WO2008007046A1 - Polyurethane elastomers - Google Patents

Polyurethane elastomers Download PDF

Info

Publication number
WO2008007046A1
WO2008007046A1 PCT/GB2007/002415 GB2007002415W WO2008007046A1 WO 2008007046 A1 WO2008007046 A1 WO 2008007046A1 GB 2007002415 W GB2007002415 W GB 2007002415W WO 2008007046 A1 WO2008007046 A1 WO 2008007046A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
peg
ppg
linear polymer
polymer according
Prior art date
Application number
PCT/GB2007/002415
Other languages
French (fr)
Inventor
Jukka Tuominen
Amaia Zurutuza
Mark Livingston
Janet A. Halliday
Original Assignee
Controlled Therapeutics (Scotland) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DK07733405.0T priority Critical patent/DK2038325T3/en
Application filed by Controlled Therapeutics (Scotland) Limited filed Critical Controlled Therapeutics (Scotland) Limited
Priority to CA2656788A priority patent/CA2656788C/en
Priority to EP07733405A priority patent/EP2038325B1/en
Priority to AT07733405T priority patent/ATE498643T1/en
Priority to BRPI0713481A priority patent/BRPI0713481B8/en
Priority to CN2007800256285A priority patent/CN101484495B/en
Priority to PL07733405T priority patent/PL2038325T3/en
Priority to AU2007274119A priority patent/AU2007274119B2/en
Priority to DE602007012545T priority patent/DE602007012545D1/en
Priority to US12/373,002 priority patent/US8361272B2/en
Priority to JP2009517399A priority patent/JP5307710B2/en
Publication of WO2008007046A1 publication Critical patent/WO2008007046A1/en
Priority to US13/605,689 priority patent/US8361273B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0031Rectum, anus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0034Urogenital system, e.g. vagina, uterus, cervix, penis, scrotum, urethra, bladder; Personal lubricants
    • A61K9/0036Devices retained in the vagina or cervix for a prolonged period, e.g. intravaginal rings, medicated tampons, medicated diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/02Suppositories; Bougies; Bases therefor; Ovules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4808Mixtures of two or more polyetherdiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings

Definitions

  • the present invention relates to hydrophilic thermoplastic polyurethane elastomer polymers, suitable for the production of controlled release compositions for release of pharmaceutically active agents over a prolonged period of time.
  • Their elastomeric nature provides better comfort in use, for example, in pessaries, suppositories or vaginal rings.
  • cross-linked polyurethane hydrogel polymers are known from European Patent Publications EPOO 16652 and EPOO 16654. These patent specifications describe cross-linked polyurethanes formed by reacting a polyethylene oxide of equivalent weight greater than 1500 with a polyfunctional isocyanate and a trifunctional compound reactive therewith, such as an alkane triol. The resultant cross-linked polyurethane polymers are water-swellable to form a hydrogel but are water-insoluble and may be loaded with water-soluble pharmaceutically active agents.
  • One particular polyurethane polymer is the reaction product of polyethylene glycol 8000, Desmodur (DMDI i.e. dicyclohexylmethane-4,4-diisocyanate) and 1,2,6-hexane triol and which has been used commercially for vaginal delivery of prostaglandins.
  • polyurethane polymers possess a number of practical disadvantages. Whilst the use of a triol cross-linking agent is effective in providing polymers of relatively reproducible swelling characteristics, the percent swelling is typically 200-300% (i.e. the increase in weight of the swollen polymer divided by the weight of the dry polymer).
  • Pharmaceutically active agents are loaded by contacting the polymer with an aqueous solution of pharmaceutically active agent, such that the solution becomes absorbed into the polymer, forming a hydrogel. The swollen polymer is then dried back to the chosen water content before use.
  • thermoset non-thermoplastic polymer
  • thermoplastic polyurethane hydrogel polymers are known from patent Publication WO2004029125.
  • This patent specification describes linear thermoplastic polyurethanes formed by reacting a polyethylene glycol of molecular weight of greater than 4000 g/mol with a polyfunctional isocyanate and a bifunctional compound reactive therewith, such as an alkane diol or diamine.
  • the resultant thermoplastic polyurethane polymers are water-swellable to form a hydrogel but are water-insoluble and may be loaded with water-soluble pharmaceutically active agents.
  • One particular polyurethane polymer is the reaction product of polyethylene glycol 8000, Desmodur (DMDI i.e.
  • dicyclohexylmethane-4,4-diisocyanate dicyclohexylmethane-4,4-diisocyanate
  • 1,10-decane diol which has shown percentage-swelling from 600% up to 1700% or even above.
  • This type of polymer has shown a suitability for diffusion loading and short-term delivery of relatively water-soluble drugs e.g. clindamycin phosphate, oxytocin, and misoprostol.
  • relatively water-soluble drugs e.g. clindamycin phosphate, oxytocin, and misoprostol.
  • a high-swelling thermoplastic polyurethane polymer possesses many practical disadvantages. Due to the high weight content and block length of PEG, the polymer is only suitable for relatively short-term release (i.e. controlled release from 10 min to only a few hours) of active agents, especially in the case of highly water-soluble drugs.
  • the low hydrophobic content i.e. low amount of hydrophobic compound e.g. decanediol (DD) or dodecanediol (DDD) makes the polymer inappropriate for hydrophobic drugs and thus restricts its use.
  • Hydrophilic and hydrophobic drugs need to have interactions with both of the phases in order for their release to be controlled by the polymer structure. Further, the imbalance between hydrophobic and hydrophilic compounds hampers microphase separation, which reduces the mechanical strength of the polymer in both the dry and wet state.
  • the final polymer is rigid and the processing temperature relatively high.
  • the swelling percentage of high-swelling thermoplastic polyurethanes is typically 200-1700% and is dependent on the PEG content and/or the length of PEG block.
  • Pharmaceutically active agents can be loaded by using the same method as described above for the conventional cross-linked polyurethane, as well as melt mixing drug and polymer. The release time and profiles obtained for the high swelling and crosslinked polyurethane polymers are, however, very similar.
  • Patent specification WO 94/22934 discloses the production of a linear random block copolymer from polyethylene oxide (number average molecular weight 1000 to 12,000), a diamine and a diisocyanate. Yu et al. Biomaterials 12 (1991) March, No.2, page 119-120 discloses the use of polyurethane hydrogels formed of polyethylene glycol (number average molecular weight of 5830) and a low molecular weight polypropylene glycol (molecular weight 425) and a diisocyanate.
  • Patent specification US 4,202,880 discloses the production of polyurethanes from polyethylene glycol (molecular weight 400-20,000), an alkaline glycol containing from 2-6 carbon atoms and a diisocyanate.
  • Patent specification US 4,235,988 is a similar disclosure, although the preferred PEG range is 600-6,000.
  • the object of the present invention is to provide a hydrophilic thermoplastic polyurethane elastomer, which can be processed and mixed with an active agent at the temperature below the degradation temperature of the active agent by using conventional polymer processing systems, e.g. melt mixer, extruder and injection moulding machine.
  • An additional objective of the present invention is to enhance the melt viscosity, to increase elasticity and to lower the crystallinity of the polymer in order to apply conventional melt processing techniques e.g. extrusion and injection moulding, as well as different types of solvents to the formation of drug loaded resilient controlled release devices of any chosen shape.
  • thermoplastic polyurethane elastomers having suitable melt processing properties for drug loading and elasticity at body temperature, as well as suitable drug release characteristics, may be obtained by reacting a polyethylene glycol or polypropylene glycol with a diol or other difunctional compound, and a PPG-PEG-PPG or PEG-PPG-PEG block copolymer and a difunctional isocyanate.
  • PEG stands for polyethylene glycol
  • PPG stands for polypropylene glycol
  • the present invention provides a hydrophilic thermoplastic polyurethane elastomer polymer obtainable by reacting together:
  • thermoplastic polyurethane elastomer produced is swellable in water to a specific degree, depending upon the ratio of the four components (a), (b), (c) and (d), for example from 1% up to 200% (e.g. 20 to 100%) thus better controlling the release of pharmaceutically active agents from the high-swelling, PEG-based linear polyurethane.
  • the polymer of the invention is also soluble in certain organic solvents, such as dichloromethane, l-methyl-2-pyrrolidone (NMP) and tetrahydrofuran, which allows the polymer to be dissolved and cast into films or coatings. It also allows thermally unstable active agents of poor water solubility but which are soluble in organic solvents, to be loaded into the polymer.
  • these polyurethane elastomers Due to the unique combination of starting components, these polyurethane elastomers have a composition that can control the release of active compounds from a few days up to a few months.
  • Polyether polyols contain the repeating ether linkage -R-O-R- and have two or more hydroxyl groups as terminal functional groups. They are manufactured by the catalysed addition of epoxides to an initiator (anionic ring-opening polymerisation). The most important of the cyclic ethers by far are ethylene oxide and propylene oxide. These oxides react with active hydrogen-containing compounds (initiators), such as water, glycols, polyols and amines. A catalyst may or may not be used. Potassium hydroxide or sodium hydroxide is the basic catalyst most often employed. After the desired degree of polymerisation has been achieved, the catalyst is neutralized, removed by filtration and additives such as antioxidants are added.
  • compositions of varying structures, chain lengths and molecular weights is possible.
  • oxide or oxides By selecting the oxide or oxides, initiator, and reaction conditions and catalysts, it is possible to polymerise a series of polyether polyols that range from low-molecular-weight polyglycols to high-molecular-weight polymers. Since these polymers contain repeating alkylene oxide units, they are often referred to as polyalkylene glycols or polyglycols. Most polyether polyols are produced for polyurethane applications.
  • Polyethylene glycols contain the repeat unit (-CH 2 CH 2 O-) and are conveniently prepared by the addition of ethylene oxide to ethylene glycol to produce a difunctional polyethylene glycol structure HO(CH 2 CH 2 O) n H wherein n is an integer of varying size depending on the molecular weight of the polyethylene glycol.
  • Polyethylene glycols used in the present invention are generally linear polyethylene glycols i.e. diols having molecular weights of 200 to 35,000 g/mol. (generally 400 to 2000).
  • Polypropylene glycols are polymers of propylene oxide and thus contain the repeat unit (-CH 2 (CH 3 )CH 2 O-).
  • Polypropylene glycol has unique physical and chemical properties due to the co-occurance of both primary and secondary hydroxyl groups during polymerisation, and to the multiplicity of methyl side chains on the polymers.
  • Conventional polymerisation of propylene glycol results in an atactic polymer.
  • the isotactic polymers mainly exist in the laboratory. Mixtures of atactic and isotactic polymers may also occur.
  • PPG has many properties in common with polyethylene glycol.
  • Polypropylene glycols of all molecular weights are clear, viscous liquids with a low pour point, and which show an inverse temperature-solubility relationship, along with a rapid decrease in water solubility as the molecular weight increases.
  • the terminal hydroxyl groups undergo the typical reactions of primary and secondary alcohols.
  • the secondary hydroxyl group of polypropylene glycols is not as reactive as the primary hydroxyl group in polyethylene glycols.
  • PPG is used in many formulations for polyurethanes.
  • Polypropylene glycols used in the present invention are generally linear having molecular weights of 200 to 4000 g/mol, (generally 400 to 2000).
  • the invention also provides a method of producing the linear polymer, which comprises melting and drying PEG or PPG, and the block copolymer, together with the difunctional compound at a temperature of 85°C to 100 0 C under vacuum; and then adding the difunctional isocyanate.
  • block copolymers (b), based on propylene oxide and ethylene oxide can be initiated with ethylene glycol, glycerine, trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol, sucrose and several other compounds. Mixed and alternating block copolymers can also be produced.
  • block copolymers of PEG and PPG with terminal primary hydroxyl groups are yield. The primary hydroxyl groups are more reactive with isocyanates than secondary hydroxyl groups.
  • PEG- PPG-PEG and PPG-PEG-PPG copolymers used in the present invention are generally linear having molecular weight of 200 to 14,000 g/mol.
  • the block copolymer appears to contribute to the non-crystalline elastomeric nature of the polymer of the invention.
  • the difunctional compound (c) is reactive with the difunctional isocyanate, and is typically a difunctional amine or diol.
  • Diols in the range C 5 to C 20 preferably C 8 to Cj 5 are preferred. Thus, decanediol has been found to produce particularly good results.
  • the diol may be a saturated or unsaturated diol. Branched diols may be used but straight chain diols are preferred.
  • the two hydroxyl groups are generally on terminal carbon atoms.
  • Preferred diols include 1,6-hexanediol, 1,10-decanediol, 1,12-dodecanediol and 1,16-hexadecanediol.
  • the difunctional isocyanate (d) is generally one of the conventional diisocyanates, such as dicyclohexylmethane-4,4-diisocyanate, diphenylmethane-4,4- diisocyanate, 1 ,6-hexamethylene diisocyanate etc.
  • the equivalent weight ratio of the components (a), (b), (c) and (d) is generally in the range 0.01-1 to 0.01-1 to 1 to 1.02-3 respectively. Of course, the skilled man through reasonable experimentation would determine the best ratio of ingredients to give the desired properties.
  • the amount of component (d) is generally equal to the combined amounts of (a), (b) and (c) to provide the correct stoichiometry.
  • the polymers are generally produced by melting and drying PEG or PPG, and PEG-PPG-PEG or PPG-PEG-PPG block copolymer together with the difunctional compound and a typical polyurethane catalyst (if used), e.g. ferric chloride, DABCO and/or tin (II) octoate, at a temperature of 85°C to 100°C (e.g. 95°C) under vacuum to remove excess moisture; before the diisocyanate, e.g. DMDI or HMDI is added thereto.
  • the polymerisation is carried out in a batch or alternatively a continuous reactor; or the reaction mixture is fed into moulds and reacted for a specified time. After polymerisation the polymer is cooled down, pelletised or granulated and stored in a freezer for further analysis and processing.
  • thermoplastic polyurethane elastomers of the invention are due to two factors: microphase separation of hard and soft blocks; and the semicrystalline nature of the polymer, whose amorphous phase has a low glass transition temperature.
  • Hard blocks form from the difunctional compound and diisocyanate.
  • Soft blocks are PEG, PPG or copolymer.
  • the elasticity may depend on the ratio of hard to soft blocks and may be represented by Shore hardness measurements.
  • the linear polymers of the present invention are soluble in certain organic solvents. This allows the polymer to be dissolved and the resultant solution cast to form films.
  • the solution may also be employed for coating granules, tablets etc., in order to modify the polymer release properties. Alternatively, the solution can be poured into a non-solvent so as to precipitate polymer/active microparticles.
  • the polymer can be ground, chopped, pelletised and melted by using conventional techniques used for processing thermoplastic polymers.
  • the invention also provides a controlled release composition
  • a controlled release composition comprising the linear polymer together with an active agent.
  • Any type of plastic processing equipment e.g. extruder, injection moulding machine, compression moulding equipment and melt mixer can be used for mixing the polymer and active agent together and forming or reshape into any type of drug loaded device, e.g. a ring, pessary, patch, rod, spring or cone.
  • the active agent may be a pharmaceutically active agent for human or animal use. It may also be any other agent where sustained release properties (e.g. algicides, fertilisers etc.) are required.
  • the pharmaceutical solid dosage forms include suppositories, rings and pessaries for vaginal use, buccal inserts for oral administration, patches for transdermal administration etc. These dosage forms are generally administered to the patient, retained in place until delivery of active agent has occurred and the spent polymer is then removed.
  • the polymer may also be used for implants, which remain in the body; or for coating such implants (
  • the polymer of the present invention is an amphiphilic thermoplastic polymer and is thus suitable for the uptake of hydrophilic and hydrophobic, low and high molecular weight pharmaceutically active agents (up to and exceeding a molecular weight of 3000 e.g. up to 10,000, up to 50,000, up to 100,000 or even up to 200,000). Generally, the molecular weight of the active agent is in the range 200 to 20,000. A wide variety of water-soluble pharmaceutically active substances such as those listed in EPOO 16652 may thus be incorporated.
  • the linear polymers of the present invention may be loaded with pharmaceutically active hydrophilic and hydrophobic agents, which are poorly water-soluble, provided that these can be dissolved in a common solvent with the polymer. The resultant solution can then be cast into any desired solid form.
  • the linear polymers of the present invention may be extrusion loaded or melt mixed with pharmaceutically active agents, which are thermally stable at the polymer processing temperature.
  • the release time of the present polymers may exceed 12 hrs, 24 hrs, 5 days, 10 days, 20 days or even 80 days for substantially complete release of available active agent.
  • polyether polyol blends and copolymers used in the present invention are internal and melt rheology, softness and release rate modifiers. These types of low melting amphiphilic thermoplastic polyurethane polymers are particularly suitable for the melt loading of pharmaceutically active agent and melt processing of loaded polymer to pharmaceutical devices.
  • compositions of particular interest include:
  • Proteins e.g. interferon alpha, beta and gamma, insulin, human growth hormone, leuprolide; benzodiazepines e.g. midazolam; anti-migraine agents e.g. triptophans, ergotamine and its derivatives; anti-infective agents e.g. azoles, bacterial vaginosis, Candida; and ophthalmic agents e.g. latanoprost.
  • interferon alpha, beta and gamma insulin, human growth hormone, leuprolide
  • benzodiazepines e.g. midazolam
  • anti-migraine agents e.g. triptophans, ergotamine and its derivatives
  • anti-infective agents e.g. azoles, bacterial vaginosis, Candida
  • ophthalmic agents e.g. latanoprost.
  • active agent includes H 2 receptor antagonist, antimuscaririe, prostaglandin analogue, proton pump inhibitor, aminosalycilate, corticosteroid, chelating agent, cardiac glycoside, phosphodiesterase inhibitor, thiazide, diuretic, carbonic anhydrase inhibitor, antihypertensive, anti-cancer, anti-depressant, calcium channel blocker, analgesic, opioid antagonist, antiplatel, anticoagulant, fibrinolytic, statin, adrenoceptor agonist, beta blocker, antihistamine, respiratory stimulant, micolytic, expertorant, benzodiazepine, barbiturate, anxiolytic, antipsychotic, tricyclic anti depressant, 5HTi antagonist, opiate, 5HT, agonist, antiemetic, antiepileptic, dopaminergic, antibiotic, antifungal, anthelmintic, antiviral, antiprotozoal, antidiabetic, insulin, thyrotoxin
  • Figure 1 shows molecular weight as a function of polymerisation time for certain polymers
  • Figure 2 to 5 show various active agent release profiles.
  • PEG400, PEG900, PEGlOOO and PEG2000 are polyethylene glycols having a molecular weight of 400, 900, 1000 and 2000 g/mol, respectively;
  • PPGlOOO and PPG2000 are polypropylene glycols having a molecular weight of 1000 and 2000g/mol;
  • PEG-PPG-PEGl 100 and PEG-PPG-PEG4400 are block copolymers having a molecular weight of 1100 and 4400 g/mol;
  • PPG-PEG- PEG2000 is a block copolymer having a molecular weight of 2000 g/mol;
  • DD is 1,10-decanediol and DDD is 1,12-dodecanediol;
  • DMDI is dicyclohexylmethane-4,4- diisocyanate and HMDI is 1 ,6-hexamethylene diisocyanate;
  • FeCl 3 is Ferric chloride
  • DABCO M
  • Polymers were produced by applying the polymerisation method described in WO patent Publication WO2004029125.
  • the PEG, PPG, PEG-PPG-PEG and/or PPG-PEG-PPG were melted and vacuum dried at 95 °C along with the diol and the catalyst (if used) in a rotary-evaporator for an hour at a pressure below 1 mbar. At this point the dried mixture was fed into a reactor prior to the diisocyanate addition.
  • the manufactured polymers are shown in Table 1.
  • the polymerisations were performed as in Example 1 but the DMDI was replaced by HMDI for polymers F, G, H, I, K, L, M, N, O, P, Q and R in Table 1.
  • the swelling determinations for a number of selected polymers were carried out in water, ethanol, isopropyl alcohol (IPA) and in a 50% mixture of IPA/water in order to measure the amount of solvent absorbed by the polymer.
  • the results were calculated based on the average swelling of 10 specimens and are shown in Table 3.
  • the formula used for the calculations is shown below:
  • the manufactured polymers were tested for Shore hardness using durometers A and D.
  • Durometers A and D are generally used to measure elasticity of soft and hard rubber, respectively. These measurements are well known to the skilled person in the field. The results are presented as the average of four measurements and are presented in Table 4.
  • a number of selected polymers from Table 1 were dried over night under vacuum prior to the processing.
  • the upper and lower plate temperatures of the compression moulding machine were set at the target processing temperature.
  • Two Teflon sheets were placed between the mould and the hot plates.
  • the melting time was 3-5 minutes followed by a 30 -120 seconds holding under pressure (170-200 bars).
  • a predetermined amount of polymer was used to fill the mould.
  • After cooling to room temperature the samples (pessary devices with dimensions 30mm x 10mm x lmm) were mechanically punched out and kept in the freezer for further analysis.
  • the film processing conditions are shown in Table 5.
  • Selected polymers were loaded with two different active compounds: fluconazole and oxybutynin.
  • a 16mm co-rotating twin-screw laboratory extruder was used for loading the polymers.
  • Table 6 shows the drug loading conditions.
  • USP paddle technique is comprised of an automated UV dissolution system where a Distek (2100C model) dissolution paddle (speed 50rpm) is connected to a Unicam UV 500 spectrophotometer via an Icalis peristaltic pump. The system is operated using Dsolve software. In the incubator shaker method the samples were taken manually and the Unicam UV 500 spectrophotometer was used to analyse the samples.
  • the fluconazole release profile obtained for Polymer A and Polymer C were compared with the release profiles obtained for a crosslinked and a linear high- swelling polyurethane polymer, see Figure 5.
  • the diffusion loaded crosslinked polymer (crosslinked 17wt% fluconazole) was from patent EPOO 16652/EP0016654. While the linear high swelling polymer was from patent WO2004029125 and was loaded using diffusion (high %SW 17wt% fluconazole) as well as extrusion techniques (high %SW 20wt% fluconazole). The same dissolution method as in Example 10 was used to determine the release curves. These new polymers can provide an excellent control over drug release, see Figure 5.

Abstract

A linear polymer is obtained by reacting together a polyethylene glycol or polypropylene glycol; a PEG-PPG-PEG or PPG-PEG-PPG block copolymer; a difunctional amine or diol; and a diisocyanate. A controlled release composition comprises the polymer together with an active agent. Active agents of molecular weight 200 to 20,000 may be used.

Description

POLYURETHANE ELASTOMERS
The present invention relates to hydrophilic thermoplastic polyurethane elastomer polymers, suitable for the production of controlled release compositions for release of pharmaceutically active agents over a prolonged period of time. Their elastomeric nature provides better comfort in use, for example, in pessaries, suppositories or vaginal rings.
Certain cross-linked polyurethane hydrogel polymers are known from European Patent Publications EPOO 16652 and EPOO 16654. These patent specifications describe cross-linked polyurethanes formed by reacting a polyethylene oxide of equivalent weight greater than 1500 with a polyfunctional isocyanate and a trifunctional compound reactive therewith, such as an alkane triol. The resultant cross-linked polyurethane polymers are water-swellable to form a hydrogel but are water-insoluble and may be loaded with water-soluble pharmaceutically active agents. One particular polyurethane polymer is the reaction product of polyethylene glycol 8000, Desmodur (DMDI i.e. dicyclohexylmethane-4,4-diisocyanate) and 1,2,6-hexane triol and which has been used commercially for vaginal delivery of prostaglandins.
However, such polyurethane polymers possess a number of practical disadvantages. Whilst the use of a triol cross-linking agent is effective in providing polymers of relatively reproducible swelling characteristics, the percent swelling is typically 200-300% (i.e. the increase in weight of the swollen polymer divided by the weight of the dry polymer). Pharmaceutically active agents are loaded by contacting the polymer with an aqueous solution of pharmaceutically active agent, such that the solution becomes absorbed into the polymer, forming a hydrogel. The swollen polymer is then dried back to the chosen water content before use. A consequence is that with the conventional cross-linked polyurethane, the degree of swelling limits the molecular weight of the pharmaceutically active agent which can be absorbed into the hydrogel structure to below about 3000 g/mol. A further disadvantage is that only water-soluble pharmaceutically active agents may be used. Finally, since the conventional cross-linked polyurethane polymer is essentially a non-thermoplastic polymer (thermoset), insoluble in both water and organic solvents, the further processing of the formed polymer into other solid forms, such as films, monolithic devices, foams, wafers, composites, sandwich structures, particles, pellets, foams or coatings, is not possible. In addition, the thermoset nature of the conventional cross- linked polyurethane polymer rules out the possibility of melt mixing drug with the polymer, in order to load the polymer with a suitable active agent without using solvents or water.
Certain thermoplastic polyurethane hydrogel polymers are known from patent Publication WO2004029125. This patent specification describes linear thermoplastic polyurethanes formed by reacting a polyethylene glycol of molecular weight of greater than 4000 g/mol with a polyfunctional isocyanate and a bifunctional compound reactive therewith, such as an alkane diol or diamine. The resultant thermoplastic polyurethane polymers are water-swellable to form a hydrogel but are water-insoluble and may be loaded with water-soluble pharmaceutically active agents. One particular polyurethane polymer is the reaction product of polyethylene glycol 8000, Desmodur (DMDI i.e. dicyclohexylmethane-4,4-diisocyanate) and 1,10-decane diol, which has shown percentage-swelling from 600% up to 1700% or even above. This type of polymer has shown a suitability for diffusion loading and short-term delivery of relatively water-soluble drugs e.g. clindamycin phosphate, oxytocin, and misoprostol. However, such a high-swelling thermoplastic polyurethane polymer possesses many practical disadvantages. Due to the high weight content and block length of PEG, the polymer is only suitable for relatively short-term release (i.e. controlled release from 10 min to only a few hours) of active agents, especially in the case of highly water-soluble drugs. In addition, the low hydrophobic content, i.e. low amount of hydrophobic compound e.g. decanediol (DD) or dodecanediol (DDD) makes the polymer inappropriate for hydrophobic drugs and thus restricts its use. Hydrophilic and hydrophobic drugs need to have interactions with both of the phases in order for their release to be controlled by the polymer structure. Further, the imbalance between hydrophobic and hydrophilic compounds hampers microphase separation, which reduces the mechanical strength of the polymer in both the dry and wet state. In addition, due to the high crystallinity of polymer and the formation of hard blocks, the final polymer is rigid and the processing temperature relatively high.
The swelling percentage of high-swelling thermoplastic polyurethanes is typically 200-1700% and is dependent on the PEG content and/or the length of PEG block. Pharmaceutically active agents can be loaded by using the same method as described above for the conventional cross-linked polyurethane, as well as melt mixing drug and polymer. The release time and profiles obtained for the high swelling and crosslinked polyurethane polymers are, however, very similar.
Patent specification WO 94/22934 discloses the production of a linear random block copolymer from polyethylene oxide (number average molecular weight 1000 to 12,000), a diamine and a diisocyanate. Yu et al. Biomaterials 12 (1991) March, No.2, page 119-120 discloses the use of polyurethane hydrogels formed of polyethylene glycol (number average molecular weight of 5830) and a low molecular weight polypropylene glycol (molecular weight 425) and a diisocyanate. Patent specification US 4,202,880 discloses the production of polyurethanes from polyethylene glycol (molecular weight 400-20,000), an alkaline glycol containing from 2-6 carbon atoms and a diisocyanate. Patent specification US 4,235,988 is a similar disclosure, although the preferred PEG range is 600-6,000.
The object of the present invention is to provide a hydrophilic thermoplastic polyurethane elastomer, which can be processed and mixed with an active agent at the temperature below the degradation temperature of the active agent by using conventional polymer processing systems, e.g. melt mixer, extruder and injection moulding machine. An additional objective of the present invention is to enhance the melt viscosity, to increase elasticity and to lower the crystallinity of the polymer in order to apply conventional melt processing techniques e.g. extrusion and injection moulding, as well as different types of solvents to the formation of drug loaded resilient controlled release devices of any chosen shape.
The present invention is based on the discovery that thermoplastic polyurethane elastomers having suitable melt processing properties for drug loading and elasticity at body temperature, as well as suitable drug release characteristics, may be obtained by reacting a polyethylene glycol or polypropylene glycol with a diol or other difunctional compound, and a PPG-PEG-PPG or PEG-PPG-PEG block copolymer and a difunctional isocyanate.
PEG stands for polyethylene glycol; and PPG stands for polypropylene glycol.
In particular, the present invention provides a hydrophilic thermoplastic polyurethane elastomer polymer obtainable by reacting together:
(a) a polyethylene glycol or polypropylene glycol;
(b) a PEG-PPG-PEG or PPG-PEG-PPG block copolymer;
(c) a difunctional compound; and (d) a difunctional isocyanate.
The thermoplastic polyurethane elastomer produced is swellable in water to a specific degree, depending upon the ratio of the four components (a), (b), (c) and (d), for example from 1% up to 200% (e.g. 20 to 100%) thus better controlling the release of pharmaceutically active agents from the high-swelling, PEG-based linear polyurethane. The polymer of the invention is also soluble in certain organic solvents, such as dichloromethane, l-methyl-2-pyrrolidone (NMP) and tetrahydrofuran, which allows the polymer to be dissolved and cast into films or coatings. It also allows thermally unstable active agents of poor water solubility but which are soluble in organic solvents, to be loaded into the polymer.
Due to the unique combination of starting components, these polyurethane elastomers have a composition that can control the release of active compounds from a few days up to a few months.
Polyether polyols contain the repeating ether linkage -R-O-R- and have two or more hydroxyl groups as terminal functional groups. They are manufactured by the catalysed addition of epoxides to an initiator (anionic ring-opening polymerisation). The most important of the cyclic ethers by far are ethylene oxide and propylene oxide. These oxides react with active hydrogen-containing compounds (initiators), such as water, glycols, polyols and amines. A catalyst may or may not be used. Potassium hydroxide or sodium hydroxide is the basic catalyst most often employed. After the desired degree of polymerisation has been achieved, the catalyst is neutralized, removed by filtration and additives such as antioxidants are added.
A wide variety of compositions of varying structures, chain lengths and molecular weights is possible. By selecting the oxide or oxides, initiator, and reaction conditions and catalysts, it is possible to polymerise a series of polyether polyols that range from low-molecular-weight polyglycols to high-molecular-weight polymers. Since these polymers contain repeating alkylene oxide units, they are often referred to as polyalkylene glycols or polyglycols. Most polyether polyols are produced for polyurethane applications.
Polyethylene glycols (PEG) contain the repeat unit (-CH2CH2O-) and are conveniently prepared by the addition of ethylene oxide to ethylene glycol to produce a difunctional polyethylene glycol structure HO(CH2CH2O)nH wherein n is an integer of varying size depending on the molecular weight of the polyethylene glycol. Polyethylene glycols used in the present invention are generally linear polyethylene glycols i.e. diols having molecular weights of 200 to 35,000 g/mol. (generally 400 to 2000).
Polypropylene glycols (PPG) are polymers of propylene oxide and thus contain the repeat unit (-CH2(CH3)CH2O-). Polypropylene glycol has unique physical and chemical properties due to the co-occurance of both primary and secondary hydroxyl groups during polymerisation, and to the multiplicity of methyl side chains on the polymers. Conventional polymerisation of propylene glycol results in an atactic polymer. The isotactic polymers mainly exist in the laboratory. Mixtures of atactic and isotactic polymers may also occur. PPG has many properties in common with polyethylene glycol. Polypropylene glycols of all molecular weights are clear, viscous liquids with a low pour point, and which show an inverse temperature-solubility relationship, along with a rapid decrease in water solubility as the molecular weight increases. The terminal hydroxyl groups undergo the typical reactions of primary and secondary alcohols. The secondary hydroxyl group of polypropylene glycols is not as reactive as the primary hydroxyl group in polyethylene glycols. PPG is used in many formulations for polyurethanes. Polypropylene glycols used in the present invention are generally linear having molecular weights of 200 to 4000 g/mol, (generally 400 to 2000).
The invention also provides a method of producing the linear polymer, which comprises melting and drying PEG or PPG, and the block copolymer, together with the difunctional compound at a temperature of 85°C to 1000C under vacuum; and then adding the difunctional isocyanate.
The production of block copolymers (b), based on propylene oxide and ethylene oxide, can be initiated with ethylene glycol, glycerine, trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol, sucrose and several other compounds. Mixed and alternating block copolymers can also be produced. When the secondary hydroxyl groups of PPG are capped with ethylene oxides, block copolymers of PEG and PPG with terminal primary hydroxyl groups are yield. The primary hydroxyl groups are more reactive with isocyanates than secondary hydroxyl groups. PEG- PPG-PEG and PPG-PEG-PPG copolymers used in the present invention are generally linear having molecular weight of 200 to 14,000 g/mol. The block copolymer appears to contribute to the non-crystalline elastomeric nature of the polymer of the invention.
The difunctional compound (c) is reactive with the difunctional isocyanate, and is typically a difunctional amine or diol. Diols in the range C5 to C20, preferably C8 to Cj5 are preferred. Thus, decanediol has been found to produce particularly good results. The diol may be a saturated or unsaturated diol. Branched diols may be used but straight chain diols are preferred. The two hydroxyl groups are generally on terminal carbon atoms. Preferred diols include 1,6-hexanediol, 1,10-decanediol, 1,12-dodecanediol and 1,16-hexadecanediol. The difunctional isocyanate (d) is generally one of the conventional diisocyanates, such as dicyclohexylmethane-4,4-diisocyanate, diphenylmethane-4,4- diisocyanate, 1 ,6-hexamethylene diisocyanate etc.
The equivalent weight ratio of the components (a), (b), (c) and (d) is generally in the range 0.01-1 to 0.01-1 to 1 to 1.02-3 respectively. Of course, the skilled man through reasonable experimentation would determine the best ratio of ingredients to give the desired properties. The amount of component (d) is generally equal to the combined amounts of (a), (b) and (c) to provide the correct stoichiometry.
The polymers are generally produced by melting and drying PEG or PPG, and PEG-PPG-PEG or PPG-PEG-PPG block copolymer together with the difunctional compound and a typical polyurethane catalyst (if used), e.g. ferric chloride, DABCO and/or tin (II) octoate, at a temperature of 85°C to 100°C (e.g. 95°C) under vacuum to remove excess moisture; before the diisocyanate, e.g. DMDI or HMDI is added thereto. The polymerisation is carried out in a batch or alternatively a continuous reactor; or the reaction mixture is fed into moulds and reacted for a specified time. After polymerisation the polymer is cooled down, pelletised or granulated and stored in a freezer for further analysis and processing.
The elastomeric properties of the thermoplastic polyurethane elastomers of the invention are due to two factors: microphase separation of hard and soft blocks; and the semicrystalline nature of the polymer, whose amorphous phase has a low glass transition temperature. Hard blocks form from the difunctional compound and diisocyanate. Soft blocks are PEG, PPG or copolymer. The elasticity may depend on the ratio of hard to soft blocks and may be represented by Shore hardness measurements. The linear polymers of the present invention are soluble in certain organic solvents. This allows the polymer to be dissolved and the resultant solution cast to form films. The solution may also be employed for coating granules, tablets etc., in order to modify the polymer release properties. Alternatively, the solution can be poured into a non-solvent so as to precipitate polymer/active microparticles. In addition, the polymer can be ground, chopped, pelletised and melted by using conventional techniques used for processing thermoplastic polymers.
Thus, the invention also provides a controlled release composition comprising the linear polymer together with an active agent. Any type of plastic processing equipment, e.g. extruder, injection moulding machine, compression moulding equipment and melt mixer can be used for mixing the polymer and active agent together and forming or reshape into any type of drug loaded device, e.g. a ring, pessary, patch, rod, spring or cone. The active agent may be a pharmaceutically active agent for human or animal use. It may also be any other agent where sustained release properties (e.g. algicides, fertilisers etc.) are required. The pharmaceutical solid dosage forms include suppositories, rings and pessaries for vaginal use, buccal inserts for oral administration, patches for transdermal administration etc. These dosage forms are generally administered to the patient, retained in place until delivery of active agent has occurred and the spent polymer is then removed. The polymer may also be used for implants, which remain in the body; or for coating such implants (e.g. stents).
The polymer of the present invention is an amphiphilic thermoplastic polymer and is thus suitable for the uptake of hydrophilic and hydrophobic, low and high molecular weight pharmaceutically active agents (up to and exceeding a molecular weight of 3000 e.g. up to 10,000, up to 50,000, up to 100,000 or even up to 200,000). Generally, the molecular weight of the active agent is in the range 200 to 20,000. A wide variety of water-soluble pharmaceutically active substances such as those listed in EPOO 16652 may thus be incorporated. Furthermore, the linear polymers of the present invention may be loaded with pharmaceutically active hydrophilic and hydrophobic agents, which are poorly water-soluble, provided that these can be dissolved in a common solvent with the polymer. The resultant solution can then be cast into any desired solid form. In addition, the linear polymers of the present invention may be extrusion loaded or melt mixed with pharmaceutically active agents, which are thermally stable at the polymer processing temperature.
The release time of the present polymers may exceed 12 hrs, 24 hrs, 5 days, 10 days, 20 days or even 80 days for substantially complete release of available active agent.
The polyether polyol blends and copolymers used in the present invention are internal and melt rheology, softness and release rate modifiers. These types of low melting amphiphilic thermoplastic polyurethane polymers are particularly suitable for the melt loading of pharmaceutically active agent and melt processing of loaded polymer to pharmaceutical devices.
Pharmaceutically active agents of particular interest include:
Proteins e.g. interferon alpha, beta and gamma, insulin, human growth hormone, leuprolide; benzodiazepines e.g. midazolam; anti-migraine agents e.g. triptophans, ergotamine and its derivatives; anti-infective agents e.g. azoles, bacterial vaginosis, Candida; and ophthalmic agents e.g. latanoprost.
A detailed list of active agent includes H2 receptor antagonist, antimuscaririe, prostaglandin analogue, proton pump inhibitor, aminosalycilate, corticosteroid, chelating agent, cardiac glycoside, phosphodiesterase inhibitor, thiazide, diuretic, carbonic anhydrase inhibitor, antihypertensive, anti-cancer, anti-depressant, calcium channel blocker, analgesic, opioid antagonist, antiplatel, anticoagulant, fibrinolytic, statin, adrenoceptor agonist, beta blocker, antihistamine, respiratory stimulant, micolytic, expertorant, benzodiazepine, barbiturate, anxiolytic, antipsychotic, tricyclic anti depressant, 5HTi antagonist, opiate, 5HT, agonist, antiemetic, antiepileptic, dopaminergic, antibiotic, antifungal, anthelmintic, antiviral, antiprotozoal, antidiabetic, insulin, thyrotoxin, femal sex hormone, male sex hormone, antioestrogen, hypothalamic, pituitary hormone, posterior pituitary hormone antagonist, antidiuretic hormone antagonist, bisphosphonate, dopamine receptor stimulant, androgen, non-steroidal anti-inflammatory, immuno suppressant local anaesthetic, sedative, antipsioriatic, silver salt, topical antibacterial vaccine.
Embodiments of the present invention will now be described by way of examples below. The effects of type and ratios of PEG or PPG, PEG-PPG-PEG or PPG-PEG-PPG copolymer, diols and diisocyanates on the properties of polymers can be seen in the following Tables, Examples and Figures.
Figure 1 shows molecular weight as a function of polymerisation time for certain polymers; and
Figure 2 to 5 show various active agent release profiles.
EXAMPLE 1. Polymer manufacture
Various types of polyethylene glycols, polypropylene glycols, PEG-PPG- PEGs, PPG-PEG-PPGs, diols and diisocyanates, in a range of stoichiometric ratios were used to demonstrate their effect on the properties of the hydrophilic linear polyurethane elastomer polymers. PEG400, PEG900, PEGlOOO and PEG2000 are polyethylene glycols having a molecular weight of 400, 900, 1000 and 2000 g/mol, respectively; PPGlOOO and PPG2000 are polypropylene glycols having a molecular weight of 1000 and 2000g/mol; PEG-PPG-PEGl 100 and PEG-PPG-PEG4400 are block copolymers having a molecular weight of 1100 and 4400 g/mol; PPG-PEG- PEG2000 is a block copolymer having a molecular weight of 2000 g/mol; DD is 1,10-decanediol and DDD is 1,12-dodecanediol; DMDI is dicyclohexylmethane-4,4- diisocyanate and HMDI is 1 ,6-hexamethylene diisocyanate; FeCl3 is Ferric chloride, DABCO is Methylene diamine and Snθct2 is Stannous octoate.
Polymers were produced by applying the polymerisation method described in WO patent Publication WO2004029125. The PEG, PPG, PEG-PPG-PEG and/or PPG-PEG-PPG were melted and vacuum dried at 95 °C along with the diol and the catalyst (if used) in a rotary-evaporator for an hour at a pressure below 1 mbar. At this point the dried mixture was fed into a reactor prior to the diisocyanate addition. The manufactured polymers are shown in Table 1.
Table 1. Manufactured hydrophilic thermoplastic polyurethane elastomers.
Polymer PEG PPG PEG-PPG-PEG PPG-PEG-PPG DD DDD DMDI HMDI mol mol mol mol mol mol mol mol
Name Mw Mw Mw Mw Mw Mw Mw Mw ratio ratio ratio ratio ratio ratio ratio ratio
Polymer A - - 1000 0.054 4400 0.046 - - 174 1 - - 262 1.1 - -
Polymer B - - 1000 0.054 - - 2000 0.046 174 1 - - 262 1.1 - -
Polymer C 400 0.216 - - - - 2000 0.184 174 1 - - 262 1.4 - -
Polymer D 900 0.3 1000 0.3 - - - - - - 202 0.3 262 0.9 - -
Polymer E 2000 0.3 2000 0.3 - - - - - - 202 0.3 262 0.9 - -
Polymer F - - 1000 0.054 4400 0.046 - - 174 1 - - - - 168 1.1
Polymer G - - 1000 0.054 - - 2000 0.046 174 1 - - - - 168 .1
Polymer H*l - - 1000 0.054 - - 2000 0.046 174 1 - - - - 168 .1
Polymer I - - 1000 0.054 - - 2000 0.046 - - 202 1 - - 168 .1
Polymer J 400 0.216 - - 4400 0.184 - - 174 1 - - 262 1.4 - -
Polymer K 400 0.216 - - 4400 0.184 - - - - 202 1 - - 168 1.4
Polymer L 400 0.216 - - 1100 0.184 - - 174 1 - - - - 168 .4
Polymer M*2 1000 0.2 - - 1100 0.2 - - 174 1 - - - - 168 .4
Polymer N*3 1000 0.2 - - 1 100 0.2 - - 174 1 - - - - 168 1.4
Polymer O - - 2000 0.1 - - 2000 0.1 174 1 - - - - 168 1.2
Polymer P - - 2000 0.25 - - 2000 0.25 174 1 - - - - 168 1.2
Polymer Q - - 2000 1 - - 2000 1 174 1 - - - - 168 3
Polymer R 2000 0.25 - - 2000 0.25 - - 174 1 - - - - 168 1.5
* 1 No catalyst
2 DABCO
*3 DABCO + SnOct
EXAMPLE 2. Polymerisation reaction as a function of time
The effect of polymerisation time on the polymer produced was investigated using triple detection Size Exclusion Chromatography (SEC). Molecular weight determination as a function of polymerisation time was carried out for Polymers B and C, see Figure 1 below. The molecular weight of the polymer will determine the rheology, melt flow and mechanical properties of the polymer. Therefore the importance of determining molecular weight values is evident.
EXAMPLE 3. The effect of the catalyst on the polymerisation reactions
The polymerisations were performed as in Example 1 but the ferric chloride was replaced by DABCO and Snθct2 for Polymer N (Table 1); while DABCO alone was used for Polymer M (Table 1). Polymer H (Table 1) was prepared in the absence of a catalyst.
EXAMPLE 4. The use of different diisocvanates
The polymerisations were performed as in Example 1 but the DMDI was replaced by HMDI for polymers F, G, H, I, K, L, M, N, O, P, Q and R in Table 1.
EXAMPLE 5. Solubility of polymers in different solvents
A number of polymers from Table 1 were dissolved in different solvents in order to find suitable solvents. The solubility tests were carried out for 24 hours at room temperature (RT). The solubility results for the selected polymers are shown in Table 2. Table 2. Polymer solubility in selected solvents.
Polymer DCM THF DCM/TEA THF/TEA
Name RT 35°C RT 35°C
Polymer A - YES - -
Polymer B - YES - -
Polymer C - YES - -
Polymer D - YES - -
Polymer P YES YES YES YES
DCM dichioromethane THF tetrahydrofuran TEA triethyl amine
EXAMPLE 6. Swelling capacity of polymers in different solvents
The swelling determinations for a number of selected polymers were carried out in water, ethanol, isopropyl alcohol (IPA) and in a 50% mixture of IPA/water in order to measure the amount of solvent absorbed by the polymer. The results were calculated based on the average swelling of 10 specimens and are shown in Table 3. The formula used for the calculations is shown below:
n/ c, ... Swollen Weight - Dry Weight - nn
%Swelling = — x 100
Dry Weight
Table 3. Percent swelling of the selected polymers in different swelling media (water, ethanol, IPA and 50% IPA/water).
Polymer % Swelling in % Swelling in % Swelling in % Swelling in
Name Water Ethanol IPA 50% IPA/water
Polymer A 2.5 133 113 68
Polymer B 2.5 89 73 71
Polymer C 43 N/A 130 206
EXAMPLE 7. Shore hardness testing (elasticity measurement)
The manufactured polymers were tested for Shore hardness using durometers A and D. Durometers A and D are generally used to measure elasticity of soft and hard rubber, respectively. These measurements are well known to the skilled person in the field. The results are presented as the average of four measurements and are presented in Table 4.
Table 4. Shore hardness values determined for the manufactured polymers.
Polymer Durometer A Durometer D
Name Max Hardness Creep (15 sec) Max Hardness Creep (15 sec)
Polymer A 97.6 0.4 50.6 7.6
Polymer B 97.5 2.6 56.5 12.5
Polymer C 81.4 2.6 27.4 4.3
Polymer D N/A N/A N/A N/A
Polymer E N/A N/A N/A N/A
Polymer F 95.8 0.0 49.0 3.6
Polymer G 97.0 0.3 56.6 2.3
Polymer H*l 97.0 0.0 60.5 4.0
Polymer I 97.0 2.5 53.8 4.8
Polymer J N/A N/A N/A N/A
Polymer K 88.3 20.0 22.8 10.0
Polymer L 85.3 0.9 39.3 1.5
Polymer M*2 94.8 0.4 45.3 1.5
Polymer N*3 95.4 3.8 40.3 6.3
Polymer O 89.8 1.8 39.8 4.1
Polymer P 88.0 3.8 28.1 1.6
Polymer Q 60.8 3.9 N/A N/A
Polymer R 87.0 2.0 29.8 1.8
Experimental conditions:
Temperature 21°C
Relative Humidity %RH 39
EXAMPLE 8. Polymer films manufactured by compression moulding
A number of selected polymers from Table 1 were dried over night under vacuum prior to the processing. The upper and lower plate temperatures of the compression moulding machine were set at the target processing temperature. Two Teflon sheets were placed between the mould and the hot plates. The melting time was 3-5 minutes followed by a 30 -120 seconds holding under pressure (170-200 bars). A predetermined amount of polymer was used to fill the mould. After cooling to room temperature the samples (pessary devices with dimensions 30mm x 10mm x lmm) were mechanically punched out and kept in the freezer for further analysis. The film processing conditions are shown in Table 5.
Table 5. Thermal processing of the manufactured polymers using compression moulding.
Polymer Temperature Cylinder Melting Pressure Mould (0C) Pressure Time Time Thickness (Bar) (S) (S) (mm)
Polymer A* 160 200 240 120 1.0
Polymer A* 160 200 210 120 1.0
Polymer A 150 200 120 60 0.25
Polymer C 130 200 180 60 0.4
EXAMPLE 9. Drug loading - extrusion
Selected polymers were loaded with two different active compounds: fluconazole and oxybutynin. A 16mm co-rotating twin-screw laboratory extruder was used for loading the polymers. Table 6 shows the drug loading conditions.
Table 6. Extrusion loading conditions used for the fluconazole loaded devices.
Figure imgf000018_0001
Two different batches of the same polymer composition (Polymer A and A*) were loaded with fluconazole in two different drug amounts in order to prove the reproducibility of the polymerisation process. Release results were found to be reproducible. The quantity of the active compound loaded into the polymers was based on the required therapeutic dosage.
EXAMPLE 10. Drug release studies - Effect of polymer
In vitro drug release properties of the extrusion loaded polymers were determined by dissolution studies. The amount of fluconazole and oxybutynin released from the extrusion loaded polymers was investigated by using dissolution method based on the USP paddle method for short term release and incubator shaker method with Erlenmeyer bottles for long term release. USP paddle technique is comprised of an automated UV dissolution system where a Distek (2100C model) dissolution paddle (speed 50rpm) is connected to a Unicam UV 500 spectrophotometer via an Icalis peristaltic pump. The system is operated using Dsolve software. In the incubator shaker method the samples were taken manually and the Unicam UV 500 spectrophotometer was used to analyse the samples.
Experimental conditions:
Temperature 37°C
Dissolution media 500ml of deionised degassed water
In this example the effect of the polymer structure on the release of fluconazole was investigated. Polymer A and C were loaded with 20wt% fluconazole and Polymer A, B and C were loaded with 5% of oxybutynin using extrusion techniques. The release of fluconazole and oxybutynin varied depending on the polymer matrix, see Figure 2a and 2b.
EXAMPLE 11. Drug release studies - Effect of drug
When the drug type was changed different release profiles were obtained. Fluconazole and oxybutynin were loaded into Polymer A. Normalised dissolution profiles are shown in Figure 3. The same dissolution method as in Example 10 was used to determine the release curves.
EXAMPLE 12. Drug release studies - Effect of drug amount
The effect of increasing loading content was investigated by dissolution studies. The effect of different drug contents on the release properties of Polymer A was investigated and is shown in Figure 4. The fluconazole loading was increased from 20wt% to 50wt%. The same dissolution method as in Example 10 was used to determine the release curves.
EXAMPLE 13. Drug release studies - Comparison with high-swelling polymers
The fluconazole release profile obtained for Polymer A and Polymer C were compared with the release profiles obtained for a crosslinked and a linear high- swelling polyurethane polymer, see Figure 5. The diffusion loaded crosslinked polymer (crosslinked 17wt% fluconazole) was from patent EPOO 16652/EP0016654. While the linear high swelling polymer was from patent WO2004029125 and was loaded using diffusion (high %SW 17wt% fluconazole) as well as extrusion techniques (high %SW 20wt% fluconazole). The same dissolution method as in Example 10 was used to determine the release curves. These new polymers can provide an excellent control over drug release, see Figure 5.

Claims

1. A linear polymer obtainable by reacting together
(a) a polyethylene glycol or polypropylene glycol;
(b) a PEG-PPG-PEG or PPG-PEG-PPG block copolymer;
(c) a difunctional compound; and
(d) a difunctional isocyanate.
2. A linear polymer according to claim 1, wherein the polyethylene glycol is a linear polyethylene glycol having a molecular weight of 400 to 2000.
3. A linear polymer according to claim 1, wherein the polypropylene glycol is a linear polypropylene glycol having an molecular weight of 400 to 2000.
4. A linear polymer according to any preceding claim, wherein the block copolymer has a molecular weight of 200 to 14,000.
5. A linear polymer according to any preceding claim, wherein the difunctional compound (c) is a diol.
6. A linear polymer according to claim 5, wherein the diol is a C5 to C20 diol.
7. A linear polymer according to claim 6, wherein the diol is a C8 to Ci5 diol.
8. A linear polymer according to claim 6 wherein the diol is 1,6-hexanediol, 1,10-decanediol, 1,12-dodecanediol or 1,16-hexadecanediol.
9. A linear polymer according to any preceding claim, wherein the difunctional isocyanate (d) is dicyclohexylmethane-4,4-diisocyanate, diphenylmethane-4,4- diisocyanate, or 1 ,6-hexamethylene diisocyanate.
10. A linear polymer according to any preceding claim, wherein the equivalent weight ratio of the components (a), (b), (c) and (d) is in the range 0.01-1 to 0.01 - 1 to 1.02-3 respectively.
11. A method of producing a linear polymer according to any preceding claim, which comprises melting and drying PEG or PPG, and the block copolymer, together with the difunctional compound at a temperature of 85°C to 100°C under vacuum; and then adding the difunctional isocyanate.
12. A controlled release composition, which comprises the linear polymer of claim 1 together with an active agent.
13. A composition according to claim 12, which has been processed into a solid dosage form.
14. A composition according to claim 13 in the form of a suppository, ring or pessary for vaginal use, a bucchal insert, or a transdermal patch.
15. A composition according to claim 13 in the form of an implant.
16. A composition according to any of claims 12 to 15, wherein the active agent has a molecular weight of 200 to 20,000.
PCT/GB2007/002415 2006-07-08 2007-06-27 Polyurethane elastomers WO2008007046A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CN2007800256285A CN101484495B (en) 2006-07-08 2007-06-27 Polyurethane elastomers
CA2656788A CA2656788C (en) 2006-07-08 2007-06-27 Controlled release composition comprising polyurethane elastomers
EP07733405A EP2038325B1 (en) 2006-07-08 2007-06-27 Polyurethane elastomers
AT07733405T ATE498643T1 (en) 2006-07-08 2007-06-27 POLYURETHANE ELASTOMERS
BRPI0713481A BRPI0713481B8 (en) 2006-07-08 2007-06-27 controlled release pharmaceutical composition in solid dosage form, linear polymer, and method for producing a linear polymer
DK07733405.0T DK2038325T3 (en) 2006-07-08 2007-06-27 Polyurethane elastomers
PL07733405T PL2038325T3 (en) 2006-07-08 2007-06-27 Polyurethane elastomers
US12/373,002 US8361272B2 (en) 2006-07-08 2007-06-27 Polyurethane elastomers
DE602007012545T DE602007012545D1 (en) 2006-07-08 2007-06-27 POLYURETHANE ELASTOMERS
AU2007274119A AU2007274119B2 (en) 2006-07-08 2007-06-27 Polyurethane elastomers
JP2009517399A JP5307710B2 (en) 2006-07-08 2007-06-27 Polyurethane elastomer
US13/605,689 US8361273B2 (en) 2006-07-08 2012-09-06 Polyurethane elastomers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0613638.6 2006-07-08
GBGB0613638.6A GB0613638D0 (en) 2006-07-08 2006-07-08 Polyurethane elastomers

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/373,002 A-371-Of-International US8361272B2 (en) 2006-07-08 2007-06-27 Polyurethane elastomers
US13/605,689 Continuation US8361273B2 (en) 2006-07-08 2012-09-06 Polyurethane elastomers

Publications (1)

Publication Number Publication Date
WO2008007046A1 true WO2008007046A1 (en) 2008-01-17

Family

ID=36926730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2007/002415 WO2008007046A1 (en) 2006-07-08 2007-06-27 Polyurethane elastomers

Country Status (15)

Country Link
US (2) US8361272B2 (en)
EP (1) EP2038325B1 (en)
JP (2) JP5307710B2 (en)
CN (1) CN101484495B (en)
AT (1) ATE498643T1 (en)
AU (1) AU2007274119B2 (en)
BR (1) BRPI0713481B8 (en)
CA (1) CA2656788C (en)
DE (1) DE602007012545D1 (en)
DK (1) DK2038325T3 (en)
ES (1) ES2363704T3 (en)
GB (1) GB0613638D0 (en)
PL (1) PL2038325T3 (en)
PT (1) PT2038325E (en)
WO (1) WO2008007046A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2244782A2 (en) 2008-01-25 2010-11-03 The University of Utah Research Foundation Linear order release polymer
WO2011039418A1 (en) * 2009-10-01 2011-04-07 Bayer Schering Pharma Oy An intrauterine system
US8580294B2 (en) 2010-10-19 2013-11-12 International Partnership For Microbicides Platinum-catalyzed intravaginal rings
WO2015044415A1 (en) * 2013-09-30 2015-04-02 Universiteit Gent Polyurethanes as oral drug delivery platform
WO2015057505A1 (en) * 2013-10-15 2015-04-23 Lubrizol Advanced Materials, Inc. Thermoplastic polyurethanes made with tin-free catalysts
EP2826463A4 (en) * 2012-03-13 2015-12-02 Sumitomo Seika Chemicals Cosmetic composition
EP3017809A1 (en) 2014-11-07 2016-05-11 Ferring B.V. Drug-device unit containing quinagolide
US10137031B2 (en) 2013-11-14 2018-11-27 International Partnership For Microbicides, Inc. Combination therapy intravaginal rings
WO2023031218A1 (en) 2021-08-31 2023-03-09 Ferring B.V. Diagnosis and treatment of ectopic endometriosis

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0613333D0 (en) 2006-07-05 2006-08-16 Controlled Therapeutics Sct Hydrophilic polyurethane compositions
US8637629B2 (en) * 2007-01-18 2014-01-28 Lubrizol Advanced Materials, Inc. High moisture vapor transmissive polyurethanes
US20090233887A1 (en) * 2008-03-12 2009-09-17 Shalaby Shalaby W Hydroswellable, Segmented, Aliphatic Polyurethanes and Polyurethane Ureas
US8940799B2 (en) * 2010-03-25 2015-01-27 Medtronic Xomed, Inc. Adjusting drug loading in polymeric materials
CA2817713C (en) * 2010-11-12 2018-12-04 The University Of Utah Research Foundation Intravaginal devices for controlled delivery of lubricants
MX357598B (en) * 2011-07-20 2018-07-16 F Kiser Patrick Intravaginal devices for drug delivery.
JP5955922B2 (en) * 2013-11-11 2016-07-20 三洋化成工業株式会社 Polyurethane resin for water equivalent phantom materials
CN105992783B (en) * 2013-12-10 2019-09-24 路博润先进材料公司 High resilience thermoplastic polyurethane
CN107108837B (en) 2014-10-31 2021-04-13 路博润先进材料公司 Thermoplastic polyurethane films for delivering active agents to skin surfaces
US11202986B2 (en) * 2017-10-09 2021-12-21 Ali Pournaghshband Isfahani Plasticization-resistant polyurethane membrane and preparation method thereof
TW201927846A (en) * 2017-12-04 2019-07-16 日商住友精化股份有限公司 Composition for emitting volatile substance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002763A1 (en) * 1989-08-15 1991-03-07 British Technology Group Plc Polymeric materials
DE19842636A1 (en) * 1997-09-24 1999-03-25 Henkel Kgaa Polyurethane adhesive bonding paper labels to polyolefin bottles
WO2004029125A1 (en) * 2002-09-27 2004-04-08 Controlled Therapeutics (Scotland) Limited Water-swellable polymers

Family Cites Families (322)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE505703C2 (en) 1995-12-15 1997-09-29 Polyrand Ab Linear block polymer comprising urea and urethane groups, process for producing linear block polymers and use of the block polymers as implants
US3916898A (en) 1964-05-20 1975-11-04 Searle & Co Administration of medicaments and the like
US3487068A (en) 1966-12-16 1969-12-30 Upjohn Co Lincomycin-2-phosphates,7-substituted compounds and salts thereof
US3830907A (en) 1968-04-22 1974-08-20 Searle & Co Compositions for the sustained release of 17alpha-ethyl-19-nortestosterone
US3565991A (en) 1968-04-22 1971-02-23 Searle & Co Methods for use and compositions of 17alpha-ethyl-19-nortestosterone and carriers for the sustained release of steroids
US3860701A (en) 1968-04-22 1975-01-14 Searle & Co Method for use and compositions of 11-lower alkyl steroids and drug delivery system for the controlled elution of 11-lower alkyl steroids
US3639157A (en) 1968-07-18 1972-02-01 Bayer Ag Process for finishing textile materials with a polymer of a vinyl compound and the reaction product of a polyol and an organic polyisocyanate
US3797494A (en) 1969-04-01 1974-03-19 Alza Corp Bandage for the administration of drug by controlled metering through microporous materials
US3854480A (en) 1969-04-01 1974-12-17 Alza Corp Drug-delivery system
US3734097A (en) 1969-04-01 1973-05-22 Alza Corp Therapeutic adhesive tape
US3598123A (en) 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3948262A (en) 1969-04-01 1976-04-06 Alza Corporation Novel drug delivery device
US3993073A (en) 1969-04-01 1976-11-23 Alza Corporation Novel drug delivery device
US3896819A (en) 1969-04-01 1975-07-29 Alejandro Zaffaroni IUD having a replenishing drug reservoir
US3598122A (en) 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3967618A (en) 1969-04-01 1976-07-06 Alza Corporation Drug delivery device
US3845761A (en) 1970-06-02 1974-11-05 Alza Corp Intrauterine contraceptive anti-fertility device for the management of reproduction
US3737521A (en) 1970-12-09 1973-06-05 Goodrich Co B F Formulation for sustained release of a biological agent
US4034756A (en) 1971-01-13 1977-07-12 Alza Corporation Osmotically driven fluid dispenser
US3760805A (en) 1971-01-13 1973-09-25 Alza Corp Osmotic dispenser with collapsible supply container
US3995631A (en) 1971-01-13 1976-12-07 Alza Corporation Osmotic dispenser with means for dispensing active agent responsive to osmotic gradient
US3941880A (en) 1971-02-22 1976-03-02 G. D. Searle & Co. Method for use of 11-lower alkyl steroids
US3731683A (en) 1971-06-04 1973-05-08 Alza Corp Bandage for the controlled metering of topical drugs to the skin
US3931113A (en) 1971-06-21 1976-01-06 Ppg Industries, Inc. Impact-resistant thermoplastic polyester urethanes
US4041208A (en) 1971-06-21 1977-08-09 Ppg Industries, Inc. Transparent, impact-resistant polyesterurethane laminates
US3881043A (en) 1971-06-21 1975-04-29 Ppg Industries Inc Laminated safety windshields
US3892842A (en) 1971-09-01 1975-07-01 Alza Corp Intrauterine contraceptive device for releasing steroid having double bond functionality
US3948254A (en) 1971-11-08 1976-04-06 Alza Corporation Novel drug delivery device
US3845770A (en) 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US3921636A (en) 1973-01-15 1975-11-25 Alza Corp Novel drug delivery device
US3867933A (en) 1973-03-06 1975-02-25 Tecna Corp Intrauterine device and process of making the same
US3916899A (en) 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
US4036227A (en) 1973-04-25 1977-07-19 Alza Corporation Osmotic releasing device having a plurality of release rate patterns
FR2250520B1 (en) 1973-11-09 1977-04-15 Cournut Rene
US3901852A (en) 1974-07-29 1975-08-26 Upjohn Co Thermoplastic polyurethanes prepared from 4,4'-methylenebis (phenyl isocyanate)
US3993072A (en) 1974-08-28 1976-11-23 Alza Corporation Microporous drug delivery device
US4096238A (en) 1974-12-23 1978-06-20 Alza Corporation Method for administering drug to the gastrointestinal tract
US4018918A (en) 1975-05-20 1977-04-19 The Upjohn Company Topical clindamycin preparations
GB1479987A (en) 1975-06-20 1977-07-13 Interox Chemicals Ltd Polyurethanes
GB1551620A (en) 1976-12-13 1979-08-30 Ici Ltd Delivery means for biologically active agents
US4235988A (en) 1976-12-13 1980-11-25 Imperial Chemical Industries Limited Delivery means for biologically active agents
US4289757A (en) 1978-02-28 1981-09-15 The Upjohn Company Method for treating inflammation
US4205115A (en) 1978-04-19 1980-05-27 Ppg Industries, Inc. Polyester coating composition
US4215691A (en) 1978-10-11 1980-08-05 Alza Corporation Vaginal contraceptive system made from block copolymer
US4286587A (en) 1978-10-11 1981-09-01 Alza Corporation Vaginal drug delivery system made from polymer
US4237885A (en) 1978-10-23 1980-12-09 Alza Corporation Delivery system with mated members for storing and releasing a plurality of beneficial agents
US5017382A (en) 1979-03-21 1991-05-21 National Research Development Corporation Controlled release compositions (II)
US5079009A (en) 1979-03-21 1992-01-07 National Research Development Corporation Controlled release compositions including polyethylene oxide with urethane cross-linking
AU537741B2 (en) 1979-03-21 1984-07-12 British Technology Group Limited Controlled release compositions
US4250611A (en) 1979-04-19 1981-02-17 Alza Corporation Process for making drug delivery device with reservoir
US4264757A (en) 1979-06-26 1981-04-28 Union Carbide Corporation Radiation-curable allyl- or vinyl capped polycaprolactone compositions
US4402695A (en) 1980-01-21 1983-09-06 Alza Corporation Device for delivering agent in vagina
US4731289A (en) 1980-02-14 1988-03-15 Ppg Industries, Inc. Abrasion resistant polyurethane coatings for rigid plastics
US4276405A (en) 1980-03-28 1981-06-30 Union Carbide Corporation Low-energy-curable coatings compositions
DE3017989C2 (en) 1980-05-10 1982-05-19 IPOS Gesellschaft für integrierte Prothesen-Entwicklung und orthopädietechnischen Service mbH & Co KG, 2120 Lüneburg "Collection bag for artificial intestinal exits"
AU558611B2 (en) 1981-02-03 1987-02-05 Bayer Aktiengesellschaft Polyurethane gel
US4466936A (en) 1981-02-03 1984-08-21 Bayer Aktiengesellschaft Production of molds using gel compositions with depot action based on a polyurethane matrix and relatively high molecular weight polyols
JPS57155230A (en) 1981-02-27 1982-09-25 Daicel Chem Ind Ltd Lactone polymer having narrow molecular weight distribution and its preparation
JPS57185313A (en) 1981-05-08 1982-11-15 Daicel Chem Ind Ltd Polyurethane and its preparation
US4426485A (en) 1982-06-14 1984-01-17 Union Carbide Corporation Polymers with hydrophobe bunches
JPS5948409A (en) 1982-09-10 1984-03-19 Teikoku Seiyaku Kk Promotor for orthodontic tooth mobility
US4438225A (en) 1983-04-12 1984-03-20 Henkel Corporation Polyester polyols from bishydroxymethyl tricyclo compounds and caprolactone and polyurethanes based thereon
GB8319766D0 (en) 1983-07-22 1983-08-24 Graham N B Controlled release device
FR2557576B1 (en) 1984-01-03 1988-06-03 Gould Francis HYDROPHILIC POLYURETHANE ACRYLATE COMPOSITION, PREPARATION METHOD AND USE THEREOF AS BURNAGE DRESSING, IMPLANT, CONTRACEPTIVE, INTRA-UTERINE DEVICE, CANNULA, ORAL APPLICATION SYSTEM, GAS PERMEABLE MEMBRANE, CORNEAL PROSTHESIS, DRESSING DIALYSIS MEMBRANE, CONTACT LENS AND COATING OF SHIPS
US4694238A (en) 1984-01-10 1987-09-15 Peter Norton Dual voltage power supply system for vehicles
GB8403138D0 (en) 1984-02-07 1984-03-14 Graham N B Sustained release of active ingredient
US4503216A (en) 1984-02-21 1985-03-05 Eastman Kodak Company Hydroxyl-terminated polyether-esters
US4568741A (en) 1984-05-15 1986-02-04 The Upjohn Company Synthesis of 7-halo-7-deoxylincomycins
US4596576A (en) 1984-10-12 1986-06-24 Akzo N.V. Release system for two or more active substances
IE58110B1 (en) 1984-10-30 1993-07-14 Elan Corp Plc Controlled release powder and process for its preparation
JPS61250019A (en) 1985-04-27 1986-11-07 Bridgestone Corp Production of fine foam of polyurethane elastomer
JPS6257467A (en) 1985-09-06 1987-03-13 Asahi Glass Co Ltd Coating agent composition
US4707495A (en) 1985-10-28 1987-11-17 Ortho Pharmaceutical Peptic ulcer treatment method
US5731303A (en) 1985-12-04 1998-03-24 Conrex Pharmaceutical Corporation Transdermal and trans-membrane delivery compositions
US5023252A (en) 1985-12-04 1991-06-11 Conrex Pharmaceutical Corporation Transdermal and trans-membrane delivery of drugs
US4917686A (en) 1985-12-16 1990-04-17 Colorado Biomedical, Inc. Antimicrobial device and method
IE59361B1 (en) 1986-01-24 1994-02-09 Akzo Nv Pharmaceutical preparation for obtaining a highly viscous hydrogel or suspension
US5219885A (en) 1987-02-16 1993-06-15 Froelich Juergen Prostaglandin E1 derivatives as pharmaceutically active agents, and pharmaceutical compositions containing these compounds, especially for transcutaneous administration
US4804691A (en) 1987-08-28 1989-02-14 Richards Medical Company Method for making a biodegradable adhesive for soft living tissue
EP0310037B1 (en) 1987-09-28 1993-07-14 Kuraray Co., Ltd. Leather-like sheet material and method of producing same
US5035891A (en) 1987-10-05 1991-07-30 Syntex (U.S.A.) Inc. Controlled release subcutaneous implant
JP2538953B2 (en) 1987-11-17 1996-10-02 三菱重工業株式会社 Balance mechanism of industrial robot
IE60383B1 (en) 1988-05-27 1994-07-13 Elan Corp Plc Controlled release pharmaceutical formulation
US5219663A (en) 1988-06-22 1993-06-15 Hitachi Maxell, Ltd. Magnetic recording medium having a magnetic layer formed from an aromatic polycarbonate polyurethane resin
JPH024736A (en) 1988-06-22 1990-01-09 Hitachi Maxell Ltd Polycarbonate polyol, aromatic polycarbonate polyurethane resin, coating material, cast film and magnetic recording medium
JP2613441B2 (en) 1988-07-18 1997-05-28 トヨタ自動車株式会社 Manufacturing method of foamed polyurethane
US5000955A (en) 1988-07-29 1991-03-19 Tyndale Plains-Hunter Ltd. Thermally reversible polyurethane hydrogels and cosmetic, biological and medical uses
US4933418A (en) 1988-08-10 1990-06-12 Ormco Corporation Stain-resistant orthodontic device
US4895934A (en) 1988-08-22 1990-01-23 E. I. Du Pont De Nemours And Company Process for the preparation of clindamycin phosphate
SE463851B (en) 1988-09-02 1991-02-04 Amsu Ltd COMPOSITION FOR TREATMENT OF ERECT DYSFUNCTION THROUGH URETRA
US5470829A (en) 1988-11-17 1995-11-28 Prisell; Per Pharmaceutical preparation
FR2641786B1 (en) 1989-01-19 1992-09-11 Sami URETHANE POLYMER COMPOSITION AND PREPARATION OF ARTICLES THEREFROM
DE3903538A1 (en) 1989-02-07 1990-08-16 Basf Ag PRODUCTION OF EMULSIFIER-FREE, AQUEOUS POLYURETHANE DISPERSIONS
ES2010145A6 (en) 1989-03-02 1989-10-16 Uriach & Cia Sa J 2-picolylamine derivates.
US5888930A (en) 1989-03-27 1999-03-30 Bend Research, Inc. Asymmetric microporous beads for controlled release
US5002540A (en) 1989-05-22 1991-03-26 Warren Kirschbaum Intravaginal device and method for delivering a medicament
US5034461A (en) 1989-06-07 1991-07-23 Bausch & Lomb Incorporated Novel prepolymers useful in biomedical devices
US5061254A (en) 1989-06-21 1991-10-29 Becton, Dickinson And Company Thermoplastic elastomeric hydrophilic polyetherurethane expandable catheter
US5110598A (en) 1989-06-30 1992-05-05 Smithkline Beecham Corp. Intermittent release dosage form
US5178874A (en) 1989-06-30 1993-01-12 Smithkline Beechman Corporation Intermittent release dosage form
JP2844474B2 (en) 1989-07-19 1999-01-06 ダイセル化学工業株式会社 Method for producing polyurethane
US5118779A (en) 1989-10-10 1992-06-02 Polymedica Industries, Inc. Hydrophilic polyurethane elastomers
DE4006521A1 (en) 1990-03-02 1991-09-05 Bayer Ag SUGAR-BASED POLYMERS FOR COATING AND EMBEDDING MEDICINAL SUBSTANCES
DE4019171A1 (en) 1990-06-15 1991-12-19 Henkel Kgaa COATING AGENT
GB2244920B (en) 1990-06-16 1994-05-25 British Aerospace A contraceptive device
US5130126A (en) 1990-07-09 1992-07-14 Nippon Oil & Fats Co., Ltd. Polymer-drug conjugate and a method of producing it
DK0540580T3 (en) 1990-07-26 1994-05-16 Monsanto Co Polymeric drug delivery system
US5326632A (en) 1990-08-07 1994-07-05 Komatsu Seiren Co., Ltd. Moisture-permeable waterproof fabric and process for production thereof
US5114718A (en) 1990-09-20 1992-05-19 The Procter & Gamble Company Sustained release compositions for treating periodontol disease
JPH05239205A (en) 1991-02-13 1993-09-17 Ajinomoto Co Inc Poly(amino acid-urethane) resin
GB2254002B (en) 1991-01-16 1995-03-22 Controlled Therapeutics Retrievable pessary
US5652274A (en) 1991-03-01 1997-07-29 Martin; Alain Therapeutic-wound healing compositions and methods for preparing and using same
US5159047A (en) 1991-06-14 1992-10-27 E. I. Du Pont De Nemours And Company Coatings containing caprolactone oligomer polyols
CA2071137A1 (en) 1991-07-10 1993-01-11 Clarence C. Lee Composition and method for revitalizing scar tissue
US5176907A (en) 1991-08-13 1993-01-05 The Johns Hopkins University School Of Medicine Biocompatible and biodegradable poly (phosphoester-urethanes)
US5322063A (en) 1991-10-04 1994-06-21 Eli Lilly And Company Hydrophilic polyurethane membranes for electrochemical glucose sensors
US5252602A (en) 1991-10-11 1993-10-12 Rafeul Alam Effects of misoprostol on allergic responses
ES2114569T3 (en) 1991-10-16 1998-06-01 Richardson Vicks Inc IMPROVED SKIN PENETRATION SYSTEM FOR THE IMPROVED TOPICAL ADMINISTRATION OF PHARMACES.
US6117843A (en) 1992-02-18 2000-09-12 Lloyd J. Baroody Compositions for the treatment of acne containing clindamycin and benzoyl peroxide
US5650171A (en) 1992-04-29 1997-07-22 Penederm, Inc. Retinoic acid-containing polyether-polyurethane compositions
US5578643A (en) 1992-05-20 1996-11-26 Loyola University Of Chicago Protective prostaglandins for use in conjunction with chemotherapeutic agents
JP3119533B2 (en) 1992-05-27 2000-12-25 日本ペイント株式会社 Chipping resistant coating composition
US5710215A (en) 1992-06-15 1998-01-20 Ebnother Ag Method and material mixture for manufacture of reactive hotmelts
US5310759A (en) 1992-08-12 1994-05-10 Bockman Richard S Methods of protecting and preserving connective and support tissues
US6328991B1 (en) 1992-10-21 2001-12-11 John Myhling Composition and method for prevention of sexually transmitted diseases, including aids
DE69332954D1 (en) 1992-10-21 2003-06-12 Gynetech Lab Inc DISPENSING SYSTEM CONSISTING OF A VAGINASCHWAMM
US5747582A (en) 1992-10-29 1998-05-05 Bayer Aktiengesellschaft Aqueous coating compositions and their use for the preparation of coatings that are permeable to water vapor
DE4241118A1 (en) 1992-12-07 1994-06-09 Basf Ag Use of cationic polyurethanes and polyureas as auxiliaries in cosmetic and pharmaceutical preparations
DE4242687B8 (en) 1992-12-17 2006-01-12 Henkel Kgaa Hydrophilic polyurethanes
DE4315173A1 (en) 1992-12-23 1994-06-30 Bayer Ag Pure, especially catalyst-free polyurethanes
US5324746A (en) 1993-02-12 1994-06-28 Mckee Rex N Method of treating damaged mucosal and epithelial tissues with misoprostol
GB9306887D0 (en) * 1993-04-01 1993-05-26 Graham Neil B Random block copolymers
US5328954A (en) 1993-04-16 1994-07-12 Icet, Inc. Encrusting and bacterial resistant coatings for medical applications
FR2705567A1 (en) 1993-05-25 1994-12-02 Smith & Nephew Laboratoires Fi Microparticles, preparation process and application to dressings
US5854385A (en) 1995-10-06 1998-12-29 Basf Corporation Coating compositions with low molecular weight carbamate or urea component
US6160058A (en) 1993-07-28 2000-12-12 Basf Corporation Curable coating compositions containing blends of carbamate-functional compounds
US5994479A (en) 1993-07-28 1999-11-30 Basf Corporation Curable coating compositions containing blends of carbamate-functional compounds
US5726244A (en) 1995-08-10 1998-03-10 Basf Corporation Aqueous coating compositions for environmental etch resistant coatings
US6084038A (en) 1993-07-28 2000-07-04 Basf Corporation Curable coating compositions containing blends of carbamate-functional compounds
US5777048A (en) 1996-06-20 1998-07-07 Basf Corporation Method for modified aminoplast compounds, aminoplasts obtained thereby and coatings containing the same
US5827930A (en) 1995-10-06 1998-10-27 Basf Corporation Curable coating composition
US5744550A (en) 1994-11-03 1998-04-28 Basf Corporation Curable coating compositions containing carbamate additives
US5792810A (en) 1995-10-06 1998-08-11 Basf Corporation Curable coating composition including compound having carbamate and hydroxyl functionality
US6080825A (en) 1993-07-28 2000-06-27 Basf Corporation Curable coating compositions containing blends of carbamate-functional compounds
US6423788B1 (en) 1995-10-06 2002-07-23 Basf Corporation Curable coating composition
DE69405939T2 (en) 1993-07-28 1998-05-07 Basf Corp Curable polyureas
US5770650A (en) 1995-10-06 1998-06-23 Basf Corporation Curable compositions for coatings
JPH0753663A (en) * 1993-07-30 1995-02-28 Takiron Co Ltd Base polymer for percutaneous absorption preparation
US5514698A (en) 1994-03-21 1996-05-07 Ortho Pharmaceutical Corporation Antifungal vaginal cream composition
US5472785A (en) 1994-04-12 1995-12-05 Minnesota Mining And Manufacturing Company Reactive wax-containing moisture curable hot melt composition
US5985859A (en) 1994-04-14 1999-11-16 The University Of Alabama Methods of inhibiting bacterial sialidase
IL109539A0 (en) 1994-05-03 1994-08-26 Yissum Res Dev Co Substained-release pharmaceutical system for the delivery of antioxidants
PT797604E (en) 1994-05-25 2000-05-31 Henkel Kgaa POLYURETHANE FUSING TAIL THAT STRESSES THROUGH HUMIDITY ACTION
US5681278A (en) 1994-06-23 1997-10-28 Cormedics Corp. Coronary vasculature treatment method
GB9419566D0 (en) 1994-09-27 1994-11-16 El Refaey Hazem Oral prostagladins for the routine management of the third stage of labour
IL116433A (en) 1994-12-19 2002-02-10 Galen Chemicals Ltd INTRAVAGINAL DRUG DELIVERY DEVICES FOR THE ADMINISTRATION OF 17β-OESTRADIOL PRECURSORS
US5659003A (en) 1994-12-21 1997-08-19 Basf Corporation Polyurethane polymer or oligomer having carbamate groups, method for its preparation, and coating composition
US20030158369A1 (en) 1995-02-02 2003-08-21 Slagel Edwin C. Impact resistant polyurethane and method of manufacture thereof
GB9506946D0 (en) 1995-04-04 1995-05-24 Univ Strathclyde Microgels
RU2189380C2 (en) 1995-05-26 2002-09-20 Хенкель КГАА Water free or low water, partially crystalline, solid at room temperature glue (versions)
CA2222811C (en) 1995-06-01 2008-09-30 G.D. Searle & Co. Stabilized solid dispersions of misoprostol
US7833543B2 (en) 1995-06-07 2010-11-16 Durect Corporation High viscosity liquid controlled delivery system and medical or surgical device
US5733538A (en) 1995-06-07 1998-03-31 Thoratec Laboratories, Inc. Surface-modifying copolymers having cell adhesion properties
US5968542A (en) 1995-06-07 1999-10-19 Southern Biosystems, Inc. High viscosity liquid controlled delivery system as a device
US5747058A (en) 1995-06-07 1998-05-05 Southern Biosystems, Inc. High viscosity liquid controlled delivery system
US6413536B1 (en) 1995-06-07 2002-07-02 Southern Biosystems, Inc. High viscosity liquid controlled delivery system and medical or surgical device
US5900433A (en) 1995-06-23 1999-05-04 Cormedics Corp. Vascular treatment method and apparatus
US5948416A (en) 1995-06-29 1999-09-07 The Procter & Gamble Company Stable topical compositions
JPH11510837A (en) 1995-07-28 1999-09-21 フォーカル,インコーポレイテッド Multi-block biodegradable hydrogels for use as controlled release and tissue treatment agents for drug delivery
KR19990044445A (en) 1995-09-13 1999-06-25 니뽄 신야쿠 가부시키가이샤 PPE1-containing lyophilized preparation and its preparation
DE19541658A1 (en) 1995-11-08 1997-05-15 Basf Ag Water-soluble or water-dispersible graft polymers, their preparation and their use
US6103852A (en) 1995-12-01 2000-08-15 Hokushin Corporation Method for preparing amorphous polymer chains in elastomers
US6008312A (en) 1995-12-01 1999-12-28 Hokushin Corp Method for producing millable polyurethanes and polyurethane elastomers
EP0869772B1 (en) 1995-12-27 2001-10-04 Janssen Pharmaceutica N.V. Bioadhesive solid dosage form
US6521164B1 (en) 1996-02-06 2003-02-18 Parker-Hannifin Corporation Injection-moldable thermoplastic polyurethane elastomer
US5627254A (en) 1996-05-03 1997-05-06 The Dow Chemical Company Rigid thermoplastic plyurethane comprising units of butane diol and a polyethylene glycol
US5817343A (en) 1996-05-14 1998-10-06 Alkermes, Inc. Method for fabricating polymer-based controlled-release devices
MXPA98001339A (en) 1996-07-01 2004-10-07 Basf Corp Curable coating compositions containing carbamate additives.
US5972372A (en) 1996-07-31 1999-10-26 The Population Council, Inc. Intravaginal rings with insertable drug-containing core
US6043224A (en) 1996-09-05 2000-03-28 The Massachusetts Institute Of Technology Compositions and methods for treatment of neurological disorders and neurodegenerative diseases
US6184248B1 (en) 1996-09-05 2001-02-06 Robert K. K. Lee Compositions and methods for treatment of neurological disorders and neurodegenerative diseases
US6130309A (en) 1996-09-20 2000-10-10 Tyndale Plains-Hunter, Ltd. Hydrophilic polyether polyurethanes containing carboxylic acid
DE19638570A1 (en) * 1996-09-20 1998-03-26 Bayer Ag Active ingredient-containing thermoplastic polyurethanes
DE69702926T2 (en) 1996-11-04 2001-02-22 Huntsman Ici Chem Llc POLYURETHANE FOAM
ES2158611T3 (en) 1996-12-20 2001-09-01 Alza Corp COMPOSITION IN INJECTABLE GEL WITH RETARD EFFECT AND PROCEDURE FOR THE PREPARATION OF SUCH COMPOSITION.
US5853767A (en) 1997-01-02 1998-12-29 Melman; Steven A. Compositions for treating fungal, parasitic and/or bacterial infections, especially infections of organs such as the skin and vagina
US20050208152A1 (en) 1997-01-22 2005-09-22 Marton Milankovits Pharmaceutical compositions primarily for the treatment and prevention of genitourinary infections and their extragenital complications
WO1998044952A1 (en) 1997-04-04 1998-10-15 Monsanto Company pH-SELECTIVE DELIVERY SYSTEM USING CROSS-LINKED POLYMERIC RESINS AS VEHICLES
US20020115814A1 (en) 1997-04-28 2002-08-22 Woodhouse Kimberly Ann Incorporation by reference of co-pending application
US6221997B1 (en) 1997-04-28 2001-04-24 Kimberly Ann Woodhouse Biodegradable polyurethanes
GR1002847B (en) 1997-05-06 1998-01-27 Use of micropostol and/or micropostol acid for the preparation of a medicine for the therapeutic treatiment of problems related to the erection
JPH10332902A (en) 1997-05-27 1998-12-18 Nippon Ee R C Kk Plastic lens, its production and primer composition
US6572874B1 (en) 1998-05-15 2003-06-03 Umd, Inc. Vaginal delivery of bisphosphonates
US6197327B1 (en) 1997-06-11 2001-03-06 Umd, Inc. Device and method for treatment of dysmenorrhea
US6416779B1 (en) 1997-06-11 2002-07-09 Umd, Inc. Device and method for intravaginal or transvaginal treatment of fungal, bacterial, viral or parasitic infections
ES2123466B1 (en) 1997-06-11 1999-11-16 Merquinsa Mercados Quimicos S THERMOPLASTIC OF POLYURETHANE AND PROCEDURE FOR ITS OBTAINING.
US6039968A (en) 1997-06-24 2000-03-21 Hoechst Marion Roussel Intravaginal drug delivery device
US6103765A (en) 1997-07-09 2000-08-15 Androsolutions, Inc. Methods for treating male erectile dysfunction
AU742787B2 (en) 1997-07-09 2002-01-10 Androsolutions, Inc. Improved methods and compositions for treating male erectile dysfunction
JP2001514279A (en) 1997-08-25 2001-09-11 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション Biodegradable lactone copolymer
DE19737348C2 (en) 1997-08-27 2002-07-25 Dan-Gabriel Vulpescu Pharmaceutical composition containing clindamycin and clotrimazole
DE19742217A1 (en) 1997-09-24 1999-04-01 Henkel Kgaa Polyurethane for thermally removable label adhesive
DE19744473A1 (en) 1997-10-09 1999-04-15 Basf Ag Use of water-soluble or water-dispersible polyurethanes as coating agents or binders for pharmaceutical dosage forms
US20020004529A1 (en) 1997-10-20 2002-01-10 Gary W. Neal Methods, compositions, and kits for enhancing female sexual desire and responsiveness
US6593369B2 (en) 1997-10-20 2003-07-15 Vivus, Inc. Methods, compositions, and kits for enhancing female sexual desire and responsiveness
US5877216A (en) 1997-10-28 1999-03-02 Vivus, Incorporated Treatment of female sexual dysfunction
US20040044080A1 (en) 1997-10-28 2004-03-04 Place Virgil A. Treatment of dyspareunia with topically administered nitroglycerin formulations
US20020099003A1 (en) 1997-10-28 2002-07-25 Wilson Leland F. Treatment of female sexual dysfunction with vasoactive agents, particularly vasoactive intestinal polypeptide and agonists thereof
CA2306837C (en) 1997-10-28 2007-05-08 Asivi, Llc. Treatment of female sexual dysfunction
US20050070516A1 (en) 1997-10-28 2005-03-31 Vivus Inc. As-needed administration of an androgenic agent to enhance female desire and responsiveness
US20020013304A1 (en) 1997-10-28 2002-01-31 Wilson Leland F. As-needed administration of an androgenic agent to enhance female sexual desire and responsiveness
US20040014761A1 (en) 1997-10-28 2004-01-22 Place Virgil A. Treatment of female sexual dysfunction with phosphodiesterase inhibitors
US6414028B1 (en) 1997-11-05 2002-07-02 Nexmed Holdings, Inc. Topical compositions containing prostaglandin E1
US6046244A (en) 1997-11-05 2000-04-04 Nexmed Holdings, Inc. Topical compositions for prostaglandin E1 delivery
BR9815099A (en) 1997-11-17 2000-10-10 Cosma Int Inc Manufacturing process of a spacer assembly, spacer, and truck bed.
ES2138918B1 (en) 1997-11-20 2000-09-16 Merquinsa Mercados Quimicos S THERMOPLASTIC OF CRYSTALLINE POLYURETHANE AND METHOD FOR ITS OBTAINING.
US6022554A (en) 1997-12-15 2000-02-08 American Home Products Corporation Polymeric microporous film coated subcutaneous implant
DE19757569A1 (en) 1997-12-23 1999-06-24 Bayer Ag Thermoplastic polyurethane molding composition giving little condensate, for surface cladding on vehicles
US5959775A (en) 1997-12-23 1999-09-28 3M Innovative Properties Company Urethane/acrylate bead bond for retroreflective articles
CA2319197A1 (en) * 1998-01-28 1999-08-05 Bristol-Myers Squibb Company Methods of preparing polyurethane adhesives, adhesives produced thereby and medical devices employing the same
US6028057A (en) 1998-02-19 2000-02-22 Thorn Bioscience, Llc Regulation of estrus and ovulation in gilts
BRPI9908893B8 (en) 1998-03-19 2021-05-25 Merck & Co Inc liquid polymeric composition for the controlled release of hydrophobic bioactive substances.
US5891915A (en) 1998-05-01 1999-04-06 Wysor; Michael S. Method for enhancing female sexual response and an ointment therefor
US6031002A (en) 1998-05-01 2000-02-29 Michael Ebert Method for enhancing female sexual response and a composition therefor
US6013637A (en) 1998-06-12 2000-01-11 Dermik Laboratories Inc. Anti-acne method and composition
US5942545A (en) 1998-06-15 1999-08-24 Macrochem Corporation Composition and method for treating penile erectile dysfunction
DE19847791A1 (en) 1998-10-16 2000-04-20 Bayer Ag Aqueous polyurethane dispersions
NL1010367C2 (en) 1998-10-21 2000-04-25 Akzo Nobel Nv Water vapor permeable thermoplastic polyurethane film.
DE19849499A1 (en) 1998-10-27 2000-05-04 Basf Ag Process for the complete drying of hydrogels
GB9826192D0 (en) 1998-12-01 1999-01-20 Controlled Theraputics Scotlan Oral transmucosal delivery
US20050004226A1 (en) 1998-12-10 2005-01-06 Nexmed (Holdings), Inc. Compositions and methods for amelioration of human female sexual dysfunction
US6486207B2 (en) 1998-12-10 2002-11-26 Nexmed (Holdings), Inc. Compositions and methods for amelioration of human female sexual dysfunction
US6825234B2 (en) 1998-12-10 2004-11-30 Nexmed (Holdings) , Inc. Compositions and methods for amelioration of human female sexual dysfunction
DE10004723A1 (en) 2000-02-03 2001-08-09 Bayer Ag Aqueous barrier layer based on polyurethane dispersions
US6545119B2 (en) 1999-03-08 2003-04-08 Toyo Boseki Kabushiki Kaisha Magnetic recording media and thermoplastic polyurethane resins therefor
ES2244422T3 (en) 1999-04-01 2005-12-16 Alza Corporation DEVICES FOR THE TRANSDERMAL ADMINISTRATION OF PHARMACOS THAT INCLUDE A POLYURETHANE DEPOSIT FOR PHARMACOS.
DE19915932A1 (en) 1999-04-09 2000-10-19 Freudenberg Carl Fa Thermoplastic processable polyurethane molding compound
US6607686B2 (en) 1999-04-20 2003-08-19 Callaway Golf Company Thermosetting polyurethane material for a golf ball
US6592472B2 (en) 1999-04-20 2003-07-15 Callaway Golf Company Golf ball having a non-yellowing cover
US6117024A (en) 1999-04-20 2000-09-12 Callaway Golf Company Golf ball with polyurethane cover
IT1312310B1 (en) 1999-05-07 2002-04-15 Recordati Ind Chimica E Farma USE OF SELECTIVE 1B ADRENERGIC RECEPTOR ANTAGONISTS TO IMPROVE SEXUAL DYSFUNCTION
TWI232111B (en) 1999-08-06 2005-05-11 Upjohn Co Intravaginal clindamycin ovule composition
US6642274B1 (en) 1999-09-09 2003-11-04 Gary W. Neal Methods and compositions for preventing and treating prostate disorders
US6323241B1 (en) 2000-01-10 2001-11-27 Nexmed (Holdings) Inc. Prostaglandin compositions and methods of treatment for male erectile dysfunction
US20040110843A1 (en) 2000-01-10 2004-06-10 Nexmed (Holdings), Inc. Methods of treatment of male erectile dysfunction
US7105571B2 (en) 2000-01-10 2006-09-12 Nexmed Holdings, Inc. Prostaglandin compositions and methods of treatment for male erectile dysfunction
US6693135B2 (en) 2000-01-10 2004-02-17 Nexmed (Holdings) Incorporated Prostaglandin compositions and methods of treatment for male erectile dysfunction
IT1317735B1 (en) 2000-01-26 2003-07-15 Nicox Sa SALTS OF ANTIMICROBIAL AGENTS.
DE10028810A1 (en) 2000-06-10 2001-12-20 Henkel Kgaa Polyurethane melt adhesive composition, useful for the adhesion of leather, plastic, wood and glass, comprises a product of a polyisocyanate with a polyester block copolymer
US6803495B2 (en) 2000-06-28 2004-10-12 World Properties, Inc. Polyurethane foam composition and method of manufacture thereof
US6740333B2 (en) 2000-07-07 2004-05-25 Anestic Aps Suppository and composition comprising at least one polyethylene glycol
JP4378667B2 (en) * 2000-09-11 2009-12-09 東レ・オペロンテックス株式会社 Method for producing polyurethane fiber
DE10050137A1 (en) 2000-10-11 2002-04-18 Bayer Ag Stabilized mono- and polyaspartic acid esters
DE10051392A1 (en) 2000-10-17 2002-04-18 Bayer Ag Binder for preparation of electrically insulating lacquers comprises specific polyurethane(s), organic solvents, and optional adjuvants and additives
JP5027962B2 (en) 2000-10-19 2012-09-19 Dic株式会社 Method for producing liquid urethane prepolymer and resin composition
US6811549B2 (en) 2001-02-16 2004-11-02 William H. Fleming Administration of therapeutic or diagnostic agents using interlabial pad
DE10112366B4 (en) 2001-03-15 2006-06-08 Bayer Materialscience Ag Aliphatic thermoplastic polyurethanes and their use
US6881788B2 (en) 2001-08-21 2005-04-19 Mitsui Takeda Chemicals, Inc. Polyurethane resin water dispersion and aqueous polyurethane adhesive
US20050090474A1 (en) 2002-01-16 2005-04-28 Zvi Naor Methods and compositions for enhancing and inhibiting fertilization
CH697081A5 (en) 2002-01-22 2008-04-30 Andreas F Dr Schaub Composition for supporting the birth of a human fetuses.
US20060052341A1 (en) 2002-02-08 2006-03-09 Brian Cornish Control of a biological function
NZ517094A (en) 2002-02-08 2005-03-24 Advanced Animal Technology Ltd Improvements in and relating to substance delivery device
US6861503B2 (en) 2002-02-27 2005-03-01 Poly-Med, Inc. Interlinked solid polyethylene glycols and copolymers thereof
US7358295B2 (en) 2002-04-05 2008-04-15 Lubrizol Advanced Materials, Inc. Hybrid polymer composition, and article therefrom
FR2840907B1 (en) * 2002-06-14 2005-11-25 Polymerexpert Sa ENHANCED THERMO-SENSITIVE POLYMER CAPABLE OF FORMING HIGH VISCOSIFICATION INJECTABLE THERMOREVERSIBLE GELS
US7179481B2 (en) 2002-09-19 2007-02-20 Kimberly-Clark Worldwide, Inc. Vaginal health products
WO2004039323A2 (en) 2002-10-28 2004-05-13 Tyco Healthcare Group Lp Fast curing compositions
US20040142847A1 (en) 2002-11-21 2004-07-22 Rolf Bayersdoerfer Detergent tablets with polyurethane coating
US6841574B2 (en) 2003-01-03 2005-01-11 Nexmed Holdings, Inc. Topical stabilized prostaglandin E compound dosage forms
US20050181030A1 (en) 2003-01-03 2005-08-18 Mo Y. J. Topical stabilized prostaglandin E compound dosage forms
WO2004065450A2 (en) 2003-01-16 2004-08-05 Carnegie Mellon University Biodegradable polyurethanes and use thereof
GB0301577D0 (en) 2003-01-23 2003-02-26 Edko Pazarlama Tanitim Ltd Sti Topical pharmaceutical and/or cosmetic dispense systems
GB0306977D0 (en) 2003-03-26 2003-04-30 Metris Therapeutics Ltd Device
WO2004091579A1 (en) 2003-04-16 2004-10-28 Pharmacia Corporation Stabilized prostaglandin formulation
US7833545B2 (en) 2003-04-29 2010-11-16 The General Hospital Corporation Methods and devices for the sustained release of multiple drugs
US20040266688A1 (en) 2003-05-14 2004-12-30 Nayak Nihar R Methods for modulating endometrium
US8399013B2 (en) 2003-06-26 2013-03-19 Poly-Med, Inc. Partially absorbable fiber-reinforced composites for controlled drug delivery
US8404272B2 (en) 2003-06-26 2013-03-26 Poly-Med, Inc. Fiber-reinforced composite rings for intravaginal controlled drug delivery
WO2005004837A1 (en) 2003-07-10 2005-01-20 Galen (Chemicals) Limited Intravaginal drug delivery devices
WO2005013906A2 (en) 2003-08-08 2005-02-17 Sri International pH-RESPONSIVE FILM FOR INTRAVAGINAL DELIVERY OF A BENEFICIAL AGENT
AU2004274000B2 (en) 2003-09-19 2009-07-30 Drugtech Corporation Pharmaceutical delivery system
ATE289514T1 (en) 2003-11-03 2005-03-15 Peter-Hansen Volkmann VAGINAL CARE COMPOSITION
EP1555278A1 (en) 2004-01-15 2005-07-20 Innocore Technologies B.V. Biodegradable multi-block co-polymers
MXPA06007493A (en) 2004-01-28 2007-04-17 New Condensator Inc Apparatus for removing contaminants from crankcase emissions.
US20050169975A1 (en) 2004-02-03 2005-08-04 Nitto Denko Corporation Film base material for adhesive skin patch and adhesive skin patch
DE102004008015A1 (en) 2004-02-19 2005-09-08 Cognis Deutschland Gmbh & Co. Kg Thickener for polyurethane base
CN1950098B (en) 2004-03-24 2013-02-27 宝利诺沃生物材料有限公司 Biodegradable polyurethane and polyurethane ureas
AU2005231738A1 (en) 2004-03-26 2005-10-20 Katz, David F. Mr Bioresponsive polymer system for delivery of microbicides
EP1741454B1 (en) 2004-03-29 2011-06-29 Sanyo Chemical Industries, Ltd. Medical adhesive
US20080140185A1 (en) 2004-04-15 2008-06-12 University Of Utah Research Foundation Biodegradable and Biocompatible Peg-Based Poly(Ester-Urethanes)
US7485666B2 (en) 2004-06-17 2009-02-03 Kimberly-Clark Worldwide, Inc. Vaginal health products
US20060003950A1 (en) 2004-06-30 2006-01-05 Bone Care International, Inc. Method of treating prostatic diseases using a combination of vitamin D analogues and other agents
DE102004031786A1 (en) 2004-07-01 2006-01-26 Cognis Deutschland Gmbh & Co. Kg Polyurethane-based thickener
DK1768625T3 (en) 2004-07-09 2011-05-09 Population Council Inc Sustained release compositions containing progesterone receptor modulators
US8460378B2 (en) 2004-07-26 2013-06-11 DePuy Sythes Products, LLC Biocompatible, biodegradable polyurethane materials with controlled hydrophobic to hydrophilic ratio
GB0417401D0 (en) 2004-08-05 2004-09-08 Controlled Therapeutics Sct Stabilised prostaglandin composition
WO2006024138A1 (en) 2004-08-30 2006-03-09 Taro Pharmaceutical Industries Ltd. A thermoreversible pharmaceutical formulation for anti-microbial agents comprising poloxamer polymers and hydroxy fatty acid ester of polyethylene glycol
US20060093675A1 (en) 2004-10-29 2006-05-04 Mathew Ebmeier Intravaginal treatment of vaginal infections with metronidazole compositions
GB0424526D0 (en) 2004-11-05 2004-12-08 Controlled Therapeutics Sct Hydrogel delivery vehicle
WO2006084082A1 (en) 2005-02-03 2006-08-10 Duramed Pharmaceuticals, Inc. Compositions of unconjugated estrogens and methods for their use
US7795467B1 (en) * 2005-04-26 2010-09-14 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyurethanes for use in medical devices
TW200744610A (en) 2005-06-21 2007-12-16 Organon Nv New regimens for controlled drug delivery devices for contraception
TW200727920A (en) 2005-06-21 2007-08-01 Organon Nv New regimens for oral monophasic contraceptives
CA2615393C (en) 2005-07-19 2011-09-20 The Population Council, Inc. Methods and compositions for emergency contraception using endothelin receptor antagonists
JP2009518129A (en) 2005-12-06 2009-05-07 タイコ ヘルスケア グループ リミテッド パートナーシップ Bioabsorbable surgical composition
US8449714B2 (en) 2005-12-08 2013-05-28 Covidien Lp Biocompatible surgical compositions
US20070148105A1 (en) 2005-12-22 2007-06-28 Donald Spector Compositions and methods comprising magnetic particles for health use
US20090061172A1 (en) 2006-01-26 2009-03-05 Komatsu Seiren Co., Ltd. Polyurethane Resin Composition for Durable Moisture-Permeable Waterproof Sheet, Moisture-Permeable Waterproof Sheet and Method of Manufacturing the Same
EP1994212A1 (en) 2006-03-06 2008-11-26 Basf Se Nonwoven based on thermoplastic polyurethane
EP2012803A4 (en) 2006-04-20 2012-08-01 Univ Utah Res Found Polymeric compositions and methods of making and using thereof
GB0613333D0 (en) 2006-07-05 2006-08-16 Controlled Therapeutics Sct Hydrophilic polyurethane compositions
US8177706B2 (en) 2006-07-10 2012-05-15 Mcneil-Ppc, Inc. Method of treating urinary incontinence
US20080160065A1 (en) 2006-07-12 2008-07-03 Janet Anne Halliday Drug delivery polymer with hydrochloride salt of clindamycin
EP2094348A1 (en) 2006-11-22 2009-09-02 N.V. Organon Delivery system for a non-steroidal non-ionized hydrophilic drug
US7781651B2 (en) 2007-04-30 2010-08-24 Monsanto Technology Llc Plants and seeds of corn variety CV715590
ES2696999T3 (en) 2007-06-26 2019-01-21 Allergan Pharmaceuticals Int Ltd Devices for the intravaginal administration of drugs for the administration of macromolecules and water-soluble drugs
EP2173362A2 (en) 2007-06-27 2010-04-14 University Of Utah Compositions and methods for inhibiting viral and bacterial activity
US8741329B2 (en) 2007-09-21 2014-06-03 Merck Sharp & Dohme B.V. Drug delivery system
US9426414B2 (en) 2007-12-10 2016-08-23 Qualcomm Incorporated Reference selection for video interpolation or extrapolation
WO2009094573A2 (en) 2008-01-25 2009-07-30 The University Of Utah Research Foundation Linear order release polymer
FI20085277A0 (en) 2008-04-02 2008-04-02 Bayer Schering Pharma Oy Intrauterine system
US20110150955A1 (en) 2009-12-23 2011-06-23 Shannon Elizabeth Klingman Products and Methods for Reducing Malodor from the Pudendum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002763A1 (en) * 1989-08-15 1991-03-07 British Technology Group Plc Polymeric materials
DE19842636A1 (en) * 1997-09-24 1999-03-25 Henkel Kgaa Polyurethane adhesive bonding paper labels to polyolefin bottles
WO2004029125A1 (en) * 2002-09-27 2004-04-08 Controlled Therapeutics (Scotland) Limited Water-swellable polymers

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2244782A2 (en) 2008-01-25 2010-11-03 The University of Utah Research Foundation Linear order release polymer
WO2011039418A1 (en) * 2009-10-01 2011-04-07 Bayer Schering Pharma Oy An intrauterine system
EA019061B1 (en) * 2009-10-01 2013-12-30 Байер Ой An intrauterine system
AU2010302550B2 (en) * 2009-10-01 2014-02-06 Bayer Oy An intrauterine system
US9949869B2 (en) 2009-10-01 2018-04-24 Bayer Oy Intrauterine system
US9427400B2 (en) 2010-10-19 2016-08-30 International Partnership For Microbicides Platinum-catalyzed intravaginal rings
US8580294B2 (en) 2010-10-19 2013-11-12 International Partnership For Microbicides Platinum-catalyzed intravaginal rings
EP2826463A4 (en) * 2012-03-13 2015-12-02 Sumitomo Seika Chemicals Cosmetic composition
US9795557B2 (en) 2012-03-13 2017-10-24 Sumitomo Seika Chemicals Co., Ltd. Cosmetic composition
WO2015044415A1 (en) * 2013-09-30 2015-04-02 Universiteit Gent Polyurethanes as oral drug delivery platform
WO2015057505A1 (en) * 2013-10-15 2015-04-23 Lubrizol Advanced Materials, Inc. Thermoplastic polyurethanes made with tin-free catalysts
US11259956B2 (en) 2013-11-14 2022-03-01 International Partnership For Microbicides, Inc. Combination therapy intravaginal rings
US11793669B2 (en) 2013-11-14 2023-10-24 The Population Council, Inc. Combination therapy intravaginal rings
US10137031B2 (en) 2013-11-14 2018-11-27 International Partnership For Microbicides, Inc. Combination therapy intravaginal rings
US20180008535A1 (en) * 2014-11-07 2018-01-11 Ferring B.V. Drug-Device Unit Containing Quinagolide
EA033806B1 (en) * 2014-11-07 2019-11-27 Ferring Bv Polymeric drug-device unit comprising quinagolide, method of making same, use thereof and kit comprising same
EA033806B9 (en) * 2014-11-07 2019-12-19 Ферринг Б.В. Polymeric drug-device unit comprising quinagolide, method of making same, use thereof and kit comprising same
AU2015341734B2 (en) * 2014-11-07 2020-08-20 Ferring B.V. Drug-device unit containing quinagolide
AU2015341734C1 (en) * 2014-11-07 2020-12-17 Ferring B.V. Drug-device unit containing quinagolide
EP3892261A1 (en) 2014-11-07 2021-10-13 Ferring B.V. Drug-device unit containing quinagolide
US20220040094A1 (en) * 2014-11-07 2022-02-10 Ferring B.V. Drug-device unit containing quinagolide
WO2016071466A1 (en) 2014-11-07 2016-05-12 Ferring B.V. Drug-device unit containing quinagolide
EP3017809A1 (en) 2014-11-07 2016-05-11 Ferring B.V. Drug-device unit containing quinagolide
WO2023031218A1 (en) 2021-08-31 2023-03-09 Ferring B.V. Diagnosis and treatment of ectopic endometriosis

Also Published As

Publication number Publication date
BRPI0713481A2 (en) 2012-11-06
AU2007274119B2 (en) 2013-01-31
AU2007274119A1 (en) 2008-01-17
DE602007012545D1 (en) 2011-03-31
US20090324692A1 (en) 2009-12-31
JP2013151517A (en) 2013-08-08
PL2038325T3 (en) 2011-07-29
BRPI0713481B8 (en) 2021-05-25
JP2009542831A (en) 2009-12-03
JP5307710B2 (en) 2013-10-02
BRPI0713481B1 (en) 2019-08-13
CA2656788A1 (en) 2008-01-17
DK2038325T3 (en) 2011-05-30
US20120329883A1 (en) 2012-12-27
CN101484495B (en) 2011-12-28
EP2038325A1 (en) 2009-03-25
PT2038325E (en) 2011-05-02
US8361273B2 (en) 2013-01-29
ES2363704T3 (en) 2011-08-12
CA2656788C (en) 2015-01-27
US8361272B2 (en) 2013-01-29
GB0613638D0 (en) 2006-08-16
EP2038325B1 (en) 2011-02-16
ATE498643T1 (en) 2011-03-15
CN101484495A (en) 2009-07-15
JP5639673B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
CA2656788C (en) Controlled release composition comprising polyurethane elastomers
EP2035476B1 (en) Hydrophilic polyurethane compositions
EP2520280A2 (en) Water-swellable polymer with misoprostol
US8524254B2 (en) Bioresorbable polymers
AU2013205539B2 (en) Polyurethane elastomers
EP3017809A1 (en) Drug-device unit containing quinagolide

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780025628.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07733405

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007274119

Country of ref document: AU

Ref document number: 10326/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007733405

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2656788

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009517399

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007274119

Country of ref document: AU

Date of ref document: 20070627

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12373002

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0713481

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090107