WO2008064667A2 - Method for the production of elemental mercury from mercury compounds - Google Patents

Method for the production of elemental mercury from mercury compounds Download PDF

Info

Publication number
WO2008064667A2
WO2008064667A2 PCT/DE2007/002165 DE2007002165W WO2008064667A2 WO 2008064667 A2 WO2008064667 A2 WO 2008064667A2 DE 2007002165 W DE2007002165 W DE 2007002165W WO 2008064667 A2 WO2008064667 A2 WO 2008064667A2
Authority
WO
WIPO (PCT)
Prior art keywords
mercury
copper
compounds
exhaust gases
elemental
Prior art date
Application number
PCT/DE2007/002165
Other languages
German (de)
French (fr)
Other versions
WO2008064667A3 (en
WO2008064667A8 (en
Inventor
Rico Kanefke
Heinz KÖSER
Bernhard Vosteen
Kristina Fehre
Frank Bergmann
Raik Stolle
Original Assignee
Martin-Luther-Universität Halle-Wittenberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Martin-Luther-Universität Halle-Wittenberg filed Critical Martin-Luther-Universität Halle-Wittenberg
Priority to DE112007003325T priority Critical patent/DE112007003325A5/en
Publication of WO2008064667A2 publication Critical patent/WO2008064667A2/en
Publication of WO2008064667A3 publication Critical patent/WO2008064667A3/en
Publication of WO2008064667A8 publication Critical patent/WO2008064667A8/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0045Specially adapted to detect a particular component for Hg
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0013Sample conditioning by a chemical reaction

Definitions

  • the invention relates to a process for the conversion of mercury compounds into elemental mercury (Hg (el)), in particular for the determination of mercury, e.g. in exhaust fumes from coal-fired power plants, waste incineration plants and cement works by sample gas treatment before continuous Hg measuring devices. Furthermore, it can be used to generate Hg (el) -containing test gases from previously evaporated solutions of Hg compounds.
  • Hg (el) elemental mercury
  • Exhaust gases from installations contain mercury and / or its compounds, either through the fuel-related entry into the furnace or through direct or indirect handling in the production process.
  • the exhaust gases may also contain significant amounts of other components, depending on the underlying process.
  • Exhaust gases that are not subject to the strict legal requirements for waste incineration are among others.
  • U. higher levels of SO 2 , NO x , HCl and z. T. also contain halogens.
  • Substantial contamination is also to be expected in the context of non-governmentally required operational measurements (eg to control flue gas cleaning) in the raw gas. In these raw gases, the measurement of mercury is only possible intermittently.
  • the invention is based on the problem to provide a method for the reliable conversion of mercury compounds in measurable Hg (el) available, which said side reactions in the presence of other flue gas components in a wide concentration range and also in raw gases (far outside the legal Limit values) does not have.
  • the problem was solved according to claim 1 and 2, characterized in that a low-temperature method (at 120 0 C to 250 0 C) is used, which copper or copper alloys as a catalyst material for the conversion of mercury compounds, such as. HgX 2 , in elemental mercury. Particularly suitable is the copper alloy red brass RG7 (CuSn 7 ZnPb, material number: 2.1090). This material also has the advantageous property of binding free halogens and thus preventing the reverse reaction to mercury halides. Due to the low temperatures, the process does not lead to a conversion of SO 2 into SO 3 , ie a sulfuric acid formation and thus an additional attack on the metal surfaces of the measuring instrument (amalgamation unit, flow meter) does not take place.
  • a stainless steel cartridge heated from the outside to 17O 0 C and filled with chips of a Cu alloy (eg gunmetal RG7) is flowed through by the sample gas before it reaches the sample gas cooler and the subsequent photometer.
  • the oxidized Hg compounds eg HgCl 2
  • the elemental Hg with the help of copper (as well as other metals contained in gunmetal: Sn, Zn, Pb).
  • the conversion takes place in accordance with Equation 1.
  • Me ° stands for the metals Cu, Sn, Zn and Pb.
  • the main reaction partner is copper, cf. Figure 1.
  • the products of the reactions are metal salts with other valences (eg, copper (I) chloride, stannic chloride).
  • Free halogens (X 2 ) are quantitatively absorbed at the same time, whereby no halogen-related minor findings, z. By incomplete reduction or reoxidation; see. Equation 2.
  • the converter, d. H. the active copper surface can be provided to the sample gas in various forms, e.g. B. beds with packing. It is also possible to use fine wire mesh or sintered materials. Depending on the application and the desired service life of the converter, the amount of active component may vary.
  • Figure Ia shows the results of a thermodynamic equilibrium calculation for the thermal decomposition of 4.0E-08 mol / m 3 mercury chloride in nitrogen with 10% by volume of water.
  • the thermal decomposition starts at about 100 ° C (373.15 K) and is completed at about 250 0 C (523.15 K).
  • the temperature of complete decomposition shifts to much higher temperatures, e.g. B. at 8% by volume of O 2 and 10 mg / m 3 of HCl, this is 900 ° C.
  • Figure Ib now shows the results of the thermodynamic calculation with the aid of solid copper surfaces as a catalyst.
  • the introduced HgCl 2 is completely converted to elemental mercury even at temperatures of> 75 ° C (348K).
  • Hg 2 Cl 2 and CuCl 2 As intermediates occur below this temperature Hg 2 Cl 2 and CuCl 2 .
  • the cupric chloride is unstable above 150 ° C (423K) and is further decomposed to copper (Cu) and HCl.
  • Cu copper
  • Due to this catalytic effect of copper the decomposition of HgCl 2 becomes possible even in this low temperature range.
  • Figure 2 shows an attempt to convert HgCl 2 at 170 ° C and 10% water by volume.
  • a HgCl 2 solution was evaporated at 12:15 h using a Hovacal evaporator from IAS GmbH, Frankfurt.
  • the carrier gas medium was initially nitrogen.
  • After the Hovacal were 2 heated chambers, one with and one without converter material (red brass RG7) connected. From 12:15 - 13:20, the empty chamber was flowed through. It can be seen from the measurement results of the connected measuring instruments (2x DURAG-VEREWA HM 1400, parallel Ix for total mercury and Ix for the elemental portion) that 100% of the total mercury (about 23 ⁇ g / m 3 ) was present as oxidized mercury.
  • FIG. 3 shows the results of an experiment on the reaction time and linearity of the Hg converter.
  • a carrier gas air
  • the connected SICK MERCEM Hg meter was operated in Hg (el) mode, ie without reduction chemicals. Between 02 hours 20 minutes and 4 hours 20 minutes, varying Hg contents were set in the sample gas.
  • Hg (el) When converting over the gunmetal bed at 170 0 C, it immediately leads to a correspondingly altered display on the meter, ie a significant dead time due to the converter could not be detected. Due to the complete conversion to Hg (el), a linear (calibratable) measurement signal could be determined.
  • the converter is therefore suitable for use in Hg analyzers.
  • Figure 4 shows the influence of halogens on the continuous measurement of total mercury using the example of bromine.
  • the Hg metering was again carried out by evaporation of an HgCl 2 solution in air.
  • the sample gas was additionally charged with 160 mg / m 3 of bromine (Br 2 ).
  • the measurement signal drops immediately to ⁇ 20 ⁇ g / m 3 , although 120 ⁇ g / m 3 Hg were still added to the sample gas.
  • the measured value rises again, but does not reach the real value even after 1000 min. The measurement was permanently disturbed for a long time.
  • FIG. 5 shows the results of a similar experiment to Figure 4, now with the measurement gas preparation according to the invention by means of gunmetal converter at 170 ° C.
  • the device's own reduction section was bypassed, so that the device could detect only elemental mercury.
  • the Hg dosage was also analogous to Figure 4, but only adjusted to 56 ⁇ g / m 3 .
  • the meter showed - even without its own preparation - the real value for total mercury, due to the conversion by however only adjusted to 56 ⁇ g / m 3 .
  • the meter showed - even without its own preparation - the real value for total mercury, due to the conversion by the converter according to the invention.
  • 160 mg / m 3 of bromine were again added to the sample gas.
  • no decrease in the measured Hg (ges) content occurred.
  • the interfering influences of halogens chlorine, bromine and iodine
  • Figure 6 shows the results of an experiment on HCl influence on Hg conversion.
  • the Hg concentration was adjusted to 29 ⁇ g / m 3 by evaporation of HgCl 2 solution.
  • the measurements took place again with a SICK MERCEM.
  • the reduction chemicals were - as in the previous experiments - removed again, so that Hg (el) was measured.
  • the device displays the set value from the beginning of dosing (00:50). Increasing the HCl concentration to 100 mg / m 3 (at 01:50) or to 1000 mg / m 3 (at 03:00) shows no significant change in the measurement signal.
  • Figure 7 shows the results of an experiment on the influence of sulfur dioxide on the conversion of HgCl 2 to elemental Hg.
  • the measuring devices used were the SICK MERCEM and the VEREWA HM 1400, but again in Hg (el) mode, ie without any reduction section.
  • the Hg dosage was analogous to all other experiments.
  • the sample gas SO 2 was admixed with a concentration of 1500 mg / m 3 .
  • the conversion by means of gunmetal at 170 ° C showed no change in the measurement signal due to the sulfur dioxide.

Abstract

The aim of the invention is to develop a method allowing mercury to be determined in exhaust gases. All previously known methods for processing exhaust gases use wet chemical processes or thermocatalytic reactors, resulting in not inconsiderable secondary reactions of the components contained in the exhaust gases in addition to mercury. The aim of the invention is to develop a method which reliably converts Hg compounds into measurable Hg(el) without causing said secondary reactions in the presence of other flue gas components. Said aim is achieved by a low-temperature method that uses copper or copper alloys as a catalyst material for converting mercury compounds into elemental mercury. Red brass RG7 is particularly suitable, having the advantageous property of binding free halogens and thus preventing back reaction into mercury halides. Because of the low temperatures, said method prevents SO2 from being converted into SO3 while the metal surfaces of the measuring instrument are not additionally corroded. The test gas flows through an Hg converter in which the oxidized Hg compounds (e.g. HgCl2) are converted into elemental Hg with the help of the copper and other metals (Sn, Zn, Pb) contained in the red brass. The invention is used for determining exhaust gases in coal-fired power plants, waste incinerators, and cement factories.

Description

Verfahren zur Erzeugung von elementarem Quecksilber aus Quecksilberverbindungen Process for the production of elemental mercury from mercury compounds
Die Erfindung betrifft ein Verfahren zur Konvertierung von Quecksilberverbindungen in elementares Quecksilber (Hg (el)), insbesondere zur Bestimmung von Quecksilber z.B. in Abgasen von Kohlekraftwerken, Müllverbrennungsanlagen und Zementwerken durch Probegasaufbereitung vor kontinuierlichen Hg-Messgeräten. Des Weiteren kann es zur Erzeugung Hg(el)-haltiger Prüfgase aus vorher verdampften Lösungen von Hg- Verbindungen eingesetzt werden.The invention relates to a process for the conversion of mercury compounds into elemental mercury (Hg (el)), in particular for the determination of mercury, e.g. in exhaust fumes from coal-fired power plants, waste incineration plants and cement works by sample gas treatment before continuous Hg measuring devices. Furthermore, it can be used to generate Hg (el) -containing test gases from previously evaporated solutions of Hg compounds.
Abgase von Anlagen enthalten Quecksilber und/oder dessen Verbindungen, entweder durch den brennstoffbedingten Eintrag in die Feuerung oder durch den direkten oder indirekten Umgang im Produktionsprozess. Die Abgase können zudem, in Abhängigkeit vom zugrunde liegenden Verfahren, auch erhebliche Mengen an anderen Bestandteilen enthalten.Exhaust gases from installations contain mercury and / or its compounds, either through the fuel-related entry into the furnace or through direct or indirect handling in the production process. The exhaust gases may also contain significant amounts of other components, depending on the underlying process.
Für die Emissionen von Quecksilber sind in gesetzlichen Vorschriften strenge Grenzwerte enthalten. In den meisten Müllverbrennungsanlagen, einigen fossil befeuerten Kraftwerken und Zementwerken sind behördliche Onlineüberwachungen vorgeschrieben, wobei eignungsgeprüfte Messsysteme auf Basis von spektrophotometrischer Hg(el)-Messung zum Einsatz kommen.Emissions of mercury are subject to strict regulatory limits. Most waste incinerators, some fossil-fueled power plants, and cement plants require regulatory online monitoring, with suitability-tested measurement systems based on spectrophotometric Hg (el) measurement.
Neben Quecksilber sind außerdem weitere Bestandteile (z. B. HX, SO2, X2) im zu messenden Abgas enthalten. Es wurde festgestellt, dass die bisher verfügbaren Messgeräte auf der Basis nasschemischer bzw. quasitrockener (thermokatalytischer) Probegasaufbereitungen zum Teil erhebliche Probleme mit diesen Störstoffen haben, auch im Rahmen der Grenzwerte. Dies führt, selbst bei bestimmungsgemäßem Betrieb zu Fehlmessungen, die in den meisten Fällen nicht direkt erkannt werden. Der angezeigte Quecksilberwert ist dabei meist zu niedrig.In addition to mercury, other constituents (eg HX, SO 2 , X 2 ) are also contained in the exhaust gas to be measured. It was found that the currently available measuring instruments based on wet-chemical or quasi-dry (thermo-catalytic) sample gas treatment systems sometimes have considerable problems with these contaminants, even within the limit values. This leads, even under normal operation to incorrect measurements, which are not directly detected in most cases. The displayed mercury value is usually too low.
hi Abgasen, die nicht den strengen gesetzlichen Anforderungen an die Abfallverbrennung unterliegen, sind u. U. höhere Gehalte an SO2, NOx, HCl und z. T. auch Halogenen enthalten. Auch im Rahmen von nichtbehördlich vorgeschriebenen betrieblichen Messungen (z. B. zur Steuerung der Rauchgasreinigung) im Rohgas sind erhebliche Verunreinigungen zu erwarten. In diesen Rohgasen ist die Messung von Quecksilber bisher nur diskontinuierlich möglich.Exhaust gases that are not subject to the strict legal requirements for waste incineration are among others. U. higher levels of SO 2 , NO x , HCl and z. T. also contain halogens. Substantial contamination is also to be expected in the context of non-governmentally required operational measurements (eg to control flue gas cleaning) in the raw gas. In these raw gases, the measurement of mercury is only possible intermittently.
Alle bekannten Verfahren zur Aufbereitung dieser Abgase arbeiten entweder nasschemisch (unter Zuhilfenahme von z. B. SnCl2 oder NaBH4 bzw. Ascorbinsäure) oder mit sogenannten tiiermokatalytischen Reaktoren im Temperaturbereich von 280 - 6500C. In Gegenwart der genannten Störkomponenten kommt es zu unerwünschten Nebenreaktionen, die eine Messung von Quecksilber zumindest verschlechtern bzw. unmöglich machen, z. B. SO2-SO3- Konversion, Erzeugung von freien Halogenen, Rückoxidation von elementarem Quecksilber.All known processes for the treatment of these exhaust gases work either wet-chemically (with the aid of, for example, SnCl 2 or NaBH 4 or ascorbic acid) or with so-called tiiermokatalytischen reactors in the temperature range of 280-650 0 C. In the presence of the above-mentioned interfering components, there are undesirable side reactions that at least worsen a measurement of mercury or impossible, z. B. SO 2 -SO 3 - conversion, generation of free halogens, reoxidation of elemental mercury.
Der Erfindung liegt das Problem zu Grunde, ein Verfahren zur zuverlässigen Konvertierung von Hg-Verbindungen in messbares Hg(el) zur Verfugung zu stellen, welches die genannten Nebenreaktionen in Gegenwart von anderen Rauchgaskomponenten in einem weiten Konzentrationsbereich und auch in Rohgasen (weit außerhalb der gesetzlichen Grenzwerte) nicht aufweist.The invention is based on the problem to provide a method for the reliable conversion of mercury compounds in measurable Hg (el) available, which said side reactions in the presence of other flue gas components in a wide concentration range and also in raw gases (far outside the legal Limit values) does not have.
Das Problem wurde gemäß Patentanspruch 1 und 2 dadurch gelöst, dass ein Niedertemperaturverfahren (bei 1200C bis 2500C) eingesetzt wird, welches Kupfer oder Kupferlegierungen als Katalysatormaterial für die Konvertierung von Quecksilberverbindungen, wie z. B. HgX2, in elementares Quecksilber, verwendet. Besonders geeignet ist die Kupferlegierung Rotguss RG7 (CuSn7ZnPb, Werkstoffnummer: 2.1090). Dieses Material besitzt weiterhin die vorteilhafte Eigenschaft, freie Halogene zu binden und damit die Rückreaktion zu Quecksilberhalogeniden zu unterbinden. Das Verfahren führt aufgrund der niedrigen Temperaturen nicht zu einer Umwandlung von SO2 in SO3, d. h. eine Schwefelsäurebildung und damit ein zusätzlicher Angriff auf die Metall-Oberflächen des Messgerätes (Amalgamierungseinheit, Durchflussmesser) findet nicht statt.The problem was solved according to claim 1 and 2, characterized in that a low-temperature method (at 120 0 C to 250 0 C) is used, which copper or copper alloys as a catalyst material for the conversion of mercury compounds, such as. HgX 2 , in elemental mercury. Particularly suitable is the copper alloy red brass RG7 (CuSn 7 ZnPb, material number: 2.1090). This material also has the advantageous property of binding free halogens and thus preventing the reverse reaction to mercury halides. Due to the low temperatures, the process does not lead to a conversion of SO 2 into SO 3 , ie a sulfuric acid formation and thus an additional attack on the metal surfaces of the measuring instrument (amalgamation unit, flow meter) does not take place.
Erfindungsgemäß wird eine, von außen auf 17O0C beheizte, mit einer Schüttung von Spänen einer Cu-Legierung (z. B. Rotguss RG7) befüllte Edelstahlpatrone von dem Messgas durchströmt, bevor es in den Messgaskühler und das nachfolgende Photometer gelangt. In diesem Hg-Konverter werden die oxidierten Hg-Verbindungen (z. B. HgCl2) mit Hilfe des Kupfers (als auch anderer im Rotguss enthaltener Metalle: Sn, Zn, Pb) in das elementare Hg umgewandelt. Speziell für die in Abgasen besonders häufig auftretenden Quecksilberhalogenide erfolgt die Umwandlung entsprechend Gleichung 1.According to the invention, a stainless steel cartridge heated from the outside to 17O 0 C and filled with chips of a Cu alloy (eg gunmetal RG7) is flowed through by the sample gas before it reaches the sample gas cooler and the subsequent photometer. In this Hg converter, the oxidized Hg compounds (eg HgCl 2 ) are converted into the elemental Hg with the help of copper (as well as other metals contained in gunmetal: Sn, Zn, Pb). Especially for the mercury halides which are particularly common in exhaust gases, the conversion takes place in accordance with Equation 1.
(1) HgX2 + Me° --> Hg° + MeX2 (1) HgX 2 + Me ° -> Hg ° + MeX 2
wobei Me° für die Metalle Cu, Sn, Zn und Pb steht. Hauptreaktionspartner ist jedoch das Kupfer, vgl. Abbildung 1. Es ist allerdings ebenfalls möglich, dass als Produkte der Reaktionen Metallsalze mit anderen Wertigkeiten (z. B. Kupfer-(I)-chlorid, Zinn-(IV)- chlorid) entstehen. Freie Halogene (X2) werden dabei zeitgleich quantitativ absorbiert, wodurch keine halogenbedingten Minderbefunde, z. B. durch nicht vollständige Reduzierung oder Reoxidation, auftreten; vgl. Gleichung 2.where Me ° stands for the metals Cu, Sn, Zn and Pb. However, the main reaction partner is copper, cf. Figure 1. However, it is also possible that the products of the reactions are metal salts with other valences (eg, copper (I) chloride, stannic chloride). Free halogens (X 2 ) are quantitatively absorbed at the same time, whereby no halogen-related minor findings, z. By incomplete reduction or reoxidation; see. Equation 2.
(2) X2 + Me° --> MeX2 (2) X 2 + Me ° -> MeX 2
Der Konverter, d. h. die aktive Kupferoberfläche, kann dem Messgas in verschiedenen Formen bereitgestellt werden, z. B. Schüttungen mit Füllkörpern. Einsetzbar sind außerdem feine Drahtgewebe oder gesinterte Materialien. Je nach Anwendung und gewünschter Standzeit des Konverters kann die Menge an aktiver Komponente variieren.The converter, d. H. the active copper surface can be provided to the sample gas in various forms, e.g. B. beds with packing. It is also possible to use fine wire mesh or sintered materials. Depending on the application and the desired service life of the converter, the amount of active component may vary.
Nachstehend wird die Erfindung anhand von Diagrammen und Abbildungen näher erläutert.The invention will be explained in more detail with reference to diagrams and figures.
Abbildung Ia zeigt die Ergebnisse einer thermodynamischen Gleichgewichtsberechnung zur thermischen Zersetzung von 4.0E-08 mol/m3 Quecksilberchlorid in Stickstoff mit 10 Vol-% Wasser. Die thermische Zersetzung beginnt bei ca. 100°C (373,15 K) und ist bei ca. 2500C (523,15 K) abgeschlossen. In Gegenwart von Sauerstoff und HCl verschiebt sich die Temperatur der vollständigen Zersetzung zu wesentlich höheren Temperaturen, z. B. bei 8 Vol-% O2 und 10 mg/m3 HCl liegt diese bei 900°C.Figure Ia shows the results of a thermodynamic equilibrium calculation for the thermal decomposition of 4.0E-08 mol / m 3 mercury chloride in nitrogen with 10% by volume of water. The thermal decomposition starts at about 100 ° C (373.15 K) and is completed at about 250 0 C (523.15 K). In the presence of oxygen and HCl, the temperature of complete decomposition shifts to much higher temperatures, e.g. B. at 8% by volume of O 2 and 10 mg / m 3 of HCl, this is 900 ° C.
Abbildung Ib zeigt nunmehr die Ergebnisse der thermodynamischen Berechnung unter Zuhilfenahme von festen Kupferoberflächen als Katalysator. Das eingetragene HgCl2 ist bereits bei Temperaturen von >75°C (348K) vollständig zu elementarem Quecksilber umgewandelt. Als Zwischenprodukte treten unterhalb dieser Temperatur Hg2Cl2und CuCl2 auf. Das Kupfer(II)chlorid ist oberhalb von 150°C (423K) nicht beständig und wird weiter zu Kupfer (Cu) und HCl zersetzt. Damit steht das Kupfer wieder der Reaktion mit HgCl2 zur Verfügung. Durch diese katalytische Wirkung des Kupfers wird die Zersetzung von HgCl2 bereits in diesem niedrigen Temperaturbereich möglich.Figure Ib now shows the results of the thermodynamic calculation with the aid of solid copper surfaces as a catalyst. The introduced HgCl 2 is completely converted to elemental mercury even at temperatures of> 75 ° C (348K). As intermediates occur below this temperature Hg 2 Cl 2 and CuCl 2 . The cupric chloride is unstable above 150 ° C (423K) and is further decomposed to copper (Cu) and HCl. Thus, the copper is again the reaction with HgCl 2 available. Due to this catalytic effect of copper, the decomposition of HgCl 2 becomes possible even in this low temperature range.
Abbildung 2 zeigt einen Versuch zur Konvertierung von HgCl2 bei 170°C und 10 Vol-% Wasser. Mittels eines Hovacal- Verdampfer der Firma IAS GmbH, Frankfurt wurde ab 12:15 Uhr eine HgCl2-Lösung verdampft. Das Trägergasmedium war zunächst Stickstoff. Nach dem Hovacal waren 2 beheizte Kammern, eine mit und eine ohne Konvertermaterial (Rotguss RG7) geschaltet. Von 12:15 - 13:20 Uhr wurde die leere Kammer durchströmt. An den Messergebnissen der angeschlossenen Messgeräte (2x DURAG- VEREWA HM 1400, parallel Ix für Gesamtquecksilber und Ix für den elementaren Anteil) ist zu erkennen, dass 100% des Gesamtquecksilber (ca. 23 μg/m3) als oxidiertes Quecksilber vorlagen. Gegen 13:20 Uhr wurde nun auf die mit Rotguss gefüllte Kammer umgeschaltet. Nach einem kurzen Umschaltpeak pegelte sich der Gesamtquecksilbergehalt wieder auf den vorherigen Wert ein. Nun entsprach die Konzentration an elementarem Quecksilber genau der des Gesamtquecksilbers, d. h. aufgrund der Konvertierung an Rotguss, ist das zuvor oxidierte Hg in die elementare Form umgewandelt wurden. Gegen 14:20 Uhr wurde der Trägergasstrom von reinem Stickstoff auf Stickstoff mit 11 Vol-% Sauerstoff umgestellt. Der Sauerstoff hat keinen negativen Einfluss auf die Konvertierung.Figure 2 shows an attempt to convert HgCl 2 at 170 ° C and 10% water by volume. A HgCl 2 solution was evaporated at 12:15 h using a Hovacal evaporator from IAS GmbH, Frankfurt. The carrier gas medium was initially nitrogen. After the Hovacal were 2 heated chambers, one with and one without converter material (red brass RG7) connected. From 12:15 - 13:20, the empty chamber was flowed through. It can be seen from the measurement results of the connected measuring instruments (2x DURAG-VEREWA HM 1400, parallel Ix for total mercury and Ix for the elemental portion) that 100% of the total mercury (about 23 μg / m 3 ) was present as oxidized mercury. Around 13:20 has now been switched to the chamber filled with gunmetal. After a short switch-over peak, the total mercury content returned to its previous value. Now, the concentration of elemental mercury was exactly equal to the total mercury, that is, due to the conversion to gunmetal, the previously oxidized Hg was converted to the elemental form. At around 1420, the carrier gas flow was switched from pure nitrogen to nitrogen with 11% oxygen by volume. The oxygen has no negative influence on the conversion.
Abbildung 3 zeigt die Ergebnisse eines Versuches zur Reaktionszeit und zur Linearität des Hg-Konverters. In einem Trägergas (Luft) wurde wiederum mit Hilfe des Verdampfers HgCl2-Lösung eindosiert. Das angeschlossene SICK MERCEM Hg-Messgerät wurde im Hg(el)-Modus, d. h. ohne Reduktionschemikalien, betrieben. Zwischen 02 Stunden 20 Minuten und 4 Stunden 20 Minuten wurden wechselnde Hg-Gehalte im Messgas eingestellt. Bei der Konvertierung über das Rotgussbett bei 1700C kommt es unmittelbar zu einer entsprechend veränderten Anzeige am Messgerät, d. h. eine merkliche Totzeit aufgrund des Konverters konnte nicht nachgewiesen werden. Aufgrund der vollständigen Konvertierung zu Hg(el) konnte ein lineares (kalibrierbares) Messsignal festgestellt werden. Der Konverter ist demnach für die Nutzung in Hg- Analysatoren geeignet.Figure 3 shows the results of an experiment on the reaction time and linearity of the Hg converter. In a carrier gas (air) was again metered with the aid of the evaporator HgCl 2 solution. The connected SICK MERCEM Hg meter was operated in Hg (el) mode, ie without reduction chemicals. Between 02 hours 20 minutes and 4 hours 20 minutes, varying Hg contents were set in the sample gas. When converting over the gunmetal bed at 170 0 C, it immediately leads to a correspondingly altered display on the meter, ie a significant dead time due to the converter could not be detected. Due to the complete conversion to Hg (el), a linear (calibratable) measurement signal could be determined. The converter is therefore suitable for use in Hg analyzers.
Abbildung 4 zeigt den Einfluss von Halogenen auf die kontinuierliche Messung von Gesamtquecksilber am Beispiel von Brom. Es kam ein nach gesetzlichen Vorschriften eignungsgeprüftes Messsystem mit thermokatalytischer Messgasaufbereitung bei 610°C zum Einsatz. Die Hg-Dosierung erfolgte wiederum über eine Verdampfung einer HgCl2-Lösung in Luft. Nach Erreichen des eingestellten Sollwertes (Hg(ges)=120 μg/m3) bei 125 min wurde das Messgas zusätzlich mit 160 mg/m3 Brom (Br2) beaufschlagt. In Folge der Bromzugabe fällt das Messsignal sofort auf <20 μg/m3 ab, obwohl dem Messgas weiterhin 120 μg/m3 Hg zudosiert wurden. Nach Abschalten des Broms (bei 190 min) steigt der Messwert wieder an, erreicht aber auch nach 1000 min noch nicht wieder den realen Wert. Die Messung war nachhaltig über längere Zeit gestört.Figure 4 shows the influence of halogens on the continuous measurement of total mercury using the example of bromine. A measuring system with thermocatalytic sample gas treatment at 610 ° C, which has been suitably tested by law, was used. The Hg metering was again carried out by evaporation of an HgCl 2 solution in air. After reaching the set target value (Hg (ges) = 120 μg / m 3 ) at 125 min, the sample gas was additionally charged with 160 mg / m 3 of bromine (Br 2 ). As a result of the bromine addition, the measurement signal drops immediately to <20 μg / m 3 , although 120 μg / m 3 Hg were still added to the sample gas. After switching off the bromine (at 190 min), the measured value rises again, but does not reach the real value even after 1000 min. The measurement was permanently disturbed for a long time.
Abbildung 5 zeigt die Ergebnisse eines zu Abbildung 4 ähnlichen Versuches, nunmehr mit der erfindungsgemäßen Messgasaufbereitung mittels Rotgusskonverter bei 170° C. Zusätzlich wurde die geräteeigene Reduktionsstrecke umgangen, so dass das Gerät nur elementares Quecksilber erfassen konnte. Die Hg-Dosierung war ebenfalls analog zu Abbildung 4, allerdings nur auf 56 μg/m3 eingestellt. Das Messgerät zeigte - auch ohne eigene Aufbereitung - den realen Wert für Gesamtquecksilber an, aufgrund der Konvertierung durch allerdings nur auf 56 μg/m3 eingestellt. Das Messgerät zeigte — auch ohne eigene Aufbereitung - den realen Wert für Gesamtquecksilber an, aufgrund der Konvertierung durch den erfmdungsgemäßen Konverter. Bei ca. 460 min wurden dem Messgas wieder 160 mg/m3 Brom beigemischt. Im Gegensatz zu Abbildung 4 erfolgte nunmehr kein Rückgang des gemessenen Hg(ges)-Gehaltes. Die störenden Einflüsse von Halogenen (Chlor, Brom und Jod) werden durch die Erfindung effektiv unterbunden, indem die Halogene gemäß Gleichung 2 gebunden werden.Figure 5 shows the results of a similar experiment to Figure 4, now with the measurement gas preparation according to the invention by means of gunmetal converter at 170 ° C. In addition, the device's own reduction section was bypassed, so that the device could detect only elemental mercury. The Hg dosage was also analogous to Figure 4, but only adjusted to 56 μg / m 3 . The meter showed - even without its own preparation - the real value for total mercury, due to the conversion by however only adjusted to 56 μg / m 3 . The meter showed - even without its own preparation - the real value for total mercury, due to the conversion by the converter according to the invention. At about 460 minutes, 160 mg / m 3 of bromine were again added to the sample gas. In contrast to Figure 4, no decrease in the measured Hg (ges) content occurred. The interfering influences of halogens (chlorine, bromine and iodine) are effectively prevented by the invention by the halogens are bound according to equation 2.
Abbildung 6 zeigt die Ergebnisse eines Versuches zum HCl-Einfluss auf die Hg- Konvertierung. Die Hg-Konzentration wurde durch Verdampfen von HgCl2-Lösung auf 29 μg/m3 eingestellt. Die Messungen fanden nun wieder mit einem SICK MERCEM statt. Die Reduktionschemikalien waren - analog zu den vorherigen Versuchen — wieder entfernt, so dass Hg(el) gemessen wurde. Das Gerät zeigt ab Dosierungsbeginn (00:50) den eingestellten Wert an. Eine Erhöhung der HCl-Konzentration auf 100 mg/m3 (bei 01 :50) bzw. auf 1000 mg/m3 (bei 03:00) zeigt keine signifikante Änderung im Messsignal. Bei 1000 mg/m3 wird tendenziell sogar etwas mehr angezeigt, was auf HCl-bedingte Ausspeicherungseffekte an den PTFE-Messgasleitungen zurückzuführen ist. HCl beeinflusst die Hg-Konvertierung mittels Rotguss RG7 nicht negativ.Figure 6 shows the results of an experiment on HCl influence on Hg conversion. The Hg concentration was adjusted to 29 μg / m 3 by evaporation of HgCl 2 solution. The measurements took place again with a SICK MERCEM. The reduction chemicals were - as in the previous experiments - removed again, so that Hg (el) was measured. The device displays the set value from the beginning of dosing (00:50). Increasing the HCl concentration to 100 mg / m 3 (at 01:50) or to 1000 mg / m 3 (at 03:00) shows no significant change in the measurement signal. At 1000 mg / m 3 , there is even a slight tendency to indicate something more, which is due to HCl-related Ausspeeftseffekte on the PTFE sample gas lines. HCl does not adversely affect Hg conversion by means of gunmetal RG7.
Abbildung 7 zeigt die Ergebnisse eines Versuches zum Einfluss von Schwefeldioxid auf die Konvertierung von HgCl2 zum elementaren Hg. Als Messgeräte kamen das SICK MERCEM und das VEREWA HM 1400 zum Einsatz, allerdings wiederum im Hg(el)-Modus, d. h. ohne jeweilige Reduktionsstrecke. Die Hg-Dosierung war analog wie bei allen anderen Versuchen. Nach Einstellung des Sollwertes für Hg(ges) von 34 μg/m3 im Mittel (Bereich T) wurde nach 2 Stunden und 15 Minuten dem Messgas SO2 mit einer Konzentration von 1500 mg/m3 beigemischt. Die Konvertierung mittels Rotguss bei 170°C zeigte keinerlei Änderung im Messsignal aufgrund des Schwefeldioxids. Auch hohe SO2~Konzentrationen bis 1500 mg/m3 beeinflussen die Hg-Reduktion mittels Rotguss bei 170°C nicht negativ. Spätere Messungen ergaben, dass SO2 nicht in SO3 umgewandelt wird, sondern den Konverter zu 100% unverändert durchläuft. Abbildung Ia)Figure 7 shows the results of an experiment on the influence of sulfur dioxide on the conversion of HgCl 2 to elemental Hg. The measuring devices used were the SICK MERCEM and the VEREWA HM 1400, but again in Hg (el) mode, ie without any reduction section. The Hg dosage was analogous to all other experiments. After adjustment of the target value for Hg (ges) of 34 μg / m 3 on average (range T), after 2 hours and 15 minutes, the sample gas SO 2 was admixed with a concentration of 1500 mg / m 3 . The conversion by means of gunmetal at 170 ° C showed no change in the measurement signal due to the sulfur dioxide. Even high SO 2 concentrations up to 1500 mg / m 3 do not adversely affect the Hg reduction by means of gunmetal at 170 ° C. Subsequent measurements showed that SO 2 is not converted into SO 3 but passes through the converter 100% unchanged. Figure Ia)
Diagramm zur thermischen Zersetzung von HgCl2 in elementares Hg ohne Konverter,Diagram for the thermal decomposition of HgCl 2 into elementary Hg without converter,
Abbildung Ib)Figure Ib)
Diagramm zur thermischen Zersetzung von HgCl2 in elementares Hg mit Kupferkatalysator,Diagram for the thermal decomposition of HgCl 2 into elemental Hg with copper catalyst,
Abbildung 2Figure 2
Diagramm mit Versuchsergebnissen zur Hg-Speziesverteilung mit und ohne erfindungsgemäßen Konverter,Diagram with test results for Hg species distribution with and without converter according to the invention,
Abbildung 3Figure 3
Diagramm zu Untersuchungen mit dem Prototypkonverter zur Linearität des Messsignals nach Konverter,Diagram for investigations with the prototype converter for the linearity of the measurement signal according to converter,
Abbildung 4Figure 4
Diagramm zu den Einflüssen von Halogenen auf die kontinuierliche Messung von Gesamtquecksilber am Beispiel Brom,Diagram of the influence of halogens on the continuous measurement of total mercury using the example of bromine,
Abbildung 5Figure 5
Diagramm zur Unterdrückung der Störeinflüsse von Halogenen auf die Messung von Gesamtquecksilber durch das erfindungsgemäße Verfahren Abbildung 6Diagram for the suppression of the interferences of halogens on the measurement of total mercury by the method according to the invention Figure 6
Diagramm zu Versuchsergebnissen zum Einfluss von HCl auf die Messung von Gesamtquecksilber mit einer Messgasaufbereitung gemäß ErfindungDiagram of test results on the influence of HCl on the measurement of total mercury with a sample gas preparation according to the invention
Abbildung 7Figure 7
Diagramm zu Versuchsergebnissen zum Einfluss von SO2 auf die Messung vonDiagram of test results on the influence of SO 2 on the measurement of
Gesamtquecksilber mit einer Messgasaufbereitung gemäß Erfindung. Total mercury with a sample gas treatment according to the invention.

Claims

Patentansprüche: claims:
1. Verfahren zur Erzeugung von elementarem Quecksilber in Gasen mit einem Gehalt von HgX2, Hg(el), Halogenwasserstoffsäuren (HCl, HBr, HI = HX), Schwefeldioxid (SO2) und/oder freien Halogenen (Cl2, Br2, 12 = X2), gekennzeichnet dadurch, dass die im Messgas enthaltenen Quecksilberverbmdungen in Gegenwart von Kupfer als Katalysator in elementares Quecksilber umwandelt werden.1. A process for the production of elemental mercury in gases containing HgX 2 , Hg (el), hydrohalic acids (HCl, HBr, HI = HX), sulfur dioxide (SO 2 ) and / or free halogens (Cl 2 , Br 2 , 1 2 = X 2 ), characterized in that the mercury compounds contained in the measuring gas are converted in the presence of copper as catalyst into elemental mercury.
2. Verfahren nach Anspruch 1, gekennzeichnet dadurch, dass die Umwandlung des Quecksilbers am Kupferkatalysator in einem Temperaturbereich von 1200C bis 25O0C, durchfuhrt wird.2. The method according to claim 1, characterized in that the conversion of the mercury to the copper catalyst in a temperature range of 120 0 C to 25O 0 C, durchfuhrt.
3. Verfahren nach Anspruch 1, gekennzeichnet dadurch, dass als Kupferkatalysator Kupfer oder eine Kupferlegierung einsetzt wird.3. The method according to claim 1, characterized in that is used as copper catalyst copper or a copper alloy.
4. Verfahren nach Anspruch 1 und 3, gekennzeichnet dadurch, dass der Kupferkatalysator eine poröse Oberfläche aufweist und gasdurchlässig ist.4. The method according to claim 1 and 3, characterized in that the copper catalyst has a porous surface and is gas-permeable.
5. Verwendung von Kupfer-, Zinn-, Zink- und Bleioberflächen als Konvertermaterial in Gegenwart von freien Halogenen (X2) und/oder Halogenwasserstoffen (HX) und/oder Schwefeldioxid (SO2) und/oder NOx, sowie Wasser und Sauerstoff.5. Use of copper, tin, zinc and lead surfaces as a converter material in the presence of free halogens (X 2 ) and / or hydrogen halides (HX) and / or sulfur dioxide (SO 2 ) and / or NO x , and water and oxygen ,
6. Verfahren nach Anspruch 5, gekennzeichnet dadurch, dass das Konvertermaterial als Schüttung, Packung, Drahtgewebe, Folien oder gesintertes Material vorliegt. 6. The method according to claim 5, characterized in that the converter material is present as a bed, packing, wire mesh, films or sintered material.
PCT/DE2007/002165 2006-12-01 2007-11-30 Method for the production of elemental mercury from mercury compounds WO2008064667A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112007003325T DE112007003325A5 (en) 2006-12-01 2007-11-30 Process for the production of elemental mercury from mercury compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200610056731 DE102006056731A1 (en) 2006-12-01 2006-12-01 Process for the production of elemental mercury from mercury compounds
DE102006056731.5 2006-12-01

Publications (3)

Publication Number Publication Date
WO2008064667A2 true WO2008064667A2 (en) 2008-06-05
WO2008064667A3 WO2008064667A3 (en) 2008-07-17
WO2008064667A8 WO2008064667A8 (en) 2008-09-04

Family

ID=39315228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/002165 WO2008064667A2 (en) 2006-12-01 2007-11-30 Method for the production of elemental mercury from mercury compounds

Country Status (2)

Country Link
DE (2) DE102006056731A1 (en)
WO (1) WO2008064667A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487370A (en) * 2020-04-16 2020-08-04 南京理工大学 Device and method for converting oxidized mercury and measuring total mercury content of flue gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758519A (en) * 1984-08-20 1988-07-19 Environmental Technical Laboratory, Ltd. Method for continuously analysing total gaseous mercury

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2291156A1 (en) * 1974-11-18 1976-06-11 Potasse & Produits Chimiques Mercury removal from liqs - by amalgamation with solid reducing agents e.g. iron and copper
DE4140969A1 (en) * 1991-12-12 1993-06-17 Werner Prof Dr Weisweiler Mercury (cpd.) sepn. from gas - by amalgamation, evapn. with flushing gas and condensation
DE4422661A1 (en) * 1994-06-28 1996-01-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Continuous removal of mercury from flue gases to a prescribed level
JP2004337781A (en) * 2003-05-16 2004-12-02 Mitsubishi Heavy Ind Ltd Exhaust gas treating method, exhaust gas treating system, and catalyst oxidation apparatus
DE102004025871A1 (en) * 2004-05-27 2005-12-22 Stadtwerke Bonn Swb Verwertung Through-flow device for removing metallic mercury from a mercury-containing fluid comprises a surface region made from an amalgam-forming metal over which the fluid flows
EP1846330A4 (en) * 2005-01-10 2009-12-23 Univ North Dakota Mercury oxidation of flue gas using catalytic barrier filters
JP2006239569A (en) * 2005-03-03 2006-09-14 Nippon Instrument Kk Reduction catalyst for measuring mercury in gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758519A (en) * 1984-08-20 1988-07-19 Environmental Technical Laboratory, Ltd. Method for continuously analysing total gaseous mercury

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200701 Derwent Publications Ltd., London, GB; AN 2007-001934 XP002479281 -& JP 2006 239569 A (NIPPON INSTR KK) 14. September 2006 (2006-09-14) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487370A (en) * 2020-04-16 2020-08-04 南京理工大学 Device and method for converting oxidized mercury and measuring total mercury content of flue gas

Also Published As

Publication number Publication date
DE102006056731A1 (en) 2009-01-02
WO2008064667A3 (en) 2008-07-17
WO2008064667A8 (en) 2008-09-04
DE112007003325A5 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
Zhuiykov Solid-state sensors monitoring parameters of water quality for the next generation of wireless sensor networks
DE2350498B2 (en) PROCEDURE FOR THE REMOVAL OF SULFUR AND NITROGEN OXYDES OR ONLY NITROGEN OXYDES FROM EXHAUST GASES
AU2006279258C1 (en) Water analysis using a photoelectrochemical method
DE3910345A1 (en) METHOD AND DEVICE FOR ANALYZING GASES CONTAINING FLUOR
EP2373991A2 (en) Measuring machine and method for detecting the content of oil, hydrocarbons, and oxidizable gases in air or compressed air
DE102009043222A1 (en) Method for optimizing the gas conversion rate in a respiratory gas analyzer
DE112014004882T5 (en) Carbon analysis using ferrate oxidation
Ajab et al. Cellulose-hydroxyapatite carbon electrode composite for trace plumbum ions detection in aqueous and palm oil mill effluent: Interference, optimization and validation studies
Qin et al. Investigation of plating wastewater treatment technology for chromium, nickel and copper
EP0282441B1 (en) Method for determining the chemical oxygen demand of water
EP0278096A2 (en) Method for continuously controlling emissions and immissions of mercury
AT511360A1 (en) METHOD AND DEVICE FOR DETERMINING THE CONCENTRATION OF OXIDIZING AGENT (N) IN AN AQUEOUS SOLUTION
WO2008064667A2 (en) Method for the production of elemental mercury from mercury compounds
DE4001979A1 (en) METHOD AND DEVICE FOR CONTINUOUSLY MONITORING EXHAUST GAS FROM COMBUSTION PLANTS
AU2008255622A1 (en) Determining chemical oxygen demand in water samples
EP0532932B1 (en) Electrochemical measuring cell for detecting and determining gases and vapors, in particular of halogen hydracides
JP6592390B2 (en) Method for analyzing arsenic in sample solution
US20190219539A1 (en) Continuous Monitoring of Selenium in Water
JP2006170897A (en) Method and apparatus for measuring chemical oxygen demand (cod)
DE60120999T2 (en) METHOD AND DEVICE FOR TREATING AMMONIA-CONTAINING WASTEWATER
EP0556558A2 (en) Electrochemical measuring cell for the determination of ammonia, amines, hydrazine and hydrazine derivatives
EP0603751A2 (en) Method for detecting compounds which are present in a liquid phase
DE102004006861A1 (en) Purification of off-gas from solid-phase condensation of polycondensates, e.g. polyamide or polyester, involves adding oxygen-containing gas and passing the mixture over a metal oxide-based catalyst
Goodman Impact of prechlorination pH on Pb (II)-NOM complexation and lead release in drinking water distribution systems
EP1122216A2 (en) Process and electrolytic cell for reducing corrosive components in fluids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07856047

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 1120070033258

Country of ref document: DE

REF Corresponds to

Ref document number: 112007003325

Country of ref document: DE

Date of ref document: 20091126

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07856047

Country of ref document: EP

Kind code of ref document: A2