WO2008035571A1 - Organic electroluminescence element - Google Patents

Organic electroluminescence element Download PDF

Info

Publication number
WO2008035571A1
WO2008035571A1 PCT/JP2007/067391 JP2007067391W WO2008035571A1 WO 2008035571 A1 WO2008035571 A1 WO 2008035571A1 JP 2007067391 W JP2007067391 W JP 2007067391W WO 2008035571 A1 WO2008035571 A1 WO 2008035571A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
group
light
organic
emitting layer
Prior art date
Application number
PCT/JP2007/067391
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiyuki Suzuri
Aki Nakata
Mitsuyoshi Naito
Hiroshi Kita
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2008535314A priority Critical patent/JP5556014B2/en
Publication of WO2008035571A1 publication Critical patent/WO2008035571A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to an organic electoluminescence device (hereinafter also referred to as "organic EL device”). More specifically, the present invention relates to an organic electroluminescent device having improved luminous efficiency, driving life and chromaticity of blue phosphorescence. Background art
  • ELD electoluminescence display
  • ELD constituent elements include inorganic electoluminescence elements (also referred to as “inorganic EL elements”) and organic electroluminescence elements (also referred to as “organic EL elements”).
  • Inorganic electoric luminescence elements require a high alternating voltage to drive the power-emitting elements that have been used as planar light sources.
  • an organic electoluminescence device has a structure in which a light emitting layer containing a light emitting compound is sandwiched between a cathode and an anode, and electrons and holes are injected into the light emitting layer for recombination.
  • Excitons excitons
  • fluorescence 'phosphorescence fluorescence 'phosphorescence
  • the organic EL element is expected to be used as a thin film display, illumination, and backlight.
  • Non-Patent Documents 1 and 2 and Patent Document 1 phosphorescent materials have been developed since organic EL elements with higher luminance and efficiency can be obtained (see, for example, Non-Patent Documents 1 and 2 and Patent Document 1). This is because conventional phosphors emit light from excited singlets, and the production ratio of singlet excitons to triplet excitons is 1: 3. On the other hand, in the case of a phosphorescent material that utilizes light emission from excited triplets, the upper limit of internal quantum efficiency is 100 due to the exciton generation ratio and internal conversion from singlet excitons to triplet excitons. Therefore, in principle, the luminous efficiency is up to four times that of fluorescent materials.
  • Patent Document 1 U.S. Pat.No. 6,097,147
  • Non-patent literature 1 MA Baldo et al., Nature, 395, 151-; 154 (1998)
  • Non-patent literature 2 MA Baldo et al., Nature, 403, 17, 750-753 (200) 0 years)
  • the present invention has been made in view of the above problems, and a problem to be solved is to provide an organic electroluminescent device with improved blue phosphorescence efficiency, driving life and chromaticity. is there. Furthermore, it is providing the organic electroluminescent element which can take out white light emission including the said blue phosphorescence.
  • the present inventor controls the behavior of excitons generated by recombination of electrons and holes (carriers) to solve the above-mentioned problems, thereby improving luminous efficiency, lifetime, chromaticity of emitted color, etc. From the viewpoint of improvement, the present inventors have intensively studied the chemical structure of the luminescent dopant, the structure of the luminescent layer, the adjustment of the emission wavelength, and the like, and as a result, the present invention has been achieved.
  • An organic electroluminescent element comprising an anode, a light emitting layer unit having a plurality of light emitting layers, and a cathode, wherein at least two of the plurality of light emitting layers are represented by the following general formula (BD1
  • An organic electroluminescent device comprising a phosphorescent compound represented by the formula: [0012] [Chemical 1]
  • R represents a substituent.
  • Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
  • nl represents an integer of 0 to 5.
  • B to B are carbon atoms, nitrogen atoms, oxygen atoms or
  • M is 8 in the periodic table
  • X and X are each a carbon atom, nitrogen atom or oxygen atom
  • L represents an atomic group that forms a bidentate ligand together with X and X.
  • m2 is a force representing an integer of 0, 1 or 2
  • ml + m2 is 2 or 3.
  • the ionization potential (Ip) An organic electoluminescence device characterized by the following formula:
  • R, R and R each represent a substituent.
  • Z is necessary to form a 5- to 7-membered ring
  • nl represents an integer of 0 to 5.
  • M is group 8 to 1 in the periodic table
  • X and X each represent a carbon atom, a nitrogen atom or an oxygen atom
  • L represents a group of atoms that together with X and X form a bidentate ligand.
  • ml is 1, 2 or
  • R in the above general formula (AR1) is a substituent having a steric parameter value (Es value) of -0.5 or less.
  • R is the same as R.
  • M3 represents an integer from 0 to 4.
  • each of the electroluminescent luminescence spectra emitted from the at least two light emitting layers has a maximum emission wavelength ( ⁇ max), wherein the difference in max) is 20 nm or more.
  • the organic electoluminescence device according to any one of 1 to 7 above, which contains the compound represented by the general formula (BD 1) and has at least two luminescences
  • the organic electroluminescent device according to any one of 1 to 8, wherein the at least two light-emitting layers contain a host compound, and the at least two light-emitting layers are common.
  • An organic electoluminous element comprising: a host compound.
  • an organic EL element that emits relatively stable phosphorescence is obtained by including the compound represented by the general formula (BD1) in the light emitting layer. thing Can do.
  • a light emitting layer of completely different color for example, a light emitting layer of blue light (B), green light (G), red (R) light
  • B blue light
  • G green light
  • R red
  • the organic electroluminescent device of the present invention is an organic electroluminescent device comprising an anode, a light emitting layer unit having a plurality of light emitting layers, and a cathode, wherein at least two of the plurality of light emitting layers are provided.
  • the light emitting layer contains a compound represented by the general formula (BD1).
  • the organic electoluminescence device of the present invention is composed of components such as a support base (substrate), electrodes, and organic layers having various functions. Specific examples of preferred configurations are shown below, but the present invention is not limited thereto.
  • the “light emitting layer unit” is a structural unit having a plurality of light emitting layers, and refers to an organic layer laminated from the light emitting layer on the most anode side to the light emitting layer on the most cathode side.
  • Each light emitting layer is composed of an organic layer containing a light emitting compound having a different emission color. Note that it is also a preferable aspect that the unit has a non-light emitting intermediate layer between the light emitting layers.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is within the layer of the light emitting layer. Even the interface between the light emitting layer and the adjacent layer may be used.
  • the light emitting layer unit includes a plurality of light emitting compounds containing two or more kinds of luminescent compounds having different emission peaks, each having an emission maximum wavelength in the range of 430 to 480 nm, 510 to 550 nm, and 600 to 640 nm. It can also consist of layers. Even if the unit has a non-light emitting intermediate layer between each light emitting layer and is composed of a plurality of light emitting layers, it contains two or more kinds of light emitting compounds having different light emission peaks in a single layer. Two or more different types of light emission may be emitted.
  • the light emitting layer unit has at least three light emitting layers.
  • the organic electoluminescence device of the present invention is characterized in that at least two light emitting layers among the plurality of light emitting layers constituting the light emitting layer unit contain a phosphorescent compound represented by the general formula (BD1). And By using the phosphorescent compound as a luminescent dopant, a relatively stable phosphorescent organic EL device can be obtained.
  • BD1 phosphorescent compound represented by the general formula (BD1).
  • the phosphorescent compound represented by the general formula (BD1) contained in the at least two light emitting layers differs depending on each light emitting layer. As a result, it is possible to dramatically achieve high luminous efficiency and long life.
  • the general formula (A) BD1) is a phosphorescent compound represented by the general formula (BD1) contained in the luminescent dopant A, a compound further contained in the luminescent layer A is a host compound A, and a luminescent layer B.
  • the photocompound is the light-emitting dopant B and the compound further contained in the light-emitting layer B is the host compound B, it is preferable that the following formula holds for the ionization potential (Ip).
  • the at least two light emitting layers contain a host compound and the at least two light emitting layers contain a common host compound.
  • the ionization potential should be measured with an atmospheric photoelectron spectrometer (for example, AC-1, AC-2, and AC-3 (manufactured by Riken Keiki Co., Ltd.)) or an ultraviolet photoelectron spectrometer (UPS). Is possible.
  • an atmospheric photoelectron spectrometer for example, AC-1, AC-2, and AC-3 (manufactured by Riken Keiki Co., Ltd.)
  • UPS ultraviolet photoelectron spectrometer
  • the film is formed on Onm and measured.
  • an organic thin film is formed to a thickness of 20 nm on a substrate having a gold thin film deposited on a silicon wafer.
  • Ip (host) can be measured by the above method.
  • the force Ip (dopant) may be difficult by the above method.
  • Ip dopant
  • a film in which a dopant and a host are doped to a predetermined concentration. Shi
  • the Ip peak of the dopant overlaps with the Ip peak of the host compound, which may be difficult to detect.
  • measurement may be performed by doping an optically inactive material only with a dopant.
  • optically inactive material examples include polyacrylate, polystyrene, and siloxane.
  • measurement may be performed by the cyclic voltammetry method (CV).
  • the measured value in this case must be converted to Ip because the oxidation potential is determined by the potential difference from the reference electrode.
  • the estimated value can be calculated by calibrating the CV value and Ip value with a known material. Examples of known materials include NPD, TPD, m-MTDATA, and the like.
  • the electroluminescent emission color is blue using the compound.
  • the difference between the maximum emission wavelengths ( ⁇ max) of the respective emission spectrums of the respective light emission from the at least two light emitting layers is within 3 ⁇ 40nm. It is preferable. In addition, when it is desired to obtain white light emission, it is also preferable that the difference between the maximum emission wavelengths ( ⁇ max) of the respective light emission luminescence spectra of the light emitted from the at least two light emitting layers is 20 nm or more. Better! /, One of the aspects. It is possible to adjust the chromaticity by selecting phosphorescent compounds having similar emission wavelengths.
  • an alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, tert butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.
  • cyclo Alkyl groups for example, cyclopentyl group, cyclohexinole group, etc.
  • alkenyl groups for example, bur group, allyl group, etc.
  • alkynyl groups for example, ethul group, propargyl group, etc.
  • aromatic hydrocarbon ring groups aromatic Also referred to as carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group,
  • Z represents a group of non-metallic atoms necessary for forming a 5- to 7-membered ring. Formed by Z 5 ⁇
  • Examples of the 7-membered ring include a benzene ring, naphthalene ring, pyridine ring, pyrimidine ring, pyrrole ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring and thiazole ring. Of these, a benzene ring is preferred.
  • B to B represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of them
  • the aromatic nitrogen-containing heterocycle formed by these five atoms is preferably a monocycle.
  • Examples thereof include a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, a tetrazole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazol ring, an oxadiazole ring, and a thiadiazole ring.
  • a pyrazole ring and an imidazole ring are preferable, and an imidazole ring is more preferable.
  • These rings may be further substituted with the above substituents.
  • Preferred examples of the substituent include an alkyl group and an aryl group, and more preferred is an aryl group.
  • L represents an atomic group forming a bidentate ligand together with X and X.
  • X — L — 2 represented by X
  • 1 1 2 1 1 2dentate ligand examples include, for example, substituted or unsubstituted phenylpyrrolidine, phenylpyrazonole, phenylimidazonole, phenyltriazolene, phenyltetrazole, virazol ball, Examples include picolinic acid and acetylacetone.
  • ml represents an integer of 1, 2 or 3
  • m2 represents a force of 0, 1 or 2 ml + m2 is 2 or 3.
  • m2 is preferably 0.
  • the metal represented by M includes a transition metal element of group 8 to group 10 of the periodic table (simply a transition).
  • iridium and platinum are preferred, and iridium is more preferred.
  • the phosphorescent compound represented by the general formula (BD1) according to the present invention has a polymerizable group or a reactive group!
  • the compound represented by the general formula (BD1) is preferably represented by the general formula (BD2).
  • R, R, and R each represent a substituent.
  • Z forms a 5- to 7-membered ring
  • nl represents an integer of 0 to 5.
  • B to B are carbon
  • M represents a metal of Group 8 to Group 10 in the periodic table.
  • X and X are carbon atoms
  • 1 1 2 represents a child, nitrogen atom or oxygen atom, L forms a bidentate ligand with X and X
  • ml represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • ml + m2 is 2 or 3.
  • R in the general formula (BD2) is represented by the general formula (AR1).
  • R in the general formula (AR1) has a stereo parameter value (Es value) of -0.5 or less.
  • R is the same as R.
  • M3 represents an integer from 0 to 4.
  • R to R in the general formula (BD2) have the same meaning as R1 in the general formula (BD1).
  • the "steric parameter value (Es value)" is a stereo parameter derived from chemical reactivity. The smaller this value is, the smaller! I can understand the group.
  • Es value will be described. In general, it is known that the effect of substituents on the progress of the reaction may only be considered as steric hindrance in the hydrolysis reaction of esters under acidic conditions.
  • the Es value is the numerical value of the steric hindrance of the substituent.
  • Es value of substituent X is the following chemical reaction formula
  • Es log (kX / kH)
  • the reaction rate decreases due to the steric hindrance of the substituent X, resulting in kX and kH, so the Es value is usually negative.
  • the above two reaction rate constants kX and kH are obtained and calculated by the above formula.
  • the Es value as defined in the present specification is that the hydrogen atom is not defined as 0 of the methyl group, and the methyl group is defined as 0. This is the Es value minus 1.24.
  • the Es value is not more than 0.5. Preferably it is 1 7.0 or more and 1 0.6 or less. Most preferably, it is 7.0 or more and 1 ⁇ 0 or less.
  • a ketoeenol tautomer when a ketoeenol tautomer may exist in a substituent having a steric parameter value (Es value) of ⁇ 0.5 or less, for example, R and ⁇ , the keto moiety is enol. Es value is converted as an isomer of ru. If other tautomerism exists, the Es value is converted using the same conversion method. Furthermore, substituents with an Es value of ⁇ 0.5 or less are preferably electron-donating substituents in terms of electronic effects.
  • the electron-donating substituent is a substituent having a negative Hammett ⁇ ⁇ value described below, and such a substituent is closer to the bonding atom side than the hydrogen atom. It has the characteristic of easily giving electrons.
  • Specific examples of the substituent exhibiting electron donating properties include a hydroxyl group, an alkoxy group (for example, methoxy group,), an acetyloxy group, an amino group, a dimethylamino group, an acetylamino group, an alkyl group (for example, a methyl group, Ethyl group, propyl group, t-butyl group, etc.) and aryl group (eg, phenyl group, mesityl group, etc.).
  • Hammett's ⁇ ⁇ value for example, the following documents can be referred to.
  • the Hammett ⁇ ⁇ value according to the present invention refers to Hammett's substituent constant ⁇ ⁇ .
  • Hammett's ⁇ ⁇ value is a substituent constant determined by Hammett et al. From the electronic effects of substituents on the hydrolysis of ethyl benzoate. “Structure-activity relationship of drugs” (Nanedo: 1979), “Substituent Constants ior Correlation Analysis in chemistry and biology "(C. Hansch and A. Leo, John Wiley & Sons, New York, 1971) can be cited.
  • the host compound and the light-emitting dopant also referred to as “light-emitting dopant” and “light-emitting dopant compound” contained in the light-emitting layer will be described.
  • the host compound contained in the light emitting layer of the organic EL device according to the present invention transfers the energy of excitons generated by the recombination of carriers on the compound to the light emitting compound (light emitting dopant: guest compound).
  • the compound that emits light from the light-emitting compound and the carrier on the host compound are trapped in the light-emitting compound, and excitons are generated on the light-emitting compound.
  • the light-emitting compound emits light.
  • the ratio of the host compound among the compounds contained in the light emitting layer is preferably 20% by mass or more! /.
  • known host compounds may be used alone or in combination of two or more. By using multiple types of host compounds, it is possible to adjust the movement of charges, and the organic EL device can be made highly efficient. In addition, by using a plurality of phosphorescent compounds used as a luminescent dopant described later, it becomes possible to mix different luminescence, thereby obtaining an arbitrary luminescent color. The type of phosphorescent compound and the amount of doping can be adjusted, and it can also be applied to lighting and knock lights.
  • Examples of the host compound according to the present invention include compounds represented by the following general formula (HI).
  • the compound is also preferably used in a layer adjacent to the light emitting layer (for example, a hole blocking layer).
  • represents an aromatic heterocyclic ring which may have a substituent, and ⁇ each has a substituent.
  • 1 2 represents an aromatic heterocycle or aromatic hydrocarbon ring that may be substituted, and ⁇ represents a divalent linking group.
  • R represents a hydrogen atom or a substituent.
  • the host compound used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a bur group or an epoxy group ( Vapor deposition polymerizable luminescent host).
  • a known host compound while having a hole transport ability and an electron transport ability, it is possible to prevent the emission of light from being long-wavelength and to have a high
  • the host compound has a phosphorescence emission energy of 2.9 eV or more and a glass transition temperature (Tg) force of 90 ° C. or more. More preferred is a compound having a temperature of 100 ° C or higher. Also save the organic EL device From the viewpoint of improving the property (also referred to as improving durability) and reducing the uneven distribution of the compound at the light emitting layer interface, it is preferable that the host compound has the same physicochemical characteristics or the same molecular structure.
  • the organic compound of each layer constituting the organic electroluminescent device of the present invention is characterized by containing a material having a glass transition temperature (Tg) of 100 ° C. or higher at least 80% by mass or more of each layer.
  • Tg glass transition temperature
  • the glass transition temperature (Tg) is DSC (Differential Scanning Colorimetry:
  • This value is obtained by a method based on JIS-K-7121 using the differential scanning calorimetry.
  • a host compound having the same physical characteristics as described above more preferably, by using a host compound having the same molecular structure, the entire organic compound layer (also referred to as an organic layer) of the organic EL element is used.
  • a uniform film property can be obtained, and the phosphorescence emission energy of the host compound can be adjusted to be 2.9 eV or more. Can be obtained.
  • the phosphorescent compound according to the present invention emits phosphorescence at room temperature.
  • host compounds and other compounds usually do not emit phosphorescence at room temperature. Therefore, it is necessary to measure at low temperature.
  • phosphorescence energy refers to the peak energy of the 0-0 transition band of the phosphorescence spectrum obtained when the emission vector is measured at room temperature or low temperature.
  • phosphorescence cannot be obtained usually at room temperature. Such compounds must be measured at low temperatures.
  • a thin film of about lOOnm is formed on a quartz substrate or a silicon wafer, and photoluminescence measurement is performed at a cryogenic temperature of 77K or less, preferably 4K. In this case, a spectrum with a mixture of fluorescence and phosphorescence is obtained. It is necessary to measure by setting a delay time from the time of light irradiation using a turret. However, in this method, the phosphorescence spectrum is very weak or almost no light emission can be obtained! /, In many cases. In such cases, it is preferable to measure in solution.
  • the phosphorescence vector may be slightly different between the thin film and the solution because the state is different from that in the thin film, but it is suitable for comparing materials relative to each other in measurement in the solution.
  • any solvent that can dissolve the compound may be used (substantially, the above-described measurement method has no problem because the solvent effect of the phosphorescence wavelength is negligible). .
  • the same thin film as the light-emitting layer that composes the element was prepared on the quartz substrate, and if necessary, sealed under nitrogen if necessary. taking measurement.
  • the force S which is a method for obtaining the 0-0 transition band, in the present invention, the 0 0 transition with the emission maximum wavelength appearing on the shortest wavelength side in the phosphorescence spectrum chart obtained by the above measurement method. It is defined as a band.
  • the phosphorescence spectrum is usually weak in intensity, it may be difficult to distinguish noise and peaks when enlarged.
  • the emission spectrum during excitation light irradiation (for convenience, this is called the steady light spectrum) is expanded, and the emission spectrum 100 ms after excitation light irradiation (for convenience, this is called the phosphorescence spectrum). It can be determined by reading the peak wavelength of the phosphorescence spectrum from the portion of the steady light spectrum derived from the phosphorescence spectrum.
  • by smoothing the phosphorescence spectrum it is possible to separate the noise and peak and read the peak wavelength. As the smoothing process, the Savitzky & Golay smoothing method or the like can be applied.
  • At least two light emitting layers are required to contain the phosphorescent compound represented by the above general formula (BD1), but can contain the compound as a light emitting dopant.
  • various luminescent compounds other than the phosphorescent compound represented by the general formula (BD1) can be used in combination as the luminescent dopant.
  • a phosphorescent compound also referred to as “phosphorescent compound”, “phosphorescent substance”, etc.
  • a fluorescent compound can be used as the luminescent dopant according to the present invention.
  • the luminescent dopant used in the light emitting layer and the light emitting unit of the organic EL device of the present invention (sometimes simply referred to as “light emitting material”) is as described above. It is necessary to contain at least one phosphorescent emitter simultaneously with the host compound. When using a fluorescent emitter together, it is preferable to select blue.
  • the phosphorescent compound according to the present invention (also referred to as “phosphorescent emitter” or “phosphorescent dopant”) is a compound in which light emission from an excited triplet is observed.
  • a preferred phosphorescence quantum yield is 0.1 or more.
  • the phosphorescence quantum yield can be measured by the method described in Spectroscopic II, pp. 398 (1992 edition, Maruzen), 4th edition Experimental Chemistry Course 7.
  • the phosphorescence emitter according to the present invention achieves the above phosphorescence quantum yield (0.01 or more) in any solvent. Just do it.
  • the energy transfer type in which light is emitted from the phosphorescent emitter by being transferred to the body, and the other is that the phosphorescent emitter becomes a carrier trap, and carrier recombination occurs on the phosphorescent emitter, causing phosphorescence emission.
  • the phosphorescent material can be appropriately selected from known materials used for the light emitting layer of the organic EL device.
  • the phosphorescent emitter according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound ( Platinum complex compounds) and rare earth complexes, most preferably iridium compounds.
  • red is selected from iridium compounds.
  • fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene. And dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors. Further, conventionally known dopants can also be used in the present invention.
  • the thickness of the non-light emitting intermediate layer is preferably in the range of 1 to 15 nm, and more preferably in the range of 3 to;! Onm range Forces suppress interaction such as energy transfer between adjacent light emitting layers, And it is preferable from the viewpoint of not giving a large load to the current-voltage characteristics of the element
  • the material used for the non-light emitting intermediate layer may be the same as or different from the host compound of the light emitting layer, but is the same as the host material of at least one of the adjacent light emitting layers. It is preferable that
  • the non-light-emitting intermediate layer may contain a compound common to each light-emitting layer (for example, a host compound), and each common host material (where a common host material is used) Phosphorescent light emission energy, when the physicochemical properties such as glass transition temperature are the same, or when the molecular structure of the host compound is the same, etc.)
  • a compound common to each light-emitting layer for example, a host compound
  • each common host material where a common host material is used
  • Phosphorescent light emission energy when the physicochemical properties such as glass transition temperature are the same, or when the molecular structure of the host compound is the same, etc.
  • the excited triplet energy of the blue phosphorescent emitter is the largest.
  • a host material having an excitation triplet energy larger than that of the blue phosphorescent emitter described above may be included as a common host material in the light emitting layer and the non-light emitting intermediate layer.
  • the host material is responsible for carrier transport
  • a material having carrier transport capability is preferable.
  • Carrier mobility is used as a physical property that expresses carrier transport ability, and carrier mobility of organic materials generally depends on electric field strength. Since materials with high electric field strength dependency easily break the hole / electron injection / transport balance, it is preferable to use materials with low mobility dependence on electric field strength for the intermediate layer and host material.
  • the non-light emitting intermediate layer functions as a blocking layer, that is, a hole blocking layer and an electron blocking layer. It is given as.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • a single hole or multiple hole transport layers can be provided.
  • the hole transport material has either injection or transport of holes and / or a barrier property of electrons, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives
  • Examples thereof include conductors, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N ′ —tetraphenylenol 4,4 ′ diaminophenol; N, N ′ —diphenyl N, N ′ —Bis (3-methylphenyl) -1- [1, 1′-biphenyl] -1,4,4′-diamin (TPD); 2,2 bis (4 di-p-tolylaminophenol) propane; 1-bis (4-di-l-triaminophenenyl) cyclohexane; N, N, N ', N'-tetra-l-trinore 4, A'-diaminobiphenyl; 1,1-bis- (4-di-
  • No. 5,061,569 for example, 4, 4 ′ bis [ N- (1-naphthyl) N phenylamino] biphenyl (NPD), three triphenylamine units described in JP-A-4 308688 are linked in a starburst type 4, 4 ', A "—Tris [N— (3-Methylphenyl) 1 N phenyla )] Triphenylamine (MTDATA), etc.
  • polymer materials in which these materials are introduced into the polymer chain or these materials as the main chain of the polymer can also be used.
  • Inorganic compounds such as p-type SiC can also be used as hole injection materials and hole transport materials.
  • the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. S can.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 51 111 to 5 111, preferably 5 to 200 nm. This hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004), and the like. It is done. In the present invention, it is preferable to use such a hole transport layer having a high rho property because a device with lower power consumption can be produced.
  • the electron transport layer is made of a material having a function of transporting electrons, and includes an electron injection layer and a hole blocking layer in a broad sense.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material used for the electron transport layer adjacent to the cathode side with respect to the light emitting layer is injected from the negative electrode.
  • any material can be selected from conventionally known compounds, such as nitro-substituted fluorene derivatives and diphenylquinone derivatives.
  • Thiopyran dioxide derivatives carpositimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • thiadiazole derivatives in which the oxygen atom of the oxaziazole ring is substituted with a sulfur atom
  • quinoxaline derivatives having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dibromo-1-8-quinolinol) ) Aluminum, Tris (2 methyl 8 quinolinol) aluminum, Tris (5 methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Metal complexes in which the central metal of these metal complexes is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials.
  • methanol-free or metal phthalocyanine or those having a terminal substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylvirazine derivative exemplified as the material for the light-emitting layer can also be used as an electron transport material.
  • inorganic semiconductors such as n-type Si and n-type SiC can also be used. Can be used as an electron transport material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 51 111 to 5 111, preferably 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials. It is also possible to use an electron transport layer having a high n property doped with impurities. Examples thereof include JP-A-4 29 7076, JP-A-10-270172, JP-A 2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004). ) And the like. In the present invention, it is preferable to use such an electron transport layer having a high ⁇ property because an element with low power consumption can be produced.
  • the injection layer is a layer that is provided between the electrode and the organic layer in order to lower the drive voltage and improve the luminance of the light emission.
  • the organic EL element and its industrialization front line June 30, 1998, NTS Corporation) Issue) ”, Chapter 2, Chapter 2,“ Electrode Materials ”(pages 123-166), which has a hole injection layer (one anode buffer layer) and an electron injection layer (one cathode buffer layer).
  • the injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer as described above.
  • anode buffer layer (hole injection layer)
  • examples include a phthalocyanine buffer layer represented by talocyanine, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • a phthalocyanine buffer layer represented by talocyanine
  • an oxide buffer layer represented by vanadium oxide
  • an amorphous carbon buffer layer an amorphous carbon buffer layer
  • a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • the details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-917574, JP-A-10-74586, and the like.
  • the thickness of the buffer layer (injection layer) is preferably in the range of 0.1 to 5111, although it depends on the material desired to be a very thin film.
  • the hole blocking layer has the function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes. By blocking the holes, the probability of recombination of electrons and holes can be improved.
  • the above-described configuration of the electron transport layer can be used as a hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, see pages 237 of JP-A-11-204258, JP-A-11-204359, and “OLEDs and the Forefront of Industrialization (issued on November 30, 1998 by TS Co., Ltd.)”. There is a hole blocking layer described.
  • the hole blocking layer it is preferable that 50% by mass or more of the compound contained in the hole blocking layer has an ionization potential of 0.2 eV or more greater than the host compound of the short-wave light emitting layer. If the hole blocking layer according to the present invention contains the electron donor, the electron density increases, which is preferable for further lowering the voltage.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes while having a remarkably small ability to transport electrons.
  • the electron blocking layer preferably used in the present invention is a material for the hole transport layer. Further, when the above-mentioned elector acceptor is contained, the effect of lowering the voltage can be obtained.
  • the film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 to;! OOnm More preferably, it is 5 to 30 nm.
  • the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) relating to the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc. Also, it may be transparent or opaque. It may be. In the case where light is extracted from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support base is a resin film capable of imparting flexibility to the organic EL element.
  • polyesterol such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cenorelose diacetate, cenorelose triacetate, cellulose acetate butyrate, and cellulose acetate propionate.
  • CAP senorelose acetate phthalate
  • TAC senorelose esters
  • senorelose nitrate or their derivatives, polyvinylidene chloride, polybulu alcohol, poly (ethylene butyl alcohol), syndiotactic polystyrene, polycarbonate, norbornene resin , Polymethylpentene, Polyetherketone, Polyimide, Polyethersulfone (PES), Polyphenylene sulfide, Polysulfones, Polyether Cycloolefin resins such asucimide, polyether ketone imide, polyamide, fluororesin, nylon, polymethylmetatalylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or pearl (trade name, manufactured by Mitsui Chemicals) Etc.
  • the surface of the resin film may have an inorganic or organic coating or a hybrid coating of both.
  • a material for forming a barrier film formed on the surface of a resin film in order to obtain a high barrier film it has a function of suppressing intrusion of elements such as moisture and oxygen that cause deterioration of the element.
  • silicon oxide, silicon dioxide, silicon nitride or the like can be used as long as it has a material.
  • the formation method of the noria film for example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma weighting.
  • a method using an atmospheric pressure plasma polymerization method as described in JP-A No. 2004-68143 is particularly preferable.
  • the opaque support substrate include metal plates such as aluminum and stainless steel, film opaque resin substrates, ceramic substrates, and the like.
  • the external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL device / the number of electrons sent to the organic EL device ⁇ 100.
  • Examples of the sealing means used for sealing the organic EL element of the present invention include a method in which a sealing member, an electrode, and a support base are bonded with an adhesive.
  • the sealing member may be in the form of a concave plate or a flat plate as long as it is disposed so as to cover the display area of the organic EL element.
  • transparency and electrical insulation are not particularly limited. Specific examples include a glass plate, a polymer plate 'film, and a metal plate' film.
  • Examples of the glass plate include sodalite ash glass, norium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
  • polymer plate examples include polycarbonate, attalinole, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • a polymer film and a metal film can be preferably used because the device can be thinned.
  • the polymer film JIS K 7129- 19 92 water vapor permeability measured by the method conforming to (25 ⁇ 0. 5 ° C, relative humidity (90 ⁇ 2)% RH) is, 1 X 10- 3 g / (m 2 '24h) following barrier film it is preferred instrument further a is, JIS K 7126- oxygen permeability force 1 was measured by the method conforming to the 1987 X 10- 3 ml / m 2 ' 24h 'atm or less, the water vapor transmission rate (25 ⁇ 0. 5 ° C, relative humidity (90 ⁇ 2)% RH) is, 1 X 10- 3 g / ( m 2 - 24h) are the following high barrier film I like it! /
  • the sealing member is processed into a concave shape by sandblasting, chemical etching, or the like.
  • adhesives include photocuring and thermosetting adhesives having a reactive bur group of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanacrylic acid esters. Can be mentioned.
  • heat- and chemical-curing type such as epoxy type can be mentioned.
  • hot-melt polyamides, polyesters and polyolefins it is possible to list hot-melt polyamides, polyesters and polyolefins.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • the organic EL element may be deteriorated by heat treatment, an element that can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print it like screen printing.
  • the electrode and the organic layer are covered on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of the element such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride Etc. can be used.
  • the method for forming these films is not particularly limited, for example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam method.
  • An ion plating method, a plasma polymerization method, an atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected in the gas phase or liquid phase. This is preferred.
  • a vacuum can also be used.
  • a hygroscopic compound can be enclosed inside.
  • the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.) ), Metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchloric acids (eg, perchloric acid). Barium chlorate, magnesium perchlorate, etc.), and anhydrous salts are preferably used for sulfates, metal halides and perchloric acids.
  • a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the force that can be used for this S The material that can be used for the same glass plate, polymer plate 'film, metal plate' film, etc. used for the sealing, because it is lightweight and thin. It is preferable to use a polymer film.
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as Cul, indium tinoxide (ITO), SnO, and ZnO.
  • conductive transparent materials such as Cul, indium tinoxide (ITO), SnO, and ZnO.
  • ITO indium tinoxide
  • ZnO ZnO
  • an amorphous material such as IDIXO (In 2 O—ZnO) that can form a transparent conductive film may be used.
  • IDIXO In 2 O—ZnO
  • a thin film is formed from these electrode materials by a method such as vapor deposition or sputtering, and a desired photolithography method is used.
  • the pattern is formed through a mask of the desired shape during the deposition or sputtering of the electrode material. Also good. Or when using the substance which can be apply
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al O) mixture, indium, lithium / aluminum mixture, rare earth metal etc.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O) mixture, lithium /
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is preferably 10 to 5 111, preferably 50 to 200 nm.
  • an organic-electric-luminescence element for backlights it is usually desirable that light be emitted in all directions so that the brightness does not change even if the viewing angle changes, but depending on the usage, the front brightness is higher.
  • the light extraction efficiency can be improved using these as long as the object effects are not impaired. I can do it.
  • the first diffusion plate is placed in contact with the surface of the glass substrate opposite to the light emitting layer.
  • the first lens sheet for example, 3M BEF ⁇ ⁇
  • the second lens sheet is Position the lens so that it is perpendicular to the lens stripe and the lens surface faces away from the glass substrate.
  • a second diffuser plate is placed in contact with the second lens sheet.
  • the shape of the first and second lens sheets is such that a ⁇ -shaped stripe having an apex angle of 90 degrees and a pitch of 50 m is formed of acrylic resin on a PET base material. Shapes with rounded apex angles (3M RBEF), shapes with randomly changing pitches (3M BEF 111), and other similar shapes.
  • the first diffusion plate is a film that is made by mixing beads that diffuse light on a PET substrate of about 100 m. The rate is about 85% and the haze value is about 75%.
  • the second diffusion plate is a film in which beads for diffusing light are mixed on a PET substrate of about 100 nm, with a transmittance of about 90% and a haze value of about 30%.
  • the diffusion plate arranged in contact with the glass substrate may be bonded to the glass substrate via an optical adhesive. Further, a layer that diffuses light directly on the surface of the glass substrate may be directly applied, or a fine structure for diffusing light on the surface of the glass substrate may be provided. As described above, the force S described for the glass substrate and the substrate may be a resin substrate.
  • a microlens array sheet is optically applied to the surface of the glass substrate opposite to the surface on which the organic light emitting layer is provided. Paste through adhesive.
  • Each microlens array sheet has a shape of 50m squares (pyramids) and microlenses whose apex angle is 90 degrees aligned at 50m pitch.
  • the sheet is manufactured by injecting a UV curable resin between a metal mold that is the mother mold of the microlens array and a glass plate placed with a 0.5 mm spacer between the glass substrate and the glass substrate.
  • the resin is cured by UV exposure to obtain a microlens array sheet.
  • a conical shape, a triangular pyramid shape, a convex lens shape, or the like is applicable.
  • the microlens array sheet may be attached to the resin substrate.
  • the transparent lens / organic light emitting layer / electrode / sealing layer may be provided on the surface opposite to the surface on which the microlens array of the microlens array sheet is provided.
  • a microlens array sheet is placed on the surface of the glass substrate opposite to the surface on which the organic light emitting layer is provided. Then, the microlenses are pasted with an optical adhesive so that the uneven surface of the microlens faces the glass substrate.
  • the microlens array sheet has a shape in which microlenses having a structure in which the apexes of a rectangular shape each having a side of 50 am are flat are aligned at a pitch of 50 am. The flat top portion is adhered to the surface of the glass substrate.
  • each microlens a conical shape, a triangular pyramid shape, a convex lens shape, or the like can be applied.
  • the microlens array sheet may be attached to the resin substrate.
  • a low refractive index layer between the transparent electrode and the transparent substrate.
  • a low refractive index medium is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.
  • the low refractive index layer include air mouth gel, porous silica, magnesium fluoride, and fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to about 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
  • the thickness of the low refractive index medium is longer than the wavelength in the light medium, preferably twice or more. This is because the effect of the low-refractive index layer is reduced when the thickness of the low-refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate. Examples of the low refractive index layer according to the present invention will be described below, but the present invention is not limited to these examples as long as the object effects are not impaired.
  • a method for producing a glass substrate in which hollow silica is dispersed by a zonore gel method to form a low refractive index layer will be described.
  • a low refractive index layer can be formed on a glass substrate by the following procedure.
  • Metal alkoxide original tetraethyl silicate Si (OC H): abbreviated as “TEOS”
  • a low refractive index layer having a thickness of 0. ⁇ ⁇ ⁇ refractive index 1.37 is formed.
  • spin coating is described as the solution coating method, but any method that can obtain a uniform film thickness, such as dip coating, may be used.
  • Force showing glass substrate as substrate process temperature Since the force is S150 ° C or less, it can be applied directly on the resin substrate. Further effects can be expected by selecting a lower refractive index and refractive index as the raw material compound or low refractive index material and making the resulting low refractive index layer have a refractive index of 1.37 or less.
  • the film thickness is preferably not less than 0. ⁇ m; more preferably not less than m.
  • hollow silica is described in, for example, JP-A-2001-167637, JP-A-2001-233611, JP-A-2002-79616, and the like.
  • the transparent low refractive index layer is formed by a silica air mouth gel obtained by supercritical drying of a wet gel formed by a sol-gel reaction of silicon alkoxide.
  • Siri-force air mouth gel is a light-transmitting porous material with a uniform ultra-fine structure.
  • Liquid A was prepared by mixing tetramethoxysilane oligomer and methanol
  • liquid B was prepared by mixing water, aqueous ammonia, and methanol.
  • the alkoxysilane solution obtained by mixing the A and B solutions is applied onto the substrate 2.
  • the alkoxysilane is gelled, it is immersed in a curing solution of water, aqueous ammonia and methanol, and then cured at room temperature for one day and night.
  • the cured thin gel compound is immersed in an isopropanol solution of hexamethyldisilazane, hydrophobized, and then subjected to supercritical drying to form a silica air
  • a film of low dielectric constant material containing water repellent hexamethyldisiloxane or hexamethyldisilazane as a low refractive index material is applied to a substrate.
  • water-repellent materials such as hexamethyldisiloxane and hexamethyldisilazane
  • alcohol or butyl acetate may be added as an additive to the solution of the low dielectric constant material used here, if necessary.
  • a low refractive index film made of a porous silica material is formed by evaporating the solvent, water, acid, alkali catalyst, surfactant, or the like in the solution of the low relative dielectric constant material by firing treatment or the like. This is washed to obtain a low refractive index film.
  • an intermediate layer is formed on the low refractive index film directly or with a transparent insulating film made of a SiO film by, for example, RF sputtering, After that, an ITO film is formed on the intermediate layer by DC sputtering to form a substrate with a transparent electrode.
  • JP-A-11-283751 As described in Japanese Patent Application No. 2005-48686, etc., it is preferable to use a method of introducing a diffraction grating in an interface or any medium that causes total reflection.
  • a diffraction grating is formed on a glass substrate.
  • This method utilizes the property that the direction of light can be changed to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction or second-order diffraction.
  • Bragg diffraction such as first-order diffraction or second-order diffraction.
  • the light that cannot go out due to total reflection between layers is introduced by introducing a diffraction grating in any layer or medium (in the transparent substrate or transparent electrode). It is intended to diffract and take out light. It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index.
  • the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength in the medium of the light to be amplified.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb irregularity.
  • a glass-type resist is applied to the surface after washing the glass substrate.
  • two parallel lights with coherent wavelengths are irradiated onto the resist so that they face each other at an angle of ⁇ from the vertical direction of the substrate.
  • interference fringes having a pitch d are formed in the resist.
  • d / (2cos ⁇ ).
  • the substrate is rotated 90 degrees in the plane of the substrate to form a second interference fringe so as to be orthogonal to the first interference fringe. If the light beam to be exposed is kept as it is, second interference fringes are formed at a pitch of 300 nm.
  • the resist is exposed with two interference fringes superimposed to form a grid-like exposure pattern.
  • Appropriate exposure power and development conditions By setting, development is performed so that the resist is removed only in the areas where the two fringes overlap and are strongly exposed.
  • a pattern is formed in which the resist is removed in a substantially circular shape at the overlapping part of the lattices with vertical and horizontal pitches of 300 nm each.
  • the diameter of the circle is, for example, 220 nm.
  • etching is performed to form a hole with a depth of 200 nm in the portion where the range is removed. Thereafter, the resist is removed and the glass substrate is washed. As a result, a glass substrate is formed in which holes having a depth of 200 nm and a diameter of 220 nm are arranged on the surface at the apexes of a square lattice of 300 nm vertically and horizontally.
  • an ITO film with a film thickness of about 300 nm as measured from the bottom of the hole is formed by bias sputtering, and the surface irregularities are flattened to 50 nm or less by appropriately controlling the bias sputtering conditions. Power S can be.
  • a glass substrate with ITO for organic EL is formed.
  • a glass mold is formed by a similar method, and a UV-curable resist is transferred onto the glass substrate by a nanoimprint method.
  • a method of etching the glass substrate is also possible.
  • the pattern formed on the glass substrate is transferred to a mold by a technique such as nickel electroplating, and the mold is transferred to a resin by a nanoimprint technique. Can be implemented.
  • the front luminance amplification factor is increased.
  • the emission color is classified into blue light of 420 nm or more and less than 500 nm, green light of 500 nm or more and less than 550 nm, and red light of 600 nm or more and less than 650 nm. Accordingly, the force that varies depending on the material that emits light (substantially a dopant).
  • the front luminance peak value of the organic-electric-luminescence element in the absence of the light extraction and / or condensing sheet is On the other hand, qualitatively, blue is the smallest ratio.
  • the organic electroluminescent mouth luminescence element Since the blue color is generally rate-determined in the lifetime in continuous driving or the like, when such a light extraction and / or condensing sheet is used, the organic electroluminescent mouth luminescence element is used. And a longer service life is possible.
  • the driving voltage is limited by blue, which has the largest energy gap between HOMO and LUMO. Therefore, the organic EL element with improved light extraction has a design that requires less blue front luminance and can be driven. The voltage can be lowered.
  • the blue light-emitting layer can be made thinner and the driving voltage can be lowered, so that a longer life can be achieved compared to the case where there is no light extraction and / or light collecting sheet. It is possible to obtain white light.
  • the amplification factor of the front luminance by the light extraction and / or condensing sheet is measured by using a spectral radiance meter (for example, CS-1000 (manufactured by Konica Minolta Sensing)) or the like.
  • the brightness (2 ° C viewing angle front brightness) is set so that the optical axis of the spectroradiometer matches the normal from the light-emitting surface with or without the light extraction and / or condensing sheet.
  • the emission color of the organic electoluminescence device of the present invention and the compound related to the device is shown in Fig. 4.16 on page 108 of "New Color Science Handbook" (edited by the Japan Society for Color Science, University of Tokyo Press, 1985). It is determined by the color when the result measured with the luminance meter CS-1000 (Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.
  • a desired electrode material for example, a thin film of material force for an anode is formed on a suitable support substrate
  • An anode is produced by forming the film so as to have a film thickness of ⁇ m or less, preferably 10 to 200 nm, by vapor deposition or sputtering. Next, an organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic EL element materials, is formed thereon. Make it.
  • Film in the case of employing an evaporation method different forces generally boat temperature 50 to 450 ° C such as the type of compound the deposition conditions used, the degree of vacuum 10- 6 to 10-2 Pa, the deposition rate 0.01 to 50 belly / second, substrate temperature—50 to 300. C, film thickness 0.1 to 5, preferably 5 to 200 nm.
  • a thin film made of a cathode material is formed thereon; m or less, and preferably formed by a method such as vapor deposition or sputtering so as to have a film thickness in the range of 50 to 200 nm.
  • the organic EL device is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere. In addition, it is also possible to reverse the production order to produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the positive electrode in this order.
  • a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the anode as + and the cathode as one polarity.
  • An alternating voltage may be applied.
  • the applied alternating current waveform may be arbitrary.
  • the organic electoluminescence element of the present invention can be used as a display device, a display, or various light sources.
  • light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sensors.
  • the light source include, but are not limited to, a light source and the like.
  • the light source can be effectively used as a backlight of a liquid crystal display device combined with a color filter or a light source for illumination.
  • Organic electric of the present invention In the case of a ToroRolminine sensor element, if necessary, it is necessary to use a metal mask during the film formation.
  • Patter patterning may be applied by the tinning method or the like. . In the case of patterning, it is possible to pattern the electrode electrode only, or the electrode electrode and the light emitting / emitting layer. You can either change the pattern, or you can pattern all layers of the element. .
  • the table display device can be used for a multi-color or white-white table display device.
  • a film can be formed by shaping.
  • conducting the patterning of the light emitting / emitting light layer there is no limit to the method, but it does not matter. These are the vapor deposition method, the ink jet method, and the printing method. .
  • the positive voltage is set to ++
  • the negative electrode is set to the same polarity, and a voltage of about 22VV to 4400VV is applied. If this is done, the emitted light can be generated by observation. . In addition, even if an electric voltage is applied with reverse polarity, the electric current does not flow and the emitted light is not generated at all. Good. .
  • the positive and negative electrodes are in a state of ++ and the negative and negative electrodes are in a single state. It emits light only when it is no longer visible. .
  • the wave waveform shape of the alternating current to be applied with the mark may be arbitrarily determined. .
  • light emission and emission light source lighting for home / house garden, interior lighting for car interior, back clock light for liquid crystal crystal, Signboard board advertising, light signal machine, light source of optical storage media, light source of electrophotographic photocopy machine, light transmission
  • the light source source of the communication processing processor, the light source source of the light sensor, etc. are listed, but these are not limited to these. .
  • the organic element EELL element of the present invention is used as a kind of lalamp lamp for illumination and light source. It's fine, and it's a professional type of projector that projects and projects image images, static still image images, and moving image images. It may be used as a display display device (type display) for the type of display that directly recognizes the image directly. .
  • the driving method is the simple simple mammary trix ((Pappa Shishibubu Mama Tori Rikukususu)) Even in the method
  • [[00118800]] contains a phosphorinous photosensitizing compound represented by the above general formula ((BBDD11)). Emits blue-blue light ((BB)) In addition to the light emitting layer that emits green light (G) and red (R) light, an organic EL device capable of extracting white light with improved chromaticity can be obtained. .
  • patterning may be performed by a metal mask, an ink jet printing method, or the like, as necessary, during film formation.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned.
  • the light emitting material used for the light emitting layer is not particularly limited.
  • the gold complex according to the present invention is also known so as to conform to the wavelength range corresponding to the CF (color filter) characteristics. Any one of the light emitting materials may be selected and combined, or combined with the light extraction and / or light collecting sheet according to the present invention to be whitened.
  • the white organic EL element used in the present invention is combined with the CF (color filter), and the element and the drive transistor circuit are arranged in accordance with the CF (color filter) pattern.
  • CF color filter
  • white light extracted from the organic-electric-luminescence element as a backlight
  • blue light, green light, and red light are obtained via a blue filter, a green filter, and a red filter.
  • a full-color organic-elect-luminous luminescence display is preferable.
  • various light-emitting light sources and lighting devices such as household lighting, interior lighting, and a kind of lamp such as an exposure light source
  • display devices such as backlights of liquid crystal display devices, etc.
  • backlights such as watches, signboard advertisements, traffic lights, light sources such as optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc., and display devices are also required. Wide range of uses such as general household appliances.
  • LOOmmX lOOmm X l As a positive electrode, put a pattern on a substrate (NATechno glass NA45) made of ITO (indium tin oxide) on lOOnm on a 1mm glass substrate. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • a substrate NATechno glass NA45
  • ITO indium tin oxide
  • dopant A and host A listed in Tables 2 to 4 were vapor-deposited at the vapor-deposition rates in the table to form a light-emitting layer A. Subsequently, dopant B and host B described in Tables 2 to 4 were deposited at the deposition rate in the table to obtain a light emitting layer B. As a hole blocking layer, the compound HBL1 was deposited by 10 nm.
  • the heating boat containing BAlq was energized and heated, and deposited on the hole blocking layer 1 at a deposition rate of 0. Inm / sec to provide an electron transport layer having a thickness of 20 nm.
  • the substrate temperature during vapor deposition was room temperature.
  • ⁇ ⁇ ( ⁇ ) in the table represents Ip (host compound A) —Ip (dopant A), and ⁇ ⁇ ( ⁇ ) « ⁇ ⁇ (host compound B) -Ip (dobanton).
  • External quantum efficiency and chromaticity are the values when 2.5 mA / cm 2 constant current is applied to the device.
  • the lifetime is the time when the luminance is halved at an initial luminance of 300 cd / m 2 .
  • Invented organic EL device 1 5 10.7 0.18, 0.38 2900
  • Invented organic EL device 1 6 10.1 0.17, 0.38 7000
  • the phosphorescent dopant of the light emitting layer A used in the examples exhibits blue light emission, but the chromaticity can be adjusted by changing the light emission ratio of the light emitting layer A. In this case, the effects of efficiency and life can be obtained in the same way.
  • Table 5 shows the maximum emission wavelengths of the phosphorescent dopants used in the examples.
  • Organic EL elements 3-1 and 3-2 were prepared in the same manner as in Example 1 except for the light emitting layer. Light emitting layer is front
  • the lifetime is the time when the luminance is halved at an initial luminance of 300 cd / m 2 , as a value relative to the element 3-3. Larger values indicate longer life.
  • the light emitting layer A emitted green light, the light emitting layer B emitted blue light, the light emitting layer C emitted red light, and the elements 3-1 to 3-3 emitted white light.
  • the light-emitting layer B uses the same phosphorescent dopant.
  • the ITO transparent electrode is formed after patterning on a substrate ( ⁇ Techno Glass Co., Ltd. 45-45) made of ITO (Indium Toxide) on a lOOmmX lOOmm X l. 1mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • PEDOT / PSS polystyrene sulfonate
  • the substrate was transferred to a nitrogen atmosphere, and a solution of lOOmg Host4 and lOmg BD1-79 dissolved in 10ml toluene was formed by spin coating at 3000rpm for 30 seconds. did. Further, a solution obtained by dissolving lOOmg Host5 and lOmg BD1-99 in a mixed solvent of 10 ml of methylene chloride-methanol (1: 9) was formed by the spin coating method at 3000 rpm for 30 seconds. did.
  • Host4 does not dissolve in a mixed solvent of methylene chloride and methanol (1: 9) in which Host5 is dissolved, a laminated structure can be formed.
  • Heating was performed in a vacuum at 60 ° C for 1 hour to form two light-emitting layers.
  • Lithium fluoride 0.5 nm was deposited as a cathode buffer layer and aluminum lOnm was deposited as a cathode to form a cathode, whereby an organic EL device 41 was produced.
  • the organic EL device of the present invention can also be produced by coating.
  • an organic EL element obtained by coating can achieve the same effect as in Example 1.

Abstract

Disclosed is an organic electroluminescence element which is improved in efficiecy of emitting blue phosphorescent light, service life and chromaticity. Also disclosed is an organic electroluminescence element which can extract white light including the blue phosphorescent light. The organic electroluminescence elements are characterized by comprising an anode, a light-emitting layer unit having multiple light-emitting layers and a cathode, wherein each of at least two of the multiple light-emitting layers contains a phosphorescent compound represented by the general formula (BD1) (1).

Description

明 細 書  Specification
有機エレクト口ルミネッセンス素子  Organic electoluminescence device
技術分野  Technical field
[0001] 本発明は有機エレクト口ルミネッセンス素子(以下「有機 EL素子」ともいう。)に関す る。より詳しくは、青色リン光の発光効率、駆動寿命及び色度が改善された有機エレ タトロルミネッセンス素子に関する。 背景技術  [0001] The present invention relates to an organic electoluminescence device (hereinafter also referred to as "organic EL device"). More specifically, the present invention relates to an organic electroluminescent device having improved luminous efficiency, driving life and chromaticity of blue phosphorescence. Background art
[0002] 発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレイ(EL D)がある。 ELDの構成要素としては、無機エレクト口ルミネッセンス素子(「無機 EL素 子」ともいう。)や有機エレクト口ルミネッセンス素子(「有機 EL素子」ともいう。)が挙げ られる。無機エレクト口ルミネッセンス素子は平面型光源として使用されてきた力 発 光素子を駆動させるためには交流の高電圧が必要である。  As a light-emitting electronic display device, there is an electoluminescence display (EL D). Examples of ELD constituent elements include inorganic electoluminescence elements (also referred to as “inorganic EL elements”) and organic electroluminescence elements (also referred to as “organic EL elements”). Inorganic electoric luminescence elements require a high alternating voltage to drive the power-emitting elements that have been used as planar light sources.
[0003] 一方、有機エレクト口ルミネッセンス素子は自己発光 (発光する化合物を含有する 発光層を、陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再 結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の 光の放出(蛍光'リン光)を利用して発光する素子)のため、視認性に優れ、かつ数 V 〜数十 Vの低電圧駆動が可能なため駆動回路を含めた軽量化が可能である。  [0003] On the other hand, an organic electoluminescence device has a structure in which a light emitting layer containing a light emitting compound is sandwiched between a cathode and an anode, and electrons and holes are injected into the light emitting layer for recombination. Excitons (excitons) are generated, and light is emitted when the excitons are deactivated (fluorescence 'phosphorescence). Therefore, it is excellent in visibility and several V to several tens Since V can be driven at a low voltage, the weight including the drive circuit can be reduced.
[0004] そこで、有機 EL素子は、薄膜型ディスプレイ、照明、バックライトとしての活用が期 待されている。  [0004] Therefore, the organic EL element is expected to be used as a thin film display, illumination, and backlight.
[0005] より高輝度 ·高効率の有機 EL素子が得られることから、近年、リン光発光材料の開 発が進められている (例えば、非特許文献 1、 2、特許文献 1参照。)。これは、従来の 蛍光体からの発光が励起一重項からの発光であり、一重項励起子と三重項励起子 の生成比が 1 : 3であるため発光性励起種の生成確率が 25%であるのに対し、励起 三重項からの発光を利用するリン光材料の場合には、前記励起子生成比率と一重 項励起子から三重項励起子への内部変換により、内部量子効率の上限が 100%と なるため、蛍光発光材料の場合に比べて原理的に発光効率が最大 4倍となることに る。 [0006] しかしながら、青、緑、赤 3色の発光材料を使用する高品位の白色素子、ディスプレ ィにおいては、各色の性能が 1色とも欠けることなく揃って優れていることが必要であ る力 現状においては、これらの材料特性を合わせ揃えることは容易ではない。とりわ けリン光発光材料にお!/、ては難しレ、。 [0005] In recent years, phosphorescent materials have been developed since organic EL elements with higher luminance and efficiency can be obtained (see, for example, Non-Patent Documents 1 and 2 and Patent Document 1). This is because conventional phosphors emit light from excited singlets, and the production ratio of singlet excitons to triplet excitons is 1: 3. On the other hand, in the case of a phosphorescent material that utilizes light emission from excited triplets, the upper limit of internal quantum efficiency is 100 due to the exciton generation ratio and internal conversion from singlet excitons to triplet excitons. Therefore, in principle, the luminous efficiency is up to four times that of fluorescent materials. [0006] However, high-quality white elements and displays that use light emitting materials of three colors, blue, green, and red, need to have excellent performance for each color without lacking. At present, it is not easy to align these material properties together. Especially for phosphorescent materials!
[0007] リン光発光有機 EL素子は一部赤色において実用化されただけであり、未だ実用に は至っていない。特に青色発光において駆動寿命が短命であり、高効率、長寿命、 色度を満たした青色リン光素子の開発は急務である。また、青色を含む白色発光素 子においても同様の問題点を抱えている。  [0007] Some phosphorescent organic EL devices have been put into practical use only in red, and have not yet been put into practical use. In particular, there is an urgent need to develop a blue phosphor element that has a short driving life in blue light emission and that satisfies high efficiency, long life, and chromaticity. In addition, white light-emitting elements including blue have similar problems.
特許文献 1 :米国特許第 6, 097, 147号明細書  Patent Document 1: U.S. Pat.No. 6,097,147
非特許文献 1 : M. A. Baldo et al. , nature, 395巻, 151〜; 154頁(1998年) 非特許文献 2 : M. A. Baldo et al. , nature, 403巻, 17号, 750〜753頁(200 0年)  Non-patent literature 1: MA Baldo et al., Nature, 395, 151-; 154 (1998) Non-patent literature 2: MA Baldo et al., Nature, 403, 17, 750-753 (200) 0 years)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、青色リン光発 光効率、駆動寿命及び色度が改善された有機エレクト口ルミネッセンス素子を提供す ることである。更に、当該青色リン光を含む白色発光を取出すことができる有機エレク トロルミネッセンス素子を提供することである。 [0008] The present invention has been made in view of the above problems, and a problem to be solved is to provide an organic electroluminescent device with improved blue phosphorescence efficiency, driving life and chromaticity. is there. Furthermore, it is providing the organic electroluminescent element which can take out white light emission including the said blue phosphorescence.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者は、上記課題を解決すベぐ電子と正孔 (キャリア)、これらが再結合して 生じる励起子の挙動を制御して発光効率、寿命、発光色の色度等を向上させる観点 から、発光性ドーパントの化学構造、発光層の構成、発光波長の調整等を鋭意検討 した結果、本発明に至った。 [0009] The present inventor controls the behavior of excitons generated by recombination of electrons and holes (carriers) to solve the above-mentioned problems, thereby improving luminous efficiency, lifetime, chromaticity of emitted color, etc. From the viewpoint of improvement, the present inventors have intensively studied the chemical structure of the luminescent dopant, the structure of the luminescent layer, the adjustment of the emission wavelength, and the like, and as a result, the present invention has been achieved.
[0010] すなわち、本発明に係る上記課題は、下記の手段により解決される。 That is, the above-described problem according to the present invention is solved by the following means.
[0011] 1.陽極、複数の発光層を有する発光層ユニット、及び陰極を設けて成る有機エレ タトロルミネッセンス素子であって、前記複数の発光層のうち少なくとも二つの発光層 が下記一般式 (BD1)で表されるリン光性化合物を含有することを特徴とする有機ェ レクト口ルミネッセンス素子。 [0012] [化 1] [0011] 1. An organic electroluminescent element comprising an anode, a light emitting layer unit having a plurality of light emitting layers, and a cathode, wherein at least two of the plurality of light emitting layers are represented by the following general formula (BD1 An organic electroluminescent device, comprising a phosphorescent compound represented by the formula: [0012] [Chemical 1]
—般'式《BD1)—General formula (BD1)
Figure imgf000004_0001
Figure imgf000004_0001
[0013] 〔式中、 Rは置換基を表す。 Zは 5〜7員環を形成するのに必要な非金属原子群を表 [Wherein, R represents a substituent. Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
1  1
す。 nlは 0〜5の整数を表す。 B〜Bは各々炭素原子、窒素原子、酸素原子もしく  The nl represents an integer of 0 to 5. B to B are carbon atoms, nitrogen atoms, oxygen atoms or
1 5  1 5
は硫黄原子を表し、少なくとも一つは窒素原子を表す。 Mは元素周期表における 8  Represents a sulfur atom, and at least one represents a nitrogen atom. M is 8 in the periodic table
1  1
族〜 10族の金属を表す。 Xおよび Xは各々炭素原子、窒素原子もしくは酸素原子  Represents Group 10 to Group 10 metals. X and X are each a carbon atom, nitrogen atom or oxygen atom
1 2  1 2
を表し、 Lは Xおよび Xとともに 2座の配位子を形成する原子群を表す。 mlは 1、 2  L represents an atomic group that forms a bidentate ligand together with X and X. ml is 1, 2
1 1 2  1 1 2
または 3の整数を表し、 m2は 0、 1または 2の整数を表す力 ml +m2は 2または 3で ある。 J  Or an integer of 3, m2 is a force representing an integer of 0, 1 or 2, ml + m2 is 2 or 3. J
2.前記 1に記載の有機エレクト口ルミネッセンス素子であって、前記の少なくとも二 つの発光層に含有される前記一般式 (BD1)で表されるリン光性化合物が各々の発 光層に応じて異なることを特徴とする有機エレクト口ルミネッセンス素子。  2. The organic electroluminescent device according to 1 above, wherein the phosphorescent compound represented by the general formula (BD1) contained in the at least two light-emitting layers corresponds to each light-emitting layer. An organic electoluminescence device characterized by being different.
[0014] 3.前記 1又は 2に記載の有機エレクト口ルミネッセンス素子であって、前記の少なく とも二つの発光層のうち陽極に近い発光層を発光層 A、陰極に近い発光層を発光層 Bとしたときに、該発光層 Aに含有される前記一般式 (BD1)で表されるリン光性化合 物を発光性ドーパント A、該発光層 Aに更に含有される化合物をホスト化合物 A、発 光層 Bに含有される一般式 (BD1)で表されるリン光性化合物を発光ドーパント B、発 光層 Bに更に含有される化合物をホスト化合物 Bとしたときに、イオン化ポテンシャル ( Ip)に関して下記の式が成り立つことを特徴とする有機エレクト口ルミネッセンス素子。  [0014] 3. The organic electroluminescent device according to 1 or 2 above, wherein the light emitting layer close to the anode among the at least two light emitting layers is the light emitting layer A, and the light emitting layer close to the cathode is the light emitting layer B. The phosphorescent compound represented by the general formula (BD1) contained in the light emitting layer A is the light emitting dopant A, and the compound further contained in the light emitting layer A is the host compound A. When the phosphorescent compound represented by the general formula (BD1) contained in the optical layer B is the luminescent dopant B and the compound further contained in the luminescent layer B is the host compound B, the ionization potential (Ip) An organic electoluminescence device characterized by the following formula:
[0015] Ip (ホスト化合物 A)—Ip (ドーパント Α)≥0· 7 (eV)  [0015] Ip (host compound A) —Ip (dopant Α) ≥0 · 7 (eV)
Ip (ホスト化合物 B) -Ip (ドーパント B)≥0. 7 (eV)  Ip (Host compound B) -Ip (Dopant B) ≥0.7 (eV)
4.前記 1乃至 3のいずれか一項に記載の有機エレクト口ルミネッセンス素子であつ て、前記一般式 (BD1)で表される化合物の B〜Bで形成される含窒素複素環がイミ ダゾール環で表されることを特徴とする有機エレクト口ルミネッセンス素子。 4. The organic electroluminescent device according to any one of 1 to 3 above, wherein the nitrogen-containing heterocycle formed by B to B of the compound represented by the general formula (BD1) An organic electoluminescence device represented by a dazole ring.
[0016] 5.前記 4に記載の有機エレクト口ルミネッセンス素子であって、前記一般式(BD1) で表される化合物が、下記一般式 (BD2)で表されることを特徴とする有機エレクト口 ルミネッセンス素子。  [0016] 5. The organic electoluminescence device according to 4, wherein the compound represented by the general formula (BD1) is represented by the following general formula (BD2): Luminescence element.
[0017] [化 2]  [0017] [Chemical 2]
—緞式 B。2》 — 緞 式 B. 2 >>
Figure imgf000005_0001
Figure imgf000005_0001
[0018] 〔式中、 R、 R、及び Rは各々置換基を表す。 Zは 5〜7員環を形成するのに必要な [In the formula, R, R and R each represent a substituent. Z is necessary to form a 5- to 7-membered ring
1 2 3  one two Three
非金属原子群を表す。 nlは 0〜5の整数を表す。 Mは元素周期表における 8族〜 1  Represents a nonmetallic atom group. nl represents an integer of 0 to 5. M is group 8 to 1 in the periodic table
1  1
0族の金属を表す。 Xおよび Xは各々炭素原子、窒素原子もしくは酸素原子を表し  Represents a group 0 metal. X and X each represent a carbon atom, a nitrogen atom or an oxygen atom
1 2  1 2
、 Lは Xおよび Xとともに 2座の配位子を形成する原子群を表す。 mlは 1、 2または , L represents a group of atoms that together with X and X form a bidentate ligand. ml is 1, 2 or
1 1 2 1 1 2
3の整数を表し、 m2は 0、 1または 2の整数を表す力 ml +m2は 2または 3である。 また、一般式 (BD2)の Rで表される置換ァリールは下記一般式 (AR1)で表される。  Represents an integer of 3, m2 represents an integer of 0, 1 or 2 ml + m2 is 2 or 3. Further, the substitution aryl represented by R in the general formula (BD2) is represented by the following general formula (AR1).
[0019] [化 3]  [0019] [Chemical 3]
—般式
Figure imgf000005_0002
—General formula
Figure imgf000005_0002
[0020] 上記一般式 (AR1)中の Rは立体パラメーター値 (Es値)がー 0. 5以下である置換基 [0020] R in the above general formula (AR1) is a substituent having a steric parameter value (Es value) of -0.5 or less.
5  Five
を表す。 Rは Rと同じ。また m3は 0から 4までの整数を表す。〕  Represents. R is the same as R. M3 represents an integer from 0 to 4. ]
5 1  5 1
6.前記 1乃至 5のいずれか一項に記載の有機エレクト口ルミネッセンス素子であつ て、前記の少なくとも二つの発光層からの発光それぞれのエレクト口ルミネッセンスス ベクトルの極大発光波長( λ max)の差が 20nm以内であることを特徴とする有機ェ レクト口ルミネッセンス素子。 6. The organic electroluminescent device according to any one of 1 to 5 above, wherein the difference between the maximum emission wavelengths (λmax) of the electroluminescent vectors of the respective light emitted from the at least two light emitting layers. Is characterized by being within 20nm Recto-mouth luminescence element.
[0021] 7.前記 1乃至 5のいずれか一項に記載の有機エレクト口ルミネッセンス素子であつ て、前記の少なくとも二つの発光層からの発光それぞれのエレクト口ルミネッセンスス ぺクトルの極大発光波長( λ max)の差が 20nm以上であることを特徴とする有機ェ レクト口ルミネッセンス素子。 [0021] 7. The organic electroluminescent device according to any one of items 1 to 5, wherein each of the electroluminescent luminescence spectra emitted from the at least two light emitting layers has a maximum emission wavelength (λ max), wherein the difference in max) is 20 nm or more.
[0022] 8.前記 1乃至 7のいずれか一項に記載の有機エレクト口ルミネッセンス素子であつ て、前記一般式 (BD 1 )で表される化合物を含有して!/、る少なくとも二つの発光層が 隣接していることを特徴とする有機エレクト口ルミネッセンス素子。  [0022] 8. The organic electoluminescence device according to any one of 1 to 7 above, which contains the compound represented by the general formula (BD 1) and has at least two luminescences An organic electoluminescence device characterized in that the layers are adjacent to each other.
[0023] 9.前記 1乃至 8のいずれか一項に記載の有機エレクト口ルミネッセンス素子であつ て、前記の少なくとも二つの発光層がホスト化合物を含有し、かつ、当該少なくとも二 つの発光層が共通のホスト化合物を含有していることを特徴とする有機エレクト口ルミ ネッセンス素子。  [0023] 9. The organic electroluminescent device according to any one of 1 to 8, wherein the at least two light-emitting layers contain a host compound, and the at least two light-emitting layers are common. An organic electoluminous element, comprising: a host compound.
[0024] 10.前記 1乃至 9のいずれか一項に記載の有機エレクト口ルミネッセンス素子であ つて、前記発光層ユニットが、少なくとも三つの発光層を有することを特徴とする有機 エレクトロノレミネッセンス素子。  [0024] 10. The organic electroluminescence device according to any one of 1 to 9, wherein the light emitting layer unit has at least three light emitting layers. element.
[0025] 11.前記 1乃至 9のいずれか一項に記載の有機エレクト口ルミネッセンス素子であ つて、その電界発光の発光色が青色であることを特徴とする有機エレクト口ルミネッセ ンス素子。  [0025] 11. The organic electroluminescent device according to any one of items 1 to 9, wherein the electroluminescent luminescent color is blue.
[0026] 12.前記 1乃至 10のいずれか一項に記載の有機エレクト口ルミネッセンス素子であ つて、その電界発光の発光色が白色であることを特徴とする有機エレクト口ルミネッセ ンス素子。  [0026] 12. The organic electroluminescent device according to any one of 1 to 10 above, wherein the electroluminescent luminescent color is white.
発明の効果  The invention's effect
[0027] 本発明の上記手段により、青色リン光発光効率、駆動寿命及び色度が改善された 有機エレクト口ルミネッセンス素子とその作製方法を提供することができる。更に、当 該青色リン光を含む白色発光を取出可能な有機エレクト口ルミネッセンス素子とその 作製方法を提供することができる。  [0027] By the above means of the present invention, it is possible to provide an organic electoluminescence device having improved blue phosphorescence emission efficiency, drive life and chromaticity, and a method for producing the same. Furthermore, it is possible to provide an organic electoluminescence device capable of taking out white light emission including the blue phosphorescence and a method for manufacturing the same.
[0028] 詳しくは、請求の範囲第 1項に係る発明により、一般式 (BD1)で表される化合物を 発光層に含有させることで、比較的安定なリン光を発光する有機 EL素子を得ること ができる。 [0028] Specifically, according to the invention according to claim 1, an organic EL element that emits relatively stable phosphorescence is obtained by including the compound represented by the general formula (BD1) in the light emitting layer. thing Can do.
[0029] 請求の範囲第 2項乃至第 6項に係る発明により、すなわち、複数の発光層の各々で 異なる化学構造を有する発光性ドーパントを含有させること等により飛躍的に高発光 効率、長寿命を達成することができる。  [0029] According to the inventions according to claims 2 to 6, that is, by containing a luminescent dopant having a different chemical structure in each of the plurality of light emitting layers, the light emission efficiency and the long lifetime are dramatically increased. Can be achieved.
[0030] 請求の範囲第 7項乃至第 10項に係る発明により、すなわち、発光性ドーパントとし て発光波長の近いものを選ぶこと等により、更なる発光効率及び寿命発の向上を達 成することができる上に、光色の色度を調整し、改善すること力 Sできる。  [0030] According to the inventions according to claims 7 to 10, that is, by selecting a light emitting dopant having a close emission wavelength, etc., to achieve further improvement in luminous efficiency and lifetime. In addition to the ability to adjust and improve the chromaticity of the light color.
[0031] 更に、請求の範囲第 13項に係る発明により、全く異なる色の発光層、例えば青色 光 (B)、緑色光 (G)、赤色 (R)光の発光層を具備することで、色度が改善された白色 光を取出すことが可能な有機 EL素子を得ることができる。  [0031] Further, according to the invention according to claim 13, by providing a light emitting layer of completely different color, for example, a light emitting layer of blue light (B), green light (G), red (R) light, An organic EL device capable of extracting white light with improved chromaticity can be obtained.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 本発明の有機エレクト口ルミネッセンス素子は、陽極、複数の発光層を有する発光 層ユニット、及び陰極を設けて成る有機エレクト口ルミネッセンス素子であって、前記 複数の発光層のうち少なくとも二つの発光層が前記一般式 (BD1)で表される化合物 を含有することを特徴とする。 [0032] The organic electroluminescent device of the present invention is an organic electroluminescent device comprising an anode, a light emitting layer unit having a plurality of light emitting layers, and a cathode, wherein at least two of the plurality of light emitting layers are provided. The light emitting layer contains a compound represented by the general formula (BD1).
[0033] 以下、本発明とその構成要素等について詳細な説明をする。 [0033] Hereinafter, the present invention and its components will be described in detail.
[0034] 《有機エレクト口ルミネッセンス素子の構成》 [0034] << Configuration of Organic Electral Luminescence Element >>
本発明の有機エレクト口ルミネッセンス素子は、支持基盤(基板)、電極、種々の機 能を有する有機層等の構成要素によって構成される。好ましい構成の具体例を以下 に示すが、本発明はこれらに限定されない。  The organic electoluminescence device of the present invention is composed of components such as a support base (substrate), electrodes, and organic layers having various functions. Specific examples of preferred configurations are shown below, but the present invention is not limited thereto.
[0035] (i)陽極/正孔輸送層/電子阻止層/発光層ユニット/正孔阻止層/電子輸送 層/陰極 [0035] (i) Anode / hole transport layer / electron blocking layer / light emitting layer unit / hole blocking layer / electron transport layer / cathode
(ii)陽極/正孔輸送層/電子阻止層/発光層ユニット/正孔阻止層/電子輸送 層/陰極バッファー層/陰極  (ii) Anode / hole transport layer / electron blocking layer / light emitting layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode
(iii)陽極/陽極バッファ一層/正孔輸送層/電子阻止層/発光層ユニット/正孔 阻止層/電子輸送層/陰極  (iii) Anode / anode buffer layer / hole transport layer / electron blocking layer / light emitting layer unit / hole blocking layer / electron transport layer / cathode
(iv)陽極/陽極バッファ一層/正孔輸送層/電子阻止層/発光層ユニット/正孔 阻止層/電子輸送層/陰極バッファー層/陰極 《発光層ユニット》 (iv) Anode / anode buffer layer / hole transport layer / electron blocking layer / light emitting layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode <Light emitting layer unit>
本発明に係る「発光層ユニット」とは、複数の発光層を有する構成単位であって、最 も陽極側の発光層から最も陰極側の発光層まで積層された有機層をいう。すなわち The “light emitting layer unit” according to the present invention is a structural unit having a plurality of light emitting layers, and refers to an organic layer laminated from the light emitting layer on the most anode side to the light emitting layer on the most cathode side. Ie
、各発光層は、異なる発光色の発光性化合物を含有する有機層からなる。なお、当 該ユニットは、各発光層間に非発光性の中間層を有していることも好ましい一態様で ある。 Each light emitting layer is composed of an organic layer containing a light emitting compound having a different emission color. Note that it is also a preferable aspect that the unit has a non-light emitting intermediate layer between the light emitting layers.
[0036] 当該発光層ユニットの代表例を以下に例示す力 これらに限定されない。  [0036] Typical examples of the light emitting layer unit are shown below.
[0037] (i)発光層 A/発光層 B [0037] (i) Light emitting layer A / Light emitting layer B
(ii)発光層 Α/中間層/発光層 Β  (ii) Light emitting layer Α / Intermediate layer / Light emitting layer Β
(iii)発光層 A/正孔阻止層/発光層 B  (iii) Light-emitting layer A / hole blocking layer / light-emitting layer B
(iv)発光層 A/電子阻止層/発光層 B  (iv) Light-emitting layer A / Electron blocking layer / Light-emitting layer B
(V)発光層 A/発光層 B/発光層 C  (V) Light-emitting layer A / Light-emitting layer B / Light-emitting layer C
(vi)発光層 A/中間層/発光層 B/中間層/発光層 C  (vi) Light emitting layer A / intermediate layer / light emitting layer B / intermediate layer / light emitting layer C
(vii)発光層 A/中間層/発光層 B/正孔阻止層/発光層 C  (vii) Light-emitting layer A / intermediate layer / light-emitting layer B / hole blocking layer / light-emitting layer C
(viii)発光層 A/電子阻止層/発光層 B/中間層/発光層 C  (viii) Light-emitting layer A / electron blocking layer / light-emitting layer B / intermediate layer / light-emitting layer C
なお、本発明に係る発光層は、電極、電子輸送層、又は正孔輸送層から注入され てくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内 であっても発光層と隣接層との界面であってもよい。  The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is within the layer of the light emitting layer. Even the interface between the light emitting layer and the adjacent layer may be used.
[0038] 本発明に係る発光層ユニットは、発光極大波長が各々 430〜480nm、 510—550 nm、 600〜640nmの範囲にある発光ピークの異なる 2種以上の発光性化合物を含 有する複数の発光層で構成することもできる。当該ユニットは各発光層間に非発光 性の中間層を有して複数の発光層で構成しても、単層の中に発光ピークの異なる 2 種以上の発光性化合物を含有することで発光ピークが異なる少なくとも 2種以上の異 なる発光をさせても良い。  [0038] The light emitting layer unit according to the present invention includes a plurality of light emitting compounds containing two or more kinds of luminescent compounds having different emission peaks, each having an emission maximum wavelength in the range of 430 to 480 nm, 510 to 550 nm, and 600 to 640 nm. It can also consist of layers. Even if the unit has a non-light emitting intermediate layer between each light emitting layer and is composed of a plurality of light emitting layers, it contains two or more kinds of light emitting compounds having different light emission peaks in a single layer. Two or more different types of light emission may be emitted.
[0039] なお、本発明の有機 EL素子の発光色を白色にする場合には、上記発光層ユニット 力 少なくとも三つの発光層を有することが好ましい。  [0039] When the emission color of the organic EL device of the present invention is white, it is preferable that the light emitting layer unit has at least three light emitting layers.
[0040] 《一般式 (BD1)で表されるリン光性化合物》  [0040] << Phosphorescent Compound Represented by General Formula (BD1) >>
〈当該化合物の適用の態様〉 本発明の有機エレクト口ルミネッセンス素子は、上記発光層ユニットを構成する複数 の発光層のうち少なくとも二つの発光層は、前記一般式 (BD1)で表されるリン光性 化合物を含有することを特徴とする。当該リン光性化合物を発光性ドーパントとして 用いることで、比較的安定なリン光発光有機 EL素子を得ることができる。 <Aspects of application of the compound> The organic electoluminescence device of the present invention is characterized in that at least two light emitting layers among the plurality of light emitting layers constituting the light emitting layer unit contain a phosphorescent compound represented by the general formula (BD1). And By using the phosphorescent compound as a luminescent dopant, a relatively stable phosphorescent organic EL device can be obtained.
[0041] また、前記の少なくとも二つの発光層に含有される前記一般式 (BD1)で表されるリ ン光性化合物が各々の発光層に応じて異なることが好ましい。これにより、飛躍的に 高発光効率、長寿命を達成することが可能となる。  [0041] Further, it is preferable that the phosphorescent compound represented by the general formula (BD1) contained in the at least two light emitting layers differs depending on each light emitting layer. As a result, it is possible to dramatically achieve high luminous efficiency and long life.
[0042] なお、前記の少なくとも二つの発光層のうち陽極に近い発光層を発光層 A、陰極に 近い発光層を発光層 Bとしたときに、当該発光層 Aに含有される前記一般式 (BD1) で表されるリン光性化合物を発光性ドーパント A、当該発光層 Aに更に含有される化 合物をホスト化合物 A、発光層 Bに含有される一般式 (BD1)で表されるリン光性化合 物を発光性ドーパント B、発光層 Bに更に含有される化合物をホスト化合物 Bとしたと きに、イオン化ポテンシャル (Ip)に関して下記の式が成り立つことが好ましい。  [0042] Of the at least two light emitting layers, when the light emitting layer close to the anode is the light emitting layer A and the light emitting layer close to the cathode is the light emitting layer B, the general formula (A) BD1) is a phosphorescent compound represented by the general formula (BD1) contained in the luminescent dopant A, a compound further contained in the luminescent layer A is a host compound A, and a luminescent layer B. When the photocompound is the light-emitting dopant B and the compound further contained in the light-emitting layer B is the host compound B, it is preferable that the following formula holds for the ionization potential (Ip).
[0043] Ip (ホスト化合物 A)— Ip (ドーパント Α)≥0· 7 (eV)  [0043] Ip (host compound A) —Ip (dopant Α) ≥0 · 7 (eV)
Ip (ホスト化合物 B) -Ip (ドーパント B)≥0. 7 (eV)  Ip (Host compound B) -Ip (Dopant B) ≥0.7 (eV)
なお、本発明の有機 EL素子においては、前記の少なくとも二つの発光層がホスト 化合物を含有し、かつ、当該少なくとも二つの発光層が共通のホスト化合物を含有し ていることが好ましい。  In the organic EL device of the present invention, it is preferable that the at least two light emitting layers contain a host compound and the at least two light emitting layers contain a common host compound.
[0044] なお、イオン化ポテンシャルは大気中光電子分光装置 (例えば、 AC— 1、 AC— 2、 及び AC— 3 (理研計器 (株)製))や、紫外光電子分光 (UPS)装置で測定することが できる。  [0044] The ionization potential should be measured with an atmospheric photoelectron spectrometer (for example, AC-1, AC-2, and AC-3 (manufactured by Riken Keiki Co., Ltd.)) or an ultraviolet photoelectron spectrometer (UPS). Is possible.
[0045] 大気中光電子分光装置で測定する場合は、洗浄した ITO上に有機薄膜を 50〜; 10 [0045] In the case of measurement with an atmospheric photoelectron spectrometer, an organic thin film is placed on the cleaned ITO 50 to 10;
Onmに成膜し測定する。 The film is formed on Onm and measured.
[0046] 紫外光電子分光装置で測定する場合には、シリコンウェハーに金薄膜を蒸着した 基板に有機薄膜を厚さ 20nmに成膜し測定する。 [0046] When measuring with an ultraviolet photoelectron spectrometer, an organic thin film is formed to a thickness of 20 nm on a substrate having a gold thin film deposited on a silicon wafer.
[0047] Ip (ホスト)は、以上の方法で測定することができる力 Ip (ドーパント)は上記の方法 では困難な場合もある。 [0047] Ip (host) can be measured by the above method. The force Ip (dopant) may be difficult by the above method.
[0048] Ip (ドーパント)はドーパントとホストを所定の濃度にドープされた膜で測定を行う。し 力、しながら、この方法ではドーパントの Ipピークがホスト化合物の Ipピークと重なり検 出が困難な場合がある。 [0048] Ip (dopant) is measured with a film in which a dopant and a host are doped to a predetermined concentration. Shi However, in this method, the Ip peak of the dopant overlaps with the Ip peak of the host compound, which may be difficult to detect.
[0049] その場合には、光学的に不活性な材料にドーパントのみをドープして測定してもよ い。光学的に不活性な材料とは例えばポリアタリレート、ポリスチレン、シロキサンなど が挙げられる。 [0049] In that case, measurement may be performed by doping an optically inactive material only with a dopant. Examples of the optically inactive material include polyacrylate, polystyrene, and siloxane.
[0050] 上記の測定方法でも測定が困難な場合には、サイクリック 'ボルタンメトリー法(CV) にて測定しても良い。但し、この場合での測定値は参照電極との電位差で酸化電位 が求められるため、 Ipとの換算が必要である。その場合には既知の材料で、 CVの値 と Ipの値を校正することで推定値を算出することができる。既知の材料とは、例えば、 NPD, TPD, m—MTDATAなどが挙げられる。  [0050] If measurement is difficult even with the above-described measurement method, measurement may be performed by the cyclic voltammetry method (CV). However, the measured value in this case must be converted to Ip because the oxidation potential is determined by the potential difference from the reference electrode. In that case, the estimated value can be calculated by calibrating the CV value and Ip value with a known material. Examples of known materials include NPD, TPD, m-MTDATA, and the like.
[0051] 上述の条件を満たすことにより、飛躍的な長寿命化及び発光効率の更なる向上を 達成できる。この理由は不明であるが、複数の発光層界面での劣化抑制、又は似た 材料を含む層の積層によりモルフォロジ一の向上の結果、寿命が向上したものと推 測される。更に、発光層を複数層化することで、正孔と電子の再結合サイトを調整す ること力 Sできるため、長寿命化だけでなぐ高発光効率化させることがでたと推測され  [0051] By satisfying the above-mentioned conditions, it is possible to achieve a dramatic increase in lifetime and further improvement in luminous efficiency. The reason for this is unknown, but it is presumed that the lifetime was improved as a result of the improvement of morphology by suppressing deterioration at the interface of multiple light-emitting layers or by laminating layers containing similar materials. Furthermore, it is speculated that by making the light emitting layer into multiple layers, the ability to adjust the recombination site of holes and electrons can be adjusted, so that it was possible to improve the light emission efficiency as well as extending the lifetime.
[0052] 一方、本発明に係る一般式 (BD1)で表されるリン光性化合物のリン光波長は 430 〜480nmの範囲にあることから、当該化合物を用いて、電界発光の発光色が青色 である有機 EL素子を作製すること力 Sできる。 On the other hand, since the phosphorescence wavelength of the phosphorescent compound represented by the general formula (BD1) according to the present invention is in the range of 430 to 480 nm, the electroluminescent emission color is blue using the compound. The ability to produce organic EL devices
[0053] 色度の調整、単色での長寿命化の場合には、前記の少なくとも二つの発光層から の発光それぞれのエレクト口ルミネッセンススペクトルの極大発光波長( λ max)の差 力 ¾0nm以内であることが好ましい。また、白色の発光を得たい場合においては、前 記の少なくとも二つの発光層からの発光それぞれのエレクト口ルミネッセンススぺタト ルの極大発光波長( λ max)の差が 20nm以上であることも好まし!/、態様の一つであ る。リン光性化合物の発光波長が近いものを選ぶことで、色度調整することが可能と なる。  [0053] In the case of adjusting the chromaticity or extending the lifetime of a single color, the difference between the maximum emission wavelengths (λmax) of the respective emission spectrums of the respective light emission from the at least two light emitting layers is within ¾0nm. It is preferable. In addition, when it is desired to obtain white light emission, it is also preferable that the difference between the maximum emission wavelengths (λ max) of the respective light emission luminescence spectra of the light emitted from the at least two light emitting layers is 20 nm or more. Better! /, One of the aspects. It is possible to adjust the chromaticity by selecting phosphorescent compounds having similar emission wavelengths.
[0054] なお、前記一般式 (BD1)で表される化合物を含有している少なくとも二つの発光 層が隣接していることが好ましい。 〈一般式 (BD1)の説明〉 [0054] It is preferable that at least two light emitting layers containing the compound represented by the general formula (BD1) are adjacent to each other. <Description of general formula (BD1)>
前記一般式 (BD1)で表されるリン光性化合物において、 Rで表される置換基とし  In the phosphorescent compound represented by the general formula (BD1), the substituent represented by R is
1  1
ては、例えばアルキル基(例えば、メチル基、ェチル基、プロピル基、イソプロピル基 、 tert ブチル基、ペンチル基、へキシル基、ォクチル基、ドデシル基、トリデシル基 、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基 、シクロへキシノレ基等)、アルケニル基(例えば、ビュル基、ァリル基等)、アルキニル 基 (例えば、ェチュル基、プロパルギル基等)、芳香族炭化水素環基 (芳香族炭素環 基、ァリール基等ともいい、例えば、フエニル基、 p—クロ口フエ二ル基、メシチル基、ト リル基、キシリル基、ナフチル基、アントリル基、ァズレニル基、ァセナフテュル基、フ ルォレニル基、フエナントリル基、インデュル基、ピレニル基、ビフエ二リル基等)、芳 香族複素環基 (例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリ ル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジュル基、トリァゾリル基(例えば、 1 , 2, 4 卜リ ゾ '一ノレ 1 イノレ基、 1 , 2, 3 卜リ ゾ '一ノレ 1 イノレ基等)、才キサゾ'リ ル基、ベンゾォキサゾリル基、チアゾリル基、イソォキサゾリル基、イソチアゾリル基、 フラザニル基、チェニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチ ェニル基、ジベンゾチェニル基、インドリル基、カノレノ ゾリノレ基、力ノレボリ二ノレ基、ジァ ザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが 窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジ二 ル基、キナゾリニル基、フタラジュル基等)、複素環基 (例えば、ピロリジル基、イミダゾ リジル基、モルホリル基、ォキサゾリジル基等)、アルコキシ基 (例えば、メトキシ基、ェ トキシ基、プロピルォキシ基、ペンチルォキシ基、へキシルォキシ基、ォクチルォキシ 基、ドデシルォキシ基等)、シクロアルコキシ基(例えば、シクロペンチルォキシ基、シ クロへキシノレオキシ基等)、ァリーノレォキシ基(例えば、フエノキシ基、ナフチノレオキシ 基等)、アルキルチオ基 (例えば、メチルチオ基、ェチルチオ基、プロピルチオ基、ぺ ンチルチオ基、へキシルチオ基、ォクチルチオ基、ドデシルチオ基等)、シクロアルキ ルチオ基(例えば、シクロペンチルチオ基、シクロへキシルチオ基等)、ァリールチオ 基(例えば、フエ二ルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば 、メチルォキシカルボニル基、ェチルォキシカルボニル基、ブチルォキシカルボニル 基、ォクチルォキシカルボニル基、ドデシルォキシカルボニル基等)、ァリールォキシ カルボニル基(例えば、フエニルォキシカルボニル基、ナフチルォキシカルボニル基 等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメ チルアミノスルホニル基、ブチルアミノスルホニル基、へキシルアミノスルホニル基、シ クロへキシルアミノスルホニル基、ォクチルアミノスルホニル基、ドデシルアミノスルホ 二ノレ基、フエニルアミノスルホニル基、ナフチルアミノスルホニル基、 2—ピリジルァミノ スルホニル基等)、ァシル基(例えば、ァセチル基、ェチルカルボニル基、プロピル力 ノレボニル基、ペンチルカルボニル基、シクロへキシルカルボニル基、ォクチルカルポ 二ノレ基、 2—ェチルへキシルカルボニル基、ドデシルカルボニル基、フエニルカルボ 二ノレ基、ナフチルカルボニル基、ピリジルカルボニル基等)、ァシルォキシ基(例えば 、ァセチノレオキシ基、ェチノレカノレポニノレオキシ基、ブチノレカノレポニノレオキシ基、オタ チルカルボニルォキシ基、ドデシルカルボニルォキシ基、フエニルカルボニルォキシ 基等)、アミド基(例えば、メチルカルボニルァミノ基、ェチルカルボニルァミノ基、ジメ チルカルボニルァミノ基、プロピルカルボニルァミノ基、ペンチルカルボニルァミノ基、 シクロへキシルカルボニルァミノ基、 2—ェチルへキシルカルボニルァミノ基、ォクチ ルカルボニルァミノ基、ドデシルカルボニルァミノ基、フエニルカルボニルァミノ基、ナ フチルカルボニルァミノ基等)、力ルバモイル基(例えば、ァミノカルボニル基、メチル ァミノカルボニル基、ジメチルァミノカルボニル基、プロピルアミノカルボニル基、ペン チルァミノカルボニル基、シクロへキシルァミノカルボニル基、ォクチルァミノカルボ二 ル基、 2—ェチルへキシルァミノカルボニル基、ドデシルァミノカルボニル基、フエ二 ルァミノカルボニル基、ナフチルァミノカルボニル基、 2—ピリジルァミノカルボニル基 等)、ウレイド基(例えば、メチルウレイド基、ェチルウレイド基、ペンチルゥレイド基、シ クロへキシルウレイド基、ォクチルゥレイド基、ドデシノレウレイド基、フエニルウレイド基 ナフチルウレイド基、 2—ピリジルアミノウレイド基等)、スルフィエル基(例えば、メチル スノレフィニノレ基、ェチノレスノレフィニノレ基、ブチノレスノレフィニノレ基、シクロへキシノレスノレ フィニル基、 2—ェチルへキシルスルフィニル基、ドデシルスルフィニル基、フエ二ノレ スルフィニル基、ナフチルスルフィニル基、 2—ピリジルスルフィニル基等)、アルキノレ スルホニル基(例えば、メチルスルホニル基、ェチルスルホニル基、ブチルスルホニ ノレ基、シクロへキシルスルホニル基、 2—ェチルへキシルスルホニル基、ドデシルス ノレホニル基等)、ァリールスルホニル基またはへテロアリールスルホニル基(例えば、 フエニルスルホニル基、ナフチルスルホニル基、 2—ピリジルスルホニル基等)、ァミノ 基(例えば、アミノ基、ェチルァミノ基、ジメチルァミノ基、ブチルァミノ基、シクロペン チノレアミノ基、 2—ェチルへキシルァミノ基、ドデシノレアミノ基、ァニリノ基、ナフチルァ ミノ基、 2—ピリジルァミノ基等)、シァノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリ ル基(例えば、トリメチルシリル基、トリイソプロビルシリル基、トリフエニルシリル基、フ ェニルジェチルシリル基等)等が挙げられる。 For example, an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cyclo Alkyl groups (for example, cyclopentyl group, cyclohexinole group, etc.), alkenyl groups (for example, bur group, allyl group, etc.), alkynyl groups (for example, ethul group, propargyl group, etc.), aromatic hydrocarbon ring groups (aromatic Also referred to as carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthyl group, fluorenyl group, Phenanthryl group, indur group, pyrenyl group, biphenylyl group, etc.), aromatic heterocyclic group (for example, pyridyl group) Group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzimidazolyl group, pyrazolyl group, pyrajuryl group, triazolyl group (for example, 1, 2, 4 卜 lyso '1-nor 1-inole 1, 1, 2, 3 卜Lyso'mono-ole 1-inole group, etc.), oxazo'lyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, chenyl group, quinolyl group, benzofuryl group, dibenzofuryl group, Benzophenyl group, dibenzocenyl group, indolyl group, canolenozolinole group, force noreborinole group, diazacarbazolyl group (showing one of the carbon atoms constituting the carboline ring of the carbolinyl group replaced by a nitrogen atom) Quinoxalinyl group, pyridazinyl group, triazinyl group, quinazolinyl group, phthaladyl group, etc.) A ring group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (eg, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), Cycloalkoxy groups (for example, cyclopentyloxy group, cyclohexenoreoxy group, etc.), arylenooxy groups (for example, phenoxy group, naphthinoreoxy group, etc.), alkylthio groups (for example, methylthio group, ethylthio group, propylthio group, pentylthio group, Hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (eg, phenylthio group, naphthylthio group, etc.), alkoxycarboni Group (e.g., methyl O alkoxycarbonyl group, E chill O alkoxycarbonyl group, butyl O butoxycarbonyl Group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, methylaminosulfonyl) Group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonino group, phenylaminosulfonyl group, naphthylaminosulfonyl group 2-pyridylaminosulfonyl group, etc.), acyl groups (for example, acetyl group, ethylcarbonyl group, propyl group, norbornyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarboninole group, 2-ethylhexyloxy). A carbonyl group, a dodecylcarbonyl group, a phenylcarbonyl group, a naphthylcarbonyl group, a pyridylcarbonyl group, etc.), an acyloxy group (for example, an acetinoleoxy group, an ethinorecanoleponinoreoxy group, a butinorecanoleponinoreoxy group, an octylcarbonyl group) Oxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, Pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylcarbonylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group Group, etc.), force rumomoi group For example, an aminocarbonyl group, a methylaminocarbonyl group, a dimethylaminocarbonyl group, a propylaminocarbonyl group, a pentylaminocarbonyl group, a cyclohexylaminocarbonyl group, an octylaminocarbonyl group, 2- Ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentyl) Ureido group, cyclohexylureido group, octylureido group, dodecinoureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), sulfier group (for example, methyl sulenofininole group, ethinoresnorefininole group, Butinoles Norefinole group, cyclohexenolesnorefinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylenosulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkynole sulfonyl group (for example, methylsulfonyl group, ethyl Tylsulfonyl group, butylsulfoni Nore group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsenylsulfonyl group, etc., arylsulfonyl group or heteroarylsulfonyl group (for example, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group) Etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentinoleamino group, 2-ethylhexylamino group, dodecinoleamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc.), cyano group , A nitro group, a hydroxy group, a mercapto group, a silyl group (for example, a trimethylsilyl group, a triisopropyl silyl group, a triphenylsilyl group, a phenyljetylsilyl group, etc.).
[0056] これらの置換基のうち、好ましいものはアルキル基もしくはァリール基である。  Of these substituents, preferred are an alkyl group and an aryl group.
[0057] Zは 5〜7員環を形成するのに必要な非金属原子群を表す。 Zにより形成される 5〜 [0057] Z represents a group of non-metallic atoms necessary for forming a 5- to 7-membered ring. Formed by Z 5 ~
7員環としては、例えば、ベンゼン環、ナフタレン環、ピリジン環、ピリミジン環、ピロ一 ル環、チォフェン環、ピラゾール環、イミダゾール環、ォキサゾール環及びチアゾール 環等が挙げられる。これらのうちで好ましいものは、ベンゼン環である。  Examples of the 7-membered ring include a benzene ring, naphthalene ring, pyridine ring, pyrimidine ring, pyrrole ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring and thiazole ring. Of these, a benzene ring is preferred.
[0058] B〜Bは炭素原子、窒素原子、酸素原子もしくは硫黄原子を表し、少なくとも一つ [0058] B to B represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of them
1 5  1 5
は窒素原子を表す。これら 5つの原子により形成される芳香族含窒素複素環としては 単環が好ましい。例えば、ピロール環、ピラゾール環、イミダゾール環、トリァゾール環 、テトラゾール環、ォキサゾール環、イソォキサゾール環、チアゾール環、イソチアゾ ール環、ォキサジァゾール環及びチアジアゾ一環ル等が挙げられる。これらのうちで 好ましいものは、ピラゾール環、イミダゾール環であり、さらに好ましくはイミダゾール 環である。これらの環は上記の置換基によって更に置換されていてもよい。置換基と して好ましいものはアルキル基およびァリール基であり、さらに好ましくは、ァリール基 である。  Represents a nitrogen atom. The aromatic nitrogen-containing heterocycle formed by these five atoms is preferably a monocycle. Examples thereof include a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, a tetrazole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazol ring, an oxadiazole ring, and a thiadiazole ring. Among these, a pyrazole ring and an imidazole ring are preferable, and an imidazole ring is more preferable. These rings may be further substituted with the above substituents. Preferred examples of the substituent include an alkyl group and an aryl group, and more preferred is an aryl group.
[0059] Lは X、 Xと共に 2座の配位子を形成する原子群を表す。 X— L —Xで表される 2  [0059] L represents an atomic group forming a bidentate ligand together with X and X. X — L — 2 represented by X
1 1 2 1 1 2 座の配位子の具体例としては、例えば、置換または無置換のフエ二ルビリジン、フエ ニルピラゾーノレ、フエ二ルイミダゾ一ノレ、フエニルトリァゾーノレ、フエ二ルテトラゾール、 ビラザボール、ピコリン酸及びァセチルアセトン等が挙げられる。  Specific examples of the 1 1 2 1 1 2dentate ligand include, for example, substituted or unsubstituted phenylpyrrolidine, phenylpyrazonole, phenylimidazonole, phenyltriazolene, phenyltetrazole, virazol ball, Examples include picolinic acid and acetylacetone.
[0060] これらの基は上記の置換基によって更に置換されて!/、てもよ!/、。  [0060] These groups may be further substituted with the above substituents! /, May! /.
[0061] mlは 1、 2または 3の整数を表し、 m2は 0、 1または 2の整数を表す力 ml + m2は 2または 3である。中でも、 m2は 0である場合が好ましい。 [0061] ml represents an integer of 1, 2 or 3, m2 represents a force of 0, 1 or 2 ml + m2 is 2 or 3. Of these, m2 is preferably 0.
[0062] Mで表される金属としては、元素周期表の 8族〜 10族の遷移金属元素(単に遷移 [0062] The metal represented by M includes a transition metal element of group 8 to group 10 of the periodic table (simply a transition).
1  1
金属ともいう)が用いられる力、中でも、イリジウム、白金が好ましぐさらに好ましくはィ リジゥムである。  Of these, iridium and platinum are preferred, and iridium is more preferred.
[0063] なお、本発明に係る一般式 (BD1)で表されるリン光性化合物は、重合性基または 反応性基を有して!/、てもレ、なくてもよ!/、。  [0063] It should be noted that the phosphorescent compound represented by the general formula (BD1) according to the present invention has a polymerizable group or a reactive group!
[0064] また、前記一般式 (BD1)で表される化合物が、前記一般式 (BD2)で表されること が好ましい。 [0064] The compound represented by the general formula (BD1) is preferably represented by the general formula (BD2).
[0065] 前記一般式 (BD2)中、 R、 R、及び Rは各々置換基を表す。 Zは 5〜7員環を形  In the general formula (BD2), R, R, and R each represent a substituent. Z forms a 5- to 7-membered ring
1 2 3  one two Three
成するのに必要な非金属原子群を表す。 nlは 0〜5の整数を表す。 B〜Bは炭素  Represents a group of non-metallic atoms necessary to form. nl represents an integer of 0 to 5. B to B are carbon
1 5 原子、窒素原子、酸素原子もしくは硫黄原子を表し、少なくとも一つは窒素原子を表 す。 Mは元素周期表における 8族〜 10族の金属を表す。 Xおよび Xは各々炭素原 1 represents 5 atom, nitrogen atom, oxygen atom or sulfur atom, at least one represents nitrogen atom. M represents a metal of Group 8 to Group 10 in the periodic table. X and X are carbon atoms
1 1 2 子、窒素原子もしくは酸素原子を表し、 Lは Xおよび Xとともに 2座の配位子を形成 1 1 2 represents a child, nitrogen atom or oxygen atom, L forms a bidentate ligand with X and X
1 1 2  1 1 2
する原子群を表す。 mlは 1、 2または 3の整数を表し、 m2は 0、 1または 2の整数を表 すが、 ml +m2は 2または 3である。  Represents an atomic group to be ml represents an integer of 1, 2 or 3, m2 represents an integer of 0, 1 or 2, but ml + m2 is 2 or 3.
[0066] また、一般式 (BD2)の Rで表される置換ァリールは前記一般式 (AR1)で表される 。当該一般式 (AR1)式中の Rは、立体パラメーター値 (Es値)がー 0. 5以下である [0066] The substituted aryl represented by R in the general formula (BD2) is represented by the general formula (AR1). R in the general formula (AR1) has a stereo parameter value (Es value) of -0.5 or less.
5  Five
置換基を表す。 Rは Rと同じ。また m3は 0から 4までの整数を表す。  Represents a substituent. R is the same as R. M3 represents an integer from 0 to 4.
5 1  5 1
[0067] なお、前記一般式(BD2)中の R〜Rは、前記一般式(BD1)中の R1と同義である  Note that R to R in the general formula (BD2) have the same meaning as R1 in the general formula (BD1).
1 3  13
。また、前記一般式(BD2)中の nl、 Z、 M、 X、 X、 L、 ml、及び m2等の記号は、  . In the general formula (BD2), symbols such as nl, Z, M, X, X, L, ml, and m2 are
1 1 2 1  1 1 2 1
前記一般式 (BD1)の同記号と同義である。  It is synonymous with the same symbol in the general formula (BD1).
[0068] ここで、「立体パラメーター値 (Es値)」とは、化学反応性より誘導された立体パラメ 一ターであり、この値が小さければ小さ!/、ほど立体的に嵩高!/、置換基とレ、うことがで きる。 [0068] Here, the "steric parameter value (Es value)" is a stereo parameter derived from chemical reactivity. The smaller this value is, the smaller! I can understand the group.
[0069] 以下、 Es値について説明する。一般に酸性条件下でのエステルの加水分解反応 にお!/、ては、置換基が反応の進行に対して及ぼす影響は立体障害だけと考えてよ いことが知られており、このことを利用して置換基の立体障害を数値化したものが Es 値である。 [0070] 置換基 Xの Es値は、次の化学反応式 [0069] Hereinafter, the Es value will be described. In general, it is known that the effect of substituents on the progress of the reaction may only be considered as steric hindrance in the hydrolysis reaction of esters under acidic conditions. The Es value is the numerical value of the steric hindrance of the substituent. [0070] Es value of substituent X is the following chemical reaction formula
X-CH COORX + H 0→X-CH COOH + RXOH  X-CH COORX + H 0 → X-CH COOH + RXOH
で表される、酢酸のメチル基の水素原子 1つを置換基 Xで置換した α位モノ置換酢 酸から誘導される α位モノ置換酢酸エステルを酸性条件下で加水分解する際の反 応速度定数 kXと、次の化学反応式  Reaction rate when hydrolyzing α-monosubstituted acetate derived from α-monosubstituted acetic acid in which one hydrogen atom of the methyl group of acetic acid is substituted with substituent X Constant kX and the following chemical reaction formula
CH COORY + H 0→CH COOH + RYOH  CH COORY + H 0 → CH COOH + RYOH
3 2 3  3 2 3
(RXは RYと同じである。)で表される、上記の α位モノ置換酢酸エステルに対応す る酢酸エステルを酸性条件下で加水分解する際の反応速度定数 kHから次の式で 求められる。  (RX is the same as RY.) It can be calculated from the reaction rate constant kH when hydrolyzing the acetic acid ester corresponding to the above α-monosubstituted acetic acid ester under acidic conditions by the following formula: .
[0071] Es = log (kX/kH)  [0071] Es = log (kX / kH)
置換基 Xの立体障害により反応速度は低下し、その結果 kXく kHとなるので Es値 は通常負となる。実際に Es値を求める場合には、上記の二つの反応速度定数 kXと k Hを求め、上記の式により算出する。  The reaction rate decreases due to the steric hindrance of the substituent X, resulting in kX and kH, so the Es value is usually negative. When the Es value is actually obtained, the above two reaction rate constants kX and kH are obtained and calculated by the above formula.
[0072] Esィ直の具体的な例は、 Unger, S. H. , Hansch, C. , Prog. Phys. Org. Che m. , 12, 91 (1976)に詳しく記載されている。また、『薬物の構造活性相関』 (化学 の領域増干|」122号、南江堂)、「八11^ &1 Chemical Society Professional Reference Book, ' Exploring QSAR' p. 81 Table3— 3」にも、その具体的な 数値の記載がある。次にその一部を表 1に示す。 [0072] Specific examples of Es are described in detail in Unger, SH, Hansch, C., Prog. Phys. Org. Chem., 12, 91 (1976). Further, "Structure-activity relationship of the drug." (NOTE region increase chemical | "No. 122, Nankodo)," eight 11 ^ & 1 Chemical Society Professional Reference Book, in 'Exploring QSAR' p 81 Table3- 3 ", the specific The numerical value is described. Some of these are shown in Table 1.
[0073] [表 1] [0073] [Table 1]
Figure imgf000016_0001
Figure imgf000016_0001
[0074] ここで、注意するのは本明細書で定義するところの Es値は、メチル基のそれを 0とし て定義したのではなぐ水素原子を 0としたものであり、メチル基を 0とした Es値から 1 . 24を差し引いたものである。 [0074] Here, it should be noted that the Es value as defined in the present specification is that the hydrogen atom is not defined as 0 of the methyl group, and the methyl group is defined as 0. This is the Es value minus 1.24.
[0075] 本発明において Es値は一 0. 5以下である。好ましくは一 7. 0以上一 0. 6以下であ る。最も好ましくは 7. 0以上 1 · 0以下である。  [0075] In the present invention, the Es value is not more than 0.5. Preferably it is 1 7.0 or more and 1 0.6 or less. Most preferably, it is 7.0 or more and 1 · 0 or less.
[0076] ここで、本発明においては、立体パラメーター値 (Es値)がー 0· 5以下の置換基、 例えば、 R及び^ にケトーエノール互変異性体が存在し得る場合、ケト部分はエノ ールの異性体として Es値を換算している。他の互変異性が存在する場合も同様の換 算方法において Es値を換算する。更に Es値が—0. 5以下の置換基は、電子的効果 におレ、ては電子供与性の置換基であることが好ましレ、。  Here, in the present invention, when a ketoeenol tautomer may exist in a substituent having a steric parameter value (Es value) of −0.5 or less, for example, R and ^, the keto moiety is enol. Es value is converted as an isomer of ru. If other tautomerism exists, the Es value is converted using the same conversion method. Furthermore, substituents with an Es value of −0.5 or less are preferably electron-donating substituents in terms of electronic effects.
[0077] 本発明において、電子供与性の置換基とは下記のハメットの σ ρ値が負の値を示す 置換基のことであり、そのような置換基は水素原子と比べて結合原子側に電子を与 えやすい特性を有する。 [0078] 電子供与性を示す置換基の具体例としては、ヒドロキシル基、アルコキシ基(例えば 、メトキシ基、 )、ァセチルォキシ基、アミノ基、ジメチルァミノ基、ァセチルァミノ基、ァ ルキル基(例えば、メチル基、ェチル基、プロピル基、 t ブチル基等)、ァリール基( 例えば、フエニル基、メシチル基等)が挙げられる。また、ハメットの σ ρ値については 、例えば、下記文献等が参照できる。 In the present invention, the electron-donating substituent is a substituent having a negative Hammett σ ρ value described below, and such a substituent is closer to the bonding atom side than the hydrogen atom. It has the characteristic of easily giving electrons. [0078] Specific examples of the substituent exhibiting electron donating properties include a hydroxyl group, an alkoxy group (for example, methoxy group,), an acetyloxy group, an amino group, a dimethylamino group, an acetylamino group, an alkyl group (for example, a methyl group, Ethyl group, propyl group, t-butyl group, etc.) and aryl group (eg, phenyl group, mesityl group, etc.). For Hammett's σ ρ value, for example, the following documents can be referred to.
[0079] 本発明に係るハメットの σ ρ値とは、ハメットの置換基定数 σ ρを指す。ハメットの σ ρ の値は、 Hammett等によって安息香酸ェチルの加水分解に及ぼす置換基の電子 的効果から求められた置換基定数であり、『薬物の構造活性相関』 (南江堂: 1979年 )、『Substituent Constants ior Correlation Analysis in chemistry an d biology』(C. Hansch and A. Leo, John Wiley&Sons, New York, 197 9年)等に記載の基を引用することができる。  The Hammett σ ρ value according to the present invention refers to Hammett's substituent constant σ ρ. Hammett's σ ρ value is a substituent constant determined by Hammett et al. From the electronic effects of substituents on the hydrolysis of ethyl benzoate. “Structure-activity relationship of drugs” (Nanedo: 1979), “ Substituent Constants ior Correlation Analysis in chemistry and biology "(C. Hansch and A. Leo, John Wiley & Sons, New York, 1971) can be cited.
[0080] 以下に一般式 (BD1)で表されるリン光性化合物の具体的な例を挙げる力 これら に限定されるものではない。  [0080] The ability to give specific examples of the phosphorescent compound represented by the general formula (BD1) is not limited to these.
[0081] [化 4] [0081] [Chemical 4]
[9^1 ] 800] [9 ^ 1] 800]
Figure imgf000018_0001
Figure imgf000018_0001
l6£L90/L00ZdT/13d Li l.SSC0/800Z OAV
Figure imgf000019_0001
l6 £ L90 / L00ZdT / 13d Li l.SSC0 / 800Z OAV
Figure imgf000019_0001
Figure imgf000019_0002
Figure imgf000019_0002
[O] 師 0] [O] Master 0]
Figure imgf000020_0001
Figure imgf000020_0001
l6£L90/L00ZdT/13d 61- l.SSC0/800Z OAV l6 £ L90 / L00ZdT / 13d 61- l.SSC0 / 800Z OAV
Figure imgf000021_0001
aTS O
Figure imgf000021_0001
aTS O
賺/υ 02τ1
Figure imgf000022_0001
Figure imgf000022_0002
賺 / υ 02τ1
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000023_0001
Figure imgf000023_0001
[0087] [化 10] 0088[0087] [Chemical 10] 0088
Figure imgf000024_0001
Figure imgf000024_0002
Figure imgf000024_0001
Figure imgf000024_0002
SU〔089 SU [089
Figure imgf000025_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000026_0001
Figure imgf000026_0002
Figure imgf000026_0002
Figure imgf000027_0001
Figure imgf000027_0001
[0091] [化 14] [0091] [Chemical 14]
Figure imgf000028_0001
Figure imgf000028_0001
[0092] [化 15] [0092] [Chemical 15]
Figure imgf000029_0001
Figure imgf000029_0001
[0093] [化 16] [0093] [Chemical 16]
Figure imgf000030_0001
Figure imgf000030_0001
[0094] [化 17] //:/ O ϊ6ε/-90/-00ί1£sss80sAVε- [0094] [Chemical 17] //: / O ϊ6ε / -90 / -00ί1 £ sss80sAVε-
Figure imgf000031_0001
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000032_0001
[0096] [化 19] [0096] [Chemical 19]
Figure imgf000033_0001
Figure imgf000033_0001
[0097] [化 20] [0097] [Chemical 20]
(3RD— 1 G D-2 GRD-3 (3RD— 1 G D-2 GRD-3
Figure imgf000034_0001
Figure imgf000034_0001
Figure imgf000034_0002
これらの金属錯体は、例えば、 Organic Letter誌、 vol3、 No. 16、 2579〜258 1頁(2001)、 Inorganic Chemistry,第 30巻、第 8号、 1685〜; 1687頁(1991年 )、 J. Am. Chem. Soc. , 123巻、 4304頁(2001年)、 Inorganic Chemistry, 第
Figure imgf000034_0002
These metal complexes are described in, for example, Organic Letter, vol. 3, No. 16, 2579-258, pages 1 (2001), Inorganic Chemistry, Vol. 30, No. 8, 1685-; 1687 (1991), J. Am. Chem. Soc., 123, 4304 (2001), Inorganic Chemistry, Vol.
40巻、第 7号、 1704〜1711頁(2001年)、 Inorganic Chemistry,第 41巻、第 1 2号、 3055〜3066頁(2002年)、 New Journal of Chemistry. ,第 26巻、 117 1頁 (2002年)、 European Journal of Organic Chemistry,第 4巻、 695〜7 09頁(2004年)、更にこれらの文献中に記載の参考文献等の方法を適用することに より合成できる。 40, No. 7, 1704-1711 (2001), Inorganic Chemistry, 41, No. 12, 3055-3066 (2002), New Journal of Chemistry., 26, 117 1 (2002), European Journal of Organic Chemistry, Vol. 4, 695-709 (2004), and further by applying methods such as references described in these documents.
[0099] 次に、発光層に含まれるホスト化合物及び発光性ドーパント(「発光ドーパンント」、「 発光性ドーパント化合物」ともレ、う。 )につ!/、て説明する。  Next, the host compound and the light-emitting dopant (also referred to as “light-emitting dopant” and “light-emitting dopant compound”) contained in the light-emitting layer will be described.
[0100] (ホスト化合物)  [0100] (Host compound)
本発明に係る有機 EL素子の発光層に含まれるホスト化合物とは、その化合物上の キャリアの再結合によって生成した励起子のエネルギーを発光性化合物 (発光性ド 一パント:ゲスト化合物)に移動し、その結果、当該発光性化合物を発光させる化合 物、及び当該ホスト化合物上のキャリアを発光性化合物にトラップさせ、当該発光性 化合物上で励起子を生成させ、その結果、当該発光性化合物を発光させる化合物 をいう。  The host compound contained in the light emitting layer of the organic EL device according to the present invention transfers the energy of excitons generated by the recombination of carriers on the compound to the light emitting compound (light emitting dopant: guest compound). As a result, the compound that emits light from the light-emitting compound and the carrier on the host compound are trapped in the light-emitting compound, and excitons are generated on the light-emitting compound. As a result, the light-emitting compound emits light. The compound to be made.
[0101] 本発明においては、発光層に含有される化合物の中で、そのホスト化合物の比率 は 20質量%以上であることが好まし!/、。  [0101] In the present invention, the ratio of the host compound among the compounds contained in the light emitting layer is preferably 20% by mass or more! /.
[0102] ホスト化合物としては、公知のホスト化合物を単独で用いてもよぐまたは複数種併 用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整すること が可能であり、有機 EL素子を高効率化することができる。また、後述する発光性ドー パントとして用いられるリン光性化合物等を複数種用いることで、異なる発光を混ぜる ことが可能となり、これにより任意の発光色を得ることができる。リン光性化合物の種 類、ドープ量を調整することが可能であり、照明、ノ ックライトへの応用もできる。  [0102] As the host compound, known host compounds may be used alone or in combination of two or more. By using multiple types of host compounds, it is possible to adjust the movement of charges, and the organic EL device can be made highly efficient. In addition, by using a plurality of phosphorescent compounds used as a luminescent dopant described later, it becomes possible to mix different luminescence, thereby obtaining an arbitrary luminescent color. The type of phosphorescent compound and the amount of doping can be adjusted, and it can also be applied to lighting and knock lights.
[0103] 本発明に係るホスト化合物としては、下記一般式 (HI)で表される化合物が好ましく 用いられる化合物の一例として挙げられる。また、前記化合物は発光層の隣接層(例 えば、正孔阻止層等)にも好ましく用いられる。  [0103] Examples of the host compound according to the present invention include compounds represented by the following general formula (HI). The compound is also preferably used in a layer adjacent to the light emitting layer (for example, a hole blocking layer).
[0104] [化 21] -般式《H1} 一 cz 〜c [0104] [Chemical 21] - general formula "H1} one c z ~ c
?1 \、 z¾- - - c I、  ? 1 \, z¾---c I,
[0105] 式中、 Ζは置換基を有していてもよい芳香族複素環を表し、 Ζは、各々置換基を有 [0105] In the formula, Ζ represents an aromatic heterocyclic ring which may have a substituent, and Ζ each has a substituent.
1 2 していてもよい芳香族複素環または芳香族炭化水素環を表し、 Ζは 2価の連結基ま  1 2 represents an aromatic heterocycle or aromatic hydrocarbon ring that may be substituted, and Ζ represents a divalent linking group.
3  Three
たは単なる結合手を表す。 R は水素原子または置換基を表す。  Or just a bond. R represents a hydrogen atom or a substituent.
101  101
[0106] また、本発明に用いられるホスト化合物としては、従来公知の低分子化合物でも、 繰り返し単位をもつ高分子化合物でもよぐビュル基やエポキシ基のような重合性基 を有する低分子化合物 (蒸着重合性発光ホスト)でもレ、レ、。公知のホスト化合物として は、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高 [0106] The host compound used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a bur group or an epoxy group ( Vapor deposition polymerizable luminescent host). As a known host compound, while having a hole transport ability and an electron transport ability, it is possible to prevent the emission of light from being long-wavelength and to have a high
Tg (ガラス転移温度)である化合物が好まし!/、。公知のホスト化合物の具体例として は、以下の文献に記載されている化合物が挙げられる。例えば、特開 2001— 2570 76号公報、同 2002— 308855号公報、同 2001— 313179号公報、同 2002— 31 9491号公報、同 2001— 357977号公報、同 2002— 334786号公報、同 2002— 8860号公報、同 2002— 334787号公報、同 2002— 15871号公報、同 2002— 3 34788号公報、同 2002— 43056号公報、同 2002— 334789号公報、同 2002— 75645号公報、同 2002— 338579号公報、同 2002— 105445号公報、同 2002 — 343568号公報、同 2002— 141173号公報、同 2002— 352957号公報、同 20 02— 203683号公報、同 2002— 363227号公報、同 2002— 231453号公報、同 2003— 3165号公報、同 2002— 234888号公報、同 2003— 27048号公報、同 2 002— 255934号公報、同 2002— 260861号公報、同 2002— 280183号公報、 同 2002— 299060号公報、同 2002— 302516号公報、同 2002— 305083号公報 、同 2002— 305084号公幸 I同 2002— 308837号公幸等カ挙げ、られる。 Compounds with Tg (glass transition temperature) are preferred! Specific examples of known host compounds include compounds described in the following documents. For example, JP 2001-257076, 2002-308855, 2001-313179, 2002-31 9491, 2001-357977, 2002-334786, 2002- 8860, 2002-334787, 2002-15871, 2002-3 34788, 2002-43056, 2002-334789, 2002-75645, 2002- No. 338579, No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 20 02-203683, No. 2002-363227, No. 2002- 231453, 2003-3165, 2002-234888, 2003-27048, 2002-255934, 2002-260861, 2002-280183, 2002- No. 299060, No. 2002-302516, No. 2002-305083, No. 2002-305084 No. I No. 2002-308837 Noh.
[0107] なお、本発明においては、ホスト化合物の 50質量%以上が、リン光発光エネルギ 一が各々 2. 9eV以上であり、且つ、ガラス転移温度 (Tg)力 各々 90°C以上の化合 物が好ましぐ更に好ましくは、 100°C以上の化合物である。また、有機 EL素子保存 性向上(耐久性向上ともいう。)、発光層界面での化合物の分布のむらを低減させる 観点から、ホスト化合物の物理化学的特性が同一または分子構造が同一であること が好ましい。 In the present invention, 50% by mass or more of the host compound has a phosphorescence emission energy of 2.9 eV or more and a glass transition temperature (Tg) force of 90 ° C. or more. More preferred is a compound having a temperature of 100 ° C or higher. Also save the organic EL device From the viewpoint of improving the property (also referred to as improving durability) and reducing the uneven distribution of the compound at the light emitting layer interface, it is preferable that the host compound has the same physicochemical characteristics or the same molecular structure.
[0108] (ガラス転移温度: Tg)  [0108] (Glass transition temperature: Tg)
本発明の有機エレクトロルミネセンス素子を構成する各層の有機化合物は、 100°C 以上のガラス転移温度 (Tg)を有する材料を、各々の層の少なくとも 80質量%以上 含有することを特徴とする。  The organic compound of each layer constituting the organic electroluminescent device of the present invention is characterized by containing a material having a glass transition temperature (Tg) of 100 ° C. or higher at least 80% by mass or more of each layer.
[0109] ここで、ガラス転温度(Tg)とは、 DSC (Differential Scanning Colorimetry:  [0109] Here, the glass transition temperature (Tg) is DSC (Differential Scanning Colorimetry:
示差走査熱量法)を用いて、 JIS— K— 7121に準拠した方法により求められる値であ る。上記のような同一の物理的特性を有するホスト化合物を用いること、更に好ましく は、同一の分子構造を有するホスト化合物を用いることにより、有機 EL素子の有機化 合物層(有機層ともいう)全体に渡って均質な膜性状が得られ、更にまた、ホスト化合 物のリン光発光エネルギーを 2. 9eV以上になるように調整すること力 ドーパントから のエネルギー移動を効率的に抑制し、高輝度を得ることが出来る。  This value is obtained by a method based on JIS-K-7121 using the differential scanning calorimetry. By using a host compound having the same physical characteristics as described above, more preferably, by using a host compound having the same molecular structure, the entire organic compound layer (also referred to as an organic layer) of the organic EL element is used. In addition, a uniform film property can be obtained, and the phosphorescence emission energy of the host compound can be adjusted to be 2.9 eV or more. Can be obtained.
[0110] (リン光発光エネルギー)  [0110] (Phosphorescence energy)
通常、本発明に係るリン光発光性化合物は室温にてリン光を発光する。それに対し 、ホスト化合物やその他の化合物においては通常室温ではリン光発光しがたい。そ のため、低温にて測定する必要がある。  Usually, the phosphorescent compound according to the present invention emits phosphorescence at room temperature. In contrast, host compounds and other compounds usually do not emit phosphorescence at room temperature. Therefore, it is necessary to measure at low temperature.
従って、本願において、「リン光発光エネルギー」とは、室温若しくは低温にて発光ス ベクトル測定したときに得られるリン光発光スペクトルの 0— 0遷移バンドのピークエネ ノレギーをいう。  Therefore, in the present application, “phosphorescence energy” refers to the peak energy of the 0-0 transition band of the phosphorescence spectrum obtained when the emission vector is measured at room temperature or low temperature.
[0111] (リン光発光の 0— 0遷移バンドの測定方法) [0111] (Measurement method of 0-0 transition band of phosphorescence emission)
(1)ホスト化合物及びリン光発光性化合物以外の化合物  (1) Compounds other than host compounds and phosphorescent compounds
ホスト化合物及びリン光発光性化合物以外の化合物においては、通常室温にて、リ ン光発光が得られない。この様な化合物においては低温にて測定する必要がある。 好ましい測定方法としては、石英基板もしくはシリコンウェハー上に lOOnm程度の薄 膜を形成し 77K以下、好ましくは 4Kの極低温にてフォトルミネッセンス測定を行う。こ の場合、蛍光とリン光が混合されたスペクトルが得られるため、時間分解、もしくはジ ッターなどを使い光照射した時間から遅延時間を設け測定しなければならない。 し力、しながら、この方法においては非常にリン光スペクトルが弱いもしくはほとんど発 光が得られな!/、場合が多レ、。そのような場合には溶液中にて測定することが好ましレ、 。溶液中で測定することで、殆どの化合物に関して測定することが可能であり、更に 強度も十分に得られるため信頼性も高い。また、薄膜中とは状態が違うためリン光ス ベクトルは薄膜と溶液で若干差が見られる場合があるが、溶液中での測定で相対的 に材料同士を比較するには好適である。 In compounds other than the host compound and the phosphorescent compound, phosphorescence cannot be obtained usually at room temperature. Such compounds must be measured at low temperatures. As a preferable measurement method, a thin film of about lOOnm is formed on a quartz substrate or a silicon wafer, and photoluminescence measurement is performed at a cryogenic temperature of 77K or less, preferably 4K. In this case, a spectrum with a mixture of fluorescence and phosphorescence is obtained. It is necessary to measure by setting a delay time from the time of light irradiation using a turret. However, in this method, the phosphorescence spectrum is very weak or almost no light emission can be obtained! /, In many cases. In such cases, it is preferable to measure in solution. By measuring in a solution, it is possible to measure almost all compounds, and since the strength can be sufficiently obtained, the reliability is high. In addition, the phosphorescence vector may be slightly different between the thin film and the solution because the state is different from that in the thin film, but it is suitable for comparing materials relative to each other in measurement in the solution.
以下に、溶液での測定方法を記載する。 Below, the measuring method with a solution is described.
測定するホスト化合物を、よく脱酸素されたエタノール/メタノール = 4/1 (体積/体 積)の混合溶媒に溶かし、リン光測定用セルに入れた後、液体窒素温度 77° Kで励 起光を照射し、励起光照射後 100msでの発光スペクトルを測定する。リン光は蛍光 に比べ発光寿命が長いため、 100ms後に残存する光はほぼリン光であると考えるこ と力 Sできる。なお、リン光寿命が 100msより短い化合物に対しては遅延時間を短くし て測定しても構わないが、蛍光と区別できなくなるほど遅延時間を短く設定するとリン 光と蛍光が分離できないので問題となるため、その分離が可能な遅延時間を選択す る必要がある。また、上記溶剤系で溶解できない化合物については、その化合物を 溶解しうる任意の溶剤を使用してもよい(実質上、上記測定法ではリン光波長の溶媒 効果はごく僅かなので問題はない。)。 The host compound to be measured is dissolved in a well-deoxygenated ethanol / methanol = 4/1 (volume / volume) mixed solvent, placed in a phosphorescence measurement cell, and excited at a liquid nitrogen temperature of 77 ° K. , And measure the emission spectrum at 100 ms after excitation light irradiation. Since phosphorescence has a longer emission lifetime than fluorescence, it can be considered that the remaining light after 100 ms is almost phosphorescence. For compounds with a phosphorescence lifetime shorter than 100 ms, measurement may be performed with a shorter delay time, but if the delay time is set so short that it cannot be distinguished from fluorescence, phosphorescence and fluorescence cannot be separated. Therefore, it is necessary to select a delay time that can be separated. In addition, for a compound that cannot be dissolved in the solvent system, any solvent that can dissolve the compound may be used (substantially, the above-described measurement method has no problem because the solvent effect of the phosphorescence wavelength is negligible). .
リン光発光性化合物 Phosphorescent compound
有機エレクト口ルミネッセンス素子の発光と比較するには、素子を構成する発光層と 同じ薄膜を洗浄した石英基板上に素子と同様に作製し、必要で有れば窒素下にて 封止しフォトルミネッセンス測定する。 In order to compare with the light emission of organic-electric-luminescence elements, the same thin film as the light-emitting layer that composes the element was prepared on the quartz substrate, and if necessary, sealed under nitrogen if necessary. taking measurement.
し力、しながら、リン光発光性化合物とホスト化合物、もしくはリン光発光性化合物以外 の化合物とのエネルギーの大小を比較する場合には上記の方法にて算出した値リン 光発光エネルギーを用いることは適してレ、なレ、場合がある。 However, when comparing the magnitude of energy between the phosphorescent compound and the host compound or a compound other than the phosphorescent compound, use the value phosphorescent energy calculated by the above method. There are cases where it is suitable.
上述の通り、ホスト化合物、もしくはリン光発光性化合物以外の化合物においては薄 膜でのリン光スペクトル測定が困難な場合が多い。そのような場合には低温にて溶液 で測定したリン光スペクトルを比較することが好ましい。 溶液でのリン光スペクトルは上記と同様である。 As described above, it is often difficult to measure a phosphorescence spectrum with a thin film of a compound other than a host compound or a phosphorescent compound. In such cases, it is preferable to compare phosphorescence spectra measured in solution at low temperatures. The phosphorescence spectrum in the solution is the same as described above.
[0112] 次に 0— 0遷移バンドの求め方である力 S、本発明においては、上記測定法で得られ たリン光スペクトルチャートのなかで最も短波長側に現れる発光極大波長をもって 0 0遷移バンドと定義する。  [0112] Next, the force S, which is a method for obtaining the 0-0 transition band, in the present invention, the 0 0 transition with the emission maximum wavelength appearing on the shortest wavelength side in the phosphorescence spectrum chart obtained by the above measurement method. It is defined as a band.
[0113] リン光スペクトルは通常強度が弱いことが多いため、拡大するとノイズとピークの判 別が難しくなるケースがある。このような場合には励起光照射中の発光スペクトル (便 宜上これを定常光スペクトルという。)を拡大し、励起光照射後 100ms後の発光スぺ タトル(便宜上これをリン光スペクトルという。)と重ねあわせリン光スペクトルに由来す る定常光スペクトル部分からリン光スペクトルのピーク波長を読みとることで決定する こと力 Sできる。また、リン光スペクトルをスムージング処理することでノイズとピークを分 離しピーク波長を読みとることもできる。なお、スムージング処理としては、 Savitzky &Golayの平滑化法等を適用することができる。  [0113] Since the phosphorescence spectrum is usually weak in intensity, it may be difficult to distinguish noise and peaks when enlarged. In such a case, the emission spectrum during excitation light irradiation (for convenience, this is called the steady light spectrum) is expanded, and the emission spectrum 100 ms after excitation light irradiation (for convenience, this is called the phosphorescence spectrum). It can be determined by reading the peak wavelength of the phosphorescence spectrum from the portion of the steady light spectrum derived from the phosphorescence spectrum. In addition, by smoothing the phosphorescence spectrum, it is possible to separate the noise and peak and read the peak wavelength. As the smoothing process, the Savitzky & Golay smoothing method or the like can be applied.
[0114] (発光性ドーパント)  [0114] (Luminescent dopant)
本発明においては、少なくとも二つの発光層は上記一般式 (BD1)で表されるリン 光性化合物を含有することを要するが、当該化合物を発光性ドーパントとして含有す ること力 Sできる。また、上記一般式 (BD1)で表されるリン光性化合物以外の各種発光 性化合物を発光性ドーパントとして併用することができる。  In the present invention, at least two light emitting layers are required to contain the phosphorescent compound represented by the above general formula (BD1), but can contain the compound as a light emitting dopant. In addition, various luminescent compounds other than the phosphorescent compound represented by the general formula (BD1) can be used in combination as the luminescent dopant.
[0115] 本発明に係る発光性ドーパントとしては、リン光性化合物(「リン光発光性化合物」、 「リン光発光体」等ともいう。)及び蛍光性化合物を用いることが出来るが、より発光効 率の高い有機 EL素子を得る観点からは、本発明の有機 EL素子の発光層や発光ュ ニットに使用される発光性ドーパント(単に、「発光材料」ということもある。)としては、 上記のホスト化合物を含有すると同時に、少なくとも 1種以上のリン光発光体を含有 することを要する。蛍光発光体を併用する場合は、青色を選択することが好ましい。  [0115] As the luminescent dopant according to the present invention, a phosphorescent compound (also referred to as "phosphorescent compound", "phosphorescent substance", etc.) and a fluorescent compound can be used. From the viewpoint of obtaining an organic EL device with high efficiency, the luminescent dopant used in the light emitting layer and the light emitting unit of the organic EL device of the present invention (sometimes simply referred to as “light emitting material”) is as described above. It is necessary to contain at least one phosphorescent emitter simultaneously with the host compound. When using a fluorescent emitter together, it is preferable to select blue.
[0116] (リン光性化合物:リン光発光体)  [0116] (Phosphorescent compound: phosphorescent emitter)
本発明に係るリン光性化合物(「リン光発光体」、「リン光性ドーパント」ともいう。)は、 励起三重項からの発光が観測される化合物であり、具体的には、室温(25°C)にてリ ン光発光する化合物であり、リン光量子収率が、 25°Cにおいて 0. 01以上の化合物 であると定義される力 好ましいリン光量子収率は 0. 1以上である。 [0117] 上記リン光量子収率は、第 4版実験化学講座 7の分光 IIの 398頁(1992年版、丸 善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用 いて測定できるが、本発明に係るリン光発光体は、任意の溶媒のいずれかにおいて 上記リン光量子収率(0. 01以上)が達成されればよい。リン光発光体の発光は原理 としては 2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結 合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光発光体に移 動させることでリン光発光体からの発光を得るというエネルギー移動型、もう一つはリ ン光発光体がキャリアトラップとなり、リン光発光体上でキャリアの再結合が起こりリン 光発光体からの発光が得られるというキャリアトラップ型である力 いずれの場合にお いても、リン光発光体の励起状態のエネルギーはホスト化合物の励起状態のェネル ギ一よりも低いことが条件である。リン発光体は、有機 EL素子の発光層に使用される 公知のものの中から適宜選択して用いることができる。本発明に係るリン光発光体と しては、好ましくは元素の周期表で 8族〜 10族の金属を含有する錯体系化合物であ り、更に好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯 体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 本発明では、特に赤色はイリジウム化合物から選択されることが好ましい。 The phosphorescent compound according to the present invention (also referred to as “phosphorescent emitter” or “phosphorescent dopant”) is a compound in which light emission from an excited triplet is observed. A compound that emits phosphorescence at ° C) and has a phosphorescence quantum yield of 0.01 or more at 25 ° C. A preferred phosphorescence quantum yield is 0.1 or more. [0117] The phosphorescence quantum yield can be measured by the method described in Spectroscopic II, pp. 398 (1992 edition, Maruzen), 4th edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence emitter according to the present invention achieves the above phosphorescence quantum yield (0.01 or more) in any solvent. Just do it. There are two types of light emission by phosphorescent emitters in principle. One is the recombination of carriers on the host compound to which carriers are transported, generating an excited state of the host compound, and this energy is phosphorescently emitted. The energy transfer type, in which light is emitted from the phosphorescent emitter by being transferred to the body, and the other is that the phosphorescent emitter becomes a carrier trap, and carrier recombination occurs on the phosphorescent emitter, causing phosphorescence emission. In any case, it is a condition that the excited state energy of the phosphorescent emitter is lower than that of the excited state of the host compound. The phosphor luminescent material can be appropriately selected from known materials used for the light emitting layer of the organic EL device. The phosphorescent emitter according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound ( Platinum complex compounds) and rare earth complexes, most preferably iridium compounds. In the present invention, it is particularly preferable that red is selected from iridium compounds.
[0118] リン光発光体として用いられる化合物のその他の具体例としては、特開 2004— 31 1410号明細書段落(0106)〜(0109)に記載された化合物があげられる力 S、本発 明はこれらに限定されない。  [0118] Other specific examples of the compound used as the phosphorescent emitter include the force S described in paragraphs (0106) to (0109) of JP-A-2004-311410, S, and the present invention. Is not limited to these.
[0119] (蛍光性化合物:蛍光発光体)  [0119] (Fluorescent compound: Fluorescent substance)
蛍光性化合物(「蛍光発光体」、「蛍光性ドーパント」等ともいう。)の代表例としては 、クマリン系色素、ピラン系色素、シァニン系色素、クロコニゥム系色素、スクァリウム 系色素、ォキソベンツアントラセン系色素、フルォレセイン系色素、ローダミン系色素 、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチォフェン系色素、又は 希土類錯体系蛍光体等が挙げられる。また、従来公知のドーパントも本発明に用い ること力 Sでき、例えば、国際公開第 00/70655号パンフレット、特開 2002— 28017 8号公報、特開 2001— 18皿 6号公報、特開 2002— 280179号公報、特開 2001 —18皿 7号公報、特開 2002— 280180号公報、特開 2001— 247859号公報、 特開 2002— 299060号公報、特開 2001— 313178号公報、特開 2002— 302671 号公報、特開 2001— 345183号公報、特開 2002— 324679号公報、国際公開第 02/15645号パンフレツ K特開 2002— 332291号公報、特開 2002— 50484号 公報、特開 2002— 332292号公報、特開 2002— 83684号公報、特表 2002— 54 0572号公報、特開 2002— 117978号公報、特開 2002— 338588号公報、特開 2 002— 170684号公報、特開 2002— 352960号公報、国際公開第 01/93642号 ノ ンフレツ K特開 2002— 50483号公報、特開 2002— 100476号公報、特開 200 2— 173674号公報、特開 2002— 359082号公報、特開 2002— 175884号公報、 特開 2002— 363552号公報、特開 2002— 184582号公報、特開 2003— 7469号 公報、特表 2002— 525808号公報、特開 2003— 7471号公報、特表 2002— 525 833号公報、特開 2003— 31366号公報、特開 2002— 226495号公報、特開 200 2— 234894号公報、特開 2002— 235076号公報、特開 2002— 241751号公報、 特開 2001— 319779号公報、特開 2001— 319780号公報、特開 2002— 62824 号公報、特開 2002— 100474号公報、特開 2002— 203679号公報、特開 2002— 343572号公報、特開 2002— 203678号公報等力 S挙げられる。 Representative examples of fluorescent compounds (also referred to as “fluorescent emitters”, “fluorescent dopants”, etc.) include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene. And dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors. Further, conventionally known dopants can also be used in the present invention. For example, WO 00/70655 pamphlet, JP 2002-280178 A, JP 2001-18 dish 6 JP, 2002 — 280179, JP 2001-18 dish 7, JP 2002-280180, JP 2001-247859, JP 2002-299060, JP 2001-313178, JP 2002-302671, JP 2001-345183, JP 2002-324679, WO 02/15645 Pamphlet K JP 2002-332291, JP 2002-50484, JP 2002-332292, JP 2002-83684, JP 2002-54572, JP 2002-117978, JP 2002-338588, JP 2002-170684, JP 2002-352960, WO 01/93642 Nonfretsu K JP 2002-50483, JP 2002-100476, JP 2002-173674, JP 2002-359082, JP 2002-175884, JP 2002-363552, JP 2002-184582, JP 2003-7469, special table JP 2002-525808, JP 2003-7471, JP 2002-525 833, JP 2003-31366, JP 2002-226495, JP 2002-234 894, JP 2002-235076, JP 2002-241751, JP 2001-319779, JP 2001-319780, JP 2002-62424, JP 2002-100474 Japanese Patent Laid-Open No. 2002-203679, No. 2002-343572, No. 2002-203678, etc.
[0120] 《非発光性の中間層》 [0120] 《Non-light emitting intermediate layer》
本発明においては、キャリア制御層として、非発光性の中間層を設けることが好まし い。非発光性の中間層の層厚としては、 l〜15nmの範囲にあるのが好ましぐ更に は 3〜; !Onmの範囲にあること力 隣接発光層間のエネルギー移動など相互作用を 抑制し、且つ、素子の電流電圧特性に大きな負荷を与えないという観点から好ましい  In the present invention, it is preferable to provide a non-light emitting intermediate layer as the carrier control layer. The thickness of the non-light emitting intermediate layer is preferably in the range of 1 to 15 nm, and more preferably in the range of 3 to;! Onm range Forces suppress interaction such as energy transfer between adjacent light emitting layers, And it is preferable from the viewpoint of not giving a large load to the current-voltage characteristics of the element
[0121] この非発光性の中間層に用いられる材料としては、発光層のホスト化合物と同一で も異なっていてもよいが、隣接する 2つの発光層のすくなくとも一方の発光層のホスト 材料と同一であることが好ましい。 [0121] The material used for the non-light emitting intermediate layer may be the same as or different from the host compound of the light emitting layer, but is the same as the host material of at least one of the adjacent light emitting layers. It is preferable that
[0122] 非発光性の中間層は、各発光層と共通の化合物(例えば、ホスト化合物等)を含有 していてもよく、各々共通ホスト材料(ここで、共通ホスト材料が用いられるとは、リン光 発光エネルギー、ガラス転移温度等の物理化学的特性が同一である場合やホスト化 合物の分子構造が同一である場合等を示す。)を含有することにより、発光層 非発 光層間の層間の注入障壁が低減され、電圧(電流)を変化させても正孔と電子の注 入バランスが保ちやすいという効果を得ることができる。また、電圧(電流)をかけたと きの色ずれが改善されるという効果が得られることも判った。 [0122] The non-light-emitting intermediate layer may contain a compound common to each light-emitting layer (for example, a host compound), and each common host material (where a common host material is used) Phosphorescent light emission energy, when the physicochemical properties such as glass transition temperature are the same, or when the molecular structure of the host compound is the same, etc.) The injection barrier between the optical layers is reduced, and the effect of easily maintaining the injection balance of holes and electrons even when the voltage (current) is changed can be obtained. It was also found that the effect of improving color shift when voltage (current) was applied was obtained.
[0123] 更に、上記のように、共通ホスト材料の最低励起三重項エネルギー準位 T1が、リン 光発光体の最低励起三重項エネルギー準位 T2よりも高い励起三重項エネルギーを 有する材料を用いることで、発光層の三重項励起子を効果的に発光層内に閉じ込め るので高効率な素子を得られることが判った。  [0123] Further, as described above, a material in which the lowest excited triplet energy level T1 of the common host material has an excitation triplet energy higher than the lowest excited triplet energy level T2 of the phosphor is used. Thus, it was found that a highly efficient device can be obtained because triplet excitons of the light emitting layer are effectively confined in the light emitting layer.
[0124] また、青 *緑*赤の 3色の有機 EL素子においては、各々の発光材料にリン光発光体 を用いる場合、青色のリン光発光体の励起 3重項エネルギーが一番大きくなる力 前 記青色のリン光発光体よりも大きい励起 3重項エネルギーを有するホスト材料を発光 層と非発光性の中間層とが共通のホスト材料として含んでいてもよい。  [0124] Also, in the three-color organic EL element of blue * green * red, when a phosphorescent emitter is used for each luminescent material, the excited triplet energy of the blue phosphorescent emitter is the largest. A host material having an excitation triplet energy larger than that of the blue phosphorescent emitter described above may be included as a common host material in the light emitting layer and the non-light emitting intermediate layer.
[0125] 本発明の有機 EL素子においては、ホスト材料はキャリアの輸送を担うため、キヤリ ァ輸送能を有する材料が好ましい。キャリア輸送能を表す物性としてキャリア移動度 が用いられるが、有機材料のキャリア移動度は一般的に電界強度に依存性が見られ る。電界強度依存性の高い材料は正孔と電子注入 ·輸送バランスを崩しやすい為、 中間層材料、ホスト材料は移動度の電界強度依存性の少な!/、材料を用いることが好 ましい。また、一方では、正孔ゃ電子の注入バランスを最適に調整するためには、非 発光性の中間層は、阻止層即ち、正孔阻止層、電子阻止層として機能することも好 ましレヽ態様としてあげられる。  [0125] In the organic EL device of the present invention, since the host material is responsible for carrier transport, a material having carrier transport capability is preferable. Carrier mobility is used as a physical property that expresses carrier transport ability, and carrier mobility of organic materials generally depends on electric field strength. Since materials with high electric field strength dependency easily break the hole / electron injection / transport balance, it is preferable to use materials with low mobility dependence on electric field strength for the intermediate layer and host material. On the other hand, in order to optimally adjust the injection balance of holes and electrons, it is also preferable that the non-light emitting intermediate layer functions as a blocking layer, that is, a hole blocking layer and an electron blocking layer. It is given as.
[0126] 《正孔輸送層》  [0126] << Hole Transport Layer >>
正孔輸送層は、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で 正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数 層設けること力 Sでさる。  The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. A single hole or multiple hole transport layers can be provided.
[0127] 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性の!/、ずれかを有す るもので有機物、無機物のいずれでもよい。例えば、トリァゾール誘導体、ォキサジァ ゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体 及びピラゾロン誘導体、フエ二レンジァミン誘導体、ァリールァミン誘導体、ァミノ置換 カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、フルォレノン誘 導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリン系共重合体、 また導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げられる。正孔輸送 材料としては上記のものを使用することができる力 ポルフィリン化合物、芳香族第 3 級ァミン化合物及びスチリルァミン化合物、特に芳香族第 3級ァミン化合物を用いる ことが好まし!/、。芳香族第 3級ァミン化合物及びスチリルァミン化合物の代表例として は、 N, N, N' , N' —テトラフエニノレー 4, 4' ージァミノフエ二ノレ; N, N' —ジフエ ニル一 N, N' —ビス(3—メチルフエ二ル)一〔1 , 1' —ビフエ二ル〕一 4, 4' —ジァ ミン(TPD) ; 2 , 2 ビス(4 ジ一 p トリルァミノフエ二ノレ)プロパン; 1 , 1—ビス(4— ジ一 p トリルァミノフエ二ノレ)シクロへキサン; N, N, N' , N' —テトラ一 p トリノレ一 4, A' —ジアミノビフエニル; 1 , 1—ビス(4—ジ一 p トリルァミノフエ二ル)一 4—フエ ニルシクロへキサン;ビス(4 -ジメチルァミノ一 2 メチルフエ二ノレ)フエニルメタン;ビ ス(4—ジ一 p トリルァミノフエ二ノレ)フエニルメタン; N, N' —ジフエ二ノレ一 N, N' ージ(4ーメトキシフエ二ノレ) 4, ージアミノビフエ二ノレ; N, N, N' , N' —テトラ フエ二ノレ一 4, A' —ジアミノジフエニルエーテル; 4, A' —ビス(ジフエニルァミノ)ク オードリフエニル; N, N, N—トリ(p—トリル)ァミン; 4—(ジ—p—トリルァミノ)ー 一〔4 (ジ p—トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエニルアミノー(2 ージフエ二ルビ二ノレ)ベンゼン; 3—メトキシー - N, N ジフエニルアミノスチルべ ンゼン; N フエ二ルカルバゾール、更には、米国特許第 5 , 061 , 569号明細書に 記載されている 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' ビス〔 N— ( 1—ナフチル) N フエニルァミノ〕ビフエニル(NPD)、特開平 4 308688 号公報に記載されているトリフエニルァミンユニットが 3つスターバースト型に連結され た 4, 4' , A" —トリス〔N— (3—メチルフエ二ル)一 N フエニルァミノ〕トリフエニルァ ミン (MTDATA)等が挙げられる。更にこれらの材料を高分子鎖に導入した、または これらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、 p型 Si 、 p型 SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することがで きる。また、特開平 1 1— 251067号公報、】. Huang et. al.著文献 (Applied Phy sics Letters 80 (2002) , p. 139)に記載されているような所謂、 p型正孔輸送材 料を用いることもできる。本発明ではより高効率の発光素子が得られることからこれら の材料を用いることが好ましい。正孔輸送層は上記正孔輸送材料を、例えば、真空 蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、 LB法等の公知 の方法により、薄膜化することにより形成すること力 Sできる。正孔輸送層の膜厚につい ては特に制限はないが、通常は 51 111〜5 111程度、好ましくは 5〜200nmである。こ の正孔輸送層は上記材料の 1種または 2種以上からなる一層構造であってもよい。ま た、不純物をドープした p性の高い正孔輸送層を用いることもできる。その例としては 、特開平 4— 297076号公報、特開 2000— 196140号公報、特開 2001— 102175 号公報、 J. Appl. Phys. , 95, 5773 (2004)等に記載されたものが挙げられる。本 発明ではこのような ρ性の高い正孔輸送層を用いることがより低消費電力の素子を作 製することができるため好ましレ、。 [0127] The hole transport material has either injection or transport of holes and / or a barrier property of electrons, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives Examples thereof include conductors, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. The ability to use the above-mentioned materials as the hole transport material It is preferable to use porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, especially aromatic tertiary amine compounds! Typical examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N ′ —tetraphenylenol 4,4 ′ diaminophenol; N, N ′ —diphenyl N, N ′ —Bis (3-methylphenyl) -1- [1, 1′-biphenyl] -1,4,4′-diamin (TPD); 2,2 bis (4 di-p-tolylaminophenol) propane; 1-bis (4-di-l-triaminophenenyl) cyclohexane; N, N, N ', N'-tetra-l-trinore 4, A'-diaminobiphenyl; 1,1-bis- (4-di-) 1-p-tolylaminophenyl) 1-4-phenylcyclohexane; bis (4-dimethylamino-1-methylphenenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N '—diphenylenoyl N, N'-di (4-methoxyphenol) 4, -diaminobiphenol; N, N, N ' , N '— Tetraphenylol 4, A ′ — Diaminodiphenyl ether; 4, A ′ — Bis (diphenylamino) quaternary phenyl; N, N, N-tri (p-tolyl) amine; Di-p-tolylamino)-1 [4 (di-p-tolylamino) styryl] stilbene; 4-N, N diphenylamino- (2-diphenylbinole) benzene; 3-methoxy-N, N diphenylaminostil Benzene; N phenylcarbazole, and those having two condensed aromatic rings described in US Pat. No. 5,061,569, for example, 4, 4 ′ bis [ N- (1-naphthyl) N phenylamino] biphenyl (NPD), three triphenylamine units described in JP-A-4 308688 are linked in a starburst type 4, 4 ', A "—Tris [N— (3-Methylphenyl) 1 N phenyla )] Triphenylamine (MTDATA), etc. Furthermore, polymer materials in which these materials are introduced into the polymer chain or these materials as the main chain of the polymer can also be used. Inorganic compounds such as p-type SiC can also be used as hole injection materials and hole transport materials. In addition, a so-called p-type hole transport material as described in Huang et. Al. (Applied Physics Letters 80 (2002), p. 139). Can also be used. In the present invention, since a more efficient light emitting device can be obtained, these It is preferable to use these materials. The hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. S can. The thickness of the hole transport layer is not particularly limited, but is usually about 51 111 to 5 111, preferably 5 to 200 nm. This hole transport layer may have a single layer structure composed of one or more of the above materials. It is also possible to use a hole transport layer having a high p property doped with impurities. Examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004), and the like. It is done. In the present invention, it is preferable to use such a hole transport layer having a high rho property because a device with lower power consumption can be produced.
《電子輸送層》  《Electron transport layer》
電子輸送層は、電子を輸送する機能を有する材料からなり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含む。電子輸送層は単層または複数層設けることが できる。従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側 に隣接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料を兼ねる)は、陰 極より注入された電子を発光層に伝達する機能を有していればよぐその材料は従 来公知の化合物の中から任意のものを選択して用いることができ、例えばニトロ置換 フルオレン誘導体、ジフヱ二ルキノン誘導体、チォピランジオキシド誘導体、カルポジ イミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ォ キサジァゾール誘導体等が挙げられる。更に、上記ォキサジァゾール誘導体におい て、ォキサジァゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、 電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸 送材料として用いること力 Sできる。更にこれらの材料を高分子鎖に導入した、またはこ れらの材料を高分子の主鎖とした高分子材料を用いることができる。また、 8—キノリ ノール誘導体の金属錯体、例えば、トリス(8—キノリノール)アルミニウム (Alq)、トリス (5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブロモ一 8—キノリノ ール)アルミニウム、トリス(2 メチル 8 キノリノール)アルミニウム、トリス(5 メチ ルー 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Znq)等、及びこれら の金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに置き替わった金属 錯体も、電子輸送材料として用いること力できる。その他、メタノレフリーもしくはメタル フタロシアニン、またはそれらの末端がアルキル基ゃスルホン酸基等で置換されてレヽ るものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として 例示したジスチリルビラジン誘導体も、電子輸送材料として用いることができ、正孔注 入層、正孔輸送層と同様に n型 Si、 n型 SiC等の無機半導体も電子輸送材料と して用いること力 Sできる。電子輸送層は上記電子輸送材料を、例えば真空蒸着法、ス ピンコート法、キャスト法、インクジェット法を含む印刷法、 LB法等の公知の方法によ り薄膜化することにより形成すること力できる。電子輸送層の膜厚については特に制 限はないが、通常は 51 111〜5 111程度、好ましくは 5〜200nmである。電子輸送層 は上記材料の 1種または 2種以上からなる一層構造であってもよい。また不純物をド ープした n性の高い電子輸送層を用いることもできる。その例としては、特開平 4 29 7076号公報、特開平 10— 270172号公報、特開 2000— 196140号公報、特開 20 01— 102175号公報、 J. Appl. Phys. , 95, 5773 (2004)などに記載されたもの が挙げられる。本発明においては、このような η性の高い電子輸送層を用いることがよ り低消費電力の素子を作製することができるため好ましい。 The electron transport layer is made of a material having a function of transporting electrons, and includes an electron injection layer and a hole blocking layer in a broad sense. The electron transport layer can be provided as a single layer or a plurality of layers. Conventionally, in the case of a single electron transport layer and a plurality of layers, an electron transport material (also serving as a hole blocking material) used for the electron transport layer adjacent to the cathode side with respect to the light emitting layer is injected from the negative electrode. As long as it has a function of transferring electrons to the light emitting layer, any material can be selected from conventionally known compounds, such as nitro-substituted fluorene derivatives and diphenylquinone derivatives. Thiopyran dioxide derivatives, carpositimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like. Furthermore, among the above oxadiazole derivatives, thiadiazole derivatives in which the oxygen atom of the oxaziazole ring is substituted with a sulfur atom, and quinoxaline derivatives having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can be used. Also, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dibromo-1-8-quinolinol) ) Aluminum, Tris (2 methyl 8 quinolinol) aluminum, Tris (5 methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc. Metal complexes in which the central metal of these metal complexes is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials. In addition, methanol-free or metal phthalocyanine, or those having a terminal substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. In addition, the distyrylvirazine derivative exemplified as the material for the light-emitting layer can also be used as an electron transport material. Similarly to the hole injection layer and the hole transport layer, inorganic semiconductors such as n-type Si and n-type SiC can also be used. Can be used as an electron transport material. The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. The thickness of the electron transport layer is not particularly limited, but is usually about 51 111 to 5 111, preferably 5 to 200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials. It is also possible to use an electron transport layer having a high n property doped with impurities. Examples thereof include JP-A-4 29 7076, JP-A-10-270172, JP-A 2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004). ) And the like. In the present invention, it is preferable to use such an electron transport layer having a high η property because an element with low power consumption can be produced.
[0129] 《注入層:電子注入層、正孔注入層》  [0129] <Injection layer: electron injection layer, hole injection layer>
注入層は、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業化最前線(1998年 11月 30日ェヌ 'ティー.ェ ス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。  The injection layer is a layer that is provided between the electrode and the organic layer in order to lower the drive voltage and improve the luminance of the light emission. “The organic EL element and its industrialization front line (November 30, 1998, NTS Corporation) Issue) ”, Chapter 2, Chapter 2,“ Electrode Materials ”(pages 123-166), which has a hole injection layer (one anode buffer layer) and an electron injection layer (one cathode buffer layer).
[0130] 注入層は必要に応じて設け、上記の如く陽極と発光層または正孔輸送層の間、及 び陰極と発光層または電子輸送層との間に存在させてもよい。  [0130] The injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer as described above.
[0131] 陽極バッファ一層(正孔注入層)は、特開平 9 45479号公報、同 9 260062号 公報、同 8— 288069号公報等にもその詳細が記載されており、具体例として、銅フ タロシアニンに代表されるフタロシアニンバッファ一層、酸化バナジウムに代表される 酸化物バッファ一層、アモルファスカーボンバッファ一層、ポリア二リン(ェメラルディ ン)やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる 。陰極バッファ一層(電子注入層)は、特開平 6— 325871号公報、同 9 17574号 公報、同 10— 74586号公報等にもその詳細が記載されており、具体的にはストロン チウムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表される アルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金 属化合物バッファ一層、酸化アルミニウムに代表される酸化物バッファ一層等が挙げ られる。上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよる がその膜厚は 0· 1〜5 111の範囲が好ましい。 [0131] The details of the anode buffer layer (hole injection layer) are also described in JP-A-9 45479, JP-A-9 260062, JP-A-8-288069 and the like. Examples include a phthalocyanine buffer layer represented by talocyanine, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene. Be . The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-917574, JP-A-10-74586, and the like. Metal buffer layer represented by lithium fluoride, alkali metal compound buffer layer represented by lithium fluoride, alkaline earth metal compound buffer layer represented by magnesium fluoride, oxide buffer layer represented by aluminum oxide, etc. It is done. The thickness of the buffer layer (injection layer) is preferably in the range of 0.1 to 5111, although it depends on the material desired to be a very thin film.
[0132] 《阻止層:正孔阻止層、電子阻止層》 [0132] 《Blocking layer: hole blocking layer, electron blocking layer》
正孔阻止層は、広い意味では電子輸送層の機能を有し、電子を輸送する機能を有 しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつ つ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、 前述した電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用い ること力 Sできる。本発明の有機 EL素子の正孔阻止層は、発光層に隣接して設けられ ていることが好ましい。  The hole blocking layer has the function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes. By blocking the holes, the probability of recombination of electrons and holes can be improved. In addition, the above-described configuration of the electron transport layer can be used as a hole blocking layer according to the present invention, if necessary. The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
[0133] 阻止層は、上記の如ぐ有機化合物薄膜の基本構成層の他に必要に応じて設けら れるものである。例えば、特開平 11— 204258号公報、同 11— 204359号公報、及 び「有機 EL素子とその工業化最前線( 1998年 11月 30日ェヌ 'ティー ·エス社発行) 」の 237頁等に記載されている正孔阻止(ホールブロック)層がある。  [0133] The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, see pages 237 of JP-A-11-204258, JP-A-11-204359, and “OLEDs and the Forefront of Industrialization (issued on November 30, 1998 by TS Co., Ltd.)”. There is a hole blocking layer described.
[0134] 本発明においては、正孔阻止層に含有される化合物の 50質量%以上が、前記最 短波発光層のホスト化合物に対し、そのイオン化ポテンシャルが 0. 2eV以上大きい ことが好ましい。本発明に係る正孔阻止層は、前記エレクトロンドナーを含有すると、 電子密度が増加するので、更なる低電圧化のために好ましい。  In the present invention, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer has an ionization potential of 0.2 eV or more greater than the host compound of the short-wave light emitting layer. If the hole blocking layer according to the present invention contains the electron donor, the electron density increases, which is preferable for further lowering the voltage.
[0135] 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機 能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電 子を阻止することで電子と正孔の再結合確率を向上させることができる。本発明に好 ましく用いられる電子阻止層は、前記正孔輸送層の材料である。更に前記エレクト口 ンァクセプターを含有すると更なる低電圧化の効果が得られる。  [0135] On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes while having a remarkably small ability to transport electrons. However, by blocking electrons, the probability of recombination of electrons and holes can be improved. The electron blocking layer preferably used in the present invention is a material for the hole transport layer. Further, when the above-mentioned elector acceptor is contained, the effect of lowering the voltage can be obtained.
本発明に係る正孔阻止層、電子輸送層の膜厚としては好ましくは 3〜; !OOnmであり 、更に好ましくは 5〜30nmである。 The film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 to;! OOnm More preferably, it is 5 to 30 nm.
[0136] 《支持基盤》 [0136] 《Support base》
本発明の有機 EL素子に係る支持基盤 (以下、基体、基板、基材、支持体等ともいう 。)としては、ガラス、プラスチック等の種類には特に限定はなぐまた、透明であって も不透明であってもよい。支持基盤側から光を取り出す場合には、支持基盤は透明 であることが好ましい。好ましく用いられる透明な支持基盤としては、ガラス、石英、透 明樹脂フィルムを挙げることができる。特に好ましい支持基盤は、有機 EL素子にフレ キシブル性を与えることが可能な樹脂フィルムである。樹脂フィルムとしては、例えば 、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステ ノレ、ポリエチレン、ポリプロピレン、セロファン、セノレロースジアセテート、セノレローストリ アセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(C AP)、セノレロースアセテートフタレート(TAC)、セノレロースナイトレート等のセノレロー スエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビュルアルコール、ポリ エチレンビュルアルコール、シンジォタクティックポリスチレン、ポリカーボネート、ノル ボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスル ホン(PES)、ポリフエ二レンスルフイド、ポリスルホン類、ポリエーテルイミド、ポリエー テルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタタリレート、アクリル或 いはポリアリレート類、アートン(商品名 JSR社製)或いはァペル(商品名三井化学社 製)といったシクロォレフイン系樹脂等を挙げられる。樹脂フィルムの表面には、無機 物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよぐ JIS K 7129— 1992に準拠した方法で測定された水蒸気透過度(25 ± 0. 5°C、相対 湿度(90土 2) %RH)力 1 X 10— 3g/ (m2- 24h)以下のバリア性フィルムであることが 好ましぐ更には、 JIS K 7126— 1987に準拠した方法で測定された酸素透過度 力 S、 1 X 10— 3ml/m2' 24h' atm以下、水蒸気透過度(25 ± 0. 5°C、相対湿度(90土 2) %RH)力 1 X 10— 3g/ (m2- 24h)以下の高バリア性フィルムであることが好まし!/ヽThe support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) relating to the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc. Also, it may be transparent or opaque. It may be. In the case where light is extracted from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support base is a resin film capable of imparting flexibility to the organic EL element. Examples of the resin film include polyesterol such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cenorelose diacetate, cenorelose triacetate, cellulose acetate butyrate, and cellulose acetate propionate. (CAP), senorelose acetate phthalate (TAC), senorelose esters such as senorelose nitrate, or their derivatives, polyvinylidene chloride, polybulu alcohol, poly (ethylene butyl alcohol), syndiotactic polystyrene, polycarbonate, norbornene resin , Polymethylpentene, Polyetherketone, Polyimide, Polyethersulfone (PES), Polyphenylene sulfide, Polysulfones, Polyether Cycloolefin resins such as luimide, polyether ketone imide, polyamide, fluororesin, nylon, polymethylmetatalylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or pearl (trade name, manufactured by Mitsui Chemicals) Etc. The surface of the resin film may have an inorganic or organic coating or a hybrid coating of both. Water vapor permeability measured by a method in accordance with JIS K 7129-1992 (25 ± 0.5 ° how 24h) to be less of a barrier film preferably fixture further conforming to JIS K 7126- 1987 - C, relative humidity (90 Sat 2)% RH) power 1 X 10- 3 g / (m 2 in measured oxygen permeability force S, 1 X 10- 3 ml / m 2 '24h' atm or less, the water vapor transmission rate (25 ± 0. 5 ° C, relative humidity (90 Sat 2)% RH) power 1 X 10- 3 g /! (m 2 - 24h) following it is preferably a high barrier film /ヽ
Yes
[0137] 高バリア性フィルムとするために樹脂フィルム表面に形成されるバリア膜を形成する 材料としては、水分や酸素など素子の劣化をもたらすものの浸入を抑制する機能を 有する材料であればよぐ例えば、酸化珪素、二酸化珪素、窒化珪素などを用いるこ と力できる。更に該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層 の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に 制限はなレ、が、両者を交互に複数回積層させることが好ましレ、。 [0137] As a material for forming a barrier film formed on the surface of a resin film in order to obtain a high barrier film, it has a function of suppressing intrusion of elements such as moisture and oxygen that cause deterioration of the element. For example, silicon oxide, silicon dioxide, silicon nitride or the like can be used as long as it has a material. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of organic materials. There are no particular restrictions on the order in which the inorganic and organic layers are stacked, but it is preferable to stack both layers alternately.
[0138] 《バリア膜の形成方法》  [0138] << Method for Forming Barrier Film >>
ノ リア膜の形成方法については、特に限定はなぐ例えば真空蒸着法、スパッタリ ング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、 イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマ CVD法 、レーザー CVD法、熱 CVD法、コーティング法などを用いることができる力 特開 20 04— 68143号公報に記載されているような大気圧プラズマ重合法によるものが特に 好ましい。不透明な支持基盤としては、例えばアルミ、ステンレス等の金属板'フィル ムゃ不透明樹脂基板、セラミック製の基板等が挙げられる。  There are no particular limitations on the formation method of the noria film, for example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma weighting. Power capable of using a combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, etc. A method using an atmospheric pressure plasma polymerization method as described in JP-A No. 2004-68143 is particularly preferable. Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, film opaque resin substrates, ceramic substrates, and the like.
[0139] 本発明の有機 EL素子の発光の室温における外部取り出し効率は 1 %以上であるこ とが好ましぐより好ましくは 5%以上である。ここに、外部取り出し量子効率(%) =有 機 EL素子外部に発光した光子数/有機 EL素子に流した電子数 X 100である。また 、カラーフィルタ一等の色相改良フィルタ一等を併用しても、有機 EL素子からの発光 色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよ!/、。  [0139] The external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more. Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL device / the number of electrons sent to the organic EL device × 100. You can also use a hue improvement filter, such as a color filter, or a color conversion filter that converts the emission color from an organic EL element into multiple colors using a phosphor! /.
[0140] 《封止》  [0140] <Sealing>
本発明の有機 EL素子の封止に用いられる封止手段としては、例えば封止部材と、 電極、支持基盤とを接着剤で接着する方法を挙げることができる。封止部材としては 、有機 EL素子の表示領域を覆うように配置されておればよぐ凹板状でも、平板状で もよい。また、透明性、電気絶縁性は特に限定されない。具体的には、ガラス板、ポリ マー板'フィルム、金属板'フィルム等が挙げられる。ガラス板としては、特にソーダ石 灰ガラス、ノ リウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノケィ酸ガラス、ホウケ ィ酸ガラス、ノ リウムホウケィ酸ガラス、石英等を挙げることができる。  Examples of the sealing means used for sealing the organic EL element of the present invention include a method in which a sealing member, an electrode, and a support base are bonded with an adhesive. The sealing member may be in the form of a concave plate or a flat plate as long as it is disposed so as to cover the display area of the organic EL element. Moreover, transparency and electrical insulation are not particularly limited. Specific examples include a glass plate, a polymer plate 'film, and a metal plate' film. Examples of the glass plate include sodalite ash glass, norium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
[0141] また、ポリマー板としては、ポリカーボネート、アタリノレ、ポリエチレンテレフタレート、 ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、 ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリ ブテン、シリコン、ゲルマニウムおよびタンタルからなる群から選ばれる一種以上の金 属または合金からなるものが挙げられる。 [0141] Examples of the polymer plate include polycarbonate, attalinole, polyethylene terephthalate, polyether sulfide, and polysulfone. Stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum Examples thereof include those made of one or more metals or alloys selected from the group consisting of butene, silicon, germanium and tantalum.
[0142] 本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィル ムを好ましく使用することができる。更には、ポリマーフィルムは、 JIS K 7129- 19 92に準拠した方法で測定された水蒸気透過度(25 ± 0. 5°C、相対湿度(90 ± 2) % RH)が、 1 X 10— 3g/ (m2' 24h)以下のバリア性フィルムであることが好ましぐ更には 、JIS K 7126— 1987に準拠した方法で測定された酸素透過度力 1 X 10— 3ml/ m2' 24h' atm以下、水蒸気透過度(25 ± 0. 5°C、相対湿度(90 ± 2) %RH)が、 1 X 10— 3g/ (m2- 24h)以下の高バリア性フィルムであることが好まし!/、。 [0142] In the present invention, a polymer film and a metal film can be preferably used because the device can be thinned. Furthermore, the polymer film, JIS K 7129- 19 92 water vapor permeability measured by the method conforming to (25 ± 0. 5 ° C, relative humidity (90 ± 2)% RH) is, 1 X 10- 3 g / (m 2 '24h) following barrier film it is preferred instrument further a is, JIS K 7126- oxygen permeability force 1 was measured by the method conforming to the 1987 X 10- 3 ml / m 2 ' 24h 'atm or less, the water vapor transmission rate (25 ± 0. 5 ° C, relative humidity (90 ± 2)% RH) is, 1 X 10- 3 g / ( m 2 - 24h) are the following high barrier film I like it! /
[0143] 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使 われる。  [0143] The sealing member is processed into a concave shape by sandblasting, chemical etching, or the like.
[0144] 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応 性ビュル基を有する光硬化および熱硬化型接着剤、 2—シァノアクリル酸エステルな どの湿気硬化型等の接着剤を挙げることができる。また、エポキシ系などの熱および 化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエ ステル、ポリオレフインを挙げること力 Sできる。また、カチオン硬化タイプの紫外線硬化 型エポキシ樹脂接着剤を挙げることができる。なお、有機 EL素子が熱処理により劣 化する場合があるので、室温から 80°Cまでに接着硬化できるものが好ましい。また、 前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は 、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。  [0144] Specific examples of adhesives include photocuring and thermosetting adhesives having a reactive bur group of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanacrylic acid esters. Can be mentioned. In addition, heat- and chemical-curing type (two-component mixing) such as epoxy type can be mentioned. In addition, it is possible to list hot-melt polyamides, polyesters and polyolefins. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned. In addition, since the organic EL element may be deteriorated by heat treatment, an element that can be adhesively cured from room temperature to 80 ° C. is preferable. In addition, a desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print it like screen printing.
[0145] また、有機層を挟み支持基盤と対向する側の電極の外側に、該電極と有機層を被 覆し、支持基盤と接する形で無機物、有機物の層を形成し封止膜とすることも好適に できる。この場合、該膜を形成する材料としては、水分や酸素など素子の劣化をもた らすものの浸入を抑制する機能を有する材料であればよぐ例えば、酸化珪素、二酸 化珪素、窒化珪素などを用いることができる。更に該膜の脆弱性を改良するためにこ れら無機層と有機材料からなる層の積層構造を持たせることが好ましい。  [0145] Further, the electrode and the organic layer are covered on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. Can also be suitably used. In this case, the material for forming the film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of the element such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride Etc. can be used. Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials.
[0146] これらの膜の形成方法については、特に限定はなぐ例えば真空蒸着法、スパッタ リング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法 、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマ CVD 法、レーザー CVD法、熱 CVD法、コーティング法などを用いることができる。封止部 材と有機 EL素子の表示領域との間隙には、気相および液相では、窒素、アルゴン等 の不活性気体や、フッ化炭化水素、シリコンオイルのような不活性液体を注入するこ とが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入 することもできる。吸湿性化合物としては例えば金属酸化物(例えば、酸化ナトリウム 、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム 等)、硫酸塩 (例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバ ルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシ ゥム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシ ゥム等)、過塩素酸類 (例えば過塩素酸バリウム、過塩素酸マグネシウム等)等があげ られ、硫酸塩、金属ハロゲン化物および過塩素酸類においては無水塩が好適に用 いられる。 [0146] The method for forming these films is not particularly limited, for example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam method. An ion plating method, a plasma polymerization method, an atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used. In the gap between the sealing material and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected in the gas phase or liquid phase. This is preferred. A vacuum can also be used. Moreover, a hygroscopic compound can be enclosed inside. Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.) ), Metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchloric acids (eg, perchloric acid). Barium chlorate, magnesium perchlorate, etc.), and anhydrous salts are preferably used for sulfates, metal halides and perchloric acids.
[0147] 《保護膜、保護板》  [0147] 《Protective film, protective plate》
有機層を挟み支持基盤と対向する側の前記封止膜あるいは前記封止用フィルムの 外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい 。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずし も高くないため、このような保護膜、保護板を設けることが好ましい。これに使用するこ と力 Sできる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板'フィル ム、金属板'フィルム等を用いることができる力 軽量かつ薄膜化ということからポリマ 一フィルムを用いることが好ましレ、。  In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween. In particular, when sealing is performed with the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. The force that can be used for this S The material that can be used for the same glass plate, polymer plate 'film, metal plate' film, etc. used for the sealing, because it is lightweight and thin. It is preferable to use a polymer film.
[0148] 《陽極》  [0148] Anode
有機 EL素子における陽極としては、仕事関数の大きい (4eV以上)金属、合金、電 気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。こ のような電極物質の具体例としては Au等の金属、 Cul、インジウムチンォキシド(ITO )、 SnO、 ZnO等の導電性透明材料が挙げられる。また、 IDIXO (In O— ZnO)等 非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を 蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィ一法で所望 の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要としない場合 は(100 m以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマ スクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布 可能な物質を用いる場合には、印刷方式、コーティング方式など湿式製膜法を用い ることもできる。この陽極より発光を取り出す場合には、透過率を 10%より大きくするこ とが望ましぐまた陽極としてのシート抵抗は数百 Ω /口以下が好ましい。更に膜厚 は材料にもよる力 通常 10〜; 1000nm、好ましくは 10〜200nmの範囲で選ばれる。 As the anode in the organic EL device, an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as Cul, indium tinoxide (ITO), SnO, and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O—ZnO) that can form a transparent conductive film may be used. For the anode, a thin film is formed from these electrode materials by a method such as vapor deposition or sputtering, and a desired photolithography method is used. If it is possible to form a pattern of the above shape or if the pattern accuracy is not very necessary (about 100 m or more), the pattern is formed through a mask of the desired shape during the deposition or sputtering of the electrode material. Also good. Or when using the substance which can be apply | coated like an organic electroconductive compound, wet film forming methods, such as a printing system and a coating system, can also be used. In the case of taking out light emission from this anode, it is desirable to increase the transmittance to more than 10%, and the sheet resistance as the anode is preferably several hundred Ω / mouth or less. Furthermore, the film thickness is a force depending on the material, usually 10 to 1000 nm, preferably 10 to 200 nm.
[0149] 《陰極》 [0149] 《Cathode》
一方、陰極としては、仕事関数の小さい (4eV以下)金属(電子注入性金属と称する )、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる 。このような電極物質の具体例としては、ナトリウム、ナトリウム—カリウム合金、マグネ シゥム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム /アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミ ニゥム (Al O )混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が  On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al O) mixture, indium, lithium / aluminum mixture, rare earth metal etc.
2 3  twenty three
挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子 注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物 、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシゥ ム/インジウム混合物、アルミニウム/酸化アルミニウム (Al O )混合物、リチウム/  Can be mentioned. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O) mixture, lithium /
2 3  twenty three
アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着 やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。 また、陰極としてのシート抵抗は数百 Ω /口以下が好ましぐ膜厚は通常 10〜5 111 、好ましくは 50〜200nmの範囲で選ばれる。なお、発光した光を透過させるため、 有機 EL素子の陽極または陰極のいずれか一方が、透明または半透明であれば発 光輝度が向上し好都合である。  Aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / mouth or less. The film thickness is preferably 10 to 5 111, preferably 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.
[0150] また、陰極に上記金属を l〜20nmの膜厚で作製した後に、陽極の説明で挙げた 導電性透明材料をその上に作製することで、透明または半透明の陰極を作製するこ とができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製する こと力 Sでさる。 [0151] 《光取り出し及び/又は集光シート》 [0150] In addition, after the metal is formed to a thickness of 1 to 20 nm on the cathode, the transparent conductive material described in the description of the anode is formed thereon, whereby a transparent or translucent cathode is manufactured. By applying this, it is possible to produce a device in which both the anode and the cathode are transparent. [0151] << Light extraction and / or light collecting sheet >>
特にバックライト用の有機エレクト口ルミネッセンス素子においては、通常、全方位に 光が放射され視野角が変わっても明るさが変わらないような特性が望ましいが、使用 形態によっては、正面輝度をより高くし、大きな視野角(斜め方向から観察する角度) においては輝度を低下させることが望ましい。そのために、有機エレクト口ルミネッセ ンス素子の上に、放射角を制御する拡散板、プリズムシート等が組み合わされること が好ましい。  In particular, in an organic-electric-luminescence element for backlights, it is usually desirable that light be emitted in all directions so that the brightness does not change even if the viewing angle changes, but depending on the usage, the front brightness is higher. However, it is desirable to reduce the luminance at a large viewing angle (an angle observed from an oblique direction). Therefore, it is preferable that a diffusion plate, a prism sheet, and the like for controlling the radiation angle are combined on the organic electoric luminescence element.
[0152] 通常、基板 (ガラス基板、樹脂基板など)から光を放射するような有機エレクト口ルミ ネッセンス素子においては、発光層から放射された光の一部が基板と空気との界面 において全反射を起こし、光を損失するという問題が発生する。この問題を解決する ために、基板の表面にプリズムやレンズ状の加工を施す、もしくは基板の表面にプリ ズムシートやレンズシートを貼り付けることにより、全反射を抑制して光の取り出し効率 を向上させる。  [0152] In general, in an organic electoluminescence element that emits light from a substrate (glass substrate, resin substrate, etc.), part of the light emitted from the light emitting layer is totally reflected at the interface between the substrate and air. Cause a problem of light loss. In order to solve this problem, the prism surface or lens-like processing is applied to the surface of the substrate, or the prism sheet or lens sheet is attached to the surface of the substrate to suppress total reflection and improve the light extraction efficiency. .
[0153] 以下に、光取り出し及び/又は集光シートの好ましい形態を説明するが、本発明で は目的効果を損なわない範囲内であれば、これらを用いて光取りだし効率を向上さ せることが出来る。  [0153] In the following, preferred forms of the light extraction and / or light collecting sheet will be described. However, in the present invention, the light extraction efficiency can be improved using these as long as the object effects are not impaired. I can do it.
[0154] (1)ガラス基板の上に拡散板とプリズムシートを置く構成  [0154] (1) Configuration in which a diffusion plate and a prism sheet are placed on a glass substrate
例えば、ガラス基板/透明導電膜/有機発光層/電極/封止層からなる有機エレ タトロルミネッセンス素子において、ガラス基板の発光層とは反対側の基板表面に接 するように第 1の拡散板を置く。拡散板に接するように第 1のレンズシート(例えば、 3 M製 BEF Π)をレンズ面がガラス基板と反対側に向くように配置し、さらに第 2のレ ンズシートをレンズのストライプが第 1のレンズのストライプと直交し、かつそのレンズ 面がガラス基板と反対側に向くように配置する。次に第 2のレンズシートに接するよう に第 2の拡散板を配置する。第 1ならびに第 2のレンズシートの形状としては、 PET基 材上にアクリル樹脂で頂角 90度、ピッチ 50 mの△状のストライプが形成されたもの である。頂角が丸みを帯びた形状(3M製 RBEF)、ピッチをランダムに変化させた 形状(3M製 BEF 111)、その他類似の形状であっても良い。第 1の拡散板としては、 約 100 mの PET基材上に光を拡散するビーズを混ぜた膜を形成したもので、透過 率は約 85%で、ヘイズ値は約 75%である。第 2の拡散板としては、約 lOO rnの PE T基材上に光を拡散するビーズを混ぜた膜を形成したもので、透過率は約 90 %で、 ヘイズ値は約 30%である。ガラス基板に接して配置する拡散板は、ガラス基板に光 学接着剤を介して接着されていても良い。また、ガラス基板表面に光を拡散する層を 直接塗布する、もしくはガラス基板の表面に光を拡散するための微細な構造が設け られたものであってもよい。以上、ガラス基板で説明した力 S、基板は樹脂基板であつ てもよい。 For example, in an organic electroluminescence device composed of a glass substrate / transparent conductive film / organic light emitting layer / electrode / sealing layer, the first diffusion plate is placed in contact with the surface of the glass substrate opposite to the light emitting layer. Put. Place the first lens sheet (for example, 3M BEF よ う) so that the lens surface is facing away from the glass substrate so that it is in contact with the diffuser, and then the second lens sheet is Position the lens so that it is perpendicular to the lens stripe and the lens surface faces away from the glass substrate. Next, a second diffuser plate is placed in contact with the second lens sheet. The shape of the first and second lens sheets is such that a Δ-shaped stripe having an apex angle of 90 degrees and a pitch of 50 m is formed of acrylic resin on a PET base material. Shapes with rounded apex angles (3M RBEF), shapes with randomly changing pitches (3M BEF 111), and other similar shapes. The first diffusion plate is a film that is made by mixing beads that diffuse light on a PET substrate of about 100 m. The rate is about 85% and the haze value is about 75%. The second diffusion plate is a film in which beads for diffusing light are mixed on a PET substrate of about 100 nm, with a transmittance of about 90% and a haze value of about 30%. The diffusion plate arranged in contact with the glass substrate may be bonded to the glass substrate via an optical adhesive. Further, a layer that diffuses light directly on the surface of the glass substrate may be directly applied, or a fine structure for diffusing light on the surface of the glass substrate may be provided. As described above, the force S described for the glass substrate and the substrate may be a resin substrate.
[0155] (2)基板の表面にマイクロレンズアレイを形成する場合  [0155] (2) When forming a microlens array on the surface of a substrate
ガラス基板/透明導電膜/有機発光層/電極/封止層からなる有機エレクトロル ミネッセンス素子において、ガラス基板の有機発光層が設けられた面とは反対側の表 面にマイクロレンズアレイシートを光学接着剤を介して貼り付ける。マイクロレンズァレ ィシートは、各々 50 mの四角垂(ピラミッドの形状)でその頂角が 90度のマイクロレ ンズを、 50 mピッチで整列させた形状をしている。シートの製造方法としては、マイ クロレンズアレイの母型となる金属の金型と、 0. 5mmのスぺーサをはさんで設置され たガラス平板の間に UV硬化樹脂を注入し、ガラス基板から UV露光することで樹脂 を硬化させてマイクロレンズアレイシートを得る。ここで、各々のマイクロレンズの形状 としては、円錐形状、三角錐形状、凸レンズ形状等を適用可能である。ガラス基板に マイクロレンズアレイシートを貼り付ける構造として説明したが、樹脂基板にマイクロレ ンズアレイシートを貼り付けるでもよい。また、マイクロレンズアレイシートのマイクロレ ンズアレイが設けられた面と反対面に透明電極/有機発光層/電極/封止層を設 ける、という構成でもよい。  In an organic electroluminescence element consisting of a glass substrate / transparent conductive film / organic light emitting layer / electrode / sealing layer, a microlens array sheet is optically applied to the surface of the glass substrate opposite to the surface on which the organic light emitting layer is provided. Paste through adhesive. Each microlens array sheet has a shape of 50m squares (pyramids) and microlenses whose apex angle is 90 degrees aligned at 50m pitch. The sheet is manufactured by injecting a UV curable resin between a metal mold that is the mother mold of the microlens array and a glass plate placed with a 0.5 mm spacer between the glass substrate and the glass substrate. The resin is cured by UV exposure to obtain a microlens array sheet. Here, as the shape of each microlens, a conical shape, a triangular pyramid shape, a convex lens shape, or the like is applicable. Although the description has been given of the structure in which the microlens array sheet is attached to the glass substrate, the microlens array sheet may be attached to the resin substrate. Further, the transparent lens / organic light emitting layer / electrode / sealing layer may be provided on the surface opposite to the surface on which the microlens array of the microlens array sheet is provided.
[0156] (3)基板の表面にマイクロレンズアレイシートを下向きに接着する構造 [0156] (3) Structure in which the microlens array sheet is bonded downward on the surface of the substrate
ガラス基板/透明導電膜/有機発光層/電極/封止層からなる有機エレクトロル ミネッセンスデバイスにおいて、ガラス基板の有機発光層が設けられた面とは反対側 の表面にマイクロレンズアレイシートを、マイクロレンズの凹凸面がガラス基板側に向 くように光学接着剤を介して貼り付ける。マイクロレンズアレイシートは、各々一辺が 5 0 a mの四角垂形状の頂点を平坦にした構造をしたマイクロレンズをピッチ 50 a mで 整列した形状をしている。平坦となった頂点部分がガラス基板の表面に接着される。 ここで、各々のマイクロレンズの形状としては、円錐形状、三角錐形状、凸レンズ形状 等を適用可能である。ガラス基板にマイクロレンズアレイシートを貼り付ける構造とし て説明したが、樹脂基板にマイクロレンズアレイシートを貼り付けてもよい。 In an organic electroluminescent device consisting of a glass substrate / transparent conductive film / organic light emitting layer / electrode / sealing layer, a microlens array sheet is placed on the surface of the glass substrate opposite to the surface on which the organic light emitting layer is provided. Then, the microlenses are pasted with an optical adhesive so that the uneven surface of the microlens faces the glass substrate. The microlens array sheet has a shape in which microlenses having a structure in which the apexes of a rectangular shape each having a side of 50 am are flat are aligned at a pitch of 50 am. The flat top portion is adhered to the surface of the glass substrate. Here, as the shape of each microlens, a conical shape, a triangular pyramid shape, a convex lens shape, or the like can be applied. Although the description has been given of the structure in which the microlens array sheet is attached to the glass substrate, the microlens array sheet may be attached to the resin substrate.
[0157] 光取り出し効率を更に高めるためには、透明電極と透明基板の間に低屈折率層を 揷入することが好ましい。透明電極と透明基板の間に低屈折率の媒質を光の波長よ りも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、 外部への取り出し効率が高くなる。低屈折率層としては、例えば、エア口ゲル、多孔 質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折 率は一般に 1. 5〜; 1. 7程度であるので、低屈折率層は、屈折率がおよそ 1. 5以下 であることが好ましい。またさらに 1. 35以下であることが好ましい。また、低屈折率媒 質の厚みは、光の媒質中の波長よりも長い厚み、好ましくは 2倍以上となるのが望ま しい。これは、低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み 出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからで ある。以下に本発明に係る低屈折率層の例を説明するが、本発明では目的効果を 損なわない範囲内であれば、これらに限定されない。  [0157] In order to further increase the light extraction efficiency, it is preferable to insert a low refractive index layer between the transparent electrode and the transparent substrate. When a low refractive index medium is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower. Become. Examples of the low refractive index layer include air mouth gel, porous silica, magnesium fluoride, and fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to about 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less. Further, it is desirable that the thickness of the low refractive index medium is longer than the wavelength in the light medium, preferably twice or more. This is because the effect of the low-refractive index layer is reduced when the thickness of the low-refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate. Examples of the low refractive index layer according to the present invention will be described below, but the present invention is not limited to these examples as long as the object effects are not impaired.
[0158] (1)中空シリカを分散させる場合  [0158] (1) When dispersing hollow silica
ゾノレ ゲル法により中空シリカを分散させ低屈折率層を形成したガラス基板の作製 方法を説明する。ガラス基板上に以下の手順で低屈折率層を形成することができる。 原料化合物として金属アルコキシド(正珪酸四ェチル Si (OC H ) :「TEOS」と略す  A method for producing a glass substrate in which hollow silica is dispersed by a zonore gel method to form a low refractive index layer will be described. A low refractive index layer can be formed on a glass substrate by the following procedure. Metal alkoxide (original tetraethyl silicate Si (OC H): abbreviated as “TEOS”)
2 5 4  2 5 4
。)、溶媒としてエタノール、触媒として酢酸、それに加水分解に必要な水を加えた調 合液に、低屈折率材料 (触媒化成工業製、シリカ粒子 (屈折率 1. 35) )をイソプロピ ルアルコールに加えた液を混合させ、数十。 Cに保って加水分解と重縮合反応を起こ させ、液体のゾルを生成する。作製されたゾルをスピンコートでガラス基板上に塗布し て反応させるとゲルとして固化する。これをさらに 150°Cの雰囲気中で乾燥させて乾 燥ゲルとし、その時の膜厚が 0· 5 111となるように、溶液の調合とスピンコートの条件 を設定する。その結果、膜厚 0. δ μ ΐη^屈折率 1. 37の低屈折率層が形成される。こ こで、溶液の塗布方法としてスピンコートと記述したがディップコート他、均一な膜厚 を得られる手法であればよい。基板としてガラス基板の例を示した力 プロセス温度 力 S150°C以下であるので、樹脂基板の上に直接塗布することも可能である。また、原 料化合物や低屈折率材料としてさらに低レ、屈折率を選択し、得られる低屈折率層の 屈折率が 1. 37以下にすることでさらなる効果が期待できる。膜厚については 0. δ μ m以上が望ましぐ; m以上であればさらに好ましい。 . ), Ethanol as solvent, acetic acid as catalyst, and water required for hydrolysis, and low refractive index material (catalyst chemicals, silica particles (refractive index 1.35)) in isopropyl alcohol. Mix the added liquid and dozens. It is kept at C to cause hydrolysis and polycondensation reaction to produce a liquid sol. When the prepared sol is applied onto a glass substrate by spin coating and reacted, it solidifies as a gel. This is further dried in an atmosphere of 150 ° C. to obtain a dry gel, and the conditions of solution preparation and spin coating are set so that the film thickness at that time becomes 0.5 · 111. As a result, a low refractive index layer having a thickness of 0.δμ μη ^ refractive index 1.37 is formed. Here, spin coating is described as the solution coating method, but any method that can obtain a uniform film thickness, such as dip coating, may be used. Force showing glass substrate as substrate process temperature Since the force is S150 ° C or less, it can be applied directly on the resin substrate. Further effects can be expected by selecting a lower refractive index and refractive index as the raw material compound or low refractive index material and making the resulting low refractive index layer have a refractive index of 1.37 or less. The film thickness is preferably not less than 0.δμm; more preferably not less than m.
[0159] 中空シリカの作製は、例えば、特開 2001— 167637号公報、特開 2001— 23361 1号公報、特開 2002— 79616号公報等に記載されている。  [0159] The production of hollow silica is described in, for example, JP-A-2001-167637, JP-A-2001-233611, JP-A-2002-79616, and the like.
[0160] (2)シリカエア口ゲルの場合  [0160] (2) Silica air mouth gel
透明低屈折率層は、シリコンアルコキシドのゾルゲル反応により形成される湿潤ゲ ルを超臨界乾燥することによって得られるシリカエア口ゲルによって形成される。シリ 力エア口ゲルとは、均一な超微細構造を持った光透過性の多孔質体である。テトラメ トキシシランのオリゴマーとメタノールを混合して A液を調製し、また水、アンモニア水 、メタノールを混合して B液を調製した。 A液と B液を混合して得たアルコキシシラン溶 液を、基板 2上に塗布する。アルコキシシランをゲル化させた後、水、アンモニア水、 メタノールの養生溶液中に浸漬し、室温にて 1昼夜養生する。次に、養生を行なった 薄膜状のゲル状化合物を、へキサメチルジシラザンのイソプロパノール溶液中に浸 漬し、疎水化処理をし、その後、超臨界乾燥を行って、シリカエア口ゲルを形成する。  The transparent low refractive index layer is formed by a silica air mouth gel obtained by supercritical drying of a wet gel formed by a sol-gel reaction of silicon alkoxide. Siri-force air mouth gel is a light-transmitting porous material with a uniform ultra-fine structure. Liquid A was prepared by mixing tetramethoxysilane oligomer and methanol, and liquid B was prepared by mixing water, aqueous ammonia, and methanol. The alkoxysilane solution obtained by mixing the A and B solutions is applied onto the substrate 2. After the alkoxysilane is gelled, it is immersed in a curing solution of water, aqueous ammonia and methanol, and then cured at room temperature for one day and night. Next, the cured thin gel compound is immersed in an isopropanol solution of hexamethyldisilazane, hydrophobized, and then subjected to supercritical drying to form a silica air mouth gel. .
[0161] (3)多孔質シリカの場合  [0161] (3) In the case of porous silica
低屈折率材料として、撥水性を有するへキサメチルジシロキサンやへキサメチルジ シラザンを含有した低比誘電率物質の溶液を、基板上に塗布して成膜を行う。ここで 用いる低比誘電率物質の溶液には、へキサメチルジシロキサンやへキサメチルジシ ラザンのような撥水性の物質以外にも、必要に応じてアルコールや酢酸ブチルなどを 添加物として加えても良い。そして、焼成処理などにより、上記低比誘電率物質の溶 液中の溶媒や水、酸またはアルカリ触媒や界面活性剤などを蒸発させながら多孔質 シリカ材料から成る低屈折率膜を形成する。これを洗浄し、低屈折率膜を得る。  A film of low dielectric constant material containing water repellent hexamethyldisiloxane or hexamethyldisilazane as a low refractive index material is applied to a substrate. In addition to water-repellent materials such as hexamethyldisiloxane and hexamethyldisilazane, alcohol or butyl acetate may be added as an additive to the solution of the low dielectric constant material used here, if necessary. . Then, a low refractive index film made of a porous silica material is formed by evaporating the solvent, water, acid, alkali catalyst, surfactant, or the like in the solution of the low relative dielectric constant material by firing treatment or the like. This is washed to obtain a low refractive index film.
[0162] この様に基板上に低屈折率膜を形成した後、低屈折率膜上に、直接、又は、例え ば RFスパッタ法等により SiO膜からなる透明絶縁膜で中間層を形成し、その後、中 間層の上に DCスパッタ法により ITO膜の成膜を行い、透明電極付き基板とする。  [0162] After forming the low refractive index film on the substrate in this way, an intermediate layer is formed on the low refractive index film directly or with a transparent insulating film made of a SiO film by, for example, RF sputtering, After that, an ITO film is formed on the intermediate layer by DC sputtering to form a substrate with a transparent electrode.
[0163] また、更に光取り出し効率を高めるためには、例えば、特開平 11— 283751号、特 願 2005— 48686号明細書等に記載されたように、全反射を起こす界面もしくはいず れかの媒質中に回折格子を導入する方法を併用するのが好ましい。例えば、ガラス 基板上に回折格子を形成する。 [0163] Further, in order to further improve the light extraction efficiency, for example, JP-A-11-283751, As described in Japanese Patent Application No. 2005-48686, etc., it is preferable to use a method of introducing a diffraction grating in an interface or any medium that causes total reflection. For example, a diffraction grating is formed on a glass substrate.
[0164] この方法は、回折格子が 1次の回折や、 2次の回折といったいわゆるブラッグ回折 により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、 発光層から発生した光のうち、層間での全反射等により外に出ることができない光を 、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入 することで光を回折させ、光を外に取り出そうとするものである。導入する回折格子は 、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光 はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を 持っている一般的な 1次元回折格子では、特定の方向に進む光しか回折されず、光 の取り出し効率がさほど上がらない。し力もながら、屈折率分布を二次元的な分布に することにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。回折 格子を導入する位置としては前述のとおり、いずれかの層間もしくは、媒質中(透明 基板内や透明電極内)でも良いが、光が発生する場所である有機発光層の近傍が 望ましい。このとき、回折格子の周期は、増幅する光の媒質中の波長の約 1/2〜3 倍程度が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニ カムラチス状など、 2次元的に配列が繰り返されることが好ましい。  [0164] This method utilizes the property that the direction of light can be changed to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction or second-order diffraction. Of the light generated from the light, the light that cannot go out due to total reflection between layers is introduced by introducing a diffraction grating in any layer or medium (in the transparent substrate or transparent electrode). It is intended to diffract and take out light. It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, and a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction diffracts only light traveling in a specific direction. The light extraction efficiency does not increase significantly. However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency increases. As described above, the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength in the medium of the light to be amplified. The arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb irregularity.
[0165] 例えば、ガラス基板上に回折格子を形成するには、ガラス基板を洗浄後、表面にポ ジ型のレジストを塗布する。次にレジスト上に基板垂直方向から Θ度の角度で対向す るように互いにコヒーレントな波長えの 2つの平行光を照射する。このとき、レジストに はピッチ dの干渉縞が形成される。ここで、 d= / (2cos θ )となる。波長 488nmの アルゴンレーザを用いると、フォトニック結晶のピッチとして 300nmを作製するとき、 2 つの光束ともに基板に垂直な方向から角度 35. 6度で露光すると、ピッチ 300nmの 第 1の干渉縞が形成される。次に基板を基板の面内に 90度回転させて、第 1の干渉 縞に直交するように第 2の干渉縞を形成する。露光する光束をそのまま維持しておけ ばピッチ 300nmで第 2の干渉縞が形成される。レジストには 2つの干渉縞が重畳され て露光され、格子状の露光パターンが形成される。露光パワーと現像条件を適切に 設定することにより、 2つの干渉縞が重なりあって強く露光された部分のみレジストが 除去されるように現像する。ガラス基板上には縦横のピッチが各々 300nmの格子の 重なりあった部分にほぼ円形にレジストが除去されたようなパターンが形成される。円 の直径は、例えば、 220nmとする。次にドライエッチングを施すことによりレンジストが 除去された部分に深さ 200nmの孔を形成する。その後レジストを除去しガラス基板 を洗浄する。以上により、表面に深さ 200nm、直径 220nmの孔が縦横 300nmピッ チの正方格子の頂点に並んだガラス基板が形成される。次に、穴の底から測って膜 厚 300nm程度の ITO膜をバイアススパッタリングにより成膜し、バイアススパッタリン グの条件を適切にコントロールすることで、表面の凹凸を 50nm以下に平坦にするこ と力 Sできる。以上のように作製された ITO付きのガラス基板の表面に研磨を施すこと で、有機 EL用の ITO付きガラス基板が形成される。ガラス基板にフォトレジストを塗 布してパターユングし、ガラス基板をエッチングする方法のほか、同様の手法でガラ ス型を形成し、ガラス基板上に UV硬化のレジストをナノインプリントの手法で転写し てガラス基板をエッチングする方法も可能である。また、ガラス基板に形成されたバタ ーンをニッケル電铸などの手法で金型に転写し、その金型をナノインプリントの手法 で樹脂に転写したものを基板として用いるこで、樹脂基板でも本発明を実施すること が可能である。 [0165] For example, in order to form a diffraction grating on a glass substrate, a glass-type resist is applied to the surface after washing the glass substrate. Next, two parallel lights with coherent wavelengths are irradiated onto the resist so that they face each other at an angle of Θ from the vertical direction of the substrate. At this time, interference fringes having a pitch d are formed in the resist. Here, d = / (2cos θ). Using an argon laser with a wavelength of 488 nm, when producing 300 nm as the pitch of the photonic crystal, if both light beams are exposed at an angle of 35.6 degrees from the direction perpendicular to the substrate, a first interference fringe with a pitch of 300 nm is formed. Is done. Next, the substrate is rotated 90 degrees in the plane of the substrate to form a second interference fringe so as to be orthogonal to the first interference fringe. If the light beam to be exposed is kept as it is, second interference fringes are formed at a pitch of 300 nm. The resist is exposed with two interference fringes superimposed to form a grid-like exposure pattern. Appropriate exposure power and development conditions By setting, development is performed so that the resist is removed only in the areas where the two fringes overlap and are strongly exposed. On the glass substrate, a pattern is formed in which the resist is removed in a substantially circular shape at the overlapping part of the lattices with vertical and horizontal pitches of 300 nm each. The diameter of the circle is, for example, 220 nm. Next, dry etching is performed to form a hole with a depth of 200 nm in the portion where the range is removed. Thereafter, the resist is removed and the glass substrate is washed. As a result, a glass substrate is formed in which holes having a depth of 200 nm and a diameter of 220 nm are arranged on the surface at the apexes of a square lattice of 300 nm vertically and horizontally. Next, an ITO film with a film thickness of about 300 nm as measured from the bottom of the hole is formed by bias sputtering, and the surface irregularities are flattened to 50 nm or less by appropriately controlling the bias sputtering conditions. Power S can be. By polishing the surface of the glass substrate with ITO produced as described above, a glass substrate with ITO for organic EL is formed. In addition to the method of coating and patterning a photoresist on a glass substrate and etching the glass substrate, a glass mold is formed by a similar method, and a UV-curable resist is transferred onto the glass substrate by a nanoimprint method. A method of etching the glass substrate is also possible. In addition, the pattern formed on the glass substrate is transferred to a mold by a technique such as nickel electroplating, and the mold is transferred to a resin by a nanoimprint technique. Can be implemented.
[0166] 上記のような光取り出し及び/又は集光シートを用いた有機 EL素子においては、 正面輝度増幅率が高められている。このようにして取り出された光は、前記の 2°C視 野角正面輝度を上記方法により測定したときに、 CIE1931表色系の色度で x = 0. 3 3 ± 0· 07、y= 0. 33 ± 0. 07の領域内にある所謂白色光であるように調整される。  [0166] In the organic EL device using the light extraction and / or light collecting sheet as described above, the front luminance amplification factor is increased. The light extracted in this way has a chromaticity of CIE1931 color system of x = 0.33 ± 0 · 07, y = 0 when the 2 ° C viewing angle front luminance is measured by the above method. It is adjusted to be so-called white light in the region of 33 ± 0.07.
[0167] 通常、発光色は 420nm以上 500nm未満の発光を青色、 500nm以上 550nm未 満の発光を緑色、 600nm以上 650nm未満の発光を赤色に区分する。従って、発光 する材料 (実質的にドーパント)によっても異なる力 本発明において、光取り出し及 び/又は集光シートが無い場合の有機エレクト口ルミネッセンス素子の正面輝度ピー ク値は、該シートがある場合に対して、定性的には青色が最も小さい比率となる。  [0167] Usually, the emission color is classified into blue light of 420 nm or more and less than 500 nm, green light of 500 nm or more and less than 550 nm, and red light of 600 nm or more and less than 650 nm. Accordingly, the force that varies depending on the material that emits light (substantially a dopant). In the present invention, the front luminance peak value of the organic-electric-luminescence element in the absence of the light extraction and / or condensing sheet is On the other hand, qualitatively, blue is the smallest ratio.
[0168] 連続駆動等における寿命においては、一般的に青色が律速になるので、この様な 光取りだし及び又は集光シートを用いた場合、有機エレクト口ルミネッセンス素子にお いてより高寿命が可能となる。また、駆動電圧の制約となるのは、 HOMOと LUMO のエネルギーギャップが最も大きい青色であるため、前記光取り出しを向上させた有 機 EL素子は、青色の正面輝度が少なくて済む設計となり、駆動電圧を下げることが 可能となる。 [0168] Since the blue color is generally rate-determined in the lifetime in continuous driving or the like, when such a light extraction and / or condensing sheet is used, the organic electroluminescent mouth luminescence element is used. And a longer service life is possible. In addition, the driving voltage is limited by blue, which has the largest energy gap between HOMO and LUMO. Therefore, the organic EL element with improved light extraction has a design that requires less blue front luminance and can be driven. The voltage can be lowered.
[0169] 即ち、青色発光層の膜厚が薄くでき、かつ駆動電圧が下げられるため、光取り出し 及び/又は集光シートがない場合に比べ、高寿命が可能となり、この組み合わせに より、トータルで白色光を得るようにすること力 Sできる。  [0169] That is, the blue light-emitting layer can be made thinner and the driving voltage can be lowered, so that a longer life can be achieved compared to the case where there is no light extraction and / or light collecting sheet. It is possible to obtain white light.
[0170] ここにおいて、光取り出し及び/又は集光シートによる正面輝度の増幅率は、分光 放射輝度計 (例えば、 CS— 1000 (コニカミノルタセンシング社製))等を用い、正面 力、らの発光輝度(2°C視野角正面輝度)を、光取出し及び/又は集光シートがある状 態ともたない状態で、発光面からの法線に分光放射輝度計の光軸が一致するように して、必要な可視光波長範囲で測定、積算し比をとればよい。  [0170] Here, the amplification factor of the front luminance by the light extraction and / or condensing sheet is measured by using a spectral radiance meter (for example, CS-1000 (manufactured by Konica Minolta Sensing)) or the like. The brightness (2 ° C viewing angle front brightness) is set so that the optical axis of the spectroradiometer matches the normal from the light-emitting surface with or without the light extraction and / or condensing sheet. Thus, it is only necessary to measure and integrate within the necessary visible light wavelength range to obtain a ratio.
[0171] 《有機エレクト口ルミネッセンス素子の発光、正面輝度、色度》  [0171] <Light emission, front luminance, chromaticity of organic-elect mouth luminescence element>
本発明の有機エレクト口ルミネッセンス素子や当該素子に係る化合物の発光色は、 「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、 1985)の 108頁 の図 4. 16において、分光放射輝度計 CS— 1000 (コニカミノルタセンシング社製)で 測定した結果を CIE色度座標に当てはめたときの色で決定される。本発明の有機ェ レクト口ルミネッセンス素子の発光色が白色とは、 2°C視野角正面輝度を上記方法に より測定した際に、 CIE1931表色系の色度力 ½ = 0. 33 ± 0. 07、y=0. 33 ± 0. 07 の領域内にあることをいう。  The emission color of the organic electoluminescence device of the present invention and the compound related to the device is shown in Fig. 4.16 on page 108 of "New Color Science Handbook" (edited by the Japan Society for Color Science, University of Tokyo Press, 1985). It is determined by the color when the result measured with the luminance meter CS-1000 (Konica Minolta Sensing) is applied to the CIE chromaticity coordinates. The emission color of the organic electroluminescence device of the present invention is white when the 2 ° C viewing angle front luminance is measured by the above method and the chromaticity power ½ = 0.33 ± 0. 07, in the region of y = 0.33 ± 0.07.
[0172] 《有機 EL素子の作製方法》  [0172] <Method for manufacturing organic EL element>
本発明の有機 EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層 /発光層/正孔阻止層/電子輸送層/陰極からなる有機 EL素子の作製法につい て説明する。  As an example of the method for producing the organic EL device of the present invention, a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode will be described. .
[0173] まず適当な支持基盤上に所望の電極物質、例えば、陽極用物質力 なる薄膜を 1  [0173] First, a desired electrode material, for example, a thin film of material force for an anode is formed on a suitable support substrate
〃m以下、好ましくは 10〜200nmの膜厚になるように、蒸着やスパッタリング等の方 法により形成させ、陽極を作製する。次に、この上に有機 EL素子材料である正孔注 入層、正孔輸送層、発光層、正孔阻止層、電子輸送層の有機化合物薄膜を形成さ せる。 An anode is produced by forming the film so as to have a film thickness of 〃m or less, preferably 10 to 200 nm, by vapor deposition or sputtering. Next, an organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic EL element materials, is formed thereon. Make it.
[0174] この有機化合物薄膜の薄膜化の方法としては、前記の如く蒸着法、ウエットプロセス  [0174] As a method of thinning the organic compound thin film, as described above, the vapor deposition method and the wet process are used.
(スピンコート法、キャスト法、インクジェット法、印刷法)等がある力 均質な膜が得ら れやすぐ且つピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、 インクジェット法、印刷法が特に好ましい。更に層毎に異なる製膜法を適用してもよい (Spin coating method, casting method, ink jet method, printing method) etc. From the point that a homogeneous film is obtained and pinholes are not easily generated, vacuum deposition method, spin coating method, ink jet method, The printing method is particularly preferred. Further, a different film forming method may be applied for each layer.
Yes
[0175] 製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異 なる力 一般にボート加熱温度 50〜450°C、真空度 10— 6〜10— 2Pa、蒸着速度 0. 01 〜50腹/秒、基板温度— 50〜300。C、膜厚 0. 1應〜 5 、好ましくは 5〜200 nmの範囲で適宜選ぶことが望ましい。これらの層を形成後、その上に陰極用物質か らなる薄膜を、; m以下好ましくは 50〜200nmの範囲の膜厚になるように、例えば 、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機 EL素子が得られる。 [0175] Film in the case of employing an evaporation method, different forces generally boat temperature 50 to 450 ° C such as the type of compound the deposition conditions used, the degree of vacuum 10- 6 to 10-2 Pa, the deposition rate 0.01 to 50 belly / second, substrate temperature—50 to 300. C, film thickness 0.1 to 5, preferably 5 to 200 nm. After forming these layers, a thin film made of a cathode material is formed thereon; m or less, and preferably formed by a method such as vapor deposition or sputtering so as to have a film thickness in the range of 50 to 200 nm. By providing the desired organic EL device can be obtained.
[0176] この有機 EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで 作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その 際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。また作製順序を 逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽 極の順に作製することも可能である。このようにして得られた多色の表示装置に、直 流電圧を印加する場合には、陽極を +、陰極を一の極性として電圧 2〜40V程度を 印加すると、発光が観測できる。また交流電圧を印加してもよい。なお、印加する交 流の波形は任意でよい。  [0176] The organic EL device is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere. In addition, it is also possible to reverse the production order to produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the positive electrode in this order. When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the anode as + and the cathode as one polarity. An alternating voltage may be applied. The applied alternating current waveform may be arbitrary.
[0177] 《用途》  [0177] <Application>
本発明の有機エレクト口ルミネッセンス素子は、表示デバイス、ディスプレイ、各種発 光光源として用いることができる。発光光源として、例えば、家庭用照明、車内照明、 時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複 写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限 定するものではないが、特に、カラーフィルターと組み合わせた液晶表示装置のバッ クライト、照明用光源としての用途に有効に用いることができる。本発明の有機エレク トトロロルルミミネネッッセセンンスス素素子子ににおおいいててはは、、必必要要にに応応じじ製製膜膜時時ににメメタタルルママススククややイインンククジジェェッットト ププリリンンテティィンンググ法法等等ででパパタターーユユンンググをを施施ししててももよよいい。。パパタターーユユンンググすするる場場合合はは、、電電極極のの みみををパパタターーユユンンググししててももいいいいしし、、電電極極とと発発光光層層ををパパタターーユユンンググししててももいいいいしし、、素素子子全全層層 ををパパタターーユユンンググししててももいいいい。。 The organic electoluminescence element of the present invention can be used as a display device, a display, or various light sources. Examples of light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sensors. Examples of the light source include, but are not limited to, a light source and the like. In particular, the light source can be effectively used as a backlight of a liquid crystal display device combined with a color filter or a light source for illumination. Organic electric of the present invention In the case of a ToroRolminine sensor element, if necessary, it is necessary to use a metal mask during the film formation. Patter patterning may be applied by the tinning method or the like. . In the case of patterning, it is possible to pattern the electrode electrode only, or the electrode electrode and the light emitting / emitting layer. You can either change the pattern, or you can pattern all layers of the element. .
[[00117788]] 《《表表示示装装置置》》  [[00117788]] 《《Table display device device》》
本本発発明明にに係係るる表表示示装装置置はは多多色色ままたたはは白白色色のの表表示示装装置置にに用用いいらられれるる。。多多色色ままたたはは白白 色色のの表表示示装装置置のの場場合合はは、、発発光光層層形形成成時時ののみみシシャャドドーーママススククをを設設けけ、、一一面面にに蒸蒸着着法法、、 キキャャスストト法法、、ススピピンンココーートト法法、、イインンククジジェェッットト法法、、印印刷刷法法等等でで膜膜をを形形成成ででききるる。。発発光光層層のの みみパパタターーユユンンググをを行行うう場場合合、、そそのの方方法法にに限限定定ははなないいがが、、好好ままししくくはは蒸蒸着着法法、、イインンククジジェェ ッットト法法、、印印刷刷法法ででああるる。。蒸蒸着着法法をを用用いいるる場場合合ににおおいいててははシシャャドドーーママススククをを用用いいたたババタタ 一一ユユンンググがが好好ままししいい。。ままたた、、作作製製順順序序をを逆逆ににししてて、、陰陰極極、、電電子子輸輸送送層層、、正正孔孔阻阻止止層層、、 発発光光層層ユユニニッットト((上上記記のの発発光光層層 AA、、 BB及及びび CCのの少少ななくくとともも 33層層をを有有しし、、各各発発光光層層間間にに非非 発発光光性性のの中中間間層層をを有有ししてていいててももよよいい))、、正正孔孔輸輸送送層層、、陽陽極極のの順順にに作作製製すするるこことともも可可能能 ででああるる。。ここののよよううににししてて得得らられれたた多多色色ままたたはは白白色色のの表表示示装装置置にに、、直直流流電電圧圧をを印印加加すするる 場場合合ににはは、、陽陽極極をを ++、、陰陰極極をを一一のの極極性性ととししてて電電圧圧 22VV〜〜4400VV程程度度をを印印加加すするるとと、、発発光光 がが観観測測ででききるる。。ままたた、、逆逆のの極極性性でで電電圧圧をを印印加加ししててもも電電流流はは流流れれずずにに発発光光はは全全くく生生じじなな いい。。ささららにに、、交交流流電電圧圧をを印印加加すするる場場合合ににはは、、陽陽極極がが ++、、陰陰極極がが一一のの状状態態ににななっったたとときき ののみみ発発光光すするる。。ななおお、、印印加加すするる交交流流のの波波形形はは任任意意ででよよいい。。発発光光光光源源ととししててはは家家庭庭用用 照照明明、、車車内内照照明明、、時時計計やや液液晶晶用用ののババッッククラライイトト、、看看板板広広告告、、信信号号機機、、光光記記憶憶媒媒体体のの光光 源源、、電電子子写写真真複複写写機機のの光光源源、、光光通通信信処処理理機機のの光光源源、、光光セセンンササーーのの光光源源等等がが挙挙げげらら れれるるががここれれららにに限限定定さされれなないい。。  The table display device according to the present invention can be used for a multi-color or white-white table display device. . In the case of multi-colored or white-and-white display devices, install a shading shadow mask when forming the light-emitting layer. However, on the entire surface, the vapor deposition method, the Kycaust method, the spy pin coat method, the ink jet jet method, the printing method, etc. A film can be formed by shaping. . In the case of conducting the patterning of the light emitting / emitting light layer, there is no limit to the method, but it does not matter. These are the vapor deposition method, the ink jet method, and the printing method. . If you are using the vapor deposition method, you may want to use Batabata Yungung, which uses a shady dormouse mask. . Also, reverse the order of production and production, the cathode, cathode, electron transport layer, positive hole blocking layer, emission light Layer unit unit ((The above-mentioned light emitting layer AA, BB, and CC of at least 33 layers are included, and each layer of light emitting layers) It is also possible to have a non-light emitting intermediate interlayer between them)), positive hole transport layer, positive anode It is possible to make and produce in order. . Apply a direct DC current voltage to the multi-colored or white-white table display device obtained as described above. In some cases, the positive voltage is set to ++, the negative electrode is set to the same polarity, and a voltage of about 22VV to 4400VV is applied. If this is done, the emitted light can be generated by observation. . In addition, even if an electric voltage is applied with reverse polarity, the electric current does not flow and the emitted light is not generated at all. Good. . In addition, in the case of applying an AC / AC voltage, the positive and negative electrodes are in a state of ++ and the negative and negative electrodes are in a single state. It emits light only when it is no longer visible. . Incidentally, the wave waveform shape of the alternating current to be applied with the mark may be arbitrarily determined. . As a source of light emission and emission light source, lighting for home / house garden, interior lighting for car interior, back clock light for liquid crystal crystal, Signboard board advertising, light signal machine, light source of optical storage media, light source of electrophotographic photocopy machine, light transmission The light source source of the communication processing processor, the light source source of the light sensor, etc. are listed, but these are not limited to these. .
[[00117799]] 《《照照明明装装置置》》  [[00117799]] 《《Lighting Illumination Device Device》》
本本発発明明のの有有機機 EELL素素子子はは、、照照明明用用やや露露光光光光源源ののよよううなな一一種種ののラランンププととししてて使使用用ししてて もも良良いいしし、、画画像像をを投投影影すするるタタイイププののププロロジジェェククシシヨヨンン装装置置やや、、静静止止画画像像やや動動画画像像をを直直 接接視視認認すするるタタイイププのの表表示示装装置置((デディィススププレレイイ))ととししてて使使用用ししててもも良良いい。。動動画画再再生生用用のの表表 示示装装置置ととししてて使使用用すするる場場合合のの駆駆動動方方式式はは単単純純ママトトリリククスス ((パパッッシシブブママトトリリククスス))方方式式ででもも
Figure imgf000060_0001
The organic element EELL element of the present invention is used as a kind of lalamp lamp for illumination and light source. It's fine, and it's a professional type of projector that projects and projects image images, static still image images, and moving image images. It may be used as a display display device (type display) for the type of display that directly recognizes the image directly. . In the case of using it as a display device for moving image replaying, the driving method is the simple simple mammary trix ((Pappa Shishibubu Mama Tori Rikukususu)) Even in the method
Figure imgf000060_0001
[[00118800]] ななおお、、前前記記記記一一般般式式 ((BBDD11))でで表表さされれるるリリンン光光性性化化合合物物をを含含有有しし青青色色光光 ((BB))をを発発光光 する発光層の他に、緑色光(G)、赤色 (R)光の発光層を具備することで、色度が改 善された白色光を取出すことが可能な有機 EL素子を得ることができる。 [[00118800]] In addition, it contains a phosphorinous photosensitizing compound represented by the above general formula ((BBDD11)). Emits blue-blue light ((BB)) In addition to the light emitting layer that emits green light (G) and red (R) light, an organic EL device capable of extracting white light with improved chromaticity can be obtained. .
[0181] 本発明に係る白色有機エレクト口ルミネッセンス素子においては、必要に応じ製膜 時にメタルマスクやインクジェットプリンティング法等でパターユングを施してもよい。 パターユングする場合は、電極のみをパターユングしてもいいし、電極と発光層をパ ターニングしてもいいし、素子全層をパターユングしてもいい。発光層に用いる発光 材料としては特に制限はなぐ例えば液晶表示素子におけるバックライトであれば、 C F (カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係わる白 金錯体、また公知の発光材料の中から任意のものを選択して組み合わせて、また、 本発明に係る光取りだし及び/又は集光シートと組み合わせて、白色化すれば良い [0181] In the white organic electoluminescence device according to the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like, as necessary, during film formation. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned. The light emitting material used for the light emitting layer is not particularly limited. For example, in the case of a backlight in a liquid crystal display element, the gold complex according to the present invention is also known so as to conform to the wavelength range corresponding to the CF (color filter) characteristics. Any one of the light emitting materials may be selected and combined, or combined with the light extraction and / or light collecting sheet according to the present invention to be whitened.
[0182] このように、本発明に用いられる白色の有機 EL素子は、 CF (カラーフィルター)と組 み合わせて、また、 CF (カラーフィルター)パターンに合わせ素子及び駆動トランジス タ回路を配置することで、有機エレクト口ルミネッセンス素子から取り出される白色光 をバックライトとして、青色フィルタ、緑色フィルタ、赤色フィルタを介して、青色光、緑 色光、赤色光を得ることで、低駆動電圧で、長寿命のフルカラーの有機エレクト口ルミ ネッセンスディスプレイが出来好ましい。 [0182] As described above, the white organic EL element used in the present invention is combined with the CF (color filter), and the element and the drive transistor circuit are arranged in accordance with the CF (color filter) pattern. By using white light extracted from the organic-electric-luminescence element as a backlight, blue light, green light, and red light are obtained via a blue filter, a green filter, and a red filter. A full-color organic-elect-luminous luminescence display is preferable.
[0183] また、これらディスプレイに加えて、各種発光光源、照明装置として、家庭用照明、 車内照明、また、露光光源のような一種のランプとして、液晶表示装置のバックライト 等、表示装置にも有用に用いられる。その他、時計等のバックライト、看板広告、信号 機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光セン サ一の光源等、更には表示装置を必要とする一般の家庭用電気器具等広い範囲の 用途が挙げられる。  [0183] Further, in addition to these displays, various light-emitting light sources and lighting devices, such as household lighting, interior lighting, and a kind of lamp such as an exposure light source, display devices such as backlights of liquid crystal display devices, etc. Useful. In addition, backlights such as watches, signboard advertisements, traffic lights, light sources such as optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc., and display devices are also required. Wide range of uses such as general household appliances.
実施例  Example
[0184] 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。  [0184] Hereinafter, the present invention will be described by way of examples, but the present invention is not limited thereto.
[0185] 〈有機 EL素子 1 1 15の作製〉 <Production of organic EL device 1 1 15>
陽極として lOOmmX lOOmm X l . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板(NHテクノグラス社製 NA45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。この透明支持基板 を市販の真空蒸着装置の基板ホルダーに固定した。 LOOmmX lOOmm X l. As a positive electrode, put a pattern on a substrate (NATechno glass NA45) made of ITO (indium tin oxide) on lOOnm on a 1mm glass substrate. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
[0186] 次いで、真空槽を 8 X 10— 5Paまで減圧した後、 CuPcの入った前記加熱ボートに通 電して加熱し、蒸着速度 0. Inm/secで透明支持基板に蒸着し 20nm正孔注入層 層を設けた。 [0186] Next, after pressure in the vacuum tank was reduced to 8 X 10- 5 Pa, and heated by passing electric to the heating boat containing CuPc, vapor-deposited on the transparent supporting substrate at a deposition rate of 0. Inm / sec 20nm positive A hole injection layer was provided.
[0187] ついで、同様に NPDの入った加熱ボートを加熱し蒸着速度 0. Inm/secで 20nm 蒸着し正孔輸送層を設けた。  [0187] Next, similarly, a heating boat containing NPD was heated and evaporated at a deposition rate of 0. Inm / sec to 20 nm to provide a hole transport layer.
[0188] ついで、表 2〜4記載のドーパント Aとホスト Aを表中の蒸着速度で蒸着し発光層 A とした。ついで、表 2〜4記載のドーパント Bとホスト Bを表中の蒸着速度で蒸着し発光 層 Bとした。正孔阻止層として化合物 HBL1を 10nm蒸着した。 [0188] Next, dopant A and host A listed in Tables 2 to 4 were vapor-deposited at the vapor-deposition rates in the table to form a light-emitting layer A. Subsequently, dopant B and host B described in Tables 2 to 4 were deposited at the deposition rate in the table to obtain a light emitting layer B. As a hole blocking layer, the compound HBL1 was deposited by 10 nm.
[0189] 更に BAlqの入った前記加熱ボートに通電して加熱し、蒸着速度 0. Inm/secで 前記正孔阻止層 1上に蒸着して膜厚 20nmの電子輸送層を設けた。なお、蒸着時の 基板温度は室温であった。 [0189] Further, the heating boat containing BAlq was energized and heated, and deposited on the hole blocking layer 1 at a deposition rate of 0. Inm / sec to provide an electron transport layer having a thickness of 20 nm. The substrate temperature during vapor deposition was room temperature.
[0190] 引き続き陰極バッファ一層としてフッ化リチウム 0. 5nmを蒸着し、更に、アルミユウ ム 110nmを蒸着して陰極を形成し、有機 EL素子 1— 1〜; 15を作製した。 [0190] Subsequently, 0.5 nm of lithium fluoride was vapor-deposited as a cathode buffer layer, and further, 110 nm of aluminum was vapor-deposited to form a cathode, whereby organic EL elements 1-1 to 15 were produced.
[0191] また、表中の Δ ΐρ (Α)は Ip (ホスト化合物 A)— Ip (ドーパント A)を表し、 Δ ΐρ (Β) «Ι ρ (ホスト化合物 B) -Ip (ドーバントンを表す。 In addition, Δ ΐρ (Α) in the table represents Ip (host compound A) —Ip (dopant A), and Δ ΐρ (Β) «Ι ρ (host compound B) -Ip (dobanton).
[0192] [化 22] [0192] [Chemical 22]
Figure imgf000063_0001
Figure imgf000063_0001
lr(ppy)3 Flr(pic) lr(piq)3 lr (ppy) 3 Flr (pic) lr (piq) 3
Figure imgf000063_0002
評価方法
Figure imgf000063_0002
Evaluation methods
外部量子効率、色度は素子に 2. 5mA/cm2定電流を流したときの値を示す。 、寿命は初期輝度 300cd/m2で輝度が半減する時間を示す。
Figure imgf000064_0001
External quantum efficiency and chromaticity are the values when 2.5 mA / cm 2 constant current is applied to the device. The lifetime is the time when the luminance is halved at an initial luminance of 300 cd / m 2 .
Figure imgf000064_0001
〕 D〔 ] D [
Figure imgf000065_0001
Figure imgf000065_0001
素子特性 Element characteristics
効率 寿命  Efficiency Life
有機 EL素子 色度 備 考  Organic EL element Chromaticity Remarks
(@2.5mAZcra (300cd/m2) (@ 2.5mAZcra (300cd / m 2 )
(@2.5mA/cm2) (@ 2.5mA / cm 2 )
( % ) (時間)  (%) (Hours)
有機 EL素子 1一 1 11 . 1 0.18, 0.38 3100 本発明 有機 EL素子 1一 2 7 0.18, 0.38 4050 本発明 有機 EL素子 1一 3 13 0. 19, 0.42 1010 本発明 有機 EL素子 1 一 4 9.1 0. 18, 0.33 2200 本発明 有機 EL素子 1 5 10.7 0. 18, 0.38 2900 本発明 有機 EL素子 1 一 6 10.1 0.17, 0.38 7000 本発明 有機 EL素子 1 一 7 10.5 0.18. 0.38 3000 本発明 有機 EL素子 1一 8 14 0.19, 0.42 11000 本発明 有機 EL素子 1 一 9 9.5 0.18, 0.39 3000 本発明 有機 EL素子 1一 10 8.9 0.17, 0.37 3000 本発明 有機 EL素子 1 一 11 11 0.18, 0.38 9000 本発明 有機 EL素子 1一 12 8 0.17, 0.35 1200 比較例 有機 EL素子 1一 13 7 0.2 , 0.42 1300 比較例 有機 EL素子 1一 14 9 0. 18, 0.38 600 比較例 有機 EL素子 1 - 15 1 0.25, 0.37 1100 比較例 有機 EL素子 1 一 16 7 0. 18, 0.37 1200 比較例 有機 EL素子 1 - 17 12 0.19, 0.41 320 比較例 有機 EL素子 1— 18 6.7 0.18, 0.32 600 比較例 有機 EL素子 1一 19 8.5 0.17, 0.36 2500 比铰例  Organic EL device 1 1 1 11 .1 0.18, 0.38 3100 Present invention Organic EL device 1 1 2 7 0.18, 0.38 4050 Present invention Organic EL device 1 1 3 13 0. 19, 0.42 1010 Present invention Organic EL device 1 1 4 9.1 0, 18, 0.33 2200 Invented organic EL device 1 5 10.7 0.18, 0.38 2900 Invented organic EL device 1 1 6 10.1 0.17, 0.38 7000 Invented organic EL device 1 1 7 10.5 0.18. 0.38 3000 Invented organic EL device Element 1 1 8 14 0.19, 0.42 11000 Present invention Organic EL element 1 1 9 9.5 0.18, 0.39 3000 Present invention Organic EL element 1 1 10 8.9 0.17, 0.37 3000 Present invention Organic EL element 1 1 11 11 0.18, 0.38 9000 Present invention Organic EL device 1 1 12 8 0.17, 0.35 1200 Comparative example Organic EL device 1 1 13 7 0.2, 0.42 1300 Comparative example Organic EL device 1 1 14 9 0.18, 0.38 600 Comparative example Organic EL device 1-15 1 0.25, 0.37 1100 Comparative example Organic EL device 1 1 16 7 0.18, 0.37 1200 Comparative example Organic EL device 1-17 12 0.19, 0.41 320 Comparative example Organic EL device 1—18 6.7 0.18, 0.32 600 Comparative example Organic EL device 1 19 8.5 0.17, 0.36 2500 Hiei example
[0197] 素子 1 1と素子 1 7を比較すると分かるように、発光層を二層にする事で、若干 色度は悪くなるが、効率、寿命は大幅に向上していることが分かる。色度が悪くなる 理由は若干発光層 Aが光っている事と、膜厚が 5nm増えることによる光学的な問題 である。 [0197] As can be seen from the comparison between the element 11 and the element 17, it can be seen that the use of two light emitting layers slightly deteriorates the efficiency and lifetime, although the chromaticity is slightly deteriorated. The reason why the chromaticity is deteriorated is that the light emitting layer A is slightly shining and the optical problem due to the increase of the film thickness by 5 nm.
[0198] 素子 1 1では EL発光の 90%以上は発光層 Bが担っているにも関わらず、発光層 Aを揷入することで、効率'寿命が向上した。これは EL素子の輝度低下を引き起こす 界面での劣化が発光層 Aを揷入することで抑制することができたためと推測している [0198] In element 11, even though 90% or more of the EL emission was taken up by the light emitting layer B, the use of the light emitting layer A improved the lifetime. This is presumed to be due to the fact that the degradation at the interface, which causes a decrease in luminance of the EL element, could be suppressed by inserting the light emitting layer A.
Yes
[0199] また、素子 1—9〜素子 1— 1 1の結果力も明らかなように、発光層 Aにはどんな化合 物を使用して良いわけではなぐ本発明の構造式と物性を持ったものでないと効果は 発揮されないことが分かる。 [0200] 発光層 Aと発光層 Bで同様の構造を持つ材料を使用することが、発光界面での劣 化抑制に大きく関係してレ、ると推測される力 詳細につ!/、ては良く分かって!/、な!/、。 同様に、素子 1 2と素子 1 12、素子 1 3と素子 1 13、素子 1 4と素子 1 14 、素子 1 5と素子 1 7、素子 1 6と素子 1 15を比較すると、同様に色度は大きく 変化せず、効率向上と大幅な長寿命化が見られている。 [0199] In addition, as the resulting power of element 1-9 to element 1-11, it is clear that not all compounds can be used for the light-emitting layer A, and the structural formula and physical properties of the present invention. It can be seen that the effect is not exhibited unless it is. [0200] The power that is assumed to be due to the use of materials having the same structure in the light-emitting layer A and the light-emitting layer B is largely related to the suppression of deterioration at the light-emitting interface. I understand! //! Similarly, comparing element 1 2 and element 112, element 13 and element 13 13, element 14 and element 14, element 15 and element 17, element 16 and element 1 15, the same chromaticity Has not changed significantly, improving efficiency and significantly extending life.
[0201] また、実施例で使用した発光層 Aのリン光発光性ドーパントは青色の発光を示すが 、発光層 Aの発光の割合を変えることで色度の調整をすることができる。また、その場 合、効率 ·寿命の効果は同様に得られる。  [0201] The phosphorescent dopant of the light emitting layer A used in the examples exhibits blue light emission, but the chromaticity can be adjusted by changing the light emission ratio of the light emitting layer A. In this case, the effects of efficiency and life can be obtained in the same way.
[0202] また、詳細は記載しないが以上の理由から本実施例は発光層 2層だが 3層でも同 様の効果が得られる。  [0202] Although details are not described, although the present example has two light emitting layers for the above reasons, the same effect can be obtained with three layers.
[0203] なお、実施例で用いたリン光発光性ドーパントの発光極大波長を表 5に示す。  [0203] Table 5 shows the maximum emission wavelengths of the phosphorescent dopants used in the examples.
[0204] [表 5] [0204] [Table 5]
Figure imgf000067_0001
Figure imgf000067_0001
[0205] 実施例 2 [0205] Example 2
有機 EL素子 1一 ;!〜 1一 6の正孔注入層を設けず、正孔輸送層の NPDを MTDA TA : F4— 1^^03質量%共蒸着膜に変更し、 BAlqを BPhen : Cs 1: 1共蒸着膜 に変更し、 LiFを蒸着しなかった以外、全く同様に有機 EL素子 2— ;!〜 2— 6を作製 した。  Organic EL device 1 1;! ~ 1 1 No hole injection layer of 6 is provided, NPD of hole transport layer is changed to MTDA TA: F4— 1 ^^ 03 mass% co-evaporated film, BAlq is changed to BPhen: Cs Organic EL elements 2—;! To 2-6 were fabricated in exactly the same manner except that the film was changed to a 1: 1 co-deposition film and LiF was not deposited.
[0206] 有機 EL素子 2— 1-2- 6は有機 EL素子 1 1〜 1 6に比べどれも駆動電圧が 3 〜6V低電圧化する事が確認された。これにより、高いエネルギー効率(lm/W)を有 する素子を得ることが可能であることが確認された。 [0207] 実施例 3 [0206] It was confirmed that the driving voltage of the organic EL element 2—1-2-6 was 3 to 6 V lower than that of the organic EL elements 11 to 16. Thus, it was confirmed that an element having high energy efficiency (lm / W) can be obtained. [0207] Example 3
発光層以外は実施例 1と同様に有機 EL素子 3— 1、 3— 2を作製した。発光層は表 Organic EL elements 3-1 and 3-2 were prepared in the same manner as in Example 1 except for the light emitting layer. Light emitting layer is front
6〜9中の記載に従って作製した。 Prepared according to the description in 6-9.
[0208] 外部量子効率は素子に 2. 5mA/cm2定電流を流したときの素子 3— 3との相対値 を示す。大きい値ほど効率が高い事を示す。 [0208] External quantum efficiency is relative to device 3-3 when a constant current of 2.5 mA / cm2 is passed through the device. Larger values indicate higher efficiency.
[0209] また、寿命は初期輝度 300cd/m2で輝度が半減する時間を素子 3— 3との相対値 で示す。大きい値ほど寿命が長いことを示す。 [0209] The lifetime is the time when the luminance is halved at an initial luminance of 300 cd / m 2 , as a value relative to the element 3-3. Larger values indicate longer life.
[0210] [表 6] [0210] [Table 6]
Figure imgf000069_0001
Figure imgf000069_0001
Figure imgf000070_0001
Figure imgf000070_0001
¾s
Figure imgf000071_0001
¾s
Figure imgf000071_0001
Figure imgf000071_0002
Figure imgf000071_0002
[0214] 発光層 Aは緑色発光、発光層 Bは青色発光、発光層 Cは赤色発光し、素子 3— 1か ら素子 3— 3は白色発光した。 [0214] The light emitting layer A emitted green light, the light emitting layer B emitted blue light, the light emitting layer C emitted red light, and the elements 3-1 to 3-3 emitted white light.
[0215] 発光層 Bは同じリン光発光性ドーパントを使用している。 [0215] The light-emitting layer B uses the same phosphorescent dopant.
[0216] 比較例の素子 3— 3で用いている、緑発光を呈する Ir(ppy) 、赤色発光を呈する Ir  [0216] Ir (ppy) which emits green light and Ir which emits red light used in the device 3-3 of the comparative example
(piq) は寿命が長いにも関わらず、青色発光層の劣化により半減が短い。  Although (piq) has a long lifetime, it is halved due to deterioration of the blue light emitting layer.
それに対し、本発明の素子に関しては効率 ·寿命とも大幅に向上している。  On the other hand, the efficiency and life of the element of the present invention are greatly improved.
これの理由に関しては、実施例 1と同様と考えている。  The reason for this is considered to be the same as in Example 1.
[0217] この様に、それぞれの発光層が発光する発光層が三層の素子においても効果が得 られることが分力、つた。 [0217] As described above, it was found that the effect can be obtained even in an element in which each light emitting layer emits light of three layers.
[0218] 実施例 4 [0218] Example 4
陽極として lOOmmX lOOmm X l . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板(ΝΗテクノグラス社製 ΝΑ— 45)にパターユングを行 つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。  The ITO transparent electrode is formed after patterning on a substrate (ΝΗ Techno Glass Co., Ltd. 45-45) made of ITO (Indium Toxide) on a lOOmmX lOOmm X l. 1mm glass substrate as an anode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
[0219] この透明支持基板上に、ポリ(3, 4 エチレンジォキシチォフェン) ポリスチレンス ルホネート(PEDOT/PSS、: Bayer社製、 Baytron P A1 4083)を純水で 70% に希釈した溶液を 3000rpm、 30秒でスピンコート法により製膜した後、 200°Cにて 1 時間乾燥し、膜厚 30nmの正孔輸送層を設けた。  [0219] A solution of poly (3,4 ethylenedioxythiophene) polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P A1 4083) diluted to 70% with pure water on this transparent support substrate. Was formed by spin coating at 3000 rpm for 30 seconds and then dried at 200 ° C. for 1 hour to provide a 30 nm-thick hole transport layer.
[0220] この基板を窒素雰囲気下に移し、 lOOmgの Host4と lOmgの BD1— 79を 10mlの トルエンに溶解した溶液を 3000rpm、 30秒の条件下、スピンコート法により製膜し発 光層 Aとした。さらに lOOmgの Host5と lOmgの BD1— 99を 10mlの塩化メチレン一 メタノール(1 : 9)の混合溶媒に溶解した溶液を 3000rpm、 30秒の条件下、スピンコ ート法により製膜し発光層 Bとした。  [0220] The substrate was transferred to a nitrogen atmosphere, and a solution of lOOmg Host4 and lOmg BD1-79 dissolved in 10ml toluene was formed by spin coating at 3000rpm for 30 seconds. did. Further, a solution obtained by dissolving lOOmg Host5 and lOmg BD1-99 in a mixed solvent of 10 ml of methylene chloride-methanol (1: 9) was formed by the spin coating method at 3000 rpm for 30 seconds. did.
[0221] Host4は Host5を溶解している塩化メチレン メタノール(1 : 9)の混合溶媒には溶 解しないため、積層構造を作ることができる。  [0221] Since Host4 does not dissolve in a mixed solvent of methylene chloride and methanol (1: 9) in which Host5 is dissolved, a laminated structure can be formed.
[0222] [化 23] Host4 [0222] [Chemical 23] Host4
HosHos
Figure imgf000073_0001
Figure imgf000073_0001
[0223] 真空中 60°Cで 1時間加熱を行い、二層の発光層とした。 [0223] Heating was performed in a vacuum at 60 ° C for 1 hour to form two light-emitting layers.
[0224] これを真空蒸着装置に取付け、次いで、真空槽を 4 X 10— 4Paまで減圧し、 BAlqを 0[0224] attached to this vacuum evaporation apparatus, then pressure in the vacuum tank was reduced to 4 X 10- 4 Pa, the BAlq 0
. lnm/sの蒸着速度で 30nm蒸着し電子輸送層とした。 30 nm was deposited at a deposition rate of lnm / s to form an electron transport layer.
[0225] 陰極バッファ一層としてフッ化リチウム 0. 5nm及び陰極としてアルミニウム l lOnm を蒸着して陰極を形成し、有機 EL素子 4 1を作製した。 [0225] Lithium fluoride 0.5 nm was deposited as a cathode buffer layer and aluminum lOnm was deposited as a cathode to form a cathode, whereby an organic EL device 41 was produced.
[0226] この様に本発明の有機 EL素子は塗布によっても作製することが出きる。 [0226] Thus, the organic EL device of the present invention can also be produced by coating.
[0227] また、塗布によって得られた有機 EL素子でも実施例 1と同様の効果を得ることが出 [0227] Also, an organic EL element obtained by coating can achieve the same effect as in Example 1.
5k'/  5k '/

Claims

請求の範囲 The scope of the claims
[1] 陽極、複数の発光層を有する発光層ユニット、及び陰極を設けて成る有機エレクト 口ルミネッセンス素子であって、前記複数の発光層のうち少なくとも二つの発光層が [1] An organic electroluminescent device comprising an anode, a light emitting layer unit having a plurality of light emitting layers, and a cathode, wherein at least two light emitting layers among the plurality of light emitting layers are
; 2  ; 2
下記一般式 (BD1)で表されるリン光性化合物を含有することを特徴とする有機エレ タトロルミネッセンス素子。  An organic electroluminescent element comprising a phosphorescent compound represented by the following general formula (BD1):
[化 1コ  [Chemical 1
~«式 (BD1) ~ «Formula (BD1)
、、 ,,
Mi  Mi
、 :Β*— Β3 7 «"¾ , : Β * — Β 3 7 «" ¾
〔式中、 Rは置換基を表す。 Ζは 5 群を表 [Wherein, R represents a substituent. Ζ represents 5 groups
1 〜7員環を形成するのに必要な非金属原子 す。 nlは 0〜5の整数を表す。 B〜Bは各々炭素原子、窒素原子、酸素原子もしく  Non-metallic atoms necessary to form a 1-7 membered ring. nl represents an integer of 0 to 5. B to B are carbon atoms, nitrogen atoms, oxygen atoms or
1 5  1 5
は硫黄原子を表し、少なくとも一つは窒素原子を表す。 Mは元素周期表における 8  Represents a sulfur atom, and at least one represents a nitrogen atom. M is 8 in the periodic table
1  1
族〜 10族の金属を表す。 Xおよび Xは各々炭素原子、窒素原子もしくは酸素原子  Represents Group 10 to Group 10 metals. X and X are each a carbon atom, nitrogen atom or oxygen atom
1 2  1 2
を表し、 Lは Xおよび Xとともに 2座の配位子を形成する原子群を表す。 mlは 1、 2  L represents an atomic group that forms a bidentate ligand together with X and X. ml is 1, 2
1 1 2  1 1 2
または 3の整数を表し、 m2は 0、 1または 2の整数を表す力 ml +m2は 2または 3で ある。〕  Or an integer of 3, m2 is a force representing an integer of 0, 1 or 2, ml + m2 is 2 or 3. ]
[2] 請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子であって、前記の少 なくとも二つの発光層に含有される前記一般式 (BD1)で表されるリン光性化合物が 各々の発光層に応じて異なることを特徴とする有機エレクト口ルミネッセンス素子。  [2] The organic electroluminescent device according to claim 1, wherein the phosphorescent compound represented by the general formula (BD1) contained in at least two light emitting layers is respectively An organic electoluminescence device, which differs depending on the light emitting layer.
[3] 請求の範囲第 1項又は第 2項に記載の有機エレクト口ルミネッセンス素子であって、 前記の少なくとも二つの発光層のうち陽極に近い発光層を発光層 A、陰極に近い発 光層を発光層 Bとしたときに、該発光層 Aに含有される前記一般式 (BD1)で表され るリン光性化合物を発光性ドーパント A、該発光層 Aに更に含有される化合物をホス ト化合物 A、発光層 Bに含有される一般式 (BD1)で表されるリン光性化合物を発光ド 一パント B、発光層 Bに更に含有される化合物をホスト化合物 Bとしたときに、イオン化 ポテンシャル (Ip)に関して下記の式が成り立つことを特徴とする有機エレクト口ルミネ ッセンス素子。 [3] The organic electroluminescent device according to claim 1 or 2, wherein, among the at least two light emitting layers, the light emitting layer close to the anode is the light emitting layer A, and the light emitting layer close to the cathode. When the light emitting layer B is used, the phosphorescent compound represented by the general formula (BD1) contained in the light emitting layer A is the light emitting dopant A, and the compound further contained in the light emitting layer A is the host. Ionization when the phosphorescent compound represented by the general formula (BD1) contained in compound A and the light emitting layer B is the light emitting dopant B, and the compound further contained in the light emitting layer B is the host compound B An organic electoluminescence device characterized by the following equation regarding potential (Ip).
Ip (ホスト化合物 A) -Ip (ドーパント A)≥0. 7 (eV)  Ip (Host compound A) -Ip (Dopant A) ≥0.7 (eV)
Ip (ホスト化合物 B) -Ip (ドーバントン≥0. 7 (eV)  Ip (Host compound B) -Ip (Daubanton≥0.7 (eV)
[4] 請求の範囲第 1項乃至第 3項のいずれか一項に記載の有機エレクト口ルミネッセン ス素子であって、前記一般式 (BD1)で表される化合物の B〜Bで形成される含窒 [4] An organic electoluminescence device according to any one of claims 1 to 3, which is formed of B to B of the compound represented by the general formula (BD1). Containing nitrogen
1 5  1 5
素複素環がイミダゾール環で表されることを特徴とする有機エレクト口ルミネッセンス 素子。  An organic electoluminescence device, wherein the elemental heterocycle is represented by an imidazole ring.
[5] 請求の範囲第 4項に記載の有機エレクト口ルミネッセンス素子であって、前記一般 式 (BD1)で表される化合物が、下記一般式 (BD2)で表されることを特徴とする有機 エレクトロノレミネッセンス素子。  [5] The organic electoluminescence device according to claim 4, wherein the compound represented by the general formula (BD1) is represented by the following general formula (BD2) Electroreminescence element.
[化 2]  [Chemical 2]
—殺式《BD2 —Killing Ceremony 《BD2
Figure imgf000075_0001
Figure imgf000075_0001
〔式中、 R、 R、及び Rは各々置換基を表す。 Zは 5〜7員環を形成するのに必要な [Wherein R, R and R each represents a substituent. Z is necessary to form a 5- to 7-membered ring
1 2 3  one two Three
非金属原子群を表す。 nlは 0〜5の整数を表す。 Mは元素周期表における 8族〜 1  Represents a nonmetallic atom group. nl represents an integer of 0 to 5. M is group 8 to 1 in the periodic table
1  1
0族の金属を表す。 Xおよび Xは各々炭素原子、窒素原子もしくは酸素原子を表し  Represents a group 0 metal. X and X each represent a carbon atom, a nitrogen atom or an oxygen atom
1 2  1 2
、 Lは Xおよび Xとともに 2座の配位子を形成する原子群を表す。 mlは 1、 2または , L represents a group of atoms that together with X and X form a bidentate ligand. ml is 1, 2 or
1 1 2 1 1 2
3の整数を表し、 m2は 0、 1または 2の整数を表す力 ml +m2は 2または 3である。 また、一般式 (BD2)の Rで表される置換ァリールは下記一般式 (AR1)で表される。  Represents an integer of 3, m2 represents an integer of 0, 1 or 2 ml + m2 is 2 or 3. Further, the substitution aryl represented by R in the general formula (BD2) is represented by the following general formula (AR1).
[化 3]
Figure imgf000076_0001
上記一般式 (AR1)中の Rは立体パラメーター値 (Es値)がー 0. 5以下である置換基
[Chemical 3]
Figure imgf000076_0001
R in the above general formula (AR1) is a substituent having a steric parameter value (Es value) of -0.5 or less.
5  Five
を表す。 Rは Rと同じ。また m3は 0から 4までの整数を表す。〕  Represents. R is the same as R. M3 represents an integer from 0 to 4. ]
5 1  5 1
[6] 請求の範囲第 1項乃至第 5項のいずれか一項に記載の有機エレクト口ルミネッセン ス素子であって、前記の少なくとも二つの発光層からの発光それぞれのエレクト口ルミ ネッセンススペクトルの極大発光波長( λ max)の差が 20nm以内であることを特徴と する有機エレクト口ルミネッセンス素子。  [6] The organic electroluminescence device according to any one of claims 1 to 5, wherein each of the electroluminescence spectra of the respective light emission from the at least two light emitting layers. An organic electoluminescence device characterized in that the difference in maximum emission wavelength (λ max) is within 20 nm.
[7] 請求の範囲第 1項乃至第 5項のいずれか一項に記載の有機エレクト口ルミネッセン ス素子であって、前記の少なくとも二つの発光層からの発光それぞれのエレクト口ルミ ネッセンススペクトルの極大発光波長( λ max)の差が 20nm以上であることを特徴と する有機エレクト口ルミネッセンス素子。  [7] The organic electroluminescent device according to any one of claims 1 to 5, wherein each of the electroluminescent spectra of light emitted from the at least two light emitting layers is used. An organic electoluminescence device characterized by a difference in maximum emission wavelength (λ max) of 20 nm or more.
[8] 請求の範囲第 1項乃至第 7項のいずれか一項に記載の有機エレクト口ルミネッセン ス素子であって、前記一般式 (BD1)で表される化合物を含有している少なくとも二 つの発光層が隣接していることを特徴とする有機エレクト口ルミネッセンス素子。  [8] The organic electoluminescence device according to any one of claims 1 to 7, which contains at least two compounds represented by the general formula (BD1). An organic electoluminescence device characterized in that a light emitting layer is adjacent.
[9] 請求の範囲第 1項乃至第 8項のいずれか一項に記載の有機エレクト口ルミネッセン ス素子であって、前記の少なくとも二つの発光層がホスト化合物を含有し、かつ、当 該少なくとも二つの発光層が共通のホスト化合物を含有していることを特徴とする有 機エレクト口ルミネッセンス素子。  [9] The organic electoluminescence device according to any one of claims 1 to 8, wherein the at least two light emitting layers contain a host compound, and An organic electoluminescence device, wherein the two light-emitting layers contain a common host compound.
[10] 請求の範囲第 1項乃至第 9項のいずれか一項に記載の有機エレクト口ルミネッセン ス素子であって、前記発光層ユニットが、少なくとも三つの発光層を有することを特徴 とする有機エレクト口ルミネッセンス素子。  [10] The organic electroluminescent device according to any one of claims 1 to 9, wherein the light emitting layer unit has at least three light emitting layers. Elect mouth luminescence element.
[11] 請求の範囲第 1項乃至第 9項のいずれか一項に記載の有機エレクト口ルミネッセン ス素子であって、その電界発光の発光色が青色であることを特徴とする有機エレクト 口ルミネッセンス素子。 [12] 請求の範囲第 1項乃至第 10項のいずれか一項に記載の有機エレクト口ルミネッセ ンス素子であって、その電界発光の発光色が白色であることを特徴とする有機エレク トロルミネッセンス素子。 [11] The organic electoluminescence device according to any one of claims 1 to 9, characterized in that the electroluminescence emission color is blue. element. [12] The organic electroluminescent device according to any one of claims 1 to 10, wherein the electroluminescent light emission color is white. element.
PCT/JP2007/067391 2006-09-20 2007-09-06 Organic electroluminescence element WO2008035571A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008535314A JP5556014B2 (en) 2006-09-20 2007-09-06 Organic electroluminescence device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006254127 2006-09-20
JP2006-254127 2006-09-20

Publications (1)

Publication Number Publication Date
WO2008035571A1 true WO2008035571A1 (en) 2008-03-27

Family

ID=39200398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067391 WO2008035571A1 (en) 2006-09-20 2007-09-06 Organic electroluminescence element

Country Status (2)

Country Link
JP (1) JP5556014B2 (en)
WO (1) WO2008035571A1 (en)

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008035664A1 (en) * 2006-09-20 2010-01-28 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
WO2010056669A1 (en) * 2008-11-11 2010-05-20 Universal Display Corporation Phosphorescent emitters
JP2010118381A (en) * 2008-11-11 2010-05-27 Konica Minolta Holdings Inc White organic electroluminescence element, display device, and lighting device
WO2010140645A1 (en) * 2009-06-03 2010-12-09 富士フイルム株式会社 Photoelectric conversion element and method for producing same, photosensor, imaging element and method of driving same
JP2011009348A (en) * 2009-06-24 2011-01-13 Konica Minolta Holdings Inc White organic electroluminescent element, display device, and illumination device
WO2011051404A1 (en) 2009-10-28 2011-05-05 Basf Se Heteroleptic carbene complexes and use thereof in organic electronics
WO2011070991A1 (en) * 2009-12-08 2011-06-16 Canon Kabushiki Kaisha Novel iridium complex, organic light-emitting device, and image display apparatus
WO2011073149A1 (en) 2009-12-14 2011-06-23 Basf Se Metal complexes comprising diazabenzimidazol carbene-ligands and the use thereof in oleds
WO2011155508A1 (en) * 2010-06-08 2011-12-15 出光興産株式会社 Organic electroluminescent element
WO2011155507A1 (en) * 2010-06-08 2011-12-15 出光興産株式会社 Organic electroluminescence element
WO2012111548A1 (en) * 2011-02-16 2012-08-23 コニカミノルタホールディングス株式会社 Organic electroluminescent element, lighting device, and display device
JPWO2010095564A1 (en) * 2009-02-18 2012-08-23 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENCE ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE HAVING THE ELEMENT
JP5099013B2 (en) * 2006-10-13 2012-12-12 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
KR20130004780A (en) * 2011-07-04 2013-01-14 엘지디스플레이 주식회사 Blue phophorescene compounds and organic light emitting diode devices using the same
US8378339B2 (en) 2009-09-11 2013-02-19 Fujifilm Corporation Photoelectric conversion device, production method thereof, photosensor, imaging device and their drive methods
WO2013058098A1 (en) * 2011-10-21 2013-04-25 コニカミノルタ株式会社 Organic electroluminescent element
WO2013137162A1 (en) * 2012-03-15 2013-09-19 コニカミノルタ株式会社 Organic electroluminescent element, lighting device, and display device
WO2013150909A1 (en) * 2012-04-03 2013-10-10 コニカミノルタ株式会社 Organic electroluminescent element
WO2014012972A1 (en) 2012-07-19 2014-01-23 Basf Se Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
JP2014041846A (en) * 2006-12-28 2014-03-06 Universal Display Corp Long life phosphorescent organic light emitting device (oled) structure
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
US20140138652A1 (en) * 2012-11-22 2014-05-22 Lg Display Co., Ltd. Blue phosphorescence compound and organic light emitting diode using the same
WO2014147134A1 (en) 2013-03-20 2014-09-25 Basf Se Azabenzimidazole carbene complexes as efficiency booster in oleds
US8847208B2 (en) 2009-06-03 2014-09-30 Fujifilm Corporation Photoelectric conversion device and imaging device having decreased dark current
WO2014177518A1 (en) 2013-04-29 2014-11-06 Basf Se Transition metal complexes with carbene ligands and the use thereof in oleds
WO2015000955A1 (en) 2013-07-02 2015-01-08 Basf Se Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
JP2015503533A (en) * 2011-12-28 2015-02-02 ソルヴェイ(ソシエテ アノニム) Production of heteroleptic metal complexes
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676A1 (en) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
EP3015469A1 (en) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079169A1 (en) 2014-11-18 2016-05-26 Basf Se Pt- or pd-carbene complexes for use in organic light emitting diodes
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3053918A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd 2-carbazole substituted benzimidazoles for electronic applications
EP3054498A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
EP3056504A1 (en) 2015-02-16 2016-08-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3061763A1 (en) 2015-02-27 2016-08-31 Universal Display Corporation Organic electroluminescent materials and devices
EP3070144A1 (en) 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
EP3098229A1 (en) 2015-05-15 2016-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3101021A1 (en) 2015-06-01 2016-12-07 Universal Display Corporation Organic electroluminescent materials and devices
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
EP3124488A1 (en) 2015-07-29 2017-02-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
EP3159350A1 (en) 2015-09-03 2017-04-26 Universal Display Corporation Organic electroluminescent materials and devices
WO2017078182A1 (en) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Benzimidazole fused heteroaryls
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017109727A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Hetero-condensed phenylquinazolines and their use in electronic devices
EP3205658A1 (en) 2016-02-09 2017-08-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3231809A2 (en) 2016-04-11 2017-10-18 Universal Display Corporation Organic electroluminescent materials and devices
WO2017178864A1 (en) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3239161A1 (en) 2013-07-31 2017-11-01 UDC Ireland Limited Luminescent diazabenzimidazole carbene metal complexes
EP3261147A1 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3261146A2 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
EP3270435A2 (en) 2016-06-20 2018-01-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3297051A1 (en) 2016-09-14 2018-03-21 Universal Display Corporation Organic electroluminescent materials and devices
EP3301088A1 (en) 2016-10-03 2018-04-04 Universal Display Corporation Condensed pyridines as organic electroluminescent materials and devices
EP3305796A1 (en) 2016-10-07 2018-04-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3321258A1 (en) 2016-11-09 2018-05-16 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
JP2018078299A (en) * 2012-03-14 2018-05-17 株式会社半導体エネルギー研究所 Light-emitting element, lighting device, light-emitting device, display device, and electronic apparatus
EP3323822A1 (en) 2016-09-23 2018-05-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3345914A1 (en) 2017-01-09 2018-07-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3354654A2 (en) 2016-11-11 2018-08-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3381927A1 (en) 2017-03-29 2018-10-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3401318A1 (en) 2017-05-11 2018-11-14 Universal Display Corporation Organic electroluminescent materials and devices
EP3415521A1 (en) 2011-06-14 2018-12-19 UDC Ireland Limited Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
EP3418286A1 (en) 2017-06-23 2018-12-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3444258A2 (en) 2017-08-10 2019-02-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3489243A1 (en) 2017-11-28 2019-05-29 University of Southern California Carbene compounds and organic electroluminescent devices
EP3492528A1 (en) 2017-11-30 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3492480A2 (en) 2017-11-29 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times
EP3613751A1 (en) 2018-08-22 2020-02-26 Universal Display Corporation Organic electroluminescent materials and devices
JP2020059709A (en) * 2018-10-08 2020-04-16 三星電子株式会社Samsung Electronics Co.,Ltd. Organic metallic compound and organic light-emitting element containing the same
US10644247B2 (en) 2015-02-06 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3689889A1 (en) 2019-02-01 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3690973A1 (en) 2019-01-30 2020-08-05 University Of Southern California Organic electroluminescent materials and devices
EP3715353A1 (en) 2019-03-26 2020-09-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3750897A1 (en) 2019-06-10 2020-12-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3771717A1 (en) 2019-07-30 2021-02-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3778614A1 (en) 2019-08-16 2021-02-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3816175A1 (en) 2019-11-04 2021-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3845545A1 (en) 2020-01-06 2021-07-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3858945A1 (en) 2020-01-28 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4001287A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4001286A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4016659A1 (en) 2020-11-16 2022-06-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4019526A1 (en) 2018-01-26 2022-06-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4039692A1 (en) 2021-02-03 2022-08-10 Universal Display Corporation Organic electroluminescent materials and devices
EP4053137A1 (en) 2021-03-05 2022-09-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4056578A1 (en) 2021-03-12 2022-09-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4059941A1 (en) 2021-03-15 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4074723A1 (en) 2021-04-05 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4075530A1 (en) 2021-04-14 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4079743A1 (en) 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4086266A1 (en) 2021-04-23 2022-11-09 Universal Display Corporation Organic electroluminescent materials and devices
EP4112701A2 (en) 2021-06-08 2023-01-04 University of Southern California Molecular alignment of homoleptic iridium phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4185086A1 (en) 2017-07-26 2023-05-24 Universal Display Corporation Organic electroluminescent materials and devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A2 (en) 2022-02-16 2023-08-23 Universal Display Corporation Organic electroluminescent materials and devices
EP4242285A1 (en) 2022-03-09 2023-09-13 Universal Display Corporation Organic electroluminescent materials and devices
EP4265626A2 (en) 2022-04-18 2023-10-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4282863A1 (en) 2022-05-24 2023-11-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP4299693A1 (en) 2022-06-28 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4326030A1 (en) 2022-08-17 2024-02-21 Universal Display Corporation Organic electroluminescent materials and devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327432A (en) * 2003-04-09 2004-11-18 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device
WO2005079118A1 (en) * 2004-02-13 2005-08-25 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2006009024A1 (en) * 2004-07-23 2006-01-26 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
JP2006237306A (en) * 2005-02-25 2006-09-07 Konica Minolta Holdings Inc Organic electroluminescent element, its manufacturing method, display device and illumination device

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196639B2 (en) * 2002-06-10 2008-12-17 三菱化学株式会社 Organometallic complex and organic electroluminescent device using the same
JP4427947B2 (en) * 2002-11-18 2010-03-10 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
JP4337475B2 (en) * 2003-08-27 2009-09-30 三菱化学株式会社 Organometallic complex, luminescent material, and organic electroluminescent device
JP4894513B2 (en) * 2004-06-17 2012-03-14 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5151001B2 (en) * 2004-07-15 2013-02-27 コニカミノルタホールディングス株式会社 Organic electroluminescence element, lighting device and display device
JP5040077B2 (en) * 2004-07-23 2012-10-03 コニカミノルタホールディングス株式会社 Organic electroluminescence device
JP4961664B2 (en) * 2004-10-22 2012-06-27 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
US8492749B2 (en) * 2004-12-23 2013-07-23 Basf Se Electroluminescent metal complexes with nucleophilic carbene ligands
US9051344B2 (en) * 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
WO2006132012A1 (en) * 2005-06-09 2006-12-14 Konica Minolta Holdings, Inc. Organic electroluminescence element, lighting apparatus and display device
WO2007029461A1 (en) * 2005-09-02 2007-03-15 Konica Minolta Holdings, Inc. Organic electroluminescent device, method for manufacturing same, display comprising such organic electroluminescent device, and illuminating device
US8148891B2 (en) * 2005-10-04 2012-04-03 Universal Display Corporation Electron impeding layer for high efficiency phosphorescent OLEDs
EP1936714A1 (en) * 2005-10-11 2008-06-25 Konica Minolta Holdings, Inc. Organic electroluminescent device, liquid crystal display and illuminating device
JP4887731B2 (en) * 2005-10-26 2012-02-29 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
WO2007052431A1 (en) * 2005-10-31 2007-05-10 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
JPWO2007055186A1 (en) * 2005-11-09 2009-04-30 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
KR20080080306A (en) * 2005-12-15 2008-09-03 이데미쓰 고산 가부시키가이샤 Organic electroluminescence element material and organic electroluminescence element using same
WO2007069539A1 (en) * 2005-12-15 2007-06-21 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
JP5286788B2 (en) * 2006-01-25 2013-09-11 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
JP2007208102A (en) * 2006-02-03 2007-08-16 Konica Minolta Holdings Inc Organic electroluminescent device, display unit, and lighting system
WO2007097149A1 (en) * 2006-02-20 2007-08-30 Konica Minolta Holdings, Inc. Organic electroluminescence element, white light emitting element, display device and illuminating device
JP5226187B2 (en) * 2006-02-21 2013-07-03 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
WO2007108327A1 (en) * 2006-03-17 2007-09-27 Konica Minolta Holdings, Inc. Organic electroluminescence element, display device, and illumination device
JP5672648B2 (en) * 2006-03-17 2015-02-18 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
JP5228281B2 (en) * 2006-03-20 2013-07-03 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE USING ORGANIC ELECTROLUMINESCENT ELEMENT
WO2007119420A1 (en) * 2006-03-22 2007-10-25 Konica Minolta Holdings, Inc. Organic electroluminescence element, method for stabilizing emission chromaticity of organic electroluminescence element, illuminating device and electronic display device
WO2007108459A1 (en) * 2006-03-23 2007-09-27 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
JP2007262135A (en) * 2006-03-27 2007-10-11 Showa Denko Kk Polymer luminescent material, organic electroluminescent element and display
JP5103781B2 (en) * 2006-04-20 2012-12-19 コニカミノルタホールディングス株式会社 COMPOUND, ORGANIC ELECTROLUMINESCENT ELEMENT CONTAINING THE COMPOUND, AND LIGHTING DEVICE
JP5560517B2 (en) * 2006-04-26 2014-07-30 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
JP5470849B2 (en) * 2006-09-19 2014-04-16 コニカミノルタ株式会社 Organic electroluminescence device
WO2008035664A1 (en) * 2006-09-20 2008-03-27 Konica Minolta Holdings, Inc. Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
JP5011908B2 (en) * 2006-09-26 2012-08-29 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
WO2008090912A1 (en) * 2007-01-23 2008-07-31 Konica Minolta Holdings, Inc. Method for manufacturing organic electroluminescent device, organic electroluminescent device manufactured by the method, display device and illuminating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327432A (en) * 2003-04-09 2004-11-18 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device
WO2005079118A1 (en) * 2004-02-13 2005-08-25 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2006009024A1 (en) * 2004-07-23 2006-01-26 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
JP2006237306A (en) * 2005-02-25 2006-09-07 Konica Minolta Holdings Inc Organic electroluminescent element, its manufacturing method, display device and illumination device

Cited By (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644050B2 (en) * 2006-09-20 2014-12-24 コニカミノルタ株式会社 Organic electroluminescence element material
JPWO2008035664A1 (en) * 2006-09-20 2010-01-28 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5099013B2 (en) * 2006-10-13 2012-12-12 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP2014041846A (en) * 2006-12-28 2014-03-06 Universal Display Corp Long life phosphorescent organic light emitting device (oled) structure
WO2010056669A1 (en) * 2008-11-11 2010-05-20 Universal Display Corporation Phosphorescent emitters
JP2010118381A (en) * 2008-11-11 2010-05-27 Konica Minolta Holdings Inc White organic electroluminescence element, display device, and lighting device
CN103396455B (en) * 2008-11-11 2017-03-01 通用显示公司 Phosphorescent emitters
JPWO2010095564A1 (en) * 2009-02-18 2012-08-23 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENCE ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE HAVING THE ELEMENT
JP5765223B2 (en) * 2009-02-18 2015-08-19 コニカミノルタ株式会社 MANUFACTURING METHOD FOR ORGANIC ELECTROLUMINESCENT ELEMENT, AND LIGHTING DEVICE AND DISPLAY DEVICE PROVIDED WITH ORGANIC ELECTROLUMINESCENT ELEMENT
CN104119265B (en) * 2009-06-03 2016-07-13 富士胶片株式会社 Photo-electric conversion element, its preparation method, optical sensor, imaging device and driving method thereof
CN104119265A (en) * 2009-06-03 2014-10-29 富士胶片株式会社 Photoelectric conversion element and method for producing same, photosensor, imaging element and method of driving same
CN102460760A (en) * 2009-06-03 2012-05-16 富士胶片株式会社 Photoelectric conversion element and method for producing same, photosensor, imaging element and method of driving same
US8847208B2 (en) 2009-06-03 2014-09-30 Fujifilm Corporation Photoelectric conversion device and imaging device having decreased dark current
KR101574379B1 (en) 2009-06-03 2015-12-03 후지필름 가부시키가이샤 Photoelectric conversion element, production method thereof, photosensor, imaging device and their driving method
US8847141B2 (en) 2009-06-03 2014-09-30 Fujifilm Corporation Photoelectric conversion element, production method thereof, photosensor, imaging device and their driving method
WO2010140645A1 (en) * 2009-06-03 2010-12-09 富士フイルム株式会社 Photoelectric conversion element and method for producing same, photosensor, imaging element and method of driving same
JP2011009348A (en) * 2009-06-24 2011-01-13 Konica Minolta Holdings Inc White organic electroluminescent element, display device, and illumination device
US8637860B2 (en) 2009-09-11 2014-01-28 Fujifilm Corporation Photoelectric conversion device, production method thereof, photosensor, imaging device and their drive methods
US8378339B2 (en) 2009-09-11 2013-02-19 Fujifilm Corporation Photoelectric conversion device, production method thereof, photosensor, imaging device and their drive methods
US11189806B2 (en) 2009-10-28 2021-11-30 Udc Ireland Limited Heteroleptic carbene complexes and the use thereof in organic electronics
WO2011051404A1 (en) 2009-10-28 2011-05-05 Basf Se Heteroleptic carbene complexes and use thereof in organic electronics
US11871654B2 (en) 2009-10-28 2024-01-09 Udc Ireland Limited Heteroleptic carbene complexes and the use thereof in organic electronics
WO2011070991A1 (en) * 2009-12-08 2011-06-16 Canon Kabushiki Kaisha Novel iridium complex, organic light-emitting device, and image display apparatus
US9045510B2 (en) 2009-12-08 2015-06-02 Canon Kabushiki Kaisha Iridium complex, organic light-emitting device, and image display apparatus
US10090476B2 (en) 2009-12-14 2018-10-02 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
US10916716B2 (en) 2009-12-14 2021-02-09 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
WO2011073149A1 (en) 2009-12-14 2011-06-23 Basf Se Metal complexes comprising diazabenzimidazol carbene-ligands and the use thereof in oleds
US11839140B2 (en) 2009-12-14 2023-12-05 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
US11444254B2 (en) 2009-12-14 2022-09-13 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
US9487548B2 (en) 2009-12-14 2016-11-08 Udc Ireland Limited Metal complexes comprising diazabenzimidazolocarbene ligands and the use thereof in OLEDs
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
WO2011155508A1 (en) * 2010-06-08 2011-12-15 出光興産株式会社 Organic electroluminescent element
US8987715B2 (en) 2010-06-08 2015-03-24 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
WO2011155507A1 (en) * 2010-06-08 2011-12-15 出光興産株式会社 Organic electroluminescence element
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
WO2012111548A1 (en) * 2011-02-16 2012-08-23 コニカミノルタホールディングス株式会社 Organic electroluminescent element, lighting device, and display device
JP5853964B2 (en) * 2011-02-16 2016-02-09 コニカミノルタ株式会社 Organic electroluminescence element, lighting device and display device
US9923154B2 (en) 2011-02-16 2018-03-20 Konica Minolta, Inc. Organic electroluminescent element, lighting device, and display device
EP2677561A4 (en) * 2011-02-16 2016-06-29 Konica Minolta Inc Organic electroluminescent element, lighting device, and display device
EP3415521A1 (en) 2011-06-14 2018-12-19 UDC Ireland Limited Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
KR101944860B1 (en) * 2011-07-04 2019-02-01 엘지디스플레이 주식회사 Blue phophorescene compounds and organic light emitting diode devices using the same
KR20130004780A (en) * 2011-07-04 2013-01-14 엘지디스플레이 주식회사 Blue phophorescene compounds and organic light emitting diode devices using the same
WO2013058098A1 (en) * 2011-10-21 2013-04-25 コニカミノルタ株式会社 Organic electroluminescent element
US9780322B2 (en) 2011-10-21 2017-10-03 Konica Minolta, Inc. Organic electroluminescent element
JPWO2013058098A1 (en) * 2011-10-21 2015-04-02 コニカミノルタ株式会社 Organic electroluminescence device
JP2015503533A (en) * 2011-12-28 2015-02-02 ソルヴェイ(ソシエテ アノニム) Production of heteroleptic metal complexes
JP2018078299A (en) * 2012-03-14 2018-05-17 株式会社半導体エネルギー研究所 Light-emitting element, lighting device, light-emitting device, display device, and electronic apparatus
US11063232B2 (en) 2012-03-14 2021-07-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US10361390B2 (en) 2012-03-14 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
JPWO2013137162A1 (en) * 2012-03-15 2015-08-03 コニカミノルタ株式会社 Organic electroluminescence element, lighting device and display device
WO2013137162A1 (en) * 2012-03-15 2013-09-19 コニカミノルタ株式会社 Organic electroluminescent element, lighting device, and display device
JPWO2013150909A1 (en) * 2012-04-03 2015-12-17 コニカミノルタ株式会社 Organic electroluminescence device
WO2013150909A1 (en) * 2012-04-03 2013-10-10 コニカミノルタ株式会社 Organic electroluminescent element
WO2014012972A1 (en) 2012-07-19 2014-01-23 Basf Se Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
EP3133079A1 (en) 2012-07-19 2017-02-22 UDC Ireland Limited Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
US9590196B2 (en) 2012-07-19 2017-03-07 Udc Ireland Limited Dinuclear metal complexes comprising carbene ligands and the use thereof in OLEDs
US20140138652A1 (en) * 2012-11-22 2014-05-22 Lg Display Co., Ltd. Blue phosphorescence compound and organic light emitting diode using the same
US9865822B2 (en) * 2012-11-22 2018-01-09 Lg Display Co., Ltd. Blue phosphorescence compound and organic light emitting diode using the same
WO2014147134A1 (en) 2013-03-20 2014-09-25 Basf Se Azabenzimidazole carbene complexes as efficiency booster in oleds
WO2014177518A1 (en) 2013-04-29 2014-11-06 Basf Se Transition metal complexes with carbene ligands and the use thereof in oleds
EP3266789A1 (en) 2013-07-02 2018-01-10 UDC Ireland Limited Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
WO2015000955A1 (en) 2013-07-02 2015-01-08 Basf Se Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
EP3608329A1 (en) 2013-07-02 2020-02-12 UDC Ireland Limited Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
EP3239161A1 (en) 2013-07-31 2017-11-01 UDC Ireland Limited Luminescent diazabenzimidazole carbene metal complexes
US11075346B2 (en) 2013-12-20 2021-07-27 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US11765967B2 (en) 2013-12-20 2023-09-19 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times
EP3916822A1 (en) 2013-12-20 2021-12-01 UDC Ireland Limited Highly efficient oled devices with very short decay times
US10118939B2 (en) 2014-03-31 2018-11-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an o-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
US10370396B2 (en) 2014-03-31 2019-08-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometallated aryl group and their use in organic light emitting diodes
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676A1 (en) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
EP3015469A1 (en) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016067261A1 (en) 2014-10-30 2016-05-06 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
WO2016079169A1 (en) 2014-11-18 2016-05-26 Basf Se Pt- or pd-carbene complexes for use in organic light emitting diodes
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
WO2016097983A1 (en) 2014-12-15 2016-06-23 Idemitsu Kosan Co., Ltd. 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (oleds)
WO2016125110A1 (en) 2015-02-06 2016-08-11 Idemitsu Kosan Co., Ltd. Bisimidazolodiazocines
US11245081B2 (en) 2015-02-06 2022-02-08 Universal Display Corporation Organic electroluminescent materials and devices
EP3053918A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd 2-carbazole substituted benzimidazoles for electronic applications
EP3054498A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
US10644247B2 (en) 2015-02-06 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3056504A1 (en) 2015-02-16 2016-08-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3061763A1 (en) 2015-02-27 2016-08-31 Universal Display Corporation Organic electroluminescent materials and devices
EP3070144A1 (en) 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
WO2016157113A1 (en) 2015-03-31 2016-10-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
EP3098229A1 (en) 2015-05-15 2016-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3101021A1 (en) 2015-06-01 2016-12-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4060757A1 (en) 2015-06-03 2022-09-21 UDC Ireland Limited Highly efficient oled devices with very short decay times
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
EP3124488A1 (en) 2015-07-29 2017-02-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3760635A1 (en) 2015-09-03 2021-01-06 Universal Display Corporation Organic electroluminescent materials and devices
EP3159350A1 (en) 2015-09-03 2017-04-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056052A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017078182A1 (en) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Benzimidazole fused heteroaryls
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017109727A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Hetero-condensed phenylquinazolines and their use in electronic devices
WO2017109722A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them
EP3858842A1 (en) 2016-02-09 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3205658A1 (en) 2016-02-09 2017-08-16 Universal Display Corporation Organic electroluminescent materials and devices
EP4122941A1 (en) 2016-04-11 2023-01-25 Universal Display Corporation Organic electroluminescent materials and devices
EP3231809A2 (en) 2016-04-11 2017-10-18 Universal Display Corporation Organic electroluminescent materials and devices
WO2017178864A1 (en) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3920254A1 (en) 2016-06-20 2021-12-08 Universal Display Corporation Organic electroluminescent materials and devices
EP4349935A2 (en) 2016-06-20 2024-04-10 Universal Display Corporation Organic electroluminescent materials and devices
EP3261147A1 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3261146A2 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3270435A2 (en) 2016-06-20 2018-01-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3758084A1 (en) 2016-06-20 2020-12-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3843171A1 (en) 2016-06-20 2021-06-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3297051A1 (en) 2016-09-14 2018-03-21 Universal Display Corporation Organic electroluminescent materials and devices
EP3323822A1 (en) 2016-09-23 2018-05-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3301088A1 (en) 2016-10-03 2018-04-04 Universal Display Corporation Condensed pyridines as organic electroluminescent materials and devices
EP3305796A1 (en) 2016-10-07 2018-04-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3858844A1 (en) 2016-10-07 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3789379A1 (en) 2016-11-09 2021-03-10 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP3321258A1 (en) 2016-11-09 2018-05-16 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP3354654A2 (en) 2016-11-11 2018-08-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4092036A1 (en) 2016-11-11 2022-11-23 Universal Display Corporation Organic electroluminescent materials and devices
EP4212540A1 (en) 2017-01-09 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP3345914A1 (en) 2017-01-09 2018-07-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3689890A1 (en) 2017-01-09 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3730506A1 (en) 2017-03-29 2020-10-28 Universal Display Corporation Organic electroluminescent materials and devices
EP3985012A1 (en) 2017-03-29 2022-04-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3381927A1 (en) 2017-03-29 2018-10-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3401318A1 (en) 2017-05-11 2018-11-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4141010A1 (en) 2017-05-11 2023-03-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3418286A1 (en) 2017-06-23 2018-12-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4185086A1 (en) 2017-07-26 2023-05-24 Universal Display Corporation Organic electroluminescent materials and devices
EP3444258A2 (en) 2017-08-10 2019-02-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3783006A1 (en) 2017-08-10 2021-02-24 Universal Display Corporation Organic electroluminescent materials and devices
EP3878855A1 (en) 2017-11-28 2021-09-15 University of Southern California Carbene compounds and organic electroluminescent devices
EP3489243A1 (en) 2017-11-28 2019-05-29 University of Southern California Carbene compounds and organic electroluminescent devices
EP3492480A2 (en) 2017-11-29 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3492528A1 (en) 2017-11-30 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4019526A1 (en) 2018-01-26 2022-06-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4206210A1 (en) 2018-08-22 2023-07-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3613751A1 (en) 2018-08-22 2020-02-26 Universal Display Corporation Organic electroluminescent materials and devices
JP7244396B2 (en) 2018-10-08 2023-03-22 三星電子株式会社 Organometallic compound and organic light-emitting device containing the same
JP2020059709A (en) * 2018-10-08 2020-04-16 三星電子株式会社Samsung Electronics Co.,Ltd. Organic metallic compound and organic light-emitting element containing the same
EP3690973A1 (en) 2019-01-30 2020-08-05 University Of Southern California Organic electroluminescent materials and devices
EP4301117A2 (en) 2019-02-01 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3689889A1 (en) 2019-02-01 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4134371A2 (en) 2019-03-26 2023-02-15 Universal Display Corporation Organic electroluminescent materials and devices
EP3715353A1 (en) 2019-03-26 2020-09-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3750897A1 (en) 2019-06-10 2020-12-16 Universal Display Corporation Organic electroluminescent materials and devices
EP4219515A1 (en) 2019-07-30 2023-08-02 Universal Display Corporation Organic electroluminescent materials and devices
EP3771717A1 (en) 2019-07-30 2021-02-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3778614A1 (en) 2019-08-16 2021-02-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3816175A1 (en) 2019-11-04 2021-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4151644A1 (en) 2020-01-06 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP3845545A1 (en) 2020-01-06 2021-07-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3858945A1 (en) 2020-01-28 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP4294157A2 (en) 2020-01-28 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4016659A1 (en) 2020-11-16 2022-06-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4329463A2 (en) 2020-11-24 2024-02-28 Universal Display Corporation Organic electroluminescent materials and devices
EP4001287A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4001286A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4039692A1 (en) 2021-02-03 2022-08-10 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4053137A1 (en) 2021-03-05 2022-09-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4056578A1 (en) 2021-03-12 2022-09-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4059941A1 (en) 2021-03-15 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4074723A1 (en) 2021-04-05 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4075530A1 (en) 2021-04-14 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4086266A1 (en) 2021-04-23 2022-11-09 Universal Display Corporation Organic electroluminescent materials and devices
EP4079743A1 (en) 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4112701A2 (en) 2021-06-08 2023-01-04 University of Southern California Molecular alignment of homoleptic iridium phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A2 (en) 2022-02-16 2023-08-23 Universal Display Corporation Organic electroluminescent materials and devices
EP4242285A1 (en) 2022-03-09 2023-09-13 Universal Display Corporation Organic electroluminescent materials and devices
EP4265626A2 (en) 2022-04-18 2023-10-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4282863A1 (en) 2022-05-24 2023-11-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP4299693A1 (en) 2022-06-28 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4326030A1 (en) 2022-08-17 2024-02-21 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
JP5556014B2 (en) 2014-07-23
JPWO2008035571A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP5556014B2 (en) Organic electroluminescence device
US8242488B2 (en) Organic electroluminescent element, display device, and illuminating device
JP5845599B2 (en) Organic electroluminescence element, display device and lighting device
JP5493333B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, WHITE ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5600894B2 (en) White organic electroluminescence element, display device and lighting device
JP4853010B2 (en) Organic electroluminescence device and organic electroluminescence display
JP6128119B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
US8304764B2 (en) Organic electroluminescent element
JP4910435B2 (en) Organic electroluminescence device and organic electroluminescence display
WO2008029652A1 (en) Organic electroluminescent device, illuminating device and display
WO2008029729A1 (en) Organic electroluminescent device, illuminating device and display
WO2009104488A1 (en) White light-emitting organic electroluminescent device
US9040975B2 (en) Organic electroluminescence element, illumination device, and display device
WO2008035595A1 (en) Organic electroluminescent devices
JP6225915B2 (en) Organic electroluminescence device
JP2017079267A (en) Organic electroluminescent element, method of manufacturing organic electroluminescent element, display device, lighting device, and organic electroluminescent element material
JP5381098B2 (en) Organic electroluminescence device and organic electroluminescence display
JP5521753B2 (en) Organic electroluminescence device
JP2007258526A (en) Organic electroluminescence element and display
JP2008235503A (en) Organic electroluminescent device and illuminator using the same
JP2007059119A (en) Organic electroluminescence element and organic electroluminescence display
JP2007250239A (en) Organic electroluminescence element, and organic electroluminescence display
JP2007251096A (en) Organic electroluminescence element and organic electroluminescence display
JP5835217B2 (en) Organic electroluminescence device
JP6197650B2 (en) Organic EL device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008535314

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806832

Country of ref document: EP

Kind code of ref document: A1