WO2008070830A2 - Components for use in electro-optic displays - Google Patents

Components for use in electro-optic displays Download PDF

Info

Publication number
WO2008070830A2
WO2008070830A2 PCT/US2007/086770 US2007086770W WO2008070830A2 WO 2008070830 A2 WO2008070830 A2 WO 2008070830A2 US 2007086770 W US2007086770 W US 2007086770W WO 2008070830 A2 WO2008070830 A2 WO 2008070830A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electro
release sheet
sub
assembly
Prior art date
Application number
PCT/US2007/086770
Other languages
French (fr)
Other versions
WO2008070830A3 (en
Inventor
Norifusa Isobe
Steven Joseph Battista
Erika D. A. Hanna
Original Assignee
E Ink Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Ink Corporation filed Critical E Ink Corporation
Publication of WO2008070830A2 publication Critical patent/WO2008070830A2/en
Publication of WO2008070830A3 publication Critical patent/WO2008070830A3/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements

Definitions

  • This invention relates to components and methods for use in electro-optic displays. More specifically, this invention relates to such components and methods in which a release sheet (a term which is used herein in a broad sense to mean any sheet which is peeled from a sub-assembly during manufacture of an electro-optic display, and thus includes materials sometimes referred to as "masking films") having a relatively high conductivity is used.
  • This invention primarily relates to such components and methods containing an electro-optic medium which is a solid (such displays may hereinafter for convenience be referred to as “solid electro-optic displays”), in the sense that the electro-optic medium has solid external surfaces, although the medium may, and often does, have internal liquid- or gas-filled spaces.
  • solid electro-optic displays includes encapsulated electrophoretic displays, encapsulated liquid crystal displays, and other types of displays discussed below.
  • electro-optic as applied to a material or a display, is used herein in its conventional meaning in the imaging art to refer to a material having first and second display states differing in at least one optical property, the material being changed from its first to its second display state by application of an electric field to the material.
  • rotating bichromal member displays see, for example, U.S. Patents Nos. 5,808,783; 5,777,782; 5,760,761; 6,054,071 6,055,091; 6,097,531; 6,128,124; 6,137,467; and 6,147,791);
  • Electrophoretic media can use liquid or gaseous fluids; for gaseous fluids see, for example, Kitamura, T., et al., "Electrical toner movement for electronic paper-like display", IDW Japan, 2001, Paper HCSl-I, and Yamaguchi, Y., et al., "Toner display using insulative particles charged triboelectrically", IDW Japan, 2001, Paper AMD4- 4); U.S. Patent Publication No.
  • the media may be encapsulated, comprising numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles suspended in a liquid suspending medium, and a capsule wall surrounding the internal phase.
  • the capsules are themselves held within a polymeric binder to form a coherent layer positioned between two electrodes; see the aforementioned MIT and E Ink patents and applications.
  • the walls surrounding the discrete microcapsules in an encapsulated electrophoretic medium may be replaced by a continuous phase, thus producing a so-called polymer-dispersed electrophoretic display, in which the electrophoretic medium comprises a plurality of discrete droplets of an electrophoretic fluid and a continuous phase of a polymeric material; see for example, U.S. Patent No. 6,866,760.
  • such polymer-dispersed electrophoretic media are regarded as sub-species of encapsulated electrophoretic media.
  • microcell electrophoretic display in which the charged particles and the fluid are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film; see, for example, U.S. Patents Nos. 6,672,921 and 6,788,449.
  • Electrophoretic media can operate in a "shutter mode" in which one display state is substantially opaque and one is light-transmissive. See, for example, U.S. Patents Nos. 6,130,774 and 6,172,798, and U.S. Patents Nos. 5,872,552; 6,144,361; 6,271,823; 6,225,971; and 6,184,856. Dielectrophoretic displays can operate in a similar mode; see U.S. Patent No. 4,418,346. Other types of electro-optic displays may also be capable of operating in shutter mode.
  • this patent describes a so-called “front plane laminate” (“FPL”) which comprises, in order, a light- transmissive electrically-conductive layer; a layer of a solid electro-optic medium in electrical contact with the electrically-conductive layer; an adhesive layer; and a release sheet.
  • FPL front plane laminate
  • the light-transmissive electrically-conductive layer will be carried on a light-transmissive substrate, which is preferably flexible, in the sense that the substrate can be manually wrapped around a drum (say) 10 inches (254 mm) in diameter without permanent deformation.
  • the term "light-transmissive" is used in this patent and herein to mean that the layer thus designated transmits sufficient light to enable an observer, looking through that layer, to observe the change in display states of the electro-optic medium, which will be normally be viewed through the electrically-conductive layer and adjacent substrate (if present).
  • the substrate will be typically be a polymeric film, and will normally have a thickness in the range of about 1 to about 25 mil (25 to 634 ⁇ m), preferably about 2 to about 10 mil (51 to 254 ⁇ m).
  • the electrically-conductive layer is conveniently a thin metal layer of, for example, aluminum or ITO, or may be a conductive polymer.
  • PET Poly(ethylene terephthalate) films coated with aluminum or ITO are available commercially, for example as "aluminized Mylar” ("Mylar” is a Registered Trade Mark) from E.I. du Pont de Nemours & Company, Wilmington DE, and such commercial materials may be used with good results in the front plane laminate.
  • aluminized Mylar (“Mylar” is a Registered Trade Mark) from E.I. du Pont de Nemours & Company, Wilmington DE, and such commercial materials may be used with good results in the front plane laminate.
  • Double release film which is essentially a simplified version of the front plane laminate of the aforementioned U.S. Patent No. 6,982,178.
  • One form of the double release sheet comprises a layer of a solid electro-optic medium sandwiched between two adhesive layers, one or both of the adhesive layers being covered by a release sheet.
  • Another form of the double release sheet comprises a layer of a solid electro-optic medium sandwiched between two release sheets.
  • Both forms of the double release film are intended for use in a process generally similar to the process for assembling an electro-optic display from a front plane laminate already described, but involving two separate laminations; typically, in a first lamination the double release sheet is laminated to a front electrode to form a front sub-assembly, and then in a second lamination the front sub-assembly is laminated to a backplane to form the final display, although the order of these two laminations could be reversed if desired.
  • the aforementioned 2007/0109219 describes a so-called "inverted front plane laminate", which is a variant of the front plane laminate described in the aforementioned U.S. Patent No. 6,982,178.
  • This inverted front plane laminate comprises, in order, at least one of a light-transmissive protective layer and a light- transmissive electrically-conductive layer; an adhesive layer; a layer of a solid electro-optic medium; and a release sheet.
  • This inverted front plane laminate is used to form an electro-optic display having a layer of lamination adhesive between the electro-optic layer and the front electrode or front substrate; a second, typically thin layer of adhesive may or may not be present between the electro-optic layer and a backplane.
  • Such electro-optic displays can combine good resolution with good low temperature performance.
  • the present invention provides a sub-assembly useful in the manufacture of an electro-optic display, the sub-assembly comprising a layer of an electro-optic material and a release sheet capable of being peeled from the sub-assembly, the release sheet having a resistivity not greater than about 10 13 ⁇ square.
  • the resistivity of the release sheet will be not greater than about 10 12 ⁇ square, and not less than about 10 2 ⁇ square.
  • the sub-assembly of the present invention may further comprise a backplane comprising at least one electrode, the backplane being disposed on the opposed side of the layer of electro-optic material from the release sheet.
  • the sub-assembly may comprise a front substrate disposed between the layer of electro-optic material and the release sheet.
  • the sub-assembly of the present invention may be in the form of a front plane laminate comprising, in order: a light-transmissive electrically-conductive layer; the layer of an electro-optic material, this layer being of a solid electro-optic material and being in electrical contact with the electrically-conductive layer; an adhesive layer; and the release sheet.
  • the sub-assembly may be in the form of a double release sheet comprising the layer of an electro-optic material, this layer being of a solid electro-optic material and sandwiched between two adhesive layers, one or both of the adhesive layers being covered by a release sheet.
  • the sub-assembly may also be in the form of a double release sheet comprising the layer of an electro-optic material, this layer being of a solid electro-optic material and sandwiched between two release sheets.
  • the sub-assembly may also be in the form of an inverted front plane laminate comprising, in order: at least one of a light-transmissive protective layer and a light-transmissive electrically-conductive layer; an adhesive layer; the layer of an electro-optic material, this layer being of a solid electro-optic material; and the release sheet.
  • the electro-optic material may comprise a rotating bichromal member or electrochromic material.
  • the electro-optic material may comprise an electrophoretic material comprising a plurality of electrically charged particles disposed in a fluid and capable of moving through the fluid under the influence of an electric field.
  • the electrically charged particles and the fluid may be confined within a plurality of capsules or microcells, or may be present as a plurality of discrete droplets surrounded by a continuous phase comprising a polymeric material.
  • the fluid may be liquid or gaseous.
  • This invention also provides a method for assembling a layer of an electro- optic material on a backplane, the method comprising: providing a sub-assembly comprising a layer of an electro-optic material and a release sheet capable of being peeled from the sub-assembly, the release sheet having a resistivity not greater than about 10 13 ⁇ square; providing a backplane comprising at least one electrode and at least one non-linear device connected to the electrode; peeling the release sheet from the layer of electro-optic material; and laminating the layer of electro-optic material to the backplane.
  • the sub-assembly may comprise an adhesive layer disposed between the layer of electro-optic material and the release sheet, so that after the removal of the release sheet the adhesive layer is contacted with the backplane.
  • the sub-assembly may further comprise, on the opposed side of the layer of electro-optic material from the release sheet and in order, a front substrate, a second adhesive layer and a second release sheet, the second release sheet having a resistivity not greater than about 10 13 ⁇ square, the method further comprising peeling the second release sheet from the second adhesive layer and contacting the second adhesive layer with a second sub-assembly comprising at least one of a barrier layer and a hard coat, thereby securing the at least one of a barrier layer and a hard coat to the front substrate by means of the second adhesive layer.
  • the second sub-assembly may comprise a third release sheet having a resistivity not greater than about 10 13 ⁇ square, and the method may further comprise peeling the third release sheet from the second sub-assembly prior to contacting the second adhesive layer with the second sub-assembly.
  • Figures IA to ID are schematic side elevations showing various stages in the assembly of an electro-optic display by the method of the present invention.
  • Figure 2 is a schematic side elevation of a testing apparatus used in the experimental tests described below.
  • Figures 3 and 4 show respectively the variation of surface voltage and peel force with peel speed in experimental tests carried out using the apparatus of Figure 2, as described below.
  • Figure 5 shows the variation of surface voltage with masking film resistivity in experimental tests carried out using the apparatus of Figure 2, as described below.
  • the present invention relates to sub-assemblies and methods for use in the manufacture of electro-optic displays.
  • at least one release film used in the sub-assembly or method of the present invention has a resistivity not greater than about 10 13 ⁇ square. All resistivities quoted herein are measured after the relevant material has been stored at 25°C and 50 per cent relative humidity for a period such that the resistivity of the material becomes stable.
  • the release film used in the sub-assembly or method of the present invention has a resistivity up to about 10 13 ⁇ square, it is generally preferred that the resistivity of the release film not exceed about 10 12 ⁇ square. As shown empirically below, release films having such a resistivity do produce significant reductions in the electrostatic charge generated during peeling of the release film.
  • the sub-assembly of the present invention may be any sub-assembly comprising a layer of an electro-optic material and a release sheet useful in the manufacture of an electro-optic display.
  • the sub-assembly may be a front plane laminate, double release film or inverted front plane laminate of any of the types described above.
  • the sub-assembly can also take other forms.
  • the "sub-assembly" of the present invention may comprise an electro-optic display which is itself complete and functional but which is designed to have further layers added, for example for increased protection against environmental contaminants, radiation etc.
  • Figures 1A-1D of the accompanying drawings illustrate a process for the manufacture of an electro-optic display using a sub-assembly of this type.
  • Figures IA- ID are not to scale; the illustrated thicknesses of the various layers do not necessarily correspond to their actual thicknesses, and in all cases the thicknesses of the layers are greatly exaggerated relative to their lateral dimensions.
  • Figure IA illustrates a backplane (generally designated 100) comprising pixel electrodes, thin film transistors and associated circuitry, all of which are omitted from Figures IA- ID for the sake of clarity.
  • a front plane laminate generally designated 102
  • a front plane laminate generally designated 102
  • the front plane laminate 102 further comprises a layer of optically clear adhesive 114, on the opposed side of the front substrate 104 from the conductive layer 106, and a second release sheet 116 covering the optically clear adhesive 114.
  • the first release sheet 112 is peeled from the front plane laminate 102 and the remaining layers of the front plane laminate are laminated to the backplane 100 under heat and pressure, as described in the aforementioned U.S. Patent No. 6,982,178, to produce the structure shown in Figure IB.
  • the first release sheet has a resistivity not greater than about 10 12 ⁇ square. The removal of the release sheet 112 can result in the development of a substantial electrostatic charge on the remaining layers of the front plane laminate 102 and this electrostatic charge could discharge through and damage the transistors in the backplane.
  • the front plane laminate 102 is provided with a conductive via which connects the conductive layer 106 to a connection provided on the backplane 100. Accordingly, the structure shown in Figure IB is in fact a fully functional electro- optic display. However, for reasons discussed in several of the aforementioned E Ink and MIT patents and applications, it is desirable to provide additional protection for the display against ingress of oxygen, moisture, radiation and other potential problem materials into the electro-optic layer itself, and the further steps described below provide such additional protection.
  • the next step of the process uses a protective sheet (generally designated 120) which comprises, in order, a masking film 122, an anti-glare hard coat 124, a barrier layer 126 and a third release sheet 128.
  • the barrier layer 126 which is designed to prevent penetration of moisture and ultra-violet radiation into the final display, is itself typically a complex multi-layer structure, but details of its internal construction are irrelevant to the present invention and will not be described herein.
  • the protective sheet 120 is disposed adjacent the structure formed from the front plane laminate and the backplane, with the third release sheet 128 of the protective sheet 120 facing the second release sheet 116.
  • the second release sheet 116 is peeled from the adhesive 114 and the third release sheet 128 is peeled from the barrier layer 126. Either of these peeling operations could result in the generation of electrostatic charge sufficient to damage the transistors of the backplane 100, and accordingly both the second and third release sheets have resistivities not greater than about 10 12 ⁇ square. (Although any charge generated by peeling of the third release sheet 128 will of course reside only on the protective sheet 120, this charge can discharge through and damage the backplane when the protective sheet 120 is affixed to the backplane as described below.) The protective sheet is then laminated, typically under heat and pressure, to the adhesive 114, thus producing the structure shown in Figure 1C.
  • the electro-optic display is essentially complete and the only remaining step is peeling of the masking film 122 from the hard coat 124 to produce the final structure shown in Figure ID.
  • the time when this is done may vary with the application of the display.
  • removal of the masking film is effected when the display is incorporated into a chassis (for example the chassis of an electronic book reader, the chassis comprising a casing and electronics needed for driving the display, and other associated circuitry, for example solid state memory for storing books to be displayed); in other cases, the masking film 122 could be removed by the final customer, so that the masking film can serve to prevent damage to the hard coat 124 during delivery of the display.
  • the masking film 122 has a resistivity not greater than about 10 12 ⁇ square.
  • release sheets or masking films having resistivities suitable for use in the present invention will be available commercially. However, in some cases it may be difficult to find a commercial material having a suitable resistivity and all the other properties which may be required in a release sheet or masking film used in the present invention. In such circumstances, it will typically be necessary to select a film having all the desirable properties except the desired resistivity and then to adjust the resistivity to the desired value.
  • a surface active agent may be coated on to the film.
  • a surface active agent may absorb moisture from the air, thus neutralizing and reducing surface electrical charge.
  • a material of appropriate resistivity may be coated on to the release sheet, or incorporated therein.
  • a release sheet comprises a base (typically polymeric) layer and an adhesive layer, it may often be more convenient to incorporate the surface active agent or the material of appropriate conductivity into the adhesive layer rather than the base layer.
  • ion blowers can reduce electrostatic charges, they typically act too slowly to be convenient for use when release sheets are peeled; leaving the sub-assembly from which the release sheet has been peeled exposed for the period of (say) 30 or more seconds necessary for an ion blower to remove the substantial charge generated by peeling is at least awkward in a manufacturing environment, especially since some of the thin sub-assemblies involved may move around in the air flow from the ion blower. Accordingly, use of relatively conductive release sheets in accordance with the present invention is the preferred approach.
  • FIG. 2 of the accompanying drawings is a schematic side elevation of an experimental apparatus (generally designated 200) used in these experiments.
  • the apparatus 200 comprises a base 202 from which extends upwardly an aluminum plate 204.
  • One surface of the upper portion of plate 204 is covered by a double-sided adhesive tape 206, to which is adhered a glass plate 208.
  • the surface of glass plate 208 remote from the tape 206 is covered by a second double-sided adhesive tape 210, to which is adhered a protective sheet 212, of the type shown in Figure IB.
  • the protective sheet 212 is itself covered by a masking film 214.
  • the apparatus 200 further comprises a vertical bar 216 extending upwardly from the base 202 substantially parallel to the plate 204.
  • the upper end of bar 216 carries a horizontal member 218, which carries, at its end remote from the bar 216, a descending member 220.
  • the descending member 220 carries a clamping member 222, in which is clamped the lower end of masking film 214.
  • the horizontal member 218, together with the associated descending member 220 and clamping member 222, can be moved vertically by an electric motor (not shown) at a constant velocity relative to the base 202, so that the masking film 214 is peeled at a constant rate from the underlying protective sheet 212.
  • the apparatus is provided with means for measuring the force necessary to peel the masking film from the protective sheet. This peeling causes the development of electrostatic charges on both the protective sheet 212 and the masking film 214 and these charges are measured by a meter 224.
  • PS commercial protective sheets
  • MF masking films
  • the meter used was a SIMCO Model FMV-003 ESD meter, and the peeling speed was 25 mm/second.
  • Table 1 The results are shown in Table 1 below. All measurements in this series of experiments, and the later series summarized in Table 2 below, were taken at 23°C and 43 per cent relative humidity.
  • " show the absolute value of the difference between the voltages measured on the protective sheet and masking film in each test; it is this absolute voltage difference which is the best predictor of possible harmful current flows through the backplane which can damage thin film transistors.
  • the sub-assemblies and methods of the present invention can make use of any electro-optic layer which has solid external surfaces to which adhesive layers and/or release sheets can adhere and sufficient mechanical cohesion to permit the necessary manipulation of films containing the electro-optic layer. Accordingly, the present methods can be carried out using any of the types of electro-optic media described above. For example, the present methods can make use of rotating bichromal member, electrochromic or electrophoretic media, and in the last case the electrophoretic media may be of the encapsulated, polymer-dispersed or microcell types.

Abstract

An electro-optic display (102), or a sub-assembly of such a display, comprising a layer of electro-optic material (108) on a backplane (100) is assembled using at least one release sheet (112, 116) or masking film having a resistivity not greater than 1013 Ω square. The use of such a release sheet or masking film helps to avoid damage to transistors in the backplane during the assembly process.

Description

COMPONENTS FOR USE IN ELECTRO-OPTIC DISPLAYS
[Para 1 ] This application is related to:
(a) U.S. Patent No. 6,982,178;
(b) U.S. Patent No. 7,236,292;
(c) U.S. Patent Publication No. 2004/0155857;
(d) U.S. Patent No. 7,110,164;
(e) U.S. Patent Publication No. 2007/0109219;
(f) U.S. Patent Publication No. 2007/0152956;
(g) U.S. Patent Publication No. 2007/0211331; and (h) U.S. Patent Publication No. 2007/0153361.
[Para 2] This invention relates to components and methods for use in electro-optic displays. More specifically, this invention relates to such components and methods in which a release sheet (a term which is used herein in a broad sense to mean any sheet which is peeled from a sub-assembly during manufacture of an electro-optic display, and thus includes materials sometimes referred to as "masking films") having a relatively high conductivity is used. This invention primarily relates to such components and methods containing an electro-optic medium which is a solid (such displays may hereinafter for convenience be referred to as "solid electro-optic displays"), in the sense that the electro-optic medium has solid external surfaces, although the medium may, and often does, have internal liquid- or gas-filled spaces. Thus, the term "solid electro-optic displays" includes encapsulated electrophoretic displays, encapsulated liquid crystal displays, and other types of displays discussed below.
[Para 3] The term "electro-optic" as applied to a material or a display, is used herein in its conventional meaning in the imaging art to refer to a material having first and second display states differing in at least one optical property, the material being changed from its first to its second display state by application of an electric field to the material.
[Para 4] The terms "bistable" and "bistability" are used herein in their conventional meaning in the art to refer to displays comprising display elements having first and second display states differing in at least one optical property, and such that after any given element has been driven, by means of an addressing pulse of finite duration, to assume either its first or second display state, after the addressing pulse has terminated, that state will persist for at least several times, for example at least four times, the minimum duration of the addressing pulse required to change the state of the display element. [Para 5] Several types of electro-optic displays are known, for example:
(a) rotating bichromal member displays (see, for example, U.S. Patents Nos. 5,808,783; 5,777,782; 5,760,761; 6,054,071 6,055,091; 6,097,531; 6,128,124; 6,137,467; and 6,147,791);
(b) electrochromic displays (see, for example, O'Regan, B., et al, Nature 1991, 353, 737; Wood, D., Information Display, 18(3), 24 (March 2002); Bach, U., et al., Adv. Mater., 2002, 14(11), 845; and U.S. Patents Nos. 6,301,038; 6,870.657; and 6,950,220);
(c) electro-wetting displays (see Hayes, R.A., et al., "Video-Speed Electronic Paper Based on Electrowetting", Nature, 425, 383-385 (25 September 2003) and U.S. Patent Publication No. 2005/0151709);
(d) particle-based electrophoretic displays, in which a plurality of charged particles move through a fluid under the influence of an electric field (see U.S. Patents Nos. 5,930,026; 5,961,804; 6,017,584; 6,067,185; 6,118,426; 6,120,588; 6,120,839; 6,124,851; 6,130,773; and 6,130,774; U.S. Patent Applications Publication Nos. 2002/0060321; 2002/0090980; 2003/0011560; 2003/0102858; 2003/0151702; 2003/0222315; 2004/0014265; 2004/0075634; 2004/0094422; 2004/0105036; 2005/0062714; and 2005/0270261; and International Applications Publication Nos. WO 00/38000; WO 00/36560; WO 00/67110; and WO 01/07961; and European Patents Nos. 1,099,207 Bl; and 1,145,072 Bl; and the other MIT and E Ink patents and applications discussed in the aforementioned U.S. Patent No. 7,012,600).
[Para 6] There are several different variants of electrophoretic media. Electrophoretic media can use liquid or gaseous fluids; for gaseous fluids see, for example, Kitamura, T., et al., "Electrical toner movement for electronic paper-like display", IDW Japan, 2001, Paper HCSl-I, and Yamaguchi, Y., et al., "Toner display using insulative particles charged triboelectrically", IDW Japan, 2001, Paper AMD4- 4); U.S. Patent Publication No. 2005/0001810; European Patent Applications 1,462,847; 1,482,354; 1,484,635; 1,500,971; 1,501,194; 1,536,271; 1,542,067; 1,577,702; 1,577,703; and 1,598,694; and International Applications WO 2004/090626; WO 2004/079442; and WO 2004/001498. The media may be encapsulated, comprising numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles suspended in a liquid suspending medium, and a capsule wall surrounding the internal phase. Typically, the capsules are themselves held within a polymeric binder to form a coherent layer positioned between two electrodes; see the aforementioned MIT and E Ink patents and applications. Alternatively, the walls surrounding the discrete microcapsules in an encapsulated electrophoretic medium may be replaced by a continuous phase, thus producing a so-called polymer-dispersed electrophoretic display, in which the electrophoretic medium comprises a plurality of discrete droplets of an electrophoretic fluid and a continuous phase of a polymeric material; see for example, U.S. Patent No. 6,866,760. For purposes of the present application, such polymer-dispersed electrophoretic media are regarded as sub-species of encapsulated electrophoretic media. Another variant is a so-called "microcell electrophoretic display" in which the charged particles and the fluid are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film; see, for example, U.S. Patents Nos. 6,672,921 and 6,788,449.
[Para 7] Electrophoretic media can operate in a "shutter mode" in which one display state is substantially opaque and one is light-transmissive. See, for example, U.S. Patents Nos. 6,130,774 and 6,172,798, and U.S. Patents Nos. 5,872,552; 6,144,361; 6,271,823; 6,225,971; and 6,184,856. Dielectrophoretic displays can operate in a similar mode; see U.S. Patent No. 4,418,346. Other types of electro-optic displays may also be capable of operating in shutter mode.
[Para 8] Other types of electro-optic media, for example encapsulated liquid crystal media, may also be used in the components and methods of the present invention. [Para 9] Most prior art methods for the production of electrophoretic displays are essentially batch methods in which the electro-optic medium, the lamination adhesive and the backplane are only brought together immediately prior to final assembly, and it is desirable to provide methods better adapted for mass production. [Para 1 0] The aforementioned U.S. Patent No. 6,982,178 describes a method of assembling a solid electro-optic display (including a particle-based electrophoretic display) which is well adapted for mass production. Essentially, this patent describes a so-called "front plane laminate" ("FPL") which comprises, in order, a light- transmissive electrically-conductive layer; a layer of a solid electro-optic medium in electrical contact with the electrically-conductive layer; an adhesive layer; and a release sheet. Typically, the light-transmissive electrically-conductive layer will be carried on a light-transmissive substrate, which is preferably flexible, in the sense that the substrate can be manually wrapped around a drum (say) 10 inches (254 mm) in diameter without permanent deformation. The term "light-transmissive" is used in this patent and herein to mean that the layer thus designated transmits sufficient light to enable an observer, looking through that layer, to observe the change in display states of the electro-optic medium, which will be normally be viewed through the electrically-conductive layer and adjacent substrate (if present). The substrate will be typically be a polymeric film, and will normally have a thickness in the range of about 1 to about 25 mil (25 to 634 μm), preferably about 2 to about 10 mil (51 to 254 μm). The electrically-conductive layer is conveniently a thin metal layer of, for example, aluminum or ITO, or may be a conductive polymer. Poly(ethylene terephthalate) (PET) films coated with aluminum or ITO are available commercially, for example as "aluminized Mylar" ("Mylar" is a Registered Trade Mark) from E.I. du Pont de Nemours & Company, Wilmington DE, and such commercial materials may be used with good results in the front plane laminate.
[Para 1 l ] The aforementioned 2004/0155857 describes a so-called "double release film" which is essentially a simplified version of the front plane laminate of the aforementioned U.S. Patent No. 6,982,178. One form of the double release sheet comprises a layer of a solid electro-optic medium sandwiched between two adhesive layers, one or both of the adhesive layers being covered by a release sheet. Another form of the double release sheet comprises a layer of a solid electro-optic medium sandwiched between two release sheets. Both forms of the double release film are intended for use in a process generally similar to the process for assembling an electro-optic display from a front plane laminate already described, but involving two separate laminations; typically, in a first lamination the double release sheet is laminated to a front electrode to form a front sub-assembly, and then in a second lamination the front sub-assembly is laminated to a backplane to form the final display, although the order of these two laminations could be reversed if desired. [Para 1 2] The aforementioned 2007/0109219 describes a so-called "inverted front plane laminate", which is a variant of the front plane laminate described in the aforementioned U.S. Patent No. 6,982,178. This inverted front plane laminate comprises, in order, at least one of a light-transmissive protective layer and a light- transmissive electrically-conductive layer; an adhesive layer; a layer of a solid electro-optic medium; and a release sheet. This inverted front plane laminate is used to form an electro-optic display having a layer of lamination adhesive between the electro-optic layer and the front electrode or front substrate; a second, typically thin layer of adhesive may or may not be present between the electro-optic layer and a backplane. Such electro-optic displays can combine good resolution with good low temperature performance.
[Para 1 3] The aforementioned 2007/0109219 describes various methods designed for high volume manufacture of electro-optic displays using inverted front plane laminates; preferred forms of these methods are "multi-up" methods designed to allow lamination of components for a plurality of electro-optic displays at one time. [Para 1 4] In practice, it has been found that the methods described above, using front plane laminates, inverted front plane laminates and double release films, can sometimes result in damage to the transistors or other non-linear devices typically present in the backplane of the electro-optic display. Such damage can cause pixels of the display to cease to switch between their various optical states, or to switch more slowly or incompletely. Such damage is of course highly undesirable since it adversely affects the quality of images written on the display.
[Para 1 5] It has now been discovered (although this information is not available in the published literature) that one major cause of damage to transistors or other nonlinear devices in display backplanes is discharge through the backplane of electrostatic charges generated during peeling of a release sheet from a sub-assembly used to form the display. It has also been discovered that such damage can be avoided, or at least greatly reduced, if the conductivity of the release sheet is within an appropriate range. Accordingly, the present invention relates to components comprising such release sheets for use in the manufacture of electro-optic displays, and to methods for the use of such components.
[Para 1 6] The present invention provides a sub-assembly useful in the manufacture of an electro-optic display, the sub-assembly comprising a layer of an electro-optic material and a release sheet capable of being peeled from the sub-assembly, the release sheet having a resistivity not greater than about 1013 Ω square. Typically, the resistivity of the release sheet will be not greater than about 1012 Ω square, and not less than about 102 Ω square.
[Para 1 7] The sub-assembly of the present invention may further comprise a backplane comprising at least one electrode, the backplane being disposed on the opposed side of the layer of electro-optic material from the release sheet. In addition, the sub-assembly may comprise a front substrate disposed between the layer of electro-optic material and the release sheet.
[Para 1 8] The sub-assembly of the present invention may be in the form of a front plane laminate comprising, in order: a light-transmissive electrically-conductive layer; the layer of an electro-optic material, this layer being of a solid electro-optic material and being in electrical contact with the electrically-conductive layer; an adhesive layer; and the release sheet. Alternatively, the sub-assembly may be in the form of a double release sheet comprising the layer of an electro-optic material, this layer being of a solid electro-optic material and sandwiched between two adhesive layers, one or both of the adhesive layers being covered by a release sheet. The sub-assembly may also be in the form of a double release sheet comprising the layer of an electro-optic material, this layer being of a solid electro-optic material and sandwiched between two release sheets. The sub-assembly may also be in the form of an inverted front plane laminate comprising, in order: at least one of a light-transmissive protective layer and a light-transmissive electrically-conductive layer; an adhesive layer; the layer of an electro-optic material, this layer being of a solid electro-optic material; and the release sheet.
[Para 1 9] The sub-assembly of the present invention may make use of any of the various types of electro-optic media discussed above. Thus, in this sub-assembly, the electro-optic material may comprise a rotating bichromal member or electrochromic material. Alternatively, the electro-optic material may comprise an electrophoretic material comprising a plurality of electrically charged particles disposed in a fluid and capable of moving through the fluid under the influence of an electric field. The electrically charged particles and the fluid may be confined within a plurality of capsules or microcells, or may be present as a plurality of discrete droplets surrounded by a continuous phase comprising a polymeric material. The fluid may be liquid or gaseous.
[Para 20] This invention also provides a method for assembling a layer of an electro- optic material on a backplane, the method comprising: providing a sub-assembly comprising a layer of an electro-optic material and a release sheet capable of being peeled from the sub-assembly, the release sheet having a resistivity not greater than about 1013 Ω square; providing a backplane comprising at least one electrode and at least one non-linear device connected to the electrode; peeling the release sheet from the layer of electro-optic material; and laminating the layer of electro-optic material to the backplane.
[Para 21 ] In this method, the sub-assembly may comprise an adhesive layer disposed between the layer of electro-optic material and the release sheet, so that after the removal of the release sheet the adhesive layer is contacted with the backplane. The sub-assembly may further comprise, on the opposed side of the layer of electro-optic material from the release sheet and in order, a front substrate, a second adhesive layer and a second release sheet, the second release sheet having a resistivity not greater than about 1013 Ω square, the method further comprising peeling the second release sheet from the second adhesive layer and contacting the second adhesive layer with a second sub-assembly comprising at least one of a barrier layer and a hard coat, thereby securing the at least one of a barrier layer and a hard coat to the front substrate by means of the second adhesive layer. The second sub-assembly may comprise a third release sheet having a resistivity not greater than about 1013 Ω square, and the method may further comprise peeling the third release sheet from the second sub-assembly prior to contacting the second adhesive layer with the second sub-assembly.
[Para 22] As discussed in more detail below, it has been found that damage to transistors or similar non-linear devices in a backplane is especially likely where an electro-optic layer is already present on a backplane and an additional layer is to be secured to the opposed side of the electro-optic layer from the backplane. In these circumstances, if a release sheet is removed either from the backplane/electro-optic layer sub-assembly or from the additional layer so as to generate electrostatic charge on either the sub-assembly or the additional layer, damage to non-linear devices on the backplane is likely. Accordingly, in such a process, it is highly desirable that any release sheet peeled from the sub-assembly or the additional layer have a resistivity not greater than about 1013 Ω square.
[Para 23] Figures IA to ID are schematic side elevations showing various stages in the assembly of an electro-optic display by the method of the present invention.
[Para 24] Figure 2 is a schematic side elevation of a testing apparatus used in the experimental tests described below.
[Para 25] Figures 3 and 4 show respectively the variation of surface voltage and peel force with peel speed in experimental tests carried out using the apparatus of Figure 2, as described below.
[Para 26] Figure 5 shows the variation of surface voltage with masking film resistivity in experimental tests carried out using the apparatus of Figure 2, as described below.
[Para 27] As already mentioned, the present invention relates to sub-assemblies and methods for use in the manufacture of electro-optic displays. To avoid damage to transistors or other non-linear devices present in the backplane of the display, at least one release film used in the sub-assembly or method of the present invention has a resistivity not greater than about 1013 Ω square. All resistivities quoted herein are measured after the relevant material has been stored at 25°C and 50 per cent relative humidity for a period such that the resistivity of the material becomes stable. [Para 28] Although the release film used in the sub-assembly or method of the present invention has a resistivity up to about 1013 Ω square, it is generally preferred that the resistivity of the release film not exceed about 1012 Ω square. As shown empirically below, release films having such a resistivity do produce significant reductions in the electrostatic charge generated during peeling of the release film. [Para 29] The sub-assembly of the present invention may be any sub-assembly comprising a layer of an electro-optic material and a release sheet useful in the manufacture of an electro-optic display. Thus, the sub-assembly may be a front plane laminate, double release film or inverted front plane laminate of any of the types described above. However, the sub-assembly can also take other forms. In particular, the "sub-assembly" of the present invention may comprise an electro-optic display which is itself complete and functional but which is designed to have further layers added, for example for increased protection against environmental contaminants, radiation etc.
[Para 30] Figures 1A-1D of the accompanying drawings illustrate a process for the manufacture of an electro-optic display using a sub-assembly of this type. Figures IA- ID are not to scale; the illustrated thicknesses of the various layers do not necessarily correspond to their actual thicknesses, and in all cases the thicknesses of the layers are greatly exaggerated relative to their lateral dimensions. Figure IA illustrates a backplane (generally designated 100) comprising pixel electrodes, thin film transistors and associated circuitry, all of which are omitted from Figures IA- ID for the sake of clarity. Disposed adjacent the backplane 100 is a front plane laminate (generally designated 102) of the type described in the aforementioned U.S. Patent No. 6,982,178 and comprising a substantially transparent front substrate 104 (in the form of a poly(ethylene terephthalate) (PET) film), a substantially transparent electrically- conductive layer 106 (in the form of a thin layer of indium tin oxide, ITO), a layer of electro-optic material 108, a lamination adhesive layer 110 and a first release sheet 112, all of which are as described in the patent. However, for reasons explained below, the front plane laminate 102 further comprises a layer of optically clear adhesive 114, on the opposed side of the front substrate 104 from the conductive layer 106, and a second release sheet 116 covering the optically clear adhesive 114. [Para 31 ] In the first step of the process for forming an electro-optic display, the first release sheet 112 is peeled from the front plane laminate 102 and the remaining layers of the front plane laminate are laminated to the backplane 100 under heat and pressure, as described in the aforementioned U.S. Patent No. 6,982,178, to produce the structure shown in Figure IB. To prevent damage to the backplane 100 during this step, the first release sheet has a resistivity not greater than about 1012 Ω square. The removal of the release sheet 112 can result in the development of a substantial electrostatic charge on the remaining layers of the front plane laminate 102 and this electrostatic charge could discharge through and damage the transistors in the backplane. However, using a release sheet having a resistivity not greater than about 1012 Ω square keeps the electrostatic charge low enough to ensure that peeling of the release sheet does not damage the transistors on the backplane. Although not shown in Figure IB, the front plane laminate 102 is provided with a conductive via which connects the conductive layer 106 to a connection provided on the backplane 100. Accordingly, the structure shown in Figure IB is in fact a fully functional electro- optic display. However, for reasons discussed in several of the aforementioned E Ink and MIT patents and applications, it is desirable to provide additional protection for the display against ingress of oxygen, moisture, radiation and other potential problem materials into the electro-optic layer itself, and the further steps described below provide such additional protection.
[Para 32] As also illustrated in Figure IB, the next step of the process uses a protective sheet (generally designated 120) which comprises, in order, a masking film 122, an anti-glare hard coat 124, a barrier layer 126 and a third release sheet 128. The barrier layer 126, which is designed to prevent penetration of moisture and ultra-violet radiation into the final display, is itself typically a complex multi-layer structure, but details of its internal construction are irrelevant to the present invention and will not be described herein. As shown in Figure IB, the protective sheet 120 is disposed adjacent the structure formed from the front plane laminate and the backplane, with the third release sheet 128 of the protective sheet 120 facing the second release sheet 116. [Para 33] In the next step of the process, the second release sheet 116 is peeled from the adhesive 114 and the third release sheet 128 is peeled from the barrier layer 126. Either of these peeling operations could result in the generation of electrostatic charge sufficient to damage the transistors of the backplane 100, and accordingly both the second and third release sheets have resistivities not greater than about 1012 Ω square. (Although any charge generated by peeling of the third release sheet 128 will of course reside only on the protective sheet 120, this charge can discharge through and damage the backplane when the protective sheet 120 is affixed to the backplane as described below.) The protective sheet is then laminated, typically under heat and pressure, to the adhesive 114, thus producing the structure shown in Figure 1C. [Para 34] At this point the electro-optic display is essentially complete and the only remaining step is peeling of the masking film 122 from the hard coat 124 to produce the final structure shown in Figure ID. The time when this is done may vary with the application of the display. In some cases, removal of the masking film is effected when the display is incorporated into a chassis (for example the chassis of an electronic book reader, the chassis comprising a casing and electronics needed for driving the display, and other associated circuitry, for example solid state memory for storing books to be displayed); in other cases, the masking film 122 could be removed by the final customer, so that the masking film can serve to prevent damage to the hard coat 124 during delivery of the display. Regardless of the exact point at which the masking film 122 is removed to provide the final display structure shown in Figure ID, peeling of the masking film could result in the generation of electrostatic charge sufficient to damage the transistors of the backplane 100, and accordingly the masking film 122 has a resistivity not greater than about 1012 Ω square. [Para 35] In many cases, release sheets or masking films having resistivities suitable for use in the present invention will be available commercially. However, in some cases it may be difficult to find a commercial material having a suitable resistivity and all the other properties which may be required in a release sheet or masking film used in the present invention. In such circumstances, it will typically be necessary to select a film having all the desirable properties except the desired resistivity and then to adjust the resistivity to the desired value. Such resistivity adjustment can be effected in several different ways. For example, a surface active agent may be coated on to the film. Such a surface active agent may absorb moisture from the air, thus neutralizing and reducing surface electrical charge. Alternatively, a material of appropriate resistivity may be coated on to the release sheet, or incorporated therein. In the common case where a release sheet comprises a base (typically polymeric) layer and an adhesive layer, it may often be more convenient to incorporate the surface active agent or the material of appropriate conductivity into the adhesive layer rather than the base layer.
[Para 36] Those familiar with the problems caused by electrostatic discharges during manufacturing processes will be aware of techniques which have been used to reduce such problems in other industries, including the use of high humidity environments and so-called "ion blowers" which blow a stream of air containing ions on to any area where it is desired to avoid charge build-up. Neither approach appears to give good results when dealing with the problems caused by peeling release sheets or masking films during the production of electro-optic displays. Many types of electro-optic media are sensitive to moisture (i.e., the electro-optic properties of the material are affected by moisture) so that using a high humidity environment may cause undesirable changes in the electro-optic medium itself. In addition, there are obvious problems in ensuring a high humidity environment throughout large scale, multi-stage production of electro-optic displays in a factory setting. Although ion blowers can reduce electrostatic charges, they typically act too slowly to be convenient for use when release sheets are peeled; leaving the sub-assembly from which the release sheet has been peeled exposed for the period of (say) 30 or more seconds necessary for an ion blower to remove the substantial charge generated by peeling is at least awkward in a manufacturing environment, especially since some of the thin sub-assemblies involved may move around in the air flow from the ion blower. Accordingly, use of relatively conductive release sheets in accordance with the present invention is the preferred approach.
[Para 37] The following experimental results are given, though by way of illustration only, to show that the use of relatively conductive release sheets in accordance with the present invention is effective in reducing static discharge during the manufacture of electro-optic displays. [Para 381 Experimental tests
[Para 39] Figure 2 of the accompanying drawings is a schematic side elevation of an experimental apparatus (generally designated 200) used in these experiments. The apparatus 200 comprises a base 202 from which extends upwardly an aluminum plate 204. One surface of the upper portion of plate 204 is covered by a double-sided adhesive tape 206, to which is adhered a glass plate 208. The surface of glass plate 208 remote from the tape 206 is covered by a second double-sided adhesive tape 210, to which is adhered a protective sheet 212, of the type shown in Figure IB. The protective sheet 212 is itself covered by a masking film 214.
[Para 40] The apparatus 200 further comprises a vertical bar 216 extending upwardly from the base 202 substantially parallel to the plate 204. The upper end of bar 216 carries a horizontal member 218, which carries, at its end remote from the bar 216, a descending member 220. The descending member 220 carries a clamping member 222, in which is clamped the lower end of masking film 214. The horizontal member 218, together with the associated descending member 220 and clamping member 222, can be moved vertically by an electric motor (not shown) at a constant velocity relative to the base 202, so that the masking film 214 is peeled at a constant rate from the underlying protective sheet 212. The apparatus is provided with means for measuring the force necessary to peel the masking film from the protective sheet. This peeling causes the development of electrostatic charges on both the protective sheet 212 and the masking film 214 and these charges are measured by a meter 224. [Para 41 ] Combinations of three different commercial protective sheets (PS) and two different masking films (MF) were tested using the apparatus 200. One masking film, designated simply "PET" below, was a simple PET film having no anti-electrostatic coating and a resistivity greater than 1014 Ω square. The second masking film, designated "PET/AES" below, was a similar PET film but provided with an anti- electrostatic coating and had a resistivity of about 1012 Ω square. The meter used was a SIMCO Model FMV-003 ESD meter, and the peeling speed was 25 mm/second. The results are shown in Table 1 below. All measurements in this series of experiments, and the later series summarized in Table 2 below, were taken at 23°C and 43 per cent relative humidity. The rows labeled "|Δ|" show the absolute value of the difference between the voltages measured on the protective sheet and masking film in each test; it is this absolute voltage difference which is the best predictor of possible harmful current flows through the backplane which can damage thin film transistors.
[Para 42] Table 1
Figure imgf000015_0001
[Para 43] From the data in Table 1, it will be seen that the presence of the anti- electrostatic coating on the masking film reduced the voltage differences developed during peeling by about an order of magnitude; in neither case did the voltage difference obtained with the PET/AES films useful in the present invention exceed 1 kV. The presence of the anti-electrostatic coating on the masking film also significantly reduced the peeling force required.
[Para 44] A further series of experiments were conducted to determine whether the rate of peeling significantly affected the surface voltages and the peeling force. For this purpose, the experiment with Protective Sheet A and Masking Film PET was repeated using peel speeds of 2.1, 6.4. 13 and 25 mm/second. The results are shown in Table 2 below. Also, the results for the surface voltage on the masking film at the midpoint of the peel are plotted in Figure 3 of the accompanying drawings, and the results for the peeling force are plotted in Figure 4.
Figure imgf000016_0001
[Para 46] From the data in Table 2, and from Figures 3 and 4, it will be seen that the magnitude of both the surface voltage on the masking film and the peel force increase rapidly with peel speed. Hence, the importance of provisions for charge dissipation increases when high peel speeds are likely, for example where large displays are being manufactured, or at high production rates.
[Para 47] In a further series of experiments, various combinations of protective sheet and masking film were peeled from each other at a constant peeling force of 0.15 Kg; this resulted in different peeling speeds in the various tests. The results obtained are shown in Table 3 below and Figure 5 plots the voltage difference between the masking film and the protective sheet measured at the peeling midpoint against the resistivity of the masking film; note that both axes in Figure 5 are plotted logarithmically. [Para 48] Table 3
Figure imgf000016_0002
[Para 49] From Table 3 and Figure 5, it will be seen that the surface voltage at the peel midpoint correlated very strongly with the resistivity of the masking film; the masking films having resistivities of 1014 ohm or more produced voltage differences of the order of 10 kV, whereas the masking films having resistivities of 1012 ohm or less produced voltage differences not greater than about 1 kV. As may be seen from Table 3, exactly the same tendency is apparent in the data from the peel endpoints. [Para 50] It will be apparent from the preceding discussion that the sub-assemblies and methods of the present invention can make use of any electro-optic layer which has solid external surfaces to which adhesive layers and/or release sheets can adhere and sufficient mechanical cohesion to permit the necessary manipulation of films containing the electro-optic layer. Accordingly, the present methods can be carried out using any of the types of electro-optic media described above. For example, the present methods can make use of rotating bichromal member, electrochromic or electrophoretic media, and in the last case the electrophoretic media may be of the encapsulated, polymer-dispersed or microcell types.

Claims

1. A sub-assembly (102) useful in the manufacture of an electro- optic display, the sub-assembly (102) comprising a layer (108) of an electro-optic material and a release sheet (112, 116) capable of being peeled from the sub-assembly (102), the subassembly (102) being characterized in that the release sheet (112, 116) has a resistivity not greater than 1013 Ω square.
2. A sub-assembly according to claim 1 characterized in that the resistivity of the release sheet is not greater than 1012 Ω square.
3. A sub-assembly according to claim 1 characterized in that the resistivity of the release sheet is not less than 102 Ω square.
4. A sub-assembly according to claim 1 characterized by a backplane (100) comprising at least one electrode, the backplane (100) being disposed on the opposed side of the layer (108) of electro-optic material from the release sheet (116).
5. A sub-assembly according to claim 4 characterized by a front substrate (104) disposed between the layer (108) of electro-optic material and the release sheet (116).
6. A sub-assembly according to claim 1 in the form of a front plane laminate characterized by, in order: a light-transmissive electrically-conductive layer (106); the layer (108) of an electro-optic material, this layer (108) being of a solid electro-optic material and being in electrical contact with the electrically- conductive layer (106); an adhesive layer (110); and the release sheet (112).
7. A sub-assembly according to claim 1 in the form of a double release sheet characterized in that the layer of an electro-optic material is of a solid electro-optic material and is sandwiched between two adhesive layers, one or both of the adhesive layers being covered by a release sheet.
8. A sub-assembly according to claim 1 in the form of a double release sheet characterized in that the layer of an electro-optic material is of a solid electro-optic material sandwiched between two release sheets.
9. A sub-assembly according to claim 1 in the form of an inverted front plane laminate characterized by, in order: at least one of a light-transmissive protective layer and a light- transmissive electrically-conductive layer; an adhesive layer; the layer of an electro-optic material, this layer being of a solid electro- optic material; and the release sheet.
10. A method for assembling a layer (106) of an electro-optic material on a backplane (100), the method comprising: providing a sub-assembly (102) comprising the layer (108) of electro- optic material and a release sheet (112) capable of being peeled from the sub- assembly (102); providing a backplane (100) comprising at least one electrode and at least one non-linear device connected to the electrode; peeling the release sheet (112) from the layer (108) of electro-optic material; and laminating the layer (108) of electro-optic material to the backplane (100), the method being characterized in that the release sheet (112) has a resistivity not greater than 1013 Ω square.
11. A method according to claim 10 characterized in that the resistivity of the release sheet is not greater than 1012 Ω square.
12. A method according to claim 10 characterized in that the resistivity of the release sheet is not less than 102 Ω square.
13. A method according to claim 10 characterized in that the sub- assembly (102) comprises an adhesive layer (110) disposed between the layer (108) of electro-optic material and the release sheet (112), and after the removal of the release sheet (112) the adhesive layer (110) is contacted with the backplane (100).
14. A method according to claim 13 characterized in that the sub- assembly (102) further comprises, on the opposed side of the layer (108) of electro- optic material from the release sheet (112) and in order, a front substrate (104), a second adhesive layer (114) and a second release sheet (116), the second release sheet (116) having a resistivity not greater than 1013 Ω square, the method further comprising peeling the second release sheet (116) from the second adhesive layer (114) and contacting the second adhesive layer (114) with a second sub-assembly (120) comprising at least one of a barrier layer (126) and a hard coat (124), thereby securing the at least one of a barrier layer (126) and a hard coat (124) to the front substrate (104) by means of the second adhesive layer (114).
15. A method according to claim 14 characterized in that the second sub-assembly (122) comprises a third release sheet (128) having a resistivity not greater than 1013 Ω square, and the method further comprises peeling the third release sheet (128) from the second sub-assembly (120) prior to contacting the second adhesive layer (114) with the second sub-assembly (120).
PCT/US2007/086770 2006-12-07 2007-12-07 Components for use in electro-optic displays WO2008070830A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86897306P 2006-12-07 2006-12-07
US60/868,973 2006-12-07

Publications (2)

Publication Number Publication Date
WO2008070830A2 true WO2008070830A2 (en) 2008-06-12
WO2008070830A3 WO2008070830A3 (en) 2008-08-21

Family

ID=39493094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/086770 WO2008070830A2 (en) 2006-12-07 2007-12-07 Components for use in electro-optic displays

Country Status (2)

Country Link
US (1) US7649666B2 (en)
WO (1) WO2008070830A2 (en)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7848006B2 (en) * 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US7583251B2 (en) 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
EP1093600B1 (en) * 1998-07-08 2004-09-15 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
AU2002250304A1 (en) * 2001-03-13 2002-09-24 E Ink Corporation Apparatus for displaying drawings
US8390918B2 (en) 2001-04-02 2013-03-05 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
US20090009852A1 (en) * 2001-05-15 2009-01-08 E Ink Corporation Electrophoretic particles and processes for the production thereof
US7223672B2 (en) * 2002-04-24 2007-05-29 E Ink Corporation Processes for forming backplanes for electro-optic displays
US8363299B2 (en) * 2002-06-10 2013-01-29 E Ink Corporation Electro-optic displays, and processes for the production thereof
US20040031167A1 (en) * 2002-06-13 2004-02-19 Stein Nathan D. Single wafer method and apparatus for drying semiconductor substrates using an inert gas air-knife
US7839564B2 (en) * 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
US20130063333A1 (en) 2002-10-16 2013-03-14 E Ink Corporation Electrophoretic displays
US8177942B2 (en) 2003-11-05 2012-05-15 E Ink Corporation Electro-optic displays, and materials for use therein
US20110164301A1 (en) 2003-11-05 2011-07-07 E Ink Corporation Electro-optic displays, and materials for use therein
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US8390301B2 (en) * 2006-03-08 2013-03-05 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US7843624B2 (en) 2006-03-08 2010-11-30 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
WO2008091850A2 (en) 2007-01-22 2008-07-31 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US7688497B2 (en) * 2007-01-22 2010-03-30 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US7826129B2 (en) 2007-03-06 2010-11-02 E Ink Corporation Materials for use in electrophoretic displays
WO2009006248A1 (en) 2007-06-29 2009-01-08 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US20090122389A1 (en) 2007-11-14 2009-05-14 E Ink Corporation Electro-optic assemblies, and adhesives and binders for use therein
JP2011517490A (en) * 2008-03-21 2011-06-09 イー インク コーポレイション Electro-optic display and color filter
WO2009126957A1 (en) * 2008-04-11 2009-10-15 E Ink Corporation Methods for driving electro-optic displays
TWI484273B (en) * 2009-02-09 2015-05-11 E Ink Corp Electrophoretic particles
US8098418B2 (en) * 2009-03-03 2012-01-17 E. Ink Corporation Electro-optic displays, and color filters for use therein
CN102023403A (en) * 2009-09-17 2011-04-20 群康科技(深圳)有限公司 Optical film
TWI416173B (en) * 2009-10-09 2013-11-21 Innolux Corp Optical film
US8654436B1 (en) 2009-10-30 2014-02-18 E Ink Corporation Particles for use in electrophoretic displays
WO2011123847A2 (en) 2010-04-02 2011-10-06 E Ink Corporation Electrophoretic media
TWI484275B (en) 2010-05-21 2015-05-11 E Ink Corp Electro-optic display, method for driving the same and microcavity electrophoretic display
JP5899220B2 (en) * 2010-09-29 2016-04-06 ポスコ Method for manufacturing flexible electronic device using roll-shaped mother substrate, flexible electronic device, and flexible substrate
US8434951B2 (en) * 2011-01-10 2013-05-07 Apple Inc. Systems and methods for coupling a cover to an enclosure
EP2877895B1 (en) 2012-07-27 2017-09-06 E Ink Corporation Processes for the production of electro-optic displays
US20140061610A1 (en) * 2012-08-31 2014-03-06 Hyo-Young MUN Organic light emitting device and manufacturing method thereof
KR102003769B1 (en) * 2012-11-05 2019-07-26 삼성디스플레이 주식회사 A metal sheet for encapsulation of organic light emitting display device and the encapsulating method using the same
CN105917265B (en) 2014-01-17 2019-01-15 伊英克公司 Electro-optic displays with two-phase electrode layer
CA2963561A1 (en) 2014-11-07 2016-05-12 E Ink Corporation Applications of electro-optic displays
US9835925B1 (en) 2015-01-08 2017-12-05 E Ink Corporation Electro-optic displays, and processes for the production thereof
CN107771369B (en) 2015-06-29 2021-09-24 伊英克公司 Method for mechanically and electrically connecting to display electrodes
WO2017209869A2 (en) 2016-05-31 2017-12-07 E Ink Corporation Stretchable electro-optic displays
US10509294B2 (en) 2017-01-25 2019-12-17 E Ink Corporation Dual sided electrophoretic display
TWI670556B (en) 2017-03-28 2019-09-01 美商電子墨水股份有限公司 Backplane for electro-optic display
US10698265B1 (en) 2017-10-06 2020-06-30 E Ink California, Llc Quantum dot film
KR20210151997A (en) 2017-11-03 2021-12-14 이 잉크 코포레이션 Processes for producing electro-optic displays
US11079651B2 (en) 2017-12-15 2021-08-03 E Ink Corporation Multi-color electro-optic media
JP2021507293A (en) 2017-12-19 2021-02-22 イー インク コーポレイション Application of electro-optical display
US11143929B2 (en) 2018-03-09 2021-10-12 E Ink Corporation Reflective electrophoretic displays including photo-luminescent material and color filter arrays
US11175561B1 (en) 2018-04-12 2021-11-16 E Ink Corporation Electrophoretic display media with network electrodes and methods of making and using the same
KR102521143B1 (en) 2018-08-10 2023-04-12 이 잉크 캘리포니아 엘엘씨 Switchable light collimation layer with reflector
US11397366B2 (en) 2018-08-10 2022-07-26 E Ink California, Llc Switchable light-collimating layer including bistable electrophoretic fluid
KR102521144B1 (en) 2018-08-10 2023-04-12 이 잉크 캘리포니아 엘엘씨 Drive Waveforms for a Switchable Light Collimation Layer Containing a Bistable Electrophoretic Fluid
WO2021040917A1 (en) * 2019-08-26 2021-03-04 E Ink Corporation Electro-optic device comprising an identification marker
CA3163699A1 (en) 2020-02-07 2021-08-12 E Ink Corporation Electrophoretic display layer with thin film top electrode
TWI803880B (en) 2020-06-05 2023-06-01 美商伊英克加利福尼亞有限責任公司 Electrophoretic display device
CA3228148A1 (en) 2021-09-06 2023-03-09 E Ink Corporation Method for driving electrophoretic display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040104121A1 (en) * 2000-07-19 2004-06-03 Matsushita Elec. Ind. Co. Ltd. Substrate with an electrode and method of producing the same
US20040155857A1 (en) * 2002-09-03 2004-08-12 E Ink Corporation Electro-optic displays
US20050048416A1 (en) * 2003-08-29 2005-03-03 Fuji Photo Film Co., Ltd. Mask and method of fabricating the same, and method of machining material
US20050124751A1 (en) * 2003-03-27 2005-06-09 Klingenberg Eric H. Electro-optic assemblies and materials for use therein
US6982178B2 (en) * 2002-06-10 2006-01-03 E Ink Corporation Components and methods for use in electro-optic displays

Family Cites Families (208)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7005615A (en) 1969-04-23 1970-10-27
US3870517A (en) 1969-10-18 1975-03-11 Matsushita Electric Ind Co Ltd Color image reproduction sheet employed in photoelectrophoretic imaging
US3668106A (en) 1970-04-09 1972-06-06 Matsushita Electric Ind Co Ltd Electrophoretic display device
US3767392A (en) 1970-04-15 1973-10-23 Matsushita Electric Ind Co Ltd Electrophoretic light image reproduction process
US3792308A (en) 1970-06-08 1974-02-12 Matsushita Electric Ind Co Ltd Electrophoretic display device of the luminescent type
JPS4917079B1 (en) 1970-12-21 1974-04-26
US4418346A (en) 1981-05-20 1983-11-29 Batchelder J Samuel Method and apparatus for providing a dielectrophoretic display of visual information
US5745094A (en) 1994-12-28 1998-04-28 International Business Machines Corporation Electrophoretic display
US6137467A (en) 1995-01-03 2000-10-24 Xerox Corporation Optically sensitive electric paper
US6120839A (en) 1995-07-20 2000-09-19 E Ink Corporation Electro-osmotic displays and materials for making the same
US7259744B2 (en) 1995-07-20 2007-08-21 E Ink Corporation Dielectrophoretic displays
US6124851A (en) 1995-07-20 2000-09-26 E Ink Corporation Electronic book with multiple page displays
US6727881B1 (en) 1995-07-20 2004-04-27 E Ink Corporation Encapsulated electrophoretic displays and methods and materials for making the same
US7109968B2 (en) 1995-07-20 2006-09-19 E Ink Corporation Non-spherical cavity electrophoretic displays and methods and materials for making the same
US6120588A (en) 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US7304634B2 (en) 1995-07-20 2007-12-04 E Ink Corporation Rear electrode structures for electrophoretic displays
US7327511B2 (en) 2004-03-23 2008-02-05 E Ink Corporation Light modulators
US6118426A (en) 1995-07-20 2000-09-12 E Ink Corporation Transducers and indicators having printed displays
US7193625B2 (en) 1999-04-30 2007-03-20 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US6515649B1 (en) 1995-07-20 2003-02-04 E Ink Corporation Suspended particle displays and materials for making the same
US7583251B2 (en) 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US7071913B2 (en) 1995-07-20 2006-07-04 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US6639578B1 (en) 1995-07-20 2003-10-28 E Ink Corporation Flexible displays
US7352353B2 (en) 1995-07-20 2008-04-01 E Ink Corporation Electrostatically addressable electrophoretic display
US7106296B1 (en) 1995-07-20 2006-09-12 E Ink Corporation Electronic book with multiple page displays
US6866760B2 (en) 1998-08-27 2005-03-15 E Ink Corporation Electrophoretic medium and process for the production thereof
US7411719B2 (en) 1995-07-20 2008-08-12 E Ink Corporation Electrophoretic medium and process for the production thereof
US6664944B1 (en) 1995-07-20 2003-12-16 E-Ink Corporation Rear electrode structures for electrophoretic displays
US7167155B1 (en) 1995-07-20 2007-01-23 E Ink Corporation Color electrophoretic displays
US6710540B1 (en) 1995-07-20 2004-03-23 E Ink Corporation Electrostatically-addressable electrophoretic display
US7079305B2 (en) 2001-03-19 2006-07-18 E Ink Corporation Electrophoretic medium and process for the production thereof
US6017584A (en) 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US8139050B2 (en) 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
US6459418B1 (en) 1995-07-20 2002-10-01 E Ink Corporation Displays combining active and non-active inks
US6262706B1 (en) 1995-07-20 2001-07-17 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US5760761A (en) 1995-12-15 1998-06-02 Xerox Corporation Highlight color twisting ball display
US6055091A (en) 1996-06-27 2000-04-25 Xerox Corporation Twisting-cylinder display
US5808783A (en) 1996-06-27 1998-09-15 Xerox Corporation High reflectance gyricon display
US6323989B1 (en) 1996-07-19 2001-11-27 E Ink Corporation Electrophoretic displays using nanoparticles
ATE356369T1 (en) 1996-07-19 2007-03-15 E Ink Corp ELECTRONICALLY ADDRESSABLE MICRO-ENCAPSULED INK
US6538801B2 (en) 1996-07-19 2003-03-25 E Ink Corporation Electrophoretic displays using nanoparticles
US6721083B2 (en) 1996-07-19 2004-04-13 E Ink Corporation Electrophoretic displays using nanoparticles
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US5777782A (en) 1996-12-24 1998-07-07 Xerox Corporation Auxiliary optics for a twisting ball display
EP0958526B1 (en) 1997-02-06 2005-06-15 University College Dublin Electrochromic system
US6980196B1 (en) 1997-03-18 2005-12-27 Massachusetts Institute Of Technology Printable electronic display
US5961804A (en) 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US6067185A (en) 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
US6825829B1 (en) 1997-08-28 2004-11-30 E Ink Corporation Adhesive backed displays
US6177921B1 (en) 1997-08-28 2001-01-23 E Ink Corporation Printable electrode structures for displays
US6300932B1 (en) 1997-08-28 2001-10-09 E Ink Corporation Electrophoretic displays with luminescent particles and materials for making the same
US7247379B2 (en) 1997-08-28 2007-07-24 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US7242513B2 (en) 1997-08-28 2007-07-10 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US7002728B2 (en) 1997-08-28 2006-02-21 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US6232950B1 (en) 1997-08-28 2001-05-15 E Ink Corporation Rear electrode structures for displays
US6252564B1 (en) 1997-08-28 2001-06-26 E Ink Corporation Tiled displays
US6839158B2 (en) 1997-08-28 2005-01-04 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US6054071A (en) 1998-01-28 2000-04-25 Xerox Corporation Poled electrets for gyricon-based electric-paper displays
US6753999B2 (en) 1998-03-18 2004-06-22 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
AU3190499A (en) 1998-03-18 1999-10-11 E-Ink Corporation Electrophoretic displays and systems for addressing such displays
US6704133B2 (en) 1998-03-18 2004-03-09 E-Ink Corporation Electro-optic display overlays and systems for addressing such displays
DE69918308T2 (en) 1998-04-10 2004-10-21 E Ink Corp ELECTRONIC DISPLAY BASED ON ORGANIC FIELD EFFECT TRANSISTORS
US7075502B1 (en) 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
EP1075670B1 (en) 1998-04-27 2008-12-17 E-Ink Corporation Shutter mode microencapsulated electrophoretic display
JP4651193B2 (en) 1998-05-12 2011-03-16 イー インク コーポレイション Microencapsulated electrophoretic electrostatically addressed media for drawing device applications
US6241921B1 (en) 1998-05-15 2001-06-05 Massachusetts Institute Of Technology Heterogeneous display elements and methods for their fabrication
EP1145072B1 (en) 1998-06-22 2003-05-07 E-Ink Corporation Method of addressing microencapsulated display media
WO2000003349A1 (en) 1998-07-08 2000-01-20 E Ink Corporation Method and apparatus for sensing the state of an electrophoretic display
US20030102858A1 (en) 1998-07-08 2003-06-05 E Ink Corporation Method and apparatus for determining properties of an electrophoretic display
EP1093600B1 (en) 1998-07-08 2004-09-15 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
AU5224399A (en) 1998-07-22 2000-02-14 E-Ink Corporation Electronic display
USD485294S1 (en) 1998-07-22 2004-01-13 E Ink Corporation Electrode structure for an electronic display
US7256766B2 (en) 1998-08-27 2007-08-14 E Ink Corporation Electrophoretic display comprising optical biasing element
US6144361A (en) 1998-09-16 2000-11-07 International Business Machines Corporation Transmissive electrophoretic display with vertical electrodes
US6225971B1 (en) 1998-09-16 2001-05-01 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using an absorbing panel
US6184856B1 (en) 1998-09-16 2001-02-06 International Business Machines Corporation Transmissive electrophoretic display with laterally adjacent color cells
US6271823B1 (en) 1998-09-16 2001-08-07 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using a reflective panel
US6262833B1 (en) 1998-10-07 2001-07-17 E Ink Corporation Capsules for electrophoretic displays and methods for making the same
EP1118039B1 (en) 1998-10-07 2003-02-05 E Ink Corporation Illumination system for nonemissive electronic displays
US6128124A (en) 1998-10-16 2000-10-03 Xerox Corporation Additive color electric paper without registration or alignment of individual elements
US20070285385A1 (en) 1998-11-02 2007-12-13 E Ink Corporation Broadcast system for electronic ink signs
EP1127309A1 (en) 1998-11-02 2001-08-29 E Ink Corporation Broadcast system for display devices made of electronic ink
US6097531A (en) 1998-11-25 2000-08-01 Xerox Corporation Method of making uniformly magnetized elements for a gyricon display
US6147791A (en) 1998-11-25 2000-11-14 Xerox Corporation Gyricon displays utilizing rotating elements and magnetic latching
US6506438B2 (en) 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US6312304B1 (en) 1998-12-15 2001-11-06 E Ink Corporation Assembly of microencapsulated electronic displays
US6724519B1 (en) 1998-12-21 2004-04-20 E-Ink Corporation Protective electrodes for electrophoretic displays
EP1169121B1 (en) 1999-04-06 2012-10-31 E Ink Corporation Methods for producing droplets for use in capsule-based electrophoretic displays
US6327072B1 (en) 1999-04-06 2001-12-04 E Ink Corporation Microcell electrophoretic displays
US6842657B1 (en) 1999-04-09 2005-01-11 E Ink Corporation Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6504524B1 (en) 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
US6531997B1 (en) 1999-04-30 2003-03-11 E Ink Corporation Methods for addressing electrophoretic displays
US7119772B2 (en) 1999-04-30 2006-10-10 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US7012600B2 (en) 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US7038655B2 (en) 1999-05-03 2006-05-02 E Ink Corporation Electrophoretic ink composed of particles with field dependent mobilities
US6693620B1 (en) 1999-05-03 2004-02-17 E Ink Corporation Threshold addressing of electrophoretic displays
US7119759B2 (en) 1999-05-03 2006-10-10 E Ink Corporation Machine-readable displays
US8009348B2 (en) 1999-05-03 2011-08-30 E Ink Corporation Machine-readable displays
US8115729B2 (en) 1999-05-03 2012-02-14 E Ink Corporation Electrophoretic display element with filler particles
US7030412B1 (en) 1999-05-05 2006-04-18 E Ink Corporation Minimally-patterned semiconductor devices for display applications
EP1192504B1 (en) 1999-07-01 2011-03-16 E Ink Corporation Electrophoretic medium provided with spacers
JP4948726B2 (en) 1999-07-21 2012-06-06 イー インク コーポレイション Preferred method of making an electronic circuit element for controlling an electronic display
JP4744757B2 (en) 1999-07-21 2011-08-10 イー インク コーポレイション Use of storage capacitors to enhance the performance of active matrix driven electronic displays.
US6312971B1 (en) 1999-08-31 2001-11-06 E Ink Corporation Solvent annealing process for forming a thin semiconductor film with advantageous properties
EP1208603A1 (en) 1999-08-31 2002-05-29 E Ink Corporation Transistor for an electronically driven display
US6870657B1 (en) 1999-10-11 2005-03-22 University College Dublin Electrochromic device
US6672921B1 (en) 2000-03-03 2004-01-06 Sipix Imaging, Inc. Manufacturing process for electrophoretic display
US6788449B2 (en) 2000-03-03 2004-09-07 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
AU2001253575A1 (en) 2000-04-18 2001-10-30 E-Ink Corporation Process for fabricating thin film transistors
US7893435B2 (en) 2000-04-18 2011-02-22 E Ink Corporation Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
JP3581081B2 (en) * 2000-07-11 2004-10-27 リンテック株式会社 Light-transmitting pressure-sensitive adhesive sheet for heat transfer image formation and light-transmitting decorative pressure-sensitive adhesive sheet
US6683333B2 (en) 2000-07-14 2004-01-27 E Ink Corporation Fabrication of electronic circuit elements using unpatterned semiconductor layers
US7236290B1 (en) 2000-07-25 2007-06-26 E Ink Corporation Electrophoretic medium with improved stability
US6816147B2 (en) 2000-08-17 2004-11-09 E Ink Corporation Bistable electro-optic display, and method for addressing same
AU2002230520A1 (en) 2000-11-29 2002-06-11 E-Ink Corporation Addressing circuitry for large electronic displays
US20020090980A1 (en) 2000-12-05 2002-07-11 Wilcox Russell J. Displays for portable electronic apparatus
AU2002250304A1 (en) 2001-03-13 2002-09-24 E Ink Corporation Apparatus for displaying drawings
US7230750B2 (en) 2001-05-15 2007-06-12 E Ink Corporation Electrophoretic media and processes for the production thereof
US20050156340A1 (en) 2004-01-20 2005-07-21 E Ink Corporation Preparation of capsules
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
EP1666964B1 (en) 2001-04-02 2018-12-19 E Ink Corporation Electrophoretic medium with improved image stability
US6580545B2 (en) 2001-04-19 2003-06-17 E Ink Corporation Electrochromic-nanoparticle displays
US6870661B2 (en) 2001-05-15 2005-03-22 E Ink Corporation Electrophoretic displays containing magnetic particles
JP4188091B2 (en) 2001-05-15 2008-11-26 イー インク コーポレイション Electrophoretic particles
EP1407320B1 (en) 2001-07-09 2006-12-20 E Ink Corporation Electro-optic display and adhesive composition
US7110163B2 (en) 2001-07-09 2006-09-19 E Ink Corporation Electro-optic display and lamination adhesive for use therein
US7535624B2 (en) 2001-07-09 2009-05-19 E Ink Corporation Electro-optic display and materials for use therein
WO2003007066A2 (en) 2001-07-09 2003-01-23 E Ink Corporation Electro-optical display having a lamination adhesive layer
US6967640B2 (en) 2001-07-27 2005-11-22 E Ink Corporation Microencapsulated electrophoretic display with integrated driver
US6819471B2 (en) 2001-08-16 2004-11-16 E Ink Corporation Light modulation by frustration of total internal reflection
US6825970B2 (en) 2001-09-14 2004-11-30 E Ink Corporation Methods for addressing electro-optic materials
WO2003027764A1 (en) 2001-09-19 2003-04-03 Bridgestone Corporation Particles and device for displaying image
US7202847B2 (en) 2002-06-28 2007-04-10 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US7952557B2 (en) 2001-11-20 2011-05-31 E Ink Corporation Methods and apparatus for driving electro-optic displays
US8558783B2 (en) 2001-11-20 2013-10-15 E Ink Corporation Electro-optic displays with reduced remnant voltage
US7528822B2 (en) 2001-11-20 2009-05-05 E Ink Corporation Methods for driving electro-optic displays
US8125501B2 (en) 2001-11-20 2012-02-28 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US20050259068A1 (en) 2001-12-10 2005-11-24 Norio Nihei Image display
AU2002357842A1 (en) 2001-12-13 2003-06-23 E Ink Corporation Electrophoretic electronic displays with films having a low index of refraction
US6900851B2 (en) 2002-02-08 2005-05-31 E Ink Corporation Electro-optic displays and optical systems for addressing such displays
US7705823B2 (en) 2002-02-15 2010-04-27 Bridgestone Corporation Image display unit
KR100639546B1 (en) 2002-03-06 2006-10-30 가부시키가이샤 브리지스톤 Image displaying apparatus and method
US6950220B2 (en) 2002-03-18 2005-09-27 E Ink Corporation Electro-optic displays, and methods for driving same
US20060209008A1 (en) 2002-04-17 2006-09-21 Bridgestone Corporation Image display device
US7223672B2 (en) 2002-04-24 2007-05-29 E Ink Corporation Processes for forming backplanes for electro-optic displays
KR100896167B1 (en) 2002-04-24 2009-05-11 이 잉크 코포레이션 Electronic displays
US7190008B2 (en) 2002-04-24 2007-03-13 E Ink Corporation Electro-optic displays, and components for use therein
CN1324392C (en) 2002-04-26 2007-07-04 株式会社普利司通 Particle for image display and its apparatus
US6958848B2 (en) 2002-05-23 2005-10-25 E Ink Corporation Capsules, materials for use therein and electrophoretic media and displays containing such capsules
US7554712B2 (en) 2005-06-23 2009-06-30 E Ink Corporation Edge seals for, and processes for assembly of, electro-optic displays
US7843621B2 (en) * 2002-06-10 2010-11-30 E Ink Corporation Components and testing methods for use in the production of electro-optic displays
US7649674B2 (en) 2002-06-10 2010-01-19 E Ink Corporation Electro-optic display with edge seal
US7583427B2 (en) 2002-06-10 2009-09-01 E Ink Corporation Components and methods for use in electro-optic displays
US7110164B2 (en) 2002-06-10 2006-09-19 E Ink Corporation Electro-optic displays, and processes for the production thereof
US20080024482A1 (en) 2002-06-13 2008-01-31 E Ink Corporation Methods for driving electro-optic displays
AU2003244117A1 (en) 2002-06-21 2004-01-06 Bridgestone Corporation Image display and method for manufacturing image display
US6842279B2 (en) 2002-06-27 2005-01-11 E Ink Corporation Illumination system for nonemissive electronic displays
WO2004008239A1 (en) 2002-07-17 2004-01-22 Bridgestone Corporation Image display
WO2004017135A2 (en) 2002-08-06 2004-02-26 E Ink Corporation Protection of electro-optic displays against thermal effects
US7312916B2 (en) 2002-08-07 2007-12-25 E Ink Corporation Electrophoretic media containing specularly reflective particles
WO2004023202A1 (en) 2002-09-03 2004-03-18 E Ink Corporation Electrophoretic medium with gaseous suspending fluid
US7839564B2 (en) 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
CN1726428A (en) 2002-12-16 2006-01-25 伊英克公司 Backplanes for electro-optic displays
AU2003289411A1 (en) 2002-12-17 2004-07-09 Bridgestone Corporation Image display panel manufacturing method, image display device manufacturing method, and image display device
US6922276B2 (en) 2002-12-23 2005-07-26 E Ink Corporation Flexible electro-optic displays
WO2004059379A1 (en) 2002-12-24 2004-07-15 Bridgestone Corporation Image display
US6987603B2 (en) 2003-01-31 2006-01-17 E Ink Corporation Construction of electrophoretic displays
WO2004077140A1 (en) 2003-02-25 2004-09-10 Bridgestone Corporation Image displaying panel and image display unit
US7339715B2 (en) 2003-03-25 2008-03-04 E Ink Corporation Processes for the production of electrophoretic displays
US7910175B2 (en) 2003-03-25 2011-03-22 E Ink Corporation Processes for the production of electrophoretic displays
US7236291B2 (en) 2003-04-02 2007-06-26 Bridgestone Corporation Particle use for image display media, image display panel using the particles, and image display device
WO2004099862A2 (en) 2003-05-02 2004-11-18 E Ink Corporation Electrophoretic displays
US8174490B2 (en) 2003-06-30 2012-05-08 E Ink Corporation Methods for driving electrophoretic displays
WO2005010598A2 (en) 2003-07-24 2005-02-03 E Ink Corporation Electro-optic displays
JP4806634B2 (en) 2003-08-19 2011-11-02 イー インク コーポレイション Electro-optic display and method for operating an electro-optic display
WO2005029458A1 (en) 2003-09-19 2005-03-31 E Ink Corporation Methods for reducing edge effects in electro-optic displays
WO2005034074A1 (en) 2003-10-03 2005-04-14 Koninklijke Philips Electronics N.V. Electrophoretic display unit
DE602004016017D1 (en) 2003-10-08 2008-10-02 E Ink Corp ELECTRO-wetting DISPLAYS
US20050122306A1 (en) 2003-10-29 2005-06-09 E Ink Corporation Electro-optic displays with single edge addressing and removable driver circuitry
US7551346B2 (en) * 2003-11-05 2009-06-23 E Ink Corporation Electro-optic displays, and materials for use therein
JP5337344B2 (en) 2003-11-05 2013-11-06 イー インク コーポレイション Electro-optic display
US7672040B2 (en) 2003-11-05 2010-03-02 E Ink Corporation Electro-optic displays, and materials for use therein
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
WO2005052905A1 (en) 2003-11-25 2005-06-09 Koninklijke Philips Electronics N.V. A display apparatus with a display device and a cyclic rail-stabilized method of driving the display device
US7206119B2 (en) 2003-12-31 2007-04-17 E Ink Corporation Electro-optic displays, and method for driving same
US7075703B2 (en) 2004-01-16 2006-07-11 E Ink Corporation Process for sealing electro-optic displays
US7388572B2 (en) 2004-02-27 2008-06-17 E Ink Corporation Backplanes for electro-optic displays
US7492339B2 (en) 2004-03-26 2009-02-17 E Ink Corporation Methods for driving bistable electro-optic displays
US8289250B2 (en) 2004-03-31 2012-10-16 E Ink Corporation Methods for driving electro-optic displays
US20050253777A1 (en) 2004-05-12 2005-11-17 E Ink Corporation Tiled displays and methods for driving same
US20080136774A1 (en) 2004-07-27 2008-06-12 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
WO2006015044A1 (en) 2004-07-27 2006-02-09 E Ink Corporation Electro-optic displays
US7453445B2 (en) 2004-08-13 2008-11-18 E Ink Corproation Methods for driving electro-optic displays
JP2008521065A (en) 2005-01-26 2008-06-19 イー インク コーポレイション Electrophoretic display using gaseous fluid
JP4718859B2 (en) 2005-02-17 2011-07-06 セイコーエプソン株式会社 Electrophoresis apparatus, driving method thereof, and electronic apparatus
JP4690079B2 (en) 2005-03-04 2011-06-01 セイコーエプソン株式会社 Electrophoresis apparatus, driving method thereof, and electronic apparatus
US20080043318A1 (en) 2005-10-18 2008-02-21 E Ink Corporation Color electro-optic displays, and processes for the production thereof
US20070091417A1 (en) 2005-10-25 2007-04-26 E Ink Corporation Electrophoretic media and displays with improved binder
US7733554B2 (en) 2006-03-08 2010-06-08 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8610988B2 (en) 2006-03-09 2013-12-17 E Ink Corporation Electro-optic display with edge seal
US7952790B2 (en) 2006-03-22 2011-05-31 E Ink Corporation Electro-optic media produced using ink jet printing
US7903319B2 (en) 2006-07-11 2011-03-08 E Ink Corporation Electrophoretic medium and display with improved image stability
US8018640B2 (en) 2006-07-13 2011-09-13 E Ink Corporation Particles for use in electrophoretic displays
US20080024429A1 (en) 2006-07-25 2008-01-31 E Ink Corporation Electrophoretic displays using gaseous fluids
US7492497B2 (en) 2006-08-02 2009-02-17 E Ink Corporation Multi-layer light modulator
US7477444B2 (en) 2006-09-22 2009-01-13 E Ink Corporation & Air Products And Chemical, Inc. Electro-optic display and materials for use therein

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040104121A1 (en) * 2000-07-19 2004-06-03 Matsushita Elec. Ind. Co. Ltd. Substrate with an electrode and method of producing the same
US6982178B2 (en) * 2002-06-10 2006-01-03 E Ink Corporation Components and methods for use in electro-optic displays
US20040155857A1 (en) * 2002-09-03 2004-08-12 E Ink Corporation Electro-optic displays
US20050124751A1 (en) * 2003-03-27 2005-06-09 Klingenberg Eric H. Electro-optic assemblies and materials for use therein
US20050048416A1 (en) * 2003-08-29 2005-03-03 Fuji Photo Film Co., Ltd. Mask and method of fabricating the same, and method of machining material

Also Published As

Publication number Publication date
US20080137176A1 (en) 2008-06-12
WO2008070830A3 (en) 2008-08-21
US7649666B2 (en) 2010-01-19

Similar Documents

Publication Publication Date Title
WO2008070830A2 (en) Components for use in electro-optic displays
US11022854B2 (en) Method of forming a top plane connection in an electro-optic device
US7843621B2 (en) Components and testing methods for use in the production of electro-optic displays
US7672040B2 (en) Electro-optic displays, and materials for use therein
EP2309304B1 (en) Methods for production of electro-optic displays
EP1680774B1 (en) Electrophoretic medium for electro-optic displays
US7075703B2 (en) Process for sealing electro-optic displays
EP2111562B1 (en) Multi-layer sheet for use in electro-optic displays
JP5449617B2 (en) Electrophoresis medium
WO2007104020A2 (en) Electro-optic display with edge seal
US11934081B2 (en) Transferrable light-transmissive electrode films for electro-optic devices
WO2022020075A1 (en) An electro-optic device comprising integrated conductive edge seal and a method of production of the same
JP2005128501A (en) Image display panel and image display apparatus
TWI425289B (en) Flexible electro-optic displays, and process for producing the same
US20230350263A1 (en) Electro-optic display stacks with segmented electrodes and methods of making the same
JP5305596B2 (en) Electrophoretic display device
WO2007100391A2 (en) Components and testing methods for electro-optic media

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07865371

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07865371

Country of ref document: EP

Kind code of ref document: A2