WO2008002318A2 - Data on light bulb - Google Patents

Data on light bulb Download PDF

Info

Publication number
WO2008002318A2
WO2008002318A2 PCT/US2006/028741 US2006028741W WO2008002318A2 WO 2008002318 A2 WO2008002318 A2 WO 2008002318A2 US 2006028741 W US2006028741 W US 2006028741W WO 2008002318 A2 WO2008002318 A2 WO 2008002318A2
Authority
WO
WIPO (PCT)
Prior art keywords
light
data
emr
ultra
resonant structures
Prior art date
Application number
PCT/US2006/028741
Other languages
French (fr)
Other versions
WO2008002318A3 (en
Inventor
Jonathan Gorrell
Henry Davis
Original Assignee
Virgin Islands Microsystems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Virgin Islands Microsystems, Inc. filed Critical Virgin Islands Microsystems, Inc.
Publication of WO2008002318A2 publication Critical patent/WO2008002318A2/en
Publication of WO2008002318A3 publication Critical patent/WO2008002318A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy

Abstract

A light-emitting device includes a plurality of ultra-small resonant structures, each of said structures constructed and adapted to emit electromagnetic radiation (EMR) at a particular wavelength when a beam of charged particles is passed nearby. A combiner mechanism constructed and adapted to combine data from a data source with the EMR emitted by at least one of the ultra-small resonant structures.

Description

DATA ON LIGHT BULB
COPYRIGHT NOTICE
[0001] A portion of the disclosure of this patent document contains material which is subject to copyright or mask work protection. The copyright or mask work owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright or mask work rights whatsoever.
CROSS-REFERENCE TO RELATED APPLICATIONS
[0002] The present invention is related to the following co-pending U.S. Patent applications which are all commonly owned with the present application, the entire contents of each of which are incorporated herein by reference:
(1) U.S. Patent Application No. 11/238,991, filed September 30, 2005, entitled "Ultra-Small Resonating Charged Particle Beam Modulator";
(2) U.S. Patent Application No. 10/917,511 , filed on August 13, 2004, entitled "Patterning Thin Metal Film by Dry Reactive Ion Etching";
(3) U.S. Application No, 1 1/203,407, filed on August 15, 2005, entitled "Method Of Patterning Ultra-Small Structures";
(4) U.S. Application No. 1 1/243,476, filed on October 5, 2005, entitled "Structures And Methods For Coupling Energy From An Electromagnetic Wave";
(5) U.S. Application No. 1 1/243,477, filed on October 5, 2005, entitled "Electron beam induced resonance,"
(6) U.S. Application no. 11/325,448, entitled "Selectable Frequency Light Emitter from Single Metal Layer," filed January 5, 2006;
(7) U.S. Application No. 11/325,432, entitled, "Matrix Array Display," filed January 5, 2006, (8) U.S. Application No. 11/410,924, entitled, "Selectable Frequency EMR -Emitter," filed April 26, 2006;
(9) U.S. Application No. 11/418,089, entitled "Methods, Devices and Systems Producing Illumination and Effects," filed May 5, 2006;
(10) U.S. Application No. 11/418,129, entitled "Transmission Of Data Between Microchips Using A Particle Beam," filed May 5, 2006 [arty, docket 2549- 0062];
(1 1) U.S. Application No. 11/418,099, entitled "Surface Plasmon Signal Transmission," filed May 5, 2006 [atty. docket 2549-0020];
(12) U.S. Application No. 1 1/349,963, entitled "Method And Structure For Coupling Two Microcircuits," filed May 5, 2006 [atty. docket 2549-0037]; and
(13) U.S. Application No. 11/400,280, entitled "Resonant Detector for Optical
Signals," and filed April 10, 2006.
FIELD OF THE DISCLOSURE
[0003] This relates to ultra-small resonant EMR structures, and, more particularly, to methods, devices and systems producing illumination and effects using such structures.
BRIEF DESCRIPTION OF THE DRAWINGS
[0004] The following description, given with respect to the attached drawings, may be better understood with reference to the non-limiting examples of the drawings, wherein:
[0005] FlGS. 1-2 show data-encoded light-emitting devices;
[0006] FlG. 3 shows arrays of light-emitting resonant structures.
THE PRESENTLY PREFERRED EXEMPLARY EMBODIMENTS
INTRODUCTION & BACKGROUND
[0007] The related applications describe various ultra-small electromagnetic radiation (EMR) emitting structures. The wavelength/frequency of the emitted EMR may be controlled or may depend on the structure used. U.S. Application No. 11/418,089, [atty. docket 2549-0023], incorporated herein by reference, discloses solid-state lighting and special illumination effects using such ultra-small structures. As disclosed, a light- emitting structure may be (or may be incorporated in) any kind of light or light fixture, including room lighting fixtures, workspace lighting (e.g., desk lighting), vehicle lighting and the like.
[0008] Various of the related applications, including, e.g., U.S. Applications Nos.
11/418,129; 11/418,099; 11/349,963; and 11/325,448, each incorporated herein by reference, disclose incorporating data on EMR emitted by an ultra-small structure.
DESCRIPTION
[0009] Fig. 1 shows a light fixture 100 (e.g., in the shape of a light bulb or the like) which includes one or more light emitting arrays 102 such as disclosed in the related applications (in particular, 11/418,089). As described in the related applications, each light emitter 102 includes a number of ultra-small resonant structures (URSl . . . URSrø) which may be provided on a single substrate. Each of the ultra-small resonant structures (URSz) may be one of the EMR emitting structures described in the related applications which emit EMR when a beam of charged particles passes nearby. See, e.g., Fig. 3. [0010] As described in the related applications, the charged particle beam can include ions (positive or negative), electrons, protons and the like. The beam may be produced by any source, including, e.g., without limitation, an ion gun, a thermionic filament, a tungsten filament, a cathode, a field-emission cathode, a planar vacuum triode, an electron-impact ionizer, a laser ionizer, a chemical ionizer, a thermal ionizer, an ion-impact ionizer.
[0011] Each ultra-small resonant structure is constructed and adapted to emit light at a particular wavelength/frequency (or within a particular range of wavelengths). Thus, a particular device may emit light at a number (n) of wavelengths. In some embodiments, URSz are constructed and adapted so that, in conjunction, they emit light across a range of visible wavelengths. [0012] A light-emitting structure may be made up of a collection of light emitters
(as described above) formed, e.g., on a substrate. Each of the light emitters may be identical, or different ones of the light emitters may be constructed and adapted to emit light at a different wavelength (or group of wavelengths). The various light emitters may be arranged in any way on the substrate.
[0013] A controller or switching mechanism may be operatively connected to some or all of the light emitters in order to control their respective on/off states as well as their respective emitted wavelengths.
[0014] A light-emitting structure may be (or may be incorporated in) any kind of light or light fixture; including room lighting fixtures, workspace lighting (e.g., desk lighting), vehicle lighting and the like. The light-emitting structures can also be incorporated in any environment where conventional light is emitted, such as, e.g., in signs, hand-held lights, vehicles or on any other lighted environment. [0015] The light emitters emit EMR (denoted W), as previously described.
[0016] A data source 104 provides data (D) to the light emitters. The data (D) are encoded into the emitted light (W), e.g., in a manner described in one or more of the. related applications. The encoded light (W+D) is emitted by the fixture. (The nomenclature "W+D" employed in this description is shorthand to identify all types of encoding, not just additive modulation.)
[0017] The data D may be or include, e.g., control data for one or more devices
106, 108. The devices may be any type of device, and they need not be the same type of device. The data may include video and/or audio data and the like, along with associated control data.
[0018] Since more than one ultra-small resonant structure may be employed, and since the emitted EMR (W) may include EMR in a number of wavelengths, in some embodiments, more than one data stream can be incorporated into the light emitted by a fixture. For example, as shown in Fig. 2, the light emitters in a fixture 202 can be considered to be in two groups (denoted 202-1, 202-2). Data (Dl) from a first data source 204-1 are combined with the light (Wl) emitted by the first group of light emitters 202-1. Similarly, data (D2) from a second data source 204-2 are combined with the light (W2) emitted by the second group of light emitters 202-2. Those skilled in the art will realize and understand, upon reading this description, that more than two data sources may be provided for each group of light emitters and that different groups of light emitters may be provided for each data source.
[0019] Those skilled in the art will also realize and understand, upon reading this description, that the EMR emitted by the fixtures described herein need not all be in the visible range. Thus, in particular, data may be provided on visible and/or invisible (e.g., IR and/or UV) electromagnetic radiation. In this manner, data may be provided even when no visible light is provided (for example, when the visible EMR of a fixture is "turned off). A fixture may have three (or more) settings, e.g., "visible+invisible", "invisible only" and "off. In the "visible+invisible" state, invisible EMR may be emitted, whereas in the "invisible only" state, no visible EMR would be emitted. Thus, multi-state lighting is provided.
[0020] The data provided from a light fixture as described herein may be detected by any known mechanism, including, without limitation, any of the detectors described in the related applications (for example, U.S. Application No. 11/400,280). The data may be used for any purpose, including, without limitation, to control other electronic devices co-located with the fixture. The data may also be used to provide, e.g., video and/or audio signals.
[0021] The devices described herein may be made, e.g., using techniques such as described in U.S. Patent Application No. 10/917,511 and/or 11/203,407. The nano- resonant structure may comprise any number of resonant microstructures constructed and adapted to produce EMR, e.g., as described above and/or in U.S. Application no. 11/325,448; 11/325,432; 11/243,476; 11/243,477; 11/302,471. [0022] While certain configurations of structures have been illustrated for the purposes of presenting the basic structures of the present invention, one of ordinary skill in the art will appreciate that other variations are possible that would still fall within the scope of the appended claims. While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims

CLAIMSWe claim:
1. A light-emitting device comprising: a plurality of ultra-small resonant structures, each of said structures constructed and adapted to emit ambient electromagnetic radiation (EMR) at a particular wavelength when a beam of charged particles is passed nearby; and a combiner mechanism constructed and adapted to combine data from a data source with the EMR emitted by at least one of the ultra-small resonant structures.
2. A device as in claim 1 wherein at least two of said ultra-small resonant structures emit light at different wavelengths.
3. A device as in claim 2 wherein at least one of the ultra-small resonant structures emits EMR within the visible range of light.
4. A device as in claim 1 wherein data from the data source are modulated onto the EMR emitted by at least one of the ultra-small resonant structures.
5. A device as in claim 1 wherein the combiner mechanism combines data from the data source with the EMR emitted by more than one of the ultra-small resonant structures.
6. A device as in claim 2 wherein the data are combined with light of at least two different wavelengths.
7. A device as in claim 3 wherein the data are combined with EMR outside of the visible range.
8. A method comprising: providing a fixture which includes a plurality of ultra-small resonant structures which emit ambient electromagnetic radiation (EMR) when exposed to a beam of charged particles; providing a data source; combining data from the data source with EMR from the fixture to produce EMR that contains the data.
9. A method as in claim 8 wherein the EMR covers a plurality of wavelengths.
10. A method as in claim 9 wherein at least one of the wavelengths is within the visible range of light.
11. A method as in claim 9 wherein the data are combined with EMR of more than one wavelength.
12. A method as in claim 11 wherein the data are combined with EMR of at least one non-visible wavelength.
13. A method of controlling an electronic device, the method comprising: providing control data for the electronic device to a light fixture including ultra- small light-emitting resonant structures; emitting light from said light fixture, said light encoded with said control data for said electronic device.
14. A method as in claim 13 further comprising: detecting said light including said control data; extracting said control data from said light; and controlling said device based, at least in part, on said extracted control data.
15. A light bulb comprising: an ultra-small resonant structure broadcasting light to a local device, said light being encoded with data; and an encoder to encode data with the emitted light for receipt by the local device.
PCT/US2006/028741 2006-06-28 2006-07-25 Data on light bulb WO2008002318A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/475,869 2006-06-28
US11/475,869 US7655934B2 (en) 2006-06-28 2006-06-28 Data on light bulb

Publications (2)

Publication Number Publication Date
WO2008002318A2 true WO2008002318A2 (en) 2008-01-03
WO2008002318A3 WO2008002318A3 (en) 2009-04-30

Family

ID=38846137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/028741 WO2008002318A2 (en) 2006-06-28 2006-07-25 Data on light bulb

Country Status (2)

Country Link
US (1) US7655934B2 (en)
WO (1) WO2008002318A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2849541A3 (en) * 2013-08-22 2015-07-08 INOTEC Sicherheitstechnik GmbH Method for providing lamp parameters at an interface of a lamp, lamp with an interface for the reading of light parameters and device for selecting the lamp parameters

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9377595B2 (en) * 2013-12-11 2016-06-28 Stan C. Petrov Photoelectric conductive motherboard and modular system
US9746632B1 (en) 2016-09-19 2017-08-29 Echostar Technologies L.L.C. Light waveguide apparatus
US10187146B2 (en) 2016-09-19 2019-01-22 DISH Technologies L.L.C. Light converting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060208667A1 (en) * 2001-03-13 2006-09-21 Color Kinetics Incorporated Methods and apparatus for providing power to lighting devices
US20060274922A1 (en) * 2004-04-20 2006-12-07 Bio-Rad Laboratories, Inc. Imaging method and apparatus
US7267461B2 (en) * 2004-01-28 2007-09-11 Tir Systems, Ltd. Directly viewable luminaire
US7267459B2 (en) * 2004-01-28 2007-09-11 Tir Systems Ltd. Sealed housing unit for lighting system

Family Cites Families (289)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2634372A (en) 1953-04-07 Super high-frequency electromag
US1948384A (en) 1932-01-26 1934-02-20 Research Corp Method and apparatus for the acceleration of ions
US2307086A (en) 1941-05-07 1943-01-05 Univ Leland Stanford Junior High frequency electrical apparatus
US2431396A (en) 1942-12-21 1947-11-25 Rca Corp Current magnitude-ratio responsive amplifier
US2397905A (en) * 1944-08-07 1946-04-09 Int Harvester Co Thrust collar construction
US2473477A (en) 1946-07-24 1949-06-14 Raythcon Mfg Company Magnetic induction device
US2932798A (en) 1956-01-05 1960-04-12 Research Corp Imparting energy to charged particles
US2944183A (en) 1957-01-25 1960-07-05 Bell Telephone Labor Inc Internal cavity reflex klystron tuned by a tightly coupled external cavity
US2966611A (en) 1959-07-21 1960-12-27 Sperry Rand Corp Ruggedized klystron tuner
US3231779A (en) 1962-06-25 1966-01-25 Gen Electric Elastic wave responsive apparatus
GB1054461A (en) 1963-02-06
US3315117A (en) 1963-07-15 1967-04-18 Burton J Udelson Electrostatically focused electron beam phase shifter
US3387169A (en) 1965-05-07 1968-06-04 Sfd Lab Inc Slow wave structure of the comb type having strap means connecting the teeth to form iterative inductive shunt loadings
US4746201A (en) 1967-03-06 1988-05-24 Gordon Gould Polarizing apparatus employing an optical element inclined at brewster's angle
US4053845A (en) 1967-03-06 1977-10-11 Gordon Gould Optically pumped laser amplifiers
US3546524A (en) 1967-11-24 1970-12-08 Varian Associates Linear accelerator having the beam injected at a position of maximum r.f. accelerating field
US3571642A (en) 1968-01-17 1971-03-23 Ca Atomic Energy Ltd Method and apparatus for interleaved charged particle acceleration
US3543147A (en) 1968-03-29 1970-11-24 Atomic Energy Commission Phase angle measurement system for determining and controlling the resonance of the radio frequency accelerating cavities for high energy charged particle accelerators
US3586899A (en) 1968-06-12 1971-06-22 Ibm Apparatus using smith-purcell effect for frequency modulation and beam deflection
US3560694A (en) 1969-01-21 1971-02-02 Varian Associates Microwave applicator employing flat multimode cavity for treating webs
US3761828A (en) 1970-12-10 1973-09-25 J Pollard Linear particle accelerator with coast through shield
US3886399A (en) 1973-08-20 1975-05-27 Varian Associates Electron beam electrical power transmission system
US3923568A (en) 1974-01-14 1975-12-02 Int Plasma Corp Dry plasma process for etching noble metal
DE2429612C2 (en) 1974-06-20 1984-08-02 Siemens AG, 1000 Berlin und 8000 München Acousto-optical data input converter for block-organized holographic data storage and method for its control
US4704583A (en) 1974-08-16 1987-11-03 Gordon Gould Light amplifiers employing collisions to produce a population inversion
US4282436A (en) 1980-06-04 1981-08-04 The United States Of America As Represented By The Secretary Of The Navy Intense ion beam generation with an inverse reflex tetrode (IRT)
US4453108A (en) 1980-11-21 1984-06-05 William Marsh Rice University Device for generating RF energy from electromagnetic radiation of another form such as light
US4661783A (en) 1981-03-18 1987-04-28 The United States Of America As Represented By The Secretary Of The Navy Free electron and cyclotron resonance distributed feedback lasers and masers
US4450554A (en) 1981-08-10 1984-05-22 International Telephone And Telegraph Corporation Asynchronous integrated voice and data communication system
US4528659A (en) 1981-12-17 1985-07-09 International Business Machines Corporation Interleaved digital data and voice communications system apparatus and method
US4589107A (en) 1982-11-30 1986-05-13 Itt Corporation Simultaneous voice and data communication and data base access in a switching system using a combined voice conference and data base processing module
US4652703A (en) 1983-03-01 1987-03-24 Racal Data Communications Inc. Digital voice transmission having improved echo suppression
US4482779A (en) 1983-04-19 1984-11-13 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Inelastic tunnel diodes
US4598397A (en) 1984-02-21 1986-07-01 Cxc Corporation Microtelephone controller
US4713581A (en) 1983-08-09 1987-12-15 Haimson Research Corporation Method and apparatus for accelerating a particle beam
US4829527A (en) 1984-04-23 1989-05-09 The United States Of America As Represented By The Secretary Of The Army Wideband electronic frequency tuning for orotrons
FR2564646B1 (en) 1984-05-21 1986-09-26 Centre Nat Rech Scient IMPROVED FREE ELECTRON LASER
EP0162173B1 (en) 1984-05-23 1989-08-16 International Business Machines Corporation Digital transmission system for a packetized voice
US4819228A (en) 1984-10-29 1989-04-04 Stratacom Inc. Synchronous packet voice/data communication system
GB2171576B (en) 1985-02-04 1989-07-12 Mitel Telecom Ltd Spread spectrum leaky feeder communication system
US4675863A (en) 1985-03-20 1987-06-23 International Mobile Machines Corp. Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels
JPS6229135A (en) 1985-07-29 1987-02-07 Advantest Corp Charged particle beam exposure and device thereof
IL79775A (en) 1985-08-23 1990-06-10 Republic Telcom Systems Corp Multiplexed digital packet telephone system
US4727550A (en) 1985-09-19 1988-02-23 Chang David B Radiation source
US4740963A (en) 1986-01-30 1988-04-26 Lear Siegler, Inc. Voice and data communication system
US4712042A (en) 1986-02-03 1987-12-08 Accsys Technology, Inc. Variable frequency RFQ linear accelerator
JPS62142863U (en) 1986-03-05 1987-09-09
JPH0763171B2 (en) 1986-06-10 1995-07-05 株式会社日立製作所 Data / voice transmission / reception method
US4761059A (en) 1986-07-28 1988-08-02 Rockwell International Corporation External beam combining of multiple lasers
US4813040A (en) 1986-10-31 1989-03-14 Futato Steven P Method and apparatus for transmitting digital data and real-time digitalized voice information over a communications channel
US5163118A (en) 1986-11-10 1992-11-10 The United States Of America As Represented By The Secretary Of The Air Force Lattice mismatched hetrostructure optical waveguide
JPH07118749B2 (en) 1986-11-14 1995-12-18 株式会社日立製作所 Voice / data transmission equipment
US4806859A (en) 1987-01-27 1989-02-21 Ford Motor Company Resonant vibrating structures with driving sensing means for noncontacting position and pick up sensing
BR8805263A (en) 1987-02-09 1989-08-15 Tlv Co Ltd OPERATING DETECTOR FOR CONDENSATION WATER SEPARATOR
US4932022A (en) 1987-10-07 1990-06-05 Telenova, Inc. Integrated voice and data telephone system
US4864131A (en) 1987-11-09 1989-09-05 The University Of Michigan Positron microscopy
US4838021A (en) 1987-12-11 1989-06-13 Hughes Aircraft Company Electrostatic ion thruster with improved thrust modulation
US4890282A (en) 1988-03-08 1989-12-26 Network Equipment Technologies, Inc. Mixed mode compression for data transmission
US4866704A (en) 1988-03-16 1989-09-12 California Institute Of Technology Fiber optic voice/data network
US4887265A (en) 1988-03-18 1989-12-12 Motorola, Inc. Packet-switched cellular telephone system
US5185073A (en) 1988-06-21 1993-02-09 International Business Machines Corporation Method of fabricating nendritic materials
JPH0744511B2 (en) 1988-09-14 1995-05-15 富士通株式会社 High suburb rate multiplexing method
US5130985A (en) 1988-11-25 1992-07-14 Hitachi, Ltd. Speech packet communication system and method
FR2641093B1 (en) 1988-12-23 1994-04-29 Alcatel Business Systems
US4981371A (en) 1989-02-17 1991-01-01 Itt Corporation Integrated I/O interface for communication terminal
US5023563A (en) 1989-06-08 1991-06-11 Hughes Aircraft Company Upshifted free electron laser amplifier
US5036513A (en) 1989-06-21 1991-07-30 Academy Of Applied Science Method of and apparatus for integrated voice (audio) communication simultaneously with "under voice" user-transparent digital data between telephone instruments
US5157000A (en) 1989-07-10 1992-10-20 Texas Instruments Incorporated Method for dry etching openings in integrated circuit layers
US5155726A (en) 1990-01-22 1992-10-13 Digital Equipment Corporation Station-to-station full duplex communication in a token ring local area network
US5235248A (en) * 1990-06-08 1993-08-10 The United States Of America As Represented By The United States Department Of Energy Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields
US5127001A (en) 1990-06-22 1992-06-30 Unisys Corporation Conference call arrangement for distributed network
US5113141A (en) 1990-07-18 1992-05-12 Science Applications International Corporation Four-fingers RFQ linac structure
US5268693A (en) 1990-08-31 1993-12-07 Trustees Of Dartmouth College Semiconductor film free electron laser
US5263043A (en) 1990-08-31 1993-11-16 Trustees Of Dartmouth College Free electron laser utilizing grating coupling
US5128729A (en) 1990-11-13 1992-07-07 Motorola, Inc. Complex opto-isolator with improved stand-off voltage stability
US5214650A (en) 1990-11-19 1993-05-25 Ag Communication Systems Corporation Simultaneous voice and data system using the existing two-wire inter-face
US5302240A (en) 1991-01-22 1994-04-12 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device
US5187591A (en) 1991-01-24 1993-02-16 Micom Communications Corp. System for transmitting and receiving aural information and modulated data
US5341374A (en) 1991-03-01 1994-08-23 Trilan Systems Corporation Communication network integrating voice data and video with distributed call processing
US5150410A (en) 1991-04-11 1992-09-22 Itt Corporation Secure digital conferencing system
US5283819A (en) 1991-04-25 1994-02-01 Compuadd Corporation Computing and multimedia entertainment system
FR2677490B1 (en) 1991-06-07 1997-05-16 Thomson Csf SEMICONDUCTOR OPTICAL TRANSCEIVER.
GB9113684D0 (en) 1991-06-25 1991-08-21 Smiths Industries Plc Display filter arrangements
US5229782A (en) 1991-07-19 1993-07-20 Conifer Corporation Stacked dual dipole MMDS feed
US5199918A (en) 1991-11-07 1993-04-06 Microelectronics And Computer Technology Corporation Method of forming field emitter device with diamond emission tips
US5305312A (en) 1992-02-07 1994-04-19 At&T Bell Laboratories Apparatus for interfacing analog telephones and digital data terminals to an ISDN line
US5466929A (en) 1992-02-21 1995-11-14 Hitachi, Ltd. Apparatus and method for suppressing electrification of sample in charged beam irradiation apparatus
US6140980A (en) 1992-03-13 2000-10-31 Kopin Corporation Head-mounted display system
US5401983A (en) 1992-04-08 1995-03-28 Georgia Tech Research Corporation Processes for lift-off of thin film materials or devices for fabricating three dimensional integrated circuits, optical detectors, and micromechanical devices
US5233623A (en) 1992-04-29 1993-08-03 Research Foundation Of State University Of New York Integrated semiconductor laser with electronic directivity and focusing control
US5282197A (en) 1992-05-15 1994-01-25 International Business Machines Low frequency audio sub-channel embedded signalling
US5562838A (en) 1993-03-29 1996-10-08 Martin Marietta Corporation Optical light pipe and microwave waveguide interconnects in multichip modules formed using adaptive lithography
US5539414A (en) 1993-09-02 1996-07-23 Inmarsat Folded dipole microstrip antenna
TW255015B (en) 1993-11-05 1995-08-21 Motorola Inc
US5578909A (en) 1994-07-15 1996-11-26 The Regents Of The Univ. Of California Coupled-cavity drift-tube linac
US5608263A (en) 1994-09-06 1997-03-04 The Regents Of The University Of Michigan Micromachined self packaged circuits for high-frequency applications
JP2770755B2 (en) 1994-11-16 1998-07-02 日本電気株式会社 Field emission type electron gun
US5504341A (en) 1995-02-17 1996-04-02 Zimec Consulting, Inc. Producing RF electric fields suitable for accelerating atomic and molecular ions in an ion implantation system
JP2921430B2 (en) 1995-03-03 1999-07-19 双葉電子工業株式会社 Optical writing element
US5604352A (en) 1995-04-25 1997-02-18 Raychem Corporation Apparatus comprising voltage multiplication components
US5705443A (en) 1995-05-30 1998-01-06 Advanced Technology Materials, Inc. Etching method for refractory materials
JP3487699B2 (en) 1995-11-08 2004-01-19 株式会社日立製作所 Ultrasonic treatment method and apparatus
US5889449A (en) 1995-12-07 1999-03-30 Space Systems/Loral, Inc. Electromagnetic transmission line elements having a boundary between materials of high and low dielectric constants
KR0176876B1 (en) 1995-12-12 1999-03-20 구자홍 Magnetron
JPH09223475A (en) 1996-02-19 1997-08-26 Nikon Corp Electromagnetic deflector and charge particle beam transfer apparatus using thereof
US5825140A (en) 1996-02-29 1998-10-20 Nissin Electric Co., Ltd. Radio-frequency type charged particle accelerator
US5663971A (en) 1996-04-02 1997-09-02 The Regents Of The University Of California, Office Of Technology Transfer Axial interaction free-electron laser
US5821705A (en) 1996-06-25 1998-10-13 The United States Of America As Represented By The United States Department Of Energy Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators
EP0927331B1 (en) 1996-08-08 2004-03-31 William Marsh Rice University Macroscopically manipulable nanoscale devices made from nanotube assemblies
US5889797A (en) 1996-08-26 1999-03-30 The Regents Of The University Of California Measuring short electron bunch lengths using coherent smith-purcell radiation
KR100226752B1 (en) 1996-08-26 1999-10-15 구본준 Method for forming multi-metal interconnection layer of semiconductor device
US5811943A (en) 1996-09-23 1998-09-22 Schonberg Research Corporation Hollow-beam microwave linear accelerator
AU4896297A (en) 1996-10-18 1998-05-15 Microwave Technologies Inc. Rotating-wave electron beam accelerator
US5780970A (en) 1996-10-28 1998-07-14 University Of Maryland Multi-stage depressed collector for small orbit gyrotrons
US5790585A (en) 1996-11-12 1998-08-04 The Trustees Of Dartmouth College Grating coupling free electron laser apparatus and method
US5744919A (en) 1996-12-12 1998-04-28 Mishin; Andrey V. CW particle accelerator with low particle injection velocity
US5757009A (en) 1996-12-27 1998-05-26 Northrop Grumman Corporation Charged particle beam expander
JPH10200204A (en) 1997-01-06 1998-07-31 Fuji Xerox Co Ltd Surface-emitting semiconductor laser, manufacturing method thereof, and surface-emitting semiconductor laser array using the same
CA2279934A1 (en) 1997-02-11 1998-08-13 Scientific Generics Limited Signalling system
JP4209471B2 (en) 1997-02-20 2009-01-14 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Plasmon resonant particles, methods, and apparatus
US6008496A (en) 1997-05-05 1999-12-28 University Of Florida High resolution resonance ionization imaging detector and method
US5821836A (en) 1997-05-23 1998-10-13 The Regents Of The University Of Michigan Miniaturized filter assembly
EP0990238B1 (en) 1997-06-19 2006-05-17 European Organization for Nuclear Research Neutron-driven element transmutation
US6040625A (en) 1997-09-25 2000-03-21 I/O Sensors, Inc. Sensor package arrangement
US5972193A (en) 1997-10-10 1999-10-26 Industrial Technology Research Institute Method of manufacturing a planar coil using a transparency substrate
JP2981543B2 (en) 1997-10-27 1999-11-22 金沢大学長 Electron tube type one-way optical amplifier
US6117784A (en) 1997-11-12 2000-09-12 International Business Machines Corporation Process for integrated circuit wiring
US6143476A (en) 1997-12-12 2000-11-07 Applied Materials Inc Method for high temperature etching of patterned layers using an organic mask stack
US6370306B1 (en) 1997-12-15 2002-04-09 Seiko Instruments Inc. Optical waveguide probe and its manufacturing method
KR100279737B1 (en) 1997-12-19 2001-02-01 정선종 Short-wavelength photoelectric device composed of field emission device and optical device and fabrication method thereof
US5963857A (en) 1998-01-20 1999-10-05 Lucent Technologies, Inc. Article comprising a micro-machined filter
US6338968B1 (en) 1998-02-02 2002-01-15 Signature Bioscience, Inc. Method and apparatus for detecting molecular binding events
EP0969493A1 (en) 1998-07-03 2000-01-05 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Apparatus and method for examining specimen with a charged particle beam
JP2972879B1 (en) 1998-08-18 1999-11-08 金沢大学長 One-way optical amplifier
US6316876B1 (en) 1998-08-19 2001-11-13 Eiji Tanabe High gradient, compact, standing wave linear accelerator structure
JP3666267B2 (en) 1998-09-18 2005-06-29 株式会社日立製作所 Automatic charged particle beam scanning inspection system
US6577040B2 (en) 1999-01-14 2003-06-10 The Regents Of The University Of Michigan Method and apparatus for generating a signal having at least one desired output frequency utilizing a bank of vibrating micromechanical devices
US6297511B1 (en) 1999-04-01 2001-10-02 Raytheon Company High frequency infrared emitter
US6724486B1 (en) 1999-04-28 2004-04-20 Zygo Corporation Helium- Neon laser light source generating two harmonically related, single- frequency wavelengths for use in displacement and dispersion measuring interferometry
JP3465627B2 (en) 1999-04-28 2003-11-10 株式会社村田製作所 Electronic components, dielectric resonators, dielectric filters, duplexers, communication equipment
JP3057229B1 (en) 1999-05-20 2000-06-26 金沢大学長 Electromagnetic wave amplifier and electromagnetic wave generator
ATE288630T1 (en) * 1999-05-25 2005-02-15 Nawotec Gmbh MINIATURIZED TERAHERTZ RADIATION SOURCE
TW408496B (en) 1999-06-21 2000-10-11 United Microelectronics Corp The structure of image sensor
US6384406B1 (en) 1999-08-05 2002-05-07 Microvision, Inc. Active tuning of a torsional resonant structure
US6309528B1 (en) 1999-10-15 2001-10-30 Faraday Technology Marketing Group, Llc Sequential electrodeposition of metals using modulated electric fields for manufacture of circuit boards having features of different sizes
US6870438B1 (en) 1999-11-10 2005-03-22 Kyocera Corporation Multi-layered wiring board for slot coupling a transmission line to a waveguide
FR2803950B1 (en) 2000-01-14 2002-03-01 Centre Nat Rech Scient VERTICAL METAL MICROSONATOR PHOTODETECTION DEVICE AND MANUFACTURING METHOD THEREOF
DE60011031T2 (en) 2000-02-01 2005-06-23 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Optical column for particle beam device
US6593539B1 (en) 2000-02-25 2003-07-15 George Miley Apparatus and methods for controlling charged particles
JP3667188B2 (en) 2000-03-03 2005-07-06 キヤノン株式会社 Electron beam excitation laser device and multi-electron beam excitation laser device
JP2001273861A (en) 2000-03-28 2001-10-05 Toshiba Corp Charged beam apparatus and pattern incline observation method
DE10019359C2 (en) 2000-04-18 2002-11-07 Nanofilm Technologie Gmbh SPR sensor
US6700748B1 (en) 2000-04-28 2004-03-02 International Business Machines Corporation Methods for creating ground paths for ILS
US6453087B2 (en) 2000-04-28 2002-09-17 Confluent Photonics Co. Miniature monolithic optical add-drop multiplexer
US6407516B1 (en) 2000-05-26 2002-06-18 Exaconnect Inc. Free space electron switch
US7064500B2 (en) 2000-05-26 2006-06-20 Exaconnect Corp. Semi-conductor interconnect using free space electron switch
US6800877B2 (en) 2000-05-26 2004-10-05 Exaconnect Corp. Semi-conductor interconnect using free space electron switch
US6545425B2 (en) 2000-05-26 2003-04-08 Exaconnect Corp. Use of a free space electron switch in a telecommunications network
US6801002B2 (en) 2000-05-26 2004-10-05 Exaconnect Corp. Use of a free space electron switch in a telecommunications network
US6829286B1 (en) 2000-05-26 2004-12-07 Opticomp Corporation Resonant cavity enhanced VCSEL/waveguide grating coupler
US6373194B1 (en) 2000-06-01 2002-04-16 Raytheon Company Optical magnetron for high efficiency production of optical radiation
US7257327B2 (en) 2000-06-01 2007-08-14 Raytheon Company Wireless communication system with high efficiency/high power optical source
US6972421B2 (en) 2000-06-09 2005-12-06 Cymer, Inc. Extreme ultraviolet light source
EP1301822A1 (en) 2000-06-15 2003-04-16 California Institute Of Technology Direct electrical-to-optical conversion and light modulation in micro whispering-gallery-mode resonators
WO2002013227A1 (en) 2000-07-27 2002-02-14 Ebara Corporation Sheet beam test apparatus
US6441298B1 (en) 2000-08-15 2002-08-27 Nec Research Institute, Inc Surface-plasmon enhanced photovoltaic device
WO2002020390A2 (en) 2000-09-08 2002-03-14 Ball Ronald H Illumination system for escalator handrails
EP1342299A2 (en) 2000-09-22 2003-09-10 Vermont Photonics Apparatuses and methods for generating coherent electromagnetic laser radiation
JP3762208B2 (en) 2000-09-29 2006-04-05 株式会社東芝 Optical wiring board manufacturing method
CZ20031455A3 (en) 2000-12-01 2003-10-15 Yeda Research And Development Co. Ltd. Process and apparatus for investigating samples in vacuum-free environment by making use of scanning electron microscope ed medium
US6777244B2 (en) 2000-12-06 2004-08-17 Hrl Laboratories, Llc Compact sensor using microcavity structures
US20020071457A1 (en) 2000-12-08 2002-06-13 Hogan Josh N. Pulsed non-linear resonant cavity
KR20020061103A (en) 2001-01-12 2002-07-22 후루까와덴끼고오교 가부시끼가이샤 Antenna device and terminal with the antenna device
US6603781B1 (en) 2001-01-19 2003-08-05 Siros Technologies, Inc. Multi-wavelength transmitter
US6636653B2 (en) 2001-02-02 2003-10-21 Teravicta Technologies, Inc. Integrated optical micro-electromechanical systems and methods of fabricating and operating the same
US6603915B2 (en) 2001-02-05 2003-08-05 Fujitsu Limited Interposer and method for producing a light-guiding structure
US6636534B2 (en) 2001-02-26 2003-10-21 University Of Hawaii Phase displacement free-electron laser
KR100695978B1 (en) 2001-02-28 2007-03-15 가부시끼가이샤 히다치 세이사꾸쇼 Method and apparatus for measuring physical properties of micro region
CN1319208C (en) 2001-03-02 2007-05-30 松下电器产业株式会社 Dielectric filter, antenna duplexer and communication device with filter
US6493424B2 (en) 2001-03-05 2002-12-10 Siemens Medical Solutions Usa, Inc. Multi-mode operation of a standing wave linear accelerator
SE520339C2 (en) 2001-03-07 2003-06-24 Acreo Ab Electrochemical transistor device, used for e.g. polymer batteries, includes active element having transistor channel made of organic material and gate electrode where voltage is applied to control electron flow
US6819432B2 (en) 2001-03-14 2004-11-16 Hrl Laboratories, Llc Coherent detecting receiver using a time delay interferometer and adaptive beam combiner
EP1243428A1 (en) 2001-03-20 2002-09-25 The Technology Partnership Public Limited Company Led print head for electrophotographic printer
US7077982B2 (en) 2001-03-23 2006-07-18 Fuji Photo Film Co., Ltd. Molecular electric wire, molecular electric wire circuit using the same and process for producing the molecular electric wire circuit
US6788847B2 (en) 2001-04-05 2004-09-07 Luxtera, Inc. Photonic input/output port
US6912330B2 (en) 2001-05-17 2005-06-28 Sioptical Inc. Integrated optical/electronic circuits and associated methods of simultaneous generation thereof
US7177515B2 (en) 2002-03-20 2007-02-13 The Regents Of The University Of Colorado Surface plasmon devices
US7010183B2 (en) 2002-03-20 2006-03-07 The Regents Of The University Of Colorado Surface plasmon devices
US6525477B2 (en) 2001-05-29 2003-02-25 Raytheon Company Optical magnetron generator
US7068948B2 (en) 2001-06-13 2006-06-27 Gazillion Bits, Inc. Generation of optical signals with return-to-zero format
JP3698075B2 (en) 2001-06-20 2005-09-21 株式会社日立製作所 Semiconductor substrate inspection method and apparatus
US6782205B2 (en) 2001-06-25 2004-08-24 Silicon Light Machines Method and apparatus for dynamic equalization in wavelength division multiplexing
US20030012925A1 (en) 2001-07-16 2003-01-16 Motorola, Inc. Process for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate for materials used to form the same and including an etch stop layer used for back side processing
EP1278314B1 (en) * 2001-07-17 2007-01-10 Alcatel Monitoring unit for optical burst signals
US20030034535A1 (en) 2001-08-15 2003-02-20 Motorola, Inc. Mems devices suitable for integration with chip having integrated silicon and compound semiconductor devices, and methods for fabricating such devices
US6917727B2 (en) 2001-09-10 2005-07-12 California Institute Of Technology Strip loaded waveguide integrated with electronics components
US6640023B2 (en) 2001-09-27 2003-10-28 Memx, Inc. Single chip optical cross connect
JP2003209411A (en) 2001-10-30 2003-07-25 Matsushita Electric Ind Co Ltd High frequency module and production method for high frequency module
US7248297B2 (en) 2001-11-30 2007-07-24 The Board Of Trustees Of The Leland Stanford Junior University Integrated color pixel (ICP)
US6635949B2 (en) 2002-01-04 2003-10-21 Intersil Americas Inc. Symmetric inducting device for an integrated circuit having a ground shield
EP1471828A1 (en) 2002-01-18 2004-11-03 California Institute Of Technology Method and apparatus for nanomagnetic manipulation and sensing
US6950220B2 (en) 2002-03-18 2005-09-27 E Ink Corporation Electro-optic displays, and methods for driving same
US6738176B2 (en) 2002-04-30 2004-05-18 Mario Rabinowitz Dynamic multi-wavelength switching ensemble
JP2003331774A (en) 2002-05-16 2003-11-21 Toshiba Corp Electron beam equipment and device manufacturing method using the equipment
JP2004014943A (en) 2002-06-10 2004-01-15 Sony Corp Multibeam semiconductor laser, semiconductor light emitting device, and semiconductor device
US6887773B2 (en) 2002-06-19 2005-05-03 Luxtera, Inc. Methods of incorporating germanium within CMOS process
EP1388883B1 (en) 2002-08-07 2013-06-05 Fei Company Coaxial FIB-SEM column
WO2004029658A1 (en) 2002-09-26 2004-04-08 Massachusetts Institute Of Technology Photonic crystals: a medium exhibiting anomalous cherenkov radiation
AU2003296909A1 (en) 2002-09-27 2004-05-13 The Trustees Of Dartmouth College Free electron laser, and associated components and methods
US6841795B2 (en) 2002-10-25 2005-01-11 The University Of Connecticut Semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation
US6922118B2 (en) 2002-11-01 2005-07-26 Hrl Laboratories, Llc Micro electrical mechanical system (MEMS) tuning using focused ion beams
JP2004158970A (en) 2002-11-05 2004-06-03 Ube Ind Ltd Band filter employing thin film piezoelectric resonator
US6936981B2 (en) 2002-11-08 2005-08-30 Applied Materials, Inc. Retarding electron beams in multiple electron beam pattern generation
JP2004172965A (en) 2002-11-20 2004-06-17 Seiko Epson Corp Inter-chip optical interconnection circuit, electro-optical device and electronic appliance
US6924920B2 (en) 2003-05-29 2005-08-02 Stanislav Zhilkov Method of modulation and electron modulator for optical communication and data transmission
CN100533589C (en) 2002-11-26 2009-08-26 株式会社东芝 Magnetic unit and memory
JP4249474B2 (en) 2002-12-06 2009-04-02 セイコーエプソン株式会社 Wavelength multiplexing chip-to-chip optical interconnection circuit
JP2004191392A (en) 2002-12-06 2004-07-08 Seiko Epson Corp Wavelength multiple intra-chip optical interconnection circuit, electro-optical device and electronic appliance
ITMI20022608A1 (en) 2002-12-09 2004-06-10 Fond Di Adroterapia Oncologic A Tera LINAC WITH DRAWING TUBES FOR THE ACCELERATION OF A BAND OF IONS.
US20040180244A1 (en) 2003-01-24 2004-09-16 Tour James Mitchell Process and apparatus for microwave desorption of elements or species from carbon nanotubes
US20040159900A1 (en) 2003-01-27 2004-08-19 3M Innovative Properties Company Phosphor based light sources having front illumination
JP4044453B2 (en) 2003-02-06 2008-02-06 株式会社東芝 Quantum memory and information processing method using quantum memory
US20040171272A1 (en) 2003-02-28 2004-09-02 Applied Materials, Inc. Method of etching metallic materials to form a tapered profile
US20040184270A1 (en) 2003-03-17 2004-09-23 Halter Michael A. LED light module with micro-reflector cavities
US7138629B2 (en) 2003-04-22 2006-11-21 Ebara Corporation Testing apparatus using charged particles and device manufacturing method using the testing apparatus
US6954515B2 (en) 2003-04-25 2005-10-11 Varian Medical Systems, Inc., Radiation sources and radiation scanning systems with improved uniformity of radiation intensity
TWI297045B (en) 2003-05-07 2008-05-21 Microfabrica Inc Methods and apparatus for forming multi-layer structures using adhered masks
US6884335B2 (en) 2003-05-20 2005-04-26 Novellus Systems, Inc. Electroplating using DC current interruption and variable rotation rate
US6943650B2 (en) 2003-05-29 2005-09-13 Freescale Semiconductor, Inc. Electromagnetic band gap microwave filter
US7446601B2 (en) 2003-06-23 2008-11-04 Astronix Research, Llc Electron beam RF amplifier and emitter
US20050194258A1 (en) 2003-06-27 2005-09-08 Microfabrica Inc. Electrochemical fabrication methods incorporating dielectric materials and/or using dielectric substrates
US6953291B2 (en) 2003-06-30 2005-10-11 Finisar Corporation Compact package design for vertical cavity surface emitting laser array to optical fiber cable connection
US7279686B2 (en) 2003-07-08 2007-10-09 Biomed Solutions, Llc Integrated sub-nanometer-scale electron beam systems
US7141800B2 (en) 2003-07-11 2006-11-28 Charles E. Bryson, III Non-dispersive charged particle energy analyzer
IL157344A0 (en) 2003-08-11 2004-06-20 Opgal Ltd Internal temperature reference source and mtf inverse filter for radiometry
US20050067286A1 (en) 2003-09-26 2005-03-31 The University Of Cincinnati Microfabricated structures and processes for manufacturing same
US7362972B2 (en) 2003-09-29 2008-04-22 Jds Uniphase Inc. Laser transmitter capable of transmitting line data and supervisory information at a plurality of data rates
US7170142B2 (en) 2003-10-03 2007-01-30 Applied Materials, Inc. Planar integrated circuit including a plasmon waveguide-fed Schottky barrier detector and transistors connected therewith
US7042982B2 (en) 2003-11-19 2006-05-09 Lucent Technologies Inc. Focusable and steerable micro-miniature x-ray apparatus
DE60328835D1 (en) 2003-12-05 2009-09-24 3M Innovative Properties Co PROCESS FOR PREPARING PHOTONIC CRYSTALS
US7092603B2 (en) 2004-03-03 2006-08-15 Fujitsu Limited Optical bridge for chip-to-board interconnection and methods of fabrication
JP4370945B2 (en) 2004-03-11 2009-11-25 ソニー株式会社 Measuring method of dielectric constant
US6996303B2 (en) 2004-03-12 2006-02-07 Fujitsu Limited Flexible optical waveguides for backplane optical interconnections
US7012419B2 (en) 2004-03-26 2006-03-14 Ut-Battelle, Llc Fast Faraday cup with high bandwidth
ATE499705T1 (en) 2004-04-05 2011-03-15 Nec Corp PHOTODIODE AND PRODUCTION METHOD THEREOF
JP4257741B2 (en) 2004-04-19 2009-04-22 三菱電機株式会社 Charged particle beam accelerator, particle beam irradiation medical system using charged particle beam accelerator, and method of operating particle beam irradiation medical system
US7454095B2 (en) 2004-04-27 2008-11-18 California Institute Of Technology Integrated plasmon and dielectric waveguides
KR100586965B1 (en) 2004-05-27 2006-06-08 삼성전기주식회사 Light emitting diode device
US7294834B2 (en) 2004-06-16 2007-11-13 National University Of Singapore Scanning electron microscope
US7155107B2 (en) 2004-06-18 2006-12-26 Southwest Research Institute System and method for detection of fiber optic cable using static and induced charge
US7194798B2 (en) 2004-06-30 2007-03-27 Hitachi Global Storage Technologies Netherlands B.V. Method for use in making a write coil of magnetic head
US20060062258A1 (en) 2004-07-02 2006-03-23 Vanderbilt University Smith-Purcell free electron laser and method of operating same
US7130102B2 (en) 2004-07-19 2006-10-31 Mario Rabinowitz Dynamic reflection, illumination, and projection
US7375631B2 (en) 2004-07-26 2008-05-20 Lenovo (Singapore) Pte. Ltd. Enabling and disabling a wireless RFID portable transponder
US20060035173A1 (en) 2004-08-13 2006-02-16 Mark Davidson Patterning thin metal films by dry reactive ion etching
US7791290B2 (en) * 2005-09-30 2010-09-07 Virgin Islands Microsystems, Inc. Ultra-small resonating charged particle beam modulator
US7626179B2 (en) 2005-09-30 2009-12-01 Virgin Island Microsystems, Inc. Electron beam induced resonance
US7586097B2 (en) 2006-01-05 2009-09-08 Virgin Islands Microsystems, Inc. Switching micro-resonant structures using at least one director
KR100623477B1 (en) 2004-08-25 2006-09-19 한국정보통신대학교 산학협력단 Optical printed circuit boards and optical interconnection blocks using optical fiber bundles
WO2006042239A2 (en) 2004-10-06 2006-04-20 The Regents Of The University Of California Cascaded cavity silicon raman laser with electrical modulation, switching, and active mode locking capability
US20060187794A1 (en) 2004-10-14 2006-08-24 Tim Harvey Uses of wave guided miniature holographic system
TWI253714B (en) 2004-12-21 2006-04-21 Phoenix Prec Technology Corp Method for fabricating a multi-layer circuit board with fine pitch
US7592255B2 (en) 2004-12-22 2009-09-22 Hewlett-Packard Development Company, L.P. Fabricating arrays of metallic nanostructures
US7508576B2 (en) 2005-01-20 2009-03-24 Intel Corporation Digital signal regeneration, reshaping and wavelength conversion using an optical bistable silicon raman laser
US7466326B2 (en) 2005-01-21 2008-12-16 Konica Minolta Business Technologies, Inc. Image forming method and image forming apparatus
US7309953B2 (en) 2005-01-24 2007-12-18 Principia Lightworks, Inc. Electron beam pumped laser light source for projection television
US7397055B2 (en) 2005-05-02 2008-07-08 Raytheon Company Smith-Purcell radiation source using negative-index metamaterial (NIM)
US8715839B2 (en) 2005-06-30 2014-05-06 L. Pierre de Rochemont Electrical components and method of manufacture
KR101359562B1 (en) 2005-07-08 2014-02-07 넥스젠 세미 홀딩 인코포레이티드 Apparatus and method for controlled particle beam manufacturing
US20070013765A1 (en) 2005-07-18 2007-01-18 Eastman Kodak Company Flexible organic laser printer
US8425858B2 (en) 2005-10-14 2013-04-23 Morpho Detection, Inc. Detection apparatus and associated method
US7473916B2 (en) 2005-12-16 2009-01-06 Asml Netherlands B.V. Apparatus and method for detecting contamination within a lithographic apparatus
US7547904B2 (en) 2005-12-22 2009-06-16 Palo Alto Research Center Incorporated Sensing photon energies emanating from channels or moving objects
US7619373B2 (en) 2006-01-05 2009-11-17 Virgin Islands Microsystems, Inc. Selectable frequency light emitter
US7470920B2 (en) 2006-01-05 2008-12-30 Virgin Islands Microsystems, Inc. Resonant structure-based display
US7623165B2 (en) 2006-02-28 2009-11-24 Aptina Imaging Corporation Vertical tri-color sensor
US7443358B2 (en) 2006-02-28 2008-10-28 Virgin Island Microsystems, Inc. Integrated filter in antenna-based detector
US7862756B2 (en) 2006-03-30 2011-01-04 Asml Netherland B.V. Imprint lithography
US20070264023A1 (en) 2006-04-26 2007-11-15 Virgin Islands Microsystems, Inc. Free space interchip communications
US7646991B2 (en) 2006-04-26 2010-01-12 Virgin Island Microsystems, Inc. Selectable frequency EMR emitter
US7511808B2 (en) 2006-04-27 2009-03-31 Hewlett-Packard Development Company, L.P. Analyte stages including tunable resonant cavities and Raman signal-enhancing structures
US7554083B2 (en) 2006-05-05 2009-06-30 Virgin Islands Microsystems, Inc. Integration of electromagnetic detector on integrated chip
US7436177B2 (en) 2006-05-05 2008-10-14 Virgin Islands Microsystems, Inc. SEM test apparatus
US7442940B2 (en) 2006-05-05 2008-10-28 Virgin Island Microsystems, Inc. Focal plane array incorporating ultra-small resonant structures
US7586167B2 (en) 2006-05-05 2009-09-08 Virgin Islands Microsystems, Inc. Detecting plasmons using a metallurgical junction
US7342441B2 (en) 2006-05-05 2008-03-11 Virgin Islands Microsystems, Inc. Heterodyne receiver array using resonant structures
US20070258492A1 (en) 2006-05-05 2007-11-08 Virgin Islands Microsystems, Inc. Light-emitting resonant structure driving raman laser
US7359589B2 (en) 2006-05-05 2008-04-15 Virgin Islands Microsystems, Inc. Coupling electromagnetic wave through microcircuit
US7450794B2 (en) 2006-09-19 2008-11-11 Virgin Islands Microsystems, Inc. Microcircuit using electromagnetic wave routing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060208667A1 (en) * 2001-03-13 2006-09-21 Color Kinetics Incorporated Methods and apparatus for providing power to lighting devices
US7267461B2 (en) * 2004-01-28 2007-09-11 Tir Systems, Ltd. Directly viewable luminaire
US7267459B2 (en) * 2004-01-28 2007-09-11 Tir Systems Ltd. Sealed housing unit for lighting system
US20060274922A1 (en) * 2004-04-20 2006-12-07 Bio-Rad Laboratories, Inc. Imaging method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2849541A3 (en) * 2013-08-22 2015-07-08 INOTEC Sicherheitstechnik GmbH Method for providing lamp parameters at an interface of a lamp, lamp with an interface for the reading of light parameters and device for selecting the lamp parameters

Also Published As

Publication number Publication date
US20080001098A1 (en) 2008-01-03
WO2008002318A3 (en) 2009-04-30
US7655934B2 (en) 2010-02-02

Similar Documents

Publication Publication Date Title
WO2007081697A3 (en) Resonant structure-based display
US8960979B2 (en) Optical device for a motor vehicle including a surface light source
US7283301B2 (en) Emissive screen display with laser-based external addressing
KR102411403B1 (en) LED with structured layers and nanophosphors
US9697763B2 (en) Displays including addressible trace structures
WO2007133223A2 (en) Free space interchip communications
US7655934B2 (en) Data on light bulb
WO2007130094A2 (en) Inter-chip optical communication
EP1441380A3 (en) Field emission display and method of manufacturing the same
WO2002013226A3 (en) Spatial light modulator driven photocathode source electron beam pattern generator
WO1997007531A9 (en) Fluorescent lamp
AU2002325587A1 (en) Cathodoluminescent light source
US7579609B2 (en) Coupling light of light emitting resonator to waveguide
US20030205966A1 (en) Light emitting cell and method for emitting light
TW200638454A (en) Field emission light source and method for operating the same
US20070258675A1 (en) Multiplexed optical communication between chips on a multi-chip module
JP2007299674A (en) Luminous panel lighting fixture
JP5085766B2 (en) Surface light source device that emits light on both sides
KR20100029198A (en) Lighting device for liquid crystal screen
US20070272931A1 (en) Methods, devices and systems producing illumination and effects
GB2355849A (en) Light emitting cell comprising carbon nanotube structure
US7608990B2 (en) Anode plate structure for flat panel light source of field emission
US7605835B2 (en) Electro-photographic devices incorporating ultra-small resonant structures
US20070200646A1 (en) Method for coupling out of a magnetic device
US7298078B2 (en) Flat, flexible fluorescent lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06788358

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - 22.04.2009 (FORM 1205A)

122 Ep: pct application non-entry in european phase

Ref document number: 06788358

Country of ref document: EP

Kind code of ref document: A2