WO2008020910A2 - Process for improving the adhesion of polymeric materials to metal surfaces - Google Patents

Process for improving the adhesion of polymeric materials to metal surfaces Download PDF

Info

Publication number
WO2008020910A2
WO2008020910A2 PCT/US2007/013935 US2007013935W WO2008020910A2 WO 2008020910 A2 WO2008020910 A2 WO 2008020910A2 US 2007013935 W US2007013935 W US 2007013935W WO 2008020910 A2 WO2008020910 A2 WO 2008020910A2
Authority
WO
WIPO (PCT)
Prior art keywords
process according
electroless
copper
nickel
metal surface
Prior art date
Application number
PCT/US2007/013935
Other languages
French (fr)
Other versions
WO2008020910A3 (en
Inventor
John L. Cordani, Jr.
Original Assignee
Macdermid, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macdermid, Incorporated filed Critical Macdermid, Incorporated
Priority to EP07796088A priority Critical patent/EP2051820B1/en
Priority to ES07796088T priority patent/ES2384122T3/en
Priority to CN2007800300254A priority patent/CN101502190B/en
Priority to JP2009524592A priority patent/JP2010500775A/en
Publication of WO2008020910A2 publication Critical patent/WO2008020910A2/en
Publication of WO2008020910A3 publication Critical patent/WO2008020910A3/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/385Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by conversion of the surface of the metal, e.g. by oxidation, whether or not followed by reaction or removal of the converted layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • C23C18/1831Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/24Roughening, e.g. by etching using acid aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/362Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/072Electroless plating, e.g. finish plating or initial plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/073Displacement plating, substitution plating or immersion plating, e.g. for finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/383Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by microetching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating

Definitions

  • the present invention relates to improving the adhesion between polymeric materials and metal surfaces.
  • the invention is particularly suited to a process for fabricating a multilayer printed circuit or for encapsulating a lead frame.
  • Printed circuits containing one or more circuitry innerlayers are in prominent use today as demand increases for further and further weight and space conservation in electronic devices.
  • patterned circuitry innerlayers are first prepared by a process in which a copper foil-clad dielectric substrate material is patterned with resist in the positive image of the desired circuitry pattern, followed by etching away of the exposed copper. Upon removal of the resist, there remains the desired copper circuitry pattern.
  • circuitry innerlayers of any particular type or types of circuitry pattern are assembled into a multilayer circuit by interposing one or more partially-cured dielectric substrate material layers (so-called "pre-preg” layers) between the circuitry innerlayers to form a composite of alternating circuitry innerlayers and dielectric substrate material.
  • pre-preg layers partially-cured dielectric substrate material layers
  • the composite is then subjected to heat and pressure to cure the partially-cured substrate material.
  • the composite is then subjected to heat and pressure to cure the partially-cured substrate material and achieve bonding of circuitry innerlayers thereto.
  • the so-cured composite will then have a number of through-holes drilled therethrough, which are then metallized to provide a means for conductively interconnecting circuitry layers.
  • desired circuitry patterns also typically will be formed on the outer-facing layers of the multilayer composite.
  • An alternate approach to the formation of a multilayer printed circuit board is through additive or surface laminar circuitry techniques. These techniques begin with a non-conductive substrate, upon which the circuit elements are additively plated. Further layers are achieved by repeatedly applying an imageable coating upon the circuitry and plating further circuit elements upon the imageable coating.
  • black oxide adhesion promoters The earliest efforts in this regard (so-called "black oxide” adhesion promoters) produced somewhat minimal improvement in the bonding of the circuitry innerlayers to the dielectric substrate layers in the final multilayer circuit, as compared to that obtained without copper oxide provision. Subsequent variations on the black oxide technique included methods wherein there is first produced a black oxide coating on the copper surface, followed by post-treatment of the black oxide deposit with 15% sulfuric acid to produce a "red oxide” to serve as the adhesion promoter, such as disclosed by A.G. Osborne, "An Alternate Route To Red Oxide For Inner Layers", PC Fab. August 1984, as well as variations involving direct formation of red oxide adhesion promoter, with varying degrees of success being obtained.
  • the assembled and cured multilayer circuit composite is provided with through-holes which then require metallization in order to serve as a means for conductive interconnection of the circuitry layers of the circuit.
  • the metallizing of the through-holes involves steps of resin desmearing of the hole surfaces, catalytic activation, electroless copper depositing, electrolytic copper depositing, and the like. Many of these process steps involve the use of media, such as acids, which are capable of dissolving the copper oxide adhesion promoter coating on the circuitry innerlayer portions exposed at or near the through hole.
  • the localized dissolution of the copper oxide which is evidenced by formation around the through-hole of a pink ring or halo (owing to the pink color of the underlying copper metal thereby exposed), can in turn lead to localized delamination in the multilayer circuit.
  • U.S. Pat. No. 4,642,161 to Akahoshi et al, U.S. Pat. No. 4,902,551 to Nakaso et al, and U.S. Pat. No. 4,981,560 to Kajihara et al, and a number of references cited therein, relate to processes in which the copper surfaces of the circuitry innerlayers, prior to incorporation of the circuitry innerlayers into a multilayer circuit assembly, are first treated to provide a surface coating of adhesion-promoting copper oxide. The copper oxide so formed is then reduced to metallic copper using particular reducing agents and conditions.
  • the multilayer assembly employing such circuitry innerlayers will not evidence pink ring formation since there is no copper oxide present for localized dissolution, and localized exposure of underlying copper, in subsequent through-hole processing.
  • processes of this type are suspect in terms of the adhesion attainable between the dielectric substrate layers and the metallic copper circuitry innerlayers. This is particularly so in these reduction processes since the circuitry bonding surface not only is metallic copper, but also presents the metallic copper in distinct phases (i.e., (1) copper-from-reduction-of-copper oxide over (2) copper of the copper foil) which are prone to separation/delamination along the phase boundary.
  • U.S. Pat. Nos. 4,997,722 and 4,997,516 to Adler similarly involve formation of a copper oxide coating on the copper surface of circuitry innerlayers, followed by treatment with a specialized reducing solution to reduce the copper oxide to metallic copper. Certain portions of the copper oxide apparently may not be reduced all the way to metallic copper (being reduced instead to hydrous cuprous oxide or cuprous hydroxide), and those species are thereafter dissolved away in a non-oxidizing acid which does not attack or dissolve the portions already reduced to metallic copper. As such, the multi-layer assembly employing such circuitry innerlayers will not evidence pink ring formation since there is no copper oxide present for localized dissolution, and localized exposure of underlying copper, in subsequent through-hole processing.
  • This invention proposes a process for improving the adhesion of polymeric materials to a metal surface, especially copper or copper alloy surfaces.
  • the process proposed herein is particularly useful in the production of multilayer printed circuits.
  • the process proposed herein provides optimum adhesion between the metallic and polymeric surfaces (i.e. the circuitry and the intermediate insulating layer), eliminates or minimizes pink ring and operates economically, all as compared to conventional processes.
  • the inventors herein propose a process for improving the adhesion of polymeric materials to metal surfaces, particularly copper and copper alloy surfaces.
  • the proposed process comprises:
  • a plating solution selected from the group consisting of electroless nickel, electroless cobalt, electroless tin and immersion tin such that a material selected from the group consisting of nickel, cobalt and tin is plated on the metal surface to form a plated surface;
  • the inventors have found that the foregoing process greatly improves the adhesion of metal surfaces to polymeric materials even after repeated high temperature exposure.
  • the process is particularly suited to treating copper or copper alloy metal surfaces such as are used in the manufacture of printed circuit boards, lead frames or chip carriers.
  • the process proposed is intended for improving the adhesion between metal surfaces and polymeric materials. Applications for the process are widespread, but the process is particularly suited to increasing the adhesion between the copper layers of printed circuit boards and the polymeric pre-preg between the foregoing layers or for increasing the adhesion between copper lead frames and the encapsulating resins used to seal the lead frames.
  • the proposed process comprises:
  • the process can be used upon any metal surface upon which nickel, cobalt or tin can be plated.
  • a precious metal activator prior to contacting the surfaces with the electroless nickel plating bath of this invention.
  • the metal surface is generally contacted with an activator solution comprising colloidal or ionic palladium, gold or silver after the optional microetch step but before the electroless step.
  • the process is particularly suited to treating copper or copper alloy metal surfaces. In the case where the metal surfaces comprise copper or copper alloys a precious metal activator may or may not be used depending upon the type of electroless bath used.
  • the choices are (i) use a precious metal activator before an electroless nickel (or cobalt) phosphorous bath, (ii) use a dimethylamino borane pre-dip before an electroless nickel (or cobalt) phosphorous bath, (iii) use a nickel (or cobalt) boron bath which does not require an activator, (iv) use an electroless or immersion tin bath without the need for an activator. In all of these cases an adherent and uniform deposit will be formed on the metal surface.
  • the use of an immersion or electroless tin bath is particularly preferred when dealing with copper or copper alloy surfaces since no activator is necessary and the cost is relatively low.
  • the metal surface is microetched.
  • the microetch can comprise well known (i) peroxide- sulfuric microetches, (ii) cupric chloride microethes or (iii) persulfate microetches.
  • the time and temperature of the contact with the microetchant can be varied depending upon the type of microetchant being used and the characteristics of the metal surface with the goal being the attainment of a uniformly rough metal surface.
  • a precious metal activator may be necessary if the metal surfaces comprise copper and the electroless nickel (or cobalt) bath to be used directly on the copper surface is a nickel (or cobalt) hypophosphite electroless bath.
  • an ionic palladium activator such as a solution of palladium chloride at from about 10 to abut 500 ppm of palladium chloride.
  • the purpose of the activator is to coat the metal surface with catalytic precious metal sites which are capable of initiating the subsequent electroless plating.
  • electroless nickel boron baths and electroless or immersion tin baths do not require an activator when plating on copper or copper alloys.
  • the metal surface is contacted with a plating bath selected from the group consisting of electroless nickel, electroless cobalt, electroless tin and immersion tin, preferably for a time and at a temperature sufficient to plate from about 2 to 50 microinches of metal.
  • the electroless nickel (or cobalt) bath can be of the electroless nickel (or cobalt)-phosphorous (i.e. nickel(or cobalt)/sodium hypophosphite) type or it can be of the nickel(or cobalt)-boron (i.e. nickel/dimethyl amino borane type or nickel(or cobalt)/sodiurn borohydride type).
  • an electroless nickel-phosphorus bath or an immersion (or electroless) tin bath.
  • an electroless nickel-phosphorus bath it is important that the concentration of phosphorous in the nickel deposit be controlled to relatively low levels.
  • the electroless nickel (or cobalt) phosphorous deposit has less than 6 weight percent phosphorous, most preferably less than 3 weight percent phosphorous.
  • the electroless nickel step will comprise (i) an electroless nickel-boron strike to create a very thin nickel layer which can be plated upon by a nickel-phosphorous bath without activation, followed by (ii) an electroless nickel-phosphorous bath without any need for precious metal activation of the metal surface.
  • an electroless or immersion tin bath is used.
  • a typical electroless nickel : boron bath useful in this invention is as follows:
  • Total nickel thickness to be plated on the metal surface is preferably from 5 to 25 microinches.
  • electroless or immersion tin is chosen and the metal surface comprises copper, the tin will effectively plate on the copper surfaces without activation.
  • electroless or immersion tin baths comprise (i) stannous ions, (ii) a solubilizing acid such as fluoboric acid or methane sulfonic acid and (iii) thiourea.
  • a useful immersion tin formulation is:
  • the invention has surprisingly found that excellent and uniform phosphate conversion coatings can be formed on immersion (or electroless) tin surfaces, as well as electroless nickel (or cobalt) surfaces if the phosphorous content of the nickel or cobalt surfaces is low (i.e. less than 10% by weight, preferably less than 6% by weight and most preferably less than 3% by weight.
  • the plated metal surface is contacted with a phosphate conversion coating composition such that a phosphate conversion coating is created on the plated surface.
  • the phosphate conversion coating is a zinc-phosphate conversion coating.
  • the phosphate bath In order for the phosphate conversion coating to effectively form on the plated surface, the phosphate bath must attack the plated surface. The inventors have found that high concentrations of phosphorous in the electroless nickel (or cobalt) deposit (above about 10 weight percent) will inhibit the effective formation of a good phosphate conversion coating.
  • a typical and preferred composition for the phosphate conversion coating bath is as follows: COMPONENT CONCENTRATION (g/D
  • the phosphate conversion coating composition will comprise (i) phosphoric acid, (ii) nitric acid and fluoride ions.
  • the phosphate composition comprises zinc ions.
  • the phosphate composition also comprises a nitrite compound, most preferably a nitrite salt.
  • the surface is dried and can then be effectively bonded to a polymeric material.
  • the copper or copper alloy circuit traces and features are treated with the process of this invention and then laminated with polymeric materials to form multilayer circuit boards.
  • the lead frame or chip carrier is treated or partially treated with the process of this invention and subsequently encapsulated with a polymeric material.
  • a piece of copper foil and a piece of copper clad laminate were processed in the following manner:
  • Nickel from Nickel Sulfate
  • the foil was then laminated to the Copper clad laminate using heat and pressure by interleaving several sheets of partially cured pre-preg. One inch wide strips of the foil were then peel tested with the following results:

Abstract

A process is disclosed for the purpose of increasing the adhesion of a polymeric material to a metal surface. The process comprises plating the metal surface with a layer of electroless nickel, electroless cobalt or electroless (or immersion) tin followed by phosphating the plated layer prior to bonding the polymeric material thereto. The process is particularly suited to treating printed circuit board inner-layers and lead frames.

Description

PROCESS FOR IMPROVING THE ADHESION OF POLYMERIC MATERIALS
TO METAL SURFACES
BACKGROUND OF THE INVENTION
The present invention relates to improving the adhesion between polymeric materials and metal surfaces. The invention is particularly suited to a process for fabricating a multilayer printed circuit or for encapsulating a lead frame.
Printed circuits containing one or more circuitry innerlayers are in prominent use today as demand increases for further and further weight and space conservation in electronic devices. In the typical fabrication of a multilayer printed circuit, patterned circuitry innerlayers are first prepared by a process in which a copper foil-clad dielectric substrate material is patterned with resist in the positive image of the desired circuitry pattern, followed by etching away of the exposed copper. Upon removal of the resist, there remains the desired copper circuitry pattern.
One or more circuitry innerlayers of any particular type or types of circuitry pattern, as well as circuitry innerlayers which might constitute ground planes and power planes, are assembled into a multilayer circuit by interposing one or more partially-cured dielectric substrate material layers (so-called "pre-preg" layers) between the circuitry innerlayers to form a composite of alternating circuitry innerlayers and dielectric substrate material. The composite is then subjected to heat and pressure to cure the partially-cured substrate material. The composite is then subjected to heat and pressure to cure the partially-cured substrate material and achieve bonding of circuitry innerlayers thereto. The so-cured composite will then have a number of through-holes drilled therethrough, which are then metallized to provide a means for conductively interconnecting circuitry layers. In the course of the through-hole metallizing process, desired circuitry patterns also typically will be formed on the outer-facing layers of the multilayer composite. An alternate approach to the formation of a multilayer printed circuit board is through additive or surface laminar circuitry techniques. These techniques begin with a non-conductive substrate, upon which the circuit elements are additively plated. Further layers are achieved by repeatedly applying an imageable coating upon the circuitry and plating further circuit elements upon the imageable coating.
It has long been known that the strength of the adhesive bond formed between the copper metal of the circuitry innerlayers and the cured pre-preg layers, or other non- conductive coatings, in contact therewith leaves something to be desired, with the result that the cured multilayer composite or the coating is susceptible to delamination in subsequent processing and/or use. In response to this problem, the art developed the technique of forming on the copper surfaces of the circuitry innerlayers (before assembling them with pre-preg layers into a multilayer composite) a layer of copper oxide, such as by chemical oxidation of the copper surfaces. The earliest efforts in this regard (so-called "black oxide" adhesion promoters) produced somewhat minimal improvement in the bonding of the circuitry innerlayers to the dielectric substrate layers in the final multilayer circuit, as compared to that obtained without copper oxide provision. Subsequent variations on the black oxide technique included methods wherein there is first produced a black oxide coating on the copper surface, followed by post-treatment of the black oxide deposit with 15% sulfuric acid to produce a "red oxide" to serve as the adhesion promoter, such as disclosed by A.G. Osborne, "An Alternate Route To Red Oxide For Inner Layers", PC Fab. August 1984, as well as variations involving direct formation of red oxide adhesion promoter, with varying degrees of success being obtained. The most notable improvement in this art is represented in the U.S. Pat. Nos. 4,409,037 and 4,844,981 to Landau, the teachings both of which are included herein by reference in their entirety, involving oxides formed from relatively high chlorite/relatively low caustic copper oxidizing compositions, and producing substantially improved results in circuitry innerlayer adhesion.
As earlier noted, the assembled and cured multilayer circuit composite is provided with through-holes which then require metallization in order to serve as a means for conductive interconnection of the circuitry layers of the circuit. The metallizing of the through-holes involves steps of resin desmearing of the hole surfaces, catalytic activation, electroless copper depositing, electrolytic copper depositing, and the like. Many of these process steps involve the use of media, such as acids, which are capable of dissolving the copper oxide adhesion promoter coating on the circuitry innerlayer portions exposed at or near the through hole. The localized dissolution of the copper oxide, which is evidenced by formation around the through-hole of a pink ring or halo (owing to the pink color of the underlying copper metal thereby exposed), can in turn lead to localized delamination in the multilayer circuit.
The art is well aware of this "pink ring" phenomenon, and has expended extensive effort in seeking to arrive at a multilayer printed circuit fabrication process which is not susceptible to such localized delamination. One suggested approach has been to provide the adhesion promoting copper oxide as a thick coating so as to retard its dissolution in subsequent processing simply by virtue of sheer volume of copper oxide present. This turns out to be essentially counter-productive, however, because the thicker oxide coating is inherently less effective as an adhesion promoter. Other suggestions relating to optimization of the pressing/curing conditions for assembling the multilayer composite have met with only limited success.
Other approaches to this problem involve post-treatment of the copper oxide adhesion promoter coating prior to assembly of circuitry innerlayers and pre-preg layers into a multilayer composite. For example, U.S. Pat. No. 4,775,444 to Cordani discloses a process in which the copper surfaces of the circuitry innerlayers are first provided with a copper oxide coating and then contacted with an aqueous chromic acid solution before the circuitry innerlayers are incorporated into the multilayer assembly. The treatment serves to stabilize and/or protect the copper oxide coating from dissolution in the acidic media encountered in subsequent processing steps (e.g. through-hole metallization), thereby minimizing pink ring/delamination possibilities.
U.S. Pat. No. 4,642,161 to Akahoshi et al, U.S. Pat. No. 4,902,551 to Nakaso et al, and U.S. Pat. No. 4,981,560 to Kajihara et al, and a number of references cited therein, relate to processes in which the copper surfaces of the circuitry innerlayers, prior to incorporation of the circuitry innerlayers into a multilayer circuit assembly, are first treated to provide a surface coating of adhesion-promoting copper oxide. The copper oxide so formed is then reduced to metallic copper using particular reducing agents and conditions. As a consequence, the multilayer assembly employing such circuitry innerlayers will not evidence pink ring formation since there is no copper oxide present for localized dissolution, and localized exposure of underlying copper, in subsequent through-hole processing. As with other techniques, however, processes of this type are suspect in terms of the adhesion attainable between the dielectric substrate layers and the metallic copper circuitry innerlayers. This is particularly so in these reduction processes since the circuitry bonding surface not only is metallic copper, but also presents the metallic copper in distinct phases (i.e., (1) copper-from-reduction-of-copper oxide over (2) copper of the copper foil) which are prone to separation/delamination along the phase boundary.
U.S. Pat. Nos. 4,997,722 and 4,997,516 to Adler similarly involve formation of a copper oxide coating on the copper surface of circuitry innerlayers, followed by treatment with a specialized reducing solution to reduce the copper oxide to metallic copper. Certain portions of the copper oxide apparently may not be reduced all the way to metallic copper (being reduced instead to hydrous cuprous oxide or cuprous hydroxide), and those species are thereafter dissolved away in a non-oxidizing acid which does not attack or dissolve the portions already reduced to metallic copper. As such, the multi-layer assembly employing such circuitry innerlayers will not evidence pink ring formation since there is no copper oxide present for localized dissolution, and localized exposure of underlying copper, in subsequent through-hole processing. Here again, however, problems can arise in terms of the adhesion between the dielectric layers and metallic copper circuitry innerlayers, firstly because the bonding surface is metallic copper, and secondly because the metallic copper predominately is present in distinct phases (i.e., (1) copper-from-reduction-of-copper oxide over (2) copper of the copper foil), a situation prone to separation/delamination along the phase boundary.
U.S. Patent No. 5,289,630 to Ferrier et al., the teachings of which are incorporated herein by reference in their entirety, reveals a process whereby an adhesion promoting layer of copper oxide is formed on the circuit elements followed by a controlled dissolution and removal of a substantial amount of the copper oxide in a manner which does not adversely affect the topography.
PCT Application No. WO 96/19097 to McGrath (and related U.S. Patent No. 5,800,859), the teachings of which are incorporated by reference herein in their entirety, discusses a process for improving the adhesion of polymeric materials to a metal surface. The process discussed involves contacting the metal surface with an adhesion-promoting composition comprising hydrogen peroxide, an inorganic acid, a corrosion-inhibitor and a quaternary ammonium surfactant.
This invention proposes a process for improving the adhesion of polymeric materials to a metal surface, especially copper or copper alloy surfaces. The process proposed herein is particularly useful in the production of multilayer printed circuits. The process proposed herein provides optimum adhesion between the metallic and polymeric surfaces (i.e. the circuitry and the intermediate insulating layer), eliminates or minimizes pink ring and operates economically, all as compared to conventional processes.
SUMMARY OF THE INVENTION
The inventors herein propose a process for improving the adhesion of polymeric materials to metal surfaces, particularly copper and copper alloy surfaces. The proposed process comprises:
(1) contacting the metal surface with a plating solution selected from the group consisting of electroless nickel, electroless cobalt, electroless tin and immersion tin such that a material selected from the group consisting of nickel, cobalt and tin is plated on the metal surface to form a plated surface;
(2) contacting the plated surface with a phosphating composition such that a phosphate conversion coating is formed on the plated surface to form a phosphate conversion coated plated surface; and thereafter (3) bonding the polymeric material to the phosphate conversion coated plated surface. The inventors have found that the foregoing process greatly improves the adhesion of metal surfaces to polymeric materials even after repeated high temperature exposure. The process is particularly suited to treating copper or copper alloy metal surfaces such as are used in the manufacture of printed circuit boards, lead frames or chip carriers.
DETAILED DESCRIPTION OF THE INVENTION
The process proposed is intended for improving the adhesion between metal surfaces and polymeric materials. Applications for the process are widespread, but the process is particularly suited to increasing the adhesion between the copper layers of printed circuit boards and the polymeric pre-preg between the foregoing layers or for increasing the adhesion between copper lead frames and the encapsulating resins used to seal the lead frames. The proposed process comprises:
(1) optionally, but preferably, contacting a metal surface with a micro-etchant composition to etch and roughen the metal surface;
(2) contacting the metal surface with a plating solution selected from the group consisting of electroless nickel, electroless cobalt, immersion tin and electroless tin such that a material selected from the group consisting of nickel, cobalt and tin is plated on the metal surface to form a plated surface;
(3) contacting the plated surface with a phosphating composition such that a phosphate conversion coating is formed on the plated surface to form a phosphate conversion coated plated surface; and thereafter
(4) bonding the polymeric material to the phosphate conversion coated plated surface The process can be used upon any metal surface upon which nickel, cobalt or tin can be plated. In order to plate nickel or cobalt on some metal surfaces, it may be preferable to activate those surfaces with a precious metal activator prior to contacting the surfaces with the electroless nickel plating bath of this invention. In these cases, the metal surface is generally contacted with an activator solution comprising colloidal or ionic palladium, gold or silver after the optional microetch step but before the electroless step. The process is particularly suited to treating copper or copper alloy metal surfaces. In the case where the metal surfaces comprise copper or copper alloys a precious metal activator may or may not be used depending upon the type of electroless bath used. Where the metal surfaces are copper or copper alloy, the choices are (i) use a precious metal activator before an electroless nickel (or cobalt) phosphorous bath, (ii) use a dimethylamino borane pre-dip before an electroless nickel (or cobalt) phosphorous bath, (iii) use a nickel (or cobalt) boron bath which does not require an activator, (iv) use an electroless or immersion tin bath without the need for an activator. In all of these cases an adherent and uniform deposit will be formed on the metal surface. The use of an immersion or electroless tin bath is particularly preferred when dealing with copper or copper alloy surfaces since no activator is necessary and the cost is relatively low.
Optionally, but preferably, the metal surface is microetched. In the case of copper or copper alloy metal surfaces, the microetch can comprise well known (i) peroxide- sulfuric microetches, (ii) cupric chloride microethes or (iii) persulfate microetches. In each case, it is preferable for the microetch to uniformly roughen the metal surface. This underlying surface roughness increases the magnitude and reliability of the subsequent bond. The time and temperature of the contact with the microetchant can be varied depending upon the type of microetchant being used and the characteristics of the metal surface with the goal being the attainment of a uniformly rough metal surface.
After microetching, but before contact with the plating bath, it may be necessary to activate the metal surface with a precious metal activator. A precious metal activator may be necessary if the metal surfaces comprise copper and the electroless nickel (or cobalt) bath to be used directly on the copper surface is a nickel (or cobalt) hypophosphite electroless bath. In this case, it is most preferable to use an ionic palladium activator such as a solution of palladium chloride at from about 10 to abut 500 ppm of palladium chloride. The purpose of the activator is to coat the metal surface with catalytic precious metal sites which are capable of initiating the subsequent electroless plating. As noted previously, electroless nickel boron baths and electroless or immersion tin baths do not require an activator when plating on copper or copper alloys.
The metal surface, whether activated or not, is contacted with a plating bath selected from the group consisting of electroless nickel, electroless cobalt, electroless tin and immersion tin, preferably for a time and at a temperature sufficient to plate from about 2 to 50 microinches of metal. The electroless nickel (or cobalt) bath can be of the electroless nickel (or cobalt)-phosphorous (i.e. nickel(or cobalt)/sodium hypophosphite) type or it can be of the nickel(or cobalt)-boron (i.e. nickel/dimethyl amino borane type or nickel(or cobalt)/sodiurn borohydride type). For cost, reliability and environmental safety, it is preferable to use an electroless nickel-phosphorus bath or an immersion (or electroless) tin bath. However, if an electroless nickel-phosphorus bath is used, it is important that the concentration of phosphorous in the nickel deposit be controlled to relatively low levels. Preferably the electroless nickel (or cobalt) phosphorous deposit has less than 6 weight percent phosphorous, most preferably less than 3 weight percent phosphorous. Most preferably, in the case of printed circuits, the electroless nickel step will comprise (i) an electroless nickel-boron strike to create a very thin nickel layer which can be plated upon by a nickel-phosphorous bath without activation, followed by (ii) an electroless nickel-phosphorous bath without any need for precious metal activation of the metal surface. Another preferable alternative is using an electroless or immersion tin bath. A typical electroless nickel:boron bath useful in this invention is as follows:
COMPONENT CONCENTRATION (g/D
Nickel Sulfate hexahydrate 4.9
Malic Acid 2.6
DMAB 1.18
Glycine 3.8
Water remainder pH = 4.9 A typical low phosphorous electroless nickel-phosphorous bath useful in this invention is as follows:
COMPONENT CONCENTRATION ( G/IΛ Nickel (from Nickel Sulfate) 6.0
Sodium Hypophosphite 45
Lead (from Lead Acetate) 1.2 ppm
Thiourea 3 ppm
Total nickel thickness to be plated on the metal surface is preferably from 5 to 25 microinches.
If electroless or immersion tin is chosen and the metal surface comprises copper, the tin will effectively plate on the copper surfaces without activation. Typically electroless or immersion tin baths comprise (i) stannous ions, (ii) a solubilizing acid such as fluoboric acid or methane sulfonic acid and (iii) thiourea. A useful immersion tin formulation is:
COMPONENT CONCENTRATION (G/L) Fluoboric Acid 275
Stannous Fluoborate 6
Thiourea 80
Tartaric Acid 35
The invention has surprisingly found that excellent and uniform phosphate conversion coatings can be formed on immersion (or electroless) tin surfaces, as well as electroless nickel (or cobalt) surfaces if the phosphorous content of the nickel or cobalt surfaces is low (i.e. less than 10% by weight, preferably less than 6% by weight and most preferably less than 3% by weight.
Next, the plated metal surface is contacted with a phosphate conversion coating composition such that a phosphate conversion coating is created on the plated surface. Preferably, the phosphate conversion coating is a zinc-phosphate conversion coating. In order for the phosphate conversion coating to effectively form on the plated surface, the phosphate bath must attack the plated surface. The inventors have found that high concentrations of phosphorous in the electroless nickel (or cobalt) deposit (above about 10 weight percent) will inhibit the effective formation of a good phosphate conversion coating. A typical and preferred composition for the phosphate conversion coating bath is as follows: COMPONENT CONCENTRATION (g/D
Phosphoric Acid (75%) 362
Zinc Oxide 14.65
Calcium carbonate 0.5
Nitric Acid 213.3
Nickel Sulfate 7.35
Sodium Biflouride 10.39
Sodium Nitrate 21.4
Water remainder The foregoing concentrate is diluted to 7 % by volume with water.
Contact time and temperature in the phosphate bath may vary but contact time is preferably from about 1 to 10 minutes and temperature is preferably from 900F to 1600F. Typically the phosphate conversion coating composition will comprise (i) phosphoric acid, (ii) nitric acid and fluoride ions. Preferably the phosphate composition comprises zinc ions. In this regard, please refer to U.S. Patent No. 4,838,957 to Miyamoto, the disclosure of which is incorporated herein by reference in its entirety. Preferably, the phosphate composition also comprises a nitrite compound, most preferably a nitrite salt.
After application of the phosphate conversion coating, the surface is dried and can then be effectively bonded to a polymeric material. In the case of printed circuit boards the copper or copper alloy circuit traces and features are treated with the process of this invention and then laminated with polymeric materials to form multilayer circuit boards. In the case of lead frames or chip carriers, the lead frame or chip carrier is treated or partially treated with the process of this invention and subsequently encapsulated with a polymeric material.
The invention is further described, without limitation, by the following examples: EXAMPLE I
A piece of copper foil and a piece of copper clad laminate were processed in the following manner:
(1) Microetched for 3 minutes at 1000F in a microetchant solution comprising cupric chloride.
(2) Rinse.
(3) Activated for 1 minute at 1000F in a 55 ppm solution of palladium chloride.
(4) Plated with electroless nickel in the following composition at 1600F for 1 minute:
COMPONENT CONCENTRATION f G/U
Nickel (from Nickel Sulfate) 6.0
Sodium Hypophospate 45
Lead (from Lead acetate) 1.2 ppm Thiourea 3 ppm
(5) Rinse.
(6) Dry.
The foil was then laminated to the Copper clad laminate using heat and pressure by interleaving several sheets of partially cured pre-preg. One inch wide strips of the foil were then peel tested with the following results:
Adhesion lb/in. Seconds at 5500F
6.8 0
6.6 30
6.5 60

Claims

I Claim:
1. A process for increasing the adhesion of a polymeric material to a metal surface, said process comprising: a. optionally, contacting the metal surface with a microetchant; b. contacting the metal surface with a plating solution selected from the group consisting of electroless nickel, electroless cobalt, electroless tin and immersion tin such that a material selected from the group consisting of nickel, cobalt and tin is plated onto the metal surface to form a plated surface; c. contacting the plated surface with a phosphating composition, such that a phosphate conversion coating is formed on the plated surface, to form a phosphate conversion coated plated surface; and thereafter d. bonding a polymeric material to the phosphate conversion coated plated surface.
2. A process according to claim 1 wherein the metal surface comprises copper.
3. A process according to claim 1 wherein the polymeric material comprises epoxy.
4. A process according to claim 1 wherein the microetchant is used and wherein the microetchant comprises cupric chloride.
5. A process according to claim 1, wherein the plated surface comprises less than 6 weight percent phosphorous prior to contact with the phosphate composition.
6. A process according to claim 1 wherein the plated surface comprises less than 3 weight percent phosphorous prior to contact with the phosphate composition.
7. A process according to claim 1 wherein step (b) comprises contacting the metal surface with an electroless nickel-boron bath followed by contact with an electroless nickel-phosphorous bath.
8. A process according to claim 1 wherein the phosphating composition comprises zinc ions.
9. A process according to claim 2 wherein the plating solution is an immersion or electroless tin plating solution.
10. A process according to claim 2 wherein the nickel plated surface comprises less than 6 weight percent phosphorous prior to contact with the phosphate composition.
11. A process according to claim 2 wherein the nickel plated surface comprises less than 3 weight percent phosphorous prior to contact with the phosphate composition.
12. A process according to claim 2 wherein step (b) comprises contacting the metal surface with an electroless nickel-boron bath followed by contact with an electroless nickel-phosphorous bath.
13. A process according to claim 2 wherein the phosphating composition comprises zinc ions.
14. A process according to claim 10 wherein the microetchant is used and wherein the microetchant comprises cupric chloride.
15. A process according to claim 10 wherein step (b) comprises contacting the metal surface with an electroless nickel-boron bath followed by contact with an electroless nickel-phosphorous bath.
16. A process according to claim 10 wherein the phosphating composition comprises zinc ions.
17. A process according to claim 11 wherein the microethcant is used and wherein the microetchant comprises cupric chloride.
18. A process according to claim 11 wherein step (b) comprises contacting the metal surface with an electroless nickel-boron bath followed by contact with an electroless nickel-phosphorous bath.
19. A process according to claim 11 wherein the phosphating composition comprises zinc ions.
PCT/US2007/013935 2006-08-14 2007-06-14 Process for improving the adhesion of polymeric materials to metal surfaces WO2008020910A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07796088A EP2051820B1 (en) 2006-08-14 2007-06-14 Process for improving the adhesion of polymeric materials to metal surfaces
ES07796088T ES2384122T3 (en) 2006-08-14 2007-06-14 Process for improving the adhesion of polymeric materials on metal surfaces
CN2007800300254A CN101502190B (en) 2006-08-14 2007-06-14 Process for improving the adhesion of polymeric materials to metal surfaces
JP2009524592A JP2010500775A (en) 2006-08-14 2007-06-14 Method for improving adhesion of polymer material to metal surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/503,780 US7704562B2 (en) 2006-08-14 2006-08-14 Process for improving the adhesion of polymeric materials to metal surfaces
US11/503,780 2006-08-14

Publications (2)

Publication Number Publication Date
WO2008020910A2 true WO2008020910A2 (en) 2008-02-21
WO2008020910A3 WO2008020910A3 (en) 2009-04-09

Family

ID=39051137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/013935 WO2008020910A2 (en) 2006-08-14 2007-06-14 Process for improving the adhesion of polymeric materials to metal surfaces

Country Status (6)

Country Link
US (1) US7704562B2 (en)
EP (1) EP2051820B1 (en)
JP (1) JP2010500775A (en)
CN (1) CN101502190B (en)
ES (1) ES2384122T3 (en)
WO (1) WO2008020910A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4965649B2 (en) * 2007-04-06 2012-07-04 大成プラス株式会社 Copper alloy composite and manufacturing method thereof
US20120061698A1 (en) * 2010-09-10 2012-03-15 Toscano Lenora M Method for Treating Metal Surfaces
CN102130087B (en) * 2010-12-10 2013-04-24 讯创(天津)电子有限公司 Three-dimensional integrated circuit metallic conductor rail and preparation method thereof
US8524540B2 (en) 2011-02-01 2013-09-03 Nilesh Kapadia Adhesion promoting composition for metal leadframes
KR101310256B1 (en) 2011-06-28 2013-09-23 삼성전기주식회사 Electroless plated layers of printed circuit board and method for preparing the same
KR20130007022A (en) * 2011-06-28 2013-01-18 삼성전기주식회사 Printed circuit board and method for preparing the same
US9617643B2 (en) 2012-10-26 2017-04-11 Board Of Trustees Of Michigan State University Methods for coating metals on hydrophobic surfaces
CN103103514B (en) * 2013-01-30 2015-12-23 合肥佳和表面科技有限公司 Spraying type ferric solid-acid comprehensive treatment agent and preparation method before spheroidal graphite casting application
WO2016032006A1 (en) * 2014-08-29 2016-03-03 タツタ電線株式会社 Reinforcing member for flexible printed wiring board, and flexible printed wiring board provided with same
US10192680B2 (en) 2015-11-04 2019-01-29 Payton Planar Magnetics Ltd. Planar transformer components comprising electrophoretically deposited coating
JP2017199803A (en) * 2016-04-27 2017-11-02 日立マクセル株式会社 Three-dimensional molded circuit component
CN106756958A (en) * 2016-11-27 2017-05-31 湖南金裕化工有限公司 A kind of environmentally friendly hair blackening liquid and preparation method thereof
CN106756957A (en) * 2016-11-27 2017-05-31 湖南金裕化工有限公司 A kind of environmentally friendly nigrescence minute surface adds lustre to anticorrodent and preparation method thereof
CN106544665A (en) * 2016-11-27 2017-03-29 湖南金裕化工有限公司 Nigrescence minute surface adds lustre to anticorrodent and preparation method thereof
CN109055921A (en) * 2018-08-27 2018-12-21 重庆立道新材料科技有限公司 A kind of electroless plated tin liquor and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997516A (en) 1989-07-10 1991-03-05 Edward Adler Method for improving adherence of copper foil to resinous substrates
US4997722A (en) 1989-07-10 1991-03-05 Edward Adler Composition and method for improving adherence of copper foil to resinous substrates

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4844981A (en) * 1982-04-05 1989-07-04 Macdermid, Incorporated Adhesion promoter for printed circuits
US4409037A (en) * 1982-04-05 1983-10-11 Macdermid Incorporated Adhesion promoter for printed circuits
JPS5935681A (en) * 1982-08-24 1984-02-27 Nippon Paint Co Ltd Method for phosphating metallic surface for coating by cationic electrodeposition
JPS61176192A (en) * 1985-01-31 1986-08-07 株式会社日立製作所 Adhesion between copper and resin
JPS61271890A (en) * 1985-05-27 1986-12-02 株式会社神戸製鋼所 Substrate for formation of electric circuit
US4775444A (en) * 1987-08-26 1988-10-04 Macdermid, Incorporated Process for fabricating multilayer circuit boards
JPH0713304B2 (en) * 1987-12-14 1995-02-15 日立化成工業株式会社 Copper surface treatment method
JPH01246393A (en) * 1988-03-25 1989-10-02 Fukuda Metal Foil & Powder Co Ltd Surface treatment of copper foil for inner layer or copper lined laminated sheet
JPH0628941B2 (en) * 1988-09-20 1994-04-20 株式会社日立製作所 Circuit board and manufacturing method thereof
US5067990A (en) * 1988-12-22 1991-11-26 Hitachi Metals International, Ltd. Method of applying phosphate conversion coatings to Fe-R-B substrates, and Fe-R-B articles having a phosphate conversion coating thereon
JPH069309B2 (en) * 1989-09-22 1994-02-02 株式会社日立製作所 Printed circuit board, manufacturing method and manufacturing apparatus thereof
US5252195A (en) * 1990-08-20 1993-10-12 Mitsubishi Rayon Company Ltd. Process for producing a printed wiring board
US5235139A (en) * 1990-09-12 1993-08-10 Macdermid, Incorprated Method for fabricating printed circuits
JPH04224684A (en) * 1990-12-25 1992-08-13 Nippon Parkerizing Co Ltd Surface treatment for aluminum for sheet and its laminated material
CA2067709C (en) * 1991-06-05 1997-12-02 James A. Johnson Process for the manufacture of printed circuits using electrophoretically deposited organic resists
US5288377A (en) * 1991-06-05 1994-02-22 Macdermid, Incorporated Process for the manufacture of printed circuits using electrophoretically deposited organic resists
US5289630A (en) * 1991-07-22 1994-03-01 Macdermid, Incorporated Process for fabricating multilayer printed circuits
US6861159B2 (en) * 1992-03-27 2005-03-01 The Louis Berkman Company Corrosion-resistant coated copper and method for making the same
JPH05306497A (en) * 1992-04-30 1993-11-19 Nippondenso Co Ltd Phophatizing chemical conversion treatment
BR9307811A (en) * 1993-01-11 1995-11-14 Macdermid Inc Phosphating compositions and process particularly for use in the preparation of printed circuits using organic protectors
DE59503637D1 (en) * 1994-10-18 1998-10-22 Atotech Deutschland Gmbh METHOD FOR DEPOSITING METAL LAYERS
JP3088623B2 (en) 1994-11-08 2000-09-18 日本ペイント株式会社 Method for forming zinc phosphate film on metal surface
GB9425090D0 (en) 1994-12-12 1995-02-08 Alpha Metals Ltd Copper coating
JP3361914B2 (en) * 1995-04-05 2003-01-07 大阪市 Manufacturing method of copper foil for printed circuit
JP3768619B2 (en) * 1996-10-29 2006-04-19 古河サーキットフォイル株式会社 Copper foil for printed wiring boards
US6120639A (en) * 1997-11-17 2000-09-19 Macdermid, Incorporated Method for the manufacture of printed circuit boards
US6506314B1 (en) * 2000-07-27 2003-01-14 Atotech Deutschland Gmbh Adhesion of polymeric materials to metal surfaces
JP2003051673A (en) * 2001-08-06 2003-02-21 Mitsui Mining & Smelting Co Ltd Printed wiring board copper foil and copper-plated laminated board using the same
US20050067378A1 (en) * 2003-09-30 2005-03-31 Harry Fuerhaupter Method for micro-roughening treatment of copper and mixed-metal circuitry
JP2005243767A (en) * 2004-02-25 2005-09-08 Dowa Mining Co Ltd Metal-ceramic circuit board and its manufacturing method
JP2006104504A (en) * 2004-10-01 2006-04-20 Yoichi Haruta Electroless plating pre-treatment method and surface metallizing method for polyimide resin, and flexible printed circuit board and manufacturing method for the same
JP2006130877A (en) * 2004-11-09 2006-05-25 Hitachi Maxell Ltd Film base material for wiring substrate, manufacturing method of film base material for wiring substrate, and flexible printed board
JP4705776B2 (en) * 2004-12-17 2011-06-22 日本カニゼン株式会社 Method for forming electroless nickel plating film having phosphate coating and film for forming the same
JP2006186059A (en) * 2004-12-27 2006-07-13 Cmk Corp Multilayer printed wiring board and its production process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997516A (en) 1989-07-10 1991-03-05 Edward Adler Method for improving adherence of copper foil to resinous substrates
US4997722A (en) 1989-07-10 1991-03-05 Edward Adler Composition and method for improving adherence of copper foil to resinous substrates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2051820A4

Also Published As

Publication number Publication date
ES2384122T3 (en) 2012-06-29
CN101502190B (en) 2011-06-15
EP2051820A4 (en) 2010-06-09
WO2008020910A3 (en) 2009-04-09
JP2010500775A (en) 2010-01-07
EP2051820A2 (en) 2009-04-29
US20080038476A1 (en) 2008-02-14
US7704562B2 (en) 2010-04-27
EP2051820B1 (en) 2012-04-25
CN101502190A (en) 2009-08-05

Similar Documents

Publication Publication Date Title
US7704562B2 (en) Process for improving the adhesion of polymeric materials to metal surfaces
US5869130A (en) Process for improving the adhesion of polymeric materials to metal surfaces
US6120639A (en) Method for the manufacture of printed circuit boards
EP0984672B2 (en) Process for treating metal surfaces
EP1311644B1 (en) Process for increasing polymer to metal adhesion
EP2531350B1 (en) Nano-oxide process for bonding copper/copper alloy and resin
US7186305B2 (en) Process for improving the adhesion of polymeric materials to metal surfaces
CA2407280A1 (en) Process for improving the adhesion of polymeric materials to metal surfaces
US5261154A (en) Process for fabricating multilayer printed circuits
US8512504B2 (en) Process for improving adhesion of polymeric materials to metal surfaces
US6146701A (en) Process for improving the adhension of polymeric materials to metal surfaces
EP1794351B1 (en) Melamine-formaldehyde post-dip composition for improving adhesion of metal to polymer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780030025.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07796088

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007796088

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009524592

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU