WO2007139625A1 - Stent coating apparatus comprising an acoustic nozzleless printhead - Google Patents

Stent coating apparatus comprising an acoustic nozzleless printhead Download PDF

Info

Publication number
WO2007139625A1
WO2007139625A1 PCT/US2007/009113 US2007009113W WO2007139625A1 WO 2007139625 A1 WO2007139625 A1 WO 2007139625A1 US 2007009113 W US2007009113 W US 2007009113W WO 2007139625 A1 WO2007139625 A1 WO 2007139625A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
coating
transducers
ejection
transducer
Prior art date
Application number
PCT/US2007/009113
Other languages
French (fr)
Inventor
Yung Ming Chen
Original Assignee
Abbott Cardiovascular Systems Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Cardiovascular Systems Inc. filed Critical Abbott Cardiovascular Systems Inc.
Publication of WO2007139625A1 publication Critical patent/WO2007139625A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0615Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced at the free surface of the liquid or other fluent material in a container and subjected to the vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/004Arrangements for controlling delivery; Arrangements for controlling the spray area comprising sensors for monitoring the delivery, e.g. by displaying the sensed value or generating an alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • B05B12/122Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus responsive to presence or shape of target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0221Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts
    • B05B13/0228Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts the movement of the objects being rotative
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0207Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the work being an elongated body, e.g. wire or pipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying

Definitions

  • the present invention relates to an apparatus for coating a stent and a method for coating a stent. More particularly, this invention provides an apparatus and method to generate uniform and controllable droplets that can be used to rapidly coat the abluminal surface (selective areas or entire outside surface) of a stent.
  • PTCA Percutaneous transluminal coronary angioplasty
  • a PTCA procedure involves the insertion of a catheter into a coronary artery to position an angioplasty balloon at the site of a stenotic lesion that is at least partially blocking the coronary artery.
  • the balloon is then inflated to compress against the stenosis and to widen the lumen to allow an efficient flow of blood through the coronary artery.
  • restenosis at the site of angioplasty continues to hamper the long term success of PTCA, with the result that a significant proportion of patients have to undergo repeated revascularization.
  • a stent 2 is a scaffolding device for the blood vessel and it typically has a cylindrical configuration and includes a number of interconnected struts 4.
  • the stent is delivered to the stenosed lesion through a balloon catheter.
  • Stent is expanded to against the vessel walls by inflating the balloon and the expanded stent can hold the vessel open.
  • Stent can be used as a platform for delivering pharmaceutical agents locally.
  • the inherent advantage of local delivery the drug over systematic administration lies in the ability to precisely deliver a much lower dose of the drug to the target area thus achieving high tissue concentration while minimizing the risk of systemic toxicity.
  • DES drug-eluting stents
  • a DES consisting of three key components, as follows: (1) a stent with catheter based deployment device, (2) a carrier that permits eluting of the drug into the blood vessel wall at the required concentration and kinetic profile, and (3) a pharmaceutical agent that can mitigate the in-stent restenosis.
  • Most current DES systems utilize current- generation commercial stents and balloon catheter delivery systems.
  • DES drug-eluting stents
  • SANFRANCISCO/216775 1 spraying the drug solution onto the stent. Dipping or spraying usually results in a complete coverage of all stent surfaces, i.e., both luminal and abluminal surfaces.
  • the luminal side coating on a coated stent can have negative impacts to the stent's deliverability as well as the coating integrity.
  • the drug on the inner surface of the stent typically provides for an insignificant therapeutic effect and it get washed away by the blood flow. While the coating on the abluminal surface of the stent provides for the delivery of the drug directly to the diseased tissues.
  • the coating in the lumen side may increase the friction coefficient of the stent's surface, making withdrawal of a deflated balloon more difficult.
  • the coating may adhere to the balloon as well.
  • the coating may be damaged during the balloon inflation/deflation cycle, or during the withdrawal of the balloon, resulting in a thrombogenic stent surface or embolic debris.
  • Defect formation on the stents is another shortcoming caused by the dipping and spraying methods. For example, these methods cause webbing, pooling, or clump between adjacent stent struts of the stent, making it difficult to control the amount of drug coated on the stent.
  • f ⁇ xturing e.g. a mandrel
  • f ⁇ xturing used to hold the stent in the spraying method may also induce coating defects. For example, upon the separation of the coated stent from the mandrel, it may leave some excessive coating material attached to the stent, or create some uncoated areas at the interface between the stent struts and mandrel.
  • the coating weight and drop size uniformity control is another challenge of using aforementioned methods.
  • Another coating method involves the use of inkjet or bubble-jet technology.
  • the drop ejection is generated by the physical vibration through a piezoelectric actuation or by thermal actuation.
  • single inkjet or bubble-jet nozzle head can be devised as
  • SANFRANCISCO/216775. 1 an apparatus to precisely deliver a controlled volume coating substance to the entire or selected struts over a stent, thus it mitigates some of the shortcomings associated with the dipping and spraying methods.
  • this operation involves moving an ejector head along the struts of a stent to be coated, but its coating speed is inherently much slower than, for example, an array coating system which consists of many transducers and each transducer can generate droplets to coat a stent simultaneously.
  • This coating apparatus enables to generate droplets at single or multiple locations simultaneously on demand, thus it allows to coat stent in a much faster and versatile way (e.g. line printing rather than dot printing).
  • nozzle clogging which may adversely affect coating quality, is a common problem to spraying, inkjet, and bubble-jet methods. Cleaning the nozzles results in a substantial downtime, decreased productivity, and increased maintenance cost.
  • the present invention provides a stent coating apparatus and method that overcome the aforementioned shortcomings from the conventional coating methods.
  • the stent coating apparatus of the present invention can coat the abluminal surface of a stent at a high speed, and it can deliver a precise amount of coating material to the specific stent surfaces. Furthermore, the present invention does not use a nozzle, thus it eliminates the potential nozzle clogging issues.
  • the stent coating apparatus includes a stent support, a coating device, and an imaging system.
  • the stent support provides the mechanisms to hold a stent in place on a mandrel and to control the rotational and circumferential movement of the stent during the coating.
  • the coating apparatus includes a reservoir, a transducer assembly, and an ejection logic controller.
  • the reservoir is used to hold a coating solution;
  • a transducer assembly is used to generate acoustic energy to actuate the drop ejection from the surface of the coating solution;
  • the ejection logic provides a control can over the position of droplet ejection.
  • Transducers can be differentially turned on or off to steer the excitation of the droplets, and the droplet formation can be controlled only at the areas of the stent that need be coated. The advantage of this technique is it provides a reliable ejection of the fluids "on demand" without clogging the ejection aperture because the area of each ejection focal point is a relatively small region to the aperture.
  • the transducer assembly includes a plurality of transducers, RF drive device, and an ejection controller.
  • Each transducer e.g. piezoelectric transducer
  • the transducer assembly generates acoustic waves and they propagate in the solution toward the liquid /air interface. Those waves are constructively interfered at a focal point of the solution surface, i.e., the waves will add in-phase at the focal point.
  • the focused energy causes a droplet to be ejected from the surface of the coating solution.
  • the wave frequency or amplitude can be used to adjust the droplet volume or droplet velocity.
  • the constructively interfered waves are generated in certain patterns by controlling only portion of the transducers from the
  • a switching system (or an ejection logic control) is linked to an imaging system to energize the transducers according to the stent strut position.
  • the controller commands the transducer arrays to simultaneously eject droplets at multiple ejection points on the surface of the coating solution so that the stent can be coated simultaneously.
  • the stent is preferably positioned above the ejector to receive the droplets generated from the surface of coating solution.
  • stent can be placed beneath the ejector. It will be appreciated by one of the ordinary skill in the art that embodiments of the invention enable to position the stent or the ejector in any orientation.
  • the stent coating apparatus includes at least one assisted device, an imaging device.
  • the image system is to track the stent strut location, to control the stent movement, and to communicate the information to the ejection logic controller.
  • an imaging device with a feedback control is used to communicate to the stent holder controller to orient the stent to a particular position to receive the droplets generated by the corresponding coating device.
  • Embodiments of the invention provide a coating apparatus and method that enable to coat stent outside surface selectively or simultaneously while avoiding nozzle clogging and coating defects caused by other conventional coating methods. Further, embodiments of the apparatus include a high speed and a nozzleless stent coating process.
  • a method for coating a stent includes mounting a stent on a stent support, rotating the stent, and translating a stent in its longitudinal
  • that apparatus enables to generate droplets at single or multiple locations by using an ejection logic control to command the transducer arrays to generate droplets on demand.
  • the transducer arrays used to generate the waves can be designed in a fashion to accommodate different stent geometries.
  • the apparatus includes an optical feedback system to monitor and control the stent movement and, to communicate to the ejection logic controller to generate droplets to the selective surfaces of the stent.
  • the apparatus is capable of adjusting the power, wave frequency or amplitude to control the drop volume or drop velocity respectively.
  • a small multiple-reservoir system can be used to apply the same or different coating substances to the stent.
  • the apparatus in this invention can coat the stent in a "line printing" fashion.
  • Figure 1 is a drawing to show a typical stent design.
  • Figure 2 is a schematic view of a stent coating apparatus according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of a transducer assembly.
  • Figure 4 is an example of generating single droplet using a transducer array according to an embodiment of the present invention.
  • Figure 5 is a schematic view of a stent coating apparatus includes more than one coating device.
  • Figure 6 is a schematic diagram of external transducer arrays containing a single reservoir.
  • Figure 7 is a schematic diagram of external transducer arrays containing multiple individual reservoirs.
  • FIG. 2 illustrates a stent coating apparatus 10.
  • the apparatus 10 includes a stent handling 12, a coating device 14, and an imaging system, 56 and 58.
  • the stent handling system 12 is to provide the supports to a stent 16 which is connected to motor 26 and motor 27 so as to control stent's circumferential and translational movements.
  • the coating device 14 applies a coating to the stent 16.
  • the stent support 12 includes a shaft 20, a mandrel 22, and an optional lock member 24.
  • the lock member 24 is optional if the mandrel 22 by itself can support the stent 16.
  • the support member 20 is connected to a motor 26 to rotate the stent in the circumferential direction, so as motor 27 to translate the stent in the longitudinal direction of the stent 16, as depicted by the arrows 28 and 29.
  • the support member 20 includes a conical end portion 30 and a bore 32 for receiving a first end of the mandrel 22.
  • the first end can be threaded to screw into the bore 32 or can be retained within the bore 32 by a friction fit.
  • the bore 32 should be deep enough to allow the mandrel 22 to mate securely with the support member 20.
  • the depth of the bore 32 can also be further extended to allow a significant length of the mandrel 22 to penetrate or screw into the bore 32.
  • the bore 32 can also extend completely through the support member 20. This would allow the length of the mandrel 22 to be adjusted to accommodate stents of various sizes.
  • the mandrel 22 may also include a plurality of ridges 34 that add rigidity to and support to the stent 16 during coating.
  • the ridges 34 may have a diameter of slightly less than the inner diameter of the stent 16. While three ridges 34 are shown, it will be appreciated by one of ordinary skill in the art
  • the lock member 24 also may include a conical end portion 36.
  • a second end of the mandrel 22 can be permanently affixed to the lock member 24 if the first end is disengageable from the support member 20.
  • the mandrel 22 can have a threaded second end for screwing into a bore 38 of the lock member 24.
  • the bore 38 can be of any suitable depth that would provide the lock member 24 incremental movement with respect to the support member 20.
  • the bore 38 on the lock member 24 can also be made as a through hole. Accordingly, stents of any length can be secured between the support member 20 and the lock members 20 and 24.
  • the second end lock member 24 contains a through hole 38 enabling the second end lock member to slide over the mandrel 22 to keep the stent 16 on the mandrel 22.
  • the coating device 14 shown in Figure 2 includes a reservoir 40 and a transducer assembly 42.
  • the reservoir 40 is used to hold a coating substance 44 to be applied to the stent 16.
  • the transducer assembly 42 is submerged in the reservoir 40.
  • the transducer assembly 42 generates acoustic energy to eject droplets from the surface 46 of the coating solution 44 to coat the stent 16.
  • the locations of the ejection points on the surface 46 of the coating substance 44 are matched to the stent strut areas that need to be coated.
  • the reservoir 40 may have any suitable configuration and may be disposed at any suitable location.
  • the reservoir 40 may have a cylindrical, elliptical or parallelepiped configuration.
  • the reservoir 40 encompasses the entire stent 16 so that droplets ejected from the surface 46 can reach all areas of the stent 16.
  • the reservoir 40 may cover only an area of the stent to be coated.
  • the reservoir 40 is positioned directly underneath the stent. Also, a short distance between the stent and the surface of reservoir 46 is maintained to ensure a stable droplet ejection.
  • the transducer assembly 42 includes a plurality of transducers 48 and a controller 50 that is programmed to control the transducers 48.
  • Each transducer 48 is used to generate the acoustic energy in the form of sound or ultrasound waves.
  • Each transducer 48 preferably is a piezoelectric device, although it can be any other device suitable for generating ultrasound waves.
  • the use of focused acoustic beam to eject droplets of controlled diameter and velocity from a free -liquid surface are well known in the art.
  • Figure 3 is a schematic diagram to show the mechanism of generating the droplet on demand using transducer arrays.
  • the controller 50 may be used to control the frequency, amplitude, and phase of the waves generated by each transducer 48 and to turn on or off the power supplied to the transducer 48.
  • the controller 50 controls the transducers 48 to generate waves that constructively interfere at this predetermined point.
  • the focused acoustic energy causes a droplet to be ejected from the surface 46 of the coating substance 44 to coat the stent 16. Adjusting the frequency and amplitude of the ultrasound waves allows control over the ejection speed and volume of the droplet.
  • Figure 4 depicts the mechanism of generating a droplet from the surface of a coating substance.
  • a coating substance 44 is contained in a reservoir (not shown); also, there are nine transducers 48 submerged in the coating substance 44.
  • the transducers 48 are used to generate focused in-phase waves at a predetermined ejection point 54 on the surface 46 of the coating substance 44.
  • the waves are coherently constructed (in phase) at the ejection point (focal point) 54.
  • the focused (through the acoustic lens) acoustic energy creates the required pressure at the ejection point 54, to eject a droplet 52 from the surface 46 onto the stent surface.
  • the transducers 48 should generate the waves at different times. In the example shown in Figure 4, each of the first and ninth transducers, which are farthest from the ejection point 54, should first generate a wave.
  • the fifth transducer which is the closest to the ejection point 54, is the last to generate a wave. The precise timing for progressively generating the waves can be determined by a person of ordinary skill in the art and will not be discussed herein.
  • stent 16 is coated line by line as the stent rotates.
  • the droplet ejection is controlled in a linear fashion and the droplet is generated only in the section that stent strut is detected.
  • these ejection points are aligned to stent's longitudinal direction, and the coating substance is received only on the stent's outside surfaces.
  • the ejection points are determined through the image controllers to verify if a stent strut is present.
  • the ejection can be excited accordingly. Excitation of drops can start from one end and ending at the other end, or the droplets can be fired in segment or in all.
  • the droplet formation can be generated by singe or combination of any number of transducers 48 in the reservoir 40.
  • the number of transducers used to generate each droplet may be seven.
  • the first droplet may be generated by transducers Nos. 1 to 7, the second droplet by Nos. 2 to 8, the third droplet by Nos. 3 to 9 and so on.
  • the number of transducers for generating a droplet may vary from droplet to droplet.
  • the first droplet may be generated by nine transducers, the second droplet by five, the third droplet by 15... and so on.
  • the transducers used to generate a droplet are symmetrically arranged about the ejection point
  • Non-symmetrically arranged transducers tend to eject a droplet in a direction oblique to the surface of the coating substance. But one of ordinary skill in the art recognizes that an asymmetrical arrangement of the transducers can also be utilized to generate any specific ejection patterns by adjusting the timing, amplitude, or frequency of waves.
  • the transducers 48 are arranged linearly and evenly spaced. In general, however, the transducer array can be arranged in any suitable manner. For example, instead of being arranged in a single row as shown in Figure 2, the transducers may be arranged in two or multiple parallel rows. Additionally, the total required number of transducers 48 included in the transducer assembly 42 can vary depending on the application. For example, the number of transducers may range from 5 to 10,000, from 10 to 2,000, from 20 to 1,000, from 30 to 600, or from 40 to 400.
  • the stent coating apparatus 10 shown in Figure 2 is used to illustrate an example of using only one coating device 14 to coat the stent.
  • This apparatus can be easily expanded to contain a dual-reservoir or multiple-reservoir coating system that will allow to accelerate the coating speed or it will allow to apply different formulations onto a stent.
  • a stent coating apparatus 110 includes two coating assemblies 114a and 114b that are laterally arranged next to each other. Each assembly may contain different therapeutic agent.
  • the therapeutic agent can be applied over the stent in sequence (i.e. layer by layer) to achieve a synergist effect.
  • the first coating assembly 114a is used to apply a layer of drug A over the stent 16
  • the second assembly 114b is used to apply another layer of drug B on top of drug A layer.
  • the stent coating apparatus 10 may include a first vision device 56 that images the stent 16 before or after the coating substance 44 has been
  • the first imaging device 56 along with a second imaging device 58 located a distance from the stent 16, are both communicatively coupled to the controller 50 of the transducer assembly 42. Based on the image provided by the imaging devices 56, 58, the controller 50 actuates the ejection of the droplets to coat only selected areas of the stent 16 accordingly.
  • the coating device 14 may be stopped from dispensing the coating substance, and the imaging device 56 may begin to image the stent section to determine if the section has been adequately coated. This determination can be made by measuring the difference in color or reflectivity of the stent section before and after the coating process. If the stent section has been adequately coated, the stent coating apparatus 10 will begin to coat a new section of the stent 16. If the stent section is not coated adequately, then the stent coating apparatus 10 will recoat the stent section.
  • the imaging devices 56, 58 can include charge coupled devices (CCDs) or complementary metal oxide semiconductor (CMOS) devices. In an embodiment of the invention, the imaging devices can be combined into a single imaging device. Further, it will be appreciated by one of ordinary skill in the art that placement of the imaging devices 56, 58 can vary as long as the devices have an acceptable view of the stent 16.
  • the stent 16 is first mounted on the mandrel 22 of the stent support 12. The stent 16 is then rotated about its longitudinal axis by the motor 26 of the stent support 12. Once the stent 16 starts to rotate, the controller 50 of the coating device 14 commands the transducers 48 to generate in phase acoustic waves at one or more predetermined ejection points on the
  • FIG. 6 illustrates a stent coating apparatus 110 that includes a reservoir 40 and a transducer assembly 142 that is placed outside of the reservoir 40. In some embodiments, it may be preferable to place only some, but not all, of the transducers of the transducer assembly outside of the reservoir.
  • the stent coating apparatus 110 may further include an acoustic lens 160 placed preferably between each transducer 148 and the reservoir 40. Each acoustic lens 160 may have any suitable configuration, such as a concave configuration.
  • the acoustic lenses 160 may be in direct contact with the coating substance or indirectly in contact with the coating substance through a coupling fluid 162 (external to the solution reservoir).
  • the transducer assembly 142 may include (or may be coupled to) drive electronics, such as an ejection control 50, an RF amplifier, RF switches, and RF drives 164.
  • each reservoir may have one or more transducers.
  • the present invention offers many advantages over the prior art.
  • the present invention has the ability of coating stent abluminal surface only. A controlled
  • SANFRANCISCO/216775 1 volume of drops are generated and precisely delivered to the selective stent struts, thus it provides a better therapeutic control and it avoids the coating defects that are occurred in spraying and dipping methods. Additionally, the coating speed can be significantly increased through the transducer arrays design that enables coating the stent at multiple locations at a time. Furthermore, the present invention utilizes a nozzleless coating apparatus, thereby it eliminates the nozzle clogging issue which is a common issue to many conventional coating methods.

Abstract

An apparatus and method for coating the abluminal surface of a stent (16) is described. The apparatus includes a stent support (12), a coating device (14), and an imaging system (56, 58). The coating device (14) includes a solution reservoir (40) and transducer assembly. The transducer assembly includes a plurality of transducers (48) and a controller (50). Each transducer (48) is used to generate focused acoustic waves in the coating substance (44) in the reservoir (40). A controller (50) is communicated to an image system (56, 58) to enable the transducers (48) to generate droplets on demand and at the predetermined ejection points on the surface (46) of the coating substance (44) to coat the stent (16). A method for coating a stent includes stent mounting, stent movement, and droplet excitation.

Description

STENT COATING APPARATUS COMPRISING AN ACOUSTIC NOZZLELESS PRINTHEAD
FIELD OF THE INVENTION
The present invention relates to an apparatus for coating a stent and a method for coating a stent. More particularly, this invention provides an apparatus and method to generate uniform and controllable droplets that can be used to rapidly coat the abluminal surface (selective areas or entire outside surface) of a stent.
BACKGROUND
Percutaneous transluminal coronary angioplasty (PTCA) has revolutionized the treatment of coronary arterial disease. A PTCA procedure involves the insertion of a catheter into a coronary artery to position an angioplasty balloon at the site of a stenotic lesion that is at least partially blocking the coronary artery. The balloon is then inflated to compress against the stenosis and to widen the lumen to allow an efficient flow of blood through the coronary artery. However, restenosis at the site of angioplasty continues to hamper the long term success of PTCA, with the result that a significant proportion of patients have to undergo repeated revascularization.
Stenting has been shown to significantly reduce the incidence of restenosis to about 20 to 30 %. On the other hand, the era of stenting has brought a new problem of in- stent restenosis. As shown in Figure 1 , a stent 2 is a scaffolding device for the blood vessel and it typically has a cylindrical configuration and includes a number of interconnected struts 4. The stent is delivered to the stenosed lesion through a balloon catheter. Stent is expanded to against the vessel walls by inflating the balloon and the expanded stent can hold the vessel open.
SANFRANCISCO/216775. 1 Stent can be used as a platform for delivering pharmaceutical agents locally. The inherent advantage of local delivery the drug over systematic administration lies in the ability to precisely deliver a much lower dose of the drug to the target area thus achieving high tissue concentration while minimizing the risk of systemic toxicity.
Given the dramatic reduction in restenosis observed in these major clinical trials, it has triggered the rapid and widespread adoption of drug-eluting stents (DES) in many countries. A DES consisting of three key components, as follows: (1) a stent with catheter based deployment device, (2) a carrier that permits eluting of the drug into the blood vessel wall at the required concentration and kinetic profile, and (3) a pharmaceutical agent that can mitigate the in-stent restenosis. Most current DES systems utilize current- generation commercial stents and balloon catheter delivery systems.
The current understanding of the mechanism of restenosis suggests that the primary contributor to re-narrowing is the proliferation and migration of the smooth muscle cells from the injured artery wall into the lumen of the stent. Therefore, potential drug candidates may include agents that inhibit cell proliferation and migration, as well as drugs that inhibit inflammation. Utilizing the synergistic benefits of combination therapy (drug combination) has started the next wave of DES technology.
Strict pharmacologic and mechanical requirements must be fulfilled in designing the drug-eluting stents (DES) to guarantee drug release in a predictable and controlled fashion over a time period. In addition, a high speed coating apparatus that can precisely deliver a controllable amount of pharmaceutical agents onto the selective areas of the abluminal surface of a stent is extremely important to the DES manufactures.
There are several conventional coating methods which have been used to apply the drug onto a stent, e.g. by dipping the stent in a coating solution containing a drug or by
2
SANFRANCISCO/216775. 1 spraying the drug solution onto the stent. Dipping or spraying usually results in a complete coverage of all stent surfaces, i.e., both luminal and abluminal surfaces. The luminal side coating on a coated stent can have negative impacts to the stent's deliverability as well as the coating integrity. Moreover, the drug on the inner surface of the stent typically provides for an insignificant therapeutic effect and it get washed away by the blood flow. While the coating on the abluminal surface of the stent provides for the delivery of the drug directly to the diseased tissues.
The coating in the lumen side may increase the friction coefficient of the stent's surface, making withdrawal of a deflated balloon more difficult. Depending on the coating material, the coating may adhere to the balloon as well. Thus, the coating may be damaged during the balloon inflation/deflation cycle, or during the withdrawal of the balloon, resulting in a thrombogenic stent surface or embolic debris.
Defect formation on the stents is another shortcoming caused by the dipping and spraying methods. For example, these methods cause webbing, pooling, or clump between adjacent stent struts of the stent, making it difficult to control the amount of drug coated on the stent. In addition, fϊxturing (e.g. a mandrel) used to hold the stent in the spraying method may also induce coating defects. For example, upon the separation of the coated stent from the mandrel, it may leave some excessive coating material attached to the stent, or create some uncoated areas at the interface between the stent struts and mandrel. The coating weight and drop size uniformity control is another challenge of using aforementioned methods.
Another coating method involves the use of inkjet or bubble-jet technology. The drop ejection is generated by the physical vibration through a piezoelectric actuation or by thermal actuation. In an example, single inkjet or bubble-jet nozzle head can be devised as
3
SANFRANCISCO/216775. 1 an apparatus to precisely deliver a controlled volume coating substance to the entire or selected struts over a stent, thus it mitigates some of the shortcomings associated with the dipping and spraying methods. Typically, this operation involves moving an ejector head along the struts of a stent to be coated, but its coating speed is inherently much slower than, for example, an array coating system which consists of many transducers and each transducer can generate droplets to coat a stent simultaneously. This coating apparatus enables to generate droplets at single or multiple locations simultaneously on demand, thus it allows to coat stent in a much faster and versatile way (e.g. line printing rather than dot printing).
Furthermore, nozzle clogging, which may adversely affect coating quality, is a common problem to spraying, inkjet, and bubble-jet methods. Cleaning the nozzles results in a substantial downtime, decreased productivity, and increased maintenance cost.
It has been shown that focused and high intensity sound beams can be used for ejecting droplets. It is based on a constructive interference of acoustic waves- the acoustic waves will add in-phase at the focal point. Droplet formation using a focused acoustic beam is capable of ejecting liquid drop as small as a few microns in diameter with good reliability. It typically requires an acoustic lens to focus the acoustic waves.
The present invention provides a stent coating apparatus and method that overcome the aforementioned shortcomings from the conventional coating methods. The stent coating apparatus of the present invention can coat the abluminal surface of a stent at a high speed, and it can deliver a precise amount of coating material to the specific stent surfaces. Furthermore, the present invention does not use a nozzle, thus it eliminates the potential nozzle clogging issues.
SANFRANClSCO/216775. 1 According to the present invention, the stent coating apparatus includes a stent support, a coating device, and an imaging system. The stent support provides the mechanisms to hold a stent in place on a mandrel and to control the rotational and circumferential movement of the stent during the coating.
The coating apparatus includes a reservoir, a transducer assembly, and an ejection logic controller. The reservoir is used to hold a coating solution; a transducer assembly is used to generate acoustic energy to actuate the drop ejection from the surface of the coating solution; the ejection logic provides a control can over the position of droplet ejection. Transducers can be differentially turned on or off to steer the excitation of the droplets, and the droplet formation can be controlled only at the areas of the stent that need be coated. The advantage of this technique is it provides a reliable ejection of the fluids "on demand" without clogging the ejection aperture because the area of each ejection focal point is a relatively small region to the aperture.
The transducer assembly includes a plurality of transducers, RF drive device, and an ejection controller. Each transducer (e.g. piezoelectric transducer) can convert electrical energy into waves, such as ultrasonic waves. The transducer assembly generates acoustic waves and they propagate in the solution toward the liquid /air interface. Those waves are constructively interfered at a focal point of the solution surface, i.e., the waves will add in-phase at the focal point. The focused energy causes a droplet to be ejected from the surface of the coating solution. The wave frequency or amplitude can be used to adjust the droplet volume or droplet velocity.
In an embodiment of the invention, the constructively interfered waves are generated in certain patterns by controlling only portion of the transducers from the
SANFRANCISCO/216775. 1 transducer arrays. Preferably, a switching system (or an ejection logic control) is linked to an imaging system to energize the transducers according to the stent strut position.
In an embodiment of the invention, the controller commands the transducer arrays to simultaneously eject droplets at multiple ejection points on the surface of the coating solution so that the stent can be coated simultaneously.
In an embodiment of the invention, the stent is preferably positioned above the ejector to receive the droplets generated from the surface of coating solution. In another embodiment, stent can be placed beneath the ejector. It will be appreciated by one of the ordinary skill in the art that embodiments of the invention enable to position the stent or the ejector in any orientation.
In an embodiment of the invention, the stent coating apparatus includes at least one assisted device, an imaging device. The image system is to track the stent strut location, to control the stent movement, and to communicate the information to the ejection logic controller. Accordingly, an imaging device with a feedback control is used to communicate to the stent holder controller to orient the stent to a particular position to receive the droplets generated by the corresponding coating device.
SUMMARY
Embodiments of the invention provide a coating apparatus and method that enable to coat stent outside surface selectively or simultaneously while avoiding nozzle clogging and coating defects caused by other conventional coating methods. Further, embodiments of the apparatus include a high speed and a nozzleless stent coating process.
In an embodiment of the invention, a method for coating a stent includes mounting a stent on a stent support, rotating the stent, and translating a stent in its longitudinal
SΛNFRANCISCO/216775. 1 direction, and controlling a plurality of transducers to generate droplets at predetermined ejection points on the surface of a coating solution to coat the outside surface of a stent.
In an embodiment of the invention, that apparatus enables to generate droplets at single or multiple locations by using an ejection logic control to command the transducer arrays to generate droplets on demand. The transducer arrays used to generate the waves can be designed in a fashion to accommodate different stent geometries.
In an embodiment, the apparatus includes an optical feedback system to monitor and control the stent movement and, to communicate to the ejection logic controller to generate droplets to the selective surfaces of the stent.
In another embodiment, the apparatus is capable of adjusting the power, wave frequency or amplitude to control the drop volume or drop velocity respectively.
In an embodiment of the invention, a small multiple-reservoir system can be used to apply the same or different coating substances to the stent. The apparatus in this invention can coat the stent in a "line printing" fashion.
SANFRANCISCO/216775. 1 BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a drawing to show a typical stent design.
Figure 2 is a schematic view of a stent coating apparatus according to an embodiment of the present invention.
Figure 3 is a schematic diagram of a transducer assembly.
Figure 4 is an example of generating single droplet using a transducer array according to an embodiment of the present invention.
Figure 5 is a schematic view of a stent coating apparatus includes more than one coating device.
Figure 6 is a schematic diagram of external transducer arrays containing a single reservoir.
Figure 7 is a schematic diagram of external transducer arrays containing multiple individual reservoirs.
SANFRANCISCO/216775. 1 DETAILED DESCRIPTION
Figure 2 illustrates a stent coating apparatus 10. The apparatus 10 includes a stent handling 12, a coating device 14, and an imaging system, 56 and 58. The stent handling system 12 is to provide the supports to a stent 16 which is connected to motor 26 and motor 27 so as to control stent's circumferential and translational movements. The coating device 14 applies a coating to the stent 16.
In the embodiment shown in Figure 2, the stent support 12 includes a shaft 20, a mandrel 22, and an optional lock member 24. The lock member 24 is optional if the mandrel 22 by itself can support the stent 16. The support member 20 is connected to a motor 26 to rotate the stent in the circumferential direction, so as motor 27 to translate the stent in the longitudinal direction of the stent 16, as depicted by the arrows 28 and 29.
In this embodiment, the support member 20 includes a conical end portion 30 and a bore 32 for receiving a first end of the mandrel 22. The first end can be threaded to screw into the bore 32 or can be retained within the bore 32 by a friction fit. The bore 32 should be deep enough to allow the mandrel 22 to mate securely with the support member 20. The depth of the bore 32 can also be further extended to allow a significant length of the mandrel 22 to penetrate or screw into the bore 32. The bore 32 can also extend completely through the support member 20. This would allow the length of the mandrel 22 to be adjusted to accommodate stents of various sizes. The mandrel 22 may also include a plurality of ridges 34 that add rigidity to and support to the stent 16 during coating. The ridges 34 may have a diameter of slightly less than the inner diameter of the stent 16. While three ridges 34 are shown, it will be appreciated by one of ordinary skill in the art
SANFRANCISCO/216775. 1 that additional, fewer, or no ridges may be present, and the ridges may be evenly or unevenly spaced.
The lock member 24 also may include a conical end portion 36. A second end of the mandrel 22 can be permanently affixed to the lock member 24 if the first end is disengageable from the support member 20. Alternatively, the mandrel 22 can have a threaded second end for screwing into a bore 38 of the lock member 24. The bore 38 can be of any suitable depth that would provide the lock member 24 incremental movement with respect to the support member 20. The bore 38 on the lock member 24 can also be made as a through hole. Accordingly, stents of any length can be secured between the support member 20 and the lock members 20 and 24. In accordance with this embodiment, the second end lock member 24 contains a through hole 38 enabling the second end lock member to slide over the mandrel 22 to keep the stent 16 on the mandrel 22.
The coating device 14 shown in Figure 2 includes a reservoir 40 and a transducer assembly 42. The reservoir 40 is used to hold a coating substance 44 to be applied to the stent 16. The transducer assembly 42 is submerged in the reservoir 40. The transducer assembly 42 generates acoustic energy to eject droplets from the surface 46 of the coating solution 44 to coat the stent 16. Preferably, the locations of the ejection points on the surface 46 of the coating substance 44 are matched to the stent strut areas that need to be coated.
The reservoir 40 may have any suitable configuration and may be disposed at any suitable location. For example, the reservoir 40 may have a cylindrical, elliptical or parallelepiped configuration. Preferably, the reservoir 40 encompasses the entire stent 16 so that droplets ejected from the surface 46 can reach all areas of the stent 16. Alternatively, the reservoir 40 may cover only an area of the stent to be coated. In a
10
SANFRANCISCO/216775. 1 preferred embodiment, the reservoir 40 is positioned directly underneath the stent. Also, a short distance between the stent and the surface of reservoir 46 is maintained to ensure a stable droplet ejection.
As shown in Figure 2, the transducer assembly 42 includes a plurality of transducers 48 and a controller 50 that is programmed to control the transducers 48. Each transducer 48 is used to generate the acoustic energy in the form of sound or ultrasound waves. Each transducer 48 preferably is a piezoelectric device, although it can be any other device suitable for generating ultrasound waves. The use of focused acoustic beam to eject droplets of controlled diameter and velocity from a free -liquid surface are well known in the art. Figure 3 is a schematic diagram to show the mechanism of generating the droplet on demand using transducer arrays.
The controller 50 may be used to control the frequency, amplitude, and phase of the waves generated by each transducer 48 and to turn on or off the power supplied to the transducer 48. To generate a droplet at a predetermined point on the surface 46, the controller 50 controls the transducers 48 to generate waves that constructively interfere at this predetermined point. The focused acoustic energy causes a droplet to be ejected from the surface 46 of the coating substance 44 to coat the stent 16. Adjusting the frequency and amplitude of the ultrasound waves allows control over the ejection speed and volume of the droplet.
Figure 4 depicts the mechanism of generating a droplet from the surface of a coating substance. As illustrated in Figure 4, a coating substance 44 is contained in a reservoir (not shown); also, there are nine transducers 48 submerged in the coating substance 44. The transducers 48 are used to generate focused in-phase waves at a predetermined ejection point 54 on the surface 46 of the coating substance 44. In other
11
SANFRANCISCO/216775. I words, the waves are coherently constructed (in phase) at the ejection point (focal point) 54. The focused (through the acoustic lens) acoustic energy creates the required pressure at the ejection point 54, to eject a droplet 52 from the surface 46 onto the stent surface. -In order for the waves to arrive at the ejection point 54 in phase, the transducers 48 should generate the waves at different times. In the example shown in Figure 4, each of the first and ninth transducers, which are farthest from the ejection point 54, should first generate a wave. The fifth transducer, which is the closest to the ejection point 54, is the last to generate a wave. The precise timing for progressively generating the waves can be determined by a person of ordinary skill in the art and will not be discussed herein.
According to the present embodiment, as illustrated in Figure 2, stent 16 is coated line by line as the stent rotates. The droplet ejection is controlled in a linear fashion and the droplet is generated only in the section that stent strut is detected. Preferably, these ejection points are aligned to stent's longitudinal direction, and the coating substance is received only on the stent's outside surfaces. The ejection points are determined through the image controllers to verify if a stent strut is present. Thus, the ejection can be excited accordingly. Excitation of drops can start from one end and ending at the other end, or the droplets can be fired in segment or in all.
The droplet formation can be generated by singe or combination of any number of transducers 48 in the reservoir 40. In some embodiments, the number of transducers used to generate each droplet may be seven. For example, the first droplet may be generated by transducers Nos. 1 to 7, the second droplet by Nos. 2 to 8, the third droplet by Nos. 3 to 9 and so on. In some other embodiments, the number of transducers for generating a droplet may vary from droplet to droplet. For example, the first droplet may be generated by nine transducers, the second droplet by five, the third droplet by 15... and so on. Preferably, the transducers used to generate a droplet are symmetrically arranged about the ejection point
12
SANFRANCISCO/216775 1 from which the droplet is ejected. Non-symmetrically arranged transducers tend to eject a droplet in a direction oblique to the surface of the coating substance. But one of ordinary skill in the art recognizes that an asymmetrical arrangement of the transducers can also be utilized to generate any specific ejection patterns by adjusting the timing, amplitude, or frequency of waves.
One preferred embodiment as shown in Figure 2, the transducers 48 are arranged linearly and evenly spaced. In general, however, the transducer array can be arranged in any suitable manner. For example, instead of being arranged in a single row as shown in Figure 2, the transducers may be arranged in two or multiple parallel rows. Additionally, the total required number of transducers 48 included in the transducer assembly 42 can vary depending on the application. For example, the number of transducers may range from 5 to 10,000, from 10 to 2,000, from 20 to 1,000, from 30 to 600, or from 40 to 400.
The stent coating apparatus 10 shown in Figure 2 is used to illustrate an example of using only one coating device 14 to coat the stent. This apparatus can be easily expanded to contain a dual-reservoir or multiple-reservoir coating system that will allow to accelerate the coating speed or it will allow to apply different formulations onto a stent. For example, as shown in Figure 5, a stent coating apparatus 110 includes two coating assemblies 114a and 114b that are laterally arranged next to each other. Each assembly may contain different therapeutic agent. The therapeutic agent can be applied over the stent in sequence (i.e. layer by layer) to achieve a synergist effect. For example, the first coating assembly 114a is used to apply a layer of drug A over the stent 16, while the second assembly 114b is used to apply another layer of drug B on top of drug A layer.
As illustrated in Figure 2, the stent coating apparatus 10 may include a first vision device 56 that images the stent 16 before or after the coating substance 44 has been
13
SANFRANC!SCO/216775. 1 applied to the stent 16. The first imaging device 56, along with a second imaging device 58 located a distance from the stent 16, are both communicatively coupled to the controller 50 of the transducer assembly 42. Based on the image provided by the imaging devices 56, 58, the controller 50 actuates the ejection of the droplets to coat only selected areas of the stent 16 accordingly.
After a section of the stent 16 has been coated, the coating device 14 may be stopped from dispensing the coating substance, and the imaging device 56 may begin to image the stent section to determine if the section has been adequately coated. This determination can be made by measuring the difference in color or reflectivity of the stent section before and after the coating process. If the stent section has been adequately coated, the stent coating apparatus 10 will begin to coat a new section of the stent 16. If the stent section is not coated adequately, then the stent coating apparatus 10 will recoat the stent section.
In an embodiment of the invention, the imaging devices 56, 58 can include charge coupled devices (CCDs) or complementary metal oxide semiconductor (CMOS) devices. In an embodiment of the invention, the imaging devices can be combined into a single imaging device. Further, it will be appreciated by one of ordinary skill in the art that placement of the imaging devices 56, 58 can vary as long as the devices have an acceptable view of the stent 16.
During the operation of the stent coating apparatus 10 illustrated in Figure 2, the stent 16 is first mounted on the mandrel 22 of the stent support 12. The stent 16 is then rotated about its longitudinal axis by the motor 26 of the stent support 12. Once the stent 16 starts to rotate, the controller 50 of the coating device 14 commands the transducers 48 to generate in phase acoustic waves at one or more predetermined ejection points on the
14
SANFRANCISCO/216775. 1 surface 46. Droplets are ejected at the focal points and get dispensed onto the stent 16. Additionally, the droplet volume can be tuned by adjusting the frequencies, and the drop velocity can be controlled by changing the wave amplitude. Furthermore, one or two imaging devices 56, 58 may be used to generate an image of the stent 16 to be used to direct the droplets to selected areas of the stent 16.
Although the transducer assemblies 42 of the above-described embodiments are placed inside the reservoir 40 and submerged in a coating substance during operation, it is possible to place a transducer assembly outside of a reservoir. Figure 6 illustrates a stent coating apparatus 110 that includes a reservoir 40 and a transducer assembly 142 that is placed outside of the reservoir 40. In some embodiments, it may be preferable to place only some, but not all, of the transducers of the transducer assembly outside of the reservoir. The stent coating apparatus 110 may further include an acoustic lens 160 placed preferably between each transducer 148 and the reservoir 40. Each acoustic lens 160 may have any suitable configuration, such as a concave configuration. The acoustic lenses 160 may be in direct contact with the coating substance or indirectly in contact with the coating substance through a coupling fluid 162 (external to the solution reservoir). The transducer assembly 142 may include (or may be coupled to) drive electronics, such as an ejection control 50, an RF amplifier, RF switches, and RF drives 164.
Furthermore, although the embodiment shown in Figure 6 has only one reservoir 40, one or more additional reservoirs may be added, and each reservoir may have one or more transducers. In the embodiment 210 shown in Figure 7, for example, there is a reservoir 240 for each transducer 148.
The present invention offers many advantages over the prior art. For example, the present invention has the ability of coating stent abluminal surface only. A controlled
15
SANFRANCISCO/216775. 1 volume of drops are generated and precisely delivered to the selective stent struts, thus it provides a better therapeutic control and it avoids the coating defects that are occurred in spraying and dipping methods. Additionally, the coating speed can be significantly increased through the transducer arrays design that enables coating the stent at multiple locations at a time. Furthermore, the present invention utilizes a nozzleless coating apparatus, thereby it eliminates the nozzle clogging issue which is a common issue to many conventional coating methods.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
16
SANFRANCISCO/216775. 1

Claims

CLAIMS:
1. An apparatus comprising:
a stent support including a mandrel and stent motion control; and
a nozzleless coating device including
a reservoir with an appropriate level control, and a transducer assembly including a plurality of transducers and an ejection logic control controller, wherein each transducer is designed to generate droplets, and wherein the controller is to provide on/off timing control on the transducer arrays in generating droplets on demand, and an imaging system which will track the stent movement and provide communication to the logic controller to decide the locations of ejection points.
2. The apparatus of claim 1 , where in the transducer is submerged in a solution reservoir.
3. The apparatus of claim 2, wherein the transducer is external to a solution reservoir.
4. The apparatus according to claim 1 wherein the waves are generated selectively or differentially by controlling each or segment of the transducers.
5. The apparatus according to claim 2 wherein the transducers are arranged symmetrically in lateral direction with respect to the ejection point.
6. The controller of claim 4 wherein the controller provides on/off timing control on the ejectors.
17
SANFRANClSCO/216775. 1
7. The apparatus according to claim 1 wherein all of the transducer arrays generate in-phase waves that arrive substantially simultaneously at a predetermined ejection point.
8. The apparatus according to claim 1 wherein the controller is designed to differentially control the transducer arrays to generate droplets only at the predetermined focal points on the surface of the coating solution.
9. The apparatus according to claim 4 wherein the two droplets are generated independently by two different transducer assemblies.
10. The apparatus according to claim 1 wherein the controller is capable of adjusting the frequency of the waves.
11. The apparatus according to claim 1 wherein the stent support is to provide rotational and lateral movement of the stent which is positioned at a distance above the surface of the coating substance.
12. The apparatus according to claim 1 further comprising at least one additional coating assembly.
13. The apparatus according to claim 12 wherein the first coating assembly is arranged laterally to the second coating assembly.
14. The apparatus according to claim 12 wherein the coating assembly are used to coat different coating substances.
15. The apparatus according to claim 1 further comprising an imaging feedback system to enable the communication between ejection transducer assembly and stent motion control.
16. The apparatus according to claim 15, wherein an image system is used to align a stent strut to the transducers to enable ejected droplets delivered to a stent struts.
18
SANFRANCISCO/216775. 1
17. A method for coating a stent comprising the steps of:
Stent motion control, and a drive mechanism to control a plurality of transducers to generate in-phase waves in a coating substance at a predetermined ejection point on a surface of the coating substance to eject droplets from the coating substance.
18. The method according to claim 17 wherein the drive mechanism enables the control of transducers in segments.
19. The method according to claim 18 wherein the transducers are arranged symmetrically with respect to the ejection point.
20. The method according to claim 17 wherein controlling a plurality of transducers comprises an ejection logic control.
21. The method according to claim 17 wherein controlling a plurality of transducers comprises segmenting the transducers to enable simultaneously generating droplets at multiple predetermined ejection points,
22. The method according to claim 17 wherein controlling a plurality of transducers comprises adjusting the frequency of the waves to control droplet volume.
23. The method according to claim 17 wherein controlling a plurality of transducers comprises adjusting the amplitude of the waves to control droplet velocity.
24. The method according to claim 17 wherein controlling a plurality of transducers comprises generating stent strut images to determine the ejection points and commanding the corresponding transducers to actuate the droplet formation.
19
SANFRANCISCO/216775. 1
PCT/US2007/009113 2006-05-26 2007-04-13 Stent coating apparatus comprising an acoustic nozzleless printhead WO2007139625A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/442,005 US7775178B2 (en) 2006-05-26 2006-05-26 Stent coating apparatus and method
US11/442,005 2006-05-26

Publications (1)

Publication Number Publication Date
WO2007139625A1 true WO2007139625A1 (en) 2007-12-06

Family

ID=38476168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/009113 WO2007139625A1 (en) 2006-05-26 2007-04-13 Stent coating apparatus comprising an acoustic nozzleless printhead

Country Status (2)

Country Link
US (3) US7775178B2 (en)
WO (1) WO2007139625A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013019726A1 (en) * 2011-08-01 2013-02-07 Abbott Cardiovascular Systems Inc. Multiple stent design and coating thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060240065A1 (en) * 2005-04-26 2006-10-26 Yung-Ming Chen Compositions for medical devices containing agent combinations in controlled volumes
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US7775178B2 (en) 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
AU2008322469B2 (en) 2007-11-14 2014-02-20 Biosensors International Group, Ltd. Automated coating apparatus and method
AU2013212250B2 (en) 2012-01-23 2017-09-14 Cortronik GmbH Device for coating a stent, corresponding coating method, and stent produced according to said method
DE102012200910A1 (en) 2012-01-23 2013-07-25 Cortronik GmbH Device for e.g. luminal coating of stent that is used during treatment of coronary blood vessel of patient, with atorvastatin, has holder for stent, where device is formed such that position of stent to air nozzle and arbor is varied
CN105457843A (en) * 2016-01-18 2016-04-06 武汉华星光电技术有限公司 Photoresist coating device and phtoresist coating method
US20230139643A1 (en) * 2021-11-03 2023-05-04 Lisa Forgione Mechanical Rotating Spindle for Painting Designs
US11673158B1 (en) * 2022-02-16 2023-06-13 Jon Kyle Lavender Method and apparatus for coating a drinking straw

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0586187A2 (en) * 1992-09-04 1994-03-09 Xerox Corporation Droplet ejections by acoustic and electrostatic forces
EP0728584A2 (en) * 1995-02-21 1996-08-28 Kabushiki Kaisha Toshiba Ink-jet printer
US5898446A (en) * 1993-01-29 1999-04-27 Canon Kabushiki Kaisha Acoustic ink jet head and ink jet recording apparatus having the same
WO2004012784A1 (en) * 2002-07-30 2004-02-12 Labcoat Ltd. Stent coating device

Family Cites Families (312)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR732895A (en) * 1932-10-18 1932-09-25 Consortium Elektrochem Ind Articles spun in polyvinyl alcohol
US2386454A (en) 1940-11-22 1945-10-09 Bell Telephone Labor Inc High molecular weight linear polyester-amides
US3849514A (en) 1967-11-17 1974-11-19 Eastman Kodak Co Block polyester-polyamide copolymers
US3773737A (en) 1971-06-09 1973-11-20 Sutures Inc Hydrolyzable polymers of amino acid and hydroxy acids
US4329383A (en) 1979-07-24 1982-05-11 Nippon Zeon Co., Ltd. Non-thrombogenic material comprising substrate which has been reacted with heparin
SU790725A1 (en) 1979-07-27 1983-01-23 Ордена Ленина Институт Элементоорганических Соединений Ан Ссср Process for preparing alkylaromatic polyimides
US4226243A (en) 1979-07-27 1980-10-07 Ethicon, Inc. Surgical devices of polyesteramides derived from bis-oxamidodiols and dicarboxylic acids
SU872531A1 (en) 1979-08-07 1981-10-15 Институт Физиологии Им.И.С.Бериташвили Ан Гсср Method of producing polyurethans
SU811750A1 (en) 1979-08-07 1983-09-23 Институт Физиологии Им.С.И.Бериташвили Bis-bicarbonates of aliphatic diols as monomers for preparing polyurethanes and process for producing the same
SU876663A1 (en) 1979-11-11 1981-10-30 Институт Физиологии Им. Академика И.С.Бериташвили Ан Гсср Method of producing polyarylates
SU1016314A1 (en) 1979-12-17 1983-05-07 Институт Физиологии Им.И.С.Бериташвили Process for producing polyester urethanes
US4343931A (en) 1979-12-17 1982-08-10 Minnesota Mining And Manufacturing Company Synthetic absorbable surgical devices of poly(esteramides)
US4529792A (en) 1979-12-17 1985-07-16 Minnesota Mining And Manufacturing Company Process for preparing synthetic absorbable poly(esteramides)
SU905228A1 (en) 1980-03-06 1982-02-15 Институт Физиологии Им. Акад.И.С. Бериташвили Ан Гсср Method for preparing thiourea
SU1293518A1 (en) 1985-04-11 1987-02-28 Тбилисский зональный научно-исследовательский и проектный институт типового и экспериментального проектирования жилых и общественных зданий Installation for testing specimen of cross-shaped structure
US4656242A (en) 1985-06-07 1987-04-07 Henkel Corporation Poly(ester-amide) compositions
US4697195A (en) * 1985-09-16 1987-09-29 Xerox Corporation Nozzleless liquid droplet ejectors
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4611051A (en) 1985-12-31 1986-09-09 Union Camp Corporation Novel poly(ester-amide) hot-melt adhesives
US4882168A (en) 1986-09-05 1989-11-21 American Cyanamid Company Polyesters containing alkylene oxide blocks as drug delivery systems
JPH0696023B2 (en) 1986-11-10 1994-11-30 宇部日東化成株式会社 Artificial blood vessel and method for producing the same
US5721131A (en) * 1987-03-06 1998-02-24 United States Of America As Represented By The Secretary Of The Navy Surface modification of polymers with self-assembled monolayers that promote adhesion, outgrowth and differentiation of biological cells
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US6387379B1 (en) 1987-04-10 2002-05-14 University Of Florida Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
US4894231A (en) 1987-07-28 1990-01-16 Biomeasure, Inc. Therapeutic agent delivery system
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5019096A (en) 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
JP2561309B2 (en) 1988-03-28 1996-12-04 テルモ株式会社 Medical material and manufacturing method thereof
US4931287A (en) 1988-06-14 1990-06-05 University Of Utah Heterogeneous interpenetrating polymer networks for the controlled release of drugs
US5328471A (en) 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US4977901A (en) 1988-11-23 1990-12-18 Minnesota Mining And Manufacturing Company Article having non-crosslinked crystallized polymer coatings
IL90193A (en) 1989-05-04 1993-02-21 Biomedical Polymers Int Polurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same
US5272012A (en) 1989-06-23 1993-12-21 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
US5971954A (en) 1990-01-10 1999-10-26 Rochester Medical Corporation Method of making catheter
US5292516A (en) * 1990-05-01 1994-03-08 Mediventures, Inc. Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers
US5298260A (en) * 1990-05-01 1994-03-29 Mediventures, Inc. Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality
US5300295A (en) 1990-05-01 1994-04-05 Mediventures, Inc. Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH
US5306501A (en) 1990-05-01 1994-04-26 Mediventures, Inc. Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers
AU7998091A (en) 1990-05-17 1991-12-10 Harbor Medical Devices, Inc. Medical device polymer
ATE123658T1 (en) 1990-06-15 1995-06-15 Cortrak Medical Inc DEVICE FOR DISPENSING MEDICATIONS.
CA2038605C (en) 1990-06-15 2000-06-27 Leonard Pinchuk Crack-resistant polycarbonate urethane polymer prostheses and the like
US6060451A (en) 1990-06-15 2000-05-09 The National Research Council Of Canada Thrombin inhibitors based on the amino acid sequence of hirudin
US5112457A (en) 1990-07-23 1992-05-12 Case Western Reserve University Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
US5455040A (en) 1990-07-26 1995-10-03 Case Western Reserve University Anticoagulant plasma polymer-modified substrate
US5163952A (en) 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
US6248129B1 (en) 1990-09-14 2001-06-19 Quanam Medical Corporation Expandable polymeric stent with memory and delivery apparatus and method
US5258020A (en) * 1990-09-14 1993-11-02 Michael Froix Method of using expandable polymeric stent with memory
US5462990A (en) 1990-10-15 1995-10-31 Board Of Regents, The University Of Texas System Multifunctional organic polymers
GB9027793D0 (en) 1990-12-21 1991-02-13 Ucb Sa Polyester-amides containing terminal carboxyl groups
US5330768A (en) 1991-07-05 1994-07-19 Massachusetts Institute Of Technology Controlled drug delivery using polymer/pluronic blends
US5500013A (en) 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5573934A (en) * 1992-04-20 1996-11-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US5599352A (en) 1992-03-19 1997-02-04 Medtronic, Inc. Method of making a drug eluting stent
GB9206736D0 (en) 1992-03-27 1992-05-13 Sandoz Ltd Improvements of organic compounds and their use in pharmaceutical compositions
US5219980A (en) 1992-04-16 1993-06-15 Sri International Polymers biodegradable or bioerodiable into amino acids
DE69325845T2 (en) 1992-04-28 2000-01-05 Terumo Corp Thermoplastic polymer composition and medical devices made therefrom
DE4224401A1 (en) 1992-07-21 1994-01-27 Pharmatech Gmbh New biodegradable homo- and co-polymer(s) for pharmaceutical use - produced by polycondensation of prod. from heterolytic cleavage of aliphatic polyester with functionalised (cyclo)aliphatic cpd.
FR2699168B1 (en) 1992-12-11 1995-01-13 Rhone Poulenc Chimie Method of treating a material comprising a polymer by hydrolysis.
EP0604022A1 (en) 1992-12-22 1994-06-29 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method for its manufacture
US5824048A (en) 1993-04-26 1998-10-20 Medtronic, Inc. Method for delivering a therapeutic substance to a body lumen
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US20020055710A1 (en) 1998-04-30 2002-05-09 Ronald J. Tuch Medical device for delivering a therapeutic agent and method of preparation
JPH0767895A (en) 1993-06-25 1995-03-14 Sumitomo Electric Ind Ltd Antimicrobial artificial blood vessel and suture yarn for antimicrobial operation
US5886026A (en) * 1993-07-19 1999-03-23 Angiotech Pharmaceuticals Inc. Anti-angiogenic compositions and methods of use
EG20321A (en) 1993-07-21 1998-10-31 Otsuka Pharma Co Ltd Medical material and process for producing the same
DE4327024A1 (en) 1993-08-12 1995-02-16 Bayer Ag Thermoplastically processable and biodegradable aliphatic polyesteramides
US5380299A (en) * 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
WO1995010989A1 (en) 1993-10-19 1995-04-27 Scimed Life Systems, Inc. Intravascular stent pump
US5723004A (en) 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US5759205A (en) 1994-01-21 1998-06-02 Brown University Research Foundation Negatively charged polymeric electret implant
US6051576A (en) 1994-01-28 2000-04-18 University Of Kentucky Research Foundation Means to achieve sustained release of synergistic drugs by conjugation
WO1995024929A2 (en) 1994-03-15 1995-09-21 Brown University Research Foundation Polymeric gene delivery system
US5567410A (en) 1994-06-24 1996-10-22 The General Hospital Corporation Composotions and methods for radiographic imaging
US5857998A (en) * 1994-06-30 1999-01-12 Boston Scientific Corporation Stent and therapeutic delivery system
US5670558A (en) 1994-07-07 1997-09-23 Terumo Kabushiki Kaisha Medical instruments that exhibit surface lubricity when wetted
US5520715A (en) * 1994-07-11 1996-05-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Directional electrostatic accretion process employing acoustic droplet formation
US5788979A (en) 1994-07-22 1998-08-04 Inflow Dynamics Inc. Biodegradable coating with inhibitory properties for application to biocompatible materials
US5516881A (en) 1994-08-10 1996-05-14 Cornell Research Foundation, Inc. Aminoxyl-containing radical spin labeling in polymers and copolymers
US5578073A (en) 1994-09-16 1996-11-26 Ramot Of Tel Aviv University Thromboresistant surface treatment for biomaterials
US5485496A (en) * 1994-09-22 1996-01-16 Cornell Research Foundation, Inc. Gamma irradiation sterilizing of biomaterial medical devices or products, with improved degradation and mechanical properties
US5649977A (en) 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
FR2724938A1 (en) 1994-09-28 1996-03-29 Lvmh Rech POLYMERS FUNCTIONALIZED BY AMINO ACIDS OR AMINO ACID DERIVATIVES, THEIR USE AS SURFACTANTS, IN PARTICULAR, IN COSMETIC COMPOSITIONS AND IN PARTICULAR NAIL POLISH.
ES2155534T3 (en) * 1994-10-12 2001-05-16 Focal Inc ADMINISTRATION DIRECTED THROUGH BIODEGRADABLE POLYMERS.
US5637113A (en) 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5569198A (en) 1995-01-23 1996-10-29 Cortrak Medical Inc. Microporous catheter
US6017577A (en) 1995-02-01 2000-01-25 Schneider (Usa) Inc. Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices
US5919570A (en) 1995-02-01 1999-07-06 Schneider Inc. Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices
US5869127A (en) * 1995-02-22 1999-02-09 Boston Scientific Corporation Method of providing a substrate with a bio-active/biocompatible coating
US5702754A (en) 1995-02-22 1997-12-30 Meadox Medicals, Inc. Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings
US6231600B1 (en) 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
US5854376A (en) 1995-03-09 1998-12-29 Sekisui Kaseihin Kogyo Kabushiki Kaisha Aliphatic ester-amide copolymer resins
US5605696A (en) 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
US5837313A (en) * 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US5925720A (en) 1995-04-19 1999-07-20 Kazunori Kataoka Heterotelechelic block copolymers and process for producing the same
US6120536A (en) 1995-04-19 2000-09-19 Schneider (Usa) Inc. Medical devices with long term non-thrombogenic coatings
US6099562A (en) 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US20020091433A1 (en) 1995-04-19 2002-07-11 Ni Ding Drug release coated stent
US5674242A (en) 1995-06-06 1997-10-07 Quanam Medical Corporation Endoprosthetic device with therapeutic compound
US7550005B2 (en) * 1995-06-07 2009-06-23 Cook Incorporated Coated implantable medical device
US7611533B2 (en) * 1995-06-07 2009-11-03 Cook Incorporated Coated implantable medical device
US6129761A (en) 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
US5820917A (en) 1995-06-07 1998-10-13 Medtronic, Inc. Blood-contacting medical device and method
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US6774278B1 (en) * 1995-06-07 2004-08-10 Cook Incorporated Coated implantable medical device
US5609629A (en) * 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
AU716005B2 (en) 1995-06-07 2000-02-17 Cook Medical Technologies Llc Implantable medical device
US5667767A (en) 1995-07-27 1997-09-16 Micro Therapeutics, Inc. Compositions for use in embolizing blood vessels
US5877224A (en) * 1995-07-28 1999-03-02 Rutgers, The State University Of New Jersey Polymeric drug formulations
US5723219A (en) 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
US5658995A (en) 1995-11-27 1997-08-19 Rutgers, The State University Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide)
DE19545678A1 (en) 1995-12-07 1997-06-12 Goldschmidt Ag Th Copolymers of polyamino acid esters
PT1704878E (en) 1995-12-18 2013-07-17 Angiodevice Internat Gmbh Crosslinked polymer compositions and methods for their use
US6033582A (en) * 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US6054553A (en) 1996-01-29 2000-04-25 Bayer Ag Process for the preparation of polymers having recurring agents
US5727012A (en) * 1996-03-07 1998-03-10 Lucent Technologies Inc. Heterostructure laser
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US5955509A (en) 1996-05-01 1999-09-21 Board Of Regents, The University Of Texas System pH dependent polymer micelles
US5610241A (en) * 1996-05-07 1997-03-11 Cornell Research Foundation, Inc. Reactive graft polymer with biodegradable polymer backbone and method for preparing reactive biodegradable polymers
US5876433A (en) * 1996-05-29 1999-03-02 Ethicon, Inc. Stent and method of varying amounts of heparin coated thereon to control treatment
US5874165A (en) 1996-06-03 1999-02-23 Gore Enterprise Holdings, Inc. Materials and method for the immobilization of bioactive species onto polymeric subtrates
NL1003459C2 (en) * 1996-06-28 1998-01-07 Univ Twente Copoly (ester amides) and copoly (ester urethanes).
US5711958A (en) 1996-07-11 1998-01-27 Life Medical Sciences, Inc. Methods for reducing or eliminating post-surgical adhesion formation
US5830178A (en) 1996-10-11 1998-11-03 Micro Therapeutics, Inc. Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide
US6060518A (en) 1996-08-16 2000-05-09 Supratek Pharma Inc. Polymer compositions for chemotherapy and methods of treatment using the same
US5783657A (en) 1996-10-18 1998-07-21 Union Camp Corporation Ester-terminated polyamides of polymerized fatty acids useful in formulating transparent gels in low polarity liquids
US6530951B1 (en) * 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
US6120491A (en) 1997-11-07 2000-09-19 The State University Rutgers Biodegradable, anionic polymers derived from the amino acid L-tyrosine
US5980972A (en) 1996-12-20 1999-11-09 Schneider (Usa) Inc Method of applying drug-release coatings
US5997517A (en) 1997-01-27 1999-12-07 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
WO1998032777A1 (en) 1997-01-28 1998-07-30 United States Surgical Corporation Polyesteramides with amino acid-derived groups alternating with alpha-hydroxyacid-derived groups and surgical articles made therefrom
EP0960148B1 (en) 1997-01-28 2003-04-02 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
AU5932198A (en) 1997-01-28 1998-08-18 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US5879697A (en) * 1997-04-30 1999-03-09 Schneider Usa Inc Drug-releasing coatings for medical devices
US6867248B1 (en) 1997-05-12 2005-03-15 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
PT981381E (en) * 1997-05-12 2007-04-30 Metabolix Inc Polyhydroxyalkanoates for in vivo applications
US6180632B1 (en) * 1997-05-28 2001-01-30 Aventis Pharmaceuticals Products Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6245760B1 (en) 1997-05-28 2001-06-12 Aventis Pharmaceuticals Products, Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6159978A (en) 1997-05-28 2000-12-12 Aventis Pharmaceuticals Product, Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6056993A (en) 1997-05-30 2000-05-02 Schneider (Usa) Inc. Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
US6110483A (en) 1997-06-23 2000-08-29 Sts Biopolymers, Inc. Adherent, flexible hydrogel and medicated coatings
US6211249B1 (en) 1997-07-11 2001-04-03 Life Medical Sciences, Inc. Polyester polyether block copolymers
US5980928A (en) 1997-07-29 1999-11-09 Terry; Paul B. Implant for preventing conjunctivitis in cattle
CA2298580A1 (en) * 1997-08-08 1999-02-18 The Procter & Gamble Company Laundry detergent compositions with amino acid based polymers to provide appearance and integrity benefits to fabrics laundered therewith
US6121027A (en) 1997-08-15 2000-09-19 Surmodics, Inc. Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups
US6316522B1 (en) * 1997-08-18 2001-11-13 Scimed Life Systems, Inc. Bioresorbable hydrogel compositions for implantable prostheses
US6890546B2 (en) 1998-09-24 2005-05-10 Abbott Laboratories Medical devices containing rapamycin analogs
US6120788A (en) 1997-10-16 2000-09-19 Bioamide, Inc. Bioabsorbable triglycolic acid poly(ester-amide)s
US6015541A (en) * 1997-11-03 2000-01-18 Micro Therapeutics, Inc. Radioactive embolizing compositions
US6110188A (en) 1998-03-09 2000-08-29 Corvascular, Inc. Anastomosis method
US6258371B1 (en) 1998-04-03 2001-07-10 Medtronic Inc Method for making biocompatible medical article
US20030040790A1 (en) * 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US20010029351A1 (en) 1998-04-16 2001-10-11 Robert Falotico Drug combinations and delivery devices for the prevention and treatment of vascular disease
US7658727B1 (en) 1998-04-20 2010-02-09 Medtronic, Inc Implantable medical device with enhanced biocompatibility and biostability
CA2320259C (en) 1998-04-27 2006-01-24 Surmodics, Inc. Bioactive agent release coating
US20020188037A1 (en) 1999-04-15 2002-12-12 Chudzik Stephen J. Method and system for providing bioactive agent release coating
US6113629A (en) 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
KR100314496B1 (en) 1998-05-28 2001-11-22 윤동진 Non-thrombogenic heparin derivatives, process for preparation and use thereof
US6217151B1 (en) * 1998-06-18 2001-04-17 Xerox Corporation Controlling AIP print uniformity by adjusting row electrode area and shape
US6153252A (en) 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
CA2340652C (en) 1998-08-20 2013-09-24 Cook Incorporated Coated implantable medical device comprising paclitaxel
US6248127B1 (en) 1998-08-21 2001-06-19 Medtronic Ave, Inc. Thromboresistant coated medical device
US6335029B1 (en) * 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents
US6011125A (en) * 1998-09-25 2000-01-04 General Electric Company Amide modified polyesters
US6530950B1 (en) * 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
US6419692B1 (en) 1999-02-03 2002-07-16 Scimed Life Systems, Inc. Surface protection method for stents and balloon catheters for drug delivery
US6143354A (en) 1999-02-08 2000-11-07 Medtronic Inc. One-step method for attachment of biomolecules to substrate surfaces
US6258121B1 (en) 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US6283947B1 (en) * 1999-07-13 2001-09-04 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
US6494862B1 (en) 1999-07-13 2002-12-17 Advanced Cardiovascular Systems, Inc. Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway
US6177523B1 (en) * 1999-07-14 2001-01-23 Cardiotech International, Inc. Functionalized polyurethanes
US6759054B2 (en) 1999-09-03 2004-07-06 Advanced Cardiovascular Systems, Inc. Ethylene vinyl alcohol composition and coating
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6287628B1 (en) 1999-09-03 2001-09-11 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6749626B1 (en) 2000-03-31 2004-06-15 Advanced Cardiovascular Systems, Inc. Actinomycin D for the treatment of vascular disease
US6503954B1 (en) * 2000-03-31 2003-01-07 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing actinomycin D and a method of forming the same
US6713119B2 (en) * 1999-09-03 2004-03-30 Advanced Cardiovascular Systems, Inc. Biocompatible coating for a prosthesis and a method of forming the same
US6503556B2 (en) 2000-12-28 2003-01-07 Advanced Cardiovascular Systems, Inc. Methods of forming a coating for a prosthesis
US6379381B1 (en) 1999-09-03 2002-04-30 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US20040029952A1 (en) * 1999-09-03 2004-02-12 Yung-Ming Chen Ethylene vinyl alcohol composition and coating
JP2003511241A (en) * 1999-09-30 2003-03-25 シーメンス アクチエンゲゼルシヤフト Method and apparatus for laser drilling organic materials
US6203551B1 (en) * 1999-10-04 2001-03-20 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implant device
US6467877B2 (en) * 1999-10-05 2002-10-22 Xerox Corporation Method and apparatus for high resolution acoustic ink printing
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US6251136B1 (en) 1999-12-08 2001-06-26 Advanced Cardiovascular Systems, Inc. Method of layering a three-coated stent using pharmacological and polymeric agents
US6613432B2 (en) 1999-12-22 2003-09-02 Biosurface Engineering Technologies, Inc. Plasma-deposited coatings, devices and methods
US6908624B2 (en) 1999-12-23 2005-06-21 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6283949B1 (en) 1999-12-27 2001-09-04 Advanced Cardiovascular Systems, Inc. Refillable implantable drug delivery pump
AU2599501A (en) 1999-12-29 2001-07-09 Advanced Cardiovascular Systems Inc. Device and active component for inhibiting formation of thrombus-inflammatory cell matrix
US6899731B2 (en) 1999-12-30 2005-05-31 Boston Scientific Scimed, Inc. Controlled delivery of therapeutic agents by insertable medical devices
US6527801B1 (en) * 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US6270779B1 (en) 2000-05-10 2001-08-07 United States Of America Nitric oxide-releasing metallic medical devices
US20020007214A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020005206A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
US20020007215A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007213A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US7419678B2 (en) 2000-05-12 2008-09-02 Cordis Corporation Coated medical devices for the prevention and treatment of vascular disease
US6673385B1 (en) * 2000-05-31 2004-01-06 Advanced Cardiovascular Systems, Inc. Methods for polymeric coatings stents
US6395326B1 (en) * 2000-05-31 2002-05-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
US6585765B1 (en) 2000-06-29 2003-07-01 Advanced Cardiovascular Systems, Inc. Implantable device having substances impregnated therein and a method of impregnating the same
US20020077693A1 (en) 2000-12-19 2002-06-20 Barclay Bruce J. Covered, coiled drug delivery stent and method
US6555157B1 (en) 2000-07-25 2003-04-29 Advanced Cardiovascular Systems, Inc. Method for coating an implantable device and system for performing the method
WO2002009768A2 (en) * 2000-07-27 2002-02-07 Rutgers, The State University Therapeutic polyesters and polyamides
US6451373B1 (en) 2000-08-04 2002-09-17 Advanced Cardiovascular Systems, Inc. Method of forming a therapeutic coating onto a surface of an implantable prosthesis
US6503538B1 (en) * 2000-08-30 2003-01-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US6585926B1 (en) 2000-08-31 2003-07-01 Advanced Cardiovascular Systems, Inc. Method of manufacturing a porous balloon
US6716444B1 (en) 2000-09-28 2004-04-06 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US6254632B1 (en) 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
US20020051730A1 (en) 2000-09-29 2002-05-02 Stanko Bodnar Coated medical devices and sterilization thereof
US6746773B2 (en) 2000-09-29 2004-06-08 Ethicon, Inc. Coatings for medical devices
US7261735B2 (en) 2001-05-07 2007-08-28 Cordis Corporation Local drug delivery devices and methods for maintaining the drug coatings thereon
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US6506437B1 (en) * 2000-10-17 2003-01-14 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
US6558733B1 (en) 2000-10-26 2003-05-06 Advanced Cardiovascular Systems, Inc. Method for etching a micropatterned microdepot prosthesis
US6758859B1 (en) 2000-10-30 2004-07-06 Kenny L. Dang Increased drug-loading and reduced stress drug delivery device
US6596239B2 (en) 2000-12-12 2003-07-22 Edc Biosystems, Inc. Acoustically mediated fluid transfer methods and uses thereof
US7077859B2 (en) 2000-12-22 2006-07-18 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
US20020082679A1 (en) 2000-12-22 2002-06-27 Avantec Vascular Corporation Delivery or therapeutic capable agents
US6824559B2 (en) 2000-12-22 2004-11-30 Advanced Cardiovascular Systems, Inc. Ethylene-carboxyl copolymers as drug delivery matrices
US6544543B1 (en) 2000-12-27 2003-04-08 Advanced Cardiovascular Systems, Inc. Periodic constriction of vessels to treat ischemic tissue
US6663662B2 (en) * 2000-12-28 2003-12-16 Advanced Cardiovascular Systems, Inc. Diffusion barrier layer for implantable devices
US6540776B2 (en) 2000-12-28 2003-04-01 Advanced Cardiovascular Systems, Inc. Sheath for a prosthesis and methods of forming the same
US20020087123A1 (en) 2001-01-02 2002-07-04 Hossainy Syed F.A. Adhesion of heparin-containing coatings to blood-contacting surfaces of medical devices
US6544223B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
US6645195B1 (en) 2001-01-05 2003-11-11 Advanced Cardiovascular Systems, Inc. Intraventricularly guided agent delivery system and method of use
US6544582B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Method and apparatus for coating an implantable device
US6740040B1 (en) 2001-01-30 2004-05-25 Advanced Cardiovascular Systems, Inc. Ultrasound energy driven intraventricular catheter to treat ischemia
US20030032767A1 (en) * 2001-02-05 2003-02-13 Yasuhiro Tada High-strength polyester-amide fiber and process for producing the same
AU2002238076B2 (en) 2001-02-09 2007-05-17 Endoluminal Therapeutics, Inc. Endomural therapy
US20030004141A1 (en) * 2001-03-08 2003-01-02 Brown David L. Medical devices, compositions and methods for treating vulnerable plaque
US7771468B2 (en) 2001-03-16 2010-08-10 Angiotech Biocoatings Corp. Medicated stent having multi-layer polymer coating
US6613077B2 (en) 2001-03-27 2003-09-02 Scimed Life Systems, Inc. Stent with controlled expansion
US6645135B1 (en) 2001-03-30 2003-11-11 Advanced Cardiovascular Systems, Inc. Intravascular catheter device and method for simultaneous local delivery of radiation and a therapeutic substance
US6780424B2 (en) 2001-03-30 2004-08-24 Charles David Claude Controlled morphologies in polymer drug for release of drugs from polymer films
US6623448B2 (en) 2001-03-30 2003-09-23 Advanced Cardiovascular Systems, Inc. Steerable drug delivery device
US6625486B2 (en) 2001-04-11 2003-09-23 Advanced Cardiovascular Systems, Inc. Method and apparatus for intracellular delivery of an agent
US6764505B1 (en) 2001-04-12 2004-07-20 Advanced Cardiovascular Systems, Inc. Variable surface area stent
US6712845B2 (en) * 2001-04-24 2004-03-30 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
WO2002087586A1 (en) * 2001-04-26 2002-11-07 Control Delivery Systems, Inc. Sustained release drug delivery system containing codrugs
US6660034B1 (en) 2001-04-30 2003-12-09 Advanced Cardiovascular Systems, Inc. Stent for increasing blood flow to ischemic tissues and a method of using the same
US6656506B1 (en) 2001-05-09 2003-12-02 Advanced Cardiovascular Systems, Inc. Microparticle coated medical device
US7651695B2 (en) 2001-05-18 2010-01-26 Advanced Cardiovascular Systems, Inc. Medicated stents for the treatment of vascular disease
US7862495B2 (en) 2001-05-31 2011-01-04 Advanced Cardiovascular Systems, Inc. Radiation or drug delivery source with activity gradient to minimize edge effects
US6743462B1 (en) 2001-05-31 2004-06-01 Advanced Cardiovascular Systems, Inc. Apparatus and method for coating implantable devices
US6605154B1 (en) 2001-05-31 2003-08-12 Advanced Cardiovascular Systems, Inc. Stent mounting device
US6666880B1 (en) 2001-06-19 2003-12-23 Advised Cardiovascular Systems, Inc. Method and system for securing a coated stent to a balloon catheter
US6572644B1 (en) 2001-06-27 2003-06-03 Advanced Cardiovascular Systems, Inc. Stent mounting device and a method of using the same to coat a stent
US6695920B1 (en) 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US6673154B1 (en) 2001-06-28 2004-01-06 Advanced Cardiovascular Systems, Inc. Stent mounting device to coat a stent
US6565659B1 (en) 2001-06-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US6585755B2 (en) 2001-06-29 2003-07-01 Advanced Cardiovascular Polymeric stent suitable for imaging by MRI and fluoroscopy
US6656216B1 (en) 2001-06-29 2003-12-02 Advanced Cardiovascular Systems, Inc. Composite stent with regioselective material
US6527863B1 (en) * 2001-06-29 2003-03-04 Advanced Cardiovascular Systems, Inc. Support device for a stent and a method of using the same to coat a stent
US6706013B1 (en) * 2001-06-29 2004-03-16 Advanced Cardiovascular Systems, Inc. Variable length drug delivery catheter
US6676987B2 (en) * 2001-07-02 2004-01-13 Scimed Life Systems, Inc. Coating a medical appliance with a bubble jet printing head
EP1273314A1 (en) 2001-07-06 2003-01-08 Terumo Kabushiki Kaisha Stent
US6641611B2 (en) 2001-11-26 2003-11-04 Swaminathan Jayaraman Therapeutic coating for an intravascular implant
WO2003028590A1 (en) 2001-09-24 2003-04-10 Medtronic Ave Inc. Rational drug therapy device and methods
US7195640B2 (en) * 2001-09-25 2007-03-27 Cordis Corporation Coated medical devices for the treatment of vulnerable plaque
US6753071B1 (en) 2001-09-27 2004-06-22 Advanced Cardiovascular Systems, Inc. Rate-reducing membrane for release of an agent
US20030059520A1 (en) * 2001-09-27 2003-03-27 Yung-Ming Chen Apparatus for regulating temperature of a composition and a method of coating implantable devices
US20030073961A1 (en) 2001-09-28 2003-04-17 Happ Dorrie M. Medical device containing light-protected therapeutic agent and a method for fabricating thereof
US20030065377A1 (en) 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices
US7585516B2 (en) 2001-11-12 2009-09-08 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices
US6663880B1 (en) 2001-11-30 2003-12-16 Advanced Cardiovascular Systems, Inc. Permeabilizing reagents to increase drug delivery and a method of local delivery
US6709514B1 (en) * 2001-12-28 2004-03-23 Advanced Cardiovascular Systems, Inc. Rotary coating apparatus for coating implantable medical devices
US7445629B2 (en) 2002-01-31 2008-11-04 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
US6887270B2 (en) 2002-02-08 2005-05-03 Boston Scientific Scimed, Inc. Implantable or insertable medical device resistant to microbial growth and biofilm formation
US6743463B2 (en) * 2002-03-28 2004-06-01 Scimed Life Systems, Inc. Method for spray-coating a medical device having a tubular wall such as a stent
US6645547B1 (en) * 2002-05-02 2003-11-11 Labcoat Ltd. Stent coating device
US7709048B2 (en) 2002-05-02 2010-05-04 Labcoat, Ltd. Method and apparatus for coating a medical device
US6865810B2 (en) 2002-06-27 2005-03-15 Scimed Life Systems, Inc. Methods of making medical devices
US20040054104A1 (en) * 2002-09-05 2004-03-18 Pacetti Stephen D. Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol)
US20040063805A1 (en) 2002-09-19 2004-04-01 Pacetti Stephen D. Coatings for implantable medical devices and methods for fabrication thereof
US6971813B2 (en) 2002-09-27 2005-12-06 Labcoat, Ltd. Contact coating of prostheses
US6786922B2 (en) 2002-10-08 2004-09-07 Cook Incorporated Stent with ring architecture and axially displaced connector segments
US7087263B2 (en) 2002-10-09 2006-08-08 Advanced Cardiovascular Systems, Inc. Rare limiting barriers for implantable medical devices
PL376752A1 (en) 2002-11-07 2006-01-09 Abbott Laboratories Prosthesis having varied concentration of beneficial agent
US7416609B1 (en) * 2002-11-25 2008-08-26 Advanced Cardiovascular Systems, Inc. Support assembly for a stent
US8088404B2 (en) 2003-03-20 2012-01-03 Medtronic Vasular, Inc. Biocompatible controlled release coatings for medical devices and related methods
JP3805756B2 (en) * 2003-03-28 2006-08-09 株式会社東芝 Inkjet recording device
WO2005011561A2 (en) 2003-08-04 2005-02-10 Labcoat, Ltd. Stent coating apparatus and method
US7318944B2 (en) * 2003-08-07 2008-01-15 Medtronic Vascular, Inc. Extrusion process for coating stents
US20050038497A1 (en) * 2003-08-11 2005-02-17 Scimed Life Systems, Inc. Deformation medical device without material deformation
US20050037052A1 (en) * 2003-08-13 2005-02-17 Medtronic Vascular, Inc. Stent coating with gradient porosity
US20050043786A1 (en) * 2003-08-18 2005-02-24 Medtronic Ave, Inc. Methods and apparatus for treatment of aneurysmal tissue
US20050049693A1 (en) * 2003-08-25 2005-03-03 Medtronic Vascular Inc. Medical devices and compositions for delivering biophosphonates to anatomical sites at risk for vascular disease
US20050048194A1 (en) * 2003-09-02 2005-03-03 Labcoat Ltd. Prosthesis coating decision support system
US20050055078A1 (en) * 2003-09-04 2005-03-10 Medtronic Vascular, Inc. Stent with outer slough coating
US7544381B2 (en) * 2003-09-09 2009-06-09 Boston Scientific Scimed, Inc. Lubricious coatings for medical device
US20050054774A1 (en) * 2003-09-09 2005-03-10 Scimed Life Systems, Inc. Lubricious coating
US20050058768A1 (en) * 2003-09-16 2005-03-17 Eyal Teichman Method for coating prosthetic stents
US20050060020A1 (en) * 2003-09-17 2005-03-17 Scimed Life Systems, Inc. Covered stent with biologically active material
US7371228B2 (en) * 2003-09-19 2008-05-13 Medtronic Vascular, Inc. Delivery of therapeutics to treat aneurysms
US20050065501A1 (en) * 2003-09-23 2005-03-24 Scimed Life Systems, Inc. Energy activated vaso-occlusive devices
US7789891B2 (en) * 2003-09-23 2010-09-07 Boston Scientific Scimed, Inc. External activation of vaso-occlusive implants
US8801692B2 (en) 2003-09-24 2014-08-12 Medtronic Vascular, Inc. Gradient coated stent and method of fabrication
US7060319B2 (en) * 2003-09-24 2006-06-13 Boston Scientific Scimed, Inc. method for using an ultrasonic nozzle to coat a medical appliance
US7055237B2 (en) 2003-09-29 2006-06-06 Medtronic Vascular, Inc. Method of forming a drug eluting stent
US20050074406A1 (en) 2003-10-03 2005-04-07 Scimed Life Systems, Inc. Ultrasound coating for enhancing visualization of medical device in ultrasound images
US6984411B2 (en) 2003-10-14 2006-01-10 Boston Scientific Scimed, Inc. Method for roll coating multiple stents
US20060240065A1 (en) 2005-04-26 2006-10-26 Yung-Ming Chen Compositions for medical devices containing agent combinations in controlled volumes
US7214759B2 (en) 2004-11-24 2007-05-08 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on polyesters and methods for fabricating the same
US7632307B2 (en) 2004-12-16 2009-12-15 Advanced Cardiovascular Systems, Inc. Abluminal, multilayer coating constructs for drug-delivery stents
US7749553B2 (en) 2005-01-31 2010-07-06 Boston Scientific Scimed, Inc. Method and system for coating a medical device using optical drop volume verification
WO2006104976A2 (en) 2005-03-25 2006-10-05 Labcoat, Ltd. Controlled drug release coating for medical devices
US7599727B2 (en) 2005-09-15 2009-10-06 Labcoat, Ltd. Lighting and imaging system including a flat light source with LED illumination
US7342670B2 (en) 2005-10-19 2008-03-11 Labcoat, Ltd. In-flight drop location verification system
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US7775178B2 (en) 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
US8679573B2 (en) * 2006-06-28 2014-03-25 Advanced Cardiovascular Systems, Inc. Stent coating method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0586187A2 (en) * 1992-09-04 1994-03-09 Xerox Corporation Droplet ejections by acoustic and electrostatic forces
US5898446A (en) * 1993-01-29 1999-04-27 Canon Kabushiki Kaisha Acoustic ink jet head and ink jet recording apparatus having the same
EP0728584A2 (en) * 1995-02-21 1996-08-28 Kabushiki Kaisha Toshiba Ink-jet printer
WO2004012784A1 (en) * 2002-07-30 2004-02-12 Labcoat Ltd. Stent coating device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELROD, SCOTT A. ET AL: "NOZZLELESS DROPLET FORMATION WITH FOCUSED ACOUSTIC BEAMS", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 65, no. 9, 1 May 1989 (1989-05-01), pages 3441 - 3447, XP000038774, ISSN: 0021-8979 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013019726A1 (en) * 2011-08-01 2013-02-07 Abbott Cardiovascular Systems Inc. Multiple stent design and coating thereof

Also Published As

Publication number Publication date
US8616152B2 (en) 2013-12-31
US20100285203A1 (en) 2010-11-11
US20080226812A1 (en) 2008-09-18
US7775178B2 (en) 2010-08-17
US8236369B2 (en) 2012-08-07
US20120291703A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
US8236369B2 (en) Stent coating method
JP5397904B2 (en) Method and apparatus for stent coating
EP1551474B1 (en) Stent coating device
US7569110B2 (en) Stent coating device
EP1539039B1 (en) Method and apparatus for loading a beneficial agent into an expandable medical device
EP2045019B1 (en) Method and apparatus for coating a stent
US7997226B2 (en) Systems and methods for producing a medical device
US8318236B2 (en) Stent coating method
US20070032865A1 (en) Prosthesis having a coating and systems and methods of making the same
JP6352279B2 (en) Stent manufacturing method and applicator
US20070281071A1 (en) Acoustically coating workpieces
KR20160062532A (en) Spray apparatus comprising air and coating solution injection nozzle
KR20160050606A (en) Ultrasound coating system for stent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07755397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07755397

Country of ref document: EP

Kind code of ref document: A1