WO2008022804A1 - Polypropylene foam - Google Patents

Polypropylene foam Download PDF

Info

Publication number
WO2008022804A1
WO2008022804A1 PCT/EP2007/007470 EP2007007470W WO2008022804A1 WO 2008022804 A1 WO2008022804 A1 WO 2008022804A1 EP 2007007470 W EP2007007470 W EP 2007007470W WO 2008022804 A1 WO2008022804 A1 WO 2008022804A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
foam
shi
strain
index
Prior art date
Application number
PCT/EP2007/007470
Other languages
French (fr)
Inventor
Manfred Stadlbauer
Eberhard Ernst
Original Assignee
Borealis Technology Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borealis Technology Oy filed Critical Borealis Technology Oy
Priority to EA200970223A priority Critical patent/EA016842B1/en
Priority to BRPI0715722-3A priority patent/BRPI0715722B1/en
Priority to KR1020087032193A priority patent/KR101049703B1/en
Priority to CN2007800308580A priority patent/CN101506261B/en
Publication of WO2008022804A1 publication Critical patent/WO2008022804A1/en
Priority to US12/367,911 priority patent/US7799841B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene

Definitions

  • the present invention relates to a polypropylene foam having an even foam surface and small cell size. It also relates to the use of multibranched polypropylene for the preparation of foam.
  • Thermoplastic foams possess a cellular structure generated by the expansion of a blowing agent.
  • the cellular structure provides unique properties that enable the foamed plastics to be used for various industrial applications. Due to its outstanding functional characteristics and low material cost, polypropylene foams have been considered as a substitute for other thermoplastic foams in industrial applications. In particular, they have higher rigidity compared to other polyolefins, offer higher strength than polyethylene and better impact strength than polystyrene. Furthermore, they provide a higher service temperature range and good temperature stability.
  • polypropylene is suffering from some serious drawbacks, limiting its use for the preparation of foams.
  • many polypropylene materials have low melt strength and/or low melt extensibility.
  • Polypropylene foams are made in a foam extrusion process wherein a gas-laden melt is suddenly expanded through pressure drop after the extrusion die. Such an expansion induces extensional flow to the polymer melt and sets certain requirements to the extensional rheology of the melt. In particular, high melt strength and/or high melt extensibility are required. If these conditions are not met, bubble film rupture is more likely to occur and the average foam cell size will decrease due to bubble coalescence. Increasing bubble size results in a decrease of impact strength of the foam.
  • Linear, bimodal high molecular weight polypropylene obtained either from copolymerisation of propylene with comonomers such as ethylene or from reacting a coupling agent with polypropylene.
  • EP-A-0887379 discloses the preparation of linear bimodal polypropylene in a multi-step process using at least one slurry reactor and at least one gas phase reactor.
  • WO 00/78858 discloses a coupled propylene copolymer prepared by reacting a coupling agent such as polysulfonyl azide with a propylene copolymer. Due to the high molecular weight, these polymers have a high zero shear viscosity. However, they have reduced output from the extruder because a high pressure is built up in the extrusion line.
  • Y/H-shaped polypropylenes from post-reactor processes such as irradiation or peroxide treatment or from copolymerisation of propylene with dienes in the presence of a metallocene catalyst.
  • WO 2005/044877 discloses a foamed article comprising a propylene/ ⁇ - ⁇ diene copolymer.
  • EP-A-0879830 discloses Y/H-shaped polypropylene from peroxide treatment.
  • Y/H-shaped polypropylenes are inherently inhomogeneous, contain gels and show a low number of cells, thereby adversely affecting foam surface quality.
  • the present invention intends to provide a polypropylene foam having improved foam surface properties such as high surface evenness, and a small cell size. Furthermore, the preparation of such a foam should be possible with high output at the foaming line without adversely affecting surface properties and cell size. Thus, the present invention intends to provide an improved balance between processibility and final foam properties.
  • the object is solved by providing a foam comprising a polypropylene, wherein said polypropylene is produced in the presence of a metallocene catalyst, preferably in the presence of a metallocene catalyst as further defined below, and said foam and/or said polypropylene has (have) a. a branching index g' of less than 1.00 and b.
  • the strain hardening index (SHI) is defined as the slope of the logarithm to the basis 10 of the tensile stress growth function (Ig ( ⁇ + )) as function of the logarithm to the basis 10 of the Hencky strain (Ig ( ⁇ )) in the range of Hencky strains between 1 and 3.
  • the foam is free of polyethylene, even more preferred the foam comprises a polypropylene as defined above and further defined below as the only polymer component.
  • the present invention is based on the finding that an improved balance between processibility and final foam properties can be achieved by using a polypropylene which has a specific branching structure.
  • the foam of the present invention comprises a polypropylene which is characterized in particular by extensional melt flow properties.
  • the extensional flow, or deformation that involves the stretching of a viscous material is the dominant type of deformation in converging and squeezing flows that occur in typical polymer processing operations.
  • Extensional melt flow measurements are particularly useful in polymer characterization because they are very sensitive to the molecular structure of the polymeric system being tested.
  • the true strain rate of extension also referred to as the Hencky strain rate
  • simple extension is said to be a "strong flow” in the sense that it can generate a much higher degree of molecular orientation and stretching than flows in simple shear.
  • extensional flows are very sensitive to crystallinity and macro-structural effects, such as long- chain branching, and as such can be far more descriptive with regard to polymer characterization than other types of bulk rheological measurement which apply shear flow.
  • the first requirement according to the present invention is that the foam and/or the polypropylene present within said foam has/have a branching index g' of less than 1.00, more preferably less than 0.90, still more preferably less than 0.80.
  • the branching index g' shall be less than 0.75.
  • the branching index g' is more than 0.6, still more preferably 0.7 or more.
  • the branching index g 1 of the polypropylene is in the range of 0.6 to below 1.0, more preferred in the range of more than 0.65 to 0.95, still more preferred in the range of 0.7 to 0.95.
  • the branching index g' defines the degree of branching and correlates with the amount of branches of a polymer.
  • a low g'-value is an indicator for a highly branched polymer.
  • the branching of the polypropylene increases.
  • strain hardening index (SHI@l s " ') of the foam and/or the polypropylene present within said foam shall be at least 0.30, more preferred of at least 0.40, still more preferred of at least 0.50. In a preferred embodiment the strain hardening index (SHI@l s " ') is at least 0.55.
  • the strain hardening index is a measure for the strain hardening behavior of the melted foam or the polypropylene melt.
  • the strain hardening index (SHI@l s " ') has been measured by a deformation rate d ⁇ /dt of 1.00 s "1 at a temperature of 180 °C for determining the strain hardening behavior, wherein the strain hardening index (SHI) is defined as the slope of the tensile stress growth function ⁇ E + as a function of the Hencky strain f on a logarithmic scale between 1.00 and 3.00 (see Figure 1).
  • the Hencky strain rate ⁇ H is defined as for the Hencky strain ⁇ "F” is the tangential stretching force "R” is the radius of the equi-dimensional windup drums
  • T is the measured torque signal
  • A is the instantaneous cross-sectional area of a stretched molten specimen " ⁇ o " is the cross-sectional area of the specimen in the solid state (i.e. prior to melting)
  • the polypropylene used for the preparation of the foam is not crosslinked.
  • the foam and/or the polypropylene has/have a multi-branching index (MBI) of at least 0.15, wherein the multi-branching index (MBI) is defined as the slope of strain hardening index (SHI) as function of the logarithm to the basis 10 of the Hencky strain rate (Ig (d ⁇ /dt)).
  • MBI multi-branching index
  • the polypropylene used for the preparation of the foam of the present invention shows strain rate thickening which means that the strain hardening increases with extension rates. Similar to the measurement of SHI@l s " ', a strain hardening index (SHI) can be determined at different strain rates.
  • a strain hardening index is defined as the slope of the logarithm to the basis 10 of the tensile stress growth function ⁇ + , ⁇ g( ⁇ + ), as function of the logarithm to the basis 10 of the Hencky strain ⁇ , ⁇ g( ⁇ ), between Hencky strains 1.00 and 3.00 at a at a temperature of 180 °C, where a SHI@0.1 s "1 is determined with a deformation rate ⁇ H of 0.10 s "1 , a SHI@0.3 s "1 is determined with a deformation rate ⁇ H of 0.30 s "1 , a SHI@3 s "1 is determined with a deformation rate ⁇ H of 3.00 s "1 , and a SHI@10 s "1 is determined with a deformation rate ⁇ H of 10.0 s '1 .
  • a multi-branching index is defined as the slope of SHI as a function of Ig ( ⁇ H ), i.e.
  • the strain hardening index (SHI) is defined at deformation rates ⁇ H between 0.05 s '1 and 20.00 more preferably between 0.10 s "1 and 10.0 still more preferably at the deformations rates 0.10, 0.30, 1.00, 3.00 and 10.0 s "1 . Yet more preferably the SHI-values determined by the deformations rates 0.10, 0.30, 1.00, 3.00 and 10.0 s "1 are used for the linear fit according to the least square method when establishing the multi-branching index (MBI).
  • MBI multi-branching index
  • the foam of the present invention and/or the polypropylene present within said foam has/have a branching index g' of less than 1.00, a strain hardening index (SHI@ls ' ') of at least 0.30 and multi- branching index (MBI) of at least 0.15. Still more preferred the foam and/or its polypropylene component has/have a branching index g' of less than 0.80, a strain hardening index (SHI@l s " ') of at least 0.40 and multi-branching index (MBI) of at least 0.15.
  • the foam and/or its polypropylene component has/have a branching index g' of less than 1.00, a strain hardening index (SHI@l s " ') of at least 0.30 and multi-branching index (MBI) of at least 0.20.
  • the foam and/or its polypropylene component has/have a branching index g' of less than 0.80, a strain hardening index (SHI@l s ' ') of at least 0.40 and multi-branching index (MBI) of at least 0.20.
  • the foam and/or its polypropylene component has/have a branching index g' of less than 0.80, a strain hardening index (SHI@l s " ') of at least 0.50 and multi-branching index (MBI) of at least 0.30.
  • the foam of the present invention comprises a polypropylene having a specific branching structure, i.e. multi-branched polypropylene.
  • multi-branched polypropylene is characterized by the fact that its strain hardening index (SHI) increases with the deformation rate ⁇ H , i.e. a phenomenon which is not observed in other polypropylenes.
  • strain hardening index (SHI) is not influenced by the deformation rate (see Figures 2 and 3). Accordingly, the strain hardening index (SHI) of known polymers, in particular known polypropylenes and polyethylenes, does not increase or increases only negligible with increase of the deformation rate (d ⁇ /dt).
  • the multi-branching index MBI is also a parameter which is very sensitive to the branching structure of a polymeric material and can be used to characterize the foam of the present invention.
  • a foam comprising a polypropylene, wherein the foam and/or the polypropylene has (have) a multi-branching index (MBI) of at least 0.15, wherein the multi-branching index (MBI) is defined as the slope of strain hardening index (SHI) as function of the logarithm to the basis 10 of the Hencky strain rate (Ig (d ⁇ /dt)), wherein d ⁇ /dt is the deformation rate, ⁇ is the Hencky strain, and the strain hardening index (SHI) is measured at 180 °C, wherein the strain hardening index (SHI) is defined as the slope of the logarithm to the basis 10 of the tensile stress growth function (Ig ( ⁇ + ))
  • the multi-branching index (MBI) is at least 0.20, and still more preferred at least 0.25. In a still more preferred embodiment the multi- branching index (MBI) is at least 0.28.
  • the foam is free of polyethylene, even more preferred the foam comprises a polypropylene as defined above and further defined below as the only polymer component.
  • said polypropylene is produced in the presence of a metallocene catalyst, more preferably in the presence of a metallocene catalyst as further defined below.
  • the foam and/or the polypropylene present within said foam has/have a branching index g' of less than 1.00, more preferably less than 0.90, still more preferably less than 0.80.
  • the branching index g' shall be less than 0.75.
  • the branching index g' is more than 0.6, still more preferably 0.7 or more.
  • the branching index g' of the polypropylene is in the range of 0.6 to below 1.0, more preferred in the range of more than 0.65 to 0.95, still more preferred in the range of 0.7 to 0.95.
  • the strain hardening index (SHI@l s " ') shall be at least 0.30, more preferred at least 0.40, still more preferred at least 0.50. In a preferred embodiment the strain hardening index (SHI@ls " ') is at least 0.55.
  • the polypropylene comprised by the foam of the present invention is not crosslinked.
  • the foam is further characterized in that the foam has a smooth surface, i.e. the surface does not show many defects.
  • An indication, that the foam is rather defect free, is when the material used for the foam shows only few gels when converted into a film.
  • the foam material converted into a film has only gels with a diameter of equal or less than 500 ⁇ m, i.e. no gels with a diameter of more than 500 ⁇ m are present in said film (converted foam), and wherein said gels are not more than 100 gels per square meter (sqm), more preferably not more than 80 gels per square meter (sqm), and yet more preferably not more than 60 gels per square meter (sqm).
  • the converted foam material has only gels with a diameter of equal or less than 400 ⁇ m, i.e. no gels with a diameter of more than 500 ⁇ m are present in said film (converted foam), and wherein said gels are not more than 100 gels per square meter (sqm), more preferably not more than 80 gels per square meter (sqm), and yet more preferably not more than 60 gels per square meter (sqm).
  • the converted foam material has only gels with a diameter of equal or less than 300 ⁇ m, i.e.
  • the polypropylene comprised by the foam of the present invention has an amount of hot xylene insolubles of less than 0.10 wt%, more preferably less than 0.05 wt%.
  • the amount of hot xylene insolubles is determined by dissolving xylene hot solubles from the polymer in a soxhlet apparatus with boiling xylene for 2 days and measuring the mass fraction of the polypropylene material insoluble in boiling xylene.
  • the amount of hot xylene insolubles indicates the degree of crosslinking, i.e. the higher the degree of crosslinking the higher the amount of polymer which does not dissolve in hot xylene.
  • Polymers having crosslinked areas are of lower homogeneity and contain gels, thereby reducing the number of foam cells and deteriorating the foam surface. Furthermore, crosslinking has a detrimental effect on recycling properties.
  • the polypropylene component of the foam has xylene solubles (XS) of less than 2.0 wt.-%, more preferably less than 1.50 wt%, and even more preferably less than 1.00 wt%.
  • Xylene solubles are the part of the polymer soluble in cold xylene determined by dissolution in boiling xylene and letting the insoluble part crystallize from the cooling solution (for the method see below in the experimental part).
  • the xylene solubles fraction contains polymer chains of low stereo-regularity and is an indication for the amount of non-crystalline areas. High levels of xylene solubles are detrimental for some applications as they represent potential contamination risk.
  • the foam comprises a polypropylene having a melt flow rate (MFR) given in a specific range.
  • MFR melt flow rate
  • the melt flow rate mainly depends on the average molecular weight. This is due to the fact that long molecules render the material a lower flow tendency than short molecules. An increase in molecular weight means a decrease in the MFR-value.
  • the melt flow rate (MFR) is measured in g/10 min of the polymer discharged through a defined dye under specified temperature and pressure conditions and the measure of viscosity of the polymer which, in turn, for each type of polymer is mainly influenced by its molecular weight but also by its degree of branching.
  • the melt flow rate measured under a load of 2.16 kg at 230 °C (ISO 1 133) is denoted as MFR 2 .
  • the polypropylene has an MFR 2 in a range of 0.01 to 1000 g/10 min, more preferably of 0.01 to 100 g/10 min, still more preferred of 0.05 to 50 g/10 min.
  • the MFR is in a range of 1.00 to 1 1.00 g/10 min.
  • the MFR is in a range of 3.00 to 1 1.00 g/10 min.
  • the number average molecular weight (Mn) is an average molecular weight of a polymer expressed as the first moment of a plot of the number of molecules in each molecular weight range against the molecular weight. In effect, this is the total molecular weight of all molecules divided by the number of molecules.
  • the weight average molecular weight (Mw) is the first moment of a plot of the weight of polymer in each molecular weight range against molecular weight.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) as well as the molecular weight distribution are determined by size exclusion chromatography (SEC) using Waters Alliance GPCV 2000 instrument with online viscometer. The oven temperature is 140 °C. Trichlorobenzene is used as a solvent.
  • the polypropylene present within the foam has a weight average molecular weight (Mw) from 10,000 to 2,000,000 g/mol, more preferably from 20,000 to 1 ,500,000 g/mol.
  • the polypropylene of the instant invention is isotactic.
  • the foam of the present invention comprises a polypropylene having a rather high pentad concentration, i.e. higher than 90 %, more preferably higher than 92 % and most preferably higher than 93 %.
  • the pentad concentration is higher than 95 %.
  • the pentad concentration is an indicator for the narrowness in the stereo-regularity distribution of the polypropylene.
  • the polypropylene has a melting temperature Tm of higher than 120 °C. It is in particular preferred that the melting temperature is higher than 120 °C if the polypropylene is a polypropylene copolymer as defined below. In turn, in case the polypropylene is a polypropylene homopolymer as defined below, it is preferred, that polypropylene has a melting temperature of higher than 150 0 C, more preferred higher than 155 °C.
  • the foam shall preferably comply with specific melting temperature requirements.
  • the foam has a melting temperature Tm of higher than 145 °C. It is in particular preferred that the melting temperature of the foam comprising the propylene homopolymer is higher than 150 °C, more preferred higher than 155 °C.
  • the foam has a melting temperature Tm of higher than 120 °C. It is in particular preferred that the melting temperature of the foam comprising the propylene copolymer is higher than 135 °C, more preferred higher than 140 0 C.
  • polypropylene as defined above is preferably unimodal. In another preferred embodiment the polypropylene as defined above (and further defined below) is preferably multimodal, more preferably bimodal.
  • Multimodal or “multimodal distribution” describes a frequency distribution that has several relative maxima.
  • the expression “modality of a polymer” refers to the form of its molecular weight distribution (MWD) curve, i.e. the appearance of the graph of the polymer weight fraction as a function of its molecular weight. If the polymer is produced in the sequential step process, i.e. by utilizing reactors coupled in series, and using different conditions in each reactor, the different polymer fractions produced in the different reactors each have their own molecular weight distribution which may considerably differ from one another.
  • the molecular weight distribution curve of the resulting final polymer can be seen at a super-imposing of the molecular weight distribution curves of the polymer fraction which will, accordingly, show a more distinct maxima, or at least be distinctively broadened compared with the curves for individual fractions.
  • a polymer showing such molecular weight distribution curve is called bimodal or multimodal, respectively.
  • the polypropylene of the foam is not unimodal it is preferably bimodal.
  • the polypropylene used for the preparation of the foam can be a homopolymer or a copolymer. Accordingly, the homopolymer as well as the copolymer can be a multimodal polymer composition.
  • the expression homopolymer used herein relates to a polypropylene that consists substantially, i.e. of at least 97 wt%, preferably of at least 99 wt%, and most preferably of at least 99.8 wt% of propylene units. In a preferred embodiment only propylene units in the polypropylene homopolymer are detectable.
  • the comonomer content can be determined with FT infrared spectroscopy, as described below in the examples.
  • the polypropylene used for the preparation of the foam is a propylene copolymer
  • the comonomer is ethylene.
  • the total amount of comonomer, more preferably ethylene, in the propylene copolymer is up to 10 mol%, more preferably up to 8 mol%, and even more preferably up to 6 mol%.
  • the polypropylene is a propylene copolymer comprising a polypropylene matrix and an ethylene-propylene rubber (EPR).
  • EPR ethylene-propylene rubber
  • the polypropylene matrix can be a homopolymer or a copolymer, more preferably multimodal, i.e. bimodal, homopolymer or a multimodal, i.e. bimodal, copolymer.
  • the polypropylene matrix is a propylene copolymer
  • the comonomer is ethylene or butene.
  • the preferred amount of comonomer, more preferably ethylene, in the polypropylene matrix is up to 8.00 mol%.
  • the propylene copolymer matrix has ethylene as the comonomer component, it is in particular preferred that the amount of ethylene in the matrix is up to 8.00 mol%, more preferably less than 6.00 mol%. In case the propylene copolymer matrix has butene as the comonomer component, it is in particular preferred that the amount of butene in the matrix is up to 6.00 Mol%, more preferably less than 4.00 mol%.
  • the ethylene-propylene rubber (EPR) in the total propylene copolymer is 50 wt% or less, more preferably 40 wt% or less. More preferably the amount of ethylene-propylene rubber (EPR) in the total propylene copolymer is in the range of 10 to 50 wt%, still more preferably in the range of 10 to 40 wt%.
  • the polypropylene component of the foam as defined above is produced in the presence of a specific catalyst. Furthermore, for the production of the polypropylene of the inventive foam, the process as stated below is preferably used.
  • the polypropylene component of the inventive foam is obtainable by a new catalyst system.
  • This new catalyst system comprises an asymmetric catalyst, whereby the catalyst system has a porosity of less than 1.40 ml/g, more preferably less than 1.30 ml/g and most preferably less than 1.00 ml/g.
  • the porosity has been measured according to DIN 66135 (N 2 ). In another preferred embodiment the porosity is not detectable when determined with the method applied according to DIN 66135 (N 2 ).
  • An asymmetric catalyst according to this invention is a metallocene compound comprising at least two organic ligands which differ in their chemical structure. More preferably the asymmetric catalyst according to this invention is a metallocene compound comprising at least two organic ligands which differ in their chemical structure and the metallocene compound is free of C 2 - symmetry and/or any higher symmetry. Preferably the asymmetric metallocene compound comprises only two different organic ligands, still more preferably comprises only two organic ligands which are different and linked via a bridge.
  • Said asymmetric catalyst is preferably a single site catalyst (SSC).
  • SSC single site catalyst
  • the catalyst system has a surface area of less than 25 m 2 /g, yet more preferred less than 20 m 2 /g, still more preferred less than 15 m 2 /g, yet still less than 10 m 2 /g and most preferred less than 5 m 2 /g.
  • the surface area according to this invention is measured according to ISO 9277 (N 2 ).
  • the catalytic system according to this invention comprises an asymmetric catalyst, i.e. a catalyst as defined below, and has porosity not detectable when applying the method according to
  • the asymmetric catalyst compound i.e. the asymmetric metallocene, has the formula (I):
  • M is Zr, Hf or Ti, more preferably Zr, and X is independently a monovalent anionic ligand, such as ⁇ -ligand, R is a bridging group linking the two Cp ligands,
  • Cp is an organic ligand selected from the group consisting of unsubstituted cyclopenadienyl, unsubstituted indenyl, unsubstituted tetrahydroindenyl, unsubstituted fluorenyl, substituted cyclopenadienyl, substituted indenyl, substituted tetrahydroindenyl, and substituted fluorenyl, with the proviso that both Cp-ligands are selected from the above stated group and both Cp-ligands have a different chemical structure.
  • ⁇ -ligand is understood in the whole description in a known manner, i.e. a group bonded to the metal at one or more places via a sigma bond.
  • a preferred monovalent anionic ligand is halogen, in particular chlorine (Cl).
  • the asymmetric catalyst is of formula (I) indicated above, wherein M is Zr and each X is Cl.
  • both Cp-ligands are substituted.
  • both Cp-ligands have different residues to obtain an asymmetric structure.
  • both Cp-ligands are selected from the group consisting of substituted cyclopenadienyl-ring, substituted indenyl-ring, substituted tetrahydroindenyl-ring, and substituted fluorenyl-ring wherein the Cp-ligands differ in the substituents bonded to the rings.
  • the optional one or more substituent(s) bonded to cyclopenadienyl, indenyl, tetrahydroindenyl, or fluorenyl may be independently selected from a group including halogen, hydrocarbyl (e.g.
  • Ci-C 20 -alkyl C 2 -C 20 -alkenyl, C 2 -C 20 - alkynyl, C 3 -Ci 2 -cycloalkyl, C 6 -C 20 -aryl or C 7 -C 20 -arylalkyl), C 3 -Ci 2 -cycloalkyl which contains 1 , 2, 3 or 4 heteroatom(s) in the ring moiety, C 6 -C 2 Q- heteroaryl, Ci-C 20 -haloalkyl, -SiR" 3 , -OSiR" 3 , -SR", -PR" 2 and -NR" 2 , wherein each R" is independently a hydrogen or hydrocarbyl, e.g.
  • both Cp-ligands are indenyl moieties wherein each indenyl moiety bears one or two substituents as defined above. More preferably each Cp-ligand is an indenyl moiety bearing two substituents as defined above, with the proviso that the substituents are chosen in such a manner that both Cp- ligands are of different chemical structure, i.e both Cp-ligands differ at least in one substituent bonded to the indenyl moiety, in particular differ in the substituent bonded to the five membered ring of the indenyl moiety.
  • both Cp are indenyl moieties wherein the indenyl moieties comprise at least at the five membered ring of the indenyl moiety, more preferably at 2-position, a substituent selected from the group consisting of alkyl, such as Ci-C 6 alkyl, e.g. methyl, ethyl, isopropyl, and trialkyloxysiloxy, wherein each alkyl is independently selected from Cj-C 6 alkyl, such as methyl or ethyl, with proviso that the indenyl moieties of both Cp must chemically differ from each other, i.e. the indenyl moieties of both Cp comprise different substituents.
  • alkyl such as Ci-C 6 alkyl, e.g. methyl, ethyl, isopropyl, and trialkyloxysiloxy
  • each alkyl is independently selected from Cj-C 6 alkyl, such as methyl or ethyl, with
  • both Cp are indenyl moieties wherein the indenyl moieties comprise at least at the six membered ring of the indenyl moiety, more preferably at 4-position, a substituent selected from the group consisting of a C 6 -C 2O aromatic ring moiety, such as phenyl or naphthyl, preferably phenyl, which is optionally substituted with one or more substitutents, such as Cj-C 6 alkyl, and a heteroaromatic ring moiety, with the proviso that the indenyl moieties of both Cp must chemically differ from each other, i.e. the indenyl moieties of both Cp comprise different substituents.
  • a substituent selected from the group consisting of a C 6 -C 2O aromatic ring moiety such as phenyl or naphthyl, preferably phenyl, which is optionally substituted with one or more substitutents, such as Cj-C 6 alkyl,
  • both Cp are indenyl moieties wherein the indenyl moieties comprise at the five membered ring of the indenyl moiety, more preferably at 2-position, a substituent and at the six membered ring of the indenyl moiety, more preferably at 4-position, a further substituent, wherein the substituent of the five membered ring is selected from the group consisting of alkyl, such as Ci-C 6 alkyl, e.g.
  • each alkyl is independently selected from Ci-C 6 alkyl, such as methyl or ethyl
  • the further substituent of the six membered ring is selected from the group consisting of a C 6 -C 20 aromatic ring moiety, such as phenyl or naphthyl, preferably phenyl, which is optionally substituted with one or more substituents, such as Ci-C 6 alkyl, and a heteroaromatic ring moiety, with proviso that the indenyl moieties of both Cp must chemically differ from each other, i.e. the indenyl moieties of both Cp comprise different substituents.
  • both Cp are idenyl rings comprising two substituentes each and differ in the substituents bonded to the five membered ring of the idenyl rings.
  • Y is C, Si or Ge
  • R' is Ci to C 20 alkyl, C 6 -Cj 2 aryl, or C 7 -Ci 2 arylalkyl or trimethylsilyl.
  • the bridge member R is typically placed at 1 -position.
  • the bridge member R may contain one or more bridge atoms selected from e.g. C, Si and/or Ge, preferably from C and/or Si.
  • One preferable bridge R is -Si(R') 2 -, wherein R' is selected independently from one or more of e.g.
  • Ci-C] 0 alkyl C]-C 20 alkyl, such as C 6 -C] 2 aryl, or C 7 -C 40 , such as C 7 -C] 2 arylalkyl, wherein alkyl as such or as part of arylalkyl is preferably Ci-C 6 alkyl, such as ethyl or methyl, preferably methyl, and aryl is preferably phenyl.
  • the bridge -Si(R') 2 - is preferably e.g.
  • the asymmetric catalyst i.e. the asymmetric metallocene, is defined by the formula (III)
  • Y is C, Si or Ge
  • R' is Ci to C 20 alkyl, C 6 -Ci 2 aryl, or C 7 -Ci 2 arylalkyl.
  • the asymmetric catalyst is defined by the formula (III), wherein both Cp are selected from the group consisting of substituted cyclopenadienyl, substituted indenyl, substituted tetrahydroindenyl, and substituted fluorenyl.
  • the asymmetric catalyst is defined by the formula (III), wherein both Cp are selected from the group consisting of substituted cyclopenadienyl, substituted indenyl, substituted tetrahydroindenyl, and substituted fluorenyl with the proviso that both Cp-ligands differ in the substituents, i.e. the subtituents as defined above, bonded to cyclopenadienyl, indenyl, tetrahydroindenyl, or fluorenyl.
  • the asymmetric catalyst is defined by the formula (III), wherein both Cp are indenyl and both indenyl differ in one substituent, i.e. in a substiuent as defined above bonded to the five member ring of indenyl.
  • the asymmetric catalyst is a non-silica supported catalyst as defined above, in particular a metallocene catalyst as defined above.
  • the asymmetric catalyst is dimethylsilyl [(2- methyl-(4'-tert.butyl)-4-phenyl-indenyl)(2-isopropyl-(4'-tert.butyl)-4-phenyl- indenyl)]zirconium dichloride (IUPAC: dimethylsilandiyl [(2-methyl-(4'- tert.butyl)-4-phenyl-indenyl)(2-isopropyl-(4'-tert.butyl)-4-phenyl- indenyl)]zirkonium dichloride). More preferred said asymmetric catalyst is not silica supported.
  • the above described asymmetric catalyst components are prepared according to the methods described in WO 01/48034.
  • the asymmetric catalyst system is obtained by the emulsion solidification technology as described in WO 03/051934.
  • the asymmetric catalyst is preferably in the form of solid catalyst particles, obtainable by a process comprising the steps of a) preparing a solution of one or more asymmetric catalyst components; b) dispersing said solution in a solvent immiscible therewith to form an emulsion in which said one or more catalyst components are present in the droplets of the dispersed phase, c) solidifying said dispersed phase to convert said droplets to solid particles and optionally recovering said particles to obtain said catalyst.
  • a solvent more preferably an organic solvent, is used to form said solution.
  • the organic solvent is selected from the group consisting of a linear alkane, cyclic alkane, linear alkene, cyclic alkene, aromatic hydrocarbon and halogen-containing hydrocarbon.
  • the immiscible solvent forming the continuous phase is an inert solvent, more preferably the immiscible solvent comprises a fluorinated organic solvent and/or a functionalized derivative thereof, still more preferably the immiscible solvent comprises a semi-, highly- or perfluorinated hydrocarbon and/or a functionalized derivative thereof.
  • said immiscible solvent comprises a perfluorohydrocarbon or a functionalized derivative thereof, preferably C 3 -C 30 perfluoroalkanes, -alkenes or - cycloalkanes, more preferred C 4 -Ci 0 perfluoro-alkanes, -alkenes or -cycloalkanes, particularly preferred perfluorohexane, perfluoroheptane, perfluorooctane or perfluoro (methylcyclohexane) or a mixture thereof.
  • a perfluorohydrocarbon or a functionalized derivative thereof preferably C 3 -C 30 perfluoroalkanes, -alkenes or - cycloalkanes, more preferred C 4 -Ci 0 perfluoro-alkanes, -alkenes or -cycloalkanes, particularly preferred perfluorohexane, perfluoroheptane, perflu
  • the emulsion comprising said continuous phase and said dispersed phase is a bi-or multiphasic system as known in the art.
  • An emulsifier may be used for forming the emulsion. After the formation of the emulsion system, said catalyst is formed in situ from catalyst components in said solution.
  • the emulsifying agent may be any suitable agent which contributes to the formation and/or stabilization of the emulsion and which does not have any adverse effect on the catalytic activity of the catalyst.
  • the emulsifying agent may e.g.
  • the emulsifying agent may be prepared during the emulsion preparation, e.g. by reacting a surfactant precursor with a compound of the catalyst solution.
  • Said surfactant precursor may be a halogenated hydrocarbon with at least one functional group, e.g. a highly fluorinated Ci to C 30 alcohol, which reacts e.g. with a cocatalyst component, such as aluminoxane.
  • any solidification method can be used for forming the solid particles from the dispersed droplets.
  • the solidification is effected by a temperature change treatment.
  • the emulsion subjected to gradual temperature change of up to 10 °C/min, preferably 0.5 to 6 °C/min and more preferably 1 to 5 °C/min.
  • the emulsion is subjected to a temperature change of more than 40 °C, preferably more than 50 °C within less than 10 seconds, preferably less than 6 seconds.
  • the recovered particles have preferably an average size range of 5 to 200 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the form of solidified particles have preferably a spherical shape, a predetermined particles size distribution and a surface area as mentioned above of preferably less than 25 m 2 /g, still more preferably less than 20 m 2 /g, yet more preferably less than 15 m 2 /g, yet still more preferably less than 10 m 2 /g and most preferably less than 5 mVg, wherein said particles are obtained by the process as described above.
  • a spherical shape preferably a predetermined particles size distribution and a surface area as mentioned above of preferably less than 25 m 2 /g, still more preferably less than 20 m 2 /g, yet more preferably less than 15 m 2 /g, yet still more preferably less than 10 m 2 /g and most preferably less than 5 mVg, wherein said particles are obtained by the process as described above.
  • the catalyst system may further comprise an activator as a cocatalyst, as described in WO 03/051934, which is enclosed herein with reference.
  • cocatalysts for metallocenes and non-metallocenes are the aluminoxanes, in particular the Ci-C] 0 -alkylaluminoxanes, most particularly methylaluminoxane (MAO).
  • aluminoxanes can be used as the sole cocatalyst or together with other cocatalyst(s).
  • other cation complex forming catalysts activators can be used. Said activators are commercially available or can be prepared according to the prior art literature.
  • aluminoxane cocatalysts are described e.g. in WO 94/28034 which is incorporated herein by reference. These are linear or cyclic oligomers of having up to 40, preferably 3 to 20, -(A1(R'")O)- repeat units (wherein R'" is hydrogen, Ci-Cio-alkyl (preferably methyl) or C 6 -Ci 8 -aryl or mixtures thereof).
  • aluminoxanes such as methylaluminumoxane (MAO)
  • MAO methylaluminumoxane
  • the amount of Al, provided by aluminoxane can be chosen to provide a molar ratio of Ahtransition metal e.g. in the range of 1 to 10 000, suitably 5 to 8000, preferably 10 to 7000, e.g. 100 to 4000, such as 1000 to 3000.
  • the ratio is preferably below 500.
  • the quantity of cocatalyst to be employed in the catalyst of the invention is thus variable, and depends on the conditions and the particular transition metal compound chosen in a manner well known to a person skilled in the art.
  • any additional components to be contained in the solution comprising the organotransition compound may be added to said solution before or, alternatively, after the dispersing step.
  • the process temperature is higher than 60 °C.
  • the process is a multi-stage process to obtain multimodal polypropylene as defined above.
  • Multistage processes include also bulk/gas phase reactors known as multizone gas phase reactors for producing multimodal propylene polymer.
  • a preferred multistage process is a "loop-gas phase"-process, such as developed by Borealis A/S, Denmark (known as BORSTAR® technology) described e.g. in patent literature, such as in EP 0 887 379 or in WO 92/12182.
  • Multimodal polymers can be produced according to several processes which are described, e.g. in WO 92/12182, EP 0 887 379 and WO 97/22633.
  • a multimodal polypropylene used for the preparation of the inventive foam is preferably produced in a multi-stage process as described in WO 92/12182. The content of this document is included herein by reference.
  • the main polymerization stages are preferably carried out as a combination of a bulk polymerization/gas phase polymerization.
  • the bulk polymerizations are preferably performed in a so-called loop reactor.
  • the composition be produced in two main polymerization stages in combination of loop reactor/gas phase reactor.
  • the process may also comprise a prepolymerization step in a manner known in the field and which may precede the polymerization step (a).
  • a further elastorneric comonomer component so called ethylene- propylene rubber (EPR) component as defined in this invention, may be incorporated into the obtained propylene polymer to form a propylene copolymer as defined above.
  • the ethylene-propylene rubber (EPR) component may preferably be produced after the gas phase polymerization step (b) in a subsequent second or further gas phase polymerizations using one or more gas phase reactors.
  • the process is preferably a continuous process.
  • the conditions for the bulk reactor of step (a) may be as follows: the temperature is within the range of 40 0 C to 1 10 °C, preferably between 60 °C and 100 °C, 70 to 90 0 C, the pressure is within the range of 20 bar to 80 bar, preferably between 30 bar to 60 bar, - hydrogen can be added for controlling the molar mass in a manner known per se.
  • step a) the reaction mixture from the bulk (bulk) reactor (step a) is transferred to the gas phase reactor, i.e. to step (b), whereby the conditions in step (b) are preferably as follows:
  • the temperature is within the range of 50 °C to 130 0 C, preferably between 60 0 C and 100 °C
  • the pressure is within the range of 5 bar to 50 bar, preferably between 15 bar to 35 bar
  • hydrogen can be added for controlling the molar mass in a manner known per se.
  • the residence time can vary in both reactor zones.
  • the residence time in bulk reactor, e.g. loop is in the range 0.5 to 5 hours, e.g. 0.5 to 2 hours and the residence time in gas phase reactor will generally be 1 to 8 hours.
  • the polymerization may be effected in a known manner under supercritical conditions in the bulk, preferably loop reactor, and/or as a condensed mode in the gas phase reactor.
  • the process of the invention or any embodiments thereof above enable highly feasible means for producing and further tailoring the propylene polymer composition within the invention, e.g. the properties of the polymer composition can be adjusted or controlled in a known manner e.g. with one or more of the following process parameters: temperature, hydrogen feed, comonomer feed, propylene feed e.g. in the gas phase reactor, catalyst, the type and amount of an external donor (if used), split between components.
  • the present invention also relates to a process for the preparation of the foam as defined above, wherein a multi-branched polypropylene as defined above is subjected to foaming.
  • a melt of the multi-branched polypropylene comprising a gaseous foaming agent such as butane, HFC or CO 2 is suddenly expanded through pressure drop.
  • Continuous foaming processes as well as discontinuous process may be applied.
  • the polymer (micro-)pellets are laden with foaming agent under pressure and heated below melting temperature before the pressure in the autoclave is suddenly relaxed.
  • the dissolved foaming agent forms bubbles and creates a foam structure.
  • Such preparation of discontinuously foamed beads is described for example in DE 3 539 352.
  • the present invention also relates to the use of the multi-branched polypropylene as defined above for the preparation of foams.
  • a Paar Physica MCR300 equipped with a TC30 temperature control unit and an oven CTT600 (convection and radiation heating) and a SERVPO 1-025 extensional device with temperature sensor and a software RHEOPLUS/32 v2.66 is used.
  • the device is set to test temperature (180 0 C) for minimum 20minutes without sample in presence of the clamps
  • the torque (measured in mNm) is recorded and plotted against time •
  • the torque must not exceed a value of 5x 10 '3 mNm to make sure that the friction of the device is in an acceptably low range
  • the device is heated for min. 20min to the test temperature (180°C measured with the thermocouple attached to the SER device) with clamps but without sample. Subsequently, the sample (0.7x1 Ox 18mm), prepared as described above, is clamped into the hot device. The sample is allowed to melt for 2 minutes +/- 20 seconds before the experiment is started.
  • the device After stretching, the device is opened and the stretched film (which is winded on the drums) is inspected. Homogenous extension is required. It can be judged visually from the shape of the stretched film on the drums if the sample stretching has been homogenous or not.
  • the tape must me wound up symmetrically on both drums, but also symmetrically in the upper and lower half of the specimen.
  • the transient elongational viscosity calculates from the recorded torque as outlined below.
  • the resulting tensile stress growth function T ⁇ E + (d ⁇ /dt, t) is plotted against the total Hencky strain ⁇ to determine the strain hardening behaviour of the melt, see Figure 1.
  • the tensile stress growth function ⁇ e + can be well fitted with a function
  • Ci and C 2 are fitting variables. Such derived C 2 is a measure for the strain hardening behavior of the melt and called Strain Hardening Index SHI.
  • strain rate linear materials, Y- or H-structures
  • strain rate short chain-, hyper- or multi-branched structures
  • HDPE linear
  • LLDPE short-chain branched
  • LDPE hyperbranched structures
  • the first polymer is a H- and Y-shaped polypropylene homopolymer made according to EP 879 830 ("A") example 1 through adjusting the MFR with the amount of butadiene. It has a MFR 230/2.16 of 2.0 g/10min, a tensile modulus of 1950 MPa and a branching index g' of 0.7.
  • the second polymer is a commercial hyperbranched LDPE, Borealis "B", made in a high pressure process known in the art. It has a MFR 190/2.16 of 4.5 and a density of 923 kg/m 3 .
  • the third polymer is a short chain branched LLDPE, Borealis "C", made in a low pressure process known in the art. It has a MFR 190/2.16 of 1.2 and a density of 919 kg/m 3 .
  • the fourth polymer is a linear HDPE, Borealis "D", made in a low pressure process known in the art. It has a MFR 190/2.16 of 4.0 and a density of 954 kg/m 3 .
  • the four materials of known chain architecture are investigated by means of measurement of the transient elongational viscosity at 180 °C at strain rates of 0.10, 0.30, 1.0, 3.0 and 10s "1 . Obtained data (transient elongational viscosity versus Hencky strain) is fitted with a function
  • the parameters cl and c2 are found through plotting the logarithm of the transient elongational viscosity against the logarithm of the Hencky strain and performing a linear fit of this data applying the least square method.
  • the parameter cl calculates from the intercept of the linear fit of the data lg( ⁇ + ) versus lg( ⁇ ) from
  • a multi- branching index is calculated from the slope of a linear fitting curve of SHI versus Ig( ⁇ ):
  • the multi-branching index MBI allows now to distinguish between Y or H- branched polymers which show a MBI smaller than 0.05 and hyper-branched polymers which show a MBI larger than 0.15. Further, it allows to distinguish between short-chain branched polymers with MBI larger than 0.10 and linear materials which have a MBI smaller than 0.10.
  • strain hardening index SHI
  • MBI multi-branching index
  • Particle size distribution is measured via Coulter Counter LS 200 at room temperature with n-heptane as medium.
  • the NMR-measurement was used for determining the mmmm pentad concentration in a manner well known in the art.
  • M n Number average molecular weight
  • M w weight average molecular weight
  • MFD molecular weight distribution
  • SEC size exclusion chromatography
  • the oven temperature is 140 0 C.
  • Trichlorobenzene is used as a solvent (ISO 16014).
  • the number average molecular weight (M n ), the weight average molecular weight (M w ) and the molecular weight distribution (MWD) are measured by a method based on ISO 16014-1 :2003 and ISO 16014-4:2003.
  • sample solution 216.5 ⁇ L were injected per analysis.
  • the column set was calibrated using relative calibration with 19 narrow MWD polystyrene (PS) standards in the range of 0.5 kg/mol to 1 1 500 kg/mol and a set of well characterized broad polypropylene standards. All samples were prepared by dissolving 5 - 10 mg of polymer in 10 mL (at 160 °C) of stabilized TCB (same as mobile phase) and keeping for 3 hours with continuous shaking prior sampling in into the GPC instrument.
  • PS polystyrene
  • the xylene solubles (XS, wt.-%): Analysis according to the known method: 2.0 g of polymer is dissolved in 250 ml p-xylene at 135 0 C under agitation. After 30 ⁇ 2 minutes the solution is allowed to cool for 15 minutes at ambient temperature and then allowed to settle for 30 minutes at 25 ⁇ 0.5°C. The solution is filtered and evaporated in nitrogen flow and the residue dried under vacuum at 90 °C until constant weight is reached.
  • Circa 2 g of the polymer (m p ) are weighted and put in a mesh of metal which is weighted (m p+m ).
  • the polymer in the mesh is extracted in a soxhlet apparatus with boiling xylene for two days. Subsequently, the mesh is dried and weighted again (m ⁇ Hu+m)-
  • melt- and crystallization enthalpy were measured by the DSC method according to ISO 1 1357-3.
  • Stiffness Film TD transversal direction
  • Stiffness Film MD machine direction
  • Elongation at break TD Elongation at break MD
  • Elongation at break MD Elongation at break MD
  • the Rheotens apparatus is combined with an extruder/melt pump for continuous feeding of the melt strand.
  • the extrusion temperature is 200 °C; a capillary die with a diameter of 2 mm and a length of 6 mm is used and the acceleration of the melt strand drawn down is 120 mm/s 2 .
  • the maximum points (Fmax; v max ) at failure of the strand are characteristic for the strength and the drawability of the melt.
  • Haze and transparency are determined according to ASTM D 1003-92 (haze).
  • Intrinsic viscosity is measured according to DIN ISO 1628/1 , October 1999 (in Decalin at 135 0 C).
  • a support-free catalyst has been prepared as described in example 5 of WO 03/051934 whilst using an asymmetric metallocene dimethylsilyl [(2- methyl-(4'-tert.butyl)-4-phenyl-indenyl)(2-isopropyl-(4'-tert.butyl)-4-phenyl- indenyl)]zirkonium dichloride.
  • Such catalyst has been used to polymerise a polypropylene copolymer with 4mol% ethylene in the Borstar process, known in the art.
  • a bimodal polypropylene copolymer has been prepared using a Z/N catalyst and the Borstar process.
  • a Y/H shaped polymer has been prepared according to EP 0 887 379 to obtain a polypropylene copolymer of MFR 230/2 16 2.2 g/10min and a branching index g' of 0.8.
  • pelletized samples have been used for foam extrusion.
  • a corotating 25 mm twin screw extruder (Berstorff ZE25, L/D 39.5), following temperature settings are adjusted (Table 5):
  • the pellets are melted before the foaming agent CO2 is dosed into the melt (zone 3) with a constant feed of 54g/hr through a feeder Bronkhorst F- 201 AC-FB-22-V at a pressure of 20bar.
  • Such gas laden melt is homogenized and cooled before it exits the flat die attached to the extruder. Immediately after the die, the foam expands and it is collected with a standard cast-film windup equipment.
  • Foamed sheets are cut from the film and investigated for its mechanical properties.

Abstract

The present invention relates to a foam comprising a polypropylene, wherein said polypropylene is produced in the presence of a metallocene catalyst, and the foam and/or the polypropylene has (have) a) a branching index g' of less than 1.00 and b) a strain hardening index (SHI@1s-1) of at least 0.30 measured by a deformation rate dε/dt of 1.00 s-1 at a temperature of 180 °C, wherein the strain hardening index (SHI) is defined as the slope of the logarithm to the basis 10 of the tensile stress growth function (Ig (ηΕ+)) as function of the logarithm to the basis 10 of the Hencky strain (Ig (ε)) in the range of Hencky strains between 1 and 3.

Description

Polypropylene foam
The present invention relates to a polypropylene foam having an even foam surface and small cell size. It also relates to the use of multibranched polypropylene for the preparation of foam.
Thermoplastic foams possess a cellular structure generated by the expansion of a blowing agent. The cellular structure provides unique properties that enable the foamed plastics to be used for various industrial applications. Due to its outstanding functional characteristics and low material cost, polypropylene foams have been considered as a substitute for other thermoplastic foams in industrial applications. In particular, they have higher rigidity compared to other polyolefins, offer higher strength than polyethylene and better impact strength than polystyrene. Furthermore, they provide a higher service temperature range and good temperature stability.
However, polypropylene is suffering from some serious drawbacks, limiting its use for the preparation of foams. In particular, many polypropylene materials have low melt strength and/or low melt extensibility.
Polypropylene foams are made in a foam extrusion process wherein a gas-laden melt is suddenly expanded through pressure drop after the extrusion die. Such an expansion induces extensional flow to the polymer melt and sets certain requirements to the extensional rheology of the melt. In particular, high melt strength and/or high melt extensibility are required. If these conditions are not met, bubble film rupture is more likely to occur and the average foam cell size will decrease due to bubble coalescence. Increasing bubble size results in a decrease of impact strength of the foam.
At present, two polypropylene-based systems are used in the industry for the preparation of foams: 1. Linear, bimodal high molecular weight polypropylene obtained either from copolymerisation of propylene with comonomers such as ethylene or from reacting a coupling agent with polypropylene. EP-A-0887379 discloses the preparation of linear bimodal polypropylene in a multi-step process using at least one slurry reactor and at least one gas phase reactor. WO 00/78858 discloses a coupled propylene copolymer prepared by reacting a coupling agent such as polysulfonyl azide with a propylene copolymer. Due to the high molecular weight, these polymers have a high zero shear viscosity. However, they have reduced output from the extruder because a high pressure is built up in the extrusion line.
2. Y/H-shaped polypropylenes from post-reactor processes such as irradiation or peroxide treatment or from copolymerisation of propylene with dienes in the presence of a metallocene catalyst. WO 2005/044877 discloses a foamed article comprising a propylene/α-ω diene copolymer. EP-A-0879830 discloses Y/H-shaped polypropylene from peroxide treatment.
However, Y/H-shaped polypropylenes are inherently inhomogeneous, contain gels and show a low number of cells, thereby adversely affecting foam surface quality.
Considering the problems outlined above, it is an object of the present invention to provide a polypropylene foam having improved foam surface properties such as high surface evenness, and a small cell size. Furthermore, the preparation of such a foam should be possible with high output at the foaming line without adversely affecting surface properties and cell size. Thus, the present invention intends to provide an improved balance between processibility and final foam properties.
In a first aspect of the present invention, the object is solved by providing a foam comprising a polypropylene, wherein said polypropylene is produced in the presence of a metallocene catalyst, preferably in the presence of a metallocene catalyst as further defined below, and said foam and/or said polypropylene has (have) a. a branching index g' of less than 1.00 and b. a strain hardening index (SHI@ Is"1) of at least 0.30 measured by a deformation rate dε/dt of 1.00 s" 1 at a temperature of 180 °C, wherein the strain hardening index (SHI) is defined as the slope of the logarithm to the basis 10 of the tensile stress growth function (Ig (ηε+)) as function of the logarithm to the basis 10 of the Hencky strain (Ig (ε)) in the range of Hencky strains between 1 and 3.
Preferably the foam is free of polyethylene, even more preferred the foam comprises a polypropylene as defined above and further defined below as the only polymer component.
The present invention is based on the finding that an improved balance between processibility and final foam properties can be achieved by using a polypropylene which has a specific branching structure.
The foam of the present invention comprises a polypropylene which is characterized in particular by extensional melt flow properties. The extensional flow, or deformation that involves the stretching of a viscous material, is the dominant type of deformation in converging and squeezing flows that occur in typical polymer processing operations. Extensional melt flow measurements are particularly useful in polymer characterization because they are very sensitive to the molecular structure of the polymeric system being tested. When the true strain rate of extension, also referred to as the Hencky strain rate, is constant, simple extension is said to be a "strong flow" in the sense that it can generate a much higher degree of molecular orientation and stretching than flows in simple shear. As a consequence, extensional flows are very sensitive to crystallinity and macro-structural effects, such as long- chain branching, and as such can be far more descriptive with regard to polymer characterization than other types of bulk rheological measurement which apply shear flow.
The first requirement according to the present invention is that the foam and/or the polypropylene present within said foam has/have a branching index g' of less than 1.00, more preferably less than 0.90, still more preferably less than 0.80. In the preferred embodiment, the branching index g' shall be less than 0.75. On the other hand it is preferred that the branching index g' is more than 0.6, still more preferably 0.7 or more. Thus it is preferred that the branching index g1 of the polypropylene is in the range of 0.6 to below 1.0, more preferred in the range of more than 0.65 to 0.95, still more preferred in the range of 0.7 to 0.95. The branching index g' defines the degree of branching and correlates with the amount of branches of a polymer. The branching index g' is defined as g'=[IV]br/[IV]|in in which g' is the branching index of the foam or the polypropylene component, [IVt,r] is the intrinsic viscosity of either the foam comprising the branched polypropylene if g' of the foam shall be determined or of the branched polypropylene if g' of the polypropylene shall be determined, and [IV]ι,n is the intrinsic viscosity of either the foam comprising a linear polypropylene having the same weight average molecular weight (within a range of ±10 %) as the branched polypropylene if g' of the foam shall be determined or of a linear polypropylene having the same weight average molecular weight (within a range of ±10 %) as the branched polypropylene if g' of the branched polypropylene shall be determined. Thereby, a low g'-value is an indicator for a highly branched polymer. In other words, if the g'-value decreases, the branching of the polypropylene increases. Reference is made in this context to B. H. Zimm and W. H. Stockmeyer, J. Chem. Phys. 17,1301 (1949). This document is herewith included by reference. The intrinsic viscosity needed for determining the branching index g1 is measured according to DIN ISO 1628/1 , October 1999 (in Decalin at 135 0C).
A further requirement is that the strain hardening index (SHI@l s"') of the foam and/or the polypropylene present within said foam shall be at least 0.30, more preferred of at least 0.40, still more preferred of at least 0.50. In a preferred embodiment the strain hardening index (SHI@l s"') is at least 0.55.
The strain hardening index is a measure for the strain hardening behavior of the melted foam or the polypropylene melt. In the present invention, the strain hardening index (SHI@l s"') has been measured by a deformation rate dε/dt of 1.00 s"1 at a temperature of 180 °C for determining the strain hardening behavior, wherein the strain hardening index (SHI) is defined as the slope of the tensile stress growth function ηE + as a function of the Hencky strain f on a logarithmic scale between 1.00 and 3.00 (see Figure 1). Thereby the Hencky strain ε is defined by the formula ε = έH ■ t , wherein the Hencky strain rate έ H is defined by the formula
2 Ω R
£ H = [S"1]
with "L0" is the fixed, unsupported length of the specimen sample being stretched which is equal to the centerline distance between the master and slave drums "R" is the radius of the equi-dimensional windup drums, and "Ω" is a constant drive shaft rotation rate.
In turn the tensile stress growth function ηε+ is defined by the formula
Figure imgf000006_0001
T(ε) = 2 - R - F(ε) and A(ε) • exp (-£,) wherein
Figure imgf000007_0001
the Hencky strain rate έ H is defined as for the Hencky strain ε "F" is the tangential stretching force "R" is the radius of the equi-dimensional windup drums "T" is the measured torque signal, related to the tangential stretching force'T" "A" is the instantaneous cross-sectional area of a stretched molten specimen "Λo" is the cross-sectional area of the specimen in the solid state (i.e. prior to melting),
"ds" is the solid state density and "divi" the melt density of the polymer.
Preferably, the polypropylene used for the preparation of the foam is not crosslinked.
In a preferred embodiment of the first aspect of the present invention, the foam and/or the polypropylene has/have a multi-branching index (MBI) of at least 0.15, wherein the multi-branching index (MBI) is defined as the slope of strain hardening index (SHI) as function of the logarithm to the basis 10 of the Hencky strain rate (Ig (dε/dt)). Multi-branching index (MBI) will be explained in further detail below.
It is preferred that the polypropylene used for the preparation of the foam of the present invention shows strain rate thickening which means that the strain hardening increases with extension rates. Similar to the measurement of SHI@l s"', a strain hardening index (SHI) can be determined at different strain rates. A strain hardening index (SHI) is defined as the slope of the logarithm to the basis 10 of the tensile stress growth function ηε+ , \g(ηε+), as function of the logarithm to the basis 10 of the Hencky strain ε , \g(ε), between Hencky strains 1.00 and 3.00 at a at a temperature of 180 °C, where a SHI@0.1 s"1 is determined with a deformation rate έH of 0.10 s"1 , a SHI@0.3 s"1 is determined with a deformation rate έH of 0.30 s"1, a SHI@3 s"1 is determined with a deformation rate έH of 3.00 s"1, and a SHI@10 s"1 is determined with a deformation rate έH of 10.0 s'1. In comparing the strain hardening index (SHI) at those five strain rates έH of 0.10, 0.30, 1.00, 3.00 and 10.0
Figure imgf000008_0001
the slope of the strain hardening index (SHI) as function of the logarithm to the basis 10 of έH Og ( ^H )) 1S a characteristic measure for multi-branching. Therefore, a multi-branching index (MBI) is defined as the slope of SHI as a function of Ig ( έH ), i.e. the slope of a linear fitting curve of the strain hardening index (SHI) versus \g ( έH ) applying the least square method, preferably the strain hardening index (SHI) is defined at deformation rates έH between 0.05 s'1 and 20.00
Figure imgf000008_0003
more preferably between 0.10 s"1 and 10.0
Figure imgf000008_0002
still more preferably at the deformations rates 0.10, 0.30, 1.00, 3.00 and 10.0 s"1. Yet more preferably the SHI-values determined by the deformations rates 0.10, 0.30, 1.00, 3.00 and 10.0 s"1 are used for the linear fit according to the least square method when establishing the multi-branching index (MBI).
It is in particular preferred that the foam of the present invention and/or the polypropylene present within said foam has/have a branching index g' of less than 1.00, a strain hardening index (SHI@ls'') of at least 0.30 and multi- branching index (MBI) of at least 0.15. Still more preferred the foam and/or its polypropylene component has/have a branching index g' of less than 0.80, a strain hardening index (SHI@l s"') of at least 0.40 and multi-branching index (MBI) of at least 0.15. In another preferred embodiment, the foam and/or its polypropylene component has/have a branching index g' of less than 1.00, a strain hardening index (SHI@l s"') of at least 0.30 and multi-branching index (MBI) of at least 0.20. In still another preferred embodiment, the foam and/or its polypropylene component has/have a branching index g' of less than 0.80, a strain hardening index (SHI@l s'') of at least 0.40 and multi-branching index (MBI) of at least 0.20. In yet another preferred embodiment, the foam and/or its polypropylene component has/have a branching index g' of less than 0.80, a strain hardening index (SHI@l s"') of at least 0.50 and multi-branching index (MBI) of at least 0.30.
As discussed above, the foam of the present invention comprises a polypropylene having a specific branching structure, i.e. multi-branched polypropylene. Such multi-branched polypropylene is characterized by the fact that its strain hardening index (SHI) increases with the deformation rate έH , i.e. a phenomenon which is not observed in other polypropylenes. Single branched polymer types (so called Y polymers having a backbone with a single long side-chain and an architecture which resembles a "Y") or H- branched polymer types (two polymer chains coupled with a bridging group and a architecture which resemble an "H") as well as linear or short chain branched polymers do not show such a relationship, i.e. the strain hardening index (SHI) is not influenced by the deformation rate (see Figures 2 and 3). Accordingly, the strain hardening index (SHI) of known polymers, in particular known polypropylenes and polyethylenes, does not increase or increases only negligible with increase of the deformation rate (dε/dt). Industrial conversion processes which imply elongational flow operate at very fast extension rates. Hence the advantage of a material which shows more pronounced strain hardening (measured by the strain hardening index SHI) at high strain rates becomes obvious. The faster the material is stretched, the higher the strain hardening index (SHI) and hence the more stable the material will be in conversion. Especially in the fast extrusion process, the melt of the multi-branched polypropylenes has a high stability. For further information concerning the measuring methods applied to obtain the relevant data for the branching index g', the tensile stress growth function ηε+, the Hencky strain rate έH , the Hencky strain ε and the multi- branching index (MBI) it is referred to the example section.
As explained above, the multi-branching index MBI is also a parameter which is very sensitive to the branching structure of a polymeric material and can be used to characterize the foam of the present invention. Thus, in a second aspect of the present invention, there is provided a foam comprising a polypropylene, wherein the foam and/or the polypropylene has (have) a multi-branching index (MBI) of at least 0.15, wherein the multi-branching index (MBI) is defined as the slope of strain hardening index (SHI) as function of the logarithm to the basis 10 of the Hencky strain rate (Ig (dε/dt)), wherein dε/dt is the deformation rate, ε is the Hencky strain, and the strain hardening index (SHI) is measured at 180 °C, wherein the strain hardening index (SHI) is defined as the slope of the logarithm to the basis 10 of the tensile stress growth function (Ig (ηε+)) as function of the logarithm to the basis 10 of the Hencky strain (Ig (ε)) in the range of Hencky strains between 1 and 3.
Preferably, the multi-branching index (MBI) is at least 0.20, and still more preferred at least 0.25. In a still more preferred embodiment the multi- branching index (MBI) is at least 0.28.
Preferably the foam is free of polyethylene, even more preferred the foam comprises a polypropylene as defined above and further defined below as the only polymer component. Preferably said polypropylene is produced in the presence of a metallocene catalyst, more preferably in the presence of a metallocene catalyst as further defined below.
In a preferred embodiment, the foam and/or the polypropylene present within said foam has/have a branching index g' of less than 1.00, more preferably less than 0.90, still more preferably less than 0.80. In the preferred embodiment, the branching index g' shall be less than 0.75. On the other hand it is preferred that the branching index g' is more than 0.6, still more preferably 0.7 or more. Thus it is preferred that the branching index g' of the polypropylene is in the range of 0.6 to below 1.0, more preferred in the range of more than 0.65 to 0.95, still more preferred in the range of 0.7 to 0.95.
Preferably, the strain hardening index (SHI@l s"') shall be at least 0.30, more preferred at least 0.40, still more preferred at least 0.50. In a preferred embodiment the strain hardening index (SHI@ls"') is at least 0.55.
The following statements apply to both aspects of the present invention as defined above.
Preferably, the polypropylene comprised by the foam of the present invention is not crosslinked.
Moreover it is preferred, that the foam is further characterized in that the foam has a smooth surface, i.e. the surface does not show many defects. An indication, that the foam is rather defect free, is when the material used for the foam shows only few gels when converted into a film. Thus it is preferred that the foam material converted into a film has only gels with a diameter of equal or less than 500 μm, i.e. no gels with a diameter of more than 500 μm are present in said film (converted foam), and wherein said gels are not more than 100 gels per square meter (sqm), more preferably not more than 80 gels per square meter (sqm), and yet more preferably not more than 60 gels per square meter (sqm). In yet another preferred embodiment the converted foam material has only gels with a diameter of equal or less than 400 μm, i.e. no gels with a diameter of more than 500 μm are present in said film (converted foam), and wherein said gels are not more than 100 gels per square meter (sqm), more preferably not more than 80 gels per square meter (sqm), and yet more preferably not more than 60 gels per square meter (sqm). In still yet another preferred embodiment the converted foam material has only gels with a diameter of equal or less than 300 μm, i.e. no gels with a diameter of more than 500 μm are present in said said film (converted foam), and wherein said gels are not more than 100 gels per square meter (sqm), more preferably not more than 80 gels per square meter (sqm), and yet more preferably not more than 60 gels per square meter (sqm).
Preferably, the polypropylene comprised by the foam of the present invention has an amount of hot xylene insolubles of less than 0.10 wt%, more preferably less than 0.05 wt%. The amount of hot xylene insolubles is determined by dissolving xylene hot solubles from the polymer in a soxhlet apparatus with boiling xylene for 2 days and measuring the mass fraction of the polypropylene material insoluble in boiling xylene. The amount of hot xylene insolubles indicates the degree of crosslinking, i.e. the higher the degree of crosslinking the higher the amount of polymer which does not dissolve in hot xylene. Polymers having crosslinked areas are of lower homogeneity and contain gels, thereby reducing the number of foam cells and deteriorating the foam surface. Furthermore, crosslinking has a detrimental effect on recycling properties.
In a preferred embodiment of the present invention, the polypropylene component of the foam has xylene solubles (XS) of less than 2.0 wt.-%, more preferably less than 1.50 wt%, and even more preferably less than 1.00 wt%. Xylene solubles are the part of the polymer soluble in cold xylene determined by dissolution in boiling xylene and letting the insoluble part crystallize from the cooling solution (for the method see below in the experimental part). The xylene solubles fraction contains polymer chains of low stereo-regularity and is an indication for the amount of non-crystalline areas. High levels of xylene solubles are detrimental for some applications as they represent potential contamination risk.
Furthermore, it is preferred that the foam comprises a polypropylene having a melt flow rate (MFR) given in a specific range. The melt flow rate mainly depends on the average molecular weight. This is due to the fact that long molecules render the material a lower flow tendency than short molecules. An increase in molecular weight means a decrease in the MFR-value. The melt flow rate (MFR) is measured in g/10 min of the polymer discharged through a defined dye under specified temperature and pressure conditions and the measure of viscosity of the polymer which, in turn, for each type of polymer is mainly influenced by its molecular weight but also by its degree of branching. The melt flow rate measured under a load of 2.16 kg at 230 °C (ISO 1 133) is denoted as MFR2. Accordingly, it is preferred that in the present invention the polypropylene has an MFR2 in a range of 0.01 to 1000 g/10 min, more preferably of 0.01 to 100 g/10 min, still more preferred of 0.05 to 50 g/10 min. In a preferred embodiment, the MFR is in a range of 1.00 to 1 1.00 g/10 min. In another preferred embodiment, the MFR is in a range of 3.00 to 1 1.00 g/10 min.
The number average molecular weight (Mn) is an average molecular weight of a polymer expressed as the first moment of a plot of the number of molecules in each molecular weight range against the molecular weight. In effect, this is the total molecular weight of all molecules divided by the number of molecules. In turn, the weight average molecular weight (Mw) is the first moment of a plot of the weight of polymer in each molecular weight range against molecular weight. The number average molecular weight (Mn) and the weight average molecular weight (Mw) as well as the molecular weight distribution are determined by size exclusion chromatography (SEC) using Waters Alliance GPCV 2000 instrument with online viscometer. The oven temperature is 140 °C. Trichlorobenzene is used as a solvent.
It is preferred that the polypropylene present within the foam has a weight average molecular weight (Mw) from 10,000 to 2,000,000 g/mol, more preferably from 20,000 to 1 ,500,000 g/mol.
More preferably, the polypropylene of the instant invention is isotactic. Thus the foam of the present invention comprises a polypropylene having a rather high pentad concentration, i.e. higher than 90 %, more preferably higher than 92 % and most preferably higher than 93 %. In another preferred embodiment the pentad concentration is higher than 95 %. The pentad concentration is an indicator for the narrowness in the stereo-regularity distribution of the polypropylene.
In addition, it is preferred that the polypropylene has a melting temperature Tm of higher than 120 °C. It is in particular preferred that the melting temperature is higher than 120 °C if the polypropylene is a polypropylene copolymer as defined below. In turn, in case the polypropylene is a polypropylene homopolymer as defined below, it is preferred, that polypropylene has a melting temperature of higher than 150 0C, more preferred higher than 155 °C.
Not only the polypropylene itself but also the foam shall preferably comply with specific melting temperature requirements. Hence in case the polypropylene as defined above is a propylene homopolymer, it is preferred that the foam has a melting temperature Tm of higher than 145 °C. It is in particular preferred that the melting temperature of the foam comprising the propylene homopolymer is higher than 150 °C, more preferred higher than 155 °C. In case the polypropylene as defined above is a propylene copolymer, it is preferred that the foam has a melting temperature Tm of higher than 120 °C. It is in particular preferred that the melting temperature of the foam comprising the propylene copolymer is higher than 135 °C, more preferred higher than 140 0C.
In a preferred embodiment the polypropylene as defined above (and further defined below) is preferably unimodal. In another preferred embodiment the polypropylene as defined above (and further defined below) is preferably multimodal, more preferably bimodal.
"Multimodal" or "multimodal distribution" describes a frequency distribution that has several relative maxima. In particular, the expression "modality of a polymer" refers to the form of its molecular weight distribution (MWD) curve, i.e. the appearance of the graph of the polymer weight fraction as a function of its molecular weight. If the polymer is produced in the sequential step process, i.e. by utilizing reactors coupled in series, and using different conditions in each reactor, the different polymer fractions produced in the different reactors each have their own molecular weight distribution which may considerably differ from one another. The molecular weight distribution curve of the resulting final polymer can be seen at a super-imposing of the molecular weight distribution curves of the polymer fraction which will, accordingly, show a more distinct maxima, or at least be distinctively broadened compared with the curves for individual fractions.
A polymer showing such molecular weight distribution curve is called bimodal or multimodal, respectively. In case the polypropylene of the foam is not unimodal it is preferably bimodal.
The polypropylene used for the preparation of the foam can be a homopolymer or a copolymer. Accordingly, the homopolymer as well as the copolymer can be a multimodal polymer composition.
The expression homopolymer used herein relates to a polypropylene that consists substantially, i.e. of at least 97 wt%, preferably of at least 99 wt%, and most preferably of at least 99.8 wt% of propylene units. In a preferred embodiment only propylene units in the polypropylene homopolymer are detectable. The comonomer content can be determined with FT infrared spectroscopy, as described below in the examples.
In case the polypropylene used for the preparation of the foam is a propylene copolymer, it is preferred that the comonomer is ethylene. However, also other comonomers known in the art are suitable. Preferably, the total amount of comonomer, more preferably ethylene, in the propylene copolymer is up to 10 mol%, more preferably up to 8 mol%, and even more preferably up to 6 mol%.
In a preferred embodiment, the polypropylene is a propylene copolymer comprising a polypropylene matrix and an ethylene-propylene rubber (EPR).
The polypropylene matrix can be a homopolymer or a copolymer, more preferably multimodal, i.e. bimodal, homopolymer or a multimodal, i.e. bimodal, copolymer. In case the polypropylene matrix is a propylene copolymer, then it is preferred that the comonomer is ethylene or butene. However, also other comonomers known in the art are suitable. The preferred amount of comonomer, more preferably ethylene, in the polypropylene matrix is up to 8.00 mol%. In case the propylene copolymer matrix has ethylene as the comonomer component, it is in particular preferred that the amount of ethylene in the matrix is up to 8.00 mol%, more preferably less than 6.00 mol%. In case the propylene copolymer matrix has butene as the comonomer component, it is in particular preferred that the amount of butene in the matrix is up to 6.00 Mol%, more preferably less than 4.00 mol%.
Preferably, the ethylene-propylene rubber (EPR) in the total propylene copolymer is 50 wt% or less, more preferably 40 wt% or less. More preferably the amount of ethylene-propylene rubber (EPR) in the total propylene copolymer is in the range of 10 to 50 wt%, still more preferably in the range of 10 to 40 wt%.
In addition, it is preferred that the polypropylene component of the foam as defined above is produced in the presence of a specific catalyst. Furthermore, for the production of the polypropylene of the inventive foam, the process as stated below is preferably used.
The polypropylene component of the inventive foam is obtainable by a new catalyst system. This new catalyst system comprises an asymmetric catalyst, whereby the catalyst system has a porosity of less than 1.40 ml/g, more preferably less than 1.30 ml/g and most preferably less than 1.00 ml/g. The porosity has been measured according to DIN 66135 (N2). In another preferred embodiment the porosity is not detectable when determined with the method applied according to DIN 66135 (N2).
An asymmetric catalyst according to this invention is a metallocene compound comprising at least two organic ligands which differ in their chemical structure. More preferably the asymmetric catalyst according to this invention is a metallocene compound comprising at least two organic ligands which differ in their chemical structure and the metallocene compound is free of C2- symmetry and/or any higher symmetry. Preferably the asymmetric metallocene compound comprises only two different organic ligands, still more preferably comprises only two organic ligands which are different and linked via a bridge.
Said asymmetric catalyst is preferably a single site catalyst (SSC).
Due to the use of the catalyst system with a very low porosity comprising an asymmetric catalyst the manufacture of the above defined multi-branched polypropylene is possible.
Furthermore it is preferred, that the catalyst system has a surface area of less than 25 m2/g, yet more preferred less than 20 m2/g, still more preferred less than 15 m2/g, yet still less than 10 m2/g and most preferred less than 5 m2/g. The surface area according to this invention is measured according to ISO 9277 (N2).
It is in particular preferred that the catalytic system according to this invention comprises an asymmetric catalyst, i.e. a catalyst as defined below, and has porosity not detectable when applying the method according to
DIN 66135 (N2) and has a surface area measured according to ISO 9277 (N2) less than 5 m2/g.
Preferably the asymmetric catalyst compound, i.e. the asymmetric metallocene, has the formula (I):
(Cp)2R2MX2 (I) wherein z is 0 or 1 ,
M is Zr, Hf or Ti, more preferably Zr, and X is independently a monovalent anionic ligand, such as σ-ligand, R is a bridging group linking the two Cp ligands,
Cp is an organic ligand selected from the group consisting of unsubstituted cyclopenadienyl, unsubstituted indenyl, unsubstituted tetrahydroindenyl, unsubstituted fluorenyl, substituted cyclopenadienyl, substituted indenyl, substituted tetrahydroindenyl, and substituted fluorenyl, with the proviso that both Cp-ligands are selected from the above stated group and both Cp-ligands have a different chemical structure.
The term "σ-ligand" is understood in the whole description in a known manner, i.e. a group bonded to the metal at one or more places via a sigma bond. A preferred monovalent anionic ligand is halogen, in particular chlorine (Cl).
Preferably, the asymmetric catalyst is of formula (I) indicated above, wherein M is Zr and each X is Cl.
Preferably both Cp-ligands are substituted.
Preferably both Cp-ligands have different residues to obtain an asymmetric structure.
Preferably, both Cp-ligands are selected from the group consisting of substituted cyclopenadienyl-ring, substituted indenyl-ring, substituted tetrahydroindenyl-ring, and substituted fluorenyl-ring wherein the Cp-ligands differ in the substituents bonded to the rings.
The optional one or more substituent(s) bonded to cyclopenadienyl, indenyl, tetrahydroindenyl, or fluorenyl may be independently selected from a group including halogen, hydrocarbyl (e.g. Ci-C20-alkyl, C2-C20-alkenyl, C2-C20- alkynyl, C3-Ci2-cycloalkyl, C6-C20-aryl or C7-C20-arylalkyl), C3-Ci2-cycloalkyl which contains 1 , 2, 3 or 4 heteroatom(s) in the ring moiety, C6-C2Q- heteroaryl, Ci-C20-haloalkyl, -SiR"3, -OSiR"3, -SR", -PR"2 and -NR"2, wherein each R" is independently a hydrogen or hydrocarbyl, e.g. Cj-C20- alkyl, C2-C20-alkenyl, C2-C20-alkynyl, C3-Ci2-cycloalkyl or C6-C2o-aryl.
More preferably both Cp-ligands are indenyl moieties wherein each indenyl moiety bears one or two substituents as defined above. More preferably each Cp-ligand is an indenyl moiety bearing two substituents as defined above, with the proviso that the substituents are chosen in such a manner that both Cp- ligands are of different chemical structure, i.e both Cp-ligands differ at least in one substituent bonded to the indenyl moiety, in particular differ in the substituent bonded to the five membered ring of the indenyl moiety.
Still more preferably both Cp are indenyl moieties wherein the indenyl moieties comprise at least at the five membered ring of the indenyl moiety, more preferably at 2-position, a substituent selected from the group consisting of alkyl, such as Ci-C6 alkyl, e.g. methyl, ethyl, isopropyl, and trialkyloxysiloxy, wherein each alkyl is independently selected from Cj-C6 alkyl, such as methyl or ethyl, with proviso that the indenyl moieties of both Cp must chemically differ from each other, i.e. the indenyl moieties of both Cp comprise different substituents.
Still more preferred both Cp are indenyl moieties wherein the indenyl moieties comprise at least at the six membered ring of the indenyl moiety, more preferably at 4-position, a substituent selected from the group consisting of a C6-C2O aromatic ring moiety, such as phenyl or naphthyl, preferably phenyl, which is optionally substituted with one or more substitutents, such as Cj-C6 alkyl, and a heteroaromatic ring moiety, with the proviso that the indenyl moieties of both Cp must chemically differ from each other, i.e. the indenyl moieties of both Cp comprise different substituents. Yet more preferably both Cp are indenyl moieties wherein the indenyl moieties comprise at the five membered ring of the indenyl moiety, more preferably at 2-position, a substituent and at the six membered ring of the indenyl moiety, more preferably at 4-position, a further substituent, wherein the substituent of the five membered ring is selected from the group consisting of alkyl, such as Ci-C6 alkyl, e.g. methyl, ethyl, isopropyl, and trialkyloxysiloxy, wherein each alkyl is independently selected from Ci-C6 alkyl, such as methyl or ethyl, and the further substituent of the six membered ring is selected from the group consisting of a C6-C20 aromatic ring moiety, such as phenyl or naphthyl, preferably phenyl, which is optionally substituted with one or more substituents, such as Ci-C6 alkyl, and a heteroaromatic ring moiety, with proviso that the indenyl moieties of both Cp must chemically differ from each other, i.e. the indenyl moieties of both Cp comprise different substituents. It is in particular preferred that both Cp are idenyl rings comprising two substituentes each and differ in the substituents bonded to the five membered ring of the idenyl rings.
Concerning the moiety "R" it is preferred that "R" has the formula (II)
-Y(R')2- (II) wherein
Y is C, Si or Ge, and
R' is Ci to C20 alkyl, C6-Cj2 aryl, or C7-Ci2 arylalkyl or trimethylsilyl.
In case both Cp-ligands of the asymmetric catalyst as defined above, in particular case of two indenyl moieties, are linked with a bridge member R, the bridge member R is typically placed at 1 -position. The bridge member R may contain one or more bridge atoms selected from e.g. C, Si and/or Ge, preferably from C and/or Si. One preferable bridge R is -Si(R')2-, wherein R' is selected independently from one or more of e.g. trimethylsilyl, Ci-C]0 alkyl, C]-C20 alkyl, such as C6-C]2 aryl, or C7-C40, such as C7-C]2 arylalkyl, wherein alkyl as such or as part of arylalkyl is preferably Ci-C6 alkyl, such as ethyl or methyl, preferably methyl, and aryl is preferably phenyl. The bridge -Si(R')2- is preferably e.g. -Si(Ci-C6 alkyl)2-, -Si(phenyl)2- or -Si(Ci- C6 alkyl)(phenyl)-, such as -Si(Me)2-.
In a preferred embodiment the asymmetric catalyst, i.e. the asymmetric metallocene, is defined by the formula (III)
(Cp)2R1ZrCl2 (III) wherein both Cp coordinate to M and are selected from the group consisting of unsubstituted cyclopenadienyl, unsubstituted indenyl, unsubstituted tetrahydroindenyl, unsubstituted fluorenyl, substituted cyclopenadienyl, substituted indenyl, substituted tetrahydroindenyl, and substituted fluorenyl, with the proviso that both Cp-ligands are of different chemical structure, and R is a bridging group linking two ligands Cp, wherein R is defined by the formula (II)
-Y(R')2- (H) wherein
Y is C, Si or Ge, and R' is Ci to C20 alkyl, C6-Ci2 aryl, or C7-Ci2 arylalkyl.
More preferably the asymmetric catalyst is defined by the formula (III), wherein both Cp are selected from the group consisting of substituted cyclopenadienyl, substituted indenyl, substituted tetrahydroindenyl, and substituted fluorenyl.
Yet more preferably the asymmetric catalyst is defined by the formula (III), wherein both Cp are selected from the group consisting of substituted cyclopenadienyl, substituted indenyl, substituted tetrahydroindenyl, and substituted fluorenyl with the proviso that both Cp-ligands differ in the substituents, i.e. the subtituents as defined above, bonded to cyclopenadienyl, indenyl, tetrahydroindenyl, or fluorenyl.
Still more preferably the asymmetric catalyst is defined by the formula (III), wherein both Cp are indenyl and both indenyl differ in one substituent, i.e. in a substiuent as defined above bonded to the five member ring of indenyl.
It is in particular preferred that the asymmetric catalyst is a non-silica supported catalyst as defined above, in particular a metallocene catalyst as defined above.
In a preferred embodiment the asymmetric catalyst is dimethylsilyl [(2- methyl-(4'-tert.butyl)-4-phenyl-indenyl)(2-isopropyl-(4'-tert.butyl)-4-phenyl- indenyl)]zirconium dichloride (IUPAC: dimethylsilandiyl [(2-methyl-(4'- tert.butyl)-4-phenyl-indenyl)(2-isopropyl-(4'-tert.butyl)-4-phenyl- indenyl)]zirkonium dichloride). More preferred said asymmetric catalyst is not silica supported. The above described asymmetric catalyst components are prepared according to the methods described in WO 01/48034.
It is in particular preferred that the asymmetric catalyst system is obtained by the emulsion solidification technology as described in WO 03/051934. This document is herewith included in its entirety by reference. Hence the asymmetric catalyst is preferably in the form of solid catalyst particles, obtainable by a process comprising the steps of a) preparing a solution of one or more asymmetric catalyst components; b) dispersing said solution in a solvent immiscible therewith to form an emulsion in which said one or more catalyst components are present in the droplets of the dispersed phase, c) solidifying said dispersed phase to convert said droplets to solid particles and optionally recovering said particles to obtain said catalyst.
Preferably a solvent, more preferably an organic solvent, is used to form said solution. Still more preferably the organic solvent is selected from the group consisting of a linear alkane, cyclic alkane, linear alkene, cyclic alkene, aromatic hydrocarbon and halogen-containing hydrocarbon.
Moreover the immiscible solvent forming the continuous phase is an inert solvent, more preferably the immiscible solvent comprises a fluorinated organic solvent and/or a functionalized derivative thereof, still more preferably the immiscible solvent comprises a semi-, highly- or perfluorinated hydrocarbon and/or a functionalized derivative thereof. It is in particular preferred, that said immiscible solvent comprises a perfluorohydrocarbon or a functionalized derivative thereof, preferably C3-C30 perfluoroalkanes, -alkenes or - cycloalkanes, more preferred C4-Ci0 perfluoro-alkanes, -alkenes or -cycloalkanes, particularly preferred perfluorohexane, perfluoroheptane, perfluorooctane or perfluoro (methylcyclohexane) or a mixture thereof.
Furthermore it is preferred that the emulsion comprising said continuous phase and said dispersed phase is a bi-or multiphasic system as known in the art. An emulsifier may be used for forming the emulsion. After the formation of the emulsion system, said catalyst is formed in situ from catalyst components in said solution. In principle, the emulsifying agent may be any suitable agent which contributes to the formation and/or stabilization of the emulsion and which does not have any adverse effect on the catalytic activity of the catalyst. The emulsifying agent may e.g. be a surfactant based on hydrocarbons optionally interrupted with (a) heteroatom(s), preferably halogenated hydrocarbons optionally having a functional group, preferably semi-, highly- or perfluorinated hydrocarbons as known in the art. Alternatively, the emulsifying agent may be prepared during the emulsion preparation, e.g. by reacting a surfactant precursor with a compound of the catalyst solution. Said surfactant precursor may be a halogenated hydrocarbon with at least one functional group, e.g. a highly fluorinated Ci to C30 alcohol, which reacts e.g. with a cocatalyst component, such as aluminoxane.
In principle any solidification method can be used for forming the solid particles from the dispersed droplets. According to one preferable embodiment the solidification is effected by a temperature change treatment. Hence the emulsion subjected to gradual temperature change of up to 10 °C/min, preferably 0.5 to 6 °C/min and more preferably 1 to 5 °C/min. Even more preferred the emulsion is subjected to a temperature change of more than 40 °C, preferably more than 50 °C within less than 10 seconds, preferably less than 6 seconds.
The recovered particles have preferably an average size range of 5 to 200 μm, more preferably 10 to 100 μm.
Moreover, the form of solidified particles have preferably a spherical shape, a predetermined particles size distribution and a surface area as mentioned above of preferably less than 25 m2/g, still more preferably less than 20 m2/g, yet more preferably less than 15 m2/g, yet still more preferably less than 10 m2/g and most preferably less than 5 mVg, wherein said particles are obtained by the process as described above. For further details, embodiments and examples of the continuous and dispersed phase system, emulsion formation method, emulsifying agent and solidification methods reference is made e.g. to the above cited international patent application WO 03/051934.
As mentioned above the catalyst system may further comprise an activator as a cocatalyst, as described in WO 03/051934, which is enclosed herein with reference.
Preferred as cocatalysts for metallocenes and non-metallocenes, if desired, are the aluminoxanes, in particular the Ci-C]0-alkylaluminoxanes, most particularly methylaluminoxane (MAO). Such aluminoxanes can be used as the sole cocatalyst or together with other cocatalyst(s). Thus besides or in addition to aluminoxanes, other cation complex forming catalysts activators can be used. Said activators are commercially available or can be prepared according to the prior art literature.
Further aluminoxane cocatalysts are described e.g. in WO 94/28034 which is incorporated herein by reference. These are linear or cyclic oligomers of having up to 40, preferably 3 to 20, -(A1(R'")O)- repeat units (wherein R'" is hydrogen, Ci-Cio-alkyl (preferably methyl) or C6-Ci8-aryl or mixtures thereof).
The use and amounts of such activators are within the skills of an expert in the field. As an example, with the boron activators, 5: 1 to 1 :5, preferably 2: 1 to 1 :2, such as 1 : 1 , ratio of the transition metal to boron activator may be used. In case of preferred aluminoxanes, such as methylaluminumoxane (MAO), the amount of Al, provided by aluminoxane, can be chosen to provide a molar ratio of Ahtransition metal e.g. in the range of 1 to 10 000, suitably 5 to 8000, preferably 10 to 7000, e.g. 100 to 4000, such as 1000 to 3000. Typically in case of solid (heterogeneous) catalyst the ratio is preferably below 500. The quantity of cocatalyst to be employed in the catalyst of the invention is thus variable, and depends on the conditions and the particular transition metal compound chosen in a manner well known to a person skilled in the art.
Any additional components to be contained in the solution comprising the organotransition compound may be added to said solution before or, alternatively, after the dispersing step.
Furthermore, it is preferred that the process temperature is higher than 60 °C. Preferably, the process is a multi-stage process to obtain multimodal polypropylene as defined above.
Multistage processes include also bulk/gas phase reactors known as multizone gas phase reactors for producing multimodal propylene polymer.
A preferred multistage process is a "loop-gas phase"-process, such as developed by Borealis A/S, Denmark (known as BORSTAR® technology) described e.g. in patent literature, such as in EP 0 887 379 or in WO 92/12182.
Multimodal polymers can be produced according to several processes which are described, e.g. in WO 92/12182, EP 0 887 379 and WO 97/22633.
A multimodal polypropylene used for the preparation of the inventive foam is preferably produced in a multi-stage process as described in WO 92/12182. The content of this document is included herein by reference.
It has previously been known to produce multimodal, in particular bimodal, polypropylene in two or more reactors connected in series, i.e. in different steps (a) and (b). According to the present invention, the main polymerization stages are preferably carried out as a combination of a bulk polymerization/gas phase polymerization.
The bulk polymerizations are preferably performed in a so-called loop reactor.
In order to produce the multimodal polypropylene component of the foam according to this invention, a flexible mode is preferred. For this reason, it is preferred that the composition be produced in two main polymerization stages in combination of loop reactor/gas phase reactor.
Optionally, and preferably, the process may also comprise a prepolymerization step in a manner known in the field and which may precede the polymerization step (a).
If desired, a further elastorneric comonomer component, so called ethylene- propylene rubber (EPR) component as defined in this invention, may be incorporated into the obtained propylene polymer to form a propylene copolymer as defined above. The ethylene-propylene rubber (EPR) component may preferably be produced after the gas phase polymerization step (b) in a subsequent second or further gas phase polymerizations using one or more gas phase reactors.
The process is preferably a continuous process.
Preferably, in the process for producing the propylene polymer as defined above the conditions for the bulk reactor of step (a) may be as follows: the temperature is within the range of 40 0C to 1 10 °C, preferably between 60 °C and 100 °C, 70 to 90 0C, the pressure is within the range of 20 bar to 80 bar, preferably between 30 bar to 60 bar, - hydrogen can be added for controlling the molar mass in a manner known per se.
Subsequently, the reaction mixture from the bulk (bulk) reactor (step a) is transferred to the gas phase reactor, i.e. to step (b), whereby the conditions in step (b) are preferably as follows:
the temperature is within the range of 50 °C to 130 0C, preferably between 60 0C and 100 °C, the pressure is within the range of 5 bar to 50 bar, preferably between 15 bar to 35 bar, hydrogen can be added for controlling the molar mass in a manner known per se.
The residence time can vary in both reactor zones. In one embodiment of the process for producing the propylene polymer the residence time in bulk reactor, e.g. loop is in the range 0.5 to 5 hours, e.g. 0.5 to 2 hours and the residence time in gas phase reactor will generally be 1 to 8 hours.
If desired, the polymerization may be effected in a known manner under supercritical conditions in the bulk, preferably loop reactor, and/or as a condensed mode in the gas phase reactor.
The process of the invention or any embodiments thereof above enable highly feasible means for producing and further tailoring the propylene polymer composition within the invention, e.g. the properties of the polymer composition can be adjusted or controlled in a known manner e.g. with one or more of the following process parameters: temperature, hydrogen feed, comonomer feed, propylene feed e.g. in the gas phase reactor, catalyst, the type and amount of an external donor (if used), split between components.
The above process enables very feasible means for obtaining the reactor-made propylene polymer as defined above.
Furthermore, the present invention also relates to a process for the preparation of the foam as defined above, wherein a multi-branched polypropylene as defined above is subjected to foaming. In such process, a melt of the multi-branched polypropylene comprising a gaseous foaming agent such as butane, HFC or CO2 is suddenly expanded through pressure drop.
Continuous foaming processes as well as discontinuous process may be applied.
In a continuous foaming process, the polymer is melted and laden with gas in an extruder under pressures typically above 20bar before extruded through a die where the pressure drop causes the formation of a foam. The mechanism of foaming polypropylene in foam extrusion is explained, for example, in H. E. Naguib, C. B. Park, N. Reichelt, Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams, Journal of Applied Polymer Science, 91, 2661-2668 (2004). Processes for foaming are outlined in S. T. Lee, Foam Extrusion, Technomic Publishing (2000).
In a discontinuous foaming process, the polymer (micro-)pellets are laden with foaming agent under pressure and heated below melting temperature before the pressure in the autoclave is suddenly relaxed. The dissolved foaming agent forms bubbles and creates a foam structure. Such preparation of discontinuously foamed beads is described for example in DE 3 539 352. The present invention also relates to the use of the multi-branched polypropylene as defined above for the preparation of foams.
The present invention will now be described in further detail by the following examples.
Examples
1. Definitions/Measuring Methods
The following definitions of terms and determination methods apply for the above general description of the invention as well as to the below examples unless otherwise defined.
A. Pentad Concentration
For the meso pentad concentration analysis, also referred herein as pentad concentration analysis, the assignment analysis is undertaken according to T Hayashi, Pentad concentration, R. Chujo and T. Asakura, Polymer 29 138-43 (1988) and Chujo R5 et al., Polymer 35 339 (1994)
B. Multi-branching Index
1. Acquiring the experimental data
Polymer is melted at T=I 80 0C and stretched with the SER Universal Testing Platform as described below at deformation rates of dε/dt=0.1 0.3 1.0 3.0 and 10 s"1 in subsequent experiments. The method to acquire the raw data is described in Sentmanat et al., J. Rheol. 2005, Measuring the Transient Elongational Rheology of Polyethylene Melts Using the SER Universal Testing Platform. Experimental Setup
A Paar Physica MCR300, equipped with a TC30 temperature control unit and an oven CTT600 (convection and radiation heating) and a SERVPO 1-025 extensional device with temperature sensor and a software RHEOPLUS/32 v2.66 is used.
Sample Preparation
Stabilized Pellets are compression moulded at 22O0C (gel time 3min, pressure time 3 min, total moulding time 3+3=6min) in a mould at a pressure sufficient to avoid bubbles in the specimen, cooled to room temperature. From such prepared plate of 0.7mm thickness, stripes of a width of 10mm and a length of 18mm are cut.
Check of the SER Device
Because of the low forces acting on samples stretched to thin thicknesses, any essential friction of the device would deteriorate the precision of the results and has to be avoided.
In order to make sure that the friction of the device less than a threshold of 5x10~3 mNm (Milli-Newtonmeter) which is required for precise and correct measurements, following check procedure is performed prior to each measurement:
• The device is set to test temperature (1800C) for minimum 20minutes without sample in presence of the clamps
• A standard test with 0.3s- 1 is performed with the device on test temperature (1800C)
• The torque (measured in mNm) is recorded and plotted against time • The torque must not exceed a value of 5x 10'3 mNm to make sure that the friction of the device is in an acceptably low range
Conducting the experiment
The device is heated for min. 20min to the test temperature (180°C measured with the thermocouple attached to the SER device) with clamps but without sample. Subsequently, the sample (0.7x1 Ox 18mm), prepared as described above, is clamped into the hot device. The sample is allowed to melt for 2 minutes +/- 20 seconds before the experiment is started.
During the stretching experiment under inert atmosphere (nitrogen) at constant Hencky strain rate, the torque is recorded as function of time at isothermal conditions (measured and controlled with the thermocouple attached to the SER device).
After stretching, the device is opened and the stretched film (which is winded on the drums) is inspected. Homogenous extension is required. It can be judged visually from the shape of the stretched film on the drums if the sample stretching has been homogenous or not. The tape must me wound up symmetrically on both drums, but also symmetrically in the upper and lower half of the specimen.
If symmetrical stretching is confirmed hereby, the transient elongational viscosity calculates from the recorded torque as outlined below.
2. Evaluation
For each of the different strain rates dε/dt applied, the resulting tensile stress growth function T\E + (dε/dt, t) is plotted against the total Hencky strain ε to determine the strain hardening behaviour of the melt, see Figure 1. In the range of Hencky strains between 1.0 and 3.0, the tensile stress growth function ηe+ can be well fitted with a function
tlE(έ,ε) = c, - εC2
where Ci and C2 are fitting variables. Such derived C2 is a measure for the strain hardening behavior of the melt and called Strain Hardening Index SHI.
Dependent on the polymer architecture, SHI can
be independent of the strain rate (linear materials, Y- or H-structures) increase with strain rate (short chain-, hyper- or multi-branched structures).
This is illustrated in Figure 2.
For polyethylene, linear (HDPE), short-chain branched (LLDPE) and hyperbranched structures (LDPE) are well known and hence they are used to illustrate the structural analytics based on the results on extensional viscosity. They are compared with a polypropylene with Y and H-structures with regard to their change of the strain-hardening behavior as function of strain rate, see Figure 2 and Table 1.
To illustrate the determination of SHI at different strain rates as well as the multi-branching index (MBI) four polymers of known chain architecture are examined with the analytical procedure described above.
The first polymer is a H- and Y-shaped polypropylene homopolymer made according to EP 879 830 ("A") example 1 through adjusting the MFR with the amount of butadiene. It has a MFR 230/2.16 of 2.0 g/10min, a tensile modulus of 1950 MPa and a branching index g' of 0.7.
The second polymer is a commercial hyperbranched LDPE, Borealis "B", made in a high pressure process known in the art. It has a MFR 190/2.16 of 4.5 and a density of 923 kg/m3.
The third polymer is a short chain branched LLDPE, Borealis "C", made in a low pressure process known in the art. It has a MFR 190/2.16 of 1.2 and a density of 919 kg/m3.
The fourth polymer is a linear HDPE, Borealis "D", made in a low pressure process known in the art. It has a MFR 190/2.16 of 4.0 and a density of 954 kg/m3.
The four materials of known chain architecture are investigated by means of measurement of the transient elongational viscosity at 180 °C at strain rates of 0.10, 0.30, 1.0, 3.0 and 10s"1. Obtained data (transient elongational viscosity versus Hencky strain) is fitted with a function
Figure imgf000036_0001
for each of the mentioned strain rates. The parameters cl and c2 are found through plotting the logarithm of the transient elongational viscosity against the logarithm of the Hencky strain and performing a linear fit of this data applying the least square method. The parameter cl calculates from the intercept of the linear fit of the data lg(ηε+) versus lg(έ) from
C ] = 1 0InterCept and C2 is the strain hardening index (SHI) at the particular strain rate.
This procedure is done for all five strain rates and hence, SHI@0.1
Figure imgf000037_0001
SHI@0.3s'!, SHI@1.0s"\
Figure imgf000037_0002
SHI@10s"' are determined, see Figure 1.
Table 1 : SHI-values
short-
Y and H Hyper- chain Linear dε/dt Ig (dε/dt) Property branched branched branched HDPE PP LDPE LLDPE
A B C D
0,1 -1,0 SHI@0.1s"' 2,05 - 0,03 0,03
0,3 -0,5 SHI@0.3s-' - 1,36 0,08 0,03
1 0,0 SHI@1.0s'' 2,19 1,65 0,12 0,11
3 0,5 SHI@3.0s"' - 1,82 0,18 0,01
10 1,0 SHI(SlOs"1 2,14 2,06 - -
From the strain hardening behaviour measured by the values of the SHI@l s"' one can already clearly distinguish between two groups of polymers: Linear and short-chain branched have a SHI@l s"' significantly smaller than 0.30. In contrast, the Y and H-branched as well as hyper-branched materials have a SHI@l s"' significantly larger than 0.30.
In comparing the strain hardening index at those five strain rates έH of 0.10, 0.30, 1.0, 3.0 and 10s"1, the slope of SHI as function of the logarithm of έH , Ig( ^w ) is a characteristic measure for multi -branching. Therefore, a multi- branching index (MBI) is calculated from the slope of a linear fitting curve of SHI versus Ig( ^ ):
SHI( έH )=c3+MBI*lg( έH )
The parameters c3 and MBI are found through plotting the SHI against the logarithm of the Hencky strain rate lg( έH ) and performing a linear fit of this data applying the least square method. Please confer to Figure 2.
Table 2: Multi-branched-index (MBI)
Hyper- short-chain
Y and H Linear
Property branched branched branched PP HDPE LDPE LLDPE
A B C D
MBI 0,04 0,45 0,10 0,01
The multi-branching index MBI allows now to distinguish between Y or H- branched polymers which show a MBI smaller than 0.05 and hyper-branched polymers which show a MBI larger than 0.15. Further, it allows to distinguish between short-chain branched polymers with MBI larger than 0.10 and linear materials which have a MBI smaller than 0.10.
Similar results can be observed when comparing different polypropylenes, i.e. polypropylenes with rather high branched structures have higher SHI and
MBI-values, respectively, compared to their linear counterparts. Similar to the hyper-branched polyethylenes the new developed polypropylenes show a high degree of branching. However the polypropylenes according to the instant invention are clearly distinguished in the SHI and MBI-values when compared to known hyper-branched polyethylenes. Without being bound on this theory, it is believed, that the different SHI and MBI-values are the result of a different branching architecture. For this reason the new found branched polypropylenes according to this invention are designated as multi-branched.
Combining both, strain hardening index (SHI) and multi-branching index (MBI), the chain architecture can be assessed as indicated in Table 3 :
Table 3: SHI and MBI
Property Y and H Hyper- short-chain linear branched branched / branched
Multi- branched
SHKgl .Os"1 >0.30 >0.30 <0.30 <0.30
MBI <0.10 >0.10 ≤O.IO 0.10
C. Further Measuring Methods
Particle size distribution: Particle size distribution is measured via Coulter Counter LS 200 at room temperature with n-heptane as medium.
NMR
NMR-spectroscopy measurements:
The 13C-NMR spectra of polypropylenes were recorded on Bruker 400MHz spectrometer at 130 °C from samples dissolved in l,2,4-trichlorobenzene/benzene-d6 (90/10 w/w). For the pentad analysis the assignment is done according to the methods described in literature: (T. Hayashi, Y. Inoue, R. Chϋjo, and T. Asakura, Polymer 29 138-43 (1988).and Chujo R, et al,Polymer 35 339 (1994).
The NMR-measurement was used for determining the mmmm pentad concentration in a manner well known in the art.
Number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (MWD) are determined by size exclusion chromatography (SEC) using Waters Alliance GPCV 2000 instrument with online viscometer. The oven temperature is 140 0C. Trichlorobenzene is used as a solvent (ISO 16014).
In detail: The number average molecular weight (Mn), the weight average molecular weight (Mw) and the molecular weight distribution (MWD) are measured by a method based on ISO 16014-1 :2003 and ISO 16014-4:2003. A Waters Alliance GPCV 2000 instrument, equipped with refractive index detector and online viscosimeter was used with 3 x TSK-gel columns (GMHXL-HT) from TosoHaas and 1,2,4-trichlorobenzene (TCB, stabilized with 200 mg/L 2,6-Di tert butyl-4-methyl- phenol) as solvent at 145 °C and at a constant flow rate of 1 mL/min. 216.5 μL of sample solution were injected per analysis. The column set was calibrated using relative calibration with 19 narrow MWD polystyrene (PS) standards in the range of 0.5 kg/mol to 1 1 500 kg/mol and a set of well characterized broad polypropylene standards. All samples were prepared by dissolving 5 - 10 mg of polymer in 10 mL (at 160 °C) of stabilized TCB (same as mobile phase) and keeping for 3 hours with continuous shaking prior sampling in into the GPC instrument.
The xylene solubles (XS, wt.-%): Analysis according to the known method: 2.0 g of polymer is dissolved in 250 ml p-xylene at 1350C under agitation. After 30±2 minutes the solution is allowed to cool for 15 minutes at ambient temperature and then allowed to settle for 30 minutes at 25±0.5°C. The solution is filtered and evaporated in nitrogen flow and the residue dried under vacuum at 90 °C until constant weight is reached.
XS% = (100 x mi x V0) / (m0 x vi), wherein m0 = initial polymer amount (g) mi = weight of residue (g) Vo = initial volume (ml) Vi = volume of analyzed sample (ml)
Hot xylene insolubles (wt%):
Circa 2 g of the polymer (mp) are weighted and put in a mesh of metal which is weighted (mp+m). The polymer in the mesh is extracted in a soxhlet apparatus with boiling xylene for two days. Subsequently, the mesh is dried and weighted again (mχHu+m)- The mass of the xylene hot unsolubles mm-mχHu+m=mχHU is put in relation to the weight of the polymer to obtain the fraction of xylene insolubles mχHu/mp.
Melting temperature Tm, crystallization temperature Tc, and the degree of crystallinity: measured with Mettler TA820 differential scanning calorimetry (DSC) on 5-10 mg samples. Both crystallization and melting curves were obtained during 10 °C/min cooling and heating scans between 30 0C and 225 °C. Melting and crystallization temperatures were taken as the peaks of endotherms and exotherms.
Also the melt- and crystallization enthalpy (Hm and Hc) were measured by the DSC method according to ISO 1 1357-3.
Stiffness Film TD (transversal direction), Stiffness Film MD (machine direction), Elongation at break TD and Elongation at break MD: these are determined according to ISO527-3 (cross head speed: 1 mm/min). Melt strength and melt extensibility by Rheotens measurement:
The strain hardening behaviour of polymers is analysed by Rheotens apparatus (product of Gottfert, Siemensstr. 2, 74711 Buchen, Germany) in which a melt strand is elongated by drawing down with a defined acceleration. The haul-off force F in dependence of draw-down velocity v is recorded.
The test procedure is performed in a standard climatised room with controlled room temperature of T = 23 °C. The Rheotens apparatus is combined with an extruder/melt pump for continuous feeding of the melt strand. The extrusion temperature is 200 °C; a capillary die with a diameter of 2 mm and a length of 6 mm is used and the acceleration of the melt strand drawn down is 120 mm/s2. The maximum points (Fmax; vmax) at failure of the strand are characteristic for the strength and the drawability of the melt.
Haze and transparency: are determined according to ASTM D 1003-92 (haze).
Intrinsic viscosity: is measured according to DIN ISO 1628/1 , October 1999 (in Decalin at 135 0C).
Porosity: is measured according to DIN 66135
Surface area: is measured according to ISO 9277
3. Examples
Example 1
A support-free catalyst has been prepared as described in example 5 of WO 03/051934 whilst using an asymmetric metallocene dimethylsilyl [(2- methyl-(4'-tert.butyl)-4-phenyl-indenyl)(2-isopropyl-(4'-tert.butyl)-4-phenyl- indenyl)]zirkonium dichloride.
Such catalyst has been used to polymerise a polypropylene copolymer with 4mol% ethylene in the Borstar process, known in the art.
The material properties of the polymer are shown in Table 4.
Comparative Example 1 (linear bimodal)
A bimodal polypropylene copolymer has been prepared using a Z/N catalyst and the Borstar process.
Comparative Example 2 (Y/H-shaped polymer)
A Y/H shaped polymer has been prepared according to EP 0 887 379 to obtain a polypropylene copolymer of MFR230/2 16 2.2 g/10min and a branching index g' of 0.8.
The properties of the polymers are summarized in Table 4. Table 4: Material Properties of the polypropylenes
Unit Method El (MC) CEl (ZN) ( JE2 (Y/H)
MFR.230/2 1 g/lOmin MFR 4 1,9 : 1.2 g' - IV 0.7 1.0 ( ).8
SHI@0.1 - SER 0,75 - ,77
SHI@0.3 - SER 0,85 - ,60
SHI@1.0 - SER 1,00 1,90
SHI@3.0 - SER 0,96 1,96
SHI@10 - SER - - ,79
MBI - SER 0,16 ( ),08
Structure - SER mb lin *7H
C2 mol% IR 4 6,5 ( 3,0
XS wt% XS 0,7 7,8 6,9
Hot xylene insolubles wt% <0.05 <0.05 ( ).38
Mw kg/mol GPC 319 539 427
Mn kg/mol GPC 124 125 1 00
F30 cN Rheotens 10 12 27 v30 mm/s Rheotens 180 125 1 97
TmI 0C DSC 130,8 138,0 1 28,7
HmI J/g DSC 60,3 75,3 1 ,1
Tm2 0C DSC 140,8 ] 44,7
Hm2 J/g DSC 30,2 - 76,8
Tc 0C DSC 106,2 92,7 1 10,3
Hc J/g DSC 81,8 71 ,7 75,2
Tensile Modulus MPa ISO527-2 1 146,7 756,2 i 573, 1
Tensile Stress At Yield MPa ISO527-2 30,6 23,8 26,8
Tensile Strain At Yield % ISO527-2 9,9 13,5 1 3,8
Tensile Strength MPa ISO527-2 33,5 27,2 I 5 1 ,7
Tensile Strain At Tensile
% ISO527-2 488,48 459,81 Strength 582,51
Tensile Stress At Break MPa ISO527-2 33, 1 26,7 : 51 ,6
Tensile Strain At Break % ISO527-2 493,21 462,82 f 586,58
All materials have been pelletized together with additives, i.e. lOOOppm of a commercial stabilizer Irganox B215 (supplied by Ciba), using an extruder at melt temperature of 240 °C.
The pelletized samples have been used for foam extrusion. In a corotating 25 mm twin screw extruder (Berstorff ZE25, L/D 39.5), following temperature settings are adjusted (Table 5):
In the second zone the pellets are melted before the foaming agent CO2 is dosed into the melt (zone 3) with a constant feed of 54g/hr through a feeder Bronkhorst F- 201 AC-FB-22-V at a pressure of 20bar.
Such gas laden melt is homogenized and cooled before it exits the flat die attached to the extruder. Immediately after the die, the foam expands and it is collected with a standard cast-film windup equipment.
Foamed sheets are cut from the film and investigated for its mechanical properties.
The foaming process parameters and the foam properties are summarized in Table 5.
Table 5: Preparation and characterization of the foam
Figure imgf000046_0001
The results of Table 5 indicate that the use of a multi-branched polypropylene as defined above enables extrusion at lower melt pressure and results in a foam of high surface quality and small cell size. Furthermore, if compared to the linear bimodal (Comp. Ex. 1) and the Y/H-shaped (Comp. Ex. 2) polypropylene, the elongation at break could be increased due to an improved homogeneity of the foam material.

Claims

C L A I M S
1. A foam comprising a polypropylene, wherein said polypropylene is produced in the presence of a metallocene catalyst, and the foam and/or the polypropylene has (have) a. a branching index g' of less than 1.00 and b. a strain hardening index (SHI@l s"') of at least 0.30 measured by a deformation rate dε/dt of
1.00 s" 1 at a temperature of 180 °C, wherein the strain hardening index (SHI) is defined as the slope of the logarithm to the basis 10 of the tensile stress growth function (Ig (ηε+)) as function of the logarithm to the basis 10 of the Hencky strain (Ig (ε)) in the range of Hencky strains between 1 and 3.
2. The foam according to claim 1 , wherein the foam and/or the polypropylene has (have) a multi-branching index (MBI) of at least
0.15, wherein the multi-branching index (MBI) is defined as the slope of strain hardening index (SHI) as function of the logarithm to the basis 10 of the Hencky strain rate (Ig (dε/dt)).
3. A foam comprising a polypropylene, wherein the foam and/or the polypropylene has (have) a multi-branching index (MBI) of at least 0.15, wherein the multi-branching index (MBI) is defined as the slope of strain hardening index (SHI) as function of the logarithm to the basis 10 of the Hencky strain rate (Ig (dε/dt)), wherein dε/dt is the deformation rate, ε is the Hencky strain, and the strain hardening index (SHI) is measured at 180 0C, wherein the strain hardening index (SHI) is defined as the slope of the logarithm to the basis 10 of the tensile stress growth function (Ig (ηε+)) as function of the logarithm to the basis 10 of the Hencky strain (Ig (έ)) in the range of Hencky strains between 1 and 3.
4. The foam according to claim 3, wherein the foam and/or the polypropylene has (have) a. a branching index g' of less than 1.00 and/or b. a strain hardening index (SHI@l s"') of at least 0.30 measured by a deformation rate (dε/dt) of 1.00 s"1 at a temperature of 180 0C.
5. The foam according to one of the preceding claims, wherein the polypropylene has an amount of hot xylene insolubles of less than 0.10 wt%.
6. The foam according to one of the preceding claims, wherein the polypropylene has an amount of xylene solubles (XS) of less than 2.0 wt%.
7. The foam according to one of the preceding claims, wherein the polypropylene has melt flow rate MFR2 measured at 230 0C in the range of 0.01 to 1000.00 g/10min.
8. The foam according to one of the preceding claims, wherein the polypropylene has mmmm pentad concentration of higher than 90 %.
9. The foam according to one of the preceding claims, wherein the polypropylene has a melting point Tm of at least 120 °C.
10. The foam according to one of the preceding claims, wherein the polypropylene is multimodal.
1 1. The foam according to one of the preceding claims, wherein the polypropylene is a propylene homopolymer.
12. The foam according to one of the preceding claims, wherein the polypropylene is a propylene copolymer.
13. The foam according to claim 12, wherein the comonomer is ethylene which is present in an amount of 8 mol% or less.
14. The foam according to one of the preceding claims, wherein the polypropylene has been produced in the presence of a catalyst system comprising an asymmetric catalyst, wherein the catalyst system has a porosity of less than 1.40 ml/g.
15. The foam according to claim 14, wherein the asymmetric catalyst is dimethylsilyl [(2-methyl-(4'-tert. butyl)-4-phenyl-indenyl)(2- isopropyl-(4'-tert. butyl)-4-phenyl-indenyl)]zirconium dichloride.
16. A process for the preparation of the foam according to one of the claims 1 to 15, wherein the polypropylene as defined in one of the claims 1 to 15 is extruded through a die in the presence of a foaming agent to form a foam.
17. Use of the polypropylene as defined in one of the claims 1 to 15 for the preparation of foam.
PCT/EP2007/007470 2006-08-25 2007-08-24 Polypropylene foam WO2008022804A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EA200970223A EA016842B1 (en) 2006-08-25 2007-08-24 Polypropylene foam and process for preparing same
BRPI0715722-3A BRPI0715722B1 (en) 2006-08-25 2007-08-24 Polypropylene foam, its preparation process, and use of polypropylene
KR1020087032193A KR101049703B1 (en) 2006-08-25 2007-08-24 Polypropylene foam
CN2007800308580A CN101506261B (en) 2006-08-25 2007-08-24 Polypropylene foam
US12/367,911 US7799841B2 (en) 2006-08-25 2009-02-09 Polypropylene foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06017790.4 2006-08-25
EP06017790A EP1900764B1 (en) 2006-08-25 2006-08-25 Polypropylene foam

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/367,911 Continuation US7799841B2 (en) 2006-08-25 2009-02-09 Polypropylene foam

Publications (1)

Publication Number Publication Date
WO2008022804A1 true WO2008022804A1 (en) 2008-02-28

Family

ID=37668304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/007470 WO2008022804A1 (en) 2006-08-25 2007-08-24 Polypropylene foam

Country Status (9)

Country Link
US (1) US7799841B2 (en)
EP (1) EP1900764B1 (en)
KR (1) KR101049703B1 (en)
CN (1) CN101506261B (en)
AT (1) ATE427330T1 (en)
BR (1) BRPI0715722B1 (en)
DE (1) DE602006006061D1 (en)
EA (1) EA016842B1 (en)
WO (1) WO2008022804A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015024088A1 (en) 2013-08-23 2015-02-26 Braskem S.A. Process for producing modified poly(propene), the modified poly(propene) and the use thereof, and the polymer blend
US10179851B2 (en) 2013-06-05 2019-01-15 Borealis Ag One-step production of a polypropylene composition

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2645714T3 (en) * 2011-02-28 2017-12-07 Borealis Ag Polypropylene composition suitable for extrusion coating
ES2648254T3 (en) * 2011-05-02 2017-12-29 Borealis Ag Polypropylene for foam and polypropylene foam
WO2014070414A1 (en) 2012-10-31 2014-05-08 Exxonmobil Chemical Patents Inc. Propylene copolymer compositions and processes to produce them
US10842574B2 (en) 2013-03-15 2020-11-24 Xodus Medical, Inc. Robotic patient protection system comprising a head mask structure, configured to protect the head of a patient, for use in robotic surgical procedures
US10842206B2 (en) 2013-03-15 2020-11-24 Xodus Medical, Inc. Patient protection system configured to protect the head of a patient
CN106255720B (en) * 2014-05-06 2020-04-07 巴塞尔聚烯烃意大利有限公司 Multilayer film random propylene-ethylene copolymers
EP3140329B1 (en) * 2014-05-06 2019-07-24 Basell Poliolefine Italia S.r.l. Random propylene-ethylene copolymers
KR102287154B1 (en) * 2015-11-13 2021-08-06 주식회사 엘지화학 Metallocene polypropylene and expandable polypropylene comprising the same
WO2017090432A1 (en) * 2015-11-26 2017-06-01 株式会社カネカ Method for producing polypropylene-based resin foamed particles, polypropylene-based resin foamed particles, and in-mold foam molded article
JP6963171B2 (en) * 2017-08-30 2021-11-05 キョーラク株式会社 Foam molding resin, foam molding, manufacturing method of foam molding
KR102550083B1 (en) * 2018-12-13 2023-06-29 주식회사 엘지화학 Supported hybrid catalyst and method for preparing polypropylene using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073369A1 (en) * 1999-06-01 2000-12-07 Borealis Technology Oy Process for preparing an integral polypropylene foam
JP2003147110A (en) * 2001-11-09 2003-05-21 Mitsui Chemicals Inc Foam of polyolefin composition and its manufacturing method
US20050090571A1 (en) * 2003-10-27 2005-04-28 Mehta Aspy K. Expanded bead foams from propylene-diene copolymers and their use

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE203915C (en)
JPS55115416A (en) * 1979-02-27 1980-09-05 Nippon Oil Co Ltd Manufacture of copolymer
EP0036457B1 (en) 1980-03-20 1985-02-20 Mitsubishi Rayon Co., Ltd. A method of producing a polypropylene film for electrical appliances
JPS6042807B2 (en) * 1980-04-11 1985-09-25 チッソ株式会社 Method for producing ethylene propylene α-olefin terpolymer
JPS61115940A (en) 1984-11-09 1986-06-03 Mitsubishi Yuka Badische Kk Polypropylene foam particle
EP0190889B2 (en) 1985-01-31 2000-07-05 Montell North America Inc. Polypropylene with free-end long chain branching, process for making it, and use thereof
US4634745A (en) * 1985-04-01 1987-01-06 United States Steel Corporation Terpolymer production
US4808561A (en) * 1985-06-21 1989-02-28 Exxon Chemical Patents Inc. Supported polymerization catalyst
US4701432A (en) * 1985-11-15 1987-10-20 Exxon Chemical Patents Inc. Supported polymerization catalyst
US5047485A (en) 1989-02-21 1991-09-10 Himont Incorporated Process for making a propylene polymer with free-end long chain branching and use thereof
US5250631A (en) * 1990-06-13 1993-10-05 Shell Oil Company Polymer compositions
FI86867C (en) 1990-12-28 1992-10-26 Neste Oy FLERSTEGSPROCESS FOR FRAMSTAELLNING AV POLYETEN
DE59207030D1 (en) * 1991-05-28 1996-10-10 Hoechst Ag Sealable, opaque, biaxially oriented polypropylene multilayer film, process for its production and its use
DE69408989T2 (en) 1993-05-25 1998-11-05 Exxon Chemical Patents Inc METALOCENATE CATALYST SYSTEM ON A SUPPORT FOR THE OLEFIN POLYMERIZATION, THEIR PRODUCTION AND USE
IT1269914B (en) 1994-03-24 1997-04-16 Himonty Inc PAINTABLE COMPOSITIONS OF PROPYLENE CRYSTALLINE COPOLYMERS HAVING LOW WELDABILITY TEMPERATURE
NO314475B1 (en) 1994-03-24 2003-03-24 Nippon Petrochemicals Co Ltd Electrically insulating polymeric material and its use
US5468440B1 (en) 1994-05-06 1997-04-08 Exxon Chemical Patents Inc Process of making oriented film or structure
EP0690458A3 (en) 1994-06-27 1997-01-29 Mitsubishi Cable Ind Ltd Insulating composition and formed article thereof
JP3388896B2 (en) 1994-08-08 2003-03-24 株式会社日立ユニシアオートモティブ Inhalation type dispenser
EP0745637A1 (en) 1995-05-31 1996-12-04 Hoechst Aktiengesellschaft Biaxially oriented film of polypropylene with high area modules
EP0747212A1 (en) 1995-05-31 1996-12-11 Hoechst Aktiengesellschaft Biaxially oriented polypropylene film with improved barrier properties against water-vapour and oxygen
ATE195286T1 (en) * 1995-05-31 2000-08-15 Hoechst Ag BIAXIAL ORIENTED POLYPROPYLENE FILM WITH INCREASED DIMENSIONAL STABILITY
SE9504539D0 (en) 1995-12-19 1995-12-19 Borealis As Procatalyst and process for the preparation of a multimodal ethylene homopolymer and / or ethylene / 1-olefin copolymer by gas-phase polymerization
BE1009963A3 (en) * 1995-12-22 1997-11-04 Solvay COMPOSITIONS STATISTICS PROPYLENE COPOLYMERS, METHOD OF MAKING, AND CONTAINING SHEETS MULTI-sealable.
US6037546A (en) * 1996-04-30 2000-03-14 Belden Communications Company Single-jacketed plenum cable
CN1081652C (en) 1996-08-09 2002-03-27 东丽株式会社 Polypropylene film and capacitor made by using the same as the dielectric
JP4195095B2 (en) 1996-09-04 2008-12-10 エクソンモービル・ケミカル・パテンツ・インク Improved propylene polymer for drawn films.
US6218023B1 (en) 1997-04-21 2001-04-17 Montell North America, Inc. Co-extruded laminate comprising at least one propylene graft copolymer layer
US6204348B1 (en) 1997-05-20 2001-03-20 Borealis Gmbh Modified polypropylenes of improved processability
CN1116315C (en) 1997-05-30 2003-07-30 株式会社宏大化纤 Polypropylene resin composition and injection-molded article
FI111848B (en) 1997-06-24 2003-09-30 Borealis Tech Oy Process and equipment for the preparation of homopolymers and copolymers of propylene
FI104824B (en) 1997-06-24 2000-04-14 Borealis As Process for producing propylene polymers
IT1293757B1 (en) 1997-07-23 1999-03-10 Pirelli Cavi S P A Ora Pirelli CABLES WITH RECYCLABLE COVERING WITH HOMOGENEOUS DISTRIBUTION
CN1105120C (en) 1997-08-05 2003-04-09 株式会社宏大化纤 Polypropylene resin composition and use thereof
KR100556319B1 (en) 1997-08-15 2006-03-03 다우 글로벌 테크놀로지스 인크. Films produced from substantially linear homogeneous olefin polymer compositions
FI974175A (en) 1997-11-07 1999-05-08 Borealis As Process for producing polypropylene
US6197910B1 (en) 1997-12-10 2001-03-06 Exxon Chemical Patents, Inc. Propylene polymers incorporating macromers
DE19813399A1 (en) * 1998-03-26 1999-09-30 Basf Ag Statistical propylene copolymers
DE19827327A1 (en) 1998-06-19 1999-12-30 Targor Gmbh Sealable multilayer film with a low sealing temperature and a low content of xylene-soluble material, useful in packaging applications
KR100611849B1 (en) * 1998-08-26 2006-08-11 엑손모빌 케미칼 패턴츠 인코포레이티드 Branched polypropylene compositions
DE19949235A1 (en) 1998-10-16 2000-05-11 Chisso Corp Propylene-ethylene-alpha-olefin terpolymer, useful for the production of molded articles and film, contains 85-99.99 mol per cent propylene and has specific elution characteristics in o-dichlorobenzene
WO2000034385A1 (en) * 1998-12-08 2000-06-15 The Dow Chemical Company Mel-bondable polypropylene/ethylene polymer fiber and composition for making the same
FI991057A0 (en) 1999-05-07 1999-05-07 Borealis As High stiffness propylene polymers and process for their preparation
DE60017468T2 (en) 1999-06-24 2005-06-02 The Dow Chemical Co., Midland Polyolefin composition with improved impact properties
EP1218423B1 (en) 1999-10-02 2005-03-16 Borealis Technology Oy Modified supported catalysts for the polymerization of olefins
JP2001168431A (en) 1999-12-13 2001-06-22 Matsushita Electric Ind Co Ltd Laser and microwave generator
CN1249096C (en) 1999-12-23 2006-04-05 巴塞尔聚烯烃有限公司 Transition metal compound, ligand system, catalyst system and the use of the latter for the polymerisation and copolymerisation of olefins
EP1142684A3 (en) * 2000-04-03 2002-06-26 Sumitomo Chemical Company, Limited Thermoplastic resin sheet and container
JP2001354814A (en) 2000-06-16 2001-12-25 Chisso Corp Propylene-based resin sheet
US7125933B2 (en) 2000-06-22 2006-10-24 Univation Technologies, Llc Very low density polyethylene blends
JP2004501259A (en) 2000-06-22 2004-01-15 エクソンモービル・ケミカル・パテンツ・インク Blend composed of ultra low density polyethylene and high density polyethylene
EP1313782A1 (en) 2000-08-22 2003-05-28 Exxonmobil Chemical Patents Inc. Polypropylene polymers
WO2002044251A1 (en) 2000-11-28 2002-06-06 Borealis Gmbh Use of propylene terpolymers for the production of films
JP2002294010A (en) 2001-03-30 2002-10-09 Sumitomo Chem Co Ltd Polypropylene-based resin composition for oriented film and the resultant oriented film
GB0111020D0 (en) 2001-05-04 2001-06-27 Borealis Tech Oy Process
JP2002363356A (en) 2001-06-04 2002-12-18 Grand Polymer Co Ltd Polypropylene resin composition for extrusion coating
ATE328912T1 (en) 2001-06-20 2006-06-15 Borealis Tech Oy PRODUCTION OF A CATALYST COMPONENT FOR OLEFIN POLYMERIZATION
EP1295910A1 (en) 2001-09-25 2003-03-26 Borealis GmbH Insulating foam composition
EP1302310A1 (en) 2001-10-15 2003-04-16 Atofina Research S.A. Adhesion of polyethylene on polypropylene
WO2003040233A2 (en) 2001-11-06 2003-05-15 Dow Global Technologies Inc. Impact resistant polymer blends of crystalline polypropylene and partially crystalline, low molecular weight impact modifiers
EP1323747A1 (en) 2001-12-19 2003-07-02 Borealis Technology Oy Production of olefin polymerisation catalysts
SG113461A1 (en) * 2002-05-09 2005-08-29 Sumitomo Chemical Co Polypropylene resin composition and heat-shrinkable film obtained from the same
US6756463B2 (en) 2002-05-16 2004-06-29 Japan Polychem Corporation Propylene polymer
RU2325404C2 (en) 2002-08-01 2008-05-27 Базелль Полиолефин Италия С.П.А. Highstereoregular polypropylene with improved properties
JP2006500470A (en) 2002-09-20 2006-01-05 エクソンモービル・ケミカル・パテンツ・インク Supercritical polymerization method and polymer produced thereby
EP1408077A1 (en) 2002-10-09 2004-04-14 Borealis Technology Oy Polymer composition comprising nanofillers
AU2003284027A1 (en) 2002-10-24 2004-05-13 Exxonmobil Chemical Patents Inc. Branched crystalline polypropylene
EP1422250A1 (en) 2002-11-20 2004-05-26 ATOFINA Research Branched polypropylene
US7326756B2 (en) 2002-12-05 2008-02-05 Exxonmobil Chemical Patents Inc. High temperature bulk polymerization of branched crystalline polypropylene
ATE426902T1 (en) 2002-12-12 2009-04-15 Borealis Tech Oy COAXIAL CABLE CONTAINING A DIELECTRIC MATERIAL
EP1484345A1 (en) 2003-06-06 2004-12-08 Borealis Technology Oy Process for the production of polypropylene using a Ziegler-Natta catalyst
EP1495861A1 (en) 2003-07-10 2005-01-12 Total Petrochemicals Research Feluy High transparency, high impact resistance containers
JP2006022276A (en) 2004-07-09 2006-01-26 Fujikura Ltd Composition for insulator and high-foaming insulator and coaxial cable for high frequency using the composition
EP1634699A1 (en) 2004-09-10 2006-03-15 Syrom 90 S.P.A. Multilayer metallized film and production method
KR20070083746A (en) * 2004-10-22 2007-08-24 다우 글로벌 테크놀로지스 인크. Inherently open-celled polypropylene foam with large cell size
CN100389150C (en) * 2004-10-29 2008-05-21 中国石油化工股份有限公司 Polypropylene foaming premix and its preparation method
US7138474B1 (en) 2005-05-03 2006-11-21 Fina Technology, Inc. End use articles derived from polypropylene homopolymers and random copolymers
DE602005015196D1 (en) 2005-05-20 2009-08-13 Borealis Tech Oy Polymer with high melt flow and improved resistance for tube applications
EP1726602A1 (en) 2005-05-27 2006-11-29 Borealis Technology Oy Propylene polymer with high crystallinity
EP1726603A1 (en) 2005-05-27 2006-11-29 Borealis Technology Oy Propylene polymer with high crystallinity
EP1847551A1 (en) 2006-04-18 2007-10-24 Borealis Technology Oy Process for the preparation of polypropylene
EP1847555A1 (en) 2006-04-18 2007-10-24 Borealis Technology Oy Multi-branched Polypropylene
EP1847552A1 (en) 2006-04-18 2007-10-24 Borealis Technology Oy Catalytic system
DE602006002512D1 (en) * 2006-07-10 2008-10-09 Borealis Tech Oy Short-chain branched polypropylene
DE602006011873D1 (en) * 2006-07-10 2010-03-11 Borealis Tech Oy Polypropylene-based cable layer with high electrical breakdown voltage resistance
EP1892264A1 (en) 2006-08-25 2008-02-27 Borealis Technology Oy Extrusion coated substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073369A1 (en) * 1999-06-01 2000-12-07 Borealis Technology Oy Process for preparing an integral polypropylene foam
JP2003147110A (en) * 2001-11-09 2003-05-21 Mitsui Chemicals Inc Foam of polyolefin composition and its manufacturing method
US20050090571A1 (en) * 2003-10-27 2005-04-28 Mehta Aspy K. Expanded bead foams from propylene-diene copolymers and their use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10179851B2 (en) 2013-06-05 2019-01-15 Borealis Ag One-step production of a polypropylene composition
WO2015024088A1 (en) 2013-08-23 2015-02-26 Braskem S.A. Process for producing modified poly(propene), the modified poly(propene) and the use thereof, and the polymer blend
US9815951B2 (en) 2013-08-23 2017-11-14 Braskem S.A. Process for producing modified poly(propene), the modified poly(propene) and the use thereof, and the polymer blend

Also Published As

Publication number Publication date
DE602006006061D1 (en) 2009-05-14
EP1900764B1 (en) 2009-04-01
KR20090029236A (en) 2009-03-20
ATE427330T1 (en) 2009-04-15
CN101506261B (en) 2011-04-27
BRPI0715722B1 (en) 2018-06-26
US20090176902A1 (en) 2009-07-09
EA016842B1 (en) 2012-07-30
US7799841B2 (en) 2010-09-21
KR101049703B1 (en) 2011-07-15
EA200970223A1 (en) 2009-12-30
BRPI0715722A2 (en) 2013-09-17
EP1900764A1 (en) 2008-03-19
CN101506261A (en) 2009-08-12

Similar Documents

Publication Publication Date Title
EP1900764B1 (en) Polypropylene foam
EP2007823B1 (en) Multiple -branched polypropylene
US8142902B2 (en) Extrusion coated substrate
EP2054464B1 (en) Blown film of polypropylene
US7956148B2 (en) Process for the preparation of polypropylene
EP1882703B1 (en) Short-chain branched polypropylene
US8378047B2 (en) Biaxially oriented polypropylene film
US8247052B2 (en) Coaxial cable
US20090312178A1 (en) Catalytic system
EP2097461B1 (en) Process for the manufacture of branched polypropylene

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780030858.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07801895

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020087032193

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1030/CHENP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200970223

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07801895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0715722

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090225