WO2008039392A2 - Medical sensor for reducing signal artifacts and technique for using the same - Google Patents

Medical sensor for reducing signal artifacts and technique for using the same Download PDF

Info

Publication number
WO2008039392A2
WO2008039392A2 PCT/US2007/020545 US2007020545W WO2008039392A2 WO 2008039392 A2 WO2008039392 A2 WO 2008039392A2 US 2007020545 W US2007020545 W US 2007020545W WO 2008039392 A2 WO2008039392 A2 WO 2008039392A2
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
cable
sensor body
set forth
tissue
Prior art date
Application number
PCT/US2007/020545
Other languages
French (fr)
Other versions
WO2008039392A3 (en
Inventor
Carine Hoarau
Original Assignee
Nellcor Puritan Bennett Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/525,635 external-priority patent/US8175671B2/en
Priority claimed from US11/525,693 external-priority patent/US8396527B2/en
Application filed by Nellcor Puritan Bennett Llc filed Critical Nellcor Puritan Bennett Llc
Publication of WO2008039392A2 publication Critical patent/WO2008039392A2/en
Publication of WO2008039392A3 publication Critical patent/WO2008039392A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6838Clamps or clips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/164Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted in or on a conformable substrate or carrier

Definitions

  • the present invention relates generally to medical devices and, more particularly, to sensors used for sensing physiological parameters of a patient.
  • Pulse oximetry may be used to measure various blood flow characteristics, such as the blood-oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and/or the rate of blood pulsations corresponding to each heartbeat of a patient.
  • the "pulse" in pulse oximetry refers to the time-varying amount of arterial blood in the tissue during each cardiac cycle.
  • Pulse oximeters typically utilize a non-invasive sensor that transmits electromagnetic radiation, such as light, through a patient's tissue and that photoelectrically detects the absorption and scattering of the transmitted light in such tissue.
  • electromagnetic radiation such as light
  • One or more of the above physiological characteristics may then be calculated based upon the amount of light absorbed and scattered. More specifically, the light passed through the tissue is typically selected to be of one or more wavelengths that may be absorbed and scattered by the blood in an amount correlative to the amount of the blood constituent present in the tissue. The measured amount of light absorbed and scattered may then be used to estimate the amount of blood constituent in the tissue using various algorithms.
  • Pulse oximetry readings measure the pulsatile, dynamic changes in amount and type of blood constituents in tissue. Other events besides the pulsing of arterial blood may lead to modulation of the light path, direction, and the amount of light detected by the sensor, creating error in these measurements. Pulse oximetry measurements may be affected by various noise sources, and various types of events may cause artifacts that may obscure the blood constituent signal.
  • signal artifacts may be caused by moving a sensor in relation to the tissue, by increasing or decreasing the physical distance between emitters and detectors in a sensor, by changing the direction of emitters or detectors with respect to tissue or each other, by changing the angles of incidence and interfaces probed by the light, by directing the optical path through different amounts or types of tissue, or by expanding, compressing or otherwise altering tissue near a sensor.
  • the wide variety of sources of motion artifacts includes moving of a patient or the sensor by healthcare workers, physical motion of an unanaesthetised or ambulatory patient, shivering, seizures, agitation, response to pain and loss of neural control. These motions oftentimes have similar frequency content to the pulse, and may lead to similar or even larger optical modulations than the pulse.
  • Disposable sensors are typically flexible bandage-type structures that may be attached to the patient with adhesive materials, providing a contact between the patient's skin and the sensor components. Disposable sensors have multiple advantages, including ease of conformation to the patient. However, the flexible nature of disposable sensors renders them susceptible to signal artifacts caused by mechanical deformation of the sensor, which changes the amount of light detected. Reusable sensors, often semi-rigid or rigid clip-type devices, are also vulnerable to signal artifacts. Both categories of sensors may have modulations of detected light induced by the physical motion of the sensor components with respect to each other and the tissue.
  • Signal artifacts may sometimes be addressed by signal processing and filtering to mitigate the effects of motion after the motion has occurred.
  • signal processing algorithms to filter out motion artifacts after they have occurred may not filter out all type of artifacts. For example, certain types of regular movements, such as tapping, may not be interpreted by a signal artifact filter as noise.
  • a sensor that prevents, reduces the occurrence of, or mitigates movements that may lead to motion artifacts.
  • Such a sensor may incorporate elements which enhance patient comfort without reducing the sensor's resistance to movement or outside forces.
  • a sensor that includes: a sensor body comprising an elastic material; and an emitter and a detector disposed on the sensor body, wherein sensor body is substantially inelastic in at least part of a region of the sensor body connecting the emitter and the detector.
  • a pulse oximetry system that includes: a pulse oximetry monitor; and a pulse oximetry sensor adapted to be operatively coupled to the monitor.
  • the sensor includes a sensor body comprising an elastic material; and an emitter and a detector disposed on the sensor body, wherein sensor body is substantially inelastic in at least part of a region of the sensor body connecting the emitter and the detector.
  • a method that includes: applying a sensor body comprising an emitter and a detector to a patient's tissue; and stretching an elastic portion of a sensor body in response to a movement of the tissue, wherein the optical distance between the emitter and the detector remains substantially fixed.
  • a method of manufacturing a sensor that includes: providing a sensor body comprising an elastic material; and providing an emitter and a detector disposed on the sensor body, wherein sensor body is substantially inelastic in at least part of a region of the sensor body connecting the emitter and the detector.
  • a sensor that includes: a sensor body adapted to expand in response to a biasing force; and an emitter and a detector disposed on the sensor body, wherein the sensor body is adapted to fix the optical distance between the emitter and the detector.
  • a sensor that includes: a sensor body comprising at least one elastic electronic component; and an emitter and a detector disposed on the sensor body.
  • a system that includes: a monitor; and a sensor adapted to be operatively coupled to the monitor, the sensor including: a sensor body comprising at least one elastic electronic component; and an emitter and a detector disposed on the sensor body.
  • a method of response to movement of a sensor that includes: applying a sensor body comprising an emitter and a detector to a patient's tissue; and stretching an elastic electronic component of a sensor body in response to a movement of the tissue, wherein the optical distance between the emitter and the detector remains substantially fixed.
  • a method of manufacturing a sensor including: providing a sensor body comprising at least one elastic electronic component; and providing an emitter and a detector disposed on the sensor body.
  • a sensor that includes: a sensor body; an emitter and a detector disposed on the sensor body; and an electronic component operatively connected to the emitter or the detector adapted to expand in response to a biasing force.
  • a sensor that includes: a sensor body comprising an exterior surface and a tissue-contacting surface; at least one sensing element disposed on the sensor body; a cable adapted to be electrically coupled to the sensing element; and a cable guide disposed on exterior surface of the sensor body, wherein the cable guide is adapted to hold the cable in a predetermined position on the sensor body.
  • a pulse oximetry system that includes: a pulse oximetry monitor; and a pulse oximetry sensor adapted to be operatively coupled to the monitor.
  • the sensor includes: a sensor body comprising an exterior surface and a tissue- contacting surface; at least one sensing element disposed on the sensor body; a cable adapted to be electrically coupled to the sensing element; and a cable guide disposed on exterior surface of the sensor body, wherein the cable guide is adapted to hold the cable in a predetermined position on the sensor body.
  • a method that includes: applying a sensor body comprising a sensing component to a patient's tissue; and securing a sensor cable that is operatively connected to the sensing component in a predetermined position on a sensor body with a cable guide.
  • a method of manufacturing a sensor that includes: providing a sensor body comprising an exterior surface and a tissue-contacting surface; providing at least one sensing element disposed on the sensor body; providing a cable adapted to be electrically coupled to the sensing element; and providing a cable guide disposed on the exterior surface of the sensor body, wherein the cable guide is adapted to hold the cable in a predetermined position on the sensor body.
  • a sensor that includes: a sensor body; at least one sensing element disposed on the sensor body; and a cable adapted to be electrically coupled to the sensing element, wherein the cable is disposed along the sensor body in a curvilinear configuration.
  • a system that includes: a monitor; and a sensor adapted to be operatively coupled to the monitor.
  • the sensor includes: a sensor body; at least one sensing element disposed on the sensor body; and a cable adapted to be electrically coupled to the sensing element, wherein the cable is disposed along the sensor body in a curvilinear configuration.
  • sensing element electrically coupling to a monitor with a cable, wherein sensing element is disposed on the sensor body and wherein the cable is disposed along the sensor body in a curvilinear configuration.
  • a method that includes: providing a sensor body; providing at least one sensing element disposed on the sensor body; and providing a cable adapted to be electrically coupled to the sensing element, wherein the cable is disposed along the sensor body in a curvilinear configuration.
  • a sensor that includes: an emitter and a detector disposed on a substantially rigid substrate, wherein the substantially rigid substrate is adapted to hold the emitter and detector at a substantially fixed optical distance relative to one another when the sensor is applied to a patient.
  • a system that includes: a monitor; and a sensor adapted to be operatively coupled to the monitor.
  • the sensor includes: an emitter and a detector disposed on a substantially rigid substrate, wherein the substantially rigid substrate is adapted to hold the emitter and detector at a substantially fixed optical distance relative to one another when the sensor is applied to a patient.
  • a method that includes: fixing the optical distance between an emitter and a detector relative to one another, wherein the emitter and the detector are disposed on a substantially rigid substrate.
  • a method of manufacturing a sensor that includes: providing a substantially rigid substrate on which an emitter and a detector are disposed, wherein the substantially rigid substrate is adapted to hold the emitter and the detector at a substantially fixed optical distance.
  • Fig. IA illustrates a cross-sectional view of an exemplary embodiment of a transmission-type bandage-style sensor with an elastic sensor body
  • Fig. 1 B illustrates a top view of the sensor of Fig. IA applied to a patient digit
  • Fig. 1C illustrates a perspective view the sensor of Fig. IA
  • Fig. ID illustrates a cross-sectional view of an alternative embodiment of a sensor using reflectance-type sensing elements
  • Fig. 2 A illustrates a cross-sectional view of an exemplary embodiment of an elastic transmission- type bandage-style sensor applied to a patient's digit, whereby the sensor includes a stiffening member;
  • Fig. 2B illustrates a cross-sectional view of an exemplary embodiment of an elastic reflectance-type bandage-style sensor applied to a patient's digit, whereby the sensor includes a stiffening member;
  • Fig. 2C illustrates an embodiment of the sensor of Fig. 2B, whereby the stiffening member and sensing components may be a unitary assembly;
  • Fig. 3 A illustrates a cross-sectional view of an alternate exemplary embodiment of a bandage-style sensor with an inelastic sensor body with elastic portions disposed proximate to the finger joint;
  • Fig. 3B illustrates a cross-sectional view of the sensor of Fig. 3 A with the finger joint flexed
  • Fig. 4 illustrates a side view of an exemplary embodiment of a sensor with an elastic sensor cable
  • Fig. 5 A illustrates a side view of an exemplary embodiment of a sensor whereby the sensor cable is disposed along the side of the finger and secured with a cable guide;
  • Fig. 5B illustrates a top view of the sensor of Fig. 5A
  • Fig. 5C illustrates a perspective view of the sensor of Fig. 5 A
  • Fig. 6A illustrates a side view of an embodiment of an exemplary sensor applied to a patient's finger with a sensor cable disposed on the sensor body in a configuration that avoids the fingertip region;
  • Fig. 6B illustrates a perspective view of the sensor of Fig. 6A
  • Fig. 7A illustrates a perspective view of an embodiment of an exemplary sensor with alignment indices for the sensor cable;
  • Fig. 7B illustrates a top view of the sensor of Fig. 7A applied to a patient's finger and secured with adhesive bandages such that the sensor cable is aligned with the alignment indices;
  • Fig. 8 illustrates a cross-sectional view of an embodiment of an exemplary sensor with a sensor cable that extends at an angle away from the sensor body;
  • Fig. 9 illustrates a side view of an embodiment of an exemplary sensor with a flexible circuit connecting the emitter and detector.
  • Fig. 10 illustrates a pulse oximetry system coupled to a multi -parameter patient monitor and a sensor according to embodiments of the present invention.
  • sensors for pulse oximetry or other applications utilizing spectrophotometry that reduce signal artifacts by reducing the occurrence of tissue deformation, such as compression or discoloration, associated with the movement of a patient's tissue relative to the sensor or the movement of the sensor elements relative ot one another.
  • sensors are provided herein that include elastic materials that may accommodate patient movement.
  • the sensors that include elastic materials are configured to reduce pressure from the sensor on the tissue during such movement.
  • Sensors are also provided in which a sensor cable is directed or arranged in relation to the sensor body such that the pressure or weight of the cable on a patient's tissue is reduced.
  • Signal artifacts in pulse oximetry may be caused by patient movement, including movement of the optically probed tissue within the sensor.
  • a typical conformable sensor may be sufficiently flexible to wrap around a patient's tissue, such a flexible yet inelastic sensor will nonetheless provide resistance to the tissue as it moves within the sensor.
  • an inelastic sensor's surfaces such as the sensor body, the sensing elements, and the cable
  • the pressure of the sensor against the tissue may result in temporary changes to the tissue.
  • Such changes in response to pressure include blanching of the skin, coloring of the skin due to blood pooling, creasing of the skin in response to bending at joints, and spreading or compression of the tissue.
  • coloring of the skin may result in increased absorption of light by the tissue that is not related to a physiological constituent.
  • blanching of the skin may lead to shunting of light through exsanguinated or partially exsanguinated tissue.
  • an inelastic sensor may not expand or contract in response to patient movement, such a sensor may yet be vulnerable to mechanical deformation that may change the geometry of the sensing elements relative to one another.
  • bandage-type inelastic sensors are generally relatively flexible, though inelastic, such sensors may twist or come away from the skin, which may alter the geometry of the sensing elements. Because medical sensors are often used in settings where it is difficult to prevent patient motion, it is desirable to provide a mechanism for reducing the effects of patient and/or sensor motion on the sensor signals.
  • Fig. IA illustrates a cross-sectional view of an exemplary bandage-type sensor 1OA appropriate for use on a patient's finger 12.
  • the sensor 1OA has an elastic sensor body 14.
  • the elastic sensor body 14 may accommodate movement of the finger 12 with the sensor 1OA.
  • An inelastic portion 15 disposed on the sensor body in a region between the emitter 16 and the detector 18 may serve to reduce or eliminate changes in the optical distance due to stretching of the elastic sensor body 14.
  • the inelastic portion 15 does not stretch in response to the patient movement, and thus the accommodation of the patient movement by the elastic sensor body 14 may have a reduced effect or no effect on the position of the emitter 16 and the detector 18 relative to one another, as discussed in more detail below.
  • the finger 12 is flexed, causing the elastic sensor body 14 to stretch and expand, indicated by arrows 20, in an area corresponding to the nail side of the finger joint.
  • the elastic sensor body may contract, as indicated by arrows 24.
  • the elastic sensor body 14 may also stretch to accommodate spreading of the tissue in the fingertip region of the finger during flexing, indicated by arrows 26.
  • the tissue in the fingertip region may spread or expand when the finger 12 is pressed against a rigid object.
  • Fig. 1C is a top view of the sensor 1OA showing the inelastic portion 15 in the region of the sensor body 14 between the emitter 16 and the detector 18.
  • the sensor 1OA may be a reflectance-type sensor, as shown in Fig. ID.
  • the emitter 16 and the detector 18 are positioned side- by-side.
  • Such a sensor may provide certain advantages.
  • the emitter 16 and the detector 18 may be manufactured as a single, smaller part as compared to a transmission-type sensor.
  • the term elastic as used herein may describe any material that, upon application of a biasing force, is able to be stretched at least about 100% (i.e., to a stretched, biased length that is at least about 100% of its relaxed unbiased length).
  • elastic materials may be elongated by much more than 400% and may, for example, be elongated at least 500%, 600% or more. Further, upon release of the biasing force, the elastic material is able to substantially recover its unbiased length. In certain embodiments, upon release of the biasing force, the elastic material returns to a length that is 120% or less of its original unbiased length. For example, a hypothetical elastic material that is one inch in length is able to be stretched to at least 2.00 inches, and when the stretch is released, the material return to a length that is less than 1.20 inches.
  • Exemplary elastic materials may include spandex or spandex blends. Another appropriate elastomer is Rx715P, available from Scapa (Windsor, CT).
  • the elastic material may be a woven or knit material.
  • the elastic material may be woven or otherwise configured such that the material has a one-way stretch along a single axis. For example, a one-way elastic material may stretch lengthwise down the finger over the joints as the finger is bent.
  • the elastic material may be an elastomer, such as a polymer-based material. Appropriate materials also include natural rubber, silicone rubber, neoprene, and synthetic polymers.
  • sensors that include elastic materials may provide a compressive force to the tissue to which they are applied.
  • the compressive force provided by a sensor according to the present techniques can be varied to provide an appropriate level of pressure to the tissue.
  • a sensor including an elastic material may provide sufficient pressure to the tissue so that the applied pressure exceeds the typical venous pressure of a patient, but does not exceed the diastolic arterial pressure.
  • a sensor that applies a pressure greater than the venous pressure may squeeze excess venous blood from the optically probed tissue, thus enhancing the sensitivity of the sensor to variations in the arterial blood signal. Since the pressure applied by the sensor is designed to be less than the arterial pressure, the application of pressure to the tissue does not interfere with the arterial pulse signal.
  • Typical venous pressure, diastolic arterial pressure and systolic arterial pressure are typically less than 10-35 mraHg, 80 mmHg, and 120 mmHg, respectively, although these pressures may vary because of the location of the vascular bed and the patient's condition.
  • the sensor may be adjusted to overcome an average pressure of 15-30 mmHg.
  • low arterial diastolic blood pressure about 30 mmHg
  • the sensor may remove most of the venous pooling with light to moderate pressure (to overcome about
  • Sensors that include elastic materials as described herein may also include an inelastic portion 15 disposed on the sensor body that may reduce or eliminate changes in optical distance between the sensing elements due to sensor bending or stretching in response to movement.
  • the inelastic portion 15 may include any substantially inelastic material and relatively inflexible material, including substantially inelastic stiffened paper, metal, or polymeric material.
  • a substantially inelastic portion is unable to be elongated 50% or more of its total length.
  • a hypothetical inelastic material one inch in length is not able to be stretched elastically to 1.50 inches or more without causing damage or permanent deformation to the material.
  • the inelastic portion 15 may provide stability to the emitter 16 and detector 18 by mitigating the effects of stretching the elastic sensor body 14 on the optical distance. Reducing or controlling changes in the optical distance may include reducing any change in position or geometry of the sensing elements of a sensor. More specifically, a change in optical distance may involve any change in optical geometry, such as a change in the path length, a change in the relative angle of the sensing elements relative to one another, and/or a change in the angle of the sensing elements relative to the tissue. As sensors do not typically emit nor detect light omnidirectionally, any motions that lead to variations in angle of sensor components may alter the amount of light detected, and may force detected light through different portions of tissue.
  • a sensor's emitter(s) and detector(s) experience a minimum of movement relative to one another and relative to the patient's tissue.
  • a cross-sectional view of an elastic sensor 1OB is illustrated in Fig. 2A in which an inelastic portion of the sensor 1OB includes a stiffening member 28.
  • the stiffening member 28 is disposed on an elastic sensor body 14 in a region between the emitter 16 and detector 18.
  • the stiffening member 28 may be constructed from any suitable material that functions to hold the emitter 16 and the detector 18 at a substantially fixed optical distance when the sensor 1OB is applied to a patient.
  • a suitable stiffening member 28 may be metal, plastic or polymeric material, or cardboard. In certain embodiments, suitable metals include aluminum or brass.
  • the stiffening member 28 may be in the shape of a strip, wire, or mesh that can be easily adapted for use with an elastic sensor body 14.
  • the stiffening member 28 may adapted to be bent, shaped, activated, or applied to a conformable elastic sensor body 14 in order to hold an emitter 16 and a detector 18 at a substantially fixed optical distance.
  • the stiffening member 28 may be sized to form a strip that is generally in the area surrounding the emitter 16 and the detector 18.
  • a stiffening member 28 need not be solid, but may also be a fluid or other non-solid material that stabilizes the optical distance between an emitter 16 and a detector 18.
  • a stiffening member 28 may include a bladder that is adapted to hold a fluid.
  • Fig. 2B illustrates an embodiment in which the sensor 1 OB is configured to be in reflectance mode.
  • the emitter 16 and the detector 18 may both be disposed on or within the stiffening member 28, as shown in Fig. 2C.
  • a sensing component assembly 25 is formed by the emitter 16 and detector 18, which are embedded in the stiffening member 28 and are connected to a cable 31 by wires 29.
  • the sensing component assembly 25 may be disposed on the elastic sensor body 14, adhesively or otherwise. In an alternate embodiment (not shown), the sensing component assembly 25 may be applied to a patient's tissue with elastic tape or bandages.
  • a sensor may include elastic materials only in specific portions of the sensor. For example, it may be desirable to design a finger sensor with elastic portions that correspond to areas of a finger that are likely to move, such as joints.
  • Fig. 3A illustrates a bandage-type sensor 1OC applied to a patient's finger 30.
  • the sensor 1OC includes an elastic portion 32 disposed on an inelastic sensor body 34.
  • the elastic portion 32 corresponds to the top of a finger joint 31.
  • the elastic portion 32 stretches to accommodate the movement.
  • the optical distance, indicated by dashed line "D" between the emitter 16 and the detector 18 remains substantially fixed.
  • the ratio of elastic portions and inelastic portions of a sensor body may be varied according to the activity level of the patient wearing the sensor. For example, for a very active patient, it may be advantageous to apply a sensor having more elastic portions, such as a ratio of elastic portions to inelastic portions of greater than one. In certain embodiments, it is contemplated that total elastic surface area of a sensor body may be at least about 5%, and typically in a range from about 10% to about 95%. In certain embodiments, a sensor may include elastic electrical components, including sensor cable components or wires.
  • Fig. 4 illustrates a side view of a sensor 1OD with an elastic cable 37 disposed on the sensor body 35.
  • the elastic elastic components such as the elastic cable 37, may include transducers and/or electronic circuits integrated onto an elastic polymer that include elastic metal that remain electrically conducting even under large and repeated stretching and relaxation.
  • Suitable elastic polymeric materials include silicone rubber, such as polydimethyl siloxane (PDMS) and acrylic rubber.
  • Electrically conductive materials useful for elastic conductive films include metallic conducting materials such as copper, silver, gold, aluminum and the like.
  • electrically conductive materials include organic conducting materials such as polyaniline.
  • Suitable electrically conductive materials include a semiconductor, either inorganic like silicon or indium tin oxide, or organic- like pentacene or polythiophene.
  • the electrically conductive materials can be alloys instead of stoichiometric elements or compounds.
  • the elastic conductive film can be formed on elastic polymeric substrate by electron beam evaporation, thermal evaporation, sputter deposition, chemical vapor deposition (CVD), electroplating, molecular beam epitaxy (MBE) or any other conventional means.
  • Sensors are also disclosed herein in which a sensor cable is routed away from areas of the sensor body that may be subject to tissue pressure or movement.
  • a sensor cable is embedded in the sensor body and runs through the sensor body along an imaginary axis connecting the sensor's emitter and detector.
  • the cable wraps around the fingertip region and runs along the top of the digit.
  • tissue discoloration such as reddening or exsanguinations, or deformation in the area where the tissue pushes against the cable.
  • the fingertip region is pushed against the relatively rigid sensor cable, and the tissue may experience discoloration or deformation.
  • tissue color and geometry may lead to signal artifacts, it is desirable to alter the arrangement of the sensor cable in relation to the sensor body to mitigate such signal interference.
  • Fig. 5A illustrates a side view reflectance-type sensor 1OE applied to a patient's finger 46.
  • Fig. 5B is a top view of the sensor 1OE.
  • the emitter 40 and the detector 42 are operatively connected to a sensor cable 44.
  • the sensor cable 44 rather than wrapping around the tip of the finger 46, follows a nonlinear, i.e. non-axial, route within the sensor body 48.
  • the cable 44 is partially embedded in the sensor body 48, and may emerge from the sensor body 48 at a site 50 that is not on the outer perimeter 52. Alternatively, the site 50 may be along the outer perimeter 52.
  • the cable guide 54 may be any suitable securing mechanism, include a loop, slot, snap, adhesive, or hook and loop fastener. Further, the cable guide 54 may be elastic in certain embodiments, allowing it to stretch tightly over the cable 44 to provide a secure hold.
  • the cable 44 may be routed along the sensor body 48 in any configuration associated with a mitigation of signal artifacts.
  • the cable 44 may be routed along the sensor body 48, e.g. embedded within or disposed on a surface of the sensor body 48, to avoid the region 56 of the sensor body 48 corresponding with the fingertip region of the finger in order to mitigate signal artifacts associated with scratching or tapping.
  • the cable 44 may routed along the sensor body 48 to avoid the most dynamic regions of the finger 46, such as the top and bottom of the joint.
  • the cable 44 may be routed in an area corresponding to side regions 58 and 60 of the finger 46, as shown in Fig. 5C. It should be understood that in another embodiment, the cable may be routed along the sensor body in an area corresponding to side regions 58 A and 6OA, corresponding to an alternative side of the finger.
  • a transmission-type sensor in which a sensor's emitter 62 and detector 64 lie on opposing side of the tissue.
  • Fig 6A illustrates a sensor 1OF of this type applied to a patient's finger 61.
  • Wire leads 68 from an emitter 62 and a detector 64 converge at a sensor cable 66.
  • Fig. 6B illustrates a perspective view of the sensor 1OF.
  • the wire leads 68 and sensor cable 66 are arranged along the sensor body 70 such that the sensor cable 66 is not disposed within a region 72 of the sensor body 70 corresponding with the fingertip region of the finger 61 in order to mitigate signal artifacts associated with scratching or tapping.
  • the cable 66 may be wrapped around the finger 61 and secured with a cable guide 74.
  • the wire leads 68 which are relatively thin, may be arranged to run along the fingertip region 72 and then along the sensor body 70 to join the sensor cable 66, which is not disposed in the fingertip region 72.
  • a sensor cable may be secured by a healthcare worker with tape or bandages on an appropriate location of a sensor body.
  • FIG. 7A illustrates a sensor 1OG which includes alignment indices 76 for a sensor cable 77 on a non-tissue contacting surface 78 of the sensor body 80.
  • Fig. 7B shows the sensor 1OG applied to a patient's finger 82.
  • the sensor cable 77 may be arranged along the non-tissue contacting surface 78 of the sensor body 80 by a healthcare worker.
  • the alignment indices 76 provide an indication where the sensor cable 77 should lie against the sensor body 80 prior to being secured by bandages 81 , as shown, or by tape or other securing mechanisms.
  • the healthcare worker may wish to wrap the sensor cable 77 along the sensor body 80 in such a manner as to minimize the pressure of the sensor cable 77 against the patient's finger 82.
  • the sensor cable 77 may be loosely wrapped such the sensor cable 77 is not flush against the sensor body 80.
  • Fig. 8 illustrates a sensor 10J with an alternate sensor cable configuration.
  • the sensor cable 114 is electrically connected to the emitter 110 and detector 112 by wire leads 1 13.
  • the wire leads 1 13 join the sensor cable 1 14 within the sensor body 108, and the sensor cable 114 emerges from the sensor body 108 at an angle that is not in line with the plane of the sensor body 108 when the sensor body 108 is laid flat.
  • the sensor body 108 generally assumes a more complex, nonplanar geometry after application to a patient's tissue, the result of this configuration is that the sensor cable 114 is directed away from the tissue.
  • the sensor cable 1 14 may be less likely to interfere with patient motion or to compress the tissue.
  • Such a configuration may be applied to the patient's tissue in any configuration.
  • the senor 10J may be applied such that the sensor cable 114 emerges from the sensor body 108 along the sides of the patient's finger.
  • the sensor cable 114 emerges and is at an angle such that the sensor cable 114 is not flush against the tissue.
  • Fig. 9 illustrates an exemplary sensor 101 that includes a flexible circuit 82 electrically connecting the emitter 84 and the detector 86 to a sensor cable 88.
  • the flexible circuit 82 includes conductive elements printed on a flexible, non-conductive substrate, such as polyimide or polyester, in order to provide electrical communication to and from the emitter 84 and the detector 86.
  • the flexible circuit 82 may be embedded in the sensor body 90 in a region between the emitter 84 and the detector 86. As shown in Fig. 8, the flexible circuit 82 bends easily around the finger 83.
  • the flexible circuit 82 may include at least one connection point that is suitable for electrically coupling the flexible circuit 82 to the sensor cable 88.
  • a sensor illustrated generically as a sensor 10, may be used in conjunction with a pulse oximetry monitor 92, as illustrated in Fig. 10.
  • the cable 94 of the sensor 10 may be coupled to the monitor 92 or it may be coupled to a transmission device (not shown) to facilitate wireless transmission between the sensor 10 and the monitor 92.
  • the monitor 92 may be any suitable pulse oximeter, such as those available from Nellcor Puritan Bennett Inc.
  • the monitor 92 may be coupled to a multi-parameter patient monitor 96 via a cable 98 connected to a sensor input port or via a cable 100 connected to a digital communication port.
  • the sensor 10 includes an emitter 102 and a detector 104 that may be of any suitable type.
  • the emitter 102 may be one or more light emitting diodes adapted to transmit one or more wavelengths of light in the red to infrared range
  • the detector 104 may one or more photodetectors selected to receive light in the range or ranges emitted from the emitter 102.
  • an emitter may also be a laser diode or a vertical cavity surface emitting laser (VCSEL).
  • An emitter and detector may also include optical fiber sensing elements.
  • An emitter may include a broadband or
  • the detector could include any of a variety of elements for selecting specific wavelengths, such as reflective or refractive elements or interferometers. These kinds of emitters and/or detectors would typically be coupled to the rigid or rigidified sensor via fiber optics. Alternatively, a sensor may sense light detected from the tissue is at a different wavelength from the light emitted into the tissue. Such sensors may be adapted to sense fluorescence, phosphorescence, Raman scattering, Rayleigh scattering and multi-photon events or photoacoustic effects. For pulse oximetry applications using either transmission or reflectance type sensors the oxygen saturation of the patient's arterial blood may be determined using two or more wavelengths of light, most commonly red and near infrared wavelengths.
  • a tissue water fraction (or other body fluid related metric) or a concentration of one or more biochemical components in an aqueous environment may be measured using two or more wavelengths of light, most commonly near infrared wavelengths between about 1,000 nm to about 2,500 nm.
  • the term "light” may refer to one or more of ultrasound, radio, microwave, millimeter wave, infrared, visible, ultraviolet, gamma ray or X-ray electromagnetic radiation, and may also include any wavelength within the radio, microwave, infrared, visible, ultraviolet, or X-ray spectra.
  • the emitter 102 and the detector 104 may be disposed on a sensor body 106, which may be made of any suitable material, such as plastic, foam, woven material, or paper, and may include elastic portions.
  • a sensor body 106 which may be made of any suitable material, such as plastic, foam, woven material, or paper, and may include elastic portions.
  • the emitter 102 and the detector 104 may be disposed on a sensor body 106, which may be made of any suitable material, such as plastic, foam, woven material, or paper, and may include elastic portions.
  • the senor 104 may be remotely located and optically coupled to the sensor 10 using optical fibers.
  • the sensor 10 is coupled to a cable 94 that is responsible for transmitting electrical and/or optical signals to and from the emitter 102 and detector 104 of the sensor 10.
  • the cable 94 may be permanently coupled to the sensor 10, or it may be removably coupled to the sensor 10 — the latter alternative being more useful and cost efficient in situations where the sensor 10 is disposable.
  • the sensor 10 may be a "transmission type" sensor.
  • Transmission type sensors include an emitter 102 and detector 104 that are typically placed on opposing sides of the sensor site. If the sensor site is a fingertip, for example, the sensor 10 is positioned over the patient's fingertip such that the emitter 102 and detector 104 lie on either side of the patient's nail bed. In other words, the sensor 10 is positioned so that the emitter 102 is located on the patient's fingernail and the detector 104 is located 180° opposite the emitter 102 on the patient's finger pad. During operation, the emitter 102 shines one or more wavelengths of light through the patient's fingertip and the light received by the detector 104 is processed to determine various physiological characteristics of the patient.
  • the locations of the emitter 102 and the detector 104 may be exchanged.
  • the detector 104 may be located at the top of the finger and the emitter 102 may be located underneath the finger. In either arrangement, the sensor 10 will perform in substantially the same manner.
  • Reflectance type sensors also operate by emitting light into the tissue and detecting the light that is transmitted and scattered by the tissue.
  • reflectance type sensors include an emitter 102 and detector 104 that are typically placed on the same side of the sensor site.
  • a reflectance type sensor may be placed on a patient's finger or forehead such that the emitter 102 and detector 104 lie side-by-side.
  • Reflectance type sensors detect light photons that are scattered back to the detector 152.
  • a sensor 10 may also be a "transflectance" sensor, such as a sensor that may subtend a portion of a patient's heel.

Abstract

A sensor may be adapted to reduce motion artifacts by mitigating the effects of the tissue moving within the sensor. A sensor is provided with an elastic sensor body adapted to accommodate patient motion. Further, a sensor is provided in which the sensor cable is arranged to mitigate its pressure on a patient's tissue.

Description

MEDICAL SENSOR FOR REDUCING SIGNAL ARTIFACTS AND TECHNIQUE FOR USING THE SAME
1. Technical Field
The present invention relates generally to medical devices and, more particularly, to sensors used for sensing physiological parameters of a patient.
2. Background Art
This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
In the field of medicine, doctors often desire to monitor certain physiological characteristics of their patients. Accordingly, a wide variety of devices have been developed for monitoring many such characteristics of a patient. Such devices provide doctors and other healthcare personnel with the information they need to provide the best possible healthcare for their patients. As a result, such monitoring devices have become an indispensable part of modem medicine.
One technique for monitoring certain physiological characteristics of a patient is commonly referred to as pulse oximetry, and the devices built based upon pulse oximetry techniques are commonly referred to as pulse oximeters. Pulse oximetry may be used to measure various blood flow characteristics, such as the blood-oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and/or the rate of blood pulsations corresponding to each heartbeat of a patient. In fact, the "pulse" in pulse oximetry refers to the time-varying amount of arterial blood in the tissue during each cardiac cycle.
Pulse oximeters typically utilize a non-invasive sensor that transmits electromagnetic radiation, such as light, through a patient's tissue and that photoelectrically detects the absorption and scattering of the transmitted light in such tissue. One or more of the above physiological characteristics may then be calculated based upon the amount of light absorbed and scattered. More specifically, the light passed through the tissue is typically selected to be of one or more wavelengths that may be absorbed and scattered by the blood in an amount correlative to the amount of the blood constituent present in the tissue. The measured amount of light absorbed and scattered may then be used to estimate the amount of blood constituent in the tissue using various algorithms.
Pulse oximetry readings measure the pulsatile, dynamic changes in amount and type of blood constituents in tissue. Other events besides the pulsing of arterial blood may lead to modulation of the light path, direction, and the amount of light detected by the sensor, creating error in these measurements. Pulse oximetry measurements may be affected by various noise sources, and various types of events may cause artifacts that may obscure the blood constituent signal. For example, signal artifacts may be caused by moving a sensor in relation to the tissue, by increasing or decreasing the physical distance between emitters and detectors in a sensor, by changing the direction of emitters or detectors with respect to tissue or each other, by changing the angles of incidence and interfaces probed by the light, by directing the optical path through different amounts or types of tissue, or by expanding, compressing or otherwise altering tissue near a sensor. In the emergency room, critical care, intensive care, and trauma center settings, where pulse oximetry is commonly used for patient monitoring, the wide variety of sources of motion artifacts includes moving of a patient or the sensor by healthcare workers, physical motion of an unanaesthetised or ambulatory patient, shivering, seizures, agitation, response to pain and loss of neural control. These motions oftentimes have similar frequency content to the pulse, and may lead to similar or even larger optical modulations than the pulse.
Two categories of pulse oximetry sensors in common use may be classified by their pattern of use: the disposable and the reusable sensor. Disposable sensors are typically flexible bandage-type structures that may be attached to the patient with adhesive materials, providing a contact between the patient's skin and the sensor components. Disposable sensors have multiple advantages, including ease of conformation to the patient. However, the flexible nature of disposable sensors renders them susceptible to signal artifacts caused by mechanical deformation of the sensor, which changes the amount of light detected. Reusable sensors, often semi-rigid or rigid clip-type devices, are also vulnerable to signal artifacts. Both categories of sensors may have modulations of detected light induced by the physical motion of the sensor components with respect to each other and the tissue.
Signal artifacts may sometimes be addressed by signal processing and filtering to mitigate the effects of motion after the motion has occurred. However, signal processing algorithms to filter out motion artifacts after they have occurred may not filter out all type of artifacts. For example, certain types of regular movements, such as tapping, may not be interpreted by a signal artifact filter as noise. Thus, it would be desirable to provide a sensor that prevents, reduces the occurrence of, or mitigates movements that may lead to motion artifacts. Such a sensor may incorporate elements which enhance patient comfort without reducing the sensor's resistance to movement or outside forces.
DISCLOSURE OF INVENTION
Certain aspects commensurate in scope with the originally claimed invention are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms that the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.
There is provided a sensor that includes: a sensor body comprising an elastic material; and an emitter and a detector disposed on the sensor body, wherein sensor body is substantially inelastic in at least part of a region of the sensor body connecting the emitter and the detector.
There is also provided a pulse oximetry system that includes: a pulse oximetry monitor; and a pulse oximetry sensor adapted to be operatively coupled to the monitor. The sensor includes a sensor body comprising an elastic material; and an emitter and a detector disposed on the sensor body, wherein sensor body is substantially inelastic in at least part of a region of the sensor body connecting the emitter and the detector.
There is also provided a method that includes: applying a sensor body comprising an emitter and a detector to a patient's tissue; and stretching an elastic portion of a sensor body in response to a movement of the tissue, wherein the optical distance between the emitter and the detector remains substantially fixed.
There is also provided a method of manufacturing a sensor that includes: providing a sensor body comprising an elastic material; and providing an emitter and a detector disposed on the sensor body, wherein sensor body is substantially inelastic in at least part of a region of the sensor body connecting the emitter and the detector.
There is also provided a sensor that includes: a sensor body adapted to expand in response to a biasing force; and an emitter and a detector disposed on the sensor body, wherein the sensor body is adapted to fix the optical distance between the emitter and the detector. There is also provided a sensor that includes: a sensor body comprising at least one elastic electronic component; and an emitter and a detector disposed on the sensor body.
There is also provided a system that includes: a monitor; and a sensor adapted to be operatively coupled to the monitor, the sensor including: a sensor body comprising at least one elastic electronic component; and an emitter and a detector disposed on the sensor body.
There is also provided a method of response to movement of a sensor that includes: applying a sensor body comprising an emitter and a detector to a patient's tissue; and stretching an elastic electronic component of a sensor body in response to a movement of the tissue, wherein the optical distance between the emitter and the detector remains substantially fixed.
There is also provided a method of manufacturing a sensor, including: providing a sensor body comprising at least one elastic electronic component; and providing an emitter and a detector disposed on the sensor body.
There is also provided a sensor that includes: a sensor body; an emitter and a detector disposed on the sensor body; and an electronic component operatively connected to the emitter or the detector adapted to expand in response to a biasing force. There is also provided a sensor that includes: a sensor body comprising an exterior surface and a tissue-contacting surface; at least one sensing element disposed on the sensor body; a cable adapted to be electrically coupled to the sensing element; and a cable guide disposed on exterior surface of the sensor body, wherein the cable guide is adapted to hold the cable in a predetermined position on the sensor body.
There is also provided a pulse oximetry system that includes: a pulse oximetry monitor; and a pulse oximetry sensor adapted to be operatively coupled to the monitor. The sensor includes: a sensor body comprising an exterior surface and a tissue- contacting surface; at least one sensing element disposed on the sensor body; a cable adapted to be electrically coupled to the sensing element; and a cable guide disposed on exterior surface of the sensor body, wherein the cable guide is adapted to hold the cable in a predetermined position on the sensor body.
There is also provided a method that includes: applying a sensor body comprising a sensing component to a patient's tissue; and securing a sensor cable that is operatively connected to the sensing component in a predetermined position on a sensor body with a cable guide.
There is also provided a method of manufacturing a sensor that includes: providing a sensor body comprising an exterior surface and a tissue-contacting surface; providing at least one sensing element disposed on the sensor body; providing a cable adapted to be electrically coupled to the sensing element; and providing a cable guide disposed on the exterior surface of the sensor body, wherein the cable guide is adapted to hold the cable in a predetermined position on the sensor body.
There is also provided a sensor that includes: a sensor body; at least one sensing element disposed on the sensor body; and a cable adapted to be electrically coupled to the sensing element, wherein the cable is disposed along the sensor body in a curvilinear configuration.
There is also provided a system that includes: a monitor; and a sensor adapted to be operatively coupled to the monitor. The sensor includes: a sensor body; at least one sensing element disposed on the sensor body; and a cable adapted to be electrically coupled to the sensing element, wherein the cable is disposed along the sensor body in a curvilinear configuration.
There is also provided a method that includes: electrically coupling a sensing element to a monitor with a cable, wherein sensing element is disposed on the sensor body and wherein the cable is disposed along the sensor body in a curvilinear configuration.
There is also provided a method that includes: providing a sensor body; providing at least one sensing element disposed on the sensor body; and providing a cable adapted to be electrically coupled to the sensing element, wherein the cable is disposed along the sensor body in a curvilinear configuration. There is also provided a sensor that includes: an emitter and a detector disposed on a substantially rigid substrate, wherein the substantially rigid substrate is adapted to hold the emitter and detector at a substantially fixed optical distance relative to one another when the sensor is applied to a patient.
There is also provided a system that includes: a monitor; and a sensor adapted to be operatively coupled to the monitor. The sensor includes: an emitter and a detector disposed on a substantially rigid substrate, wherein the substantially rigid substrate is adapted to hold the emitter and detector at a substantially fixed optical distance relative to one another when the sensor is applied to a patient.
There is also provided a method that includes: fixing the optical distance between an emitter and a detector relative to one another, wherein the emitter and the detector are disposed on a substantially rigid substrate.
There is also provided a method of manufacturing a sensor that includes: providing a substantially rigid substrate on which an emitter and a detector are disposed, wherein the substantially rigid substrate is adapted to hold the emitter and the detector at a substantially fixed optical distance.
BRIEF DESCRIPTION OF DRAWINGS
Advantages of the invention may become apparent upon reading the following detailed description and upon reference to the drawings in which: Fig. IA illustrates a cross-sectional view of an exemplary embodiment of a transmission-type bandage-style sensor with an elastic sensor body;
Fig. 1 B illustrates a top view of the sensor of Fig. IA applied to a patient digit;
Fig. 1C illustrates a perspective view the sensor of Fig. IA;
Fig. ID illustrates a cross-sectional view of an alternative embodiment of a sensor using reflectance-type sensing elements;
Fig. 2 A illustrates a cross-sectional view of an exemplary embodiment of an elastic transmission- type bandage-style sensor applied to a patient's digit, whereby the sensor includes a stiffening member;
Fig. 2B illustrates a cross-sectional view of an exemplary embodiment of an elastic reflectance-type bandage-style sensor applied to a patient's digit, whereby the sensor includes a stiffening member;
Fig. 2C illustrates an embodiment of the sensor of Fig. 2B, whereby the stiffening member and sensing components may be a unitary assembly; Fig. 3 A illustrates a cross-sectional view of an alternate exemplary embodiment of a bandage-style sensor with an inelastic sensor body with elastic portions disposed proximate to the finger joint;
Fig. 3B illustrates a cross-sectional view of the sensor of Fig. 3 A with the finger joint flexed;
Fig. 4 illustrates a side view of an exemplary embodiment of a sensor with an elastic sensor cable;
Fig. 5 A illustrates a side view of an exemplary embodiment of a sensor whereby the sensor cable is disposed along the side of the finger and secured with a cable guide;
Fig. 5B illustrates a top view of the sensor of Fig. 5A;
Fig. 5C illustrates a perspective view of the sensor of Fig. 5 A;
Fig. 6A illustrates a side view of an embodiment of an exemplary sensor applied to a patient's finger with a sensor cable disposed on the sensor body in a configuration that avoids the fingertip region;
Fig. 6B illustrates a perspective view of the sensor of Fig. 6A; Fig. 7A illustrates a perspective view of an embodiment of an exemplary sensor with alignment indices for the sensor cable;
Fig. 7B illustrates a top view of the sensor of Fig. 7A applied to a patient's finger and secured with adhesive bandages such that the sensor cable is aligned with the alignment indices;
Fig. 8 illustrates a cross-sectional view of an embodiment of an exemplary sensor with a sensor cable that extends at an angle away from the sensor body;
Fig. 9 illustrates a side view of an embodiment of an exemplary sensor with a flexible circuit connecting the emitter and detector; and
Fig. 10 illustrates a pulse oximetry system coupled to a multi -parameter patient monitor and a sensor according to embodiments of the present invention.
MODES FOR CARRYING OUT THE INVENTION
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
In accordance with the present technique, sensors for pulse oximetry or other applications utilizing spectrophotometry are provided that reduce signal artifacts by reducing the occurrence of tissue deformation, such as compression or discoloration, associated with the movement of a patient's tissue relative to the sensor or the movement of the sensor elements relative ot one another. For example, sensors are provided herein that include elastic materials that may accommodate patient movement. The sensors that include elastic materials are configured to reduce pressure from the sensor on the tissue during such movement. Sensors are also provided in which a sensor cable is directed or arranged in relation to the sensor body such that the pressure or weight of the cable on a patient's tissue is reduced.
Signal artifacts in pulse oximetry may be caused by patient movement, including movement of the optically probed tissue within the sensor. Although a typical conformable sensor may be sufficiently flexible to wrap around a patient's tissue, such a flexible yet inelastic sensor will nonetheless provide resistance to the tissue as it moves within the sensor. As a patient's tissue presses against an inelastic sensor's surfaces, such as the sensor body, the sensing elements, and the cable, the pressure of the sensor against the tissue may result in temporary changes to the tissue. Such changes in response to pressure include blanching of the skin, coloring of the skin due to blood pooling, creasing of the skin in response to bending at joints, and spreading or compression of the tissue. These variations in tissue geometry and color may result in signal artifacts. For example, coloring of the skin may result in increased absorption of light by the tissue that is not related to a physiological constituent. Alternatively, blanching of the skin may lead to shunting of light through exsanguinated or partially exsanguinated tissue. Additionally, although an inelastic sensor may not expand or contract in response to patient movement, such a sensor may yet be vulnerable to mechanical deformation that may change the geometry of the sensing elements relative to one another. As bandage-type inelastic sensors are generally relatively flexible, though inelastic, such sensors may twist or come away from the skin, which may alter the geometry of the sensing elements. Because medical sensors are often used in settings where it is difficult to prevent patient motion, it is desirable to provide a mechanism for reducing the effects of patient and/or sensor motion on the sensor signals.
Sensors are disclosed herein that include elastic materials and that may reduce the effect of patient motion within a sensor. Fig. IA illustrates a cross-sectional view of an exemplary bandage-type sensor 1OA appropriate for use on a patient's finger 12.
The sensor 1OA has an elastic sensor body 14. The elastic sensor body 14 may accommodate movement of the finger 12 with the sensor 1OA. An inelastic portion 15 disposed on the sensor body in a region between the emitter 16 and the detector 18 may serve to reduce or eliminate changes in the optical distance due to stretching of the elastic sensor body 14. The inelastic portion 15 does not stretch in response to the patient movement, and thus the accommodation of the patient movement by the elastic sensor body 14 may have a reduced effect or no effect on the position of the emitter 16 and the detector 18 relative to one another, as discussed in more detail below. As depicted, the finger 12 is flexed, causing the elastic sensor body 14 to stretch and expand, indicated by arrows 20, in an area corresponding to the nail side of the finger joint. In the area corresponding to the palm side of the finger joint 22, the elastic sensor body may contract, as indicated by arrows 24. As shown in Fig. IB, a top view of the sensor 1OA, the elastic sensor body 14 may also stretch to accommodate spreading of the tissue in the fingertip region of the finger during flexing, indicated by arrows 26. Alternatively, in other embodiments (not shown) the tissue in the fingertip region may spread or expand when the finger 12 is pressed against a rigid object. Hence, as the finger 12 moves, the elastic sensor body 14 is able to conform to the tissue as it changes shape while the inelastic portion 15 provides stability to the emitter 16 and the detector
18. Fig. 1C is a top view of the sensor 1OA showing the inelastic portion 15 in the region of the sensor body 14 between the emitter 16 and the detector 18. In an alternative embodiment, the sensor 1OA may be a reflectance-type sensor, as shown in Fig. ID. In such an embodiment, the emitter 16 and the detector 18 are positioned side- by-side. Such a sensor may provide certain advantages. For example, the emitter 16 and the detector 18 may be manufactured as a single, smaller part as compared to a transmission-type sensor. The term elastic as used herein may describe any material that, upon application of a biasing force, is able to be stretched at least about 100% (i.e., to a stretched, biased length that is at least about 100% of its relaxed unbiased length). Many elastic materials may be elongated by much more than 400% and may, for example, be elongated at least 500%, 600% or more. Further, upon release of the biasing force, the elastic material is able to substantially recover its unbiased length. In certain embodiments, upon release of the biasing force, the elastic material returns to a length that is 120% or less of its original unbiased length. For example, a hypothetical elastic material that is one inch in length is able to be stretched to at least 2.00 inches, and when the stretch is released, the material return to a length that is less than 1.20 inches.
Exemplary elastic materials may include spandex or spandex blends. Another appropriate elastomer is Rx715P, available from Scapa (Windsor, CT). In certain embodiments, it is contemplated that the elastic material may be a woven or knit material. In one embodiment, the elastic material may be woven or otherwise configured such that the material has a one-way stretch along a single axis. For example, a one-way elastic material may stretch lengthwise down the finger over the joints as the finger is bent. In other embodiments, the elastic material may be an elastomer, such as a polymer-based material. Appropriate materials also include natural rubber, silicone rubber, neoprene, and synthetic polymers.
In certain embodiments, sensors that include elastic materials may provide a compressive force to the tissue to which they are applied. The compressive force provided by a sensor according to the present techniques can be varied to provide an appropriate level of pressure to the tissue. In certain embodiments, a sensor including an elastic material may provide sufficient pressure to the tissue so that the applied pressure exceeds the typical venous pressure of a patient, but does not exceed the diastolic arterial pressure. A sensor that applies a pressure greater than the venous pressure may squeeze excess venous blood from the optically probed tissue, thus enhancing the sensitivity of the sensor to variations in the arterial blood signal. Since the pressure applied by the sensor is designed to be less than the arterial pressure, the application of pressure to the tissue does not interfere with the arterial pulse signal. Typical venous pressure, diastolic arterial pressure and systolic arterial pressure are typically less than 10-35 mraHg, 80 mmHg, and 120 mmHg, respectively, although these pressures may vary because of the location of the vascular bed and the patient's condition. In certain embodiments, the sensor may be adjusted to overcome an average pressure of 15-30 mmHg. In other embodiments, low arterial diastolic blood pressure (about 30 mmHg) may occur in sick patients. In such embodiments, the sensor may remove most of the venous pooling with light to moderate pressure (to overcome about
15 mmHg).
Sensors that include elastic materials as described herein may also include an inelastic portion 15 disposed on the sensor body that may reduce or eliminate changes in optical distance between the sensing elements due to sensor bending or stretching in response to movement. The inelastic portion 15 may include any substantially inelastic material and relatively inflexible material, including substantially inelastic stiffened paper, metal, or polymeric material. Generally, a substantially inelastic portion is unable to be elongated 50% or more of its total length. Thus, a hypothetical inelastic material one inch in length is not able to be stretched elastically to 1.50 inches or more without causing damage or permanent deformation to the material.
The inelastic portion 15 may provide stability to the emitter 16 and detector 18 by mitigating the effects of stretching the elastic sensor body 14 on the optical distance. Reducing or controlling changes in the optical distance may include reducing any change in position or geometry of the sensing elements of a sensor. More specifically, a change in optical distance may involve any change in optical geometry, such as a change in the path length, a change in the relative angle of the sensing elements relative to one another, and/or a change in the angle of the sensing elements relative to the tissue. As sensors do not typically emit nor detect light omnidirectionally, any motions that lead to variations in angle of sensor components may alter the amount of light detected, and may force detected light through different portions of tissue. In any case, variability in the optical path length can cause signal artifacts and obscure the desired pulse oximetry signal. Thus, it is desirable that a sensor's emitter(s) and detector(s) experience a minimum of movement relative to one another and relative to the patient's tissue.
In an alternate embodiment, a cross-sectional view of an elastic sensor 1OB is illustrated in Fig. 2A in which an inelastic portion of the sensor 1OB includes a stiffening member 28. The stiffening member 28 is disposed on an elastic sensor body 14 in a region between the emitter 16 and detector 18. The stiffening member 28 may be constructed from any suitable material that functions to hold the emitter 16 and the detector 18 at a substantially fixed optical distance when the sensor 1OB is applied to a patient. For example, a suitable stiffening member 28 may be metal, plastic or polymeric material, or cardboard. In certain embodiments, suitable metals include aluminum or brass. The stiffening member 28 may be in the shape of a strip, wire, or mesh that can be easily adapted for use with an elastic sensor body 14. The stiffening member 28 may adapted to be bent, shaped, activated, or applied to a conformable elastic sensor body 14 in order to hold an emitter 16 and a detector 18 at a substantially fixed optical distance. The stiffening member 28 may be sized to form a strip that is generally in the area surrounding the emitter 16 and the detector 18. A stiffening member 28 need not be solid, but may also be a fluid or other non-solid material that stabilizes the optical distance between an emitter 16 and a detector 18. For example, a stiffening member 28 may include a bladder that is adapted to hold a fluid. In certain embodiments, it may be desirable employ a gas or gas mixture as part of the stiffening member 28 for reasons related to cost, manufacturing convenience, and total sensor weight.
Fig. 2B illustrates an embodiment in which the sensor 1 OB is configured to be in reflectance mode. In certain embodiments, the emitter 16 and the detector 18 may both be disposed on or within the stiffening member 28, as shown in Fig. 2C. In Fig. 2C, a sensing component assembly 25 is formed by the emitter 16 and detector 18, which are embedded in the stiffening member 28 and are connected to a cable 31 by wires 29. The sensing component assembly 25 may be disposed on the elastic sensor body 14, adhesively or otherwise. In an alternate embodiment (not shown), the sensing component assembly 25 may be applied to a patient's tissue with elastic tape or bandages.
In certain embodiments, a sensor may include elastic materials only in specific portions of the sensor. For example, it may be desirable to design a finger sensor with elastic portions that correspond to areas of a finger that are likely to move, such as joints. Fig. 3A illustrates a bandage-type sensor 1OC applied to a patient's finger 30. The sensor 1OC includes an elastic portion 32 disposed on an inelastic sensor body 34. The elastic portion 32 corresponds to the top of a finger joint 31. As depicted in Fig. 3B by arrows 33, when the finger 30 bends at the joint 31, the elastic portion 32 stretches to accommodate the movement. However, the optical distance, indicated by dashed line "D", between the emitter 16 and the detector 18 remains substantially fixed.
It should be understood the ratio of elastic portions and inelastic portions of a sensor body may be varied according to the activity level of the patient wearing the sensor. For example, for a very active patient, it may be advantageous to apply a sensor having more elastic portions, such as a ratio of elastic portions to inelastic portions of greater than one. In certain embodiments, it is contemplated that total elastic surface area of a sensor body may be at least about 5%, and typically in a range from about 10% to about 95%. In certain embodiments, a sensor may include elastic electrical components, including sensor cable components or wires. Fig. 4 illustrates a side view of a sensor 1OD with an elastic cable 37 disposed on the sensor body 35. As the finger flexes, the elastic cable 37 is able to accommodate the flexing motion. The elastic elastic components, such as the elastic cable 37, may include transducers and/or electronic circuits integrated onto an elastic polymer that include elastic metal that remain electrically conducting even under large and repeated stretching and relaxation. Suitable elastic polymeric materials include silicone rubber, such as polydimethyl siloxane (PDMS) and acrylic rubber. Electrically conductive materials useful for elastic conductive films include metallic conducting materials such as copper, silver, gold, aluminum and the like. Alternatively, electrically conductive materials include organic conducting materials such as polyaniline. Suitable electrically conductive materials include a semiconductor, either inorganic like silicon or indium tin oxide, or organic- like pentacene or polythiophene. Alternatively, the electrically conductive materials can be alloys instead of stoichiometric elements or compounds. The elastic conductive film can be formed on elastic polymeric substrate by electron beam evaporation, thermal evaporation, sputter deposition, chemical vapor deposition (CVD), electroplating, molecular beam epitaxy (MBE) or any other conventional means.
Sensors are also disclosed herein in which a sensor cable is routed away from areas of the sensor body that may be subject to tissue pressure or movement. Typically, a sensor cable is embedded in the sensor body and runs through the sensor body along an imaginary axis connecting the sensor's emitter and detector. When such a sensor is applied to a patient's finger, the cable wraps around the fingertip region and runs along the top of the digit. As the finger flexes, the relatively rigid and inelastic cable resists the flexing motion, which may result in tissue discoloration, such as reddening or exsanguinations, or deformation in the area where the tissue pushes against the cable.
Similarly, when the finger taps against a rigid object, the fingertip region is pushed against the relatively rigid sensor cable, and the tissue may experience discoloration or deformation. As changes in tissue color and geometry may lead to signal artifacts, it is desirable to alter the arrangement of the sensor cable in relation to the sensor body to mitigate such signal interference.
Sensors are provided herein that include cables with non-axial or curvilinear paths in relation to the sensor body. Fig. 5A illustrates a side view reflectance-type sensor 1OE applied to a patient's finger 46. Fig. 5B is a top view of the sensor 1OE. The emitter 40 and the detector 42 are operatively connected to a sensor cable 44. The sensor cable 44, rather than wrapping around the tip of the finger 46, follows a nonlinear, i.e. non-axial, route within the sensor body 48. The cable 44 is partially embedded in the sensor body 48, and may emerge from the sensor body 48 at a site 50 that is not on the outer perimeter 52. Alternatively, the site 50 may be along the outer perimeter 52. When the cable 44 emerges from the sensor body 48, it may be wrapped around the top of the finger 46 and secured with a cable guide 54, as shown in Fig. 5B. The cable guide 54 may be any suitable securing mechanism, include a loop, slot, snap, adhesive, or hook and loop fastener. Further, the cable guide 54 may be elastic in certain embodiments, allowing it to stretch tightly over the cable 44 to provide a secure hold.
Generally, the cable 44 may be routed along the sensor body 48 in any configuration associated with a mitigation of signal artifacts. For example, the cable 44 may be routed along the sensor body 48, e.g. embedded within or disposed on a surface of the sensor body 48, to avoid the region 56 of the sensor body 48 corresponding with the fingertip region of the finger in order to mitigate signal artifacts associated with scratching or tapping. In order to mitigate motion artifacts associated with bending at a joint, the cable 44 may routed along the sensor body 48 to avoid the most dynamic regions of the finger 46, such as the top and bottom of the joint. In such an embodiment, the cable 44 may be routed in an area corresponding to side regions 58 and 60 of the finger 46, as shown in Fig. 5C. It should be understood that in another embodiment, the cable may be routed along the sensor body in an area corresponding to side regions 58 A and 6OA, corresponding to an alternative side of the finger.
Such an arrangement of the sensor cable may also be advantageous in a transmission-type sensor, in which a sensor's emitter 62 and detector 64 lie on opposing side of the tissue. Fig 6A illustrates a sensor 1OF of this type applied to a patient's finger 61. Wire leads 68 from an emitter 62 and a detector 64 converge at a sensor cable 66. Fig. 6B illustrates a perspective view of the sensor 1OF. The wire leads 68 and sensor cable 66 are arranged along the sensor body 70 such that the sensor cable 66 is not disposed within a region 72 of the sensor body 70 corresponding with the fingertip region of the finger 61 in order to mitigate signal artifacts associated with scratching or tapping. The cable 66 may be wrapped around the finger 61 and secured with a cable guide 74. In an alternate embodiment (not shown), the wire leads 68, which are relatively thin, may be arranged to run along the fingertip region 72 and then along the sensor body 70 to join the sensor cable 66, which is not disposed in the fingertip region 72.
In certain embodiments, it may be advantageous for a sensor cable to be secured by a healthcare worker with tape or bandages on an appropriate location of a sensor body. Fig. 7A illustrates a sensor 1OG which includes alignment indices 76 for a sensor cable 77 on a non-tissue contacting surface 78 of the sensor body 80. Fig. 7B shows the sensor 1OG applied to a patient's finger 82. When the sensor 1OG is applied, the sensor cable 77 may be arranged along the non-tissue contacting surface 78 of the sensor body 80 by a healthcare worker. The alignment indices 76 provide an indication where the sensor cable 77 should lie against the sensor body 80 prior to being secured by bandages 81 , as shown, or by tape or other securing mechanisms. Alternatively, the healthcare worker may wish to wrap the sensor cable 77 along the sensor body 80 in such a manner as to minimize the pressure of the sensor cable 77 against the patient's finger 82. In such an embodiment (not shown), the sensor cable 77 may be loosely wrapped such the sensor cable 77 is not flush against the sensor body 80.
Fig. 8 illustrates a sensor 10J with an alternate sensor cable configuration. The sensor cable 114 is electrically connected to the emitter 110 and detector 112 by wire leads 1 13. The wire leads 1 13 join the sensor cable 1 14 within the sensor body 108, and the sensor cable 114 emerges from the sensor body 108 at an angle that is not in line with the plane of the sensor body 108 when the sensor body 108 is laid flat. Although the sensor body 108 generally assumes a more complex, nonplanar geometry after application to a patient's tissue, the result of this configuration is that the sensor cable 114 is directed away from the tissue. Thus, the sensor cable 1 14 may be less likely to interfere with patient motion or to compress the tissue. Such a configuration may be applied to the patient's tissue in any configuration. For example, the sensor 10J may be applied such that the sensor cable 114 emerges from the sensor body 108 along the sides of the patient's finger. In such an embodiment, the sensor cable 114 emerges and is at an angle such that the sensor cable 114 is not flush against the tissue.
In another embodiment, it may be advantageous to replace all or part of a sensor cable with a lightweight flexible circuit. Fig. 9 illustrates an exemplary sensor 101 that includes a flexible circuit 82 electrically connecting the emitter 84 and the detector 86 to a sensor cable 88. The flexible circuit 82 includes conductive elements printed on a flexible, non-conductive substrate, such as polyimide or polyester, in order to provide electrical communication to and from the emitter 84 and the detector 86. The flexible circuit 82 may be embedded in the sensor body 90 in a region between the emitter 84 and the detector 86. As shown in Fig. 8, the flexible circuit 82 bends easily around the finger 83. As the flexible circuit 82 has few rigid surfaces, the tissue may experience fewer discoloration or deformation events associated with signal artifacts when pressed against the flexible circuit 82 embedded in the sensor body 90. The flexible circuit 82 may include at least one connection point that is suitable for electrically coupling the flexible circuit 82 to the sensor cable 88.
A sensor, illustrated generically as a sensor 10, may be used in conjunction with a pulse oximetry monitor 92, as illustrated in Fig. 10. It should be appreciated that the cable 94 of the sensor 10 may be coupled to the monitor 92 or it may be coupled to a transmission device (not shown) to facilitate wireless transmission between the sensor 10 and the monitor 92. The monitor 92 may be any suitable pulse oximeter, such as those available from Nellcor Puritan Bennett Inc. Furthermore, to upgrade conventional pulse oximetry provided by the monitor 92 to provide additional functions, the monitor 92 may be coupled to a multi-parameter patient monitor 96 via a cable 98 connected to a sensor input port or via a cable 100 connected to a digital communication port.
The sensor 10 includes an emitter 102 and a detector 104 that may be of any suitable type. For example, the emitter 102 may be one or more light emitting diodes adapted to transmit one or more wavelengths of light in the red to infrared range, and the detector 104 may one or more photodetectors selected to receive light in the range or ranges emitted from the emitter 102. Alternatively, an emitter may also be a laser diode or a vertical cavity surface emitting laser (VCSEL). An emitter and detector may also include optical fiber sensing elements. An emitter may include a broadband or
"white light" source, in which case the detector could include any of a variety of elements for selecting specific wavelengths, such as reflective or refractive elements or interferometers. These kinds of emitters and/or detectors would typically be coupled to the rigid or rigidified sensor via fiber optics. Alternatively, a sensor may sense light detected from the tissue is at a different wavelength from the light emitted into the tissue. Such sensors may be adapted to sense fluorescence, phosphorescence, Raman scattering, Rayleigh scattering and multi-photon events or photoacoustic effects. For pulse oximetry applications using either transmission or reflectance type sensors the oxygen saturation of the patient's arterial blood may be determined using two or more wavelengths of light, most commonly red and near infrared wavelengths. Similarly, in other applications, a tissue water fraction (or other body fluid related metric) or a concentration of one or more biochemical components in an aqueous environment may be measured using two or more wavelengths of light, most commonly near infrared wavelengths between about 1,000 nm to about 2,500 nm. It should be understood that, as used herein, the term "light" may refer to one or more of ultrasound, radio, microwave, millimeter wave, infrared, visible, ultraviolet, gamma ray or X-ray electromagnetic radiation, and may also include any wavelength within the radio, microwave, infrared, visible, ultraviolet, or X-ray spectra.
The emitter 102 and the detector 104 may be disposed on a sensor body 106, which may be made of any suitable material, such as plastic, foam, woven material, or paper, and may include elastic portions. Alternatively, the emitter 102 and the detector
104 may be remotely located and optically coupled to the sensor 10 using optical fibers. In the depicted embodiments, the sensor 10 is coupled to a cable 94 that is responsible for transmitting electrical and/or optical signals to and from the emitter 102 and detector 104 of the sensor 10. The cable 94 may be permanently coupled to the sensor 10, or it may be removably coupled to the sensor 10 — the latter alternative being more useful and cost efficient in situations where the sensor 10 is disposable.
The sensor 10 may be a "transmission type" sensor. Transmission type sensors include an emitter 102 and detector 104 that are typically placed on opposing sides of the sensor site. If the sensor site is a fingertip, for example, the sensor 10 is positioned over the patient's fingertip such that the emitter 102 and detector 104 lie on either side of the patient's nail bed. In other words, the sensor 10 is positioned so that the emitter 102 is located on the patient's fingernail and the detector 104 is located 180° opposite the emitter 102 on the patient's finger pad. During operation, the emitter 102 shines one or more wavelengths of light through the patient's fingertip and the light received by the detector 104 is processed to determine various physiological characteristics of the patient. In each of the embodiments discussed herein, it should be understood that the locations of the emitter 102 and the detector 104 may be exchanged. For example, the detector 104 may be located at the top of the finger and the emitter 102 may be located underneath the finger. In either arrangement, the sensor 10 will perform in substantially the same manner.
Reflectance type sensors also operate by emitting light into the tissue and detecting the light that is transmitted and scattered by the tissue. However, reflectance type sensors include an emitter 102 and detector 104 that are typically placed on the same side of the sensor site. For example, a reflectance type sensor may be placed on a patient's finger or forehead such that the emitter 102 and detector 104 lie side-by-side. Reflectance type sensors detect light photons that are scattered back to the detector 152. A sensor 10 may also be a "transflectance" sensor, such as a sensor that may subtend a portion of a patient's heel.
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Indeed, the present techniques may not only be applied to measurements of blood oxygen saturation, but these techniques may also be utilized for the measurement and/or analysis of other blood and/or tissue constituents using principles of pulse oximetry. For example, using the same, different, or additional wavelengths, the present techniques may be utilized for the measurement and/or analysis of carboxyhemoglobin, methemoglobin, total hemoglobin, fractional hemoglobin, intravascular dyes, hematocrit, carbon dioxide, carbon monoxide, protein, lipid and/or water content or compartmentalization. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.

Claims

CLAIMSWhat is claimed is:
1. A sensor comprising: a sensor body comprising an exterior surface and a tissue-contacting surface; at least one sensing element disposed on the sensor body; a cable adapted to be electrically coupled to the sensing element; and a cable guide disposed on exterior surface of the sensor body, wherein the cable guide is adapted to hold the cable in a predetermined position on the sensor body.
2. The sensor, as set forth in claim 1 , wherein the sensing element comprises an emitter and a detector.
3. The sensor, as set forth in claim 1, wherein the cable guide is removable.
4. The sensor, as set forth in claim 1 , wherein the cable guide comprises a loop, a snap, or a slot.
5. The sensor, as set forth in claim 1 , wherein the cable guide comprises an adhesive.
6. The sensor, as set forth in claim 1 , wherein the sensor body comprises at least one alignment index adapted to indicate the predetermined position for the cable on the sensor body.
7. The sensor, as set forth in claim 1 , wherein the sensor comprises a reflectance-type sensor or a transmission-type sensor.
8. The sensor, as set forth in claim 1 , wherein the cable guide is elastic.
9. A system comprising:
a monitor; and a sensor adapted to be operatively coupled to the monitor, the sensor comprising:
a sensor body comprising an exterior surface and a tissue-contacting surface; at least one sensing element disposed on the sensor body; a cable adapted to be electrically coupled to the sensing element; and a cable guide disposed on exterior surface of the sensor body, wherein the cable guide is adapted to hold the cable in a predetermined position on the sensor body.
10. The system, as set forth in claim 9, wherein the sensing element comprises an emitter and a detector.
11. The system, as set forth in claim 9, wherein the cable guide is removable.
12. The system, as set forth in claim 9, wherein the cable guide comprises a loop, a snap, or a slot.
13. The system, as set forth in claim 9, wherein the cable guide comprises an adhesive.
14. The system, as set forth in claim 9, wherein the sensor body comprises at least one alignment index adapted to indicate the predetermined position for the cable on the sensor body.
15. The system, as set forth in claim 9, wherein the sensor comprises a reflectance-type sensor or a transmission-type sensor.
16. The system, as set forth in claim 9, wherein the cable guide is elastic.
17. A sensor comprising: a sensor body; at least one sensing element disposed on the sensor body; and a cable adapted to be electrically coupled to the sensing element, wherein the cable is disposed along the sensor body in a curvilinear configuration.
18. The sensor, as set forth in claim 1 , wherein the sensor comprises at least one of a pulse oximetry sensor or a sensor for measuring a water fraction.
19. The sensor, as set forth in claim 17, wherein the sensor comprises a cable guide adapted to hold the cable in the curvilinear configuration.
20. The sensor, as set forth in claim 17, wherein the cable is embedded in the sensor body in a curvilinear configuration.
21. The sensor, as set forth in claim 17, wherein the cable emerges from the sensor body at a site not on the outer perimeter of the sensor body.
22. The sensor, as set forth in claim 17, wherein the cable emerges from the sensor body at an angle not in line with the plane of the sensor body.
PCT/US2007/020545 2006-09-22 2007-09-21 Medical sensor for reducing signal artifacts and technique for using the same WO2008039392A2 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US11/525,636 2006-09-22
US11/525,693 2006-09-22
US11/525,396 2006-09-22
US11/525,635 US8175671B2 (en) 2006-09-22 2006-09-22 Medical sensor for reducing signal artifacts and technique for using the same
US11/525,396 US8190224B2 (en) 2006-09-22 2006-09-22 Medical sensor for reducing signal artifacts and technique for using the same
US11/525,704 US8195264B2 (en) 2006-09-22 2006-09-22 Medical sensor for reducing signal artifacts and technique for using the same
US11/525,704 2006-09-22
US11/525,635 2006-09-22
US11/525,693 US8396527B2 (en) 2006-09-22 2006-09-22 Medical sensor for reducing signal artifacts and technique for using the same
US11/525,636 US8190225B2 (en) 2006-09-22 2006-09-22 Medical sensor for reducing signal artifacts and technique for using the same

Publications (2)

Publication Number Publication Date
WO2008039392A2 true WO2008039392A2 (en) 2008-04-03
WO2008039392A3 WO2008039392A3 (en) 2008-10-09

Family

ID=39110805

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2007/020545 WO2008039392A2 (en) 2006-09-22 2007-09-21 Medical sensor for reducing signal artifacts and technique for using the same
PCT/US2007/020544 WO2008039391A2 (en) 2006-09-22 2007-09-21 Medical sensor for reducing signal artifacts and technique for using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2007/020544 WO2008039391A2 (en) 2006-09-22 2007-09-21 Medical sensor for reducing signal artifacts and technique for using the same

Country Status (2)

Country Link
US (3) US8195264B2 (en)
WO (2) WO2008039392A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8909313B2 (en) 2008-09-25 2014-12-09 Nemodevices Ag Device for diagnosis and/or therapy of physiological characteristics of a selected portion of a body by optical reflectance or optical transmission

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8431088B2 (en) * 2006-09-25 2013-04-30 Covidien Lp Carbon dioxide detector having borosilicate substrate
US8431087B2 (en) * 2006-09-25 2013-04-30 Covidien Lp Carbon dioxide detector having borosilicate substrate
US8449834B2 (en) * 2006-09-25 2013-05-28 Covidien Lp Carbon dioxide detector having borosilicate substrate
US8420405B2 (en) * 2006-09-25 2013-04-16 Covidien Lp Carbon dioxide detector having borosilicate substrate
US7869849B2 (en) * 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US7574245B2 (en) 2006-09-27 2009-08-11 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US8175665B2 (en) * 2007-03-09 2012-05-08 Nellcor Puritan Bennett Llc Method and apparatus for spectroscopic tissue analyte measurement
US20080221411A1 (en) * 2007-03-09 2008-09-11 Nellcor Puritan Bennett Llc System and method for tissue hydration estimation
US8357090B2 (en) * 2007-03-09 2013-01-22 Covidien Lp Method and apparatus for estimating water reserves
US7713196B2 (en) * 2007-03-09 2010-05-11 Nellcor Puritan Bennett Llc Method for evaluating skin hydration and fluid compartmentalization
US8690864B2 (en) * 2007-03-09 2014-04-08 Covidien Lp System and method for controlling tissue treatment
US9642565B2 (en) * 2007-06-27 2017-05-09 Covidien Lp Deformable physiological sensor
JP4569615B2 (en) * 2007-09-25 2010-10-27 ブラザー工業株式会社 Printing device
US9636057B2 (en) * 2007-11-09 2017-05-02 Covidien Lp Conformable physiological sensor
US20090165801A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Carbon dioxide detector having an acrylic based substrate
US8660799B2 (en) * 2008-06-30 2014-02-25 Nellcor Puritan Bennett Ireland Processing and detecting baseline changes in signals
US20100030040A1 (en) 2008-08-04 2010-02-04 Masimo Laboratories, Inc. Multi-stream data collection system for noninvasive measurement of blood constituents
US8577431B2 (en) 2008-07-03 2013-11-05 Cercacor Laboratories, Inc. Noise shielding for a noninvasive device
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US20100094134A1 (en) * 2008-10-14 2010-04-15 The University Of Connecticut Method and apparatus for medical imaging using near-infrared optical tomography combined with photoacoustic and ultrasound guidance
US8914974B2 (en) * 2008-10-30 2014-12-23 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Method for integrating an electronic component into a printed circuit board
WO2010073913A1 (en) * 2008-12-26 2010-07-01 コニカミノルタセンシング株式会社 Probe for measuring living body information
US8329493B2 (en) 2009-03-20 2012-12-11 University Of Utah Research Foundation Stretchable circuit configuration
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US8798704B2 (en) * 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
AU2011213036B2 (en) * 2010-02-02 2013-11-14 Covidien Lp Continuous light emission photoacoustic spectroscopy
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
EP2613692B1 (en) * 2010-09-07 2015-08-19 CNSystems Medizintechnik AG Disposable and detachable sensor for continuous non-invasive arterial blood pressure monitoring
US8984747B2 (en) * 2011-04-05 2015-03-24 Electronics And Telecommunications Research Institute Method for manufacturing fabric type circuit board
US8700116B2 (en) 2011-09-29 2014-04-15 Covidien Lp Sensor system with pressure application
US10881310B2 (en) 2012-08-25 2021-01-05 The Board Of Trustees Of The Leland Stanford Junior University Motion artifact mitigation methods and devices for pulse photoplethysmography
US10265019B2 (en) 2013-03-29 2019-04-23 Oxystrap Int'l, Inc. Electronic headwear
US20150126831A1 (en) * 2013-11-04 2015-05-07 Covidien Lp Medical sensor with ambient light shielding
US9515417B2 (en) 2014-01-14 2016-12-06 Covidien Lp Sensor interconnect for medical monitoring devices
USD763939S1 (en) 2014-04-02 2016-08-16 Cephalogics, LLC Optical sensor array liner with optical sensor array pad
USD763938S1 (en) 2014-04-02 2016-08-16 Cephalogics, LLC Optical sensor array
USD735141S1 (en) 2014-04-24 2015-07-28 Covidien Lp Sensor connector
USD736711S1 (en) 2014-04-24 2015-08-18 Covidien Lp Sensor connector
USD794567S1 (en) 2014-12-18 2017-08-15 Covidien Lp Sensor cable and connector
USD756817S1 (en) 2015-01-06 2016-05-24 Covidien Lp Module connectable to a sensor
USD779433S1 (en) 2015-09-17 2017-02-21 Covidien Lp Sensor connector cable
USD784931S1 (en) 2015-09-17 2017-04-25 Covidien Lp Sensor connector cable
USD779432S1 (en) 2015-09-17 2017-02-21 Covidien Lp Sensor and connector
USD790069S1 (en) 2015-11-02 2017-06-20 Covidien Lp Medical sensor
US10231527B2 (en) * 2015-12-31 2019-03-19 Jennifer D. Davis Snappy color caps
US11331019B2 (en) 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold
USD862709S1 (en) 2017-09-20 2019-10-08 Covidien Lp Medical sensor
USD886744S1 (en) * 2017-11-01 2020-06-09 Jeffrey Baldwin Cable cover
US10411380B1 (en) * 2018-05-24 2019-09-10 Microsoft Technology Licensing, Llc Connectors with liquid metal and gas permeable plugs
KR20210016559A (en) * 2018-06-01 2021-02-16 칼디오 링 테크놀로지스, 아이엔씨. Optical blood pressure measurement device and method
CN112770668A (en) * 2018-07-16 2021-05-07 布鲁恩医疗创新有限责任公司 Perfusion and oxygenation measurements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2635221A1 (en) * 1976-08-05 1978-02-09 Bosch Gmbh Robert Photoelectric heartbeat pulse detector - has spring clip for clamping finger between clip arms bearing light source and photosensitive element
EP0435500A1 (en) * 1989-12-18 1991-07-03 Sentinel Monitoring, Inc. Non-invasive sensor
DE19541605A1 (en) * 1995-11-08 1997-05-15 Hewlett Packard Co Sensor especially for pulse oximetry on human finger or toe
US5891021A (en) * 1998-06-03 1999-04-06 Perdue Holdings, Inc. Partially rigid-partially flexible electro-optical sensor for fingertip transillumination
US20030166998A1 (en) * 2002-02-22 2003-09-04 Lowery Guy Russell Preloaded sensor holder

Family Cites Families (774)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US666551A (en) * 1900-09-24 1901-01-22 John Patten Sr Trip for hay-forks.
US782757A (en) * 1904-05-07 1905-02-14 Theodore F Odell Bottle-closure.
US3403555A (en) 1966-07-18 1968-10-01 Versaci Flowmeter
BE661207A (en) 1968-05-13 1965-07-16
US3721813A (en) 1971-02-01 1973-03-20 Perkin Elmer Corp Analytical instrument system
WO2000078209A2 (en) 1999-06-18 2000-12-28 Masimo Corporation Pulse oximeter probe-off detection system
US4098772A (en) 1976-03-11 1978-07-04 The Upjohn Company Thermoplastic polyurethanes prepared with small amounts of monohydric alcohols
USD250275S (en) 1976-07-19 1978-11-14 Hewlett-Packard Company Self-attaching probe for use in photoelectric monitoring of body extremities
USD251387S (en) 1977-02-07 1979-03-20 Component Manufacturing Service, Inc. Electrical connector for electrocardiogram monitoring
US4281645A (en) 1977-06-28 1981-08-04 Duke University, Inc. Method and apparatus for monitoring metabolism in body organs
USD262488S (en) 1979-10-24 1981-12-29 Novatec, Inc. Pulse rate monitor
US4353372A (en) 1980-02-11 1982-10-12 Bunker Ramo Corporation Medical cable set and electrode therefor
US4334544A (en) 1980-04-28 1982-06-15 Amf Incorporated Ear lobe clip with heart beat sensor
US4350165A (en) 1980-05-23 1982-09-21 Trw Inc. Medical electrode assembly
NL8005145A (en) 1980-09-12 1982-04-01 Tno DEVICE FOR INDIRECT, NON-INVASIVE, CONTINUOUS MEASUREMENT OF BLOOD PRESSURE.
GB8416219D0 (en) 1984-06-26 1984-08-01 Antec Systems Patient monitoring apparatus
JPS58143243A (en) 1982-02-19 1983-08-25 Minolta Camera Co Ltd Measuring apparatus for coloring matter in blood without taking out blood
US4770179A (en) 1982-09-02 1988-09-13 Nellcor Incorporated Calibrated optical oximeter probe
US4700708A (en) 1982-09-02 1987-10-20 Nellcor Incorporated Calibrated optical oximeter probe
US4621643A (en) 1982-09-02 1986-11-11 Nellcor Incorporated Calibrated optical oximeter probe
US4653498A (en) 1982-09-13 1987-03-31 Nellcor Incorporated Pulse oximeter monitor
EP0127947B1 (en) 1983-05-11 1990-08-29 Nellcor Incorporated Sensor having cutaneous conformance
US4830014A (en) 1983-05-11 1989-05-16 Nellcor Incorporated Sensor having cutaneous conformance
US4938218A (en) 1983-08-30 1990-07-03 Nellcor Incorporated Perinatal pulse oximetry sensor
US5109849A (en) 1983-08-30 1992-05-05 Nellcor, Inc. Perinatal pulse oximetry sensor
US5217013A (en) 1983-10-14 1993-06-08 Somanetics Corporation Patient sensor for optical cerebral oximeter and the like
US5140989A (en) 1983-10-14 1992-08-25 Somanetics Corporation Examination instrument for optical-response diagnostic apparatus
US4603700A (en) 1983-12-09 1986-08-05 The Boc Group, Inc. Probe monitoring system for oximeter
DE3405444A1 (en) 1984-02-15 1985-08-22 Kraus, Werner, Dipl.-Ing., 8000 München Pulse sensor
US4714341A (en) 1984-02-23 1987-12-22 Minolta Camera Kabushiki Kaisha Multi-wavelength oximeter having a means for disregarding a poor signal
US4510551A (en) 1984-05-21 1985-04-09 Endeco Canada Limited Portable memory module
US4677528A (en) 1984-05-31 1987-06-30 Motorola, Inc. Flexible printed circuit board having integrated circuit die or the like affixed thereto
IT1206462B (en) 1984-08-07 1989-04-27 Anic Spa MULTI-WAVE LENGTH PULSED LIGHT PHOTOMETER FOR NON-INVASIVE MONITORING.
US4802486A (en) * 1985-04-01 1989-02-07 Nellcor Incorporated Method and apparatus for detecting optical pulses
US4928692A (en) 1985-04-01 1990-05-29 Goodman David E Method and apparatus for detecting optical pulses
US4934372A (en) 1985-04-01 1990-06-19 Nellcor Incorporated Method and apparatus for detecting optical pulses
US4911167A (en) 1985-06-07 1990-03-27 Nellcor Incorporated Method and apparatus for detecting optical pulses
USRE35122E (en) 1985-04-01 1995-12-19 Nellcor Incorporated Method and apparatus for detecting optical pulses
DE3516338A1 (en) 1985-05-07 1986-11-13 Drägerwerk AG, 2400 Lübeck Mounting for a measurement sensor
US4685464A (en) 1985-07-05 1987-08-11 Nellcor Incorporated Durable sensor for detecting optical pulses
US4890619A (en) * 1986-04-15 1990-01-02 Hatschek Rudolf A System for the measurement of the content of a gas in blood, in particular the oxygen saturation of blood
JPS6323645A (en) 1986-05-27 1988-01-30 住友電気工業株式会社 Reflection heating type oxymeter
US4759369A (en) 1986-07-07 1988-07-26 Novametrix Medical Systems, Inc. Pulse oximeter
US4892101A (en) * 1986-08-18 1990-01-09 Physio-Control Corporation Method and apparatus for offsetting baseline portion of oximeter signal
US4913150A (en) 1986-08-18 1990-04-03 Physio-Control Corporation Method and apparatus for the automatic calibration of signals employed in oximetry
US4859056A (en) 1986-08-18 1989-08-22 Physio-Control Corporation Multiple-pulse method and apparatus for use in oximetry
US4800495A (en) * 1986-08-18 1989-01-24 Physio-Control Corporation Method and apparatus for processing signals used in oximetry
US4819646A (en) 1986-08-18 1989-04-11 Physio-Control Corporation Feedback-controlled method and apparatus for processing signals used in oximetry
US5259381A (en) 1986-08-18 1993-11-09 Physio-Control Corporation Apparatus for the automatic calibration of signals employed in oximetry
US4869253A (en) 1986-08-18 1989-09-26 Physio-Control Corporation Method and apparatus for indicating perfusion and oxygen saturation trends in oximetry
JPS6365845A (en) 1986-09-05 1988-03-24 ミノルタ株式会社 Oximeter apparatus
US4726382A (en) * 1986-09-17 1988-02-23 The Boc Group, Inc. Inflatable finger cuff
US4824242A (en) 1986-09-26 1989-04-25 Sensormedics Corporation Non-invasive oximeter and method
US4714080A (en) 1986-10-06 1987-12-22 Nippon Colin Co., Ltd. Method and apparatus for noninvasive monitoring of arterial blood oxygen saturation
US4865038A (en) 1986-10-09 1989-09-12 Novametrix Medical Systems, Inc. Sensor appliance for non-invasive monitoring
JPS63111837A (en) 1986-10-29 1988-05-17 日本光電工業株式会社 Apparatus for measuring concentration of light absorbing substance in blood
DE3639402A1 (en) 1986-11-18 1988-05-19 Siemens Ag METHOD FOR THE PRODUCTION OF A MULTI-LAYERED CIRCUIT BOARD AND THE CIRCUIT BOARD PRODUCED THEREOF
US5193543A (en) 1986-12-12 1993-03-16 Critikon, Inc. Method and apparatus for measuring arterial blood constituents
DE3703458A1 (en) 1987-02-05 1988-08-18 Hewlett Packard Gmbh Medical oxygen saturation sensor using electromagnetic waves - has support segment for transmitter and receiver elements and clamping segment for fitting round patent
US4776339A (en) 1987-03-05 1988-10-11 N.A.D., Inc. Interlock for oxygen saturation monitor anesthesia apparatus
US4880304A (en) 1987-04-01 1989-11-14 Nippon Colin Co., Ltd. Optical sensor for pulse oximeter
JPS63252239A (en) 1987-04-09 1988-10-19 Sumitomo Electric Ind Ltd Reflection type oxymeter
USRE33643E (en) 1987-04-30 1991-07-23 Nonin Medical, Inc. Pulse oximeter with circuit leakage and ambient light compensation
US4773422A (en) 1987-04-30 1988-09-27 Nonin Medical, Inc. Single channel pulse oximeter
JPS63277039A (en) 1987-05-08 1988-11-15 Hamamatsu Photonics Kk Diagnostic apparatus
JPS63275323A (en) * 1987-05-08 1988-11-14 Hamamatsu Photonics Kk Diagnostic apparatus
US4722120A (en) * 1987-06-23 1988-02-02 James Lu Spring clip
DE3723881A1 (en) * 1987-07-18 1989-01-26 Nicolay Gmbh METHOD FOR DETERMINING THE OXYGEN SATURATION OF THE BLOOD OF A LIVING ORGANISM AND ELECTRONIC CIRCUIT, AND DEVICE FOR CARRYING OUT THIS METHOD
GB8719333D0 (en) 1987-08-14 1987-09-23 Swansea University College Of Motion artefact rejection system
US4805623A (en) * 1987-09-04 1989-02-21 Vander Corporation Spectrophotometric method for quantitatively determining the concentration of a dilute component in a light- or other radiation-scattering environment
US4796636A (en) * 1987-09-10 1989-01-10 Nippon Colin Co., Ltd. Noninvasive reflectance oximeter
US4819752A (en) 1987-10-02 1989-04-11 Datascope Corp. Blood constituent measuring device and method
US4825879A (en) 1987-10-08 1989-05-02 Critkon, Inc. Pulse oximeter sensor
US4848901A (en) 1987-10-08 1989-07-18 Critikon, Inc. Pulse oximeter sensor control system
US4807630A (en) * 1987-10-09 1989-02-28 Advanced Medical Systems, Inc. Apparatus and method for use in pulse oximeters
US4807631A (en) 1987-10-09 1989-02-28 Critikon, Inc. Pulse oximetry system
US4859057A (en) 1987-10-13 1989-08-22 Lawrence Medical Systems, Inc. Oximeter apparatus
US4863265A (en) 1987-10-16 1989-09-05 Mine Safety Appliances Company Apparatus and method for measuring blood constituents
US4854699A (en) 1987-11-02 1989-08-08 Nippon Colin Co., Ltd. Backscatter oximeter
DE3877894T2 (en) 1987-11-02 1993-06-24 Sumitomo Electric Industries ORGANIC LIGHT MEASURING PROBE.
US4781195A (en) 1987-12-02 1988-11-01 The Boc Group, Inc. Blood monitoring apparatus and methods with amplifier input dark current correction
US4846183A (en) 1987-12-02 1989-07-11 The Boc Group, Inc. Blood parameter monitoring apparatus and methods
US4927264A (en) 1987-12-02 1990-05-22 Omron Tateisi Electronics Co. Non-invasive measuring method and apparatus of blood constituents
US4800885A (en) * 1987-12-02 1989-01-31 The Boc Group, Inc. Blood constituent monitoring apparatus and methods with frequency division multiplexing
US4960126A (en) 1988-01-15 1990-10-02 Criticare Systems, Inc. ECG synchronized pulse oximeter
US4883353A (en) 1988-02-11 1989-11-28 Puritan-Bennett Corporation Pulse oximeter
US4883055A (en) 1988-03-11 1989-11-28 Puritan-Bennett Corporation Artificially induced blood pulse for use with a pulse oximeter
DE3809084C2 (en) 1988-03-18 1999-01-28 Nicolay Gmbh Sensor for the non-invasive measurement of the pulse frequency and / or the oxygen saturation of the blood and method for its production
DE3810411A1 (en) 1988-03-26 1989-10-12 Nicolay Gmbh DEVICE FOR FIXING A SENSOR, IN PARTICULAR A SENSOR FOR OXIMETRIC MEASUREMENTS
US4869254A (en) 1988-03-30 1989-09-26 Nellcor Incorporated Method and apparatus for calculating arterial oxygen saturation
US5078136A (en) * 1988-03-30 1992-01-07 Nellcor Incorporated Method and apparatus for calculating arterial oxygen saturation based plethysmographs including transients
US4964408A (en) 1988-04-29 1990-10-23 Thor Technology Corporation Oximeter sensor assembly with integral cable
US5069213A (en) 1988-04-29 1991-12-03 Thor Technology Corporation Oximeter sensor assembly with integral cable and encoder
US5041187A (en) 1988-04-29 1991-08-20 Thor Technology Corporation Oximeter sensor assembly with integral cable and method of forming the same
JPH06169902A (en) 1988-05-05 1994-06-21 Sentinel Monitoring Inc Pulse type non-invasion type oxymeter and technology for measuring it
DE3884191T2 (en) 1988-05-09 1994-01-13 Hewlett Packard Gmbh Processing method of signals, especially for oximetry measurements in living human tissue.
US5361758A (en) 1988-06-09 1994-11-08 Cme Telemetrix Inc. Method and device for measuring concentration levels of blood constituents non-invasively
US4948248A (en) 1988-07-22 1990-08-14 Invivo Research Inc. Blood constituent measuring device and method
US4825872A (en) 1988-08-05 1989-05-02 Critikon, Inc. Finger sensor for pulse oximetry system
JPH0288041A (en) 1988-09-24 1990-03-28 Misawahoomu Sogo Kenkyusho:Kk Finger tip pulse wave sensor
US5099842A (en) 1988-10-28 1992-03-31 Nellcor Incorporated Perinatal pulse oximetry probe
US5564417A (en) 1991-01-24 1996-10-15 Non-Invasive Technology, Inc. Pathlength corrected oximeter and the like
US5873821A (en) 1992-05-18 1999-02-23 Non-Invasive Technology, Inc. Lateralization spectrophotometer
USH1039H (en) 1988-11-14 1992-04-07 The United States Of America As Represented By The Secretary Of The Air Force Intrusion-free physiological condition monitoring
JPH02164341A (en) 1988-12-19 1990-06-25 Nippon Koden Corp Hemoglobin concentration measuring device
US5553614A (en) 1988-12-21 1996-09-10 Non-Invasive Technology, Inc. Examination of biological tissue using frequency domain spectroscopy
US5353799A (en) 1991-01-22 1994-10-11 Non Invasive Technology, Inc. Examination of subjects using photon migration with high directionality techniques
US5119815A (en) 1988-12-21 1992-06-09 Nim, Incorporated Apparatus for determining the concentration of a tissue pigment of known absorbance, in vivo, using the decay characteristics of scintered electromagnetic radiation
US5111817A (en) 1988-12-29 1992-05-12 Medical Physics, Inc. Noninvasive system and method for enhanced arterial oxygen saturation determination and arterial blood pressure monitoring
US5218207A (en) 1989-01-19 1993-06-08 Futrex, Inc. Using led harmonic wavelengths for near-infrared quantitative
US5028787A (en) 1989-01-19 1991-07-02 Futrex, Inc. Non-invasive measurement of blood glucose
US5365066A (en) 1989-01-19 1994-11-15 Futrex, Inc. Low cost means for increasing measurement sensitivity in LED/IRED near-infrared instruments
US5086229A (en) * 1989-01-19 1992-02-04 Futrex, Inc. Non-invasive measurement of blood glucose
FI82366C (en) 1989-02-06 1991-03-11 Instrumentarium Oy MAETNING AV BLODETS SAMMANSAETTNING.
US5596986A (en) * 1989-03-17 1997-01-28 Scico, Inc. Blood oximeter
US5902235A (en) 1989-03-29 1999-05-11 Somanetics Corporation Optical cerebral oximeter
USD326715S (en) 1989-04-18 1992-06-02 Hewlett-Packard Company Medical sensors for measuring oxygen saturation or the like
DE3912993C2 (en) 1989-04-20 1998-01-29 Nicolay Gmbh Optoelectronic sensor for generating electrical signals based on physiological values
US5040539A (en) 1989-05-12 1991-08-20 The United States Of America Pulse oximeter for diagnosis of dental pulp pathology
JP2766317B2 (en) 1989-06-22 1998-06-18 コーリン電子株式会社 Pulse oximeter
JPH0315502U (en) 1989-06-28 1991-02-15
US5090410A (en) * 1989-06-28 1992-02-25 Datascope Investment Corp. Fastener for attaching sensor to the body
US5299120A (en) 1989-09-15 1994-03-29 Hewlett-Packard Company Method for digitally processing signals containing information regarding arterial blood flow
US5058588A (en) 1989-09-19 1991-10-22 Hewlett-Packard Company Oximeter and medical sensor therefor
US5007423A (en) 1989-10-04 1991-04-16 Nippon Colin Company Ltd. Oximeter sensor temperature control
US5216598A (en) 1989-10-04 1993-06-01 Colin Electronics Co., Ltd. System for correction of trends associated with pulse wave forms in oximeters
US5203329A (en) 1989-10-05 1993-04-20 Colin Electronics Co., Ltd. Noninvasive reflectance oximeter sensor providing controlled minimum optical detection depth
US5094239A (en) 1989-10-05 1992-03-10 Colin Electronics Co., Ltd. Composite signal implementation for acquiring oximetry signals
US5190038A (en) 1989-11-01 1993-03-02 Novametrix Medical Systems, Inc. Pulse oximeter with improved accuracy and response time
US5086781A (en) * 1989-11-14 1992-02-11 Bookspan Mark A Bioelectric apparatus for monitoring body fluid compartments
DE3938759A1 (en) 1989-11-23 1991-05-29 Philips Patentverwaltung NON-INVASIVE OXIMETER ARRANGEMENT
US5224478A (en) 1989-11-25 1993-07-06 Colin Electronics Co., Ltd. Reflecting-type oxymeter probe
KR100213554B1 (en) 1989-11-28 1999-08-02 제이슨 오토 가도시 Fetal probe
JPH03220782A (en) 1990-01-25 1991-09-27 Mitsubishi Electric Corp Semiconductor light receiving device
DK0613653T3 (en) * 1990-02-15 1996-12-02 Hewlett Packard Gmbh Method for calculating oxygen saturation
US5152296A (en) 1990-03-01 1992-10-06 Hewlett-Packard Company Dual-finger vital signs monitor
US5104623A (en) 1990-04-03 1992-04-14 Minnesota Mining And Manufacturing Company Apparatus and assembly for use in optically sensing a compositional blood parameter
US5066859A (en) 1990-05-18 1991-11-19 Karkar Maurice N Hematocrit and oxygen saturation blood analyzer
GB9011887D0 (en) 1990-05-26 1990-07-18 Le Fit Ltd Pulse responsive device
WO1991018549A1 (en) 1990-05-29 1991-12-12 Yue Samuel K Fetal probe apparatus
US5239185A (en) 1990-06-22 1993-08-24 Hitachi, Ltd. Method and equipment for measuring absorptance of light scattering materials using plural wavelengths of light
IE77034B1 (en) 1990-06-27 1997-11-19 Futrex Inc Non-invasive masurement of blood glucose
US5259761A (en) 1990-08-06 1993-11-09 Jenifer M. Schnettler Tooth vitality probe and process
DK0471898T3 (en) 1990-08-22 1999-09-06 Nellcor Puritan Bennett Inc Fetal Pulse Oximetry Device
US5158082A (en) 1990-08-23 1992-10-27 Spacelabs, Inc. Apparatus for heating tissue with a photoplethysmograph sensor
EP0545987B1 (en) 1990-08-29 1996-02-28 CADELL, Theodore E. Finger receptor
US5170786A (en) 1990-09-28 1992-12-15 Novametrix Medical Systems, Inc. Reusable probe system
US5055671A (en) 1990-10-03 1991-10-08 Spacelabs, Inc. Apparatus for detecting transducer movement using a first and second light detector
US6681128B2 (en) * 1990-10-06 2004-01-20 Hema Metrics, Inc. System for noninvasive hematocrit monitoring
US6266546B1 (en) 1990-10-06 2001-07-24 In-Line Diagnostics Corporation System for noninvasive hematocrit monitoring
US5372136A (en) 1990-10-06 1994-12-13 Noninvasive Medical Technology Corporation System and method for noninvasive hematocrit monitoring
US5209230A (en) 1990-10-19 1993-05-11 Nellcor Incorporated Adhesive pulse oximeter sensor with reusable portion
US6263221B1 (en) 1991-01-24 2001-07-17 Non-Invasive Technology Quantitative analyses of biological tissue using phase modulation spectroscopy
US5193542A (en) 1991-01-28 1993-03-16 Missanelli John S Peripartum oximetric monitoring apparatus
US5291884A (en) 1991-02-07 1994-03-08 Minnesota Mining And Manufacturing Company Apparatus for measuring a blood parameter
JPH0614922B2 (en) * 1991-02-15 1994-03-02 日本光電工業株式会社 Calibration test equipment for pulse oximeter
US5125403A (en) 1991-02-20 1992-06-30 Culp Joel B Device and method for engagement of an oximeter probe
US5154175A (en) 1991-03-04 1992-10-13 Gunther Ted J Intrauterine fetal EKG-oximetry cable apparatus
US5349953A (en) 1991-03-05 1994-09-27 Sensormedics, Corp. Photoplethysmographics using component-amplitude-division multiplexing
US5349952A (en) 1991-03-05 1994-09-27 Sensormedics Corp. Photoplethysmographics using phase-division multiplexing
US5343818A (en) 1991-03-05 1994-09-06 Sensormedics Corp. Photoplethysmographics using energy-reducing waveform shaping
MX9702434A (en) 1991-03-07 1998-05-31 Masimo Corp Signal processing apparatus.
US5267566A (en) 1991-03-07 1993-12-07 Maged Choucair Apparatus and method for blood pressure monitoring
US5490505A (en) 1991-03-07 1996-02-13 Masimo Corporation Signal processing apparatus
EP1357481A3 (en) * 1991-03-07 2005-04-27 Masimo Corporation Signal processing apparatus and method
US5632272A (en) 1991-03-07 1997-05-27 Masimo Corporation Signal processing apparatus
US5226417A (en) 1991-03-11 1993-07-13 Nellcor, Inc. Apparatus for the detection of motion transients
US5237994A (en) 1991-03-12 1993-08-24 Square One Technology Integrated lead frame pulse oximetry sensor
US6541756B2 (en) 1991-03-21 2003-04-01 Masimo Corporation Shielded optical probe having an electrical connector
US5995855A (en) 1998-02-11 1999-11-30 Masimo Corporation Pulse oximetry sensor adapter
US5638818A (en) 1991-03-21 1997-06-17 Masimo Corporation Low noise optical probe
JP3464215B2 (en) * 1991-03-21 2003-11-05 マシモ・コーポレイション Low noise optical probe
US6580086B1 (en) 1999-08-26 2003-06-17 Masimo Corporation Shielded optical probe and method
US5645440A (en) 1995-10-16 1997-07-08 Masimo Corporation Patient cable connector
DE4138702A1 (en) * 1991-03-22 1992-09-24 Madaus Medizin Elektronik METHOD AND DEVICE FOR THE DIAGNOSIS AND QUANTITATIVE ANALYSIS OF APNOE AND FOR THE SIMULTANEOUS DETERMINATION OF OTHER DISEASES
US5273036A (en) 1991-04-03 1993-12-28 Ppg Industries, Inc. Apparatus and method for monitoring respiration
US5218962A (en) 1991-04-15 1993-06-15 Nellcor Incorporated Multiple region pulse oximetry probe and oximeter
US5247932A (en) 1991-04-15 1993-09-28 Nellcor Incorporated Sensor for intrauterine use
US5313940A (en) 1991-05-15 1994-05-24 Nihon Kohden Corporation Photo-electric pulse wave measuring probe
EP0531631B1 (en) 1991-06-19 1996-10-09 Endotronics, Inc. Cell culture apparatus
US5267563A (en) 1991-06-28 1993-12-07 Nellcor Incorporated Oximeter sensor with perfusion enhancing
US5402777A (en) 1991-06-28 1995-04-04 Alza Corporation Methods and devices for facilitated non-invasive oxygen monitoring
DE69227545T2 (en) * 1991-07-12 1999-04-29 Mark R Robinson Oximeter for the reliable clinical determination of blood oxygen saturation in a fetus
US5413100A (en) 1991-07-17 1995-05-09 Effets Biologiques Exercice Non-invasive method for the in vivo determination of the oxygen saturation rate of arterial blood, and device for carrying out the method
US5351685A (en) 1991-08-05 1994-10-04 Nellcor Incorporated Condensed oximeter system with noise reduction software
EP0527703B1 (en) 1991-08-12 1995-06-28 AVL Medical Instruments AG Device for measuring at least one gaseous concentration level in particular the oxygen concentration level in blood
US5368025A (en) 1991-08-22 1994-11-29 Sensor Devices, Inc. Non-invasive oximeter probe
US5429129A (en) 1991-08-22 1995-07-04 Sensor Devices, Inc. Apparatus for determining spectral absorption by a specific substance in a fluid
US5217012A (en) 1991-08-22 1993-06-08 Sensor Devices Inc. Noninvasive oximeter probe
JP3124073B2 (en) 1991-08-27 2001-01-15 日本コーリン株式会社 Blood oxygen saturation monitor
US5246003A (en) 1991-08-28 1993-09-21 Nellcor Incorporated Disposable pulse oximeter sensor
US5934277A (en) 1991-09-03 1999-08-10 Datex-Ohmeda, Inc. System for pulse oximetry SpO2 determination
US6714803B1 (en) 1991-09-03 2004-03-30 Datex-Ohmeda, Inc. Pulse oximetry SpO2 determination
US5247931A (en) 1991-09-16 1993-09-28 Mine Safety Appliances Company Diagnostic sensor clasp utilizing a slot, pivot and spring hinge mechanism
US5213099A (en) 1991-09-30 1993-05-25 The United States Of America As Represented By The Secretary Of The Air Force Ear canal pulse/oxygen saturation measuring device
JP3115374B2 (en) 1991-10-11 2000-12-04 テルモ株式会社 Patient monitoring system
US5249576A (en) * 1991-10-24 1993-10-05 Boc Health Care, Inc. Universal pulse oximeter probe
US5311865A (en) 1991-11-07 1994-05-17 Mayeux Charles D Plastic finger oximetry probe holder
US5253645A (en) 1991-12-13 1993-10-19 Critikon, Inc. Method of producing an audible alarm in a blood pressure and pulse oximeter monitor
JPH0569784U (en) 1991-12-28 1993-09-21 センチュリーメディカル株式会社 Display device in medical equipment
EP0549835B1 (en) 1991-12-30 1996-03-13 Hamamatsu Photonics K.K. Diagnostic apparatus
FR2685865B1 (en) 1992-01-08 1998-04-10 Distr App Medicaux Off OPTICAL SENSOR, PARTICULARLY FOR MEASURING THE OXYGEN SATURATION RATE IN ARTERIAL BLOOD.
DE69215204T2 (en) 1992-01-29 1997-03-13 Hewlett Packard Gmbh Process and system for monitoring vital functions
US5385143A (en) 1992-02-06 1995-01-31 Nihon Kohden Corporation Apparatus for measuring predetermined data of living tissue
US5297548A (en) 1992-02-07 1994-03-29 Ohmeda Inc. Arterial blood monitoring probe
US5246002A (en) 1992-02-11 1993-09-21 Physio-Control Corporation Noise insensitive pulse transmittance oximeter
DE4210102C2 (en) 1992-03-27 1999-02-25 Rall Gerhard Device for optically determining parameters of perfused tissue
US5263244A (en) 1992-04-17 1993-11-23 Gould Inc. Method of making a flexible printed circuit sensor assembly for detecting optical pulses
JP3170866B2 (en) 1992-04-24 2001-05-28 株式会社ノーリツ 1 can 2 circuit type instant heating type heat exchanger
DE69211986T2 (en) 1992-05-15 1996-10-31 Hewlett Packard Gmbh Medical sensor
JP3091929B2 (en) 1992-05-28 2000-09-25 日本光電工業株式会社 Pulse oximeter
JP3165983B2 (en) * 1992-06-15 2001-05-14 日本光電工業株式会社 Light emitting element driving device for pulse oximeter
US5377675A (en) * 1992-06-24 1995-01-03 Nellcor, Inc. Method and apparatus for improved fetus contact with fetal probe
US5355880A (en) 1992-07-06 1994-10-18 Sandia Corporation Reliable noninvasive measurement of blood gases
JP3116252B2 (en) 1992-07-09 2000-12-11 日本光電工業株式会社 Pulse oximeter
US6411832B1 (en) 1992-07-15 2002-06-25 Optix Lp Method of improving reproducibility of non-invasive measurements
US6222189B1 (en) 1992-07-15 2001-04-24 Optix, Lp Methods of enhancing optical signals by mechanical manipulation in non-invasive testing
US5425360A (en) 1992-07-24 1995-06-20 Sensormedics Corporation Molded pulse oximeter sensor
US6223064B1 (en) 1992-08-19 2001-04-24 Lawrence A. Lynn Microprocessor system for the simplified diagnosis of sleep apnea
US20050062609A9 (en) 1992-08-19 2005-03-24 Lynn Lawrence A. Pulse oximetry relational alarm system for early recognition of instability and catastrophic occurrences
US6609016B1 (en) 1997-07-14 2003-08-19 Lawrence A. Lynn Medical microprocessor system and method for providing a ventilation indexed oximetry value
US6342039B1 (en) * 1992-08-19 2002-01-29 Lawrence A. Lynn Microprocessor system for the simplified diagnosis of sleep apnea
US5680857A (en) 1992-08-28 1997-10-28 Spacelabs Medical, Inc. Alignment guide system for transmissive pulse oximetry sensors
US5348003A (en) 1992-09-03 1994-09-20 Sirraya, Inc. Method and apparatus for chemical analysis
JP3116255B2 (en) 1992-09-18 2000-12-11 日本光電工業株式会社 Pulse oximeter
JP2547840Y2 (en) 1992-09-25 1997-09-17 日本光電工業株式会社 Oximeter probe
US5323776A (en) 1992-10-15 1994-06-28 Picker International, Inc. MRI compatible pulse oximetry system
US5329922A (en) 1992-10-19 1994-07-19 Atlee Iii John L Oximetric esophageal probe
US5368224A (en) 1992-10-23 1994-11-29 Nellcor Incorporated Method for reducing ambient noise effects in electronic monitoring instruments
WO1994012096A1 (en) 1992-12-01 1994-06-09 Somanetics Corporation Patient sensor for optical cerebral oximeters
US5287853A (en) * 1992-12-11 1994-02-22 Hewlett-Packard Company Adapter cable for connecting a pulsoximetry sensor unit to a medical measuring device
US5551423A (en) 1993-01-26 1996-09-03 Nihon Kohden Corporation Pulse oximeter probe
DE4304693C2 (en) 1993-02-16 2002-02-21 Gerhard Rall Sensor device for measuring vital parameters of a fetus during childbirth
JP2586392Y2 (en) 1993-03-15 1998-12-02 日本光電工業株式会社 Probe for pulse oximeter
US5687719A (en) 1993-03-25 1997-11-18 Ikuo Sato Pulse oximeter probe
US5520177A (en) 1993-03-26 1996-05-28 Nihon Kohden Corporation Oximeter probe
US5368026A (en) 1993-03-26 1994-11-29 Nellcor Incorporated Oximeter with motion detection for alarm modification
US5676141A (en) 1993-03-31 1997-10-14 Nellcor Puritan Bennett Incorporated Electronic processor for pulse oximeters
US5348004A (en) 1993-03-31 1994-09-20 Nellcor Incorporated Electronic processor for pulse oximeter
US5497771A (en) 1993-04-02 1996-03-12 Mipm Mammendorfer Institut Fuer Physik Und Medizin Gmbh Apparatus for measuring the oxygen saturation of fetuses during childbirth
US5521851A (en) 1993-04-26 1996-05-28 Nihon Kohden Corporation Noise reduction method and apparatus
US5339810A (en) 1993-05-03 1994-08-23 Marquette Electronics, Inc. Pulse oximetry sensor
US5494043A (en) 1993-05-04 1996-02-27 Vital Insite, Inc. Arterial sensor
US5348005A (en) 1993-05-07 1994-09-20 Bio-Tek Instruments, Inc. Simulation for pulse oximeter
EP0699047A4 (en) 1993-05-20 1998-06-24 Somanetics Corp Improved electro-optical sensor for spectrophotometric medical devices
WO1994027492A1 (en) 1993-05-21 1994-12-08 Nims, Inc. Discriminating between valid and artifactual pulse waveforms
EP0700267A4 (en) * 1993-05-28 1998-06-24 Somanetics Corp Method and apparatus for spectrophotometric cerebral oximetry
JP3310390B2 (en) 1993-06-10 2002-08-05 浜松ホトニクス株式会社 Method and apparatus for measuring concentration of light absorbing substance in scattering medium
US5337744A (en) 1993-07-14 1994-08-16 Masimo Corporation Low noise finger cot probe
US5452717A (en) 1993-07-14 1995-09-26 Masimo Corporation Finger-cot probe
US5425362A (en) 1993-07-30 1995-06-20 Criticare Fetal sensor device
EP0683641A4 (en) * 1993-08-24 1998-07-15 Mark R Robinson A robust accurate non-invasive analyte monitor.
DE4329898A1 (en) 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring device
EP0641543A1 (en) 1993-09-07 1995-03-08 Ohmeda Inc. Heat-sealed neo-natal medical monitoring probe
US5511546A (en) 1993-09-20 1996-04-30 Hon; Edward H. Finger apparatus for measuring continuous cutaneous blood pressure and electrocardiogram electrode
JP3345481B2 (en) 1993-09-22 2002-11-18 興和株式会社 Pulse wave spectrometer
JP3387171B2 (en) * 1993-09-28 2003-03-17 セイコーエプソン株式会社 Pulse wave detection device and exercise intensity measurement device
US5485847A (en) 1993-10-08 1996-01-23 Nellcor Puritan Bennett Incorporated Pulse oximeter using a virtual trigger for heart rate synchronization
US5411023A (en) 1993-11-24 1995-05-02 The Shielding Corporation Optical sensor system
US5417207A (en) 1993-12-06 1995-05-23 Sensor Devices, Inc. Apparatus for the invasive use of oximeter probes
JP2605584Y2 (en) 1993-12-07 2000-07-24 日本光電工業株式会社 Multi sensor
JP3125079B2 (en) * 1993-12-07 2001-01-15 日本光電工業株式会社 Pulse oximeter
EP0658331B1 (en) 1993-12-11 1996-10-02 Hewlett-Packard GmbH A method for detecting an irregular state in a non-invasive pulse oximeter system
EP0684575A4 (en) 1993-12-14 1997-05-14 Mochida Pharm Co Ltd Medical measuring apparatus.
US5438986A (en) 1993-12-14 1995-08-08 Criticare Systems, Inc. Optical sensor
US5411024A (en) 1993-12-15 1995-05-02 Corometrics Medical Systems, Inc. Fetal pulse oximetry sensor
US5492118A (en) 1993-12-16 1996-02-20 Board Of Trustees Of The University Of Illinois Determining material concentrations in tissues
US5645059A (en) 1993-12-17 1997-07-08 Nellcor Incorporated Medical sensor with modulated encoding scheme
US5560355A (en) 1993-12-17 1996-10-01 Nellcor Puritan Bennett Incorporated Medical sensor with amplitude independent output
JP3238813B2 (en) 1993-12-20 2001-12-17 テルモ株式会社 Pulse oximeter
JP3464697B2 (en) 1993-12-21 2003-11-10 興和株式会社 Oxygen saturation meter
US5507286A (en) 1993-12-23 1996-04-16 Medical Taping Systems, Inc. Method and apparatus for improving the durability of a sensor
US5553615A (en) 1994-01-31 1996-09-10 Minnesota Mining And Manufacturing Company Method and apparatus for noninvasive prediction of hematocrit
US5437275A (en) 1994-02-02 1995-08-01 Biochem International Inc. Pulse oximetry sensor
US5632273A (en) 1994-02-04 1997-05-27 Hamamatsu Photonics K.K. Method and means for measurement of biochemical components
US5995859A (en) 1994-02-14 1999-11-30 Nihon Kohden Corporation Method and apparatus for accurately measuring the saturated oxygen in arterial blood by substantially eliminating noise from the measurement signal
US5830135A (en) 1994-03-31 1998-11-03 Bosque; Elena M. Fuzzy logic alarm system for pulse oximeters
US5575284A (en) 1994-04-01 1996-11-19 University Of South Florida Portable pulse oximeter
US5421329A (en) 1994-04-01 1995-06-06 Nellcor, Inc. Pulse oximeter sensor optimized for low saturation
US6662033B2 (en) 1994-04-01 2003-12-09 Nellcor Incorporated Pulse oximeter and sensor optimized for low saturation
US6371921B1 (en) 1994-04-15 2002-04-16 Masimo Corporation System and method of determining whether to recalibrate a blood pressure monitor
JP3364819B2 (en) 1994-04-28 2003-01-08 日本光電工業株式会社 Blood absorption substance concentration measurement device
US5402779A (en) 1994-04-29 1995-04-04 Chen; William X. Method for the non-invasive detection of an intravascular injection of an anesthetic by the use of an indicator dye
US5491299A (en) * 1994-06-03 1996-02-13 Siemens Medical Systems, Inc. Flexible multi-parameter cable
US5490523A (en) 1994-06-29 1996-02-13 Nonin Medical Inc. Finger clip pulse oximeter
US5912656A (en) 1994-07-01 1999-06-15 Ohmeda Inc. Device for producing a display from monitored data
DE4423597C1 (en) 1994-07-06 1995-08-10 Hewlett Packard Gmbh Pulsoximetric ear sensor
US5664270A (en) 1994-07-19 1997-09-09 Kinetic Concepts, Inc. Patient interface system
DE4427864A1 (en) * 1994-08-07 1996-02-08 Rall Gerhard Sensor device for measuring vital parameters of a fetus during childbirth
DE4429758A1 (en) 1994-08-22 1996-02-29 Buschmann Johannes Method for validating devices for photometry of living tissue and device for carrying out the method
DE4429845C1 (en) * 1994-08-23 1995-10-19 Hewlett Packard Gmbh Pulse oximeter with flexible strap for attachment to hand or foot
US5697367A (en) 1994-10-14 1997-12-16 Somanetics Corporation Specially grounded sensor for clinical spectrophotometric procedures
US5503148A (en) 1994-11-01 1996-04-02 Ohmeda Inc. System for pulse oximetry SPO2 determination
DE4442260C2 (en) 1994-11-28 2000-06-08 Mipm Mammendorfer Inst Fuer Ph Method and arrangement for the non-invasive in vivo determination of oxygen saturation
DE4442855B4 (en) 1994-12-01 2004-04-01 Gerhard Dipl.-Ing. Rall Use of a pulse oximetry sensor device
US5505199A (en) 1994-12-01 1996-04-09 Kim; Bill H. Sudden infant death syndrome monitor
US5676139A (en) 1994-12-14 1997-10-14 Ohmeda Inc. Spring clip probe housing
US6618614B1 (en) 1995-01-03 2003-09-09 Non-Invasive Technology, Inc. Optical examination device, system and method
US5673692A (en) 1995-02-03 1997-10-07 Biosignals Ltd. Co. Single site, multi-variable patient monitor
US5692503A (en) 1995-03-10 1997-12-02 Kuenstner; J. Todd Method for noninvasive (in-vivo) total hemoglobin, oxyhemogolobin, deoxyhemoglobin, carboxyhemoglobin and methemoglobin concentration determination
US5524617A (en) 1995-03-14 1996-06-11 Nellcor, Incorporated Isolated layer pulse oximetry
US5619992A (en) 1995-04-06 1997-04-15 Guthrie; Robert B. Methods and apparatus for inhibiting contamination of reusable pulse oximetry sensors
US5617852A (en) 1995-04-06 1997-04-08 Macgregor; Alastair R. Method and apparatus for non-invasively determining blood analytes
US5774213A (en) 1995-04-21 1998-06-30 Trebino; Rick P. Techniques for measuring difference of an optical property at two wavelengths by modulating two sources to have opposite-phase components at a common frequency
US5619991A (en) 1995-04-26 1997-04-15 Lucent Technologies Inc. Delivery of medical services using electronic data communications
JP3326580B2 (en) 1995-05-08 2002-09-24 日本光電工業株式会社 Biological tissue transmitted light sensor
US5662105A (en) 1995-05-17 1997-09-02 Spacelabs Medical, Inc. System and method for the extractment of physiological signals
US5851178A (en) 1995-06-02 1998-12-22 Ohmeda Inc. Instrumented laser diode probe connector
US5758644A (en) 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US5743262A (en) 1995-06-07 1998-04-28 Masimo Corporation Blood glucose monitoring system
US5638816A (en) 1995-06-07 1997-06-17 Masimo Corporation Active pulse blood constituent monitoring
US5760910A (en) 1995-06-07 1998-06-02 Masimo Corporation Optical filter for spectroscopic measurement and method of producing the optical filter
CA2221968C (en) * 1995-06-09 2007-08-21 Cybro Medical Ltd. Sensor, method and device for optical blood oximetry
US5645060A (en) 1995-06-14 1997-07-08 Nellcor Puritan Bennett Incorporated Method and apparatus for removing artifact and noise from pulse oximetry
US5685301A (en) 1995-06-16 1997-11-11 Ohmeda Inc. Apparatus for precise determination of operating characteristics of optical devices contained in a monitoring probe
US5829439A (en) 1995-06-28 1998-11-03 Hitachi Medical Corporation Needle-like ultrasonic probe for ultrasonic diagnosis apparatus, method of producing same, and ultrasonic diagnosis apparatus using same
US6055447A (en) 1995-07-06 2000-04-25 Institute Of Critical Care Medicine Patient CO2 Measurement
WO1997003603A1 (en) * 1995-07-21 1997-02-06 Respironics, Inc. Method and apparatus for diode laser pulse oximetry using multifiber optical cables and disposable fiber optic probes
US6095974A (en) 1995-07-21 2000-08-01 Respironics, Inc. Disposable fiber optic probe
US5558096A (en) 1995-07-21 1996-09-24 Biochem International, Inc. Blood pulse detection method using autocorrelation
GB9515649D0 (en) 1995-07-31 1995-09-27 Johnson & Johnson Medical Surface sensor device
US5853364A (en) 1995-08-07 1998-12-29 Nellcor Puritan Bennett, Inc. Method and apparatus for estimating physiological parameters using model-based adaptive filtering
FI111214B (en) 1995-08-17 2003-06-30 Tunturipyoerae Oy Giver
US5800348A (en) 1995-08-31 1998-09-01 Hewlett-Packard Company Apparatus and method for medical monitoring, in particular pulse oximeter
US5629992A (en) 1995-09-14 1997-05-13 Bell Communications Research, Inc. Passband flattening of integrated optical filters
DE19537646C2 (en) 1995-10-10 1998-09-17 Hewlett Packard Gmbh Method and device for detecting falsified measurement values in pulse oximetry for measuring oxygen saturation
USD393830S (en) 1995-10-16 1998-04-28 Masimo Corporation Patient cable connector
CA2235772C (en) 1995-10-23 2002-12-31 Cytometrics, Inc. Method and apparatus for reflected imaging analysis
US5626140A (en) 1995-11-01 1997-05-06 Spacelabs Medical, Inc. System and method of multi-sensor fusion of physiological measurements
US5839439A (en) 1995-11-13 1998-11-24 Nellcor Puritan Bennett Incorporated Oximeter sensor with rigid inner housing and pliable overmold
US5660567A (en) 1995-11-14 1997-08-26 Nellcor Puritan Bennett Incorporated Medical sensor connector with removable encoding device
US5588427A (en) 1995-11-20 1996-12-31 Spacelabs Medical, Inc. Enhancement of physiological signals using fractal analysis
US5724967A (en) 1995-11-21 1998-03-10 Nellcor Puritan Bennett Incorporated Noise reduction apparatus for low level analog signals
US5995856A (en) 1995-11-22 1999-11-30 Nellcor, Incorporated Non-contact optical monitoring of physiological parameters
US6041247A (en) 1995-11-29 2000-03-21 Instrumentarium Corp Non-invasive optical measuring sensor and measuring method
US5810724A (en) 1995-12-01 1998-09-22 Nellcor Puritan Bennett Incorporated Reusable sensor accessory containing a conformable spring activated rubber sleeved clip
US6226540B1 (en) 1995-12-13 2001-05-01 Peter Bernreuter Measuring process for blood gas analysis sensors
US5922607A (en) 1995-12-13 1999-07-13 Bernreuter; Peter Measuring process for blood gas analysis sensors
US5807247A (en) 1995-12-20 1998-09-15 Nellcor Puritan Bennett Incorporated Method and apparatus for facilitating compatibility between pulse oximeters and sensor probes
US5818985A (en) 1995-12-20 1998-10-06 Nellcor Puritan Bennett Incorporated Optical oximeter probe adapter
AUPN740796A0 (en) 1996-01-04 1996-01-25 Circuitry Systems Limited Biomedical data collection apparatus
US5891026A (en) 1996-01-29 1999-04-06 Ntc Technology Inc. Extended life disposable pulse oximetry sensor and method of making
SE9600322L (en) 1996-01-30 1997-07-31 Hoek Instr Ab Sensor for pulse oximetry with fiber optic signal transmission
US5840023A (en) 1996-01-31 1998-11-24 Oraevsky; Alexander A. Optoacoustic imaging for medical diagnosis
US5746697A (en) 1996-02-09 1998-05-05 Nellcor Puritan Bennett Incorporated Medical diagnostic apparatus with sleep mode
US5797841A (en) 1996-03-05 1998-08-25 Nellcor Puritan Bennett Incorporated Shunt barrier in pulse oximeter sensor
US6253097B1 (en) 1996-03-06 2001-06-26 Datex-Ohmeda, Inc. Noninvasive medical monitoring instrument using surface emitting laser devices
JP3245042B2 (en) 1996-03-11 2002-01-07 沖電気工業株式会社 Tuning oscillation circuit
US6181959B1 (en) * 1996-04-01 2001-01-30 Kontron Instruments Ag Detection of parasitic signals during pulsoxymetric measurement
US5790729A (en) 1996-04-10 1998-08-04 Ohmeda Inc. Photoplethysmographic instrument having an integrated multimode optical coupler device
US5766127A (en) 1996-04-15 1998-06-16 Ohmeda Inc. Method and apparatus for improved photoplethysmographic perfusion-index monitoring
US5692505A (en) 1996-04-25 1997-12-02 Fouts; James Michael Data processing systems and methods for pulse oximeters
US5913819A (en) 1996-04-26 1999-06-22 Datex-Ohmeda, Inc. Injection molded, heat-sealed housing and half-etched lead frame for oximeter sensor
US5919133A (en) 1996-04-26 1999-07-06 Ohmeda Inc. Conformal wrap for pulse oximeter sensor
WO1997042903A1 (en) 1996-05-15 1997-11-20 Nellcor Puritan Bennett Incorporated Semi-reusable sensor with disposable sleeve
US5807248A (en) 1996-05-15 1998-09-15 Ohmeda Inc. Medical monitoring probe with modular device housing
US5752914A (en) 1996-05-28 1998-05-19 Nellcor Puritan Bennett Incorporated Continuous mesh EMI shield for pulse oximetry sensor
FI962448A (en) 1996-06-12 1997-12-13 Instrumentarium Oy Method, apparatus and sensor for the determination of fractional oxygen saturation
US5890929A (en) 1996-06-19 1999-04-06 Masimo Corporation Shielded medical connector
US6027452A (en) 1996-06-26 2000-02-22 Vital Insite, Inc. Rapid non-invasive blood pressure measuring device
US5879294A (en) 1996-06-28 1999-03-09 Hutchinson Technology Inc. Tissue chromophore measurement system
US6163715A (en) 1996-07-17 2000-12-19 Criticare Systems, Inc. Direct to digital oximeter and method for calculating oxygenation levels
US5842981A (en) 1996-07-17 1998-12-01 Criticare Systems, Inc. Direct to digital oximeter
ATE346539T1 (en) 1996-07-19 2006-12-15 Daedalus I Llc DEVICE FOR THE BLOODLESS DETERMINATION OF BLOOD VALUES
JP3925945B2 (en) 1996-07-26 2007-06-06 ラディオメーター・バーゼル・アクチェンゲゼルシャフト A method for measuring oxygen saturation in tissues that are supplied with blood without damaging the specimen
US5916155A (en) 1996-07-30 1999-06-29 Nellcor Puritan Bennett Incorporated Fetal sensor with securing balloons remote from optics
US5842982A (en) 1996-08-07 1998-12-01 Nellcor Puritan Bennett Incorporated Infant neonatal pulse oximeter sensor
US5776058A (en) 1996-08-13 1998-07-07 Nellcor Puritan Bennett Incorporated Pressure-attached presenting part fetal pulse oximetry sensor
US5813980A (en) 1996-08-13 1998-09-29 Nellcor Puritan Bennett Incorporated Fetal pulse oximetry sensor with remote securing mechanism
US5823952A (en) 1996-08-14 1998-10-20 Nellcor Incorporated Pulse oximeter sensor with differential slip coefficient
JP3844815B2 (en) 1996-08-30 2006-11-15 浜松ホトニクス株式会社 Method and apparatus for measuring absorption information of scatterers
US5727547A (en) 1996-09-04 1998-03-17 Nellcor Puritan Bennett Incorporated Presenting part fetal oximeter sensor with securing mechanism for providing tension to scalp attachment
CN1203805C (en) 1996-09-10 2005-06-01 精工爱普生株式会社 Organism state measuring device and relaxation instructing device
US5782756A (en) 1996-09-19 1998-07-21 Nellcor Puritan Bennett Incorporated Method and apparatus for in vivo blood constituent analysis
US5782758A (en) 1996-09-23 1998-07-21 Ohmeda Inc. Method and apparatus for identifying the presence of noise in a time division multiplexed oximeter
US5891022A (en) 1996-09-25 1999-04-06 Ohmeda Inc. Apparatus for performing multiwavelength photoplethysmography
DE19640807A1 (en) 1996-10-02 1997-09-18 Siemens Ag Noninvasive optical detection of oxygen supply to e.g. brain or liver
JPH10108846A (en) 1996-10-03 1998-04-28 Nippon Koden Corp Holder for organic signal detector
US5851179A (en) 1996-10-10 1998-12-22 Nellcor Puritan Bennett Incorporated Pulse oximeter sensor with articulating head
US6018673A (en) * 1996-10-10 2000-01-25 Nellcor Puritan Bennett Incorporated Motion compatible sensor for non-invasive optical blood analysis
US5800349A (en) 1996-10-15 1998-09-01 Nonin Medical, Inc. Offset pulse oximeter sensor
US5964701A (en) 1996-10-24 1999-10-12 Massachusetts Institute Of Technology Patient monitoring finger ring sensor
US5817008A (en) 1996-10-31 1998-10-06 Spacelabs Medical, Inc. Conformal pulse oximetry sensor and monitor
US5830136A (en) 1996-10-31 1998-11-03 Nellcor Puritan Bennett Incorporated Gel pad optical sensor
US5830137A (en) 1996-11-18 1998-11-03 University Of South Florida Green light pulse oximeter
DE19647877C2 (en) 1996-11-19 2000-06-15 Univ Ilmenau Tech Method and circuit arrangement for determining the oxygen saturation in the blood
US5810723A (en) 1996-12-05 1998-09-22 Essential Medical Devices Non-invasive carboxyhemoglobin analyer
US6397093B1 (en) 1996-12-05 2002-05-28 Essential Medical Devices, Inc. Non-invasive carboxyhemoglobin analyzer
US5921921A (en) 1996-12-18 1999-07-13 Nellcor Puritan-Bennett Pulse oximeter with sigma-delta converter
US5842979A (en) 1997-02-14 1998-12-01 Ohmeda Inc. Method and apparatus for improved photoplethysmographic monitoring of oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin and methemoglobin
US6712762B1 (en) 1997-02-28 2004-03-30 Ors Diagnostic, Llc Personal computer card for collection of real-time biological data
US6159147A (en) 1997-02-28 2000-12-12 Qrs Diagnostics, Llc Personal computer card for collection of real-time biological data
US5827179A (en) 1997-02-28 1998-10-27 Qrs Diagnostic, Llc Personal computer card for collection for real-time biological data
US6113541A (en) 1997-03-07 2000-09-05 Agilent Technologies, Inc. Noninvasive blood chemistry measurement method and system
US5954644A (en) 1997-03-24 1999-09-21 Ohmeda Inc. Method for ambient light subtraction in a photoplethysmographic measurement instrument
US6285894B1 (en) 1997-03-25 2001-09-04 Siemens Aktiengesellschaft Method and device for non-invasive in vivo determination of blood constituents
US5817010A (en) 1997-03-25 1998-10-06 Ohmeda Inc. Disposable sensor holder
US5827182A (en) 1997-03-31 1998-10-27 Ohmeda Inc. Multiple LED sets in oximetry sensors
US6195575B1 (en) 1997-04-02 2001-02-27 Nellcor Puritan Bennett Incorporated Fetal sensor which self-inflates using capillary force
US5891024A (en) 1997-04-09 1999-04-06 Ohmeda Inc. Two stage calibration and analyte measurement scheme for spectrophotomeric analysis
DE69700253T2 (en) 1997-04-12 1999-09-23 Hewlett Packard Co Method and device for determining the concentration of an ingredient
DE69704264T2 (en) 1997-04-12 2001-06-28 Agilent Technologies Inc Method and device for the non-invasive determination of the concentration of a component
US5919134A (en) 1997-04-14 1999-07-06 Masimo Corp. Method and apparatus for demodulating signals in a pulse oximetry system
US6229856B1 (en) 1997-04-14 2001-05-08 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
EP0872210B1 (en) 1997-04-18 2006-01-04 Koninklijke Philips Electronics N.V. Intermittent measuring of arterial oxygen saturation of hemoglobin
IL121079A0 (en) 1997-06-15 1997-11-20 Spo Medical Equipment Ltd Physiological stress detector device and method
AU7934498A (en) 1997-06-27 1999-01-19 Toa Medical Electronics Co., Ltd. Living body inspecting apparatus and noninvasive blood analyzer using the same
US5924985A (en) 1997-07-29 1999-07-20 Ohmeda Inc. Patient probe disconnect alarm
US6115621A (en) 1997-07-30 2000-09-05 Nellcor Puritan Bennett Incorporated Oximetry sensor with offset emitters and detector
US6343223B1 (en) * 1997-07-30 2002-01-29 Mallinckrodt Inc. Oximeter sensor with offset emitters and detector and heating device
US6466808B1 (en) 1999-11-22 2002-10-15 Mallinckrodt Inc. Single device for both heating and temperature measurement in an oximeter sensor
US5924982A (en) 1997-07-30 1999-07-20 Nellcor Puritan Bennett Incorporated Oximeter sensor with user-modifiable color surface
US6018674A (en) * 1997-08-11 2000-01-25 Datex-Ohmeda, Inc. Fast-turnoff photodiodes with switched-gain preamplifiers in photoplethysmographic measurement instruments
FI973454A (en) 1997-08-22 1999-02-23 Instrumentarium Oy A resilient device in a measuring sensor for observing the properties of living tissue
GB9717858D0 (en) 1997-08-23 1997-10-29 Electrode Company Ltd The Electrode Company Ltd
CN1242693A (en) 1997-08-26 2000-01-26 精工爱普生株式会社 Measuring, sensing and diagnosing apparatus and method relating to wave pulse, cardiac function, and motion intensity
EP1405593B1 (en) 1997-09-05 2011-08-10 Seiko Epson Corporation Optical diagnostic measurement device
GB2329015B (en) * 1997-09-05 2002-02-13 Samsung Electronics Co Ltd Method and device for noninvasive measurement of concentrations of blood components
US5865736A (en) * 1997-09-30 1999-02-02 Nellcor Puritan Bennett, Inc. Method and apparatus for nuisance alarm reductions
US5960610A (en) 1997-10-01 1999-10-05 Nellcor Puritan Bennett Incorporated Method of curving a fetal sensor
US5971930A (en) 1997-10-17 1999-10-26 Siemens Medical Systems, Inc. Method and apparatus for removing artifact from physiological signals
US5987343A (en) 1997-11-07 1999-11-16 Datascope Investment Corp. Method for storing pulse oximetry sensor characteristics
US5995858A (en) 1997-11-07 1999-11-30 Datascope Investment Corp. Pulse oximeter
US6035223A (en) 1997-11-19 2000-03-07 Nellcor Puritan Bennett Inc. Method and apparatus for determining the state of an oximetry sensor
US6381480B1 (en) 1997-11-26 2002-04-30 Stoddart Hugh Franklin Method and apparatus for monitoring fetal cerebral oxygenation during childbirth
US5983122A (en) 1997-12-12 1999-11-09 Ohmeda Inc. Apparatus and method for improved photoplethysmographic monitoring of multiple hemoglobin species using emitters having optimized center wavelengths
JP3853053B2 (en) 1997-12-17 2006-12-06 松下電器産業株式会社 Biological information measuring device
DE69700384T2 (en) 1997-12-22 1999-11-25 Hewlett Packard Co Telemetry system, in particular for medical purposes
JP3567319B2 (en) 1997-12-26 2004-09-22 日本光電工業株式会社 Probe for pulse oximeter
US6184521B1 (en) 1998-01-06 2001-02-06 Masimo Corporation Photodiode detector with integrated noise shielding
US6400973B1 (en) 1998-01-20 2002-06-04 Bowden's Automated Products, Inc. Arterial blood flow simulator
US6179159B1 (en) 1998-01-26 2001-01-30 Mariruth D. Gurley Communicable disease barrier digit cover and dispensing package therefor
US5978693A (en) 1998-02-02 1999-11-02 E.P. Limited Apparatus and method for reduction of motion artifact
JP2002501803A (en) 1998-02-05 2002-01-22 イン−ラインダイアグノスティックスコーポレイション Non-invasive blood component monitoring method and apparatus
US6014576A (en) * 1998-02-27 2000-01-11 Datex-Ohmeda, Inc. Segmented photoplethysmographic sensor with universal probe-end
JPH11244267A (en) 1998-03-03 1999-09-14 Fuji Photo Film Co Ltd Blood component concentration measuring device
US6525386B1 (en) 1998-03-10 2003-02-25 Masimo Corporation Non-protruding optoelectronic lens
US5924980A (en) 1998-03-11 1999-07-20 Siemens Corporate Research, Inc. Method and apparatus for adaptively reducing the level of noise in an acquired signal
US5997343A (en) 1998-03-19 1999-12-07 Masimo Corporation Patient cable sensor switch
US6165005A (en) 1998-03-19 2000-12-26 Masimo Corporation Patient cable sensor switch
US6078833A (en) 1998-03-25 2000-06-20 I.S.S. (Usa) Inc. Self referencing photosensor
US6163175A (en) 1998-03-27 2000-12-19 Vantis Corporation High voltage detector to control a power supply voltage pump for a 2.5 volt semiconductor process device
US5991648A (en) 1998-03-30 1999-11-23 Palco Labs, Inc. Adjustable pulse oximetry sensor for pediatric use
US6047201A (en) 1998-04-02 2000-04-04 Jackson, Iii; William H. Infant blood oxygen monitor and SIDS warning device
EP0947822A1 (en) 1998-04-02 1999-10-06 Stichting Nederlands Instituut voor Zuivelonderzoek Arrangement and method to apply diffusing wave spectroscopy to measure the properties of multi-phase systems, as well as the changes therein
EP0988521A1 (en) 1998-04-14 2000-03-29 Instrumentarium Corporation Sensor assembly and method for measuring nitrogen dioxide
US5916154A (en) 1998-04-22 1999-06-29 Nellcor Puritan Bennett Method of enhancing performance in pulse oximetry via electrical stimulation
US6064899A (en) 1998-04-23 2000-05-16 Nellcor Puritan Bennett Incorporated Fiber optic oximeter connector with element indicating wavelength shift
US6094592A (en) 1998-05-26 2000-07-25 Nellcor Puritan Bennett, Inc. Methods and apparatus for estimating a physiological parameter using transforms
US6248064B1 (en) * 1998-05-26 2001-06-19 Ineedmd.Com,Inc. Tele-diagnostic device
EP2319398B1 (en) 1998-06-03 2019-01-16 Masimo Corporation Stereo pulse oximeter
EP0904727B1 (en) * 1998-06-05 2000-10-18 Hewlett-Packard Company Pulse rate and heart rate coincidence detection for pulse oximetry
IL124787A0 (en) 1998-06-07 1999-01-26 Itamar Medical C M 1997 Ltd Pressure applicator devices particularly useful for non-invasive detection of medical conditions
US5920263A (en) 1998-06-11 1999-07-06 Ohmeda, Inc. De-escalation of alarm priorities in medical devices
IL124965A (en) 1998-06-17 2002-08-14 Orsense Ltd Non-invasive method of optical measurements for determining concentration of a substance in blood
US5999834A (en) 1998-06-18 1999-12-07 Ntc Technology, Inc. Disposable adhesive wrap for use with reusable pulse oximetry sensor and method of making
US6842635B1 (en) * 1998-08-13 2005-01-11 Edwards Lifesciences Llc Optical device
US6285896B1 (en) 1998-07-13 2001-09-04 Masimo Corporation Fetal pulse oximetry sensor
JP2000083933A (en) 1998-07-17 2000-03-28 Nippon Koden Corp Instrument for measuring concentration of light absorptive material in vital tissue
US6671526B1 (en) 1998-07-17 2003-12-30 Nihon Kohden Corporation Probe and apparatus for determining concentration of light-absorbing materials in living tissue
US6330464B1 (en) * 1998-08-26 2001-12-11 Sensors For Medicine & Science Optical-based sensing devices
US6430513B1 (en) 1998-09-04 2002-08-06 Perkinelmer Instruments Llc Monitoring constituents of an animal organ using statistical correlation
US6266547B1 (en) 1998-09-09 2001-07-24 The United States Of America As Represented By The Secretary Of The Army Nasopharyngeal airway with reflectance pulse oximeter sensor
US20020028990A1 (en) 1998-09-09 2002-03-07 Shepherd John M. Device and method for monitoring arterial oxygen saturation
AU764324B2 (en) 1998-09-09 2003-08-14 Government Of The United States Of America As Represented By The Secretary Of The Army Method for monitoring arterial oxygen saturation
EP1121047A1 (en) 1998-09-09 2001-08-08 U.S. Army Institute of Surgical Research Pulse oximeter sensor combined with oropharyngeal airway and bite block
US6393310B1 (en) 1998-09-09 2002-05-21 J. Todd Kuenstner Methods and systems for clinical analyte determination by visible and infrared spectroscopy
CA2343635A1 (en) 1998-09-09 2000-03-16 U.S. Army Institute Of Surgical Research Disposable pulse oximeter assembly and protective cover therefor
CA2343776C (en) 1998-09-18 2004-08-03 U.S. Army Institute Of Surgical Research Self-piercing pulse oximeter sensor assembly
US6064898A (en) 1998-09-21 2000-05-16 Essential Medical Devices Non-invasive blood component analyzer
US6298252B1 (en) 1998-09-29 2001-10-02 Mallinckrodt, Inc. Oximeter sensor with encoder connected to detector
CA2345633A1 (en) 1998-09-29 2000-04-06 Mallinckrodt Inc. Multiple-code oximeter calibration element
CA2345731A1 (en) 1998-09-29 2000-04-06 Mallinckrodt Inc. Oximeter sensor with encoded temperature characteristic
US6171258B1 (en) * 1998-10-08 2001-01-09 Sleep Solutions, Inc. Multi-channel self-contained apparatus and method for diagnosis of sleep disorders
USRE45616E1 (en) 1998-10-13 2015-07-21 Covidien Lp Multi-channel non-invasive tissue oximeter
US6519487B1 (en) 1998-10-15 2003-02-11 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6684091B2 (en) * 1998-10-15 2004-01-27 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage method
US6519486B1 (en) 1998-10-15 2003-02-11 Ntc Technology Inc. Method, apparatus and system for removing motion artifacts from measurements of bodily parameters
US6393311B1 (en) 1998-10-15 2002-05-21 Ntc Technology Inc. Method, apparatus and system for removing motion artifacts from measurements of bodily parameters
US6144868A (en) 1998-10-15 2000-11-07 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6343224B1 (en) * 1998-10-15 2002-01-29 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6321100B1 (en) 1999-07-13 2001-11-20 Sensidyne, Inc. Reusable pulse oximeter probe with disposable liner
US6721585B1 (en) 1998-10-15 2004-04-13 Sensidyne, Inc. Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US6006120A (en) 1998-10-22 1999-12-21 Palco Labs, Inc. Cordless Pulse oximeter
US6261236B1 (en) 1998-10-26 2001-07-17 Valentin Grimblatov Bioresonance feedback method and apparatus
US6061584A (en) 1998-10-28 2000-05-09 Lovejoy; David A. Pulse oximetry sensor
US6438396B1 (en) 1998-11-05 2002-08-20 Cytometrics, Inc. Method and apparatus for providing high contrast imaging
US6144444A (en) 1998-11-06 2000-11-07 Medtronic Avecor Cardiovascular, Inc. Apparatus and method to determine blood parameters
US7006855B1 (en) 1998-11-16 2006-02-28 S.P.O. Medical Equipment Ltd. Sensor for radiance based diagnostics
US6463311B1 (en) 1998-12-30 2002-10-08 Masimo Corporation Plethysmograph pulse recognition processor
US6606511B1 (en) 1999-01-07 2003-08-12 Masimo Corporation Pulse oximetry pulse indicator
US6684090B2 (en) 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
US6280381B1 (en) 1999-07-22 2001-08-28 Instrumentation Metrics, Inc. Intelligent system for noninvasive blood analyte prediction
US6770028B1 (en) 1999-01-25 2004-08-03 Masimo Corporation Dual-mode pulse oximeter
US20020140675A1 (en) 1999-01-25 2002-10-03 Ali Ammar Al System and method for altering a display mode based on a gravity-responsive sensor
US6658276B2 (en) 1999-01-25 2003-12-02 Masimo Corporation Pulse oximeter user interface
AU2859600A (en) 1999-01-25 2000-08-07 Masimo Corporation Universal/upgrading pulse oximeter
US6438399B1 (en) 1999-02-16 2002-08-20 The Children's Hospital Of Philadelphia Multi-wavelength frequency domain near-infrared cerebral oximeter
WO2000053082A1 (en) 1999-03-08 2000-09-14 Nellcor Puritan Bennett Incorporated Method and circuit for storing and providing historical physiological data
IL129790A0 (en) 1999-03-09 2000-02-29 Orsense Ltd A device for enhancement of blood-related signals
US6360114B1 (en) 1999-03-25 2002-03-19 Masimo Corporation Pulse oximeter probe-off detector
US6675031B1 (en) 1999-04-14 2004-01-06 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
US6308089B1 (en) 1999-04-14 2001-10-23 O.B. Scientific, Inc. Limited use medical probe
WO2000064338A2 (en) 1999-04-23 2000-11-02 Massachusetts Institute Of Technology Isolating ring sensor design
US6226539B1 (en) 1999-05-26 2001-05-01 Mallinckrodt, Inc. Pulse oximeter having a low power led drive
US6631281B1 (en) 1999-06-10 2003-10-07 Koninklijke Philips Electronics N.V. Recognition of a useful signal in a measurement signal
WO2000077675A1 (en) 1999-06-10 2000-12-21 Koninklijke Philips Electronics N.V. Interference suppression for measuring signals with periodic wanted signal
WO2000077659A1 (en) 1999-06-10 2000-12-21 Koninklijke Philips Electronics N.V. Quality indicator for measurement signals, in particular, for medical measurement signals such as those used in measuring oxygen saturation
US6587704B1 (en) 1999-06-16 2003-07-01 Orsense Ltd. Method for non-invasive optical measurements of blood parameters
US20030018243A1 (en) * 1999-07-07 2003-01-23 Gerhardt Thomas J. Selectively plated sensor
JP2001017404A (en) 1999-07-09 2001-01-23 Koike Medical:Kk Medical measuring device
CA2375635A1 (en) 1999-07-14 2001-01-18 Providence Health System-Oregon Adaptive calibration pulsed oximetry method and device
US6760609B2 (en) 1999-07-14 2004-07-06 Providence Health System - Oregon Adaptive calibration pulsed oximetry method and device
US6512937B2 (en) * 1999-07-22 2003-01-28 Sensys Medical, Inc. Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction
AU6894500A (en) 1999-08-06 2001-03-05 Board Of Regents, The University Of Texas System Optoacoustic monitoring of blood oxygenation
US6515273B2 (en) 1999-08-26 2003-02-04 Masimo Corporation System for indicating the expiration of the useful operating life of a pulse oximetry sensor
US6608562B1 (en) 1999-08-31 2003-08-19 Denso Corporation Vital signal detecting apparatus
CA2384476A1 (en) 1999-09-10 2001-03-15 Stephen H. Gorski Oximeter sensor with functional liner
JP3627214B2 (en) 1999-09-13 2005-03-09 日本光電工業株式会社 Blood absorption substance measuring device
US6708049B1 (en) 1999-09-28 2004-03-16 Nellcor Puritan Bennett Incorporated Sensor with signature of data relating to sensor
US6213952B1 (en) 1999-09-28 2001-04-10 Orsense Ltd. Optical device for non-invasive measurement of blood related signals utilizing a finger holder
US6339715B1 (en) * 1999-09-30 2002-01-15 Ob Scientific Method and apparatus for processing a physiological signal
EP1233697A4 (en) 1999-10-07 2005-06-22 Alexander K Mills Device and method for noninvasive continuous determination of physiologic characteristics
US6400971B1 (en) 1999-10-12 2002-06-04 Orsense Ltd. Optical device for non-invasive measurement of blood-related signals and a finger holder therefor
US7359741B2 (en) 1999-11-15 2008-04-15 Spo Medical Equipment Ltd. Sensor and radiance based diagnostics
CA2290083A1 (en) 1999-11-19 2001-05-19 Linde Medical Sensors Ag. Device for the combined measurement of the arterial oxygen saturation and the transcutaneous co2 partial pressure of an ear lobe
US6665551B1 (en) 1999-11-19 2003-12-16 Nihon Kohden Corporation Current driving system of light emitting diode
ATE287237T1 (en) 1999-11-22 2005-02-15 Mallinckrodt Inc PULSE OXIMETER SENSOR WITH A WIDER METAL STRAP
JP2001149349A (en) 1999-11-26 2001-06-05 Nippon Koden Corp Sensor for living body
US6542764B1 (en) 1999-12-01 2003-04-01 Masimo Corporation Pulse oximeter monitor for expressing the urgency of the patient's condition
US6950687B2 (en) 1999-12-09 2005-09-27 Masimo Corporation Isolation and communication element for a resposable pulse oximetry sensor
US6671531B2 (en) 1999-12-09 2003-12-30 Masimo Corporation Sensor wrap including foldable applicator
US6377829B1 (en) 1999-12-09 2002-04-23 Masimo Corporation Resposable pulse oximetry sensor
US6360113B1 (en) 1999-12-17 2002-03-19 Datex-Ohmeda, Inc. Photoplethysmographic instrument
US6381479B1 (en) 1999-12-17 2002-04-30 Date-Ohmeda, Inc. Pulse oximeter with improved DC and low frequency rejection
US6397092B1 (en) 1999-12-17 2002-05-28 Datex-Ohmeda, Inc. Oversampling pulse oximeter
US6408198B1 (en) 1999-12-17 2002-06-18 Datex-Ohmeda, Inc. Method and system for improving photoplethysmographic analyte measurements by de-weighting motion-contaminated data
US6363269B1 (en) 1999-12-17 2002-03-26 Datex-Ohmeda, Inc. Synchronized modulation/demodulation method and apparatus for frequency division multiplexed spectrophotometric system
US6152754A (en) 1999-12-21 2000-11-28 Masimo Corporation Circuit board based cable connector
AU1678800A (en) 1999-12-22 2001-07-03 Orsense Ltd. A method of optical measurements for determining various parameters of the patient's blood
US6594513B1 (en) 2000-01-12 2003-07-15 Paul D. Jobsis Method and apparatus for determining oxygen saturation of blood in body organs
US7198778B2 (en) 2000-01-18 2007-04-03 Mallinckrodt Inc. Tumor-targeted optical contrast agents
US6564088B1 (en) 2000-01-21 2003-05-13 University Of Massachusetts Probe for localized tissue spectroscopy
WO2001054573A1 (en) 2000-01-28 2001-08-02 The General Hospital Corporation Fetal pulse oximetry
US6816266B2 (en) 2000-02-08 2004-11-09 Deepak Varshneya Fiber optic interferometric vital sign monitor for use in magnetic resonance imaging, confined care facilities and in-hospital
US6574491B2 (en) 2000-02-10 2003-06-03 Siemens Medical Systems Inc. Method and apparatus for detecting a physiological parameter
AU3687401A (en) 2000-02-11 2001-08-20 U S Army Inst Of Surgical Res Pacifier pulse oximeter sensor
US6385821B1 (en) 2000-02-17 2002-05-14 Udt Sensors, Inc. Apparatus for securing an oximeter probe to a patient
IL135077A0 (en) * 2000-03-15 2001-05-20 Orsense Ltd A probe for use in non-invasive measurements of blood related parameters
US6538721B2 (en) * 2000-03-24 2003-03-25 Nikon Corporation Scanning exposure apparatus
WO2001073394A2 (en) 2000-03-29 2001-10-04 Kinderlife Instruments, Inc. Method and apparatus for determining physiological characteristics
US6453183B1 (en) 2000-04-10 2002-09-17 Stephen D. Walker Cerebral oxygenation monitor
CA2405825C (en) 2000-04-17 2010-11-09 Nellcor Puritan Bennett Incorporated Pulse oximeter sensor with piece-wise function
US6699199B2 (en) 2000-04-18 2004-03-02 Massachusetts Institute Of Technology Photoplethysmograph signal-to-noise line enhancement
US6480729B2 (en) 2000-04-28 2002-11-12 Alexander K. Mills Method for determining blood constituents
US6456862B2 (en) 2000-05-02 2002-09-24 Cas Medical Systems, Inc. Method for non-invasive spectrophotometric blood oxygenation monitoring
US6449501B1 (en) 2000-05-26 2002-09-10 Ob Scientific, Inc. Pulse oximeter with signal sonification
US6554788B1 (en) 2000-06-02 2003-04-29 Cobe Cardiovascular, Inc. Hematocrit sampling system
US6430525B1 (en) 2000-06-05 2002-08-06 Masimo Corporation Variable mode averager
US6510331B1 (en) 2000-06-05 2003-01-21 Glenn Williams Switching device for multi-sensor array
GB0014855D0 (en) 2000-06-16 2000-08-09 Isis Innovation Combining measurements from different sensors
GB0014854D0 (en) * 2000-06-16 2000-08-09 Isis Innovation System and method for acquiring data
US6470199B1 (en) 2000-06-21 2002-10-22 Masimo Corporation Elastic sock for positioning an optical probe
DE10030862B4 (en) 2000-06-23 2006-02-09 Nicolay Verwaltungs-Gmbh Device for fixing a medical measuring device, in particular a pulse oximetry sensor, and use of such a device
US6697656B1 (en) 2000-06-27 2004-02-24 Masimo Corporation Pulse oximetry sensor compatible with multiple pulse oximetry systems
US6587703B2 (en) 2000-09-18 2003-07-01 Photonify Technologies, Inc. System and method for measuring absolute oxygen saturation
US6597931B1 (en) 2000-09-18 2003-07-22 Photonify Technologies, Inc. System and method for absolute oxygen saturation
US6640116B2 (en) 2000-08-18 2003-10-28 Masimo Corporation Optical spectroscopy pathlength measurement system
US6719686B2 (en) 2000-08-30 2004-04-13 Mallinckrodt, Inc. Fetal probe having an optical imaging device
US6591123B2 (en) 2000-08-31 2003-07-08 Mallinckrodt Inc. Oximeter sensor with digital memory recording sensor data
US6628975B1 (en) 2000-08-31 2003-09-30 Mallinckrodt Inc. Oximeter sensor with digital memory storing data
US6553241B2 (en) 2000-08-31 2003-04-22 Mallinckrodt Inc. Oximeter sensor with digital memory encoding sensor expiration data
US6606510B2 (en) 2000-08-31 2003-08-12 Mallinckrodt Inc. Oximeter sensor with digital memory encoding patient data
US6600940B1 (en) 2000-08-31 2003-07-29 Mallinckrodt Inc. Oximeter sensor with digital memory
US6571113B1 (en) 2000-09-21 2003-05-27 Mallinckrodt, Inc. Oximeter sensor adapter with coding element
US6490466B1 (en) 2000-09-21 2002-12-03 Mallinckrodt Inc. Interconnect circuit between non-compatible oximeter and sensor
JP3845776B2 (en) 2000-09-22 2006-11-15 日本光電工業株式会社 Absorbent concentration measuring device in blood
US6434408B1 (en) 2000-09-29 2002-08-13 Datex-Ohmeda, Inc. Pulse oximetry method and system with improved motion correction
US6505060B1 (en) * 2000-09-29 2003-01-07 Datex-Ohmeda, Inc. Method and apparatus for determining pulse oximetry differential values
IL138884A (en) 2000-10-05 2006-07-05 Conmed Corp Pulse oximeter and a method of its operation
US6819950B2 (en) 2000-10-06 2004-11-16 Alexander K. Mills Method for noninvasive continuous determination of physiologic characteristics
US6519484B1 (en) 2000-11-01 2003-02-11 Ge Medical Systems Information Technologies, Inc. Pulse oximetry sensor
US6466809B1 (en) 2000-11-02 2002-10-15 Datex-Ohmeda, Inc. Oximeter sensor having laminated housing with flat patient interface surface
JP3516233B2 (en) * 2000-11-06 2004-04-05 日本板硝子株式会社 Manufacturing method of glass substrate for information recording medium
US6505133B1 (en) 2000-11-15 2003-01-07 Datex-Ohmeda, Inc. Simultaneous signal attenuation measurements utilizing code division multiplexing
US6560470B1 (en) 2000-11-15 2003-05-06 Datex-Ohmeda, Inc. Electrical lockout photoplethysmographic measurement system
US6594512B2 (en) 2000-11-21 2003-07-15 Siemens Medical Solutions Usa, Inc. Method and apparatus for estimating a physiological parameter from a physiological signal
US6760610B2 (en) 2000-11-23 2004-07-06 Sentec Ag Sensor and method for measurement of physiological parameters
US20020068859A1 (en) 2000-12-01 2002-06-06 Knopp Christina A. Laser diode drive scheme for noise reduction in photoplethysmographic measurements
US6760607B2 (en) 2000-12-29 2004-07-06 Masimo Corporation Ribbon cable substrate pulse oximetry sensor
EP1353594B1 (en) 2000-12-29 2008-10-29 Ares Medical, Inc. Sleep apnea risk evaluation
WO2002056760A1 (en) * 2001-01-19 2002-07-25 Tufts University Method for measuring venous oxygen saturation
US6501974B2 (en) 2001-01-22 2002-12-31 Datex-Ohmeda, Inc. Compensation of human variability in pulse oximetry
US6510329B2 (en) * 2001-01-24 2003-01-21 Datex-Ohmeda, Inc. Detection of sensor off conditions in a pulse oximeter
US6618602B2 (en) 2001-03-08 2003-09-09 Palco Labs, Inc. Method and apparatus for simultaneously determining a patient's identification and blood oxygen saturation
US20020133067A1 (en) 2001-03-15 2002-09-19 Jackson William H. New born and premature infant SIDS warning device
US6591122B2 (en) 2001-03-16 2003-07-08 Nellcor Puritan Bennett Incorporated Device and method for monitoring body fluid and electrolyte disorders
US6556852B1 (en) 2001-03-27 2003-04-29 I-Medik, Inc. Earpiece with sensors to measure/monitor multiple physiological variables
JP2002303576A (en) 2001-04-05 2002-10-18 Nippon Colin Co Ltd Oxygen saturation measuring device
GR1003802B (en) * 2001-04-17 2002-02-08 Micrel �.�.�. ������� ��������� ��������������� ��������� Tele-medicine system
AU2002252717A1 (en) 2001-04-19 2002-11-05 Sean T. O'mara Pulse oximetry device and method
KR100612827B1 (en) 2001-04-19 2006-08-14 삼성전자주식회사 Method and apparatus for noninvasively measuring hemoglobin concentration and oxygen saturation
US6505061B2 (en) * 2001-04-20 2003-01-07 Datex-Ohmeda, Inc. Pulse oximetry sensor with improved appendage cushion
US20020156354A1 (en) 2001-04-20 2002-10-24 Larson Eric Russell Pulse oximetry sensor with improved spring
JP2004532526A (en) 2001-05-03 2004-10-21 マシモ・コーポレイション Flex circuit shield optical sensor and method of manufacturing the flex circuit shield optical sensor
JP4464128B2 (en) * 2001-06-20 2010-05-19 パーデュー リサーチ ファウンデーション Site irradiation pressure zone for in vitro optical measurement of blood indicators
US6801802B2 (en) 2001-06-29 2004-10-05 Ge Medical Systems Information Technologies, Inc. System and method for selecting physiological data from a plurality of physiological data sources
US6850787B2 (en) 2001-06-29 2005-02-01 Masimo Laboratories, Inc. Signal component processor
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US6731967B1 (en) 2001-07-16 2004-05-04 Pacesetter, Inc. Methods and devices for vascular plethysmography via modulation of source intensity
US6754516B2 (en) 2001-07-19 2004-06-22 Nellcor Puritan Bennett Incorporated Nuisance alarm reductions in a physiological monitor
DE10136355A1 (en) * 2001-07-26 2003-02-13 Niels Rahe-Meyer Device for monitoring vital parameters of an animal or human body consists of a portable bag with sensors, analysis electronics and visual and audible output means as well as interfaces for connection to other devices
US6802812B1 (en) 2001-07-27 2004-10-12 Nostix Llc Noninvasive optical sensor for measuring near infrared light absorbing analytes
USD455834S1 (en) 2001-08-29 2002-04-16 Bci, Inc. Finger oximeter
US6654621B2 (en) 2001-08-29 2003-11-25 Bci, Inc. Finger oximeter with finger grip suspension system
US6668183B2 (en) 2001-09-11 2003-12-23 Datex-Ohmeda, Inc. Diode detection circuit
IL145445A (en) 2001-09-13 2006-12-31 Conmed Corp Signal processing method and device for signal-to-noise improvement
US6671532B1 (en) 2001-09-17 2003-12-30 Respironics Novametrix, Inc. Pulse oximetry sensor and dispensing method
GB0123395D0 (en) * 2001-09-28 2001-11-21 Isis Innovation Locating features ina photoplethysmograph signal
US6697655B2 (en) 2001-10-05 2004-02-24 Mortara Instrument, Inc. Low power pulse oximeter
US6564077B2 (en) 2001-10-10 2003-05-13 Mortara Instrument, Inc. Method and apparatus for pulse oximetry
US20030073890A1 (en) 2001-10-10 2003-04-17 Hanna D. Alan Plethysmographic signal processing method and system
US6697653B2 (en) 2001-10-10 2004-02-24 Datex-Ohmeda, Inc. Reduced wire count voltage drop sense
US6840904B2 (en) * 2001-10-11 2005-01-11 Jason Goldberg Medical monitoring device and system
US20030073889A1 (en) 2001-10-11 2003-04-17 Keilbach Kevin A. Monitoring led wavelength shift in photoplethysmography
US6773397B2 (en) 2001-10-11 2004-08-10 Draeger Medical Systems, Inc. System for processing signal data representing physiological parameters
US6748254B2 (en) 2001-10-12 2004-06-08 Nellcor Puritan Bennett Incorporated Stacked adhesive optical sensor
WO2003034911A2 (en) 2001-10-22 2003-05-01 Vsm Medtech Ltd. Physiological parameter monitoring system and sensor assembly for same
US6839579B1 (en) 2001-11-02 2005-01-04 Nellcor Puritan Bennett Incorporated Temperature indicating oximetry sensor
US6701170B2 (en) 2001-11-02 2004-03-02 Nellcor Puritan Bennett Incorporated Blind source separation of pulse oximetry signals
JP4174648B2 (en) 2001-11-12 2008-11-05 ロート製薬株式会社 Aqueous composition
JP3709836B2 (en) 2001-11-20 2005-10-26 コニカミノルタセンシング株式会社 Blood component measuring device
US20030100840A1 (en) 2001-11-28 2003-05-29 Nihon Kohden Corporation Pulse photometry probe
US6839580B2 (en) * 2001-12-06 2005-01-04 Ric Investments, Inc. Adaptive calibration for pulse oximetry
US6780158B2 (en) 2001-12-14 2004-08-24 Nihon Kohden Corporation Signal processing method and pulse wave signal processing method
US6934570B2 (en) 2002-01-08 2005-08-23 Masimo Corporation Physiological sensor combination
US6668182B2 (en) 2002-01-10 2003-12-23 Northeast Monitoring Pulse oxymetry data processing
US6822564B2 (en) 2002-01-24 2004-11-23 Masimo Corporation Parallel measurement alarm processor
ATE369788T1 (en) 2002-01-31 2007-09-15 Univ Loughborough VENOUS PULSE OXYMETERY
US7020507B2 (en) 2002-01-31 2006-03-28 Dolphin Medical, Inc. Separating motion from cardiac signals using second order derivative of the photo-plethysmogram and fast fourier transforms
US6882874B2 (en) 2002-02-15 2005-04-19 Datex-Ohmeda, Inc. Compensation of human variability in pulse oximetry
EP1485015A1 (en) 2002-02-22 2004-12-15 Datex-Ohmeda, Inc. Cepstral domain pulse oximetry
US6709402B2 (en) 2002-02-22 2004-03-23 Datex-Ohmeda, Inc. Apparatus and method for monitoring respiration with a pulse oximeter
US20040039273A1 (en) 2002-02-22 2004-02-26 Terry Alvin Mark Cepstral domain pulse oximetry
US6805673B2 (en) 2002-02-22 2004-10-19 Datex-Ohmeda, Inc. Monitoring mayer wave effects based on a photoplethysmographic signal
US6702752B2 (en) 2002-02-22 2004-03-09 Datex-Ohmeda, Inc. Monitoring respiration based on plethysmographic heart rate signal
US6863652B2 (en) 2002-03-13 2005-03-08 Draeger Medical Systems, Inc. Power conserving adaptive control system for generating signal in portable medical devices
KR100455289B1 (en) * 2002-03-16 2004-11-08 삼성전자주식회사 Method of diagnosing using a ray and apparatus thereof
EP1489963A4 (en) 2002-03-21 2008-12-10 Datex Ohmeda Inc Neonatal bootie wrap
US6647279B2 (en) 2002-03-22 2003-11-11 Jonas Alexander Pologe Hybrid optical delivery system for photoplethysmography
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US20030212316A1 (en) 2002-05-10 2003-11-13 Leiden Jeffrey M. Method and apparatus for determining blood parameters and vital signs of a patient
US6711425B1 (en) 2002-05-28 2004-03-23 Ob Scientific, Inc. Pulse oximeter with calibration stabilization
US8996090B2 (en) * 2002-06-03 2015-03-31 Exostat Medical, Inc. Noninvasive detection of a physiologic parameter within a body tissue of a patient
US7024235B2 (en) 2002-06-20 2006-04-04 University Of Florida Research Foundation, Inc. Specially configured nasal pulse oximeter/photoplethysmography probes, and combined nasal probe/cannula, selectively with sampler for capnography, and covering sleeves for same
US6909912B2 (en) 2002-06-20 2005-06-21 University Of Florida Non-invasive perfusion monitor and system, specially configured oximeter probes, methods of using same, and covers for probes
US6865407B2 (en) 2002-07-11 2005-03-08 Optical Sensors, Inc. Calibration technique for non-invasive medical devices
AU2003242975B2 (en) 2002-07-15 2008-04-17 Itamar Medical Ltd. Body surface probe, apparatus and method for non-invasively detecting medical conditions
US7072701B2 (en) 2002-07-26 2006-07-04 Cas Medical Systems, Inc. Method for spectrophotometric blood oxygenation monitoring
US6850789B2 (en) 2002-07-29 2005-02-01 Welch Allyn, Inc. Combination SPO2/temperature measuring apparatus
US7096054B2 (en) 2002-08-01 2006-08-22 Masimo Corporation Low noise optical housing
KR100493157B1 (en) 2002-08-02 2005-06-03 삼성전자주식회사 Probe using in measuring organism signal and system for measuring organism signal comprising the same
US7133711B2 (en) 2002-08-07 2006-11-07 Orsense, Ltd. Method and system for decomposition of multiple channel signals
US6707257B2 (en) 2002-08-08 2004-03-16 Datex-Ohmeda, Inc. Ferrite stabilized LED drive
US6720734B2 (en) 2002-08-08 2004-04-13 Datex-Ohmeda, Inc. Oximeter with nulled op-amp current feedback
US6825619B2 (en) 2002-08-08 2004-11-30 Datex-Ohmeda, Inc. Feedback-controlled LED switching
US6763256B2 (en) 2002-08-16 2004-07-13 Optical Sensors, Inc. Pulse oximeter
US6879850B2 (en) 2002-08-16 2005-04-12 Optical Sensors Incorporated Pulse oximeter with motion detection
US6745061B1 (en) 2002-08-21 2004-06-01 Datex-Ohmeda, Inc. Disposable oximetry sensor
US6643531B1 (en) 2002-08-22 2003-11-04 Bci, Inc. Combination fingerprint and oximetry device
US6912413B2 (en) 2002-09-13 2005-06-28 Ge Healthcare Finland Oy Pulse oximeter
US7341559B2 (en) 2002-09-14 2008-03-11 Masimo Corporation Pulse oximetry ear sensor
US20040186358A1 (en) 2002-09-25 2004-09-23 Bart Chernow Monitoring system containing a hospital bed with integrated display
US7142901B2 (en) 2002-09-25 2006-11-28 Masimo Corporation Parameter compensated physiological monitor
US7810359B2 (en) 2002-10-01 2010-10-12 Nellcor Puritan Bennett Llc Headband with tension indicator
US7096052B2 (en) 2002-10-04 2006-08-22 Masimo Corporation Optical probe including predetermined emission wavelength based on patient type
JP4352315B2 (en) 2002-10-31 2009-10-28 日本光電工業株式会社 Signal processing method / apparatus and pulse photometer using the same
US6731962B1 (en) 2002-10-31 2004-05-04 Smiths Medical Pm Inc Finger oximeter with remote telecommunications capabilities and system therefor
US7027849B2 (en) 2002-11-22 2006-04-11 Masimo Laboratories, Inc. Blood parameter measurement system
US7139559B2 (en) 2002-12-09 2006-11-21 Qualcomm Inc. System and method for handshaking between wireless devices and servers
JP4489385B2 (en) 2002-12-12 2010-06-23 株式会社日立メディコ Measuring probe and biological light measuring device
WO2004054440A1 (en) 2002-12-13 2004-07-01 Massachusetts Institute Of Technology Vibratory venous and arterial oximetry sensor
US6754515B1 (en) 2002-12-17 2004-06-22 Kestrel Labs, Inc. Stabilization of noisy optical sources in photoplethysmography
KR100499139B1 (en) 2003-01-07 2005-07-04 삼성전자주식회사 Method of removing abnormal data and blood constituent analysing system using spectroscopy employing the same
US7006856B2 (en) 2003-01-10 2006-02-28 Nellcor Puritan Bennett Incorporated Signal quality metrics design for qualifying data for a physiological monitor
US7016715B2 (en) 2003-01-13 2006-03-21 Nellcorpuritan Bennett Incorporated Selection of preset filter parameters based on signal quality
CA2513379C (en) 2003-01-14 2009-02-03 Fluor Corporation Configurations and methods for ultrasonic time of flight diffraction analysis
US7225006B2 (en) 2003-01-23 2007-05-29 Masimo Corporation Attachment and optical probe
US6920345B2 (en) 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
CN1744851B (en) 2003-02-05 2010-05-26 皇家飞利浦电子股份有限公司 Medical sensor
US7272426B2 (en) 2003-02-05 2007-09-18 Koninklijke Philips Electronics N.V. Finger medical sensor
DE10311408B3 (en) 2003-03-13 2004-09-02 Universität Zu Lübeck Non-invasive measurement of blood component concentrations, e.g. for monitoring patients in an emergency, comprises using light with a pulsed ultrasonic beam to detect backscattered light for evaluation
US6968221B2 (en) 2003-03-14 2005-11-22 Futrex, Inc. Low-cost method and apparatus for non-invasively measuring blood glucose levels
US6993372B2 (en) * 2003-06-03 2006-01-31 Orsense Ltd. Method and system for use in non-invasive optical measurements of blood parameters
US6992772B2 (en) * 2003-06-19 2006-01-31 Optix Lp Method and apparatus for optical sampling to reduce interfering variances
US6954664B2 (en) 2003-06-20 2005-10-11 Smiths Medical Pm, Inc. Oximetry simulator
US7025728B2 (en) 2003-06-30 2006-04-11 Nihon Kohden Corporation Method for reducing noise, and pulse photometer using the method
US7003338B2 (en) 2003-07-08 2006-02-21 Masimo Corporation Method and apparatus for reducing coupling between signals
DE10334542A1 (en) 2003-07-29 2005-02-17 Pav Patentverwertung Kg Brewing device with elastic element for holding down the coffee pad
US7263396B2 (en) 2003-08-08 2007-08-28 Cardiodigital Limited Ear sensor assembly
US7144268B2 (en) 2003-08-19 2006-12-05 Spacelabs Medical, Inc. Latching medical patient parameter safety connector and method
US7107088B2 (en) 2003-08-25 2006-09-12 Sarnoff Corporation Pulse oximetry methods and apparatus for use within an auditory canal
WO2005020798A2 (en) 2003-08-27 2005-03-10 Datex-Ohmeda, Inc. Multi-domain motion estimation and plethysmographic recognition using fuzzy neural-nets
US20050049468A1 (en) 2003-09-03 2005-03-03 Sven-Erik Carlson Increasing the performance of an optical pulsoximeter
US20050059869A1 (en) 2003-09-15 2005-03-17 John Scharf Physiological monitoring system and improved sensor device
US7328052B2 (en) 2003-09-19 2008-02-05 Nir Diagnostics Inc. Near infrared risk assessment of diseases
US8412297B2 (en) 2003-10-01 2013-04-02 Covidien Lp Forehead sensor placement
US20050075550A1 (en) 2003-10-03 2005-04-07 Lindekugel Eric W. Quick-clip sensor holder
US7254434B2 (en) 2003-10-14 2007-08-07 Masimo Corporation Variable pressure reusable sensor
TWI250867B (en) 2003-10-22 2006-03-11 Surewin Technology Corp Pulse wave analysis device
GB2408209A (en) 2003-11-18 2005-05-25 Qinetiq Ltd Flexible medical light source
WO2005053530A1 (en) 2003-12-02 2005-06-16 Deepbreeze Ltd. Holder for affixing signal pick-up devices to a body surface
DE20318882U1 (en) 2003-12-03 2004-03-11 Drewes, Susanne Pulse-oximetry sensor suitable for new-born includes flexible, conformed, hygienic material embedding circuitry for disinfection and reuse
US7305262B2 (en) 2003-12-11 2007-12-04 Ge Medical Systems Information Technologies, Inc. Apparatus and method for acquiring oximetry and electrocardiogram signals
US7280858B2 (en) 2004-01-05 2007-10-09 Masimo Corporation Pulse oximetry sensor
JP2005200031A (en) 2004-01-13 2005-07-28 Showa Kiki Kogyo Co Ltd Pos communication failure preventive device
US7162288B2 (en) * 2004-02-25 2007-01-09 Nellcor Purtain Bennett Incorporated Techniques for detecting heart pulses and reducing power consumption in sensors
US20050197548A1 (en) 2004-03-05 2005-09-08 Elekon Industries Usa, Inc. Disposable/reusable flexible sensor
US7570979B2 (en) 2004-03-30 2009-08-04 Philip George Cooper Methods and apparatus for patient monitoring
JP4216810B2 (en) 2004-03-30 2009-01-28 株式会社東芝 Biological information measuring device
JP4191642B2 (en) 2004-04-02 2008-12-03 三菱電機株式会社 Transflective liquid crystal display device and manufacturing method thereof
US20050228248A1 (en) 2004-04-07 2005-10-13 Thomas Dietiker Clip-type sensor having integrated biasing and cushioning means
US7179228B2 (en) 2004-04-07 2007-02-20 Triage Wireless, Inc. Cuffless system for measuring blood pressure
US8082015B2 (en) 2004-04-13 2011-12-20 The Trustees Of The University Of Pennsylvania Optical measurement of tissue blood flow, hemodynamics and oxygenation
US7263393B2 (en) 2004-06-07 2007-08-28 Healing Rhythms, Llc. Biofeedback ring sensors
US7164938B2 (en) * 2004-06-21 2007-01-16 Purdue Research Foundation Optical noninvasive vital sign monitor
US7313425B2 (en) 2004-07-08 2007-12-25 Orsense Ltd. Device and method for non-invasive optical measurements
WO2006005169A1 (en) 2004-07-09 2006-01-19 Telemedic Inc Vital sign monitoring system and method
US7433726B2 (en) 2004-09-27 2008-10-07 Gene Perkins Soc-Ox
US20060079794A1 (en) 2004-09-28 2006-04-13 Impact Sports Technologies, Inc. Monitoring device, method and system
US20060253010A1 (en) 2004-09-28 2006-11-09 Donald Brady Monitoring device, method and system
US20070106132A1 (en) 2004-09-28 2007-05-10 Elhag Sammy I Monitoring device, method and system
US8560041B2 (en) * 2004-10-04 2013-10-15 Braingate Co., Llc Biological interface system
US7341560B2 (en) 2004-10-05 2008-03-11 Rader, Fishman & Grauer Pllc Apparatuses and methods for non-invasively monitoring blood parameters
US7683759B2 (en) 2004-10-06 2010-03-23 Martis Ip Holdings, Llc Patient identification system
US20060084878A1 (en) 2004-10-18 2006-04-20 Triage Wireless, Inc. Personal computer-based vital signs monitor
EP1807001A2 (en) 2004-11-05 2007-07-18 EnviteC-Wismar GmbH Apparatus for improved pulse oximetry measurement
US7359742B2 (en) 2004-11-12 2008-04-15 Nonin Medical, Inc. Sensor assembly
US7658716B2 (en) 2004-12-07 2010-02-09 Triage Wireless, Inc. Vital signs monitor using an optical ear-based module
US20060122520A1 (en) * 2004-12-07 2006-06-08 Dr. Matthew Banet Vital sign-monitoring system with multiple optical modules
US7412272B2 (en) 2005-01-13 2008-08-12 Datex-Ohmeda, Inc. Finger sleeve sensor holder
WO2006079043A2 (en) 2005-01-21 2006-07-27 Medrad, Inc. Pulse oximetry grip sensor and method of making same
JP2006204742A (en) 2005-01-31 2006-08-10 Konica Minolta Sensing Inc Method and system for evaluating sleep, its operation program, pulse oxymeter, and system for supporting sleep
US7236881B2 (en) 2005-02-07 2007-06-26 International Business Machines Corporation Method and apparatus for end-to-end travel time estimation using dynamic traffic data
US7747301B2 (en) 2005-03-30 2010-06-29 Skyline Biomedical, Inc. Apparatus and method for non-invasive and minimally-invasive sensing of parameters relating to blood
US20060224053A1 (en) 2005-03-30 2006-10-05 Skyline Biomedical, Inc. Apparatus and method for non-invasive and minimally-invasive sensing of venous oxygen saturation and pH levels
KR100716824B1 (en) 2005-04-28 2007-05-09 삼성전기주식회사 Printed circuit board with embedded capacitors using hybrid materials, and manufacturing process thereof
US7330746B2 (en) 2005-06-07 2008-02-12 Chem Image Corporation Non-invasive biochemical analysis
JP4721130B2 (en) 2005-07-29 2011-07-13 日本光電工業株式会社 Pulse oximeter probe
US7590439B2 (en) 2005-08-08 2009-09-15 Nellcor Puritan Bennett Llc Bi-stable medical sensor and technique for using the same
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7657294B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
JP3116260U (en) 2005-08-30 2005-12-02 マーテック株式会社 Swivel hanger
JP3116259U (en) 2005-08-30 2005-12-02 モリト株式会社 Wire hanger
US20070060808A1 (en) 2005-09-12 2007-03-15 Carine Hoarau Medical sensor for reducing motion artifacts and technique for using the same
CN101272728B (en) 2005-09-21 2010-09-29 杨章民 Electronic device
US7869850B2 (en) 2005-09-29 2011-01-11 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
EP1928300A4 (en) 2005-09-29 2015-09-09 Conmed Corp Sensor holder
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7555327B2 (en) 2005-09-30 2009-06-30 Nellcor Puritan Bennett Llc Folding medical sensor and technique for using the same
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US7483731B2 (en) 2005-09-30 2009-01-27 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
JP2007105316A (en) 2005-10-14 2007-04-26 Konica Minolta Sensing Inc Bioinformation measuring instrument
US20070185393A1 (en) 2006-02-03 2007-08-09 Triage Wireless, Inc. System for measuring vital signs using an optical module featuring a green light source
WO2007097754A1 (en) 2006-02-22 2007-08-30 Dexcom, Inc. Analyte sensor
US20070244377A1 (en) 2006-03-14 2007-10-18 Cozad Jenny L Pulse oximeter sleeve
US7522948B2 (en) 2006-05-02 2009-04-21 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US7477924B2 (en) 2006-05-02 2009-01-13 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7993275B2 (en) 2006-05-25 2011-08-09 Sotera Wireless, Inc. Bilateral device, system and method for monitoring vital signs
JP3134144U (en) 2006-11-13 2007-08-09 ▲寛▼重 小林 Article-mounted lid and Western-style toilet equipped with article-mounted lid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2635221A1 (en) * 1976-08-05 1978-02-09 Bosch Gmbh Robert Photoelectric heartbeat pulse detector - has spring clip for clamping finger between clip arms bearing light source and photosensitive element
EP0435500A1 (en) * 1989-12-18 1991-07-03 Sentinel Monitoring, Inc. Non-invasive sensor
DE19541605A1 (en) * 1995-11-08 1997-05-15 Hewlett Packard Co Sensor especially for pulse oximetry on human finger or toe
US5891021A (en) * 1998-06-03 1999-04-06 Perdue Holdings, Inc. Partially rigid-partially flexible electro-optical sensor for fingertip transillumination
US20030166998A1 (en) * 2002-02-22 2003-09-04 Lowery Guy Russell Preloaded sensor holder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8909313B2 (en) 2008-09-25 2014-12-09 Nemodevices Ag Device for diagnosis and/or therapy of physiological characteristics of a selected portion of a body by optical reflectance or optical transmission

Also Published As

Publication number Publication date
US20080076996A1 (en) 2008-03-27
US8195264B2 (en) 2012-06-05
US20080076981A1 (en) 2008-03-27
WO2008039392A3 (en) 2008-10-09
WO2008039391A2 (en) 2008-04-03
US20080076980A1 (en) 2008-03-27
US8190224B2 (en) 2012-05-29
US8190225B2 (en) 2012-05-29
WO2008039391A3 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
US8195264B2 (en) Medical sensor for reducing signal artifacts and technique for using the same
US8175671B2 (en) Medical sensor for reducing signal artifacts and technique for using the same
US8396527B2 (en) Medical sensor for reducing signal artifacts and technique for using the same
US8437826B2 (en) Clip-style medical sensor and technique for using the same
US8145288B2 (en) Medical sensor for reducing signal artifacts and technique for using the same
US8805463B2 (en) Medical sensor with compressible light barrier and technique for using the same
US8818476B2 (en) Reflectance and/or transmissive pulse oximeter
US7477924B2 (en) Medical sensor and technique for using the same
US8515512B2 (en) Opaque, electrically nonconductive region on a medical sensor
EP1928303B1 (en) Medical sensor
US8532729B2 (en) Moldable ear sensor
US8768426B2 (en) Y-shaped ear sensor with strain relief
US20120253148A1 (en) Flexible bandage ear sensor
US20090171173A1 (en) System and method for reducing motion artifacts in a sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07838697

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, AS PER OUR COMMUNICATION DATED 10.06.09 (EPO FORM 1205A)

122 Ep: pct application non-entry in european phase

Ref document number: 07838697

Country of ref document: EP

Kind code of ref document: A2