WO2008029633A1 - Color conversion substrate and method for producing the same - Google Patents

Color conversion substrate and method for producing the same Download PDF

Info

Publication number
WO2008029633A1
WO2008029633A1 PCT/JP2007/066405 JP2007066405W WO2008029633A1 WO 2008029633 A1 WO2008029633 A1 WO 2008029633A1 JP 2007066405 W JP2007066405 W JP 2007066405W WO 2008029633 A1 WO2008029633 A1 WO 2008029633A1
Authority
WO
WIPO (PCT)
Prior art keywords
color conversion
substrate
group
conversion film
film
Prior art date
Application number
PCT/JP2007/066405
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Hachiya
Mitsuru Eida
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Publication of WO2008029633A1 publication Critical patent/WO2008029633A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present invention relates to a color conversion substrate and a manufacturing method thereof.
  • the present invention relates to a color conversion substrate having sufficient color conversion performance even with a thin film.
  • the color conversion film has to be thicker than 10 m.
  • Patent Document 1 is characterized by comprising semiconductor nanoparticles, a solvent, and a polymerizable monomer.
  • a photopolymerizable resin composition is disclosed.
  • Patent Document 2 discloses a coating composition comprising a polymerizable component, semiconductor ultrafine particles, and a solvent.
  • the composition is formed between the time when the coating composition is applied on the substrate and the time when the polymerizable component is polymerized. Since it is easy to flow, it was difficult to accurately form a layer containing a photoluminescent inorganic nanocrystal on a large-area substrate. Further, when a coating film was formed on a small area such as a pixel of a display, the adhesion strength with the substrate was likely to be reduced due to shrinkage of the coating film when the polymerizable component was polymerized.
  • Patent Document 3 discloses an inkjet ink containing semiconductor nanoparticles using an aqueous medium.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-186426
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-114928
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-119575
  • An object of the present invention is to provide a color conversion substrate using a color conversion film having sufficient color conversion performance even with a thin film.
  • Another object of the present invention is to provide a color conversion substrate manufacturing method with high productivity.
  • the following color conversion substrate and the like are provided.
  • a color conversion substrate comprising a substrate, and a color conversion part in which a color conversion film containing a photoluminescent inorganic nanocrystal and a transparent protective layer are laminated in this order on the substrate.
  • the color conversion film further includes a surface treatment agent and / or a transparent resin of a photoluminescent inorganic nanocrystal, and at least one of the surface treatment agent and the transparent resin 2.
  • the surface treatment agent is a compound having a group selected from a phosphine group, a phosphine oxide group, an amino group, a thiol group, a phosphate ester group, a phosphonate ester group, a carboxyl group, and an olefin group.
  • Color conversion board is a compound having a group selected from a phosphine group, a phosphine oxide group, an amino group, a thiol group, a phosphate ester group, a phosphonate ester group, a carboxyl group, and an olefin group.
  • the transparent protective layer comprises a metal oxide and / or a metal nitride oxide.
  • a composition containing a photoluminescent inorganic nanocrystal and a solvent is applied onto a substrate, the solvent is dried to form a color conversion film, and a transparent protective layer is formed on the color conversion film.
  • FIG. 1 is a diagram showing a light emitting device produced in Example 3.
  • the color conversion substrate of the present invention includes a substrate and a photoluminescent inorganic nanocrystalr on the substrate. And a color conversion part in which a transparent protective layer is laminated in this order.
  • Examples of the photoluminescent inorganic nanocrystal include the following substances.
  • IIIV compound semiconductor nanocrystals such as InP, chalcopyrite semiconductor nanotalities such as CuInS and CuInSe
  • the semiconductor nanocrystal is a semiconductor crystal made into ultrafine particles of nanometer order, and preferably has a particle size of 20 nm or less, more preferably lOnm or less.
  • Dopes doped with transition metal ions that absorb visible light such as + and Tb 3+ .
  • nanocrystals of (i) and (ii) above in order to prevent the surface of the nanocrystals from being oxidized and extraction of S, Se, etc., metal oxides such as silica, long chain alkyl groups, phosphoric acid, etc.
  • the surface may be modified with organic substances such as
  • nanoparticles in which the surface of the nanoparticles is covered with another semiconductor called a shell are more preferable in terms of stability and fluorescence.
  • the surface of the shell may be further coated with a metal oxide such as silica or titania.
  • the photoluminescent inorganic nanocrystals described above may be used alone or in combination of two or more.
  • the color conversion film of the present invention preferably contains a surface treatment agent and / or a transparent resin of a photoluminescent inorganic nanocrystal in addition to the photoluminescent inorganic nanocrystal, At least one has a glass transition temperature, softening temperature or melting point of 120 ° C or higher. Glass transition temperature, softening temperature or melting point of 120 ° C or higher By including a certain surface treatment agent and / or transparent resin, when the color conversion film is used for a display or the like, it is possible to prevent the color conversion film from flowing due to heating during production or temperature rise during use.
  • the glass transition temperature, softening temperature or melting point of the surface treatment agent and / or the transparent resin is preferably 160 ° C. or higher.
  • the glass transition temperature and melting point are measured by DSC measurement, and the softening temperature is measured by a ring and ball softening point test method.
  • the surface treatment agent for a photoluminescent inorganic nanocrystal can further stabilize the dispersion of the photoluminescent inorganic nanocrystal in the composition.
  • the surface treatment agent for photoluminescent inorganic nanocrystals can use a known surface treatment agent as the surface treatment agent.
  • the photoluminescent inorganic nanocrystals may aggregate during storage of the composition. ! /, Select the surface treatment agent.
  • the surface treatment agent is preferably a compound having a group selected from a phosphine group, a phosphine oxide group, an amino group, a thiol group, a phosphate ester group, a phosphonate ester group, a carboxyl group, and an olefin group.
  • Specific examples of the compound containing an amino group include an amino terminal PEG, octylamine, decylamine, and glycine tert butyl ester.
  • the compound containing a thiol group examples include octanethiol, octylthiodaricolate, 2-ethylhexyl 3-mercaptopropionate, thiol-terminated PEG, and 3-mer.
  • the compound containing a phosphoric acid ester group examples include dibutyl phosphate, di-n-decino lefophosphate, di (polyethylene glycolanol 4-nonino lefenore) phosphate, and tributyl phosphate.
  • Specific examples of the compound containing a carboxyl group include decanoic acid, 2-ethylhexanoic acid, 4-monohexylbenzoic acid, and 4-bulubenzoic acid.
  • the compound containing a phosphine group examples include tributylphosphine and trioctylphosphine.
  • An example of a compound containing a specific phosphine oxide group is tributylphosphine oxide. Examples thereof include side and trioctyl phosphine oxide.
  • the compound containing an olephine group examples include dodecene, methylundecenoate, buêtcenoate, and 1,2-epoxy-9-decene.
  • the molecular weight of these compounds is, for example, preferably 10,000 or less, more preferably 5,000 or less.
  • the transparent resin is not particularly limited as long as it can be dispersed in the same solvent as the photoluminescent inorganic nanocrystal, but is preferably soluble in a ketone solvent.
  • polymethacrylic acid octahydro-4,7-methanoindul ester a copolymer of methyl methacrylate and N-isopropylmaleimide, polycyclohexylene, and poly carbonate.
  • the amount of photoluminescent inorganic nanocrystal is preferably 20 to 90 weight 0/0, more preferably 20 to 60 weight 0/0.
  • the compounding amount of the surface treatment agent for the photoluminescent inorganic nanocrystal is preferably 50% by weight or less, more preferably 2 to 45% by weight.
  • the blending amount of the transparent resin is preferably 30% by weight or less, more preferably 20% by weight or less.
  • the color conversion film cannot sufficiently absorb the light from the light source, so that the film thickness may need to be increased.
  • the photoluminescent inorganic nanocrystal exceeds 90% by weight, the film strength becomes too low and the color conversion film may be damaged before the transparent protective layer is provided.
  • the color conversion film may contain additives such as transparent fine particles such as titaure and silica, and an antioxidant.
  • the thickness of the color conversion film is not limited, but is usually 1 to 100 m.
  • the color conversion film of the present invention is
  • the film thickness can be reduced to 10 m or less, specifically;
  • the transparent protective layer is not particularly limited as long as it is transparent, but it is preferable that the compatibility of the photoluminescent inorganic nanocrystal is low so as not to destroy the lower photoluminescent inorganic nanocrystal layer.
  • Transparent resin soluble in ester solvents or alcohol solvents when using organic materials Is preferred.
  • a thermosetting and / or photocurable resin is preferable.
  • the transparent resin include (meth) acrylic resin, polycarbonate resin, silicone resin, polysulfone resin, and epoxy resin.
  • metal oxides such as silicon oxide and titanium oxide nitride nitride or metal nitride oxides are preferable.
  • the thickness of the transparent protective film is not limited, but is preferably 0.1 to 5111.
  • a glass plate, a polymer plate or the like can be used as the substrate.
  • a composition containing a photoluminescent inorganic nanocrystal and a solvent is applied onto a substrate, and the solvent is dried to form a color conversion film. It can be produced by forming a transparent protective layer thereon.
  • the composition may include a surface treatment agent for the photoluminescent inorganic nanocrystal, a transparent resin having a glass transition temperature, a softening temperature, or a melting point of 120 ° C. or higher.
  • Examples of the solvent include xylene, diglyme, and cyclohexanone. Since it is preferable that no solvent remains when the color conversion film is formed, a solvent having a boiling point of 200 ° C. or lower is preferable.
  • the composition is applied onto the substrate, but it is preferable to apply the composition onto the substrate by a printing method, because a color conversion film can be formed only on a necessary portion, and the material utilization efficiency is improved. It is preferable to use the inkjet method or nozzle printing method as the printing method.
  • a partition wall is provided on the substrate, and a composition (ink) is made to flow into an area delimited by the partition wall to form a color conversion film. Easy and preferred.
  • the color conversion film of the present invention can increase the concentration of the photoluminescent inorganic nanocrystal, and even a thin film can exhibit sufficient color conversion performance. Further, since the color conversion substrate of the present invention can be produced by the inkjet method, the productivity is increased.
  • the transparent protective film can be formed by coating or dipping in the case of an organic material, and can be formed by sputtering, chemical vapor deposition (CVD), or vapor deposition in the case of an inorganic material.
  • a light emitting device can be manufactured by combining the light emitting element and the color conversion substrate.
  • the light emitting element one that emits visible light can be used, for example, an organic EL element, Inorganic EL elements, semiconductor light emitting diodes, and fluorescent display tubes can be used. Of these, organic EL elements and inorganic EL elements are preferred. In particular, organic EL elements are preferred because they provide light emitting elements with low voltage and high brightness.
  • a solution of the phosphine compound was injected all at once from the septum cap portion of the four-necked flask. After 5 seconds, 40 ml of octadecene was added, and the reaction temperature was rapidly lowered to 180 ° C. 1 Stirring was continued at 80 ° C for 2 hours.
  • the temperature was lowered to 50 ° C., and the pressure was reduced by a vacuum pump for 1 hour.
  • the reaction solution was taken out by returning to atmospheric pressure with nitrogen gas and lowering the temperature to room temperature, and the precipitate was removed by centrifugation (3000 rpm, 10 minutes). The supernatant was once stored in the glove box.
  • the inside of the flask was evacuated to a vacuum and stirred at 80 ° C for 30 minutes.
  • the solution was returned to atmospheric pressure with nitrogen gas, and a solution of InP nanoparticles stored in the glove box was added. Stirring was continued under reduced pressure at 80 ° C for 1.5 hours.
  • the pressure was returned to atmospheric pressure with nitrogen gas, and the temperature was increased to 140 ° C. 1. Stirring was continued for 5 hours. The temperature was lowered to room temperature, the reaction solution was taken out, and coarse particles and unreacted raw materials were removed by centrifugation (3000 rpm, 15 minutes).
  • the obtained nanoparticles had a fluorescence peak wavelength of 634 nm and a fluorescence quantum yield of 17%. These were measured using a quantum yield measuring device (C9920-02 type) manufactured by Hamamatsu Photonicus. Synthesis example 2
  • the inside of the flask was evacuated to a vacuum and stirred at 120 ° C for 2 hours.
  • the pressure was returned to atmospheric pressure with nitrogen gas, and the temperature was increased to 300 ° C.
  • the selenium solution was injected all at once from the septum cap portion of the four-necked flask. Stirring was continued for 1.5 hours at 290 ° C.
  • reaction temperature was raised to 230 ° C and stirring was continued for 1.5 hours.
  • the obtained nanoparticles had a fluorescence peak wavelength of 528 nm and a fluorescence quantum yield of 13%.
  • the octadecene solution of InP / ZnS nanoparticles obtained in Synthesis Example 1 was poured into ethanol to reprecipitate the nanoparticles.
  • the solvent was removed by decantation, followed by vacuum drying to obtain nanoparticles (photoluminescent inorganic nanocrystals) (75 mg).
  • a black matrix (V259 BK (manufactured by Nippon Steel Chemical Co., Ltd.)) having a width of 20 mm 111 and a thickness of 1 ⁇ 5 mm was produced at intervals of 90 am by a photolithography method. Furthermore, a glass substrate having a partition wall (VPA100 / P54-2 (manufactured by Nippon Steel Chemical Co., Ltd.)) having a width of 15 mm and a height of 10 m on a black matrix was prepared.
  • V259 BK manufactured by Nippon Steel Chemical Co., Ltd.
  • the composition was applied once to the area of the glass substrate separated by the partition walls, and the solvent was evaporated at 120 ° C.
  • the film thickness at this stage was 2. ⁇ .
  • VPA100 / P54- 2 Recoating the VPA100 / P54- 2 as a transparent protective layer (produced by Nippon Steel Chemical Co., Ltd.), after evaporation of the solvent at 120 degrees to cure the 365nm UV 300 mj / cm 2 irradiated to (approximately thickness after curing 1 ⁇ m), a color conversion substrate was prepared.
  • the blue light-emitting organic EL device When the blue light-emitting organic EL device was laminated and the organic EL device was allowed to emit light, the blue light of the organic EL device was converted to green with a peak wavelength of 528 nm.
  • the light emitting device 1 shown in FIG. 1 was produced as follows.
  • a black matrix 12 was formed on a glass substrate 11.
  • red, green, and blue color filters 13, 14, and 15 were formed in this order in thicknesses of about 1 ⁇ 5 111 in the area delimited by black bear tritas 12, respectively.
  • partition walls 16 were formed on the black matrix 12 in the same manner as in Example 1.
  • Example 1 The composition prepared in Example 1 was applied once onto the red color filter 13 in the area separated by the partition walls. The solvent was dried at 120 ° C to form a red color conversion film 17 having a film thickness of about 2.1 m.
  • Example 2 the composition used in Example 2 was applied once onto the green color filter 14 in the area separated by the partition walls.
  • the solvent was dried at 120 ° C. to form a green color conversion film 18 having a film thickness of about 2. ⁇ .
  • a color conversion unit 30 is formed from the black matrix 12, the red, green, and blue color filters 13, 14, and 15, the partition wall 16, the red color conversion film 17, the green color conversion film 18, and the transparent protective layer 19.
  • the color conversion substrate 10 was completed by forming the substrate 11 and the color conversion unit 30.
  • an electrode (not shown) processed in a matrix in accordance with the pitch of the partition walls 16 of the color conversion substrate 10 and a blue light emitting organic EL element 23 were formed, and an organic EL panel 20 was manufactured.
  • the light emitting device 1 was manufactured by stacking the fluorescence conversion substrate and the organic EL panel. When an image was displayed on this light-emitting device 1, a full-color image could be displayed.
  • the color display device using the color conversion substrate of the present invention is a consumer or industrial display, for example, a display for a portable display terminal, an in-vehicle display such as a car navigation system or an instrument panel, a personal computer for office automation (OA), Used for display devices for TV (TV receiver) or FA (factory automation). In particular, it is used for thin, flat monocolor, multicolor or full color displays.
  • OA personal computer for office automation
  • TV receiver TV receiver
  • FA factory automation

Abstract

Disclosed is a color conversion substrate (10) comprising a base (11) and a color conversion portion (30) arranged on the base (11). The color conversion portion (30) includes color conversion films (17, 18) containing a photoluminescent inorganic nanocrystal and a transparent protective layer (19), which are sequentially arranged on the base (11) in this order.

Description

明 細 書  Specification
色変換基板及びその製造方法  Color conversion substrate and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、色変換基板及びその製造方法に関する。特に薄膜でも十分な色変換 性能を有する色変換基板に関する。  The present invention relates to a color conversion substrate and a manufacturing method thereof. In particular, the present invention relates to a color conversion substrate having sufficient color conversion performance even with a thin film.
背景技術  Background art
[0002] 有機 EL (エレクト口ルミネッセンス)素子等の発光素子の光を、色変換膜にて、他の 波長の光に変換することにより、青、緑、赤の三原色の光を得て、フルカラーディスプ レイを得る技術が知られている。  [0002] Light from a light emitting element such as an organic EL (electric mouth luminescence) element is converted into light of other wavelengths by a color conversion film to obtain light of the three primary colors of blue, green, and red. A technique for obtaining a display is known.
[0003] 色変換膜にフォトルミネッセンス性無機ナノクリスタルを配合した色変換材料を用い たフルカラーディスプレイはすでに公知である。 [0003] Full-color displays using a color conversion material in which photoluminescent inorganic nanocrystals are blended in a color conversion film are already known.
色変換材料を含む膜を基体上に形成して色変換膜として用いる場合、フォトルミネ ッセンス性無機ナノクリスタルのみでは実用的な強度を有する膜を形成できな!/、。そ こでバインダー材料や重合性物質を添加した組成物を基体上に塗布し、色変換膜を 製造する技術が報告されてレ、る。  When a film containing a color conversion material is formed on a substrate and used as a color conversion film, it is impossible to form a film having practical strength with only photoluminescent inorganic nanocrystals! Therefore, a technique for producing a color conversion film by applying a composition containing a binder material or a polymerizable substance onto a substrate has been reported.
[0004] しかしながら、マトリクス中に分散されたフォトルミネッセンス性無機ナノクリスタルが 光源の光を十分に吸収するには、色変換膜の膜厚を 10 m以上の厚膜にする必要 があった。 [0004] However, in order for the photoluminescent inorganic nanocrystal dispersed in the matrix to sufficiently absorb the light from the light source, the color conversion film has to be thicker than 10 m.
[0005] また、色変換膜を用いたフルカラーディスプレイを製造する場合、色変換膜を画素 の形状に合わせてパターン化する必要があること、及び色変換膜を厚膜に形成する 必要があることから、色変換膜の製造に、フォトリソグラフィ一法又はスクリーン印刷法 を適用することが好ましい。しかし、フォトリソグラフィ一法は材料の利用効率が低いと いう課題があり、スクリーン印刷法はパターン精度に課題があった。  [0005] Further, when a full color display using a color conversion film is manufactured, it is necessary to pattern the color conversion film according to the shape of the pixel, and it is necessary to form the color conversion film in a thick film. Therefore, it is preferable to apply a photolithography method or a screen printing method to the production of the color conversion film. However, the photolithography method has a problem that the material utilization efficiency is low, and the screen printing method has a problem in pattern accuracy.
[0006] 一方、材料の利用効率、パターン精度の両方が高レ、印刷法としてインクジェット法 が知られているが、 10 m以上の厚膜を形成するには多数回塗り重ねる必要があり 、生産効率が低力、つた。  [0006] On the other hand, both the material utilization efficiency and the pattern accuracy are high, and the inkjet method is known as a printing method. However, in order to form a thick film of 10 m or more, it is necessary to reapply many times and produce it. The efficiency is low.
[0007] 特許文献 1には、半導体ナノ粒子、溶媒及び重合可能なモノマーからなることを特 徴とする光重合性樹脂組成物が開示されている。 [0007] Patent Document 1 is characterized by comprising semiconductor nanoparticles, a solvent, and a polymerizable monomer. A photopolymerizable resin composition is disclosed.
しかし、組成物中の半導体ナノ粒子の含有率が 0. lwt%〜20wt%と低ぐ光源の 光を十分に吸収させるには膜厚を厚くする必要があった。  However, it is necessary to increase the film thickness in order to sufficiently absorb light from a light source having a low content of semiconductor nanoparticles of 0.1 wt% to 20 wt% in the composition.
[0008] 特許文献 2には、重合性成分、半導体超微粒子及び溶媒を含有してなる塗布組成 物が開示されている。  [0008] Patent Document 2 discloses a coating composition comprising a polymerizable component, semiconductor ultrafine particles, and a solvent.
この組成物から、フォトルミネッセンス性無機ナノクリスタルを含有する層を形成する ことは可能ではあるが、塗布組成物を基体上に塗布してから重合性成分を重合させ るまでの間に組成物が流動しやすいため、大面積の基体上に精度よくフォトルミネッ センス性無機ナノクリスタルを含有する層を形成することが難しかった。また、ディスプ レイの画素のような微小面積に塗膜を形成した場合には、重合性成分を重合させる 際の塗膜の収縮により基体との密着強度が低下しやすかつた。  Although it is possible to form a layer containing a photoluminescent inorganic nanocrystal from this composition, the composition is formed between the time when the coating composition is applied on the substrate and the time when the polymerizable component is polymerized. Since it is easy to flow, it was difficult to accurately form a layer containing a photoluminescent inorganic nanocrystal on a large-area substrate. Further, when a coating film was formed on a small area such as a pixel of a display, the adhesion strength with the substrate was likely to be reduced due to shrinkage of the coating film when the polymerizable component was polymerized.
[0009] 特許文献 3には、水性媒体を用いた半導体ナノ粒子配合インクジェット用インクが 開示されている。  [0009] Patent Document 3 discloses an inkjet ink containing semiconductor nanoparticles using an aqueous medium.
しかし、水性媒体を用いるため、色変換膜のように mオーダーの膜厚を有するよ うな用途では水分が残留してしまい、電子デバイスと組み合わせることが難しかった。 特許文献 1 :特開平 10— 186426号公報  However, since an aqueous medium is used, moisture remains in an application such as a color conversion film having a film thickness of m order, and it is difficult to combine with an electronic device. Patent Document 1: Japanese Patent Laid-Open No. 10-186426
特許文献 2:特開 2002— 114928号公報  Patent Document 2: Japanese Patent Laid-Open No. 2002-114928
特許文献 3 :特開 2000— 119575号公報  Patent Document 3: Japanese Patent Laid-Open No. 2000-119575
発明の開示  Disclosure of the invention
[0010] 本発明の目的は、薄膜でも十分な色変換性能を有する色変換膜を用いた色変換 基板を提供することである。  [0010] An object of the present invention is to provide a color conversion substrate using a color conversion film having sufficient color conversion performance even with a thin film.
本発明の他の目的は、生産性の高い色変換基板の製造方法を提供することである Another object of the present invention is to provide a color conversion substrate manufacturing method with high productivity.
Yes
[0011] 本発明によれば、以下の色変換基板等が提供される。  According to the present invention, the following color conversion substrate and the like are provided.
1.基体と、前記基体上に、フォトルミネッセンス性無機ナノクリスタルを含む色変換膜 及び透明保護層をこの順に積層した色変換部と、を含む色変換基板。  1. A color conversion substrate comprising a substrate, and a color conversion part in which a color conversion film containing a photoluminescent inorganic nanocrystal and a transparent protective layer are laminated in this order on the substrate.
2.前記色変換膜が、さらにフォトルミネッセンス性無機ナノクリスタルの表面処理剤 及び/又は透明樹脂を含み、前記表面処理剤及び前記透明樹脂の少なくとも 1つ はガラス転移温度、軟化温度又は融点が 120°C以上である 1に記載の色変換基板。2. The color conversion film further includes a surface treatment agent and / or a transparent resin of a photoluminescent inorganic nanocrystal, and at least one of the surface treatment agent and the transparent resin 2. The color conversion substrate according to 1, wherein the glass transition temperature, softening temperature or melting point is 120 ° C. or higher.
3.前記色変換膜が、フォトルミネッセンス性無機ナノクリスタルを 20〜90重量%、表 面処理剤を 50重量%以下、及び透明樹脂を 30重量%以下含む 2に記載の色変換 基板。 3. The color conversion substrate according to 2, wherein the color conversion film contains 20 to 90% by weight of a photoluminescent inorganic nanocrystal, 50% by weight or less of a surface treatment agent, and 30% by weight or less of a transparent resin.
4.前記表面処理剤が、ホスフィン基、ホスフィンオキサイド基、アミノ基、チオール基 、リン酸エステル基、ホスホン酸エステル基、カルボキシル基、ォレフィン基から選ば れる基を有する化合物である 2又は 3に記載の色変換基板。  4. The surface treatment agent is a compound having a group selected from a phosphine group, a phosphine oxide group, an amino group, a thiol group, a phosphate ester group, a phosphonate ester group, a carboxyl group, and an olefin group. Color conversion board.
5.前記透明保護層が、光硬化性及び/又は熱硬化性の樹脂組成物からなる 1〜4 の!/、ずれかに記載の色変換基板。  5. The color conversion substrate according to any one of 1-4, wherein the transparent protective layer is made of a photocurable and / or thermosetting resin composition.
6.前記透明保護層が、金属酸化物及び/又は金属窒酸化物からなる 1〜4のいず れかに記載の色変換基板。  6. The color conversion substrate according to any one of 1 to 4, wherein the transparent protective layer comprises a metal oxide and / or a metal nitride oxide.
7.フォトルミネッセンス性無機ナノクリスタル、及び溶媒を含む組成物を、基体上に 塗布し、前記溶媒を乾燥させて色変換膜を形成し、前記色変換膜の上に透明保護 層を形成して、色変換部を形成する 1〜6のいずれかに記載の色変換基板の製造方 法。  7. A composition containing a photoluminescent inorganic nanocrystal and a solvent is applied onto a substrate, the solvent is dried to form a color conversion film, and a transparent protective layer is formed on the color conversion film. The method for producing a color conversion substrate according to any one of 1 to 6, wherein the color conversion part is formed.
8.前記溶媒の沸点が 200°C以下である 7に記載の色変換基板の製造方法。  8. The method for producing a color conversion substrate according to 7, wherein the boiling point of the solvent is 200 ° C. or less.
9.前記組成物をインクジェット法又はノズルプリンティング法で基体上に塗布する 7 又は 8に記載の色変換基板の製造方法。  9. The method for producing a color conversion substrate according to 7 or 8, wherein the composition is applied onto a substrate by an ink jet method or a nozzle printing method.
10.前記基体上に隔壁を配置して区切られた区域を形成し、前記区域内に前記組 成物を塗布して前記色変換膜を形成する 7〜9のいずれかに記載の色変換基板の 製造方法。  10. The color conversion substrate according to any one of 7 to 9, wherein partition walls are arranged on the substrate to form a sectioned area, and the composition is applied in the section to form the color conversion film. The manufacturing method.
[0012] 本発明によれば、薄膜でも十分な色変換性能を有する色変換膜を用いた色変換 基板を提供することができる。  [0012] According to the present invention, it is possible to provide a color conversion substrate using a color conversion film having sufficient color conversion performance even with a thin film.
本発明によれば、生産性の高!/、色変換基板の製造方法を提供することができる。 図面の簡単な説明  According to the present invention, it is possible to provide a method for manufacturing a color conversion substrate with high productivity. Brief Description of Drawings
[0013] [図 1]実施例 3で作成した発光装置を示す図である。 FIG. 1 is a diagram showing a light emitting device produced in Example 3.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 本発明の色変換基板は、基体と、基体上に、フォトルミネッセンス性無機ナノクリスタ ルを含む色変換膜及び透明保護層をこの順に積層した色変換部とを含む。 [0014] The color conversion substrate of the present invention includes a substrate and a photoluminescent inorganic nanocrystalr on the substrate. And a color conversion part in which a transparent protective layer is laminated in this order.
[0015] フォトルミネッセンス性無機ナノクリスタルとして、以下の物質を例示できる。 [0015] Examples of the photoluminescent inorganic nanocrystal include the following substances.
(i)フォトルミネッセンス性半導体ナノクリスタル  (i) Photoluminescent semiconductor nanocrystal
ZnSe、 ZnTe、 CdSe等の II VI化合物半導体ナノクリスタル、 InP等の III V族化 合物半導体ナノクリスタル、 CuInS 、 CuInSe等のカルコパイライト型半導体ナノタリ  II VI compound semiconductor nanocrystals such as ZnSe, ZnTe, CdSe, IIIV compound semiconductor nanocrystals such as InP, chalcopyrite semiconductor nanotalities such as CuInS and CuInSe
2 2  twenty two
スタル。  Star.
半導体ナノクリスタルは、半導体結晶をナノメートルオーダーまで超微粒子化したも のであり、好ましくは粒径が 20nm以下、より好ましくは lOnm以下である。  The semiconductor nanocrystal is a semiconductor crystal made into ultrafine particles of nanometer order, and preferably has a particle size of 20 nm or less, more preferably lOnm or less.
(ii)金属カルコゲナイド物に遷移金属イオンをドープしたフォトルミネッセンス性ナノ クリスタノレ  (ii) Photoluminescent nano-crystal nore doped with metal chalcogenides doped with transition metal ions
ZnS、 ZnSe、 CdS、 CdSe等の金属力ノレコゲナイド、ィ匕物に、 Eu2+、 Eu3+、 Ce3+、 T b3+、 Cu2+等の遷移金属イオンをドープしたもの。 ZnS, ZnSe, CdS, metal force Norekogenaido of CdSe or the like, the I 匕物, Eu 2+, Eu 3+, Ce 3+, T b 3+, doped with transition metal ions of Cu 2+ or the like.
(iii)金属酸化物に遷移金属イオンをドープしたフォトルミネッセンス性ナノクリスタ ノレ  (iii) Photoluminescent nanocrystals with metal oxide doped with transition metal ions
Y O、 Gd O 、 ZnO、 Y Al O 、 Zn SiO等の金属酸化物に、 Eu2+、 Eu3+、 Ce3 YO, Gd O, ZnO, Y Al O, a metal oxide such as Zn SiO, Eu 2+, Eu 3+ , Ce 3
2 3 2 3 3 5 12 2 4 2 3 2 3 3 5 12 2 4
+、 Tb3+等の、可視光を吸収する遷移金属イオンをドープしたもの。 Dopes doped with transition metal ions that absorb visible light, such as + and Tb 3+ .
[0016] 上記(i) (ii)のナノクリスタルにおいては、ナノクリスタル表面が酸化されたり、 Sや Se 等が引き抜かれることを防止するため、シリカ等の金属酸化物や長鎖アルキル基や 燐酸等の有機物等で表面修飾してもよレ、。 [0016] In the nanocrystals of (i) and (ii) above, in order to prevent the surface of the nanocrystals from being oxidized and extraction of S, Se, etc., metal oxides such as silica, long chain alkyl groups, phosphoric acid, etc. The surface may be modified with organic substances such as
さらに、上記ナノ粒子表面をシェルと呼ばれる別の半導体で覆ったナノ粒子が安定 性、及び蛍光性の点でより好ましい。シェルの表面をさらにシリカ、チタニア等の金属 酸化物で被覆してもよい。  Furthermore, nanoparticles in which the surface of the nanoparticles is covered with another semiconductor called a shell are more preferable in terms of stability and fluorescence. The surface of the shell may be further coated with a metal oxide such as silica or titania.
[0017] 上記のフォトルミネッセンス性無機ナノクリスタルは、一種単独で使用してもよぐま た、二種以上を組み合わせて使用してもよい。 [0017] The photoluminescent inorganic nanocrystals described above may be used alone or in combination of two or more.
[0018] 本発明の色変換膜は、好ましくは、フォトルミネッセンス性無機ナノクリスタルに加え て、フォトルミネッセンス性無機ナノクリスタルの表面処理剤及び/又は透明樹脂を 含み、上記表面処理剤及び透明樹脂の少なくとも 1つはガラス転移温度、軟化温度 又は融点が 120°C以上である。ガラス転移温度、軟化温度又は融点が 120°C以上で ある表面処理剤及び/又は透明樹脂を含むことにより、色変換膜をディスプレイ等に 使用した場合に、製造時の加熱や使用中の温度上昇による色変換膜の流動を防ぐ ことができる。表面処理剤及び/又は透明樹脂のガラス転移温度、軟化温度又は融 点は、好ましくは 160°C以上である。 [0018] The color conversion film of the present invention preferably contains a surface treatment agent and / or a transparent resin of a photoluminescent inorganic nanocrystal in addition to the photoluminescent inorganic nanocrystal, At least one has a glass transition temperature, softening temperature or melting point of 120 ° C or higher. Glass transition temperature, softening temperature or melting point of 120 ° C or higher By including a certain surface treatment agent and / or transparent resin, when the color conversion film is used for a display or the like, it is possible to prevent the color conversion film from flowing due to heating during production or temperature rise during use. The glass transition temperature, softening temperature or melting point of the surface treatment agent and / or the transparent resin is preferably 160 ° C. or higher.
[0019] 尚、本発明において、ガラス転移温度および融点は、 DSC測定により、軟化温度 は環球式軟化点試験法により測定する。 In the present invention, the glass transition temperature and melting point are measured by DSC measurement, and the softening temperature is measured by a ring and ball softening point test method.
[0020] フォトルミネッセンス性無機ナノクリスタルの表面処理剤は、フォトルミネッセンス性 無機ナノクリスタルの組成物中での分散をより安定化できる。 [0020] The surface treatment agent for a photoluminescent inorganic nanocrystal can further stabilize the dispersion of the photoluminescent inorganic nanocrystal in the composition.
フォトルミネッセンス性無機ナノクリスタルの表面処理剤は、表面処理剤として公知 の表面処理剤を使用することができる力 好ましくは、組成物の保管中にフォトルミネ ッセンス性無機ナノクリスタルが凝集してしまわな!/、ように表面処理剤を選定する。 上記表面処理剤は、好ましくはホスフィン基、ホスフィンオキサイド基、アミノ基、チ オール基、リン酸エステル基、ホスホン酸エステル基、カルボキシル基、ォレフィン基 から選ばれる基を有する化合物である。  The surface treatment agent for photoluminescent inorganic nanocrystals can use a known surface treatment agent as the surface treatment agent. Preferably, the photoluminescent inorganic nanocrystals may aggregate during storage of the composition. ! /, Select the surface treatment agent. The surface treatment agent is preferably a compound having a group selected from a phosphine group, a phosphine oxide group, an amino group, a thiol group, a phosphate ester group, a phosphonate ester group, a carboxyl group, and an olefin group.
[0021] 具体的なアミノ基を含む化合物として、ァミノ末端 PEG、ォクチルァミン、デシルアミ ン、グリシン tert ブチルエステルを例示できる。 [0021] Specific examples of the compound containing an amino group include an amino terminal PEG, octylamine, decylamine, and glycine tert butyl ester.
具体的なチオール基を含む化合物として、オクタンチオール、ォクチルチオダリコレ ート、 2 ェチルへキシル 3 メルカプトプロピオネート、チオール末端 PEG、 3 メル 示できる。  Specific examples of the compound containing a thiol group include octanethiol, octylthiodaricolate, 2-ethylhexyl 3-mercaptopropionate, thiol-terminated PEG, and 3-mer.
具体的なリン酸エステル基を含む化合物として、ジブチルフォスフェート、ジー n— デシノレフォスフェート、ジ(ポリエチレングリコーノレ 4ーノニノレフエニノレ)フォスフェート、 トリブチルフォスフェートを例示できる。  Specific examples of the compound containing a phosphoric acid ester group include dibutyl phosphate, di-n-decino lefophosphate, di (polyethylene glycolanol 4-nonino lefenore) phosphate, and tributyl phosphate.
[0022] 具体的なカルボキシル基を含む化合物の例として、デカン酸、 2ェチルへキサン酸 、 4一へキシル安息香酸、 4 ビュル安息香酸を例示できる。 [0022] Specific examples of the compound containing a carboxyl group include decanoic acid, 2-ethylhexanoic acid, 4-monohexylbenzoic acid, and 4-bulubenzoic acid.
具体的なホスフィン基を含む化合物の例として、トリブチルホスフィン、トリオクチル ホスフィンを例示できる。  Specific examples of the compound containing a phosphine group include tributylphosphine and trioctylphosphine.
具体的なホスフィンオキサイド基を含む化合物の例として、トリブチルホスフィンォキ サイド、トリオクチルホスフィンオキサイドを例示できる。 An example of a compound containing a specific phosphine oxide group is tributylphosphine oxide. Examples thereof include side and trioctyl phosphine oxide.
具体的なォレフィン基を含む化合物の例として、ドデセン、メチルゥンデセノエート、 ビュルゥンデセノエート、 1、 2-エポキシ— 9—デセンを例示できる。  Specific examples of the compound containing an olephine group include dodecene, methylundecenoate, burundecenoate, and 1,2-epoxy-9-decene.
[0023] ナノクリスタル表面に十分に表面処理剤が付着するために、これら化合物の分子量 は例えば、好ましくは 10、 000以下であり、より好ましくは 5、 000以下である。 [0023] In order for the surface treatment agent to sufficiently adhere to the nanocrystal surface, the molecular weight of these compounds is, for example, preferably 10,000 or less, more preferably 5,000 or less.
[0024] 透明樹脂は、フォトルミネッセンス性無機ナノクリスタルと共通の溶媒に分散できれ ば特に制限はないが、ケトン系溶媒に可溶であることが好ましい。 [0024] The transparent resin is not particularly limited as long as it can be dispersed in the same solvent as the photoluminescent inorganic nanocrystal, but is preferably soluble in a ketone solvent.
[0025] 具体的には、ポリメタクリル酸ォクタヒドロー 4、 7—メタノインデュルエステル、メチル メタタリレートと N—イソプロピルマレイミドとの共重合体、ポリシクロォレフィン、ポリ力 ーボネート等が挙げられる。 [0025] Specifically, polymethacrylic acid octahydro-4,7-methanoindul ester, a copolymer of methyl methacrylate and N-isopropylmaleimide, polycyclohexylene, and poly carbonate.
[0026] 本発明の色変換膜において、フォトルミネッセンス性無機ナノクリスタルの配合量は 好ましくは 20〜90重量0 /0、より好ましくは 20〜60重量0 /0である。フォトルミネッセンス 性無機ナノクリスタルの表面処理剤の配合量は、好ましくは 50重量%以下、より好ま しくは 2〜45重量%である。透明樹脂の配合量は好ましくは 30重量%以下、より好ま しくは 20重量%以下である。 [0026] In the color conversion layer of the present invention, the amount of photoluminescent inorganic nanocrystal is preferably 20 to 90 weight 0/0, more preferably 20 to 60 weight 0/0. The compounding amount of the surface treatment agent for the photoluminescent inorganic nanocrystal is preferably 50% by weight or less, more preferably 2 to 45% by weight. The blending amount of the transparent resin is preferably 30% by weight or less, more preferably 20% by weight or less.
フォトルミネッセンス性無機ナノクリスタルが 20重量%未満の場合、色変換膜が光 源の光を十分に吸収できないため、膜厚を厚くする必要があるおそれがある。一方、 フォトルミネッセンス性無機ナノクリスタルが 90重量%を超える場合、膜強度が低くな りすぎ、透明保護層を設ける前に色変換膜が破損するおそれがある。  If the photoluminescent inorganic nanocrystal is less than 20% by weight, the color conversion film cannot sufficiently absorb the light from the light source, so that the film thickness may need to be increased. On the other hand, if the photoluminescent inorganic nanocrystal exceeds 90% by weight, the film strength becomes too low and the color conversion film may be damaged before the transparent protective layer is provided.
[0027] 色変換膜は、上記の物質の他、チタユア、シリカ等の透明微粒子、酸化防止剤等 の添加剤を含むことができる。 [0027] In addition to the above substances, the color conversion film may contain additives such as transparent fine particles such as titaure and silica, and an antioxidant.
[0028] 色変換膜の膜厚は限定されないが通常 1〜; 100 mである。本発明の色変換膜は[0028] The thickness of the color conversion film is not limited, but is usually 1 to 100 m. The color conversion film of the present invention is
、透明保護層を設けるため、膜厚を 10 m以下、具体的には;!〜 6 m程度まで薄く できる。 Since a transparent protective layer is provided, the film thickness can be reduced to 10 m or less, specifically;
[0029] 透明保護層は、透明であれば特に制限はないが、下部のフォトルミネッセンス性無 機ナノクリスタル層を破壊しないために、フォトルミネッセンス性無機ナノクリスタルの 相溶性が低いことが好ましい。  [0029] The transparent protective layer is not particularly limited as long as it is transparent, but it is preferable that the compatibility of the photoluminescent inorganic nanocrystal is low so as not to destroy the lower photoluminescent inorganic nanocrystal layer.
有機材料を用いる場合、エステル系溶媒又はアルコール溶媒に可溶な透明樹脂 が好ましい。強度を高めるために、熱硬化性及び/又は光硬化性樹脂であることが 好ましい。透明樹脂として、(メタ)アクリル樹脂、ポリカーボネート樹脂、シリコーン樹 脂、ポリスルホン樹脂、エポキシ樹脂を例示できる。 Transparent resin soluble in ester solvents or alcohol solvents when using organic materials Is preferred. In order to increase the strength, a thermosetting and / or photocurable resin is preferable. Examples of the transparent resin include (meth) acrylic resin, polycarbonate resin, silicone resin, polysulfone resin, and epoxy resin.
無機材料を用いる場合、酸化ケィ素、酸化チタ窒化ケィ素等の金属酸化物又は金 属窒酸化物が好ましい。  When an inorganic material is used, metal oxides such as silicon oxide and titanium oxide nitride nitride or metal nitride oxides are preferable.
[0030] 透明保護膜の膜厚は限定されないが好ましくは 0. 1〜5 111である。 [0030] The thickness of the transparent protective film is not limited, but is preferably 0.1 to 5111.
[0031] 基体としては、ガラス板、ポリマー板等を用いることができる。 [0031] As the substrate, a glass plate, a polymer plate or the like can be used.
[0032] 本発明の色変換基板は、基体上に、フォトルミネッセンス性無機ナノクリスタル及び 溶媒を含む組成物を、塗布し、溶媒を乾燥させて色変換膜を形成し、さらに、色変換 膜の上に透明保護層を形成して製造できる。  [0032] In the color conversion substrate of the present invention, a composition containing a photoluminescent inorganic nanocrystal and a solvent is applied onto a substrate, and the solvent is dried to form a color conversion film. It can be produced by forming a transparent protective layer thereon.
組成物は、フォトルミネッセンス性無機ナノクリスタルの表面処理剤、ガラス転移温 度、軟化温度又は融点が 120°C以上である透明樹脂を含むことができる。  The composition may include a surface treatment agent for the photoluminescent inorganic nanocrystal, a transparent resin having a glass transition temperature, a softening temperature, or a melting point of 120 ° C. or higher.
[0033] 溶媒としては、例えばキシレン、ジグライム、シクロへキサノン等が挙げられる。色変 換膜を形成する際に、溶媒が残留しないことが好ましいため、沸点が 200°C以下の 溶媒が好ましい。 [0033] Examples of the solvent include xylene, diglyme, and cyclohexanone. Since it is preferable that no solvent remains when the color conversion film is formed, a solvent having a boiling point of 200 ° C. or lower is preferable.
[0034] 組成物を基体上に塗布するが、印刷法によって基体上に塗布すると、必要な部分 のみに色変換膜を形成でき、材料の利用効率が向上し好ましい。印刷法として、イン クジェット法、ノズルプリンティング法を用いることが好ましレ、。  [0034] The composition is applied onto the substrate, but it is preferable to apply the composition onto the substrate by a printing method, because a color conversion film can be formed only on a necessary portion, and the material utilization efficiency is improved. It is preferable to use the inkjet method or nozzle printing method as the printing method.
[0035] 色変換膜を形成する際に、基体上に隔壁を設け、隔壁により区切られた区域に組 成物 (インク)を流入して色変換膜を形成すると、複数種のインクを塗り分けやすく好 ましい。 [0035] When the color conversion film is formed, a partition wall is provided on the substrate, and a composition (ink) is made to flow into an area delimited by the partition wall to form a color conversion film. Easy and preferred.
[0036] 本発明の色変換膜は、フォトルミネッセンス性無機ナノクリスタルの濃度を高くするこ とができ、薄膜でも、十分な色変換性能を発揮できる。また、本発明の色変換基板は インクジェット法で生産できるため、生産性が高くなる。  [0036] The color conversion film of the present invention can increase the concentration of the photoluminescent inorganic nanocrystal, and even a thin film can exhibit sufficient color conversion performance. Further, since the color conversion substrate of the present invention can be produced by the inkjet method, the productivity is increased.
[0037] 透明保護膜は、有機材料のときは、塗布、浸漬により形成でき、無機材料のときは、 スパッタリング、化学気相成長(CVD)、蒸着により形成できる。 [0037] The transparent protective film can be formed by coating or dipping in the case of an organic material, and can be formed by sputtering, chemical vapor deposition (CVD), or vapor deposition in the case of an inorganic material.
[0038] さらに、発光素子と、この色変換基板を組み合わせて発光装置を製造することがで きる。発光素子としては、可視光を発光するものが使用でき、例えば、有機 EL素子、 無機 EL素子、半導体発光ダイオード、蛍光表示管が使用できる。これら中で、有機 EL素子及び無機 EL素子が好ましぐ特に、有機 EL素子は、低電圧で、高輝度の発 光素子が得られるので好ましレ、。 Furthermore, a light emitting device can be manufactured by combining the light emitting element and the color conversion substrate. As the light emitting element, one that emits visible light can be used, for example, an organic EL element, Inorganic EL elements, semiconductor light emitting diodes, and fluorescent display tubes can be used. Of these, organic EL elements and inorganic EL elements are preferred. In particular, organic EL elements are preferred because they provide light emitting elements with low voltage and high brightness.
[実施例]  [Example]
[0039] 合成例 1 [0039] Synthesis Example 1
[InP/ZnSナノ粒子の合成]  [Synthesis of InP / ZnS nanoparticles]
J. Am. Chem. Soc. 、 2005、 127、 11364を参考 ίこして表記ナノ粒子を合成し た。以下に概要を記す。  J. Am. Chem. Soc., 2005, 127, 11364. Reference nanoparticles were synthesized. The following is an overview.
(1) ΙηΡコアの合成  (1) Synthesis of ΙηΡ core
200ml4つ口フラスコに酢酸インジウム 0. 29g、ミリスチン酸 0. 69g、ォクタデセン 4 200 ml 4-neck flask with indium acetate 0.29 g, myristic acid 0.69 g, octadecene 4
0mlを量り取った。フラスコをマントルヒータにセットした。フラスコの主管にはガラス製 撹拌軸とテフロン (登録商標)製撹拌羽根を取り付けたメカニカルスターラをセットした 。枝管の 1つに 3方コックを取り付け、窒素ライン及び真空ラインに接続した。別の枝 管にはゴム製のセプタムキャップを取り付けた。残りの枝管には熱電対をセットした。 フラスコ内を真空に減圧し、 120°Cで 2時間撹拌した。窒素ガスで大気圧に戻し、 2 80°Cまで温度を上げた。 0 ml was weighed out. The flask was set on a mantle heater. A mechanical stirrer equipped with a glass stirring shaft and a Teflon (registered trademark) stirring blade was set on the main tube of the flask. A three-way cock was attached to one of the branch pipes and connected to a nitrogen line and a vacuum line. Another septum was fitted with a rubber septum cap. Thermocouples were set on the remaining branch pipes. The inside of the flask was evacuated to a vacuum and stirred at 120 ° C for 2 hours. The pressure was returned to atmospheric pressure with nitrogen gas, and the temperature was increased to 2 80 ° C.
窒素置換したグローブボックス内で、サンプルビンにトリストリメチルシリルホスフィン の 10%へキサン溶液 1. 4g、ォクタデセン lmlを量り取り、ガスタイトシリンジで吸い取 つた。  In a nitrogen-substituted glove box, 1.4 g of a 10% hexane solution of tristrimethylsilylphosphine and lml of octadecene were weighed into a sample bottle and sucked with a gas tight syringe.
4つ口フラスコのセプタムキャップ部分からホスフィン化合物の溶液を一気に注入し た。 5秒後にォクタデセン 40mlを加え、反応温度を 180°Cまで急激に低下させた。 1 80°Cにて 2時間撹拌を続けた。  A solution of the phosphine compound was injected all at once from the septum cap portion of the four-necked flask. After 5 seconds, 40 ml of octadecene was added, and the reaction temperature was rapidly lowered to 180 ° C. 1 Stirring was continued at 80 ° C for 2 hours.
50°Cに温度を下げ、 1時間真空ポンプにより減圧にした。  The temperature was lowered to 50 ° C., and the pressure was reduced by a vacuum pump for 1 hour.
窒素ガスにより大気圧に戻し室温まで温度を下げて反応溶液を取り出し、遠心分離 (3000rpm、 10分)により沈殿物を除いた。上澄みを一旦グローブボックス内に保管 した。  The reaction solution was taken out by returning to atmospheric pressure with nitrogen gas and lowering the temperature to room temperature, and the precipitate was removed by centrifugation (3000 rpm, 10 minutes). The supernatant was once stored in the glove box.
[0040] (2) InP/ZnSコアシェルナノ粒子の合成 [0040] ( 2 ) Synthesis of InP / ZnS core-shell nanoparticles
200ml4つ口フラスコにラウリン酸亜鉛 1 · 48g、硫黄 0· 1 lg、ォクタデセン 0mlを 量り取った。フラスコには(1)と同様な器具を取り付けた。 200ml 4-neck flask with 1 · 48g zinc laurate, 0 · 1 lg sulfur, 0ml octadecene Weighed out. The same apparatus as (1) was attached to the flask.
フラスコ内を真空に減圧し、 80°Cで 30分間撹拌した。窒素ガスで大気圧に戻し、グ ローブボックスに保管しておいた InPナノ粒子の溶液を加えた。さらに 80°Cで 1. 5時 間減圧下で撹拌を続けた。  The inside of the flask was evacuated to a vacuum and stirred at 80 ° C for 30 minutes. The solution was returned to atmospheric pressure with nitrogen gas, and a solution of InP nanoparticles stored in the glove box was added. Stirring was continued under reduced pressure at 80 ° C for 1.5 hours.
窒素ガスにより大気圧に戻し、 140°Cまで温度を上げた。 1. 5時間撹拌を続けた。 室温まで温度を下げて反応溶液を取り出し、遠心分離(3000rpm、 15分)により粗 大な粒子及び未反応の原料を除!/、た。  The pressure was returned to atmospheric pressure with nitrogen gas, and the temperature was increased to 140 ° C. 1. Stirring was continued for 5 hours. The temperature was lowered to room temperature, the reaction solution was taken out, and coarse particles and unreacted raw materials were removed by centrifugation (3000 rpm, 15 minutes).
得られたナノ粒子は蛍光ピーク波長 634nm、蛍光量子収率 17%であった。これら は浜松ホトニタス社製量子収率測定装置(C9920— 02型)を用いて測定した。 合成例 2  The obtained nanoparticles had a fluorescence peak wavelength of 634 nm and a fluorescence quantum yield of 17%. These were measured using a quantum yield measuring device (C9920-02 type) manufactured by Hamamatsu Photonicus. Synthesis example 2
[Cuドープされた ZnSeナノ粒子の合成]  [Synthesis of Cu-doped ZnSe nanoparticles]
J. Am. Chem. Soc. 、 2005、 127、 17586を参考にして表記ナノ粒子を合成し た。以下に概要を記す。  Reference nanoparticles were synthesized with reference to J. Am. Chem. Soc., 2005, 127, 17586. The following is an overview.
200ml4つ口フラスコにラウリン酸亜鉛 0. 20g、ォクタデセン 50mlを量り取った。合 成例 1と同様の器具をセットした。  In a 200 ml four-necked flask, 0.20 g of zinc laurate and 50 ml of octadecene were weighed. The same instrument as in Synthesis Example 1 was set.
フラスコ内を真空に減圧し、 120°Cで 2時間撹拌した。窒素ガスで大気圧に戻し、 3 00°Cまで温度を上げた。  The inside of the flask was evacuated to a vacuum and stirred at 120 ° C for 2 hours. The pressure was returned to atmospheric pressure with nitrogen gas, and the temperature was increased to 300 ° C.
窒素置換したグローブボックス内で、サンプルビンにセレン 0· 02g、へキサデシル ァミン 0· 5g、トリブチルホスフィン 7gを量り取り、セレンを溶解させた。  In a nitrogen-substituted glove box, 0.02 g of selenium, 0.5 g of hexadecylamine, and 7 g of tributylphosphine were weighed in a sample bottle to dissolve selenium.
4つ口フラスコのセプタムキャップ部分からセレン溶液を一気に注入した。 290°Cに て 1. 5時間撹拌を続けた。  The selenium solution was injected all at once from the septum cap portion of the four-necked flask. Stirring was continued for 1.5 hours at 290 ° C.
窒素置換したグローブボックス内で、サンプルビンに酢酸銅 0. 031g、トリブチルホ スフイン 10mlを量り取り、酢酸銅を溶解させた。このうちの 0. 1mlをシリンジに吸い取 り、反応溶液に注入した。  In a nitrogen-substituted glove box, 0.031 g of copper acetate and 10 ml of tributyl phosphate were weighed into a sample bottle to dissolve the copper acetate. Of this, 0.1 ml was sucked into a syringe and injected into the reaction solution.
10分後、酢酸亜鉛 0. lg、トリブチルホスフィン 5mlを含む溶液を反応溶液に滴下 した。滴下には 30分を要した。  After 10 minutes, a solution containing 0.1 lg zinc acetate and 5 ml tributylphosphine was added dropwise to the reaction solution. The dripping took 30 minutes.
滴下終了後、 230°Cまで反応温度を上げ、 1. 5時間撹拌を続けた。  After completion of the dropwise addition, the reaction temperature was raised to 230 ° C and stirring was continued for 1.5 hours.
室温まで温度を下げて反応溶液を取り出し、遠心分離(3000rpm、 10分)により沈 殿物を除いた。上澄みを一旦グローブボックス内に保管した。 Lower the temperature to room temperature, take out the reaction solution, and precipitate it by centrifugation (3000 rpm, 10 minutes). The temple was removed. The supernatant was once stored in the glove box.
得られたナノ粒子は蛍光ピーク波長 528nm、蛍光量子収率 13%であった。  The obtained nanoparticles had a fluorescence peak wavelength of 528 nm and a fluorescence quantum yield of 13%.
[0042] 実施例 1 [0042] Example 1
合成例 1で得られた InP/ZnSナノ粒子のォクタデセン溶液をエタノールに注ぎ、 ナノ粒子を再沈殿させた。溶媒をデカンテーシヨンにより除いた後、真空乾燥し、ナノ 粒子(フォトルミネッセンス性無機ナノクリスタル)(75mg)を得た。  The octadecene solution of InP / ZnS nanoparticles obtained in Synthesis Example 1 was poured into ethanol to reprecipitate the nanoparticles. The solvent was removed by decantation, followed by vacuum drying to obtain nanoparticles (photoluminescent inorganic nanocrystals) (75 mg).
少量のトルエンを加えてナノ粒子を再度分散させた。表面処理剤としてチォグリコ ール酸 2—ェチルへキシルエステル(10mg)を加えた。トルエンを蒸発させた後、溶 媒としてシクロへキサノン(175mg)を加えた。さらに透明樹脂として、ポリメタクリル酸 ォクタヒドロー 4、 7—メタノインデュルエステル(Mw= 12、 000、 Tg= 175°C) (15m g)を溶解させた。  A small amount of toluene was added to re-disperse the nanoparticles. Thioglycolic acid 2-ethylhexyl ester (10 mg) was added as a surface treatment agent. After toluene was evaporated, cyclohexanone (175 mg) was added as a solvent. Further, polymethacrylic acid octahydro-4,7-methanoindul ester (Mw = 12,000, Tg = 175 ° C.) (15 mg) was dissolved as a transparent resin.
フォトリソグラフィ一法によって、幅 20〃111、厚さ 1 · 5〃mのブラックマトリクス(V259 BK (新日鉄化学社製) )を 90 a mの間隔で作製した。さらにブラックマトリクス上に幅 15〃 m、高さ 10 mの隔壁 (VPA100/P54— 2 (新日鉄化学社製) )を形成したガ ラス基板を準備した。  A black matrix (V259 BK (manufactured by Nippon Steel Chemical Co., Ltd.)) having a width of 20 mm 111 and a thickness of 1 · 5 mm was produced at intervals of 90 am by a photolithography method. Furthermore, a glass substrate having a partition wall (VPA100 / P54-2 (manufactured by Nippon Steel Chemical Co., Ltd.)) having a width of 15 mm and a height of 10 m on a black matrix was prepared.
上記のガラス基板の隔壁で区切られた区域に組成物を 1回塗布し、 120°Cにて溶 媒を蒸発させた。この段階での膜厚は 2. Ι ίηであった。  The composition was applied once to the area of the glass substrate separated by the partition walls, and the solvent was evaporated at 120 ° C. The film thickness at this stage was 2.Ιίη.
透明保護層として VPA100/P54— 2 (新日鉄化学社製)を塗り重ね、 120度にて 溶媒を蒸発させた後、 365nmの紫外線を 300mj/cm2照射して硬化させ (硬化後 の膜厚約 1 β m)、色変換基板を作製した。 Recoating the VPA100 / P54- 2 as a transparent protective layer (produced by Nippon Steel Chemical Co., Ltd.), after evaporation of the solvent at 120 degrees to cure the 365nm UV 300 mj / cm 2 irradiated to (approximately thickness after curing 1 β m), a color conversion substrate was prepared.
青色発光有機 EL素子を貼り重ねて発光させたところ、有機 EL素子の青色光がピ ーク波長 634nmの赤色に変換された。  When a blue light emitting organic EL device was attached to emit light, the blue light of the organic EL device was converted to red with a peak wavelength of 634 nm.
[0043] 実施例 2 [0043] Example 2
合成例 2で得られた Cuドープされた ZnSeナノ粒子のォクタデセン溶液をエタノー ルに注ぎ、ナノ粒子を再沈殿させた。溶媒をデカンテーシヨンにより除いた後、真空 乾燥し、 Cuドープされた ZnSeナノ粒子(フォトルミネッセンス性無機ナノクリスタル) ( 95mg)を得た。  The octadecene solution of Cu-doped ZnSe nanoparticles obtained in Synthesis Example 2 was poured into ethanol to reprecipitate the nanoparticles. The solvent was removed by decantation, followed by vacuum drying to obtain Cu-doped ZnSe nanoparticles (photoluminescent inorganic nanocrystals) (95 mg).
溶媒としてキシレン(250mg)を加えてナノ粒子を再度分散させた。表面処理剤とし てチオール末端ポリカーボネート(Mw= 2、 500、軟化温度 = 165°C) (75mg)を加 えた。このようにして得られた組成物を実施例 1と同様のガラス基板上に塗布し、 120 °Cにて溶媒を蒸発させた。 Xylene (250 mg) was added as a solvent to disperse the nanoparticles again. As a surface treatment agent Thiol-terminated polycarbonate (Mw = 2, 500, softening temperature = 165 ° C.) (75 mg) was added. The composition thus obtained was applied on the same glass substrate as in Example 1, and the solvent was evaporated at 120 ° C.
透明保護層としてスパッタリング装置を用いて SiO N 膜を膜厚約 0. 3 111で形  Using a sputtering system as a transparent protective layer, form a SiO N film with a thickness of about 0.3 111
1. 5 0. 3  1. 5 0. 3
成し、色変換基板を作製した。 And a color conversion substrate was produced.
青色発光有機 EL素子を貼り重ねて、有機 EL素子を発光させたところ、有機 EL素 子の青色光がピーク波長 528nmの緑色に変換された。  When the blue light-emitting organic EL device was laminated and the organic EL device was allowed to emit light, the blue light of the organic EL device was converted to green with a peak wavelength of 528 nm.
実施例 3 Example 3
図 1に示す発光装置 1を以下のようにして作製した。  The light emitting device 1 shown in FIG. 1 was produced as follows.
実施例 1と同様にガラス基板 11上にブラックマトリクス 12を形成した。次いでブラッ クマトリタス 12で区切られた区域に赤色、緑色、青色の各カラーフィルタ 13、 14、 15 をこの順に膜厚約 1 · 5 111で形成した。さらにブラックマトリクス 12上に、実施例 1と 同様にして隔壁 16を形成した。  Similar to Example 1, a black matrix 12 was formed on a glass substrate 11. Next, red, green, and blue color filters 13, 14, and 15 were formed in this order in thicknesses of about 1 · 5 111 in the area delimited by black bear tritas 12, respectively. Further, partition walls 16 were formed on the black matrix 12 in the same manner as in Example 1.
実施例 1で用レ、た組成物を、隔壁で区切られた区域の赤色カラーフィルタ 13上に 1 回塗布した。 120°Cで溶媒を乾燥させ、膜厚約 2. 1 mの赤色色変換膜 17を形成 した。  The composition prepared in Example 1 was applied once onto the red color filter 13 in the area separated by the partition walls. The solvent was dried at 120 ° C to form a red color conversion film 17 having a film thickness of about 2.1 m.
次レ、で、実施例 2で用レ、た組成物を隔壁で区切られた区域の緑色カラーフィルタ 1 4上に 1回塗布した。 120°Cで溶媒を乾燥させ、膜厚約 2. Ι πιの緑色色変換膜 18 を形成した。  In the next step, the composition used in Example 2 was applied once onto the green color filter 14 in the area separated by the partition walls. The solvent was dried at 120 ° C. to form a green color conversion film 18 having a film thickness of about 2.ππι.
最後に、メタクリル酸メチル 'メタクリル酸共重合体(Mw= 13、 000) (27重量%)、 ペンタユリスリトーノレトリ タリレート(19重量0 /0 )、イノレガ、キュア 907 (0. 4重量0 /0)、 2 ーァセトキシー 1ーメトキシプロパン(53. 6重量%)からなる光硬化性インクをスピンコ ート法により基板の全面に塗布した。 120°Cで溶媒を乾燥させた後、波長 365nmの 紫外線を 300mj/cm2照射して硬化させ、膜厚約 1. 5 m (赤色及び緑色色変換 膜上の膜厚。青色カラーフィルタ上では約 3. 5 m)の透明保護層 19とした。 Finally, methyl methacrylate 'methacrylate copolymer (Mw = 13, 000) (27 wt%), penta Ulis Rito Honoré tri Tarireto (19 wt 0/0), Inorega, Cure 907 (0.4 wt 0 / 0 ), 2-acetyloxy-1-methoxypropane (53.6 wt%) was applied to the entire surface of the substrate by spin coating. After drying the solvent at 120 ° C, the film is cured by irradiating 300mj / cm 2 with 365nm wavelength UV, and the film thickness is about 1.5m (the film thickness on the red and green color conversion film. On the blue color filter The transparent protective layer 19 was about 3.5 m).
ブラックマトリクス 12、赤色、緑色、青色カラーフィルタ 13、 14、 15、隔壁 16、赤色 色変換膜 17、緑色色変換膜 18、透明保護層 19から色変換部 30が形成される。 基板 11と色変換部 30の形成により色変換基板 10が完成した。 基板 21上に、色変換基板 10の隔壁 16のピッチに合わせてマトリクス状に加工した 電極(図示せず)と、青色発光有機 EL素子 23を形成して、有機 ELパネル 20を作製 した。 A color conversion unit 30 is formed from the black matrix 12, the red, green, and blue color filters 13, 14, and 15, the partition wall 16, the red color conversion film 17, the green color conversion film 18, and the transparent protective layer 19. The color conversion substrate 10 was completed by forming the substrate 11 and the color conversion unit 30. On the substrate 21, an electrode (not shown) processed in a matrix in accordance with the pitch of the partition walls 16 of the color conversion substrate 10 and a blue light emitting organic EL element 23 were formed, and an organic EL panel 20 was manufactured.
蛍光変換基板と有機 ELパネルを貝占り重ねて、発光装置 1を製造した。この発光装 置 1に画像を表示させたところ、フルカラーの画像を表示できた。  The light emitting device 1 was manufactured by stacking the fluorescence conversion substrate and the organic EL panel. When an image was displayed on this light-emitting device 1, a full-color image could be displayed.
産業上の利用可能性 Industrial applicability
本発明の色変換基板を用いたカラー表示装置は、民生用又は産業用ディスプレイ 、例えば、携帯表示端末用ディスプレイ、カーナビゲーシヨンやインパネ等の車載デ イスプレイ、 OA (オフィス 'オートメーション)用パーソナルコンピュータ、 TV (テレビ受 像器)、又は FA (ファクトリー ·オートメーション)用表示機器等に用いられる。特に、薄 型、平面のモノカラー、マルチカラー又はフルカラーディスプレイ等に用いられる。 この明細書に記載の文献の内容を全てここに援用する。  The color display device using the color conversion substrate of the present invention is a consumer or industrial display, for example, a display for a portable display terminal, an in-vehicle display such as a car navigation system or an instrument panel, a personal computer for office automation (OA), Used for display devices for TV (TV receiver) or FA (factory automation). In particular, it is used for thin, flat monocolor, multicolor or full color displays. The entire contents of the documents described in this specification are incorporated herein by reference.

Claims

請求の範囲 The scope of the claims
[1] 基体と、  [1] a substrate;
前記基体上に、フォトルミネッセンス性無機ナノクリスタルを含む色変換膜及び透明 保護層をこの順に積層した色変換部と、  On the substrate, a color conversion part in which a color conversion film containing a photoluminescent inorganic nanocrystal and a transparent protective layer are laminated in this order;
を含む色変換基板。  Including color conversion board.
[2] 前記色変換膜が、さらにフォトルミネッセンス性無機ナノクリスタルの表面処理剤及 び/又は透明樹脂を含み、  [2] The color conversion film further includes a surface treatment agent for photoluminescent inorganic nanocrystals and / or a transparent resin,
前記表面処理剤及び前記透明樹脂の少なくとも 1つはガラス転移温度、軟化温度 又は融点が 120°C以上である請求項 1に記載の色変換基板。  2. The color conversion substrate according to claim 1, wherein at least one of the surface treatment agent and the transparent resin has a glass transition temperature, a softening temperature, or a melting point of 120 ° C. or higher.
[3] 前記色変換膜が、 [3] The color conversion film is
フォトルミネッセンス性無機ナノクリスタルを 20〜90重量%、  20-90% by weight of photoluminescent inorganic nanocrystal,
表面処理剤を 50重量%以下、及び  50% by weight or less of the surface treatment agent, and
透明樹脂を 30重量%以下含む請求項 2に記載の色変換基板。  The color conversion substrate according to claim 2, comprising 30% by weight or less of a transparent resin.
[4] 前記表面処理剤が、ホスフィン基、ホスフィンオキサイド基、アミノ基、チオール基、 リン酸エステル基、ホスホン酸エステル基、カルボキシル基、ォレフィン基から選ばれ る基を有する化合物である請求項 2又は 3に記載の色変換基板。 [4] The surface treatment agent is a compound having a group selected from a phosphine group, a phosphine oxide group, an amino group, a thiol group, a phosphate ester group, a phosphonate ester group, a carboxyl group, and an olefin group. Or the color conversion board | substrate of 3.
[5] 前記透明保護層が、光硬化性及び/又は熱硬化性の樹脂組成物からなる請求項[5] The transparent protective layer comprises a photocurable and / or thermosetting resin composition.
1〜4のいずれかに記載の色変換基板。 The color conversion board | substrate in any one of 1-4.
[6] 前記透明保護層が、金属酸化物及び/又は金属窒酸化物からなる請求項;!〜 4の[6] The transparent protective layer according to claim 4, comprising a metal oxide and / or a metal nitride oxide;
V、ずれかに記載の色変換基板。 V, the color conversion board described in the gap.
[7] フォトルミネッセンス性無機ナノクリスタル、及び溶媒を含む組成物を、基体上に塗 布し、  [7] A composition containing a photoluminescent inorganic nanocrystal and a solvent is coated on a substrate,
前記溶媒を乾燥させて色変換膜を形成し、  Drying the solvent to form a color conversion film;
前記色変換膜の上に透明保護層を形成して、色変換部を形成する請求項;!〜 6の A transparent protective layer is formed on the color conversion film to form a color conversion portion;! ~ 6
V、ずれかに記載の色変換基板の製造方法。 V, A method for producing a color conversion substrate as described in any of the above.
[8] 前記溶媒の沸点が 200°C以下である請求項 7に記載の色変換基板の製造方法。  8. The method for producing a color conversion substrate according to claim 7, wherein the solvent has a boiling point of 200 ° C or lower.
[9] 前記組成物をインクジェット法又はノズルプリンティング法で基体上に塗布する請求 項 7又は 8に記載の色変換基板の製造方法。 [10] 前記基体上に隔壁を配置して区切られた区域を形成し、 [9] The method for producing a color conversion substrate according to [7] or [8], wherein the composition is applied onto a substrate by an ink jet method or a nozzle printing method. [10] A partition wall is formed on the substrate to form a sectioned area,
前記区域内に前記組成物を塗布して前記色変換膜を形成する請求項 7〜9のいず れかに記載の色変換基板の製造方法。  10. The method for producing a color conversion substrate according to claim 7, wherein the color conversion film is formed by applying the composition in the area.
PCT/JP2007/066405 2006-09-07 2007-08-24 Color conversion substrate and method for producing the same WO2008029633A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-242354 2006-09-07
JP2006242354 2006-09-07

Publications (1)

Publication Number Publication Date
WO2008029633A1 true WO2008029633A1 (en) 2008-03-13

Family

ID=39157069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066405 WO2008029633A1 (en) 2006-09-07 2007-08-24 Color conversion substrate and method for producing the same

Country Status (2)

Country Link
TW (1) TW200829076A (en)
WO (1) WO2008029633A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010730A1 (en) * 2008-07-24 2010-01-28 富士電機ホールディングス株式会社 Method for manufacturing color conversion substrate
JP2010204352A (en) * 2009-03-03 2010-09-16 Fuji Electric Holdings Co Ltd Method for manufacturing color conversion filter substrate
JP2010267552A (en) * 2009-05-18 2010-11-25 Fuji Electric Holdings Co Ltd Color conversion filter substrate
US8128249B2 (en) 2007-08-28 2012-03-06 Qd Vision, Inc. Apparatus for selectively backlighting a material
US8405063B2 (en) 2007-07-23 2013-03-26 Qd Vision, Inc. Quantum dot light enhancement substrate and lighting device including same
US9140844B2 (en) 2008-05-06 2015-09-22 Qd Vision, Inc. Optical components, systems including an optical component, and devices
US9167659B2 (en) 2008-05-06 2015-10-20 Qd Vision, Inc. Solid state lighting devices including quantum confined semiconductor nanoparticles, an optical component for a solid state lighting device, and methods
US9207385B2 (en) 2008-05-06 2015-12-08 Qd Vision, Inc. Lighting systems and devices including same
US9929325B2 (en) 2012-06-05 2018-03-27 Samsung Electronics Co., Ltd. Lighting device including quantum dots
US9951438B2 (en) 2006-03-07 2018-04-24 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US11472979B2 (en) 2007-06-25 2022-10-18 Samsung Electronics Co., Ltd. Compositions and methods including depositing nanomaterial

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126681A (en) * 1998-10-21 2000-05-09 Mitsubishi Chemicals Corp Manufacture of nanoparticle thin film
JP2004515081A (en) * 2000-11-30 2004-05-20 インフィネオン テクノロジーズ アクチェンゲゼルシャフト Substrate having semiconductor layer, electronic device, electronic circuit, printable composition and method of making
JP2006503418A (en) * 2002-10-18 2006-01-26 アイファイア テクノロジー コーポレーション Color electroluminescence display device
JP2006182533A (en) * 2004-12-28 2006-07-13 Mitsubishi Electric Corp Elevator monitoring method and device for performing the same
JP2006310131A (en) * 2005-04-28 2006-11-09 Mitsubishi Chemicals Corp Color conversion film
JP2007146154A (en) * 2005-10-31 2007-06-14 Kyocera Corp Wavelength converter, lighting system, and lighting system assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126681A (en) * 1998-10-21 2000-05-09 Mitsubishi Chemicals Corp Manufacture of nanoparticle thin film
JP2004515081A (en) * 2000-11-30 2004-05-20 インフィネオン テクノロジーズ アクチェンゲゼルシャフト Substrate having semiconductor layer, electronic device, electronic circuit, printable composition and method of making
JP2006503418A (en) * 2002-10-18 2006-01-26 アイファイア テクノロジー コーポレーション Color electroluminescence display device
JP2006182533A (en) * 2004-12-28 2006-07-13 Mitsubishi Electric Corp Elevator monitoring method and device for performing the same
JP2006310131A (en) * 2005-04-28 2006-11-09 Mitsubishi Chemicals Corp Color conversion film
JP2007146154A (en) * 2005-10-31 2007-06-14 Kyocera Corp Wavelength converter, lighting system, and lighting system assembly

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9951438B2 (en) 2006-03-07 2018-04-24 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US11866598B2 (en) 2007-06-25 2024-01-09 Samsung Electronics Co., Ltd. Compositions and methods including depositing nanomaterial
US11472979B2 (en) 2007-06-25 2022-10-18 Samsung Electronics Co., Ltd. Compositions and methods including depositing nanomaterial
US9680054B2 (en) 2007-07-23 2017-06-13 Samsung Electronics Co., Ltd. Quantum dot light enhancement substrate and lighting device including same
US9276168B2 (en) 2007-07-23 2016-03-01 Qd Vision, Inc. Quantum dot light enhancement substrate and lighting device including same
US8759850B2 (en) 2007-07-23 2014-06-24 Qd Vision, Inc. Quantum dot light enhancement substrate
US10096744B2 (en) 2007-07-23 2018-10-09 Samsung Electronics Co., Ltd. Quantum dot light enhancement substrate and lighting device including same
US8405063B2 (en) 2007-07-23 2013-03-26 Qd Vision, Inc. Quantum dot light enhancement substrate and lighting device including same
US8128249B2 (en) 2007-08-28 2012-03-06 Qd Vision, Inc. Apparatus for selectively backlighting a material
US9946004B2 (en) 2008-05-06 2018-04-17 Samsung Electronics Co., Ltd. Lighting systems and devices including same
US9207385B2 (en) 2008-05-06 2015-12-08 Qd Vision, Inc. Lighting systems and devices including same
US9167659B2 (en) 2008-05-06 2015-10-20 Qd Vision, Inc. Solid state lighting devices including quantum confined semiconductor nanoparticles, an optical component for a solid state lighting device, and methods
US9140844B2 (en) 2008-05-06 2015-09-22 Qd Vision, Inc. Optical components, systems including an optical component, and devices
US10145539B2 (en) 2008-05-06 2018-12-04 Samsung Electronics Co., Ltd. Solid state lighting devices including quantum confined semiconductor nanoparticles, an optical component for a solid state lighting device, and methods
US10359555B2 (en) 2008-05-06 2019-07-23 Samsung Electronics Co., Ltd. Lighting systems and devices including same
US10627561B2 (en) 2008-05-06 2020-04-21 Samsung Electronics Co., Ltd. Lighting systems and devices including same
WO2010010730A1 (en) * 2008-07-24 2010-01-28 富士電機ホールディングス株式会社 Method for manufacturing color conversion substrate
JP2010204352A (en) * 2009-03-03 2010-09-16 Fuji Electric Holdings Co Ltd Method for manufacturing color conversion filter substrate
JP2010267552A (en) * 2009-05-18 2010-11-25 Fuji Electric Holdings Co Ltd Color conversion filter substrate
US9929325B2 (en) 2012-06-05 2018-03-27 Samsung Electronics Co., Ltd. Lighting device including quantum dots

Also Published As

Publication number Publication date
TW200829076A (en) 2008-07-01

Similar Documents

Publication Publication Date Title
WO2008029633A1 (en) Color conversion substrate and method for producing the same
US7393618B2 (en) Composition for color converting member and production method of color conversion substrate using the same
TW200827396A (en) Fluorescent composition and fluorescence conversion substrate using the same
WO2008001693A1 (en) Fluorescent composition and fluorescence conversion substrate using the same
US10290558B2 (en) Transparent siloxane encapsulant and adhesive
KR102102560B1 (en) Quantum Dot Film and Wavelength Converting sheet for Display comprising Quantum Dot complex
TWI824082B (en) Quantum dot, quantum dot dispersion, quantum dot light converting composition, self-emission photosensitive resin composition, quantum dot light-emitting diode, quantum dot film, color filter, light converting laminated base material and display device
US10829687B2 (en) Additive stabilized composite nanoparticles
KR102237547B1 (en) A light converting resin composition, a light converting laminated substrate and a display device using the same
WO2006103908A1 (en) Organic ligands for semiconductor nanocrystals
JP2022166042A (en) Composition comprising semiconducting light-emitting nanoparticles having thiol functional surface ligands
US10759991B2 (en) Copolymeric stabilizing carrier fluid for nanoparticles
CN108026444B (en) Additive stabilized composite nanoparticles
WO2020204073A1 (en) Composition for cured-film formation, wavelength conversion film, light-emitting display element, and method for forming wavelength conversion film
JP2009108126A (en) Luminescent medium-forming composition, luminescent medium, organic el device, display device, and method for forming luminescent medium film
TW201936901A (en) Semiconductor-nanoparticle-containing composition, wavelength conversion film, light-emitting display element, and method for forming wavelength conversion film
JP2009091429A (en) Composition for forming light emitting medium, light emitting medium, organic el element, display device, and light emitting medium film forming method
WO2021161860A1 (en) Composition containing semiconductor nanoparticles, color filter, and image display device
JP2021128339A (en) Quantum dot dispersion and curable composition containing the same
JP2021504544A (en) Compositions containing semi-conducting luminescent nanoparticles
TW201842164A (en) Additive stabilized composite nanoparticles
KR20210121917A (en) Light Conversion Ink Composition, Color Filter and Display Device
KR20190110925A (en) A light converting resin composition, a light converting glass unit and a display device using the same
JP2021123724A (en) Quantum dots, quantum dot dispersion containing the same, curable composition, cured film, and image display device
CN116478680A (en) Quantum dot, quantum dot dispersion, light-converting curable composition, cured film formed using the composition, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07792944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP