer, particularly a hydrogenated block copolymer and a composition. It is possible to impart mechanical properties similar to that of PVC. In order to further impart heat resistance to this composition, crystalline polyolefin (such as isotactic or syndiotactic polypropylene) may be blended.
  • crystalline polyolefin such as isotactic or syndiotactic polypropylene
  • the cross copolymer of the present invention can be suitably used as a foam (foam material).
  • a known manufacturing method can be used as the method for manufacturing the form.
  • known techniques such as a method of adding a foaming agent such as an inorganic or organic chemical foaming agent or a physical foaming agent can be exemplified.
  • the cross-copolymer of the present invention and a blowing agent, and if necessary, a crosslinking agent and other additives are heated and melted, heated and compressed while extruding, and then foamed under reduced pressure.
  • the foaming agent and, if necessary, the radical crosslinking agent may be added before the polymer is dry blended or after heat melting.
  • heat blends can be carried out by a known method, for example, an extruder, a mixer, or a blender.
  • a method of crosslinking by radiation electron beam, gamma ray etc.
  • Known techniques relating to foams are described in, for example, “Plastic Foam Handbook” (published by Nikkan Kogyo Shimbun, 1973).
  • the method described in WOOOZ37517 and JP-T-2001-514275 can be preferably used for the production of a foam.
  • the cross-copolymer of the present invention has a crystallinity of a certain value or less, and therefore a foam having excellent softness and texture can be easily obtained. There are features.
  • the composition of the above “aromatic vinyl compound polymer”, “propylene polymer”, “block copolymer polymer” and the cross copolymer of the present invention is used. Moyo.
  • a dispersant a softener, an anti-tacking agent, a filler, a pigment and the like can be added to the foam of the present invention.
  • the method for producing the foam of the present invention is not particularly limited, and examples thereof include a physical foaming method by gas injection, a water foaming method, and a chemical foaming method using a chemical foaming agent. It is also possible to add a foaming agent to the bead or the like and foam it later.
  • foam sheet, film, etc. there are no particular restrictions on the molding method of the obtained foam sheet, film, etc., such as extrusion molding, injection molding, professional molding, etc. Further, sheet film etc. can be molded into containers etc. by thermoforming, compression molding, etc. is there. Also, embossing force, printing, etc. can be performed. This cross copolymer is characterized by excellent printability.
  • the foam of the present invention can be used as a container for building materials such as floor materials, wall materials and wallpaper, interior / exterior products for automobiles, electrical material parts, gaskets, cushioning materials, foods and the like.
  • composition, cross-linked product and foam containing the cross-copolymer of the present invention are useful as a film, sheet, tube, container and the like.
  • it can be suitably used as building materials, wall materials, wallpaper, and floor materials.
  • building materials, wall materials, wallpaper, and flooring materials are described in, for example, W09 6/04419, EP0661345, WO98 / 10160, and the like.
  • the use of high mechanical strength and high filler content while maintaining the mechanical properties and physical properties such as elongation, especially when used in these applications, can impart flame retardancy. Means great value.
  • the cross copolymer and the resin composition described in the present invention can be suitably used as various electric wires and cable coating materials.
  • a filler and / or a composition with a known flame retardant is excellent in softness, mechanical properties, wear resistance, and oil resistance, and is suitable for such applications.
  • various known crosslinking methods for example, a chemical bridge using a crosslinking agent, or a crosslinking method using an electron beam.
  • the 13C—NMR ⁇ vector uses ⁇ -500 manufactured by JEOL Ltd., using heavy chloroform-form solvent or heavy 1,1,2,2-tetrachloroethane solvent, TMS (tetramethylsilane) Measured with reference to.
  • TMS tetramethylsilane
  • the measurement based on TMS here is as follows. First, the shift value of the center peak of the triplet 13C-NMR peak of deuterated 1, 1, 2, 2-tetrachloroethane was determined based on TMS. Next, the copolymer was dissolved in deuterated 1,1,2,2-tetrachloroethane, and 13C-NMR was measured. The peak shift values were calculated for 3 of deuterated 1,1,2,2-tetrachloroethane.
  • the 13C-NMR spectrum measurement for quantification of the peak area was performed using a proton gate decoupling method with NOE eliminated, with a pulse width of 45 ° and a repetition time of 5 seconds as a standard.
  • the content of the styrene unit in the copolymer was determined by 1H-NMR, and the equipment used was 0: -500 and 81 ⁇ 1 manufactured by Nippon Denshi Co., Ltd .; Yuji 250 manufactured by 0 ⁇ . . Heavy 1, 1, 2, 2-tetrachloroethane was dissolved and the measurement was carried out at 80-100 ° C.
  • the area intensity of the peak derived from the phenolic group (6.5 to 7.5 ppm) and the proton peak derived from the alkyl group (0.8 to 3 ppm) was compared with TMS as a reference.
  • the molecular weight was determined using a standard polystyrene equivalent weight average molecular weight using GPC (gel permeation chromatography). Measurement was performed using HLC-8020 manufactured by Tosoh Corporation with THF as a solvent.
  • DSC measurement was performed under a nitrogen stream using a DSC200 manufactured by Seiko Denshi. That is, DSC measurement was performed from 50 ° C. to 240 ° C. at a temperature rising rate of 10 ° C. using lOmg of the resin composition, and the melting point, heat of crystal melting, and glass transition point were obtained. After the first measurement, the second measurement after quenching with liquid nitrogen was powerful.
  • the sample for physical property evaluation is the hot press method (temperature 180 ° C, time 3 minutes, pressure 50 kgZc A sheet having a thickness of 1. Omm formed by m2) was used.
  • the sheet was cut into a No. 2 1Z2 type test piece shape and measured using an AGS-100D type tensile tester manufactured by Shimadzu Corporation at a tensile speed of 500 mmZmin.
  • Hardness ⁇ O IS K-7215 The durometer hardness of Type A was determined according to the durometer hardness test method for plastics. This hardness is an instantaneous value.
  • Transparency is turbidity manufactured by Nippon Denshoku Industries Co., Ltd. according to the JIS K-7105 plastic optical property test method after forming a sheet to lm m thickness by the hot press method (temperature 200 ° C, time 4 minutes, pressure 50kgZcm2G) Total light transmittance and haze were measured using NDH2000
  • test oil resistance test was performed according to JISK7114.
  • a 3 mm-thick circular test piece was immersed in test oil (engine oil, olive oil hexane) at 23 ° C, and the weight change rate after 14 days was measured.
  • Weight change rate (%) ⁇ (Weight after immersion test-Weight before immersion test) Weight before Z immersion test
  • the rate of change is 0%, there is no change in weight.
  • the weight change rate is preferably less than ⁇ 10%.
  • JIS2 small 1Z2 dumbbells are immersed in test oil (engine oil, olive oil) at 23 ° C, taken out after 14 days, subjected to a tensile test, the breaking strength is measured, and the retention rate of breaking strength is calculated by the following formula: Asked.
  • Break strength retention (%) 100 Break strength after X immersion test Break strength before Z immersion test When the retention rate is 100%, the fracture strength does not change at all.
  • the breaking strength retention is preferably about 70% or more and 150% or less.
  • JIS No. 2 small 1 Z2 dumbbell is hung in a given oven, heat-treated at a given temperature for 1 hour, length measured before treatment and in the longitudinal and width directions of the dumbbell, and stretched by the following formula: Z shrinkage The deformation rate was determined. The maximum temperature at which the elongation Z shrinkage deformation ratio was within 5% in the vertical or width direction was defined as the heat resistant deformation temperature.
  • Elongation deformation rate 100 X (length after test length before test) Z length before test
  • Shrinkage deformation rate 100 X (length before test length after test) Z length before test
  • Ra (arithmetic mean roughness): the average linear force is the sum of the absolute values of the deviation Yi ( ⁇ m) to the measurement curve
  • the metadibutylbenzene used in the following Examples 1, 3 to 6, and 9 to 12 is metadivinylbenzene (isomer purity of 97% or more) manufactured by Asahi Kasei Finechem.
  • the isomer purity in this case is the ratio of metadibulene benzene to various dibutenebenzene isomers of ortho, meta, and para.
  • the paradibutylbenzene used in Example 7 is paradivinylbenzene (isomer purity of 95% or more) manufactured by Asahi Kasei Finechem.
  • the dibutene benzene used in Examples 2 and 8 is manufactured by Aldrich (purity as dibule benzene is 80%, and the meta isomer: para isomer mass ratio of the meta isomer and the nor isomer mixture is 70:30).
  • the gel content of the cross copolymer was measured according to ASTM D-2765-84. That is, precisely weighed 1.
  • An Og polymer molded product with a diameter of about 1 mm and a length of about 3 mm
  • the net bag was collected and dried in a vacuum at 90 ° C for more than 10 hours. After sufficiently cooling, the net bag was precisely weighed, and the amount of polymer gel was calculated by the following formula.
  • Example 12 rac dimethylmethylene (4,5 benzone 1 indur) (1 indur) zirconium dichloride (formula 8) was used as a catalyst (transition metal compound).
  • a small amount (several tens of ml) of the polymerization solution was sampled and mixed with methanol to precipitate a polymer, thereby obtaining a polymer sample for the coordination polymerization step. From this sampling solution, the polymer yield, composition, molecular weight, etc. in the coordination polymerization process were determined.
  • the obtained polymer solution was added little by little into a large amount of vigorously stirred methanol solution to recover the polymer.
  • the polymer was air-dried at room temperature for one day and then at 80 ° C. in a vacuum until no mass change was observed. 771 g of a polymer (cross copolymer) was obtained.
  • Polymerization was carried out under the conditions described in Table 1 using the same procedure as in Example 1 except that cyclohexane was used as the solvent and the polymerization temperature in the coordination polymerization step was 80 ° C.
  • CyH Cyclohexane m: Metadivinylbenzene manufactured by Asahi Kasei Finechem
  • the dibulebenzene unit content of the polymer obtained in the combined process was determined from the difference between the amount of unreacted dibutenebenzene in the polymerization solution obtained by gas chromatography analysis and the amount of divinylbenzene used in the polymerization.
  • TUS is the total vinyl group content contained in the copolymer, and is the sum of the content of the butyl group derived from the aromatic polyene (divinylbenzene) unit and the butyl group at the end of the polymer.
  • 1H-NMR measurement Determined by The DOU value is the dibulebenzene unit content contained in the main chain ethylene styrene-dibulene benzene copolymer.
  • the TUS ZDOU value is 1.1. It takes a higher value, generally about 1.2 or more and 10 or less, preferably 1.2 or more and 3 or less.
  • the aromatic polyene unit content is too small, and the function as the cross-copolymer of the present invention may be lost.
  • Table 4 shows the measurement results of the hardness, transparency, mechanical properties, MFR, and gel content of the polymers obtained in each Example and Comparative Example.
  • Table 4 shows the results of using a general soft PVC (Comparative Example 3: A hardness 88 is used and Comparative Example 4: A hardness 75 is used) as a comparative example, and Comparative Example 5: SEBS (H1053). The results were also described.
  • Example 6 a sample obtained by kneading SEBS (H1053) and iPP (J226E) at a mass ratio of 7525 at 200 ° C for 5 minutes using a Brabender plasticizer (PL2000 model manufactured by Brabender) (Comparison) The results obtained using Example 6) are also listed.
  • the ethylene styrene-dibutene benzene copolymer obtained in the coordination polymerization step of this example has a styrene unit content of 15 mol% to 40 mol%, and a dibutenebenzene content of 0.05 mol. % And 0.2 mol% or less of the ethylene styrene-dibutylbenzene copolymer obtained in the coordination polymerization step of this example and the cross-link finally obtained through the ion polymerization step.
  • the heat of crystal melting by DSC of the copolymer showed a value of 30 JZ g or less.
  • the mass ratio of the polymer obtained in the coordination polymerization step of this example is 40% by mass or more and 90% by mass or less with respect to the mass of the cross-copolymer finally obtained through the ion polymerization step. It was.
  • the A copolymer had a hardness of 50 or more and 85 or less.
  • the resulting cross-copolymer When the weight average molecular weight of the polymer obtained through the coordination polymerization process is 150,000 or less, the resulting cross-copolymer is transparent, and the haze of the sheet having a thickness of 1 mm is 25% or less.
  • the transmittance shows a value of 75% or more.
  • the composition of the ethylene styrene-dibutylbenzene copolymer obtained in the coordination polymerization process satisfies the condition that the styrene unit content is 20 mol% or more and 40 mol% or less, the cross copolymer is more transparent.
  • the sheet of lm m thickness showed a haze of 20% or less and a total light transmittance of 80% or more.
  • FIGS. 1 and 2 show TEM photographs of the polymer (cross copolymer) obtained in Example 4 and the polymer obtained in Comparative Example 1.
  • the cross-copolymer has a relatively uniform nanoscale phase separation structure of about 30 to 50 nm, which is a relatively uniform polymer having a block chain that is also composed of different polymer forces, ie, The presence of a cross-copolymer is indicated.
  • the polymer of the comparative example which does not use dibutenebenzene exhibits a micron-scale phase separation structure and is a composition of ethylene styrene copolymer and polystyrene which are incompatible with each other.
  • the Rm value is in the range of about 0.15 to 0.5. It can be seen that the Rm value of the cross-copolymer obtained in this example takes a value in the same range as that of soft vinyl chloride, and that it has tensile characteristics similar to that of soft vinyl chloride, that is, texture.
  • SEBS hydrogenated styrene butadiene block copolymer
  • iPP isotactic PP
  • Table 5 shows the oil resistance test results, the heat deformation test results, and the scratch resistance test results.
  • the cross-copolymer of the present invention (Example 24) has a mechanical property change (decrease) in which the weight increase due to swelling is remarkably small even when immersed in mineral oil (engine oil) or vegetable oil (olive oil). It can be seen that there is little and very good oil resistance.
  • SEBS Comparative Example 5
  • S EBSZiPP composition Comparative Example 6
  • the cross-copolymer of the present example is also superior in heat resistance (heat deformation resistance) to that of soft vinyl chloride. Furthermore, the scratch resistance is not as good as that of soft PVC, but SEBS and SEBS / iPP It was found to be superior to the composition.
  • thermoplastic elastomer composition A dynamic addition treatment was performed as follows to obtain a thermoplastic elastomer composition.
  • a brabender-plasticizer (PL2000 model manufactured by Brabender)
  • the cross-copolymer obtained in this example and a isotactic polypropylene random type J226E: manufactured by Mitsui Chemicals Co., Ltd.
  • Partamyl D the composition (parts by mass) shown in Table 6 is 200 ° C, 6
  • a sample was prepared by kneading for 3 minutes at Orpm.
  • Example A The polymer obtained in Example 3 was used as a cross copolymer.
  • Example B Using the polymer obtained in Example 4 as a cross-copolymer.
  • Example C The polymer obtained in Example 4 was used as a cross-copolymer.
  • Example D Using the polymer obtained in Example 6 as a cross-copolymer.
  • Comparative Example 6 The same composition of SEBS (H1053) and Isotactic PP (J226E) as in Comparative Example 6 above. Similarly, the composition was kneaded with a Brabender plastic coder. Mass ratio 75
  • Comparative Example 7 Sales Composition of EPR and Isotactic PP (J226E). Similarly, the composition was kneaded with a brabender-plasticizer. Mass ratio 75:25.
  • Comparative Example 8 Commercially available propylene ZEPDM partially crosslinked compound. A hardness 80.
  • Comparative Example 9 Commercially available propylene ZSEPS-based partially crosslinked compound. A hardness 80. Table 6 shows the physical property evaluation results.
  • thermoplastic elastomers of Examples A, B, C, and D exhibit good heat resistance, mechanical properties, and excellent oil resistance.
  • a resin yarn and composition of a cross copolymer and a hydrogenated petroleum resin was obtained as follows.
  • Table 7 shows the cross-copolymer and hydrogenated petroleum resin Alcon P-100 (made by Arakawa Chemical Co., Ltd.) obtained in this example using a Brabender plasticizer (PL2000 model made by Brabender).
  • a sample was prepared by kneading at 200 ° C. and 60 rpm for 3 minutes with the blending (part by mass).
  • Example E Using the polymer obtained in Example 3 as a cross-copolymer.
  • Example F Using the polymer obtained in Example 9 as a cross-copolymer.
  • Example G Using the polymer obtained in Example 11 as a cross-copolymer.
  • Table 7 shows the physical property evaluation results.
  • Polymerization was performed using an autoclave with a capacity of 50 L, a stirrer and a jacket for heating and cooling o
  • the supply of ethylene to the polymerization can was stopped, the ethylene was quickly released and the internal temperature was cooled to 60 ° C.
  • 200 mmol of Sec butyl lithium was introduced from the catalyst tank into the polymerization can with nitrogen gas.
  • the ion polymerization started immediately, and the internal temperature rose from 60 ° C to 75 ° C temporarily.
  • the temperature was maintained at 70 to 80 ° C. for 30 minutes as it was, and stirring was continued to continue polymerization (a-on polymerization step).
  • the obtained polymer solution was poured little by little with a gear pump into vigorously stirred heated water containing a dispersant (pull neck nick) and karimiyoban, and the solvent was removed.
  • a dispersed polymer crumb (size about lcm) was obtained.
  • the polymer crumb was centrifuged and dehydrated at room temperature for one day and night, and then dried at 60 ° C in vacuum until no mass change was observed. As a result, about 4.3 kg of a polymer (cross copolymer) was obtained.
  • Example 13 Polymerization was carried out as in Example 13, except that the ethylene pressure was changed to 3. OMPaG. After about 180 minutes, the ethylene consumption reached 950 L. Therefore, the supply of ethylene was stopped, and in the same manner as in Example 13, the polymer polymerization process and the polymer recovery were carried out.
  • Appendix 3 ⁇ 4p..s ants s ⁇ s3 ⁇ 4 also T * 1 -Slr / ":::-.
  • a resin composition of a cross copolymer and a hydrogenated block copolymer resin was obtained as follows.
  • Example H The polymer obtained in Example 14 was used as a cross-copolymer. Comparative Example 10 Hydrogenated SBR was used instead of the cross-copolymer.
  • Table 10 shows the physical property evaluation results.
  • the rosin composition of the cross-copolymer and SEBS of the present invention maintains the same elongation and strength at break as the raw material SEBS, and also has improved oil resistance.
  • the resin composition composed of SEBS and hydrogenated SBR has both reduced elongation and strength at break and low oil resistance compared to the raw material SEBS.
  • Trial production of a film by a two-roll molding machine was performed using a test mixin glove (NS-155 type) manufactured by Nishimura Machinery. The mouth temperature was appropriately adjusted in the range of 120 ° C. to 170 ° C. for each polymer sample.
  • additives were blended in the following proportions with respect to 100 parts by mass of each polymer resin composition.
  • Zinc stearate LTB-1830 (lubricant), 0.3 part
  • Zinc stearate LTB-1830 (lubricant), 0.3 part
  • a film having a thickness of about 0.1 mm was produced by calendering (mouth temperature: 165 ° C). Further, an acrylic pressure-sensitive adhesive was applied to the obtained film and dried, and cut into a 25 mm wide tape to obtain an adhesive tape.
  • 50MPa or more and less than 700MPa
  • Elongation at tensile break is less than 100%, 500% or more
  • lOMPa or more and less than 70MPa
  • 1. 6 or more, less than 5
  • A force that slightly cuts the cut edge.
  • the tape substrate is attached or crimped but can be peeled off
  • cross copolymer of the present invention or the resin composition mainly containing the cross copolymer is useful as a tape substrate.
  • the cross-copolymer obtained by the production method of the present invention is soft with a small degree of crystallinity, and exhibits excellent mechanical properties, heat resistance and oil resistance similar to those of soft vinyl chloride.
  • a transparent cross-copolymer can be synthesized efficiently when the specific production conditions of the present invention are satisfied. Since the cross-copolymer obtained by the production method of the present invention does not essentially contain chlorine, it is considered to have high environmental compatibility. Further, since the cross-copolymer obtained by the production method of the present invention essentially does not contain a plasticizer, it is considered to have high environmental compatibility. Industrial applicability
  • the cross-copolymer obtained by the production method of the present invention is soft with a low degree of crystallinity, exhibits excellent mechanical properties, heat resistance and oil resistance similar to that of soft vinyl chloride, and is essentially chlorine, plastic. Because it does not contain agents, it is useful as a film, sheet, tube, container, etc. with high environmental compatibility. In particular, it can be suitably used as building materials, wall materials, wallpaper, and floor materials.
  • the Japanese Patent Application 2006- 147991 filed on May 29, 2006, the Japanese Patent Application 2006-288070 filed on October 23, 2006, and the May 10, 2007 application The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2007-125496 are cited herein and incorporated as the disclosure of the specification of the present invention.

Abstract

 従来のエチレン-芳香族ビニル化合物共重合体の耐熱性、相溶性を改良し、さらに従来のクロス共重合体と比較し、結晶化度が低く、軟質性や透明性、相溶性に優れ、軟質塩ビ類似の力学物性を示す新規クロス共重合体及び樹脂組成物を提供することである。  配位重合工程とアニオン重合工程からなる重合工程を含む製造方法であって、配位重合工程として、シングルサイト配位重合触媒を用いてオレフィン、芳香族ビニル化合物および芳香族ポリエンの共重合を行い、オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体を合成し、次にアニオン重合工程として、このオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体とアニオン重合性ビニル化合物モノマーの共存下、アニオン重合開始剤を用いて重合することを特徴とするクロス共重合体の製造方法である。

Description

明 細 書
クロス共重合体の製造方法、得られるクロス共重合体、及びその用途 技術分野
[0001] 本発明は、軟質性に優れる、または軟質性と透明性に優れる特定のクロス共重合 体、その糸且成物及び用途に関する。
背景技術
[0002] エチレン スチレン (芳香族ビニル化合物)共重合体は公知である(特許文献 1)。
本共重合体はエラストマ一としての性質を示し、さらには軟質塩ビ類似の力学物性を 示し、耐油性、耐傷つき摩耗性等の機能性を有する。さらに共重合体に含まれるェ チレンとスチレンの交互構造にァイソタクティックの立体規則性を有するエチレンース チレン共重合体も公知である (特許文献 2、 3)。本共重合体は、立体規則性のない 共重合体と比較し交互構造に基づく限定的な結晶性 (微結晶性)を有するため、さら に力学物性が向上し、耐熱性、耐油性等の機能が向上する特徴がある。
[0003] しかし、以上のエチレン—スチレン共重合体は、共重合形式がベルヌ—ィ、一次、 または二次マルコフ統計で記述される統計的共重合 ( 、わゆるランダム共重合)であ るため、本質的に耐熱性が不足し、またスチレン系ポリマー等との相溶性にも不足す る欠点があった。また力学物性も LLDPE (リニア一ローデンシティポリエチレン)等の ォレフィン系ポリマーと比較してより軟質塩ビ類似ではあるが、より軟質塩ビ類似の力 学物性が求められている。
[0004] そこで、エチレン スチレン共重合体に少量のジビュルベンゼンを共重合し、ジビ -ルベンゼンユニットのビュル基を介してァ-オン重合により異種ポリマー鎖を導入 する方法、いわゆるクロス共重合体の製造方法が提案されている(特許文献 4)。本 方法により、重合液中のスチレンモノマーが簡単に、高い転換率でポリマー中に取り 込まれ、非常に効率の高い重合方法が提供される。得られるポリマー(クロス共重合 体)もエチレン—スチレン共重合体と比較し耐熱性が向上している。しかし、実施例 に記載されて 、るクロス共重合体は 、ずれもポリエチレン結晶性、結晶融点を有し、 エチレン スチレン共重合体と比較し軟質性が大きく失われている。また透明性もェ チレン スチレン共重合体と比較し大きく低下し実質不透明である。
特許文献 1:特許 2623070号公報
特許文献 2:特開平 9 309925号公報、
特許文献 3:特開平 11— 130808号公報
特許文献 4:再表 00Z037517号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は従来のエチレン一芳香族ビ-ルイ匕合物共重合体の耐熱性、相溶性を改 良し、さらに従来のクロス共重合体と比較し、結晶化度が低ぐ軟質性や透明性、相 溶性に優れる新規クロス共重合体及びその榭脂組成物を提供することである。
課題を解決するための手段
[0006] 本発明は、配位重合工程とこれに続くァ-オン重合工程カゝらなる重合工程を含むク ロス共重合体の製造方法であって、配位重合工程として、シングルサイト配位重合触 媒を用いてォレフィンモノマー、芳香族ビ-ルイ匕合物モノマーおよび芳香族ポリェン の共重合を行って、芳香族ビ-ルイ匕合物ユニット含量 15モル%以上 40モル%以下 、芳香族ポリェンユニット含量 0. 01モル%以上 3モル%以下、残部がォレフィンュ- ット含量であるォレフィン一芳香族ビニルイ匕合物一芳香族ポリェン共重合体を合成し 、次にァ-オン重合工程として、このォレフィン一芳香族ビ-ルイ匕合物一芳香族ポリ ェン共重合体とァ-オン重合性ビニルイ匕合物モノマーの共存下、ァ-オン重合開始 剤を用いて重合することを特徴とするクロス共重合体の製造方法である。また本製造 方法により得られる A硬度 50以上 85以下の軟質クロス共重合体である。さらには本 発明の特定の製造方法により得られる、 1mm厚さシートのヘイズが 25%以下の透明 クロス共重合体である。
発明の効果
[0007] 本発明の製造方法により得られるクロス共重合体は、従来のエチレン一芳香族ビ- ル化合物共重合体と比較し、耐熱性、相溶性に優れ、従来のクロス共重合体と比較 し軟質性に優れ、さらには透明性に優れる特徴を有する。 図面の簡単な説明
[0008] [図 1]実施例 4で得られたクロス共重合体の TEM写真( 180°Cでプレス成形されたフ イノレムを用いた)。
[図 2]比較例 1で得られたポリマ の TEM写真( 180°Cでプレス成形されたフィルム を用いた)。
発明を実施するための最良の形態
[0009] 本発明のクロス共重合体の製造方法は、配位重合工程とこれに続くァニオン重合 工程カゝらなる重合工程を含む製造方法であって、配位重合工程として、シングルサイ ト配位重合触媒を用いてォレフィンモノマー、芳香族ビュル化合物モノマーおよび芳 香族ポリェンの共重合を行って、芳香族ビ-ルイ匕合物ユニット含量が 15モル%以上 40モル0 /0以下、好ましくは 20モル0 /0以上 40モル0 /0以下、芳香族ポリェンユニット含 量が 0. 01モル%以上 3モル%以下、好ましくは 0. 01モル%以上 0. 5モル%以下、 残部がォレフィンユニット含量であるォレフィン一芳香族ビニル化合物一芳香族ポリ ェン共重合体を合成し、次にァ-オン重合工程として、このォレフィン一芳香族ビ- ルイ匕合物一芳香族ポリェン共重合体とァ-オン重合性ビ-ルイ匕合物モノマーの共存 下、ァ-オン重合開始剤を用いて重合することを特徴とする。
[0010] 本方法で得られるクロス共重合体には、主鎖であるォレフィン一芳香族ビ-ルイ匕合 物 芳香族ポリェン共重合体にクロス鎖であるァ-オン重合性モノマ一から構成され るポリマー鎖が主鎖芳香族ポリェンユニットを介し結合している構造 (クロス共重合構 造、または Segregated star copolymer構造)を含むと考えられる。し力し、本クロ ス共重合体の構造や含まれる割合は任意であり、本発明のクロス共重合体は本発明 の製造方法により得られる共重合体 (ポリマ-)であると規定される。
[0011] 配位重合工程で得られるォレフィン一芳香族ビニルイ匕合物一芳香族ポリェン共重 合体の組成が芳香族ビニルイ匕合物ユニット含量 15モル%以上 40モル%以下、芳香 族ポリェンユニット含量 0. 01モル%以上 3モル0/。以下、残部がォレフィンユニット含 量である条件を満たすことにより、ォレフィン連鎖構造を含む総結晶融解熱が一定以 下で、優れた軟質性を有するクロス共重合体を得ることが出来る。ォレフィン一芳香 族ビ-ルイ匕合物一芳香族ポリェン共重合体の組成は、公知の一般的方法により上 記範囲に制御することができる力 最も簡単にはモノマー仕込み組成比を変更するこ とや、ォレフィン (エチレン)分圧を変更することにより達成できる。
[0012] ォレフィン連鎖構造に由来する結晶構造、例えばエチレン連鎖やプロピレン連鎖に 基づく結晶構造が一定以上存在すると軟質性が損なわれてしまう場合があり、さらに 成形加工時に結晶化による収縮等成形体の寸法安定性が損なわれてしまう場合が ある。本発明により得られるクロス共重合体は、ォレフィン結晶性および他の結晶性も 含めた総結晶融解熱としては 40jZg以下、好ましくは 30jZg以下である。総結晶融 解熱は DSC (示差走査熱量測定: Differential Scanning Calorimetry)により 50°C〜1 50°Cの範囲に観測される融点に由来するピークの面積の総和力 求めることが出来 る。
配位重合工程で得られるォレフィン一芳香族ビニルイ匕合物一芳香族ポリェン共重 合体の芳香族ビ-ルイ匕合物ユニット含量が 15モル%未満の場合、エチレン連鎖構 造に基づく結晶化起こり、結晶融解熱が高くなり、軟質性や成形加工時の寸法安定 性が失われてしまう。また、本芳香族ビ-ルイ匕合物ユニット含量力 0モル%より高く なると、最終的に得られるクロス共重合体のガラス転移温度が高くなり、低温特性が 悪化したり、室温での軟質性が損なわれたりする場合があるので好ましくな 、。
[0013] さらに、本製造方法は、配位重合工程で得られるォレフィン一芳香族ビ-ルイ匕合物 一芳香族ポリェン共重合体の質量割合がァニオン重合工程を経て最終的に得られ るクロス共重合体質量に対して 40質量%以上 90質量%以下であることが好ましぐさ らに好ましくは 50質量%以上 90質量%以下、最も好ましくは 55質量%以上 90質量 %以下であることを特徴とする製造方法である。本製造方法により得られるクロス共 重合体の A硬度は 50以上 85以下が好ましぐ特に好ましくは A硬度 60以上 85以下 である。本配位重合工程で得られるォレフィン―芳香族ビニル化合物―芳香族ポリ ェン共重合体の質量割合は、例えばエチレン消費量、またはポリマー濃度や組成を モニターして本重合工程で生成する共重合体の質量を算出することで制御できる。 本質量割合を下げるためには、例えば上記モニターを行い、生成する共重合体の質 量を算出しながら配位重合工程の時間を短くしてァ-オン重合工程を早期に開始す ればよぐ本質量割合を上げるためには重合時間を長くしてァニオン重合工程開始 を遅らせればよい。また、ァ-オン重合工程で用いられるァ-オン重合性ビニルイ匕合 物モノマ をァ-オン重合工程開始時または工程中に追加添加してもよ 、。ァ-ォ ン重合性ビ-ルイ匕合物モノマーの追加添加量により、本配位重合工程で得られるォ レフイン 芳香族ビニル化合物 芳香族ポリェン共重合体の質量割合を任意に変 更することができる。
[0014] さらに本製造方法は、配位重合工程で得られるォレフィン一芳香族ビニルイ匕合物 一芳香族ポリェン共重合体の重量平均分子量が 15万以下 3万以上である同共重合 体を用いるクロス共重合体の製造方法である。本製造方法により得られる透明クロス 共重合体は、 1mm厚さシートのヘイズが 25%以下、また、全光線透過率が 75%以 上である。配位重合工程で得られるォレフィン―芳香族ビニル化合物―芳香族ポリ ェン共重合体の重量平均分子量は公知の方法で制御することが出来るが、一般的 には重合温度を適宜変更することで制御することが出来る。
[0015] さらに上記本製造方法は、配位重合工程で得られるォレフィン一芳香族ビニルイ匕 合物一芳香族ポリェン共重合体の重量平均分子量が 15万以下 3万以上である同共 重合体を用いることに加え、配位重合工程で得られるォレフィン一芳香族ビ-ルイ匕合 物一芳香族ポリェン共重合体の組成が芳香族ビニルイ匕合物ユニット含量 20モル% 以上 40モル%以下、芳香族ポリェンユニット含量 0. 01モル%以上 3モル%以下、 残部がォレフィンユニット含量である条件を満たすことにより、より透明性に優れる、 1 mm厚さシ―トのヘイズが 20%以下、または全光線透過率 81%以上の透明クロス共 重合体を得ることができる。
[0016] また、上記本製造方法の配位重合工程で得られるォレフィン—芳香族ビ-ルイ匕合 物一芳香族ポリェン共重合体の芳香族ポリェンユニット含量は 0. 01モル%以上 3モ ル%以下である。 0. 01モル%未満ではクロス共重合体としての特性が充分ではなく 、 3モル%より高いと成形カ卩ェ性が悪ィ匕してしまう。最終的に得られるクロス共重合体 の力学物性、成形力卩ェ性 (流動性、 MFR(Melt Flow Rate)で評価できる)を考慮す ると、好ましい芳香族ポリェンユニット含量は 0. 01モル%以上 0. 5モル%以下であり 、最も好ましい芳香族ポリェンユニット含量は 0. 02モル%以上 0. 2モル%以下であ る。さらに芳香族ポリェンユニット含量が 0. 02モル%以上 0. 2モル%以下の範囲で ある場合、クロス共重合体の物性に主鎖であるォレフィン一芳香族ビニルイ匕合物 芳香族ポリェン共重合体の機能性が十分に生力され好まし 、。芳香族ポリエンュ- ット含量が 0. 2モル%以上である場合、主鎖の芳香族ポリェンユニット間の平均鎖長 が短くなり、主鎖であるォレフィン一芳香族ビ-ルイ匕合物一芳香族ポリェン共重合体 の機能性が十分に生力されな 、場合がある。
[0017] さらに本発明の製造方法により得られるクロス共重合体は、ポリスチレン等の芳香族 ビ-ルイ匕合物系ポリマーやプロピレン系ポリマーと良好な相溶性を示し、これらと混 合し組成物とすることでこれらポリマーの物性を改良したり相溶化剤として用いること も可能である。
[0018] 以下に、本発明の製造方法について詳細に説明する。
<配位重合工程 >
本製造方法の配位重合工程にぉ ヽては、シングルサイト配位重合触媒が用いられ る。好ましくは、下記の一般式(1)または(6)で表される遷移金属化合物と助触媒か ら構成されるシングルサイト配位重合触媒を用いる。
[化 1]
一般式 (1 ) 式中、 A、 Bは同一でも異なっていてもよぐ非置換もしくは置換べンゾインデュル基 、非置換もしくは置換シクロペンタジェ-ル基、非置換もしくは置換インデニル基、ま たは非置換もしくは置換フルォレニル基カゝら選ばれる基である。ここで置換シクロべ ンタフヱナンスリル基、置換べンゾインデュル基、置換シクロペンタジェ-ル基、置換 インデュル基、または置換フルォレニル基とは、置換可能な水素の 1個以上が炭素 数 1〜20のアルキル基、炭素数 6〜10のァリール基、炭素数 7〜20のアルキルァリ ール基、ハロゲン原子、 OS1R基、 SiR基または PR基 (Rはいずれも炭素数 1〜10
3 3 2
の炭化水素基を表す)で置換されたシクロペンタフェナンスリル基、ベンゾインデニル 基、シクロペンタジェ-ル基、インデュル基、またはフルォレニル基である。 好ましくは、式中、 A、 Bは同一でも異なっていてもよぐ A, Bのうち少なくともひとつ は一般式(2)、(3)、(4)で示される非置換もしくは置換べンゾインデニル基、または 一般式(5)で示される非置換もしくは置^ンデニル基カゝら選ばれる基である。最も 好ましくは、式中、 A、 Bは同一でも異なっていてもよぐ A、 Bは共に、一般式(2)、 (3 )、(4)で示される非置換もしくは置換べンゾインデニル基、または一般式 (5)で示さ れる非置換もしくは置^ンデニル基カも選ばれる基である。
なお、下記の一般式(2)、(3)、(4)において R1〜R3はそれぞれ水素、炭素数 1 〜20のアルキル基、炭素数 6〜10のァリール基、炭素数 7〜20のアルキルァリール 基、ハロゲン原子、 OS1R基、 SiR基または PR基 (Rはいずれも炭素数 1〜: L0の炭
3 3 2
化水素基を表す)である。 R1同士、 R2同士、 R3同士は互いに同一でも異なってい てもよく、また、隣接する Rl、 R2基は一体となって 5〜8員環の芳香環または脂肪環 を形成してもよい。
[化 2]
'般式(2 >
[化 3]
[化 4] '般式 ( 4 )
以上の一般式で示される非置換べンゾインデュル基として、 4, 5 べンゾ 1ーィ ンデュル基(別名べンゾ(e)インデュル基)、 5, 6 べンゾー 1 インデュル基、 6, 7 —ベンゾ一 1—インデュル基が、置換べンゾインデュル基として、 a—ァセナフトー 1 インデュル基、 3 シクロペンタ〔c〕フエナンスリル基、 1ーシクロペンタ〔1〕フエナン スリル基が例示できる。
下記の一般式(5)において R4はそれぞれ水素、炭素数 1〜20のアルキル基、炭 素数 6〜10のァリール基、炭素数 7〜20のアルキルァリール基、ハロゲン原子、 OSi R基、 SiR基または PR基 (Rはいずれも炭素数 1〜10の炭化水素基を表す)である
3 3 2
。 R4同士は互いに同一でも異なっていてもよい。
[化 5]
以上の一般式で示される非置^ンデニル基としては、 1 インデュル基力 置換 インデュル基としては、 4ーメチルー 1 インデュル基、 5 ェチルー 1 インデュル 基、 4 フエ-ルー 1 インデュル基、 4 ナフチルー 1 インデュル基が例示できる さらに好ましくは、式中、 A、 Bは同一でも異なっていてもよぐ共に一般式(2)、 (3) 、(4)で示される非置換もしくは置換べンゾインデニル基、一般式(5)で示される非置 換もしくは置 ンデニル基カゝら選ばれる基である。
Yは A、 Bと結合を有し、他に置換基として水素もしくは炭素数 1〜15の炭化水素基 (本置換基には他に 1〜3個の窒素原子、酸素原子、硫黄原子、燐原子、または珪素 原子を含んでもよい)を有するメチレン基、シリレン基、エチレン基、ゲルミレン基、ま たは硼素基である。置換基は互いに異なっていても同一でもよい。また、 Yは環状構 造を有していてもよい。
好ましくは、 Yは A、 Bと結合を有し、他に置換基として水素もしくは炭素数 1〜15の 炭化水素基 (本置換基には他に 1〜3個の窒素原子、酸素原子、硫黄原子、燐原子 、または珪素原子を含んでもよい)を有するメチレン基または硼素基である。
Xは、水素、水酸基、ハロゲン、炭素数 1〜20の炭化水素基、炭素数 1〜20のアル コキシ基、炭素数 1〜4の炭化水素置換基を有するシリル基、または炭素数 1〜20の 炭化水素置換基を有するアミド基である。 2個の Xは結合を有してもょ 、。
Mはジルコニウム、ハフニウム、またはチタンである。
さらに本遷移金属化合物はラセミ体であることが好ましい。かかる遷移金属化合物 の好適な例としては、 EP— 0872492A2公報、特開平 11 130808号公報、特開 平 9 309925号公報に具体的に例示した置換メチレン架橋構造を有する遷移金属 化合物や、 WO01Z068719号公報に具体的に例示した硼素架橋構造を有する遷 移金属化合物である。
また、下記一般式 (6)で示される遷移金属化合物も好適に用いることができる。
[化 6]
—般式 (6) 式中、 Cpは非置換もしくは置換シクロペンタフヱナンスリル基、非置換もしくは置換 ベンゾインデュル基、非置換もしくは置換シクロペンタジェニル基、非置換もしくは置 ^ンデュル基、または非置換もしくは置換フルォレニル基力 選ばれる基である。 ここで置換シクロペンタフヱナンスリル基、置換べンゾインデュル基、置換シクロペン タジェニル基、置換インデニル基、または置換フルォレニル基とは、置換可能な水素 の 1個以上が炭素数 1〜20のアルキル基、炭素数 6〜10のァリール基、炭素数 7〜2 0のアルキルァリール基、ハロゲン原子、 OSiR基、 SiR基または PR基 (Rはいずれ
3 3 2
も炭素数 1〜10の炭化水素基を表す)で置換されたシクロペンタフェナンスリル基、 ベンゾインデュル基、シクロペンタジェ-ル基、インデュル基、またはフルォレ -ル基 である。
Y'は、 Cp、 Zと結合を有し、他に水素もしくは炭素数 1〜15の炭化水素基を有する メチレン基、シリレン基、エチレン基、ゲルミレン基、または硼素基である。置換基は互 いに異なっていても同一でもよい。また、 Y'は環状構造を有していてもよい。
Zは窒素原子、酸素原子または硫黄原子を含み、窒素原子、酸素原子または硫黄 原子で M'に配位する配位子で Y'と結合を有し、他に水素もしくは炭素数 1〜15の 置換基を有する基である。
M,はジルコニウム、ハフニウム、またはチタンである。
X'は、水素、ハロゲン、炭素数 1—15のアルキル基、炭素数 6— 10のァリール基、 炭素数 8— 12のアルキルァリール基、炭素数 1 4の炭化水素置換基を有するシリ ル基、炭素数 1— 10のアルコキシ基、または炭素数 1—6のアルキル置換基を有する ジアルキルアミド基である。
nは、 1または 2の整数である。
一般式(6)で示されるような遷移金属化合物は、 W099Z14221号公報 EP4168 15号公報、 US6254956号公報に記載されている。
本製造方法の配位重合工程においては、さらに好ましくは、上記の一般式(1)で表 される遷移金属化合物と助触媒から構成されるシングルサイト配位重合触媒が用い られる。本製造方法の配位重合工程で用いる助触媒としては、従来遷移金属化合物 と組み合わせて用いられている公知の助触媒を使用することができる。そのような助 触媒として、メチルアルミノキサン (またはメチルアルモキサンまたは MAOと記す)等 のアルモキサンまたは硼素化合物が好適に用いられる。必要に応じて、これらアルモ キサンや硼素化合物と共に、トリイソブチルアルミニウムやトリェチルアルミニウム等の アルキルアルミニウムを用いてもよい。力かる助触媒の例としては、 EP— 0872492A 2号公報、特開平 11— 130808号公報、特開平 9— 309925号公報、 WO00/204 26号公報、 EP0985689A2号公報、特開平 6— 184179号公報に記載されている 助触媒やアルキルアルミニウム化合物が挙げられる。
アルモキサン等の助触媒は、遷移金属化合物の金属に対し、アルミニウム原子 Z 遷移金属原子 itで 0. 1〜: L00000、好ましく ίま 10〜: L0000の 匕で用!/、られる。 0. 1 より小さいと有効に遷移金属化合物を活性化出来ず、 100000を超えると経済的に 不利となる。
[0021] 助触媒として硼素化合物を用いる場合には、硼素原子 Ζ遷移金属原子比で 0. 01 〜100の比で用いられる力 好ましくは 0. 1〜10、特に好ましくは 1で用いられる。 0 . 01より小さいと有効に遷移金属化合物を活性ィ匕出来ず、 100を超えると経済的に 不利となる。遷移金属化合物と助触媒は、重合設備外で混合、調製しても、重合時 に設備内で混合してもよい。
[0022] 本発明に用いられるォレフィンとしては、エチレン、炭素数 3〜20の atーォレフイン 、すなわちプロピレン、 1ーブテン、 1一へキセン、 4ーメチルー 1 ペンテン、 1—オタ テン、ビュルシクロへキサンや環状ォレフィン、すなわちシクロペンテン、ノルボルネ ンが挙げられる。好ましくは、エチレンまたはエチレンと α ォレフィンすなわちプロピ レン、 1ーブテン、 1一へキセン、または 1—オタテン等の混合物が用いられ、更に好 ましくは、エチレンが用いられる。
[0023] 本発明に用いられる芳香族ビ-ルイ匕合物は、スチレンおよび各種の置換スチレン、 例えば Ρ—メチルスチレン、 m—メチノレスチレン、 o—メチノレスチレン、 o— t—ブチルス チレン、 m—t—ブチノレスチレン、 p—t—ブチノレスチレン、 p—クロロスチレン、 o クロ ロスチレン等が挙げられる。工業的には好ましくはスチレン、 p—メチルスチレン、 p— クロロスチレン、特に好ましくはスチレンが用いられる。
[0024] 本発明に用いられる芳香族ポリェンは 10以上 30以下の炭素数を持ち、複数の二 重結合 (ビュル基)と単数または複数の芳香族基を有し配位重合可能な芳香族ポリ ェンであり、二重結合 (ビニル基)の 1つが配位重合に用いられて重合した状態にお いて残された二重結合がァ-オン重合可能な芳香族ポリェンである。好ましくは、ォ ルトジビュルベンゼン、パラジビュルベンゼン及びメタジビュルベンゼンの 、ずれか 1 種または 2種以上の混合物が好適に用いられる。
[0025] 本発明の配位重合工程でォレフィン 芳香族ビニル化合物 芳香族ポリェン共重 合体を製造するにあたっては、上記に例示した各モノマー、遷移金属化合物および 助触媒を接触させるが、接触の順番、接触方法は任意の公知の方法を用いることが できる。
以上の共重合の方法としては溶媒を用いずに液状モノマー中で重合させる方法、 あるいはペンタン、へキサン、ヘプタン、シクロへキサン、ベンゼン、トルエン、ェチル ベンゼン、キシレン、クロ口置換ベンゼン、クロ口置換トルエン、塩化メチレン、クロロホ ルム等の飽和脂肪族または芳香族炭化水素またはハロゲン化炭化水素の単独また は混合溶媒を用いる方法がある。好ましくは混合アルカン系溶媒、シクロへキサン、ト ルェン、ェチルベンゼン等を用いる。重合形態は溶液重合、スラリ—重合いずれでも よい。また、必要に応じ、バッチ重合、連続重合、予備重合、多段式重合等の公知の 方法を用いることが出来る。
単数や連結された複数のタンク式重合缶やリニアやループの単数、連結された複 数のパイプ重合設備を用いることも可能である。パイプ状の重合缶には、動的、ある いは静的な混合機や除熱を兼ねた静的混合機等の公知の各種混合機、除熱用の 細管を備えた冷却器等の公知の各種冷却器を有してもよい。また、パッチタイプの予 備重合缶を有して 、てもよ 、。さらには気相重合等の方法を用いることができる。 重合温度は、 78°C〜200°Cが適当である。—78°Cより低い重合温度は工業的 に不利であり、 200°Cを超えると遷移金属化合物の分解が起こるので適当ではない。 さらに工業的に好ましくは、 0°C〜160°C、特に好ましくは 30°C〜160°Cである。 重合時の圧力は、 0. 1気圧〜 100気圧が適当であり、好ましくは 1〜30気圧、特に 工業的に特に好ましくは、 1〜: L0気圧である。
[0026] 本発明の製造方法の配位重合工程で得られるォレフィン一芳香族ビニルイ匕合物 芳香族ポリェン共重合体は、芳香族ビ-ルイ匕合物ユニット含量 15モル%以上 40モ ル%以下、芳香族ポリェンユニット含量 0. 01モル%以上 3モル%以下、残部がォレ フィンユニット含量である組成を有する。本共重合体がこの組成を有することで、従来 にない軟質性をクロス共重合体に与えることが可能となる。
[0027] さらに最も好ましく用いられるシングルサイト配位重合触媒の遷移金属化合物は、 一般式(1)で示される構造を有し、かつ、 A、 Bは同一でも異なっていてもよぐ A、 B は共に非置換もしくは置換シクロペンタフエナンスリル基、非置換もしくは置換べンゾ インデュル基、及び非置換もしくは置換インデニル基力 選ばれる基であり、かつ、 Y はん Bと結合を有し、他に置換基として水素もしくは炭素数 1〜15の炭化水素基(1 〜3個の窒素原子、酸素原子、硫黄原子、燐原子、珪素原子を含んでもよい)を有す るメチレン基または硼素基であり、かつ、本遷移金属化合物はラセミ体である。この条 件を満たす場合、得られる本組成範囲のォレフィン 芳香族ビニル化合物 芳香族 ポリェン共重合体は、ォレフィン一芳香族ビニルイ匕合物の交互構造、好ましくはェチ レン—芳香族ビニルイ匕合物交互構造にァイソタクティックの立体規則性を有し、その ため、本発明のクロス共重合体は本交互構造に由来する微結晶性を有することが出 来る。また、本ォレフイン—芳香族ビ-ルイ匕合物-芳香族ポリェン共重合体は、立体 規則性がない場合と比較し交互構造の微結晶性に基づく良好な力学物性ゃ耐油性 を与えることができ、この特徴は最終的に本発明のクロス共重合体にも受け継ぐこと が出来る。
[0028] ォレフィン一芳香族ビニル化合物一芳香族ポリェン共重合体の交互構造の微結晶 性による結晶融点は概ね 50°C〜120°Cの範囲にあり DSCによるその結晶融解熱は 40jZg以下、好ましくは 30jZg以下である。本発明のクロス共重合体は総体として、 40jZg以下、好ましくは 30jZg以下の結晶融解熱を有することができる。本範囲の 結晶融解熱の結晶性は、本クロス共重合体の軟質性、成形加工性に悪影響は与え ず、むしろ優れた力学物性ゃ耐油性の面で有益である。
[0029] 本発明の製造方法において、配位重合工程で得られるォレフィン—芳香族ビニル 化合物 芳香族ポリェン共重合体の質量割合はァニオン重合工程を経て最終的に 得られるクロス共重合体質量に対して 40質量%以上 90質量%以下、好ましくは 50 質量%以上 90質量%以下、最も好ましくは 55質量%以上 90質量%以下である条 件を満たす。本条件を満たすことで、ァ-オン重合工程で重合されるポリマーの種類 によらず、ォレフィン一芳香族ビニル化合物一芳香族ポリェン共重合体の有する軟 質性が得られるクロス共重合体に反映され A硬度 50以上 85以下、好ましくは A硬度 50以上 80以下の軟質性を示すことが出来る。配位重合工程で得られるォレフィン— 芳香族ビニル化合物 芳香族ポリェン共重合体の質量がクロス共重合体質量の 40 質量%未満である場合、例えばァ-オン重合工程で重合されるポリマーがポリスチレ ン等の剛直なポリマーである場合、得られるクロス共重合体の A硬度が本発明の範 囲より高くなり軟質性は失われてしまう。逆に配位重合工程で得られるォレフィン一芳 香族ビニルイ匕合物一芳香族ポリェン共重合体の質量がクロス共重合体質量の 90質 量%より高い場合、ァ-オン重合工程で重合されるポリマー鎖が有する特性が十分 に発揮されない。ァ-オン重合工程で重合されるポリマー鎖が有する特性としては、 例えばァ-オン重合工程で重合されるポリマーがポリスチレンである場合、耐熱性や ポリスチレン系ポリマ一との相溶性が挙げられる。
[0030] <ァ-オン重合工程 >
本発明の製造方法のァ-オン重合工程では、配位重合工程で得られたォレフィン 芳香族ビニル化合物 芳香族ポリェン共重合体とァ-オン重合性ビ-ルイ匕合物 モノマーの共存下、ァ-オン重合開始剤を用いて重合を行う。
ァ-オン重合工程にお 、ては、ァ-オン重合性ビュル化合物モノマーであれば、 いずれも使用することが可能である。
[0031] 特に、本発明において、ァ-オン重合性ビニルイ匕合物モノマーとしては、スチレン、 P—メチノレスチレン、 ρ ターシャリーブチルスチレン、 p クロロスチレン、 OC—メチノレ スチレン、ビュルナフタレン、ビュルアントラセン等の芳香族ビュル化合物、ブタジェ ン、イソプレン等のジェン化合物、メチルアタリレート等のアクリル酸エステル、メチル メタタリレート等のメタクリル酸エステル等及びこれらの混合物が用いられる。好ましく は芳香族ビ-ルイ匕合物または芳香族ビニルイ匕合物とこれらァ-オン重合可能なモノ マ との混合物、最も好ましくは芳香族ビニルイ匕合物が用いられる。
本発明のァ-オン重合工程では上記ァ-オン重合性モノマー以外に、配位重合ェ 程で重合されずに重合液中に少量残存する芳香族ポリェンも重合されてもょ ヽ。
[0032] 本発明のァ-オン重合工程は、上記の配位重合工程の後に実施される。この際、 配位重合工程で得られた共重合体は、クラムフォーミング法、スチームストリツビング 法、脱揮槽、脱揮押出し機等を用いた直接脱溶媒法等、任意のポリマー回収法を用 いて、重合液から分離、精製してァ-オン重合工程に用いてもよい。しかし、配位重 合後の重合液から、残留ォレフィンを放圧後、あるいは放圧せずに、次のァ-オン重 合工程に用いるのが、経済的に好ましい。重合体を重合液から分離せずに、重合体 を含んだ重合溶液をクロス化工程に用いることができることが本発明の特徴の 1つで ある。
[0033] ァニオン重合工程の溶媒は、ァニオン重合の際に連鎖移動等の不都合を生じない 混合アルカン系溶媒、シクロへキサン、ベンゼン等の溶媒が特に好ましいが、重合温 度が 150°C以下であれば、トルエン、ェチルベンゼン等の他の溶媒も用いることが可 能である。
重合形態は、ァ-オン重合に用いられる任意の公知の方法を用いることができる。 重合温度は、— 78°C〜200°Cが適当である。—78°Cより低い重合温度は工業的 に不利であり、 150°Cを超えると連鎖移動等が起こるので適当ではない。さらに工業 的に好ましくは、 0°C〜200°C、特に好ましくは 30°C〜150°Cである。
重合時の圧力は、 0. 1気圧〜 100気圧が適当であり、好ましくは 1〜30気圧、特に 工業的に特に好ましくは、 1〜: LO気圧である。
[0034] 本発明のァ-オン重合工程には、公知のァ-オン重合開始剤を用いることができる 。好ましくは、アルキルリチウム化合物ゃビフヱ-ル、ナフタレン、ピレン等のリチウム 塩あるいはナトリウム塩、特に好ましくは、 sec—ブチルリチウム、 n (ノルマル)—プチ ルリチウムが用いられる。また、多官能性開始剤、ジリチウム化合物、トリリチウム化合 物を用いてもよい。さらに必要に応じて公知のァ-オン重合末端カップリング剤を用 いてもよい。
開始剤量は、配位重合工程で、重合触媒の助触媒として、メチルアルモキサンを用 いる場合には、その中に含まれる酸素原子の当量以上の、特に好ましくは 2当量以 上の量を用いるのが好ましい。配位重合工程で、重合触媒の助触媒として、硼素化 合物を用いた場合、その量はメチルアルモキサン中の酸素原子当量に比して、十分 少な 、ため、開始剤量を低減することが可能である。
[0035] ァ-オン重合工程では、開始剤量を適宜調節することで、クロス鎖の長さ、クロスィ匕 されなかったホモポリマーの分子量を任意に変更することが可能である。
クロス鎖部分の長さ(分子量)は、クロス化されな力つたホモポリマーの分子量から 推定できるが、その長さは、重量平均分子量として、好ましくは 5000以上 15万以下 、さらに好ましくは 5000以上 10万以下、特に好ましくは 5000以上 5万以下である。 また、その分子量分布 (MwZMn)は好ましくは 3以下、特に好ましくは 1. 5以下で ある。
[0036] さらに本発明は、ァ-オン重合工程において用いられるァ-オン重合性ビニルイ匕 合物モノマーが芳香族ビ-ルイ匕合物モノマ—であることが好ましいクロス共重合体の 製造方法である。ここで、配位重合工程に用いられる芳香族ビ-ルイ匕合物モノマ一と ァ-オン重合工程において用いられる芳香族ビ-ルイ匕合物モノマーは同一であるこ とが好ま ヽ。最も好ましくは配位重合工程で用いられる芳香族ビ-ルイ匕合物モノマ がスチレンであり、かつァ-オン重合工程にお!、て用いられるァ-オン重合性ビ- ルイ匕合物モノマーがスチレンであり、その一部または全部が配位重合工程における 未反応スチレンであることを特徴とするクロス共重合体の製造方法である。
[0037] さらに本発明のもう一方の側面として、配位重合工程で得られるォレフィン一芳香 族ビニル化合物一芳香族ポリェン共重合体の重量平均分子量が 15万以下 3万以上 である同共重合体を用いることが好ましいクロス共重合体の製造方法である。本製造 方法により透明性に優れたクロス共重合体を得ることができ、 1mm厚さシ―トのヘイ ズが 25%以下好ましくは 20%以下、または lmm厚さシートの全光線透過率が 75% 以上好ましくは 80%以上の透明クロス共重合体となることが出来る。本透明クロス共 重合体の製造方法にぉ 、て、配位重合工程に用いられる芳香族ビ-ルイ匕合物モノ マ とァ-オン重合工程にぉ 、て用いられる芳香族ビュル化合物モノマーは同一で あることが好ま ヽ。最も好ましくは配位重合工程で用いられる芳香族ビニルイ匕合物 モノマ がスチレンであり、かつァ-オン重合工程にお!、て用いられるァ-オン重合 性ビ-ルイ匕合物モノマーがスチレンでありその一部または全部が配位重合工程にお ける未反応スチレンである。
[0038] 本発明のクロス共重合体は、主鎖のスチレン (芳香族ビ-ルイ匕合物)ユニット含量を 変化させたり、配位重合工程で得られるォレフィン 芳香族ビニル化合物 芳香族 ポリェン共重合体の質量割合をァニオン重合工程を経て最終的に得られるクロス共 重合体質量に対して変化させることで、その硬度を容易に変化させることが出来る。 耐熱性 (耐熱変形性)はほぼ 100°C程度 (ァ-オン重合性ビニル化合物モノマーがス チレンである場合)を維持することが出来る。これは、ァ-オン重合工程で重合される ポリスチレンブロック鎖の Tg (ガラス転移温度)によると考えられる。
本発明のクロス共重合体は、従来のエチレン スチレン共重合体や他の軟質榭脂 と比較し、より軟質塩ビに近い引張特性を有する。ここでいう軟質塩ビに近い引張特 性とは、伸びと応力の関係が比例関係に近いことで、 S— Sカーブは右上がりの勾配 が大き 、 (伸びに対する応力の増加が大き 、)ことである。本特性は初期引張弾性率 に対する 100%伸びの時点での応力(100%モジュラス)の比 Rm値(= 100%モジ ュラス Z初期引張弾性率)で示すことができる。
一般的な軟質塩ビの場合、 Rm値は、 0. 15〜0. 5程度の範囲となる。本発明のク ロス共重合体の Rm値は、ほぼ軟質塩ビと同じ範囲の値を取ることができ、軟質塩ビ 類似の引張特性、すなわち風合いを有することがでいる。これに対し、特に従来のォ レフイン系軟質榭脂等の場合、 S— Sカーブは初期の立ち上がりの後に勾配は小さく なってしまう場合が多く(伸びに対する応力の増加が小さい)、 Rm値も概ね 0. 12以 下となり、異なる引張特性、風合いを示す。
本発明のクロス共重合体は、単独で室温から概ね 70°C程度の温度下で優れた耐 油性を示す。本耐油性は、鉱物系オイルを代表するエンジンオイルや植物系オイル を代表するォリーブオイルに浸漬した後の重量変化率 (膨潤率)や力学物性の変化 率で評価することが出来る。これに対し従来のォレフィン系やスチレン系の軟質榭脂 (熱可塑性榭脂)は、耐油性が低ぐ膨潤したり、割れが生じたり力学物性が低下する ことで、用途によっては大きな問題となる場合がある。塩ビは、本来の塩ビ榭脂が有 する耐油性を有するが、軟質塩ビの場合は可塑剤が溶出するために硬化してしまう 欠点がある。
本発明のクロス共重合体は、良好な耐傷つき摩耗性を示す。本耐傷つき摩耗性は 、テ―バ—摩耗試験やスクラッチ試験により評価できる。
本発明のクロス共重合体は、良好な成形加工性を示す。成形加工性は、一定温度 下、加重を変えて測定した MFR値 (例え «JISK7210)の比で示すことが出来る。例 えばカ卩重 2kgと 10kgでの MFR値の比(荷重 10kgと 2kgの MFRの比: I /\ )は、通
10 2 常のポリオレフインやポリスチレンでは 6〜9の範囲であることが多!、。これに対し本発 明のクロス共重合体は 10以上 70程度までの値を示すことが出来る。これはクロス共 重合体の分岐構造 (クロス構造)によるためと考えられる。本値が低い場合は、押し出 し成形の場合、型カゝらでた直後応力が解放された際にドロ一ダウンしてしまう場合が あり好ましくない。本発明のクロス共重合体は、 200°C、加重 2kgの条件で測定した MFR値として、好ましくは 0. OlgZlO分以上、 50gZlO分以下の値を示す。本 MF R値力これより低い、または高い場合は、その成形加工時に特別な配慮が必要となる 場合がある。
本発明のクロス共重合体は、公知の方法、例えば特表 2004— 504928、特表 200 4 535270、特表 2001— 520295、特表 2004— 505120【こ記載の方法【こよりス ルホンィ匕することができる。スルホン化されたクロス共重合体は、透湿性膜、イオン電 導性膜として好適に使用することも可能である。
[0039] <榭脂組成物 >
本発明のクロス共重合体は、以下に挙げる芳香族ビ-ルイ匕合物系ポリマーまたは プロピレン系ポリマ一との組成物として用いることが出来る。この場合、本クロス共重 合体は組成物全体質量に対し 1〜99質量%の範囲で用いることが出来る。本発明 のクロス共重合体は芳香族ビ-ルイ匕合物系ポリマーやプロピレン系ポリマーに対し良 好な相溶性を示す。そのため本クロス共重合体を例えば組成物の全体質量に対し 1 〜50質量%の範囲で用いた場合には相手の芳香族ビニル化合物系ポリマー(ポリス チレン等)やポリプロピレンの対衝撃性改良や軟質ィ匕に効果があり、組成物の全体質 量に対し 50〜99質量%の範囲で用いた場合には、本クロス共重合体の物性 (例え ば弾性率)の調整や耐熱性の向上に効果がある。
[0040] また本発明のクロス共重合体は、芳香族ビ-ルイ匕合物系ポリマーとプロピレン系ポ リマ一の相溶化剤として用いることが出来る。この場合、芳香族ビニル化合物系ポリ マ とプロピレン系ポリマ の組成比は任意であり、本クロス共重合体は組成物全体 質量に対し 1〜70質量%の範囲で用いることが出来る。
[0041] さらに本発明のクロス共重合体は、ブロック共重合体系ポリマーとの組成物として用 いることが可能で、組成物の全体質量に対し 1〜99質量%の範囲で用いることが出 来る。本発明のクロス共重合体は良好な軟質性と耐油性を有するため、ブロック共重 合体系ポリマーとの組成物においてはその軟質性、力学物性を損なわずに耐油性を 付与することが出来る。
[0042] 「芳香族ビュル化合物系ポリマー」
芳香族ビュル化合物単独の重合体または芳香族ビュル化合物と共重合可能な 1 種類以上のモノマー成分を含み芳香族ビニルイ匕合物ユニット含量が 10質量%以上 、好ましくは 30質量%以上の統計的共重合体。芳香族ビニル化合物系ポリマーに用 V、られる芳香族ビ-ルイ匕合物モノマーとしては、スチレンおよび各種の置換スチレン 、例えば ρ—メチルスチレン、 m—メチルスチレン、 o—メチノレスチレン、 o— t—ブチノレ スチレン、 m—t ブチルスチレン、 p—t—ブチルスチレン、 α—メチノレスチレン等が 挙げられる。またジビニルベンゼン等の一分子中に複数個のビニル基を有する化合 物等も挙げられる。また、これら複数の芳香族ビニル化合物間の統計的共重合体も 用いられる。なお、芳香族ビ-ルイ匕合物の相互の芳香族基間の立体規則性は、ァタ タティック、ァイソタクティック、シンジ才タクティック 、ずれでもよ 、。
[0043] 芳香族ビ-ルイ匕合物と共重合可能なモノマーとしては、ブタジエン、イソプレン、そ の他の共役ジェン類;アクリル酸、メタクリル酸、及びこれらのアミド誘導体やエステル 誘導体;アクリロニトリル、無水マレイン酸及びその誘導体が挙げられる。共重合形式 は統計的共重合である。以上の芳香族ビニル化合物系ポリマーは、その実用榭脂と しての物性と成形加工性を発現するために、ポリスチレン換算重量平均分子量として 、 3万以上、好ましくは 5万以上 50万以下、好ましくは 30万以下である必要がある。ま た、耐衝撃性を付与するためにゴム成分をブレンドまたはグラフトしてもよい。用いら れる芳香族ビ-ルイ匕合物系ポリマーは、例えばァイソタクティックポリスチレン (i—PS )、シンジォタクティックポリスチレン(s— PS)、ァタクティックポリスチレン(a— PS)、ゴ ム強化ポリスチレン(HIPS)、アクリロニトリル—ブタジエン—スチレン共重合体 (ABS 榭脂)、スチレン一アクリロニトリル共重合体 (AS榭脂)、スチレン一メタクリル酸メチル 共重合体等のスチレン メタクリル酸エステル共重合体;スチレン ジェン共重合体 (SBRなど)およびその水添物;スチレン—マレイン酸共重合体;スチレン—イミド化マ レイン酸共重合体等が挙げられる。
[0044] 「プロピレン系ポリマー」 プロピレン単独重合体またはプロピレンモノマーユニットを 30質量0 /0以上、好ましく は 50質量%以上含む共重合体であり、例えばァイソタクティックポリプロピレン (i P P、ホモ PP、ランダム PP、ブロック PPを含む)、シンジォタクティックポリプロピレン(s — PP)、ァタクティックポリプロピレン(a— PP)、プロピレン エチレンブロック共重合 体、プロピレン エチレンランダム共重合体、プロピレンーブテン共重合体が挙げら れる。必要に応じてブタジエンや α— ωジェン等のジェン類を共重合した共重合体 でも良い。このような例としてはエチレン プロピレン ジェン共重合体(EPDM)、 エチレン プロピレンーェチリデンノルボルネン共重合体等が挙げられる。以上のプ ロピレン系ポリマーは、その実用榭脂としての物性、成形力卩ェ性を発現するために、 ポリスチレン換算重量平均分子量として、 1万以上、好ましくは 3万以上 50万以下、 好ましくは 30万以下が必要である。
[0045] 「ブロック共重合体系ポリマー」
ァ-オン重合またはその他の重合方法によるリビング重合により得られるジブロック 、トリブロック、マルチブロック、スターブロックあるいはテーパードブロック構造を有す るブロック共重合体である。この様な例として、スチレン ブタジエンブロック共重合 体(SBS)、スチレン イソプレン共重合体(SIS)やこれらの水添物(SEBSや SIPS) が挙げられる。以上のブロック共重合体系ポリマーは、その実用榭脂としての物性、 成形加工性を発現するために、ポリスチレン換算重量平均分子量として、 5000以上 、好ましくは 1万以上 30万以下、好ましくは 20万以下が必要である。
[0046] 本発明のクロス共重合体は以下の「その他の榭脂、エラストマ一、ゴム」と組成物と して用いることも可能である。
[0047] 「その他の榭脂、エラストマ一、ゴム」
例えば、石油榭脂およびその水添物、高密度ポリエチレン (HDPE)、低密度ポリエ チレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、エチレン一環状ォレフイン 共重合体等のォレフィン系榭脂で、上記プロピレン系ポリマーを除いたもの;ナイロン 等のポリアミド;ポリイミド;ポリエチレンテレフタレート等のポリエステル;ポリビュルァ ルコール、天然ゴム、シリコン榭脂、シリコンゴムが挙げられる。
[0048] <可塑剤 > 本発明のクロス共重合体には従来塩ビゃ他の樹脂に用いられる公知の任意の可 塑剤を配合することが出来る。好ましく用いられる可塑剤は含酸素または含窒素系可 塑剤であり、エステル系可塑剤、エポキシ系可塑剤、ェ—テル系可塑剤、またはアミ ド系可塑剤力 選ばれる可塑剤である。
[0049] これらの可塑剤は、本発明のクロス共重合体に用いられるォレフィン一芳香族ビ- ル化合物 芳香族ポリェン共重合体との相溶性が比較的良好でプリ ドし難く、また ガラス転移温度が低下する度合 、で評価できる可塑ィ匕効果も大きぐ好適に用いる ことが出来る。またこれらの可塑剤を用いた場合、特異的な効果として本発明のクロ ス共重合体に用いられるォレフィン一芳香族ビニルイ匕合物一芳香族ポリェン共重合 体、特にエチレン一芳香族ビュル化合物ージビュルベンゼン共重合体中のエチレン と芳香族ビ-ルイ匕合物ユニットのァイソタクティック交互構造の結晶化を促進し結晶 化度を上げる効果があり、通常の可塑化効果に加え耐熱性ゃ耐油性の向上効果を も示すことが出来る。
一方、例えば芳香族、脂肪族、脂環系の鉱物油は、本組成のエチレン一芳香族ビ -ル化合物 芳香族ポリェン共重合体との相溶性が低 ヽためプリ ドし易く、またガ ラス転移温度が低下する度合!/ヽで評価できる可塑化効果も少な!ヽため適当でな!、 場合がある。
[0050] 本発明に好適に用いることができるエステル系可塑剤の例としては、フタル酸エス テル、トリメリット酸エステル、アジピン酸エステル、セバチン酸エステル、ァゼレート系 エステル、クェン酸エステル、ァセチルクェン酸エステル、グルタミン酸エステル、コ ハク酸エステル、酢酸エステル等のモノ脂肪酸エステル、リン酸エステルやこれらの ポリエステルである。
[0051] 本発明に好適に用いることができるエポキシ系可塑剤の例としては、エポキシィ匕大 豆油、エポキシ化亜麻仁油が挙げられる。
[0052] 本発明に好適に用いることができるエーテル系可塑剤の例としては、ポリエチレン グリコール、ポリプロピレングリコール、これらの共重合物、混合物が挙げられる。 本発明に好適に用いることができるアミド系可塑剤の例としては、スルホン酸アミド が挙げられる。これら可塑剤は単独で用いても、複数を用いてもよい。 [0053] 本発明に特に好ましく用いられるのはエステル系可塑剤である。これらの可塑剤は 、本組成範囲のエチレン一芳香族ビニルイ匕合物一芳香族ポリェン共重合体との相溶 性に優れ、可塑ィ匕効果に優れ (ガラス転移温度低下度が高い)、ブリードが少ないと V、う利点がある。加えて優れたエチレンと芳香族ビニルイ匕合物ユニットの交互構造の 結晶化促進効果があり、高い融点を与え、好適である。さらに本発明に最も好ましく 用いられるのは、アジピン酸エステルまたはァセチルクェン酸エステルの可塑剤であ る。これらの可塑剤を用いた場合、その結晶化速度が著しく速ぐ溶融成形から短時 間で結晶が成長し各種物性が安定するという利点がある。
[0054] 可塑剤の配合量は、本発明のクロス共重合体またはその榭脂組成物 100質量部に 対して、可塑剤 1質量部以上 30質量部以下、好ましくは 1質量部以上 20質量部以下 である。 1質量部未満では上記効果が不足し、 30質量部より高いとブリードや、過度 の軟化、それによる過度のベたつきの発現等の原因となる場合がある。
[0055] <無機質充填剤 >
以下、本発明に用いることができる無機質充填剤につ ヽて示す。
無機質充填剤は、本クロス共重合体に難燃性を付与するためにも用いられる。無 機質充填剤の体積平均粒子径は、例えば 20 m以下、好ましくは 10 m以下の範 囲である。体積平均粒子径が、 0. 5 m未満であったり 20 μ mを超えるとフィルムィ匕 したときの力学物性 (引張強度、破断伸度等)の低下が生じるとともに柔軟性の低下 やピンホールの発生を引き起こしてしまうことがある。体積平均粒子径は、レーザ回 析法で測定した体積平均粒子径である。
[0056] 無機質充填剤としては、例えば、水酸ィ匕アルミニウム、水酸化マグネシウム、水酸ィ匕 ジルコニウム、水酸化カルシウム、水酸化カリウム、水酸化バリウム、トリフエニルホス フィート、ポリリン酸アンモ-ゥム、ポリリン酸アミド、酸ィ匕ジリコ-ゥム、酸化マグネシゥ ム、酸化亜鉛、酸化チタン、酸化モリブデン、リン酸グァ-ジン、ハイド口タルサイト、ス ネークタイト、硼酸亜鉛、無水硼酸亜鉛、メタ硼酸亜鉛、メタ硼酸バリウム、酸化アン チモン、三酸化アンチモン、五酸化アンチモン、赤燐、タルク、アルミナ、シリカ、ベー マイト、ベントナイト、珪酸ソーダ、珪酸カルシウム、硫酸カルシウム、炭酸カルシウム 、炭酸マグネシウムであり、これら力 選ばれる 1種又は 2種以上の化合物が使用され る。特に、水酸ィ匕アルミニウム、水酸化マグネシウム、ハイド口タルサイト、炭酸マグネ シゥム力 なる群力 選ばれる少なくとも 1種を用いるのが難燃性の付与効果に優れ
、経済的に有利である。
[0057] 無機質充填剤の配合量は、本クロス共重合体またはその榭脂組成物 100質量部 に対し 1〜300質量部、好ましくは 5〜200質量部の範囲である。無機質充填剤が 1 質量部未満では、難燃性が劣る場合がある。一方で、無機質充填剤が 300質量部を 超えると、榭脂組成物の成形性及び強度等の機械的物性が劣る場合がある。
無機質充填剤を非ハロゲン系難燃剤として配合した場合は、チヤ一 (炭化層)の形 成を図り、フィルム等の難燃性を向上させることもできる。
[0058] 本発明の榭脂組成物、可塑剤組成物、フィラー組成物を製造する方法は特に限定 されず、公知の適当なブレンド法を用いることができる。例えば、単軸、二軸のスクリュ 一押出機、バンバリ一型ミキサー、プラストミル、コニーダー、加熱ロールなどで溶融 混合を行うことができる。溶融混合を行う前に、ヘンシェルミキサー、リボンプレンダー 、スーパーミキサー、タンブラ一などで各原料を均一に混合しておくこともよい。溶融 混合温度はとくに制限はないが、 100〜300°C、好ましくは 150〜250°Cが一般的で ある。
[0059] 本発明のクロス共重合体またはその各種組成物の成形体を得るための成形法とし ては、真空成形、射出成形、ブロー成形、インフレーション成形、押出し成形、異型 押し出し成形、ロール成形、カレンダー成形等公知の成形法を用いることができ、そ れにより各種シート、フィルム、バッグ、チューブ、容器、発泡材、発泡シート、電線被 覆材等に成形することが出来る。
更に、本発明記載の榭脂及び榭脂組成物はハロゲンを基本的に含有しないため、 環境適応性や安全性が高!ヽと ヽぅ基本的特徴を有する。
[0060] くフィルム、シート >
本発明のクロス共重合体またはその榭脂組成物をフィルムとして用いる場合、その 厚みに特に制限はないが、一般に 3 μ m〜lmm、好ましくは 10 μ m〜0. 5mmであ る。本発明の榭脂組成物力もなるフィルム、シ一トを製造するには、インフレーション 成形、 Tダイ成形、カレンダー成形、ロール成形などの成形法を採用することができる 。本発明のフィルムは、物性の改善を目的として、他の適当なフィルム、例えば、アイ ソタクティックまたはシンジォタクティックのポリプロピレン、高密度ポリエチレン、低密 度ポリエチレン(LDPE、または LLDPE)、ポリスチレン、ポリエチレンテレフタレート、 エチレン 酢酸ビュル共重合体 (EVA)等のフィルムと多層化することができる。さら に、本発明のフィルムは、組成を適宜選択することにより自己粘着性、接着性を有す ることができる。しかし、更に強い自己粘着性が要求される場合には、自己粘着性を 有する他のフィルムとの多層フィルムにすることも出来る。
本発明のクロス共重合体カゝらなるフィルムは、本特性は上記 Rm値で示される軟質 塩ビに近い引張特性を有する。そのため、従来軟質塩ビが好適に用いられてきたレ ザ—(合成皮革)用途に好適に用いることが出来る。その際、本クロス共重合体の軟 質性、耐油性、対傷つき摩耗性は大きな利点である。
本発明のフィルムの具体的用途は、特に限定されないが、一般包装材料、容器とし て有用であり、包装用フィルム、ストレッチフィルム、シュリンクフィルム、各種マスキン グフィルム、保護フィルム、バッグ、バウチに使用することができる。
<テープ基材>
また、本発明のクロス共重合体、またはクロス共重合体を主として含む榭脂組成物 力もなるフィルムは各種テ一プ基材として用いることが出来る。ここにおいて、クロス共 重合体を主として含む榭脂組成物とは、上記く無機質充填材 >を除いたテープ基 材質量 (主に榭脂質量となる)に対して 50質量%以上含まれていることを示す。他に 榭脂組成物として配合されて良 ヽ榭脂は任意であるが、好ましくは上記「芳香族ビ- ル化合物系ポリマー」、「プロピレン系ポリマー」、及び Zまたは「ブロック共重合体系 ポリマー」である。これらは、テープ基材の弾性率、モジュラスの調整や耐熱性の付与 のために適宜配合される。
上記く無機質充填材 >は、テ—プ基材に難燃性を付与するために好適に添加さ れ、その配合量は公知の範囲で任意である力 概ねテープ基材全重量に対して 1質 量%以上 70質量%以下である。
テ—プ基材として用いる場合、本クロス共重合体の軟質性、耐油性、特徴ある引張 物性がメリットとなる。本クロス共重合体を含む組成物をテ—プ基材とし粘着テ―プを 成形するには、公知の粘着剤、添加剤、及び公知の成形方法が用いられる。このよう な粘着剤、添加剤、成形方法は例えば特許公開公報 2000— 111646号公報に記 載されている。本テ—プ基材力もなる粘着テ―プは、各種結束用テ—プ、封かん用 テープ、保護用テープ、固定用テープ、電子材料用の各種テープ、例えばダイシン グ用テープ、ノ ックグラインド用テープ、またはマスキング用テープ等のテープ基材と して好適に用いることが出来る。また各種ラベルとしても有用である。
[0062] 本発明のフィルムは必要に応じて、コロナ、オゾン、プラズマ等の表面処理、防曇剤 塗布、滑剤塗布、印刷等を実施することができる。本発明のフィルムは、必要に応じ て 1軸または 2軸等の延伸配向を行った延伸フィルムとして作製することが出来る。本 発明のフィルムは必要に応じて、熱、超音波、高周波等の手法による融着、溶剤等 による接着等の手法によりフィルム同士、あるいは他の熱可塑性榭脂等の材料と接 合することができる。
[0063] 更に、本発明のフィルムは、例えば 100 μ m以上の厚みを有する場合、真空成形、 圧縮成形、圧空成形等の熱成形等の手法により食品、電気製品等の包装用トレーと して成形することができる。
[0064] テープ基材には、必要に応じて本発明の効果を阻害しない範囲で、公知の着色剤 、抗酸化剤、紫外線吸収剤、滑剤、安定剤、その他の添加剤を配合することができる
[0065] 本発明において、テープ基材は、通常、エチレン—芳香族ビニルイ匕合物—芳香族 ポリェン共重合体、芳香族ビ-ルイ匕合物系榭脂及びォレフィン系榭脂と無機質充填 剤 (及び充填剤等の必要に応じて配合される材料)をドライブレンドし、当該混合物を バンバリ一ミキサー、ロール、押出機等を用いて混練し、当該混練物を圧縮成形、力 レンダー成形、射出成形、押出成形等の公知の成形方法によりフィルムに成形する こと〖こより得られる。
[0066] テープ基材の厚みは、粘着テープの用途によっても異なる力 特に制限されず、例 えば、 40〜500 μ m、好ましくは 70〜200 μ m、さらに好ましくは 80〜 160 μ mであ る。なお、テープ基材は単層の形態を有していてもよぐ又、複層の形態を有してい てもよい。 [0067] テープ基材に電子線を照射して架橋することにより、高温下に置いたときにテープ 基材が変形又は収縮するのを防止し、温度依存性を少なくすることができる。この際 の電子線の照射量は、 10〜150Mrad (メガ'ラド)の範囲がよい。好ましくは、 15〜2 5Mradの範囲がよい。照射量が lOMrad未満では、温度依存性が改善されない。一 方で、照射量が 150Mradを超えると、電子線によりテ—プ基材が劣化してしまい、後 加工での加工性に問題が生じる場合がある。電子線架橋を促進するための架橋剤を 添加してもよい。具体的な架橋剤としては、分子内に炭素-炭素二重結合を少なくと も 2個以上有する低分子量ィ匕合物やオリゴマーがよぐ例えばアタリレート系化合物、 ウレタンアタリレート系オリゴマー、エポキシアタリレート系オリゴマーである。
[0068] 本発明の粘着テープは、前記テープ基材の少なくとも片面に粘着剤層を設けて構 成される。粘着剤としては、ゴム系、ホットメルト系、アクリル系、ェマルジヨン系等の現 存する全ての粘着剤を適用することができる。又、これら粘着剤を望ましい性能にす るために、粘着付与剤、老化防止剤、硬化剤等を配合することができる。
[0069] ゴム系粘着剤のベースポリマーとしては、天然ゴム、再生ゴム、シリコーンゴム、イソ プレンゴム、スチレンブタジエンゴム、ポリイソプレン、 NBR、スチレン一イソプレン共 重合体、スチレン一イソプレン一ブタジエン共重合体などが好ましい。ゴム系粘着剤 には、必要に応じて、架橋剤、軟化剤、充填剤、難燃剤等を添加することができる。 具体的な例としては、架橋剤としてイソシァネート系架橋剤、軟化剤として液状ゴム、 充填剤として炭酸カルシウム、難燃剤として水酸ィ匕マグネシウムや赤リン等の無機難 燃剤等が挙げられる。
[0070] アクリル系粘着剤としては、(メタ)アクリル酸エステルの単独重合体又は共重合性 モノマーとの共重合体が挙げられる。(メタ)アクリル酸エステル又は共重合性モノマ 一としては、 (メタ)アクリル酸アルキルエステル(例えば、メチルエステル、ェチルエス テル、ブチルエステル、 2—ェチルへキシルエステル、ォクチルエステルなど)、 (メタ )アクリル酸グリシジルエステル、(メタ)アクリル酸、ィタコン酸、無水マレイン酸、(メタ )アクリル酸アミド、 (メタ)アクリル酸 N—ヒドロキシアミド、 (メタ)アクリル酸アルキルアミ ノアルキルエステル(例えば、ジメチルアミノエチルメタタリレート、 t—ブチルアミノエ チルメタタリレートなど)、酢酸ビュル、スチレン、アクリロニトリルなどが挙げられる。こ れらのうち、主モノマーとしては、通常、そのホモポリマー(単独重合体)のガラス転移 温度が 50°C以下となるアクリル酸アルキルエステルが好まし!/、。
[0071] 粘着性付与榭脂剤としては、軟化点、各成分との相溶性等を考慮して選択すること ができる。例として、テルペン榭脂、ロジン榭脂、水添ロジン榭脂、クマロン'インデン 榭脂、スチレン系榭脂、脂肪族系及び脂環族系などの石油榭脂及びそれらの水添 物、テルペン フエノール榭脂、キシレン系榭脂、その他の脂肪族炭化水素榭脂又 は芳香族炭化水素榭脂等を挙げることができる。粘着性付与樹脂の軟ィ匕点は 65〜 170°Cが好ましく、更には軟ィ匕点 65〜 130°Cの石油樹脂の脂環族飽和炭化水素榭 脂、軟化点 80〜130°Cのポリテルペン榭脂、軟化点 80〜130°Cの水添ロジンのダリ セリンエステルなどがより好ましい。これらは、単独、複合いずれの形態でも使用可能 である。
[0072] 老化防止剤は、ゴム系粘着剤がゴム分子中に不飽和二重結合を持っために酸素 や光の存在下で劣化しやすいためそれを改善するために用いる。老化防止剤として は、例えば、フエノール系老化防止剤、アミン系老化防止剤、ベンズイミダゾール系 老化防止剤、ジチォ力ルバミン酸塩系老化防止剤、リン系老化防止剤等の単独物又 は混合物を挙げることができる。
[0073] アクリル系粘着剤用硬化剤としては、例えば、イソシァネート系、エポキシ系、ァミン 系などの硬化剤を挙げることができ、これらの単独物のみならず混合物であってもよ い。イソシァネート系硬化剤としては、具体的には多価イソシァネートイ匕合物、例えば 、 2, 4 トリレンジイソシァネート、 2, 6 トリレンジイソシァネート、 1, 3 キシリレンジ イソシァネート、 1, 4ーキシレンジイソシァネート、ジフエ-ノレメタン 4, 4,ージイソシ ァネート、ジフエ-ルメタン 2, 4'ージイソシァネート、 3—メチルジフエ-ルメタンジ イソシァネート、へキサメチレンジイソシァネート、イソホロンジイソシァネート、ジシクロ へキシルメタン 4, 4'ージイソシァネート、ジシクロへキシルメタン 2, 4'ージイソ シァネート、リジンイソシァネート等である。
[0074] 粘着テープの粘着剤層を構成する粘着剤、粘着剤付与剤及び老化防止剤等のテ プ基材への塗工手段は、特に限定されるものではなぐ例えば、粘着剤、粘着剤 付与剤及び老化防止剤等カゝら成る粘着剤溶液を該テープ基材の片面に転写法によ つて塗布し、乾燥する方法がある。
粘着剤層の厚み (乾燥後の厚み)は、粘着性や取扱性を損なわな 、範囲で適宜選 択できるが、粘着剤層の厚みは、粘着テープの用途によっても異なるが、 5〜: LOO m、好ましくは 10〜50 /ζ πιである。これより薄いと粘着力及び卷戻力が低下すること がある。一方これより厚くなると、塗工性能が悪くなることがある。
粘着テープ、結束テープ、封かんテープのテープ基材は、以下の条件を満たすこ とが好ましい。本発明のクロス共重合体は、上記方法でテ―プをした場合、以下の条 件を満たすことができ、粘着テープ、結束テープ、封かんテープのテープ基材として 好適に用いることが出来る。
テ プ基材の条件としては、
(1)「表面状態」はきれいで平滑面であること、
(2) MD方向の室温での初期弾性率(MPa)が 50MPa以上 700MPa未満であるこ と、
(3) MD方向の引張破断点伸びが 100%以上〜 500%未満であること、
(4) MD方向の破断点強度(MPa)が lOMPa以上、 70MPa未満であること、
(5) MD方向の 10%モジュラス(10%伸びでの引張応力)が 2MPa以上〜 15MPa 未満であること、
(6) MD方向のモジュラス比(100%モジュラス Z10%モジュラス)が 1. 6以上、 5未 満であること、
(7)「加熱収縮」、すなわち、長さ 100mm四方のテープ基材を 110°Cの雰囲気下で 10分静置後、温度 23± 2°C、湿度 50± 5%RHに設定された評価試験室内に 20分 以上静置した後の、 MD方向の収縮率が 10%未満であること、
(8)「手切れ性」、すなわち、テープを手で切断した際に切り口がわずかに伸びる力 きれいに切れること、
(9)「ブロッキング性」、すなわち、テープ基材を 50mmX 100mmの形状にカットし、 50mm X 50mmの部分を 2枚重ねて 50°Cで 24時間、 15kgの荷重をかけて放置し、 その後テープ基材のはがれ具合が、付着乃至圧着していても簡単に剥がせること。 なお上記 MD方向とはテープ長手方向を示す。 <動的加硫体 >
本発明のクロス共重合体は他のポリマーと共に動的加流処理により熱可塑性エラス トマ一組成物にすることができる。具体的には本発明のクロス共重合体が 50質量% 以上 95質量%以下、好ましくは 60質量%以上 95質量%以下、その他のポリマーを 5質量%以上 50質量%以下、好ましくは 5質量%以上 40質量%以下含み、動的加 流処理して得られる熱可塑性エラストマ—である。ここで、その他のポリマーとは、前 記「芳香族ビ-ルイ匕合物系ポリマー」、「プロピレン系ポリマー」、「ブロック共重合体 系ポリマー」、または「その他の榭脂、エラストマ一、ゴム」である。
更に好適には本発明のクロス共重合体を 50質量%以上 95質量%以下、結晶性プ ロピレン系ポリマーを 5質量%以上 50質量%以下含み、動的加流処理して得られる 熱可塑性エラストマ一組成物である。ここで、結晶性プロピレン系ポリマーとは上記プ ロピレン系ポリマーのうち、ァイソタクティックまたはシンジォタクティックの立体規則性 を有し、結晶融点が 100°C以上 170°C以下、好ましくは 120°C以上 170°C以下であ るポリマーである。本結晶性プロピレン系ポリマーは単独で或いは組み合わせて用い ることがでさる。
本発明の熱可塑性エラストマ―組成物は ( A)本発明のクロス共重合体と (B)その 他のポリマ—(結晶性プロピレン系ポリマ—等)からなるブレンド物を、有機過酸化物 ヽる動的加硫処理 (動的に熱処理する)す ることにより得ることが出来る。動的加硫処理は各種配合物を溶融状態で、架橋剤が 反応する条件下で強力に混練させることにより分散と架橋を同時に起させる手法であ り、 A. Y. Coranらの文献(Rub. Chem. and Technol. vol. 53, 141 (1980) ) に詳細に記されており広く知られている。動的加硫はバンバリ一ミキサー、加圧式- ーダ一の様な密閉式混練機、一軸又は二軸押出機等を用いて行われる。混練温度 は通常 130〜300°C、好ましくは 150〜250°Cである。混練時間は通常 1〜30分で ある。
動的加硫処理に用いられる有機過酸ィ匕物としては、具体的にはジキユミルバーオ キサイド、 2, 5—ジメチルー 2, 5—ジ(tert—ブチルペルォキシ)一へキサン、 2, 5— ジメチルー 2, 5—ジ(tert—ブチルペルォキシ)一へキシンー3、ジ—tert—ブチル ペルォキシド等が挙げられる。本発明において、有機過酸ィ匕物は (A)本発明のクロ ス共重合体 100質量部に対し好ましくは 0. 1〜5質量部、更に好ましくは 0. 5〜3質 量部の割合で用いられる。又、有機過酸ィ匕物による動的加硫処理の際にマレイミド 化合物の様な過酸化物架橋用助剤、ジビニルベンゼン、トリメチロールプロパントリメ タクリレートの様な多官能性ビニルモノマーを配合することが出来る。
また、本動的加流処理の際に、前記ポリマー成分以外に、前記「可塑剤」や「無機 質充填材」を加えることも可能である。「可塑剤」は好ましくはポリマ-成分 100質量 部に対し 1〜20質量部、「無機質充填材」は好ましくはポリマ-成分 100質量部に対 し 1〜200質量部の割合で用いられる。
このようにして得られる熱可塑性エラストマ一組成物は、結晶性プロピレン系ポリマ 一の高い耐熱性と本発明のクロス共重合体の軟質性、耐油性、力学物性等の特徴 をあわせ有することができる。本特徴の発現には、本発明のクロス共重合体の特に軟 質性が寄与している。また、本発明のクロス共重合体にポリエチレン結晶性が実質的 にな 、ことが結晶性プロピレンポリマ との相溶性の向上に寄与して 、ると考えられ る。
<石油樹脂 Z水添石油榭脂との組成物 >
本発明のクロス共重合体に、石油榭脂及び Zまたは水添石油榭脂を添加し榭脂組 成物とすることができる。その配合は前記の通りである力 好ましくは本発明のクロス 共重合体を 70質量%以上 99質量%以下、石油榭脂及び Zまたは水添石油榭脂を 1質量%以上 30質量%以下の範囲、特に好ましくは本発明のクロス共重合体を 80 質量%以上 99質量%以下、水添石油榭脂を 1質量%以上 20質量%以下の範囲で ある。
上記配合範囲の場合、クロス共重合体本来の力学特性を損なわずに成形加工性 ( MFR値で規定される)を幅広く制御でき、成形加工法にあった MFRに調整できる。 クロス共重合体よりも十分に低分子量である石油榭脂及び Zまたは水添石油樹脂の 配合量は多くなるほど本榭脂組成物の MFRを増大させる。 MFRの調整は、配合量 を上記の範囲で調整することで当業者らには容易に実施できる。
さらに、石油榭脂及び Zまたは水添石油榭脂を本範囲で配合することで、クロス共 重合体の透明性が著しく向上する効果がある。榭脂組成物の着色、透明性を考慮す ると、無色透明性が高い水添石油樹脂が本目的には好ましい。石油榭脂及び Zまた は水添石油榭脂は本範囲より少ない場合、上記効果が十分ではなぐ多い場合は榭 脂組成物に石油榭脂及び zまたは水添石油榭脂に由来する粘着性が発現しやすく なり用途によっては好ましくない。もちろん粘着性を要求される用途、例えば粘着剤、 ヒートシールフィルム等の用途の場合には上記範囲より多く配合することもできる。
[0078] <ブロック共重合体との組成物 >
本発明のクロス共重合体は特にその軟質性に優れるため、上記ブロック共重合体、 特に水素添加されたブロック共重合体と組成物にすることで、軟質性および力学物 性を維持したまま耐油性、対傷つき摩耗性ゃ塩ビ類似の力学物性を付与することが 可能となる。本組成物にはさらに耐熱性を付与するために結晶性ポリオレフイン (アイ ソタクティックまたはシンジォタクティックポリプロピレン等)を配合してもよ 、。
[0079] <発泡体>
また、本発明のクロス共重合体は、発泡体 (フォーム材)として好適に使用できる。フ オームの製造方法は公知の製造方法を用いることができる。発泡体の製造方法に特 に制限はないが、無機系、有機系の化学発泡剤、物理発泡剤等の発泡剤を添加す る方法等公知の技術を例示することができる。一般的には、本発明のクロス共重合体 と発泡剤 (blowing agent)、必要に応じて架橋剤、その他の添加剤を加熱溶融し、 押出しながら加熱圧縮し、その後に圧力を減じて発泡、フォーム化する。発泡剤、必 要に応じてラジカル架橋剤の添カ卩は、ポリマーの加熱前のドライブレンドでも加熱溶 融後でもよい。これらの加熱ブレンドには、公知の方法、例えば押出機、混合機、ま たはプレンダ一等で行うことができる。架橋は、上記架橋剤の添加による方法以外に 、放射線 (電子線、ガンマ線等)による方法もある。発泡体に関する公知の技術は例 えば"プラスチックフォームハンドブック(日刊工業新聞社、 1973年発行) "等に記載 されている。
また、 WOOOZ37517号公報ゃ特表 2001 - 514275号公報記載の方法は発泡 体の作製に好ましく採用することが出来る。本発明のクロス共重合体は、結晶性が一 定値以下であり、したがって軟質性、風合いに優れる発泡体が容易に得られるという 特徴がある。本発明の発泡体を製造するに当たっては、上記「芳香族ビニル化合物 系ポリマー」、「プロピレン系ポリマー」、「ブロック共重合体系ポリマー」と本発明のクロ ス共重合体との組成物を用いてもよ 、。
本発明の発泡体には必要に応じて、分散剤、軟化剤、粘着防止剤、フィラー、顔料 等を添加することができる。
本発明の発泡体を製造する方法にとくに制限は無ぐガス注入による物理発泡法、 水による発泡法、化学的発泡剤による化学発泡法等を例示することが出来る。またビ ーズ等に発泡剤を含ませ、後に発泡させることも可能である。
得られた発泡体のシート、フィルム等の成形法としては押出成形、射出成形、プロ 一成形等特に制限はなぐさらにシートフィルム等は熱成形、圧縮成形等で容器等に 成形することが可能である。また、エンボス力卩ェ、印刷等を行うこともできる。本クロス 共重合体は優れた印刷性を有する特徴がある。
本発明の発泡体は、床材、壁材、壁紙等の建築材料、自動車用内外装品、電気材 部品、ガスケット、緩衝材、食品等の容器として用いることができる。
本発明のクロス共重合体を含む組成物、架橋体、発泡体は、フィルム、シート、チュ —ブ、容器等として有用である。特に、建築材料、壁材、壁紙、床材として好適に用 いることができる。このような建築材料、壁材、壁紙、床材については、例えば、 W09 6/04419、 EP0661345, WO98/10160等【こ記載されて!ヽる。これらの用途【こ 用いる場合、高い力学的強度と、伸び等の力学物性や物性を維持したままフィラー を高い含量で充填できる点は、これら用途にもちいる場合、特に難燃性を付与できる ことを意味し、価値は大きい。
く電線被覆材〉
本発明記載のクロス共重合体及び榭脂組成物は、各種電線、ケーブル被覆材とし て好適に用いることができる。特にフイラ一及びまたは公知の難燃剤との組成物は、 軟質性、力学物性、耐摩耗性、及び耐油性に優れこのような用途には好適である。ま た、耐熱性を向上させるために、各種の公知の架橋法、例えば架橋剤による化学架 橋、電子線等による架橋法を行うことも可能である。
実施例 [0081] 以下、実施例により、本発明を説明するが、本発明は、以下の実施例に限定して解 釈されるものではない。
[0082] 実施例で得られた共重合体の分析は以下の手段によって実施した。
[0083] 13C— NMR ^ベクトルは、 日本電子社製 α—500を使用し、重クロ口ホルム溶媒 または重 1, 1, 2, 2—テトラクロロェタン溶媒を用い、 TMS (テトラメチルシラン)を基 準として測定した。ここでいう TMSを基準とした測定は以下のような測定である。先ず TMSを基準として重 1, 1, 2, 2—テトラクロロェタンの 3重線 13C— NMRピークの中 心ピークのシフト値を決めた。次いで共重合体を重 1, 1, 2, 2—テトラクロロェタンに 溶解して 13C— NMRを測定し、各ピークシフト値を、重 1, 1, 2, 2—テトラクロ口エタ ンの 3重線中心ピークを基準として算出した。重 1, 1, 2, 2—テトラクロロェタンの 3重 線中心ピークのシフト値は 73. 89ppmであった。測定は、これら溶媒に対し、ポリマ 一を 3質量 Z体積%溶解して行った。
ピーク面積の定量を行う 13C— NMRスペクトル測定は、 NOEを消去させたプロト ンゲートデカップリング法により、パルス幅は 45° パルスを用い、繰り返し時間 5秒を 標準として行った。
[0084] 共重合体中のスチレンユニット含量の決定は、 1H— NMRで行い、機器は日本電 子社製0;—500及び81^1;0^^社製八じー250を用ぃた。重1, 1, 2, 2—テトラク ロロェタンに溶解し、測定は、 80〜100°Cで行った。 TMSを基準としてフエ-ル基プ 口トン由来のピーク(6. 5〜7. 5ppm)とアルキル基由来のプロトンピーク(0. 8〜3pp m)の面積強度比較で行った。
[0085] 分子量は、 GPC (ゲルパーミエーシヨンクロマトグラフィー)を用いて標準ポリスチレ ン換算の重量平均分子量を求めた。 THFを溶媒とし、東ソ一社製 HLC— 8020を用 い測定した。
[0086] DSC測定は、セイコー電子社製 DSC200を用い、窒素気流下で行った。すなわち 榭脂組成物 lOmgを用い、昇温速度 10°CZ分で 50°Cから 240°Cまで DSC測定 を行い、融点、結晶融解熱及びガラス転移点を求めた。 1回目の測定後液体窒素で 急冷した後に行う 2度目の測定は行わな力つた。
なお、物性評価用の試料は加熱プレス法 (温度 180°C、時間 3分間、圧力 50kgZc m2)により成形した厚さ 1. Ommのシートを用いた。
[0087] <引張試験 >
JIS K— 6251に準拠し、シートを 2号 1Z2号型テストピース形状にカットし、島津 製作所社製 AGS— 100D型引張試験機を用い、引張速度 500mmZminにて測定 した。
[0088] <硬度 >
硬度 ίお IS K— 7215プラスチックのデュロメーター硬さ試験法に準じてタイプ Aの デュロメーター硬度を求めた。この硬度は瞬間値である。
[0089] <全光線透過率、ヘイズ >
透明度は加熱プレス法 (温度 200°C、時間 4分間、圧力 50kgZcm2G)により lm m厚にシートを成形し JIS K— 7105プラスチックの光学的特性試験方法に準じて日 本電色工業社製濁度計 NDH2000を用いて全光線透過率およびヘイズを測定した
[0090] <耐油性試験 1 >
JISK7114に従い、耐油性試験を実施した。厚さ 3mm円形試験片を 23°Cで試験 油(エンジンオイル、オリ—ブオイルへキサン)に浸漬し 14日後の重量変化率を測定 した。
重量変化率(%) = ιοοχ (浸漬試験後の重量ー浸漬試験前の重量) Z浸漬試験 前の重量
変化率が 0%の場合、重量変化がないことを示す。オイル膨潤による成形体の変形 を考慮した場合、本重量変化率は ± 10%未満であることが好ましい。
[0091] <耐油性試験 2>
JIS2号小型 1Z2ダンベルを同様に 23°Cで試験油(エンジンオイル、ォリーブオイ ル)に浸漬し 14日後取り出し、引張試験を行い、破断強度を測定し、破断強度の保 持率を以下の式により求めた。
破断強度保持率 (%) = 100 X浸漬試験後の破断強度 Z浸漬試験前の破断強度 保持率が 100%の場合、破断強度が全く変化しないことを示す。
本破断強度保持率は、概ね 70%以上、 150%以下であることが好ましい。 [0092] <耐熱変形試験 >
JIS 2号小型 1 Z2ダンベルを所定のォーブン内に吊し、所定の温度で 1時間加熱 処理し、処理前とダンベル縦方向、幅方向で長さを測定し、以下の式により伸び Z収 縮変形率を求めた。本伸び Z収縮変形率が縦、または幅方向すべてが 5%以内に 収まる最高温度を耐熱変形温度とした。
伸び変形率 = 100 X (試験後の長さ 試験前の長さ) Z試験前の長さ 収縮変形率 = 100 X (試験前の長さ 試験後の長さ) Z試験前の長さ
[0093] <耐傷つき性試験 >
スクラッチテスタ一にて加重 1Nでスクラッチ後、表面粗さ測定器にて評価を行い、 下記 Ra値を求めた。
•Ra (算術平均粗さ):平均線力も測定曲線までの偏差 Yi ( μ m)の絶対値を合計 した値
Ra= l/N∑ I Yi I
[0094] <ジビュルベンゼン >
以下の実施例 1、 3〜6、 9〜 12で用いたメタジビュルベンゼンは、旭化成ファイン ケム社製のメタジビニルベンゼン (異性体純度 97%以上)である。この場合の異性体 純度とは、オルト、メタ、パラの各種ジビュルベンゼン異性体に対するメタジビュルべ ンゼンの割合である。実施例 7で用いたパラジビュルベンゼンは、旭化成ファインケ ム社製のパラジビニルベンゼン (異性体純度 95%以上)である。
実施例 2、 8で用いたジビュルベンゼンは、アルドリッチ社製(ジビュルベンゼンとし ての純度 80%、メタ体、ノ ラ体混合物のメタ体:パラ体質量比は 70 : 30)である。
[0095] <ゲル分>
ASTM D— 2765— 84に従い、クロス共重合体のゲル分を測定した。すなわち、 精秤した 1. Ogポリマー(直径約 lmm、長さ約 3mmの成型物)を、 100メッシュのステ ンレス製網袋に包み、精秤した。これを沸騰キシレン中で約 5時間抽出したのちに網 袋を回収し、真空中 90°Cで 10時間以上乾燥した。十分に冷却後、網袋を精秤し、 以下の式により、ポリマーゲル量を算出した。
ゲル量 =網袋に残留したポリマーの質量 Zはじめのポリマー質量 X 100 <触媒 (遷移金属化合物) >
以下の実施例 1〜11では、触媒 (遷移金属化合物)として、 rac (ラセミ体) ジメチ ルメチレンビス (4, 5 べンゾー 1 インデュル)ジルコニウムジクロライド(式 7)を用 いた。
[化 7]
実施例 12では、触媒 (遷移金属化合物)として、 rac ジメチルメチレン (4, 5 べ ンゾー 1 インデュル)(1 インデュル)ジルコニウムジクロライド(式 8)を用いた。
[化 8]
実施例 1
<クロス共重合体の合成 >
触媒として rac -ジメチルメチレンビス (4, 5 -ベンゾ一 1—インデュル)ジルコユウ ムジクロライドを用い、以下のように実施した。
容量 10L、攪拌機及び加熱冷却用ジャケット付のオートクレープを用いて重合を行 つた o
シクロへキサン 4200ml、スチレン 600ml及び旭化成ファインケム社製のメタジビ- ルベンゼン (メタジビュルベンゼンとして 7mmol)を仕込み、内温 70°Cにて加熱攪拌 した。乾燥窒素ガスを約 200Lパブリングして系内及び重合液の水分をパージした。 次いで、トリイソブチルアルミニウム 8. 4mmol、メチルアルモキサン(東ソーァクゾ社 製、 PMAO— 3A)をAl基準で12. 6mmol (表中では MAOと記載)加え、ただちに エチレンを導入し、圧力 0. 3MPa (2. 0KgZcm2G)で安定した後に、オートクレー ブ上に設置した触媒タンクから、 rac ジメチルメチレンビス(4, 5 べンゾー1 イン デュル)ジルコニウムジクロライドを 21 ;ζ πιο1、トリイソブチルアルミニウム 0. 84mmol を溶かしたトルエン溶液約 50mlをオートクレーブ中に加えた。内温を 70°C、圧力を 0 . 3MPaに維持しながら 1. 4時間重合を実施した (配位重合工程)。この段階でのェ チレンの消費量は標準状態で約 150Lであった。重合液の少量 (数十 ml)をサンプリ ングし、メタノールに混合してポリマーを析出させることにより配位重合工程のポリマ 一サンプルを得た。本サンプリング液より、配位重合工程でのポリマー収量、組成、 分子量等を求めた。
重合缶へのエチレンの供給を停止し、急速にエチレンを放圧した。次いで、 Sec— ブチルリチウム 27. 3mmolを触媒タンクカゝら窒素ガスに同伴させて重合缶内に導入 した。直ちにァ-オン重合が開始し、内温は 70°C力も一時 80°Cまで上昇した。その まま 30分間温度を 70〜80°Cに維持し、攪拌を継続し重合を続けた (ァ-オン重合 工程)。
重合終了後、得られたポリマー液を、激しく攪拌した大量のメタノール液中に少量 ずつ投入して、ポリマーを回収した。このポリマーを、室温で 1昼夜風乾した後に 80 °C、真空中、質量変化が認められなくなるまで乾燥した。 771gのポリマー(クロス共 重合体)を得た。
[0098] 実施例 2
溶媒としてトルエンを用い、実施例 1と同様の手順で表 1記載の条件で重合を行つ た。
[0099] 実施例 3
溶媒としてシクロへキサンを用い、配位重合工程の重合温度を 80°Cとし、実施例 1 と同様の手順で表 1記載の条件で重合を行った。
[0100] 実施例 4〜11
溶媒としてシクロへキサンを用い、配位重合工程の重合温度を 90°Cとし、実施例 1 と同様の手順で表 1記載の条件で重合を行った。
実施例 12
遷移金属化合物(触媒)として、 rac ジメチルメチレンビス (4, 5 べンゾー 1ーィ ンデニル)ジルコニウムジクロライドを用い、表 1記載の条件で重合を行った。
[0101] 比較例 1
実施例 4とほぼ同じ条件下、ただしジビニルベンゼンを用いずに重合を行った。
[0102] 比較例 2
配位重合工程で得られるエチレン スチレンージビュルベンゼン共重合体の組成 力 スチレンユニット含量 8モル0 /0と、本発明のクロス共重合体の組成範囲外であるク ロス共重合体を合成するためにエチレン分圧を表 1に示すように変更して重合を行つ た。
重合条件は表 1に示す。
[0103] [表 1]
(iφ¾φ圧!?回c»υX^τ¾Lゝ 8Π4、〜 1 ϊ,^0104
1) 2) DVB (ジビニルベンゼン)
CyH:シクロへキサン m:旭化成ファインケム社製メタジビニルベンゼン
Tol:トルエン m+P:アルドリッチ社製ジビニルベンゼン、メタパラ混合品
P:旭化成ファインケム社製/ ラジビニルベンゼン
合工程で得られたポリマーのジビュルベンゼンユニット含量は、ガスクロマトグラフィ 分析により求めた重合液中の未反応ジビュルベンゼン量と重合に用いたジビニルべ ンゼン量の差から求めた。
また、表中に US6096849号公報に従って、本実施例配位重合工程で得られた主 鎖エチレン スチレン ジビュルベンゼン共重合体の TUS/DOU値を示した。ここ で、 TUSは、共重合体に含まれるトータルのビニル基含量で、芳香族ポリェン (ジビ -ルベンゼン)ユニットに由来するビュル基とポリマ 末端のビュル基の含量の総和 であり、 1H— NMR測定により求めた。また DOU値は主鎖エチレン スチレンージ ビュルベンゼン共重合体に含まれるジビュルベンゼンユニット含量である。
本発明の配位重合工程で得られるォレフィン一芳香族ビ-ルイ匕合物一芳香族ポリ ェン共重合体(エチレン スチレンージビュルベンゼン共重合体)においては、 TUS ZDOU値は 1. 1より高い値をとり、概ね 1. 2以上 10以下、好ましくは 1. 2以上 3以 下の値をとる。 TUSZDOU値がより大きい場合、芳香族ポリェンユニット含量が少な すぎ、本発明のクロス共重合体としての機能が失われてしまう場合がある。また、 TU SZDOU値が 1. 1以下の場合、芳香族ポリェンユニット含量が多すぎて主鎖に由来 する機能が失われやすくなり、またクロス共重合体の成形加工性が悪ィ匕してしまった り、クロス共重合体中にゲル分が生成してしまう恐れがある。
[表 2]
表 2
-※結晶融解熱 1 OJ/g以上の融点ピ-クは観察されなかった。
[0107] 表 4には、各実施例、比較例で得られたポリマーの硬度、透明性、力学物性、 MFR 、ゲル分の測定結果を示す。
表 4には、比較例として、一般的な軟質塩ビ (比較例 3 : A硬度 88を使用、及び比較 例 4: A硬度 75を使用)を用いた結果、及び比較例 5: SEBS (H1053)の結果も記載 した。
また、ブラベンダ—プラスチコ—ダ—(ブラベンダ—社製 PL2000型)を使用し、 SE BS (H1053)と iPP (J226E)を 75 25の質量比で 200°C5分間混練して得たサンプ ル (比較例 6)を用いて得た結果も記載した。
[0108] [表 4] 表 4
[0109] 本実施例の配位重合工程で得られたエチレン スチレンージビュルベンゼン共重 合体は、スチレンユニット含量 15モル%以上 40モル%以下、ジビュルベンゼンュ- ット含量 0. 05モル%以上 0. 2モル%以下の組成を有し、本実施例の配位重合工程 で得られたエチレン スチレンージビュルベンゼン共重合体及びァ-オン重合工程 を経て最終的に得られたクロス共重合体の DSCによる結晶融解熱はいずれも 30JZ g以下の値を示した。
[0110] 本実施例の配位重合工程で得られたポリマーの質量割合はァ-オン重合工程を 経て最終的に得られるクロス共重合体質量に対して 40質量%以上 90質量%以下で あった。また得られたクロス共重合体の A硬度は、 50以上 85以下であった。
配位重合工程にぉ ヽて得られたポリマ の重量平均分子量が 15万以下である場 合、得られるクロス共重合体は透明であり、厚さ lmmのシートのヘイズが 25%以下、 全光線透過率は 75%以上の値を示す。さら〖こ、配位重合工程で得られたエチレン スチレンージビュルベンゼン共重合体の組成がスチレンユニット含量 20モル%以 上 40モル%以下の条件を満たす場合にはクロス共重合体はより透明であり、厚さ lm mのシートのヘイズが 20%以下、全光線透過率は 80%以上の値を示した。
[0111] 本実施例で得られたすべてのクロス共重合体は、いずれも 300%以上の伸びと 10 MPa以上の破断強度を示し、軟質榭脂として十分な力学物性を有した。他方、比較 例 1で得られたポリマー(ジビュルベンゼン不使用)は、力学物性が非常に悪ぐ不透 明である。実施例 4で得られたポリマ—(クロス共重合体)と比較例 1で得られたポリマ 一の TEM写真を図 1、 2に示す。クロス共重合体は、 30〜50nm程度の比較的均一 なナノスケ—ルの相分離構造を有しており、これは、異種のポリマ—力も構成される ブロック鎖を有する比較的均一なポリマ 、すなわちクロス共重合体の存在を示して いる。他方ジビュルベンゼンを使用しない比較例のポリマーではミクロンスケールの 相分離構造を示し、本構造力 互いに非相溶であるエチレン スチレン共重合体と ポリスチレンの組成物であると結論できる。
[0112] また比較例 2に示すように、配位重合工程で得られたエチレン スチレン ジビ- ルベンゼン共重合体のスチレンユニット含量が 15モル%未満の場合には、結晶化度 が高くなり、軟質性が不足してしまう。さらには透明性も失われる場合がある。 [0113] 本発明のクロス共重合体は、従来のエチレン スチレン共重合体や他の軟質榭脂 と比較し、より軟質塩ビに近い引張特性を有することが解る。本特性は初期引張弾性 率(MPa)に対する 100%伸びの時点での応力(MPa)の比 Rm値(= 100%伸びの 時点での応力 Z初期引張弾性率)で示すことができる。
一般的な軟質塩ビの場合、 Rm値は、 0. 15〜0. 5程度の範囲となる。本実施例で 得られたクロス共重合体の Rm値は、ほぼ軟質塩ビと同じ範囲の値を取ることが解り、 軟質塩ビ類似の引張特性、すなわち風合いを有することが解る。これに対し、水添ス チレン ブタジエンブロック共重合体(SEBS)や SEBSとァイソタクティック PP (iPP) の組成物の場合、 S— Sカーブは軟質塩ビと異なり、 Rm値も概ね 0. 12以下となり、 軟質塩ビとは異なる引張特性を示すことが解る。
さらに本実施例のクロス共重合体にはゲル分は含まれていないことが解る。
[0114] 表 5には耐油性試験結果、耐熱変形試験結果、耐傷付き性試験結果を示す。
[0115] [表 5]
[0116] 本発明のクロス共重合体 (実施例 2 4)は、鉱物油(エンジンオイル)や植物油(オリ ーブオイル)浸漬しても膨潤による重量増加が著しく少なぐ力学物性の変化 (低下) も少なく、非常に良好な耐油性を示すことが解る。これに対し、 SEBS (比較例 5)や S EBSZiPPの組成物(比較例 6)はいずれも耐油性に劣ることが解る。
[0117] 本実施例のクロス共重合体は、耐熱性 (耐熱変形性)も、軟質塩ビ並に優れている ことが解る。さらに耐傷つき性も、軟質塩ビほどではないが、 SEBSや SEBS/iPPの 組成物以上に優れていることが解った。
[0118] <動的加流体 >
以下のようにして、動的加流処理を行い、熱可塑性エラストマ一組成物を得た。 ブラベンダ—プラスチコ—ダ—(ブラベンダ—社製 PL2000型)を使用し、本実施例 で得られたクロス共重合体とァイソタクテイクポリプロピレン (ランダムタイプ J226E:三 井化学社製)を架橋剤 (パ—タミル D)存在下、表 6に示す配合 (質量部)で 200°C、 6
Orpm、 3分間混練しサンプルを作製した。
実施例 A クロス共重合体として実施例 3で得られたポリマ を使用。
実施例 B クロス共重合体として実施例 4で得られたポリマーを使用。
実施例 C クロス共重合体として実施例 4で得られたポリマ を使用。
実施例 D クロス共重合体として実施例 6で得られたポリマーを使用。
比較例 6 上記比較例 6と同じ、 SEBS (H1053)とァイソタクティック PP (J226E)の 組成物。同様にブラベンダ—プラスチコ—ダ—にて混練し、組成物とした。質量比 75
: 25。
比較例 7 巿販 EPRとァイソタクティック PP (J226E)の組成物。同様にブラベンダ —プラスチコ—ダ—にて混練し、組成物とした。質量比 75 : 25。
比較例 8 市販のプロピレン ZEPDM系部分架橋コンパウンド。 A硬度 80。 比較例 9 市販のプロピレン ZSEPS系部分架橋コンパウンド。 A硬度 80。 物性評価結果を表 6に示す。
[0119] [表 6]
CO
実施例 A、 B、 C、 Dの熱可塑性エラストマ一は、良好な耐熱性、力学物性と優れた 耐油性を示すことが解る。
<クロス共重合体と水添石油樹脂の糸且成物〉
以下のようにして、クロス共重合体と水添石油樹脂の樹脂糸且成物を得た。 ブラベンダ—プラスチコ—ダ—(ブラベンダ—社製 PL2000型)を使用し、本実施例 で得られたクロス共重合体と水添石油榭脂アルコン P— 100 (荒川化学社製)を表 7 に示す配合 (質量部)で 200°C 60rpm 3分間混練しサンプルを作製した。
実施例 E クロス共重合体として実施例 3で得られたポリマーを使用。
実施例 F クロス共重合体として実施例 9で得られたポリマーを使用。
実施例 G クロス共重合体として実施例 11で得られたポリマ一を使用。
物性評価結果を表 7に示す。
[表 7]
( m^ )
摩^ ¾ 表 4に示されるクロス共重合体単独の MFRと比較し、水添石油榭脂を配合すること で力学物性を大幅に変更することなく MFRを増大させることができる。さらに組成物 の透明性は単独のクロス共重合体と比較しそれぞれ大幅に向上していることが解る。 実施例 13
<クロス共重合体の合成 >
触媒として rac -ジメチルメチレンビス (4, 5 -ベンゾ一 1—インデュル)ジルコユウ ムジクロライドを用い、以下のように実施した。
容量 50L、攪拌機及び加熱冷却用ジャケット付のオートクレープを用いて重合を行 つた o
シクロへキサン 26. 5L、スチレン 3. 5L及びアルドリッチ社製ジビュルベンゼン (メタ 、パラ混合品、ジビニルベンゼンとして 6 lmmol)を仕込み、内温 60°Cに調整し攪拌 (220rpm)した。乾燥窒素ガスを 30LZ分の流量で 60分、液中にパブリングして系 内及び重合液の水分をパージした。次いで、トリイソブチルアルミニウム 50mmol、メ チルアルモキサン(東ソーァクゾ社製、 MMAO 3AZへキサン溶液)を A1基準で 1 OOmmol (表中では MAOと記載)カ卩え、ただちにエチレンで系内をパージした。十分 にパージした後、内温を 75°Cに昇温してエチレンを導入し、圧力 0. 4MPaG (4. OK gZcm2G)で安定した後に、オートクレープ上に設置した触媒タンクから、 rac ジメ チノレメチレンビス (4, 5 ベンゾ一 1—インデニノレ)ジルコニウムジクロライドを 60 μ m ol、トリイソブチルアルミニウム lmmolを溶かしたトルエン溶液約 50mlをオートクレー ブ中にカ卩えた。さらに、内温を 75°C、圧力を 0. 4MPaGに維持しながら 100分間重 合を実施した (配位重合工程)。この段階でのエチレンの消費量は標準状態で約 97 0Lであった。重合液の少量 (数十 ml)をサンプリングし、メタノールに混合してポリマ 一を析出させることにより配位重合工程のポリマーサンプルを得た。本サンプリング液 より、配位重合工程でのポリマー収量、組成、分子量等を求めた。
重合缶へのエチレンの供給を停止し、急速にエチレンを放圧すると共に内温を 60 °Cまで冷却した。次いで、 Sec ブチルリチウム 200mmolを触媒タンクから窒素ガス に同伴させて重合缶内に導入した。直ちにァ-オン重合が開始し、内温は 60°Cから 一時 75°Cまで上昇した。そのまま 30分間温度を 70〜80°Cに維持し、攪拌を継続し 重合を続けた (ァ-オン重合工程)。
重合終了後、得られたポリマー液を、分散剤(プル口ニック)とカリミヨウバンを含む激 しく攪拌した加熱水中にギアポンプにて少しずつ投入し、溶媒を除去し、加熱水中に 分散したポリマ一クラム(大きさ約 lcm)を得た。このポリマークラムを、遠心脱水し、 室温で 1昼夜風乾した後に 60°C、真空中、質量変化が認められなくなるまで乾燥し た。その結果、約 4. 3kgのポリマー(クロス共重合体)を得た。
実施例 14
実施例 13と同様に、ただしエチレン圧を 3. OMPaGに変更して重合を実施した。 約 180分後にエチレン消費量が 950Lとなったので、エチレンの供給を停止し、実施 例 13と同様にァ-オン重合工程、ポリマ—回収を実施した。
その結果、約 4. 3kgのポリマー(クロス共重合体)を得た。
実施例 15
実施例 1と同じ装置、方法を用い、表 8に示す条件下重合を実施した。
重合条件及びポリマー分析結果を表 8及び表 9に示す。
[表 8]
表 8
〔 S〕09
1 ) 2) DVB (ジビニルベンゼン) 3)収量
CyH :シクロへキサン アルドリッチ社製ジビニルベンゼン、メタパラ混合品 配位重合工程終了時のサンプリング液の重量、分析結果から箕出
添 ¾p..s蟻s~s¾もT※一 -Slr/「:::-。
<クロス共重合体と水添ブロック共重合体の組成物 >
以下のようにして、クロス共重合体と水添ブロック共重合体榭脂の樹脂組成物を得 た。
ブラベンダ—プラスチコ—ダ—(ブラベンダ—社製 PL2000型)を使用し、本実施例 で得られたクロス共重合体と SEBS (タフテック H1053)を表 8に示す配合 (質量部) で 200°C 60rpm 3分間混練しサンプルを作製した。
実施例 H クロス共重合体として実施例 14で得られたポリマ を使用。 比較例 10 クロス共重合体の代わりに水添 SBRを使用。
物性評価結果を表 10に示す。
[0127] [表 10]
[0128] 本発明のクロス共重合体と SEBSの榭脂組成物は、原料の SEBSと同等の伸び、 破断点強度を維持し、また耐油性も向上している。これに対し SEBSと水添 SBRから なる榭脂組成物は、原料の SEBSと比較し、伸び、破断点強度共に低下しており、耐 油性も良くない。
[0129] くフィルム、テープ基材>
本発明のクロス共重合体をフィルム機基材ゃテ—プ基材として評価するために、二 本口一ル及びカレンダ一成形機を用いフィルム作製と物性評価を行った。
[0130] 二本ロール成形機によるフィルム試作は、西村マシナリー社製テストミキシングロー ル (NS— 155型)を用いて行った。口—ル温度は、ポリマ—サンプル毎に 120°C〜1 70°Cの範囲で適宜調整して行った。二本ロール成形に当たっては、各ポリマーゃ榭 脂組成物 100質量部に対して以下の割合で添加剤を配合して行った。
リン酸エステル H 933D— 3 (滑剤)、 0. 5部
ステアリン酸亜鉛 LTB— 1830 (滑剤)、 0. 3部
エル力酸アミド (ブロッキング防止剤)、 1. 0部
[0131] カレンダ—によるフィルム試作は、表 11中の実施例 K、 L、及び比較例 15の配合榭 脂に下記の安定剤、滑剤、着色剤を配合し、バンバリ一ミキサーで混練した。
中性高分子型ハルス TINUVIN XT 850FF (而候性助剤)、 0. 1部 ヒンダートフエノール系抗酸化剤 AO— 60、 0. 1部
リン酸エステル H 933D— 3 (滑剤)、 0. 5部
ステアリン酸亜鉛 LTB— 1830 (滑剤)、 0. 3部
エル力酸アミド (ブロッキング防止剤)、 1. 0部
顔料 F— 30940MM (黒)、 3. 0部
[0132] その後、カレンダー加工(口—ル温度 165°C)で約 0. 1mm厚さのフィルムを作製し た。さらに得られたフィルムにアクリル系粘着剤を塗布乾燥して、幅 25mmのテープ 状に切断して粘着テープを得た。
[0133] 以下の基準で、テープ基材 (結束テープ、封かんテープ)としての評価を行い、結 果を表 11に示した。また、比較例として、特開平 11— 130808号公報記載の方法に より得られたスチレン エチレン共重合体 (組成、分子量は表中に記載)を用いて同 様に得られたテ プ基材の評価結果を示した。
[0134] [表 11] 表 1 1
[0135] 表 11にお 、て、「表面状態」とは、得られたテープ基材の表面の具合を目視で判定 し、次の評価基準
〇:きれいな平滑面のもの
X:凹凸 (鮫肌)が観測され、テープ基材の厚みにムラがあるもので評価した。
[0136] 表 11において、引張特性 ίお IS K— 6251に準拠して測定し、 MD (テープ長手) 方向について、初期弾性率、破断点伸び、破断点強度、各伸びでのモジュラスを得 た。温度 23± 2°C、湿度 50± 5%RHに設定された評価試験室内で、試験を行うテ 一プ基材のテストピースを! i= 3以上測定して、その測定値の平均値を示した。 さらに次の評価基準で判断した。
初期弾性率 (MPa)
〇 :50MPa以上 700MPa未満のもの
X : 50MPa未満、 700MPa以上のもの
破断点伸び
〇 :引張破断点伸びが 100以上〜 500%未満のもの
X:引張破断点伸びが 100%未満、 500%以上のもの
破断点強度 (MPa)
〇 : lOMPa以上、 70MPa未満のもの
X : lOMPa未満、 70MPa以上のもの
10%モジュラス
〇 : 10%伸びでの引張応力が 2以上〜 15MPa未満のもの
X : 10%伸びでの引張応力が 2MPa未満、 15MPa以上のもの
モジュラス比(100%モジュラス Zio%モジュラス)
〇 : 1. 6以上、 5未満のもの
X : 1. 6未満、 5以上のもの
表 11において、「加熱収縮」とは、長さ 100mm四方のテープ基材を 110°Cの雰囲 気下で 10分静置後、温度 23± 2°C、湿度 50± 5%RHに設定された評価試験室内 に 20分以上静置した後の、 MD (テープ長手方向)の収縮率である。 n= 3以上の測 定値の平均値を示し、次の評価基準で評価した。 〇 :収縮率が 10%未満のもの
X :収縮率が 10%以上のもの
手切れ性
〇 :切り口がわずかに伸びる力 きれいに切れたもの
X :切り口が伸び、更に MD (テープ長手方向)に切れた (縦切れ)もの 表 11において「ブロッキング性」とは、テープ基材を 50mm X 100mmの形状にカツ トし、 50mm X 50mmの部分を 2枚重ねて 50°Cで 24時間、 15kgの荷重をかけて放 置し、その後テープ基材のはがれ具合を、次の評価基準で評価した。
〇 :テープ基材は、付着乃至圧着しているが剥がせるもの
X :テープ基材は、付着乃至圧着して剥がせないもの
以上から、本発明のクロス共重合体、またはクロス共重合体を主として含む榭脂組 成物は、テ一プ基材として有用であることがわかる。
[0137] 本発明の製造方法で得られたクロス共重合体は、結晶化度が小さぐ軟質で、優れ た軟質塩ビ類似の力学特性と耐熱性、耐油性を示す。また、さらに本発明の特定の 製造条件を満たす場合、上記に加え、透明なクロス共重合体を効率よく合成すること が出来る。本発明の製造方法で得られたクロス共重合体は、本質的に塩素を含まな いため、環境適合性も高いと考えられる。また、本発明の製造方法で得られたクロス 共重合体は、本質的に可塑剤を含まないため、環境適合性も高いと考えられる。 産業上の利用可能性
[0138] 本発明の製造方法で得られたクロス共重合体は、結晶化度が小さぐ軟質で、優れ た軟質塩ビ類似の力学特性と耐熱性、耐油性を示し、本質的に塩素、可塑剤等を含 まないため、環境適合性も高ぐフィルム、シート、チューブ、容器等として有用である 。特に、建築材料、壁材、壁紙、床材として好適に用いることができる。 なお、 2006年 5月 29曰に出願された曰本特許出願 2006— 147991号、 2006年 10月 23曰に出願された曰本特許出願 2006— 288070号及び 2007年 5月 10曰に 出願された日本特許出願 2007— 125496号の明細書、特許請求の範囲、図面及 び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるもので /v: O /J6090/-00ifcl£AV 69

Claims

請求の範囲 [1] 配位重合工程とこれに続くァ-オン重合工程力 なる重合工程を含む製造方法で あって、配位重合工程として、シングルサイト配位重合触媒を用いてォレフィンモノマ 一、芳香族ビュル化合物モノマーおよび芳香族ポリェンの共重合を行って、芳香族 ビ-ルイ匕合物ユニット含量 15モル%以上 40モル%以下、芳香族ポリェンユニット含 量 0. 01モル0 /0以上 3モル0 /0以下、残部がォレフィンユニット含量であるォレフィン 芳香族ビ-ルイ匕合物一芳香族ポリェン共重合体を合成し、次にァ-オン重合工程と して、このォレフィン一芳香族ビ-ルイ匕合物一芳香族ポリェン共重合体とァ-オン重 合性ビュルィ匕合物モノマーの共存下、ァ-オン重合開始剤を用いて重合することを 特徴とするクロス共重合体の製造方法。 [2] 配位重合工程で得られるォレフィン—芳香族ビニルイ匕合物—芳香族ポリェン共重 合体の質量割合がァニオン重合工程を経て最終的に得られるクロス共重合体質量 に対して 40質量%以上 90質量%以下であることを特徴とする請求項 1に記載の製 造方法。 [3] 請求項 2に記載の製造方法により得られる A硬度 50以上 85以下のクロス共重合体 [4] 配位重合工程にぉ 、て、下記の一般式(1)または(6)で表される遷移金属化合物 と助触媒カゝら構成されるシングルサイト配位重合触媒を用いることを特徴とする請求 項 1に記載のクロス共重合体の製造方法。
[化 1]
一般式 (1 ) 式中、 A、 Bは同一でも異なっていてもよぐ非置換もしくは置換べンゾインデュル基 、非置換もしくは置換シクロペンタジェ-ル基、非置換もしくは置換インデニル基、ま たは非置換もしくは置換フルォレニル基カゝら選ばれる基である。ここで置換シクロべ ンタフヱナンスリル基、置換べンゾインデュル基、置換シクロペンタジェ-ル基、置換 インデュル基、または置換フルォレニル基とは、置換可能な水素の 1個以上が炭素 数 1〜20のアルキル基、炭素数 6〜10のァリール基、炭素数 7〜20のアルキルァリ ール基、ハロゲン原子、 OS1R基、 SiR基または PR基 (Rはいずれも炭素数 1〜10
3 3 2
の炭化水素基を表す)で置換されたシクロペンタフェナンスリル基、ベンゾインデニル 基、シクロペンタジェ-ル基、インデュル基、またはフルォレニル基である。
Yは A、 Bと結合を有し、他に置換基として水素もしくは炭素数 1〜15の炭化水素基 (本置換基には他に 1〜3個の窒素原子、酸素原子、硫黄原子、燐原子、または珪素 原子を含んでもよい)を有するメチレン基、シリレン基、エチレン基、ゲルミレン基、ま たは硼素基である。置換基は互いに異なっていても同一でもよい。また、 Yは環状構 造を有していてもよい。
好ましくは、 Yは A、 Bと結合を有し、他に置換基として水素もしくは炭素数 1〜15の 炭化水素基 (本置換基には他に 1〜3個の窒素原子、酸素原子、硫黄原子、燐原子 、または珪素原子を含んでもよい)を有するメチレン基または硼素基である。
Xは、水素、水酸基、ハロゲン、炭素数 1〜20の炭化水素基、炭素数 1〜20のアル コキシ基、炭素数 1〜4の炭化水素置換基を有するシリル基、または炭素数 1〜20の 炭化水素置換基を有するアミド基である。 2個の Xは結合を有してもょ 、。
Mはジルコニウム、ハフニウム、またはチタンである。
[化 2]
式中、 Cpは非置換もしくは置換シクロペンタフヱナンスリル基、非置換もしくは置換 ベンゾインデュル基、非置換もしくは置換シクロペンタジェニル基、非置換もしくは置 ^ンデュル基、または非置換もしくは置換フルォレニル基力 選ばれる基である。 ここで置換シクロペンタフヱナンスリル基、置換べンゾインデュル基、置換シクロペン タジェニル基、置換インデニル基、または置換フルォレニル基とは、置換可能な水素 の 1個以上が炭素数 1〜20のアルキル基、炭素数 6〜10のァリール基、炭素数 7〜2 0のアルキルァリール基、ハロゲン原子、 OSiR基、 SiR基または PR基 (Rはいずれ
3 3 2
も炭素数 1〜10の炭化水素基を表す)で置換されたシクロペンタフェナンスリル基、 ベンゾインデュル基、シクロペンタジェ-ル基、インデュル基、またはフルォレ -ル基 である。
Y'は、 Cp、 Zと結合を有し、他に水素もしくは炭素数 1〜15の炭化水素基を有する メチレン基、シリレン基、エチレン基、ゲルミレン基、または硼素基である。置換基は互 いに異なっていても同一でもよい。また、 Y'は環状構造を有していてもよい。 Zは窒 素、酸素またはィォゥを含み、窒素、酸素またはィォゥで M'に配位する配位子で Y' と結合を有し、他に水素もしくは炭素数 1〜15の置換基を有する基である。
M,はジルコニウム、ハフニウム、またはチタンである。
X'は、水素、ハロゲン、炭素数 1—15のアルキル基、炭素数 6— 10のァリール基、 炭素数 8— 12のアルキルァリール基、炭素数 1 4の炭化水素置換基を有するシリ ル基、炭素数 1— 10のアルコキシ基、または炭素数 1—6のアルキル置換基を有する ジアルキルアミド基である。
nは、 1または 2の整数である。
配位重合工程にぉ 、て、下記の一般式(1)で表される遷移金属化合物と助触媒か ら構成されるシングルサイト配位重合触媒を用いることを特徴とする請求項 1に記載 のクロス共重合体の製造方法。
[化 3]
一般式 (1 ) 式中、 A、 Bは同一でも異なっていてもよぐ非置換もしくは置換べンゾインデュル基 、非置換もしくは置換シクロペンタジェ-ル基、非置換もしくは置換インデニル基、ま たは非置換もしくは置換フルォレニル基カゝら選ばれる基である。ここで置換シクロべ ンタフヱナンスリル基、置換べンゾインデュル基、置換シクロペンタジェ-ル基、置換 インデュル基、または置換フルォレニル基とは、置換可能な水素の 1個以上が炭素 数 1〜20のアルキル基、炭素数 6〜10のァリール基、炭素数 7〜20のアルキルァリ ール基、ハロゲン原子、 OS1R基、 SiR基または PR基 (Rはいずれも炭素数 1〜10
3 3 2
の炭化水素基を表す)で置換されたシクロペンタフェナンスリル基、ベンゾインデニル 基、シクロペンタジェ-ル基、インデュル基、またはフルォレニル基である。
Yは A、 Bと結合を有し、他に置換基として水素もしくは炭素数 1〜15の炭化水素基 (本置換基には他に 1〜3個の窒素原子、酸素原子、硫黄原子、燐原子、または珪素 原子を含んでもよい)を有するメチレン基、シリレン基、エチレン基、ゲルミレン基、ま たは硼素基である。置換基は互いに異なっていても同一でもよい。また、 Yは環状構 造を有していてもよい。
好ましくは、 Yは A、 Bと結合を有し、他に置換基として水素もしくは炭素数 1〜15の 炭化水素基 (本置換基には他に 1〜3個の窒素原子、酸素原子、硫黄原子、燐原子 、または珪素原子を含んでもよい)を有するメチレン基または硼素基である。
Xは、水素、水酸基、ハロゲン、炭素数 1〜20の炭化水素基、炭素数 1〜20のアル コキシ基、炭素数 1〜4の炭化水素置換基を有するシリル基、または炭素数 1〜20の 炭化水素置換基を有するアミド基である。 2個の Xは結合を有してもょ 、。
Mはジルコニウム、ハフニウム、またはチタンである。
一般式(1)中の A、 Bは同一でも異なっていてもよぐ共に一般式(2)、(3)、(4)で 示される非置換もしくは置換べンゾインデュル基、または一般式(5)で示される非置 換もしくは置^ンデニル基力 選ばれる基であり、 Yは A、 Bと結合を有し、他に置 換基として水素もしくは炭素数 1〜15の炭化水素基 (本置換基には他に 1〜3個の窒 素原子、酸素原子、硫黄原子、燐原子、または珪素原子を含んでもよい)を有するメ チレン基または硼素基である遷移金属化合物と助触媒から構成されるシングルサイト 配位重合触媒を用いる請求項 5に記載のクロス共重合体の製造方法。
[化 4]
[化 5]
一般式 (3 )
[化 6]
:式 (4)
一般式(2)、(3)、(4)において R1〜R3はそれぞれ水素、炭素数 1〜20のアルキ ル基、炭素数 6〜 10のァリール基、炭素数 7〜20のアルキルァリール基、ハロゲン原 子、 OS1R基、 SiR基または PR基 (Rはいずれも炭素数 1〜: L0の炭化水素基を表
3 3 2
す)である。 R1同士、 R2同士、 R3同士は互いに同一でも異なっていてもよぐまた、 隣接する R1、R2基は一体となって 5〜8員環の芳香環または脂肪環を形成してもよ い。
[化 7] 一般式 (5 )
一般式(5)において R4はそれぞれ水素、炭素数 1〜20のアルキル基、炭素数 6〜 10のァリール基、炭素数 7〜20のアルキルァリール基、ハロゲン原子、 OSiR基、 Si
3
R基または PR基 (Rはいずれも炭素数 1〜10の炭化水素基を表す)である。 R4同
3 2
士は互いに同一でも異なって 、てもよ!/、。
[7] ォレフィンがエチレンであることを特徴とする請求項 1に記載のクロス共重合体の製 造方法。
[8] 芳香族ポリェンィ匕合物がジビニルベンゼンであることを特徴とする請求項 1に記載 のクロス共重合体の製造方法。
[9] ァ-オン重合工程にぉ 、て用いられるァ-オン重合性ビ-ルイ匕合物モノマーが芳 香族ビ-ルイ匕合物モノマーであることを特徴とする請求項 1に記載のクロス共重合体 の製造方法。
[10] 配位重合工程で得られるォレフィン一芳香族ビニルイ匕合物一芳香族ポリェン共重 合体の重量平均分子量が 15万以下 3万以上である共重合体を用いることを特徴と する請求項 1に記載のクロス共重合体の製造方法。
[11] 請求項 10に記載の製造方法により得られる、 1mm厚さシートのヘイズが 25%以下
、または全光線透過率 75%以上の透明クロス共重合体。
[12] 配位重合工程で用いられる芳香族ビ-ルイ匕合物モノマーがスチレンであり、かつァ ユオン重合工程にぉ 、て用いられるァ-オン重合性ビ-ルイ匕合物モノマーがスチレ ンであり、その一部または全部が配位重合工程における未反応スチレンであることを 特徴とする請求項 1に記載のクロス共重合体の製造方法。
[13] ァ-オン重合工程において用いられるァ-オン重合開始剤がブチルリチウムである ことを特徴とする請求項 1に記載のクロス共重合体の製造方法。
[14] 請求項 3に記載のクロス共重合体と、芳香族ビ-ルイ匕合物系ポリマーとからなる榭 脂組成物。
[15] 請求項 3に記載のクロス共重合体と、プロピレン系ポリマーとからなる榭脂組成物。
[16] 請求項 3に記載のクロス共重合体、芳香族ビニル化合物系ポリマー及びプロピレン 系ポリマー力 なる榭脂組成物。
[17] 請求項 3に記載のクロス共重合体と、ブロック共重合体系ポリマーとからなる榭脂組 成物。
[18] 請求項 3に記載のクロス共重合体を用いた成形体。
[19] 請求項 14〜17の 、ずれか一項に記載の榭脂組成物を用いた成形体。
[20] 成形体がフィルムである請求項 18または 19記載の成形体。
[21] 成形体がシートである請求項 18または 19に記載の成形体。
[22] フィルムがテープ基材である請求項 20に記載のフィルム。
[23] 請求項 22に記載のテ プ基材を用 、た粘着テ プ。
[24] 粘着テープが、結束用テープ、封かん用テープ、保護用テープ、固定用テープ、 ダイシング用テープ、ノ ックグラインド用テープ、またはマスキング用テープである請 求項 23に記載の粘着テープ。
[25] 成形体がチューブである請求項 18または 19に記載の成形体。
[26] 請求項 3に記載のクロス共重合体を 50質量%以上 95質量%以下含み、その他の ポリマーを 5質量%以上 50質量%以下含み、動的加流処理して得られる熱可塑性 エラストマ一組成物。
[27] 請求項 3に記載のクロス共重合体を 50質量%以上 95質量%以下、結晶性プロピレ ン系ポリマーを 5質量%以上 50質量%以下含み、動的加流処理して得られる熱可塑 性エラストマ一組成物。
[28] 請求項 3に記載のクロス共重合体を 70質量%以上 99質量%以下、石油榭脂また は水添石油榭脂を 1質量%以上 30質量%以下含む榭脂組成物。
[29] 成形体が発泡体である請求項 18または 19に記載の成形体。
[30] 成形体が電線被覆材である請求項 18または 19に記載の成形体。
PCT/JP2007/060917 2006-05-29 2007-05-29 クロス共重合体の製造方法、得られるクロス共重合体、及びその用途 WO2007139116A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/302,818 US8722831B2 (en) 2006-05-29 2007-05-29 Process for production of cross copolymers, cross copolymers obtained by the process, and use thereof
EP07744336A EP2022806B1 (en) 2006-05-29 2007-05-29 Process for production of cross copolymers, cross copolymers obtained by the process, and use thereof
JP2008517948A JP5435942B2 (ja) 2006-05-29 2007-05-29 クロス共重合体の製造方法、得られるクロス共重合体、及びその用途

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-147991 2006-05-29
JP2006147991 2006-05-29
JP2006-288070 2006-10-23
JP2006288070 2006-10-23
JP2007-125496 2007-05-10
JP2007125496 2007-05-10

Publications (1)

Publication Number Publication Date
WO2007139116A1 true WO2007139116A1 (ja) 2007-12-06

Family

ID=38778635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060917 WO2007139116A1 (ja) 2006-05-29 2007-05-29 クロス共重合体の製造方法、得られるクロス共重合体、及びその用途

Country Status (4)

Country Link
US (1) US8722831B2 (ja)
EP (1) EP2022806B1 (ja)
JP (1) JP5435942B2 (ja)
WO (1) WO2007139116A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167387A (ja) * 2007-12-20 2009-07-30 Denki Kagaku Kogyo Kk 耐熱性クロス共重合体の製造方法、得られる耐熱性クロス共重合体、及びその用途
JP2009185208A (ja) * 2008-02-07 2009-08-20 Denki Kagaku Kogyo Kk オレフィン−芳香族ビニル化合物系クロス共重合体を含む樹脂組成物を用いた電線被覆材
WO2009128444A1 (ja) 2008-04-15 2009-10-22 電気化学工業株式会社 熱可塑性樹脂組成物
JP2010150442A (ja) * 2008-12-26 2010-07-08 Denki Kagaku Kogyo Kk 太陽電池封止材
JP2010242015A (ja) * 2009-04-09 2010-10-28 Denki Kagaku Kogyo Kk 熱可塑性樹脂組成物
WO2013018839A1 (ja) * 2011-08-03 2013-02-07 電気化学工業株式会社 封止材
WO2013137326A1 (ja) * 2012-03-14 2013-09-19 電気化学工業株式会社 医療用多層チューブ
JP2013202133A (ja) * 2012-03-27 2013-10-07 Denki Kagaku Kogyo Kk 医療用チューブ
WO2015072466A1 (ja) 2013-11-12 2015-05-21 電気化学工業株式会社 熱可塑性エラストマー樹脂組成物
JP2015151493A (ja) * 2014-02-17 2015-08-24 三菱樹脂株式会社 ウェルダー加工用フィルム
KR20170008263A (ko) 2014-05-15 2017-01-23 덴카 주식회사 크로스 공중합체 및 그 제조 방법
WO2017056946A1 (ja) * 2015-09-28 2017-04-06 デンカ株式会社 クロス共重合体及びその製造方法
JP2017122195A (ja) * 2016-01-08 2017-07-13 デンカ株式会社 スルホン化クロス共重合体の製造方法
JP2017534483A (ja) * 2014-09-22 2017-11-24 ダウ グローバル テクノロジーズ エルエルシー 密着特性を有するホイルラップ
WO2018117212A1 (ja) 2016-12-21 2018-06-28 デンカ株式会社 樹脂組成物
US10125207B2 (en) 2014-04-03 2018-11-13 Denka Company Limited Cross-copolymer, and resin composition
WO2018225744A1 (ja) * 2017-06-05 2018-12-13 デンカ株式会社 熱可塑性エラストマー組成物
JP2020147638A (ja) * 2019-03-11 2020-09-17 デンカ株式会社 光透過性シート、多層シート、照明装置、自動車内装部材

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090119175A1 (en) * 2007-11-07 2009-05-07 John Richardson Tape sealant
EP2346678B1 (en) 2008-10-07 2017-10-04 Ross Technology Corporation Spill resistant surfaces having hydrophobic and oleophobic borders
WO2011116005A1 (en) 2010-03-15 2011-09-22 Ross Technology Corporation Plunger and methods of producing hydrophobic surfaces
US9279022B1 (en) 2014-09-08 2016-03-08 Sirrus, Inc. Solution polymers including one or more 1,1-disubstituted alkene compounds, solution polymerization methods, and polymer compositions
US9828324B2 (en) 2010-10-20 2017-11-28 Sirrus, Inc. Methylene beta-diketone monomers, methods for making methylene beta-diketone monomers, polymerizable compositions and products formed therefrom
US10414839B2 (en) 2010-10-20 2019-09-17 Sirrus, Inc. Polymers including a methylene beta-ketoester and products formed therefrom
US9249265B1 (en) 2014-09-08 2016-02-02 Sirrus, Inc. Emulsion polymers including one or more 1,1-disubstituted alkene compounds, emulsion methods, and polymer compositions
MX2013009609A (es) 2011-02-21 2013-09-16 Ross Technology Corp Revestimiento suoerhidrofobos y oleofobos con sistemas aglutinantes con bajo contenido de compuestos organicos volatiles.
WO2012158813A1 (en) * 2011-05-16 2012-11-22 Hauser Ray L Cross-linked, microporous polysulfone battery electrode separator
EP2768872B1 (en) 2011-10-19 2017-11-22 Sirrus, Inc. Methods for making methylene beta-ketoester monomers
EP2791255B1 (en) 2011-12-15 2017-11-01 Ross Technology Corporation Composition and coating for superhydrophobic performance
WO2013149168A1 (en) 2012-03-30 2013-10-03 Bioformix, Inc. Composite and laminate articles and polymerizable systems for producing the same
US9234107B2 (en) 2012-03-30 2016-01-12 Sirrus, Inc. Ink coating formulations and polymerizable systems for producing the same
US10099239B2 (en) 2012-04-30 2018-10-16 Shurtape Technologies, Llc Applicator device for film forming formulation for textured surfaces
WO2013181600A2 (en) 2012-06-01 2013-12-05 Bioformix Inc. Optical material and articles formed therefrom
MX2015000119A (es) * 2012-06-25 2015-04-14 Ross Technology Corp Recubrimientos elastoméricos con propiedades hidrofóbicas y/u oleofóbicas.
WO2014025142A1 (ko) * 2012-08-07 2014-02-13 주식회사 폴리사이언텍 폴리염화비닐-프리 의료용 튜브, 성형부품 및 이로부터 제조되는 의료용품
CN105008438B (zh) 2012-11-16 2019-10-22 拜奥福米克斯公司 塑料粘结体系及方法
US9412921B2 (en) 2012-11-20 2016-08-09 Industrial Technology Research Institute Module structure
EP2926368B1 (en) 2012-11-30 2020-04-08 Sirrus, Inc. Electronic assembly
CN105008321A (zh) 2013-01-11 2015-10-28 瑟拉斯公司 经过双(羟甲基)丙二酸酯的途径获得亚甲基丙二酸酯的方法
US9315597B2 (en) 2014-09-08 2016-04-19 Sirrus, Inc. Compositions containing 1,1-disubstituted alkene compounds for preparing polymers having enhanced glass transition temperatures
US9416091B1 (en) 2015-02-04 2016-08-16 Sirrus, Inc. Catalytic transesterification of ester compounds with groups reactive under transesterification conditions
US10501400B2 (en) 2015-02-04 2019-12-10 Sirrus, Inc. Heterogeneous catalytic transesterification of ester compounds with groups reactive under transesterification conditions
US9334430B1 (en) 2015-05-29 2016-05-10 Sirrus, Inc. Encapsulated polymerization initiators, polymerization systems and methods using the same
US9217098B1 (en) 2015-06-01 2015-12-22 Sirrus, Inc. Electroinitiated polymerization of compositions having a 1,1-disubstituted alkene compound
CN107922707B (zh) * 2015-08-19 2020-11-03 电化株式会社 树脂组合物在器官模型的制造中的应用、器官模型及其制造方法
DE112016006045T5 (de) * 2015-12-25 2018-10-25 Denka Company Limited Crosscopolymer und medizinischer einschichtiger schlauch, für den dieses verwendet wird
US9518001B1 (en) 2016-05-13 2016-12-13 Sirrus, Inc. High purity 1,1-dicarbonyl substituted-1-alkenes and methods for their preparation
US9617377B1 (en) 2016-06-03 2017-04-11 Sirrus, Inc. Polyester macromers containing 1,1-dicarbonyl-substituted 1 alkenes
US9567475B1 (en) 2016-06-03 2017-02-14 Sirrus, Inc. Coatings containing polyester macromers containing 1,1-dicarbonyl-substituted 1 alkenes
US10428177B2 (en) 2016-06-03 2019-10-01 Sirrus, Inc. Water absorbing or water soluble polymers, intermediate compounds, and methods thereof
US10196481B2 (en) 2016-06-03 2019-02-05 Sirrus, Inc. Polymer and other compounds functionalized with terminal 1,1-disubstituted alkene monomer(s) and methods thereof
TW202128424A (zh) * 2019-12-03 2021-08-01 日商電化股份有限公司 共聚物以及含共聚物之積層體、硬化物、組成物

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0416815A2 (en) 1989-08-31 1991-03-13 The Dow Chemical Company Constrained geometry addition polymerization catalysts, processes for their preparation, precursors therefor, methods of use, and novel polymers formed therewith
JPH0539331A (ja) * 1991-08-05 1993-02-19 Mitsubishi Petrochem Co Ltd ブロツク共重合体の製造方法
JPH05125194A (ja) * 1991-02-02 1993-05-21 Mitsubishi Petrochem Co Ltd 共重合体の製造法
JPH06184179A (ja) 1991-11-30 1994-07-05 Hoechst Ag 配位子としてベンゼン融合したインデニル誘導体を持つメタロセン、その製造方法および触媒としてのその用途
EP0661345A1 (de) 1993-12-27 1995-07-05 Hoechst Aktiengesellschaft Polymerlegierung
WO1996004419A1 (en) 1994-08-04 1996-02-15 Forbo-Nairn Limited Floor covering
JPH09309925A (ja) 1996-03-19 1997-12-02 Denki Kagaku Kogyo Kk エチレン−芳香族ビニル化合物共重合体及びその製造方法
WO1998010160A1 (en) 1996-09-04 1998-03-12 The Dow Chemical Company Floor, wall or ceiling covering
EP0872492A2 (en) 1997-04-17 1998-10-21 Denki Kagaku Kogyo Kabushiki Kaisha Transition metal compound as catalyst component for polymerization, aromatic vinyl compound-olefin copolymer having stereoregularity and method for its preparation by means of the transition metal compound as catalyst component
WO1999014221A1 (en) 1997-09-15 1999-03-25 The Dow Chemical Company Cyclopentaphenanthreneyl metal complexes and polymerization process
JPH11130808A (ja) 1997-04-17 1999-05-18 Denki Kagaku Kogyo Kk 重合用遷移金属触媒成分、それを用いた立体規則性を有する芳香族ビニル化合物系重合体及びその製造方法
EP0985689A1 (en) 1998-09-07 2000-03-15 Denki Kagaku Kogyo Kabushiki Kaisha Aromatic vinyl compound-ethylene copolymer and method for producing the same
JP2000111646A (ja) 1998-10-07 2000-04-21 Oki Electric Ind Co Ltd ドップラ検出表示方法及びシステム
WO2000037517A1 (fr) 1998-12-22 2000-06-29 Denki Kagaku Kogyo Kabushiki Kaisha Copolymere olefine/styrene/diene reticule, procede de production dudit copolymere et ses utilisations
US6096849A (en) 1999-07-21 2000-08-01 The Penn State Research Foundation Linear copolymers of alpha-olefins and divinylbenzene having narrow molecular weight and composition distributions and process for preparing same
US6254956B1 (en) 1996-09-04 2001-07-03 The Dow Chemical Company Floor, wall or ceiling covering
JP2001514275A (ja) 1997-08-27 2001-09-11 ザ ダウ ケミカル カンパニー 熱硬化インターポリマー類および発泡体
WO2001068719A1 (fr) 2000-03-14 2001-09-20 Denki Kagaku Kogyo Kabushiki Kaisha Composant catalyseur a metal de transition pour la polymerisation, et procede de production de polymere a l'aide de ce composant
JP2001520295A (ja) 1997-10-21 2001-10-30 ザ ダウ ケミカル カンパニー スルホン化を受けさせた実質的にランダムのインターポリマー類、それのブレンド物およびそれから作られた製品
JP2001348413A (ja) * 2000-04-07 2001-12-18 Mitsui Chemicals Inc オレフィン系ブロック共重合体
JP2004504928A (ja) 2000-07-28 2004-02-19 ダイス アナリティック コーポレーション 水及びイオン伝導性膜並びにその使用
JP2004505120A (ja) 2000-07-28 2004-02-19 ダウ グローバル テクノロジーズ インコーポレイティド スルホン化した実質的にランダムなインターポリマーをベースとした吸収性材料
JP2004535270A (ja) 2001-03-13 2004-11-25 ダイス アナリティック コーポレーション 熱及び水分の交換装置
JP2006147991A (ja) 2004-11-24 2006-06-08 Canon Inc 固体撮像素子及びそれを有する光学機器
JP2006288070A (ja) 2005-03-31 2006-10-19 Shindengen Electric Mfg Co Ltd Dc−dcコンバータ
JP2007125496A (ja) 2005-11-04 2007-05-24 Nagaoka Univ Of Technology 光による水分解触媒及びその製造方法。

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037890A (en) 1987-11-02 1991-08-06 Mitsubishi Petrochemical Company Limited Process for producing graft-modified α-olefin copolymer
DE19711339B4 (de) 1996-03-19 2008-09-11 Denki Kagaku Kogyo K.K. Copolymer aus Ethylen und aromatischer Vinylverbindung, Verfahren zu dessen Herstellung, Formkörper daraus sowie Zusammensetzung umfassend das Copolymer
US6329479B1 (en) 1997-04-17 2001-12-11 Denki Kagaku Kogyo Kabushiki Kaisha Transition metal compound as catalyst component for polymerization, aromatic vinyl compound-olefin copolymer having stereoregularity and method for its preparation by means of the transition metal compound as catalyst component
US6489424B2 (en) 1997-04-17 2002-12-03 Denki Kagaku Kogyo Kabushiki Kaisha Transition metal catalyst component for polymerization, aromatic vinyl compound polymer having stereoregularity and method for its preparation by means of the catalyst component
DE69839662D1 (de) 1997-10-01 2008-08-14 Denki Kagaku Kogyo Kk Folie und Folie zum Spannverpacken
US6630215B1 (en) 1998-03-09 2003-10-07 Denki Kagaku Kogyo Kabushiki Kaisha Medical Device
AU2854299A (en) 1998-03-23 1999-10-18 Denki Kagaku Kogyo Kabushiki Kaisha Resin composition
US6410673B1 (en) 1998-10-19 2002-06-25 Denki Kagaku Kogyo Kabushiki Kaisha Ethylene/aromatic vinyl copolymer and molded product thereof
US6355344B1 (en) 1999-05-21 2002-03-12 Tyco Adhesives Lp Non-fogging pressure sensitive adhesive film material
US6803422B2 (en) 1999-09-13 2004-10-12 Denki Kagaku Kogyo Kabushiki Kaisha Cross-copolymerized olefin/aromatic vinyl compound/diene copolymer and process for its production
AU7312500A (en) 1999-09-13 2001-04-17 Denki Kagaku Kogyo Kabushiki Kaisha Cross-copolymerized olefin/aromatic vinyl/diene copolymer and process for producing the same
US7160949B2 (en) 2000-01-21 2007-01-09 Mitsui Chemicals, Inc. Olefin block copolymers, processes for producing the same and uses thereof
US6891004B2 (en) 2000-03-14 2005-05-10 Denki Kagaku Kogyo Kabushiki Kaisha Transition metal catalyst component for polymerization, and method for producing a polymer by means thereof
JP2001316431A (ja) 2000-05-08 2001-11-13 Denki Kagaku Kogyo Kk 医療用成形体
JP2002003553A (ja) 2000-06-23 2002-01-09 Denki Kagaku Kogyo Kk クロス鎖にポリエンを含むクロス共重合体及びその製造方法
EP1394187B1 (en) 2001-05-15 2006-03-29 Denki Kagaku Kogyo Kabushiki Kaisha Process for producing olefin/aromatic vinyl copolymer
WO2003014166A1 (en) 2001-08-07 2003-02-20 Denki Kagaku Kogyo Kabushiki Kaisha Process for producing polymer

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623070B2 (ja) 1989-08-31 1997-06-25 ザ ダウ ケミカル カンパニー エチレンとスチレンの擬似ランダムコポリマー
EP0416815A2 (en) 1989-08-31 1991-03-13 The Dow Chemical Company Constrained geometry addition polymerization catalysts, processes for their preparation, precursors therefor, methods of use, and novel polymers formed therewith
JPH05125194A (ja) * 1991-02-02 1993-05-21 Mitsubishi Petrochem Co Ltd 共重合体の製造法
JPH0539331A (ja) * 1991-08-05 1993-02-19 Mitsubishi Petrochem Co Ltd ブロツク共重合体の製造方法
JPH06184179A (ja) 1991-11-30 1994-07-05 Hoechst Ag 配位子としてベンゼン融合したインデニル誘導体を持つメタロセン、その製造方法および触媒としてのその用途
EP0661345A1 (de) 1993-12-27 1995-07-05 Hoechst Aktiengesellschaft Polymerlegierung
WO1996004419A1 (en) 1994-08-04 1996-02-15 Forbo-Nairn Limited Floor covering
JPH09309925A (ja) 1996-03-19 1997-12-02 Denki Kagaku Kogyo Kk エチレン−芳香族ビニル化合物共重合体及びその製造方法
WO1998010160A1 (en) 1996-09-04 1998-03-12 The Dow Chemical Company Floor, wall or ceiling covering
US6254956B1 (en) 1996-09-04 2001-07-03 The Dow Chemical Company Floor, wall or ceiling covering
EP0872492A2 (en) 1997-04-17 1998-10-21 Denki Kagaku Kogyo Kabushiki Kaisha Transition metal compound as catalyst component for polymerization, aromatic vinyl compound-olefin copolymer having stereoregularity and method for its preparation by means of the transition metal compound as catalyst component
JPH11130808A (ja) 1997-04-17 1999-05-18 Denki Kagaku Kogyo Kk 重合用遷移金属触媒成分、それを用いた立体規則性を有する芳香族ビニル化合物系重合体及びその製造方法
JP2001514275A (ja) 1997-08-27 2001-09-11 ザ ダウ ケミカル カンパニー 熱硬化インターポリマー類および発泡体
WO1999014221A1 (en) 1997-09-15 1999-03-25 The Dow Chemical Company Cyclopentaphenanthreneyl metal complexes and polymerization process
JP2001520295A (ja) 1997-10-21 2001-10-30 ザ ダウ ケミカル カンパニー スルホン化を受けさせた実質的にランダムのインターポリマー類、それのブレンド物およびそれから作られた製品
EP0985689A1 (en) 1998-09-07 2000-03-15 Denki Kagaku Kogyo Kabushiki Kaisha Aromatic vinyl compound-ethylene copolymer and method for producing the same
JP2000111646A (ja) 1998-10-07 2000-04-21 Oki Electric Ind Co Ltd ドップラ検出表示方法及びシステム
WO2000037517A1 (fr) 1998-12-22 2000-06-29 Denki Kagaku Kogyo Kabushiki Kaisha Copolymere olefine/styrene/diene reticule, procede de production dudit copolymere et ses utilisations
US6096849A (en) 1999-07-21 2000-08-01 The Penn State Research Foundation Linear copolymers of alpha-olefins and divinylbenzene having narrow molecular weight and composition distributions and process for preparing same
WO2001068719A1 (fr) 2000-03-14 2001-09-20 Denki Kagaku Kogyo Kabushiki Kaisha Composant catalyseur a metal de transition pour la polymerisation, et procede de production de polymere a l'aide de ce composant
JP2001348413A (ja) * 2000-04-07 2001-12-18 Mitsui Chemicals Inc オレフィン系ブロック共重合体
JP2004504928A (ja) 2000-07-28 2004-02-19 ダイス アナリティック コーポレーション 水及びイオン伝導性膜並びにその使用
JP2004505120A (ja) 2000-07-28 2004-02-19 ダウ グローバル テクノロジーズ インコーポレイティド スルホン化した実質的にランダムなインターポリマーをベースとした吸収性材料
JP2004535270A (ja) 2001-03-13 2004-11-25 ダイス アナリティック コーポレーション 熱及び水分の交換装置
JP2006147991A (ja) 2004-11-24 2006-06-08 Canon Inc 固体撮像素子及びそれを有する光学機器
JP2006288070A (ja) 2005-03-31 2006-10-19 Shindengen Electric Mfg Co Ltd Dc−dcコンバータ
JP2007125496A (ja) 2005-11-04 2007-05-24 Nagaoka Univ Of Technology 光による水分解触媒及びその製造方法。

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Plastic Foam Handbook", 1973, NIKKAN KOGYO SHINBUNSHA
A.Y. CORAN ET AL., RUB. CHEM. AND TECHNOL., vol. 53, 1980, pages 141
See also references of EP2022806A4

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167387A (ja) * 2007-12-20 2009-07-30 Denki Kagaku Kogyo Kk 耐熱性クロス共重合体の製造方法、得られる耐熱性クロス共重合体、及びその用途
JP2009185208A (ja) * 2008-02-07 2009-08-20 Denki Kagaku Kogyo Kk オレフィン−芳香族ビニル化合物系クロス共重合体を含む樹脂組成物を用いた電線被覆材
WO2009128444A1 (ja) 2008-04-15 2009-10-22 電気化学工業株式会社 熱可塑性樹脂組成物
CN102007180A (zh) * 2008-04-15 2011-04-06 电气化学工业株式会社 热塑性树脂组合物
US8461264B2 (en) 2008-04-15 2013-06-11 Denki Kagaku Kogyo Kabushiki Kaisha Thermoplastic resin composition
JP2010150442A (ja) * 2008-12-26 2010-07-08 Denki Kagaku Kogyo Kk 太陽電池封止材
JP2010242015A (ja) * 2009-04-09 2010-10-28 Denki Kagaku Kogyo Kk 熱可塑性樹脂組成物
JPWO2013018839A1 (ja) * 2011-08-03 2015-03-05 電気化学工業株式会社 封止材
WO2013018839A1 (ja) * 2011-08-03 2013-02-07 電気化学工業株式会社 封止材
KR101922279B1 (ko) 2011-08-03 2018-11-26 덴카 주식회사 봉지재
KR20140064811A (ko) * 2011-08-03 2014-05-28 덴끼 가가꾸 고교 가부시키가이샤 봉지재
WO2013137326A1 (ja) * 2012-03-14 2013-09-19 電気化学工業株式会社 医療用多層チューブ
JPWO2013137326A1 (ja) * 2012-03-14 2015-08-03 電気化学工業株式会社 医療用多層チューブ
JP2013202133A (ja) * 2012-03-27 2013-10-07 Denki Kagaku Kogyo Kk 医療用チューブ
WO2015072466A1 (ja) 2013-11-12 2015-05-21 電気化学工業株式会社 熱可塑性エラストマー樹脂組成物
KR20160085822A (ko) 2013-11-12 2016-07-18 덴카 주식회사 열가소성 엘라스토머 수지 조성물
JP2015151493A (ja) * 2014-02-17 2015-08-24 三菱樹脂株式会社 ウェルダー加工用フィルム
US10125207B2 (en) 2014-04-03 2018-11-13 Denka Company Limited Cross-copolymer, and resin composition
DE112015001658B4 (de) 2014-04-03 2020-06-18 Denka Company Limited Vernetztes Copolymer und Harzzusammensetzung
KR20170008263A (ko) 2014-05-15 2017-01-23 덴카 주식회사 크로스 공중합체 및 그 제조 방법
JP2017534483A (ja) * 2014-09-22 2017-11-24 ダウ グローバル テクノロジーズ エルエルシー 密着特性を有するホイルラップ
WO2017056946A1 (ja) * 2015-09-28 2017-04-06 デンカ株式会社 クロス共重合体及びその製造方法
KR20180061227A (ko) 2015-09-28 2018-06-07 덴카 주식회사 크로스 공중합체 및 그 제조 방법
DE112016004386T5 (de) 2015-09-28 2018-06-07 Denka Company Limited Kreuz-Copolymere sowie Herstellungsverfahren dafür
JP2017122195A (ja) * 2016-01-08 2017-07-13 デンカ株式会社 スルホン化クロス共重合体の製造方法
WO2018117212A1 (ja) 2016-12-21 2018-06-28 デンカ株式会社 樹脂組成物
WO2018225744A1 (ja) * 2017-06-05 2018-12-13 デンカ株式会社 熱可塑性エラストマー組成物
JP2020147638A (ja) * 2019-03-11 2020-09-17 デンカ株式会社 光透過性シート、多層シート、照明装置、自動車内装部材
JP7165078B2 (ja) 2019-03-11 2022-11-02 デンカ株式会社 光透過性シート、多層シート、照明装置、自動車内装部材

Also Published As

Publication number Publication date
US8722831B2 (en) 2014-05-13
EP2022806A4 (en) 2010-08-04
EP2022806A1 (en) 2009-02-11
JP5435942B2 (ja) 2014-03-05
US20090263604A1 (en) 2009-10-22
EP2022806B1 (en) 2011-11-30
JPWO2007139116A1 (ja) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5435942B2 (ja) クロス共重合体の製造方法、得られるクロス共重合体、及びその用途
JP5058764B2 (ja) クロス共重合体の製造方法及び得られるクロス共重合体、その用途
JP5620815B2 (ja) 熱可塑性樹脂組成物
JP5020524B2 (ja) プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物からなるペレット、熱可塑性重合体用改質剤、熱可塑性重合体組成物の製造方法
CN111333795A (zh) 氢化嵌段共聚物、树脂组合物以及使用它们得到的制品
JP5330637B2 (ja) プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物の製造方法
US10125207B2 (en) Cross-copolymer, and resin composition
JP2011074187A (ja) 易架橋性熱可塑性樹脂
WO2001019881A1 (fr) Copolymere vinyle/diene olefinique/aromatique copolymerise par reticulation, et procede de production associe
JP5891229B2 (ja) 表皮材シート
JP5209934B2 (ja) 耐傷つき摩耗性エラストマ−
WO2002102862A1 (fr) Procede de production d&#39;un copolymere olefine-vinyle aromatique
JP5430117B2 (ja) 耐熱性クロス共重合体の製造方法、得られる耐熱性クロス共重合体、及びその用途
JP5242485B2 (ja) 熱可塑性樹脂組成物
JP4781569B2 (ja) クロス共重合化オレフィン−芳香族ビニル化合物−ジエン共重合体
JP5506985B2 (ja) プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物の製造方法
JP2010043232A (ja) 熱可塑性樹脂組成物
JP2019111810A (ja) 加飾フィルム及びそれを用いた加飾成形体の製造方法
JP5550615B2 (ja) プロピレン系重合体組成物の製造方法
JP7192543B2 (ja) 加飾フィルム及びそれを用いた加飾成形体の製造方法
JP2011207936A (ja) 表皮材用シ−ト
JP2001172465A (ja) プロピレン系樹脂組成物およびその製造方法
JPH0532836A (ja) シート、フイルム用重合体組成物
JP2010013575A (ja) 耐摩耗性、耐熱性、シボ保持性に優れた熱可塑性樹脂組成物及びその表皮シート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780019989.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744336

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008517948

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007744336

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12302818

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE