WO2008075362A2 - A method, a system, and an apparatus for using and processing multidimensional data - Google Patents

A method, a system, and an apparatus for using and processing multidimensional data Download PDF

Info

Publication number
WO2008075362A2
WO2008075362A2 PCT/IL2007/001588 IL2007001588W WO2008075362A2 WO 2008075362 A2 WO2008075362 A2 WO 2008075362A2 IL 2007001588 W IL2007001588 W IL 2007001588W WO 2008075362 A2 WO2008075362 A2 WO 2008075362A2
Authority
WO
WIPO (PCT)
Prior art keywords
functional
matching
patient
biological activity
image
Prior art date
Application number
PCT/IL2007/001588
Other languages
French (fr)
Other versions
WO2008075362A3 (en
Inventor
Shlomo Ben-Haim
Benny Rousso
Original Assignee
Spectrum Dynamics Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spectrum Dynamics Llc filed Critical Spectrum Dynamics Llc
Priority to US12/448,473 priority Critical patent/US9275451B2/en
Publication of WO2008075362A2 publication Critical patent/WO2008075362A2/en
Publication of WO2008075362A3 publication Critical patent/WO2008075362A3/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H70/00ICT specially adapted for the handling or processing of medical references
    • G16H70/60ICT specially adapted for the handling or processing of medical references relating to pathologies

Definitions

  • the present invention in some embodiments thereof, relates to a system and a method for analyzing a multidimensional patient profile and, more particularly, but not exclusively, to a system and a method for analyzing a multidimensional patient profile that includes a medical image.
  • Systems and devices for visualizing the inside of living organisms are among the most important medical developments in the last thirty years.
  • the apparatus comprises an imaging unit designed to obtain radiation intensity data from the target region in the spatial dimensions and one or more other dimensions.
  • the apparatus further comprises an image four-dimension analysis unit associated with the imaging unit for analyzing said obtained intensity data in the spatial dimension, and the one or more other dimensions, in order to map the distinguishable regions.
  • a patient is referred for a visual scan by a general practitioner or an expert practitioner.
  • the 3D medical image is forwarded to and diagnosed by a general radiologist who is responsible for the analysis and diagnosis of the medical image.
  • the medical images and the diagnosis thereof are sent back to the referring practitioner.
  • a picture archiving communication system In most hospitals and radiology centers, the 3D medical images are transferred to a picture archiving communication system (PACS) before being accessed by the radiologists.
  • the PACS is installed on one or more of computers, which are dedicated for storing, retrieving, distributing and presenting the stored 3D medical images.
  • the 3D medical images are stored in an independent format.
  • the most common format for image storage is digital imaging and communications in medicine (DICOM).
  • DICOM digital imaging and communications in medicine
  • a PACS network consists of a central server that stores a database containing the images connected to one or more clients via a local area network (LAN) or a wide area network (WAN) which provide or utilize the images.
  • LAN local area network
  • WAN wide area network
  • Web- based PACS is becoming more and more common: these systems utilize the Internet as their means of communication, usually via a virtual private network (VPN) or a secure sockets layer (SSL).
  • the software in thin or smart client is loaded via ActiveX, Java, or .NET Framework. Definitions vary, but most claim that for a system to be truly web based, each individual image should have its own URL.
  • Client workstations can use local peripherals for scanning image films into the system, printing image films from the system and interactive display of digital images. Modern radiology equipment, modalities, feed patient images directly to the PACS in digital form. For backwards compatibility, most hospital imaging departments and radiology practices employ a film digitizer.
  • CAD Computer aided detection
  • the method comprises providing patient information to a computing device (the computer device comprising: a first knowledge base comprising a plurality of different therapeutic treatment regimens for the disease; a second knowledge base comprising a plurality of expert rules for selecting a therapeutic treatment regimen for the disease; and a third knowledge base comprising advisory information useful for the treatment of a patient with different constituents of the different therapeutic treatment regimens; and generating in the computing device a listing (preferably a ranked listing) of therapeutic treatment regimens for the patient; and generating in the computing device advisory information for one or more treatment regimens in the listing based on the patient information and the expert rules.
  • a method for analyzing a functional map of at least one tissue of a patient comprises managing a plurality of functional maps each being associated with a plurality of first biological activity indications, receiving a functional map being associated with a plurality of second biological activity indications, identifying a matching set of the managed functional maps by matching between the plurality of first and second biological activity indications, and using the matching set for a member of a group consisting of: an image data acquisition, a diagnosis of the received functional map, a classification of the received functional map.
  • the received functional map is associated with first medical information related to the current patient, each the managed functional map being associated with second medical information, the matching comprises matching between the first and second medical information.
  • the received and managed functional maps are pixelated. More optionally, at least some pixel elements of the received pixelated functional map is associated with the plurality of first biological activity indications, at least some pixel elements of each the pixelated functional map is associated with the plurality of second biological activity indications, the matching being between respective pixel elements of the received and managed pixelated functional map.
  • the method comprises preprocessing the received functional map before the matching; the preprocessing comprises a member of a group consisting of: registering the received functional map according to at least one of the functional maps and denoising the received functional map.
  • each the first and second medical information comprises a member of a group consisting of: a laboratory result, a therapeutic procedure record, a clinical evaluation, an age, a gender, a medical condition, identification information, genetic information, a patient medical record, a metabolism data, blood pressure, a sensitivity, an allergy, a population relevance, an epidemiologic classification, a patient history, and a treatment method.
  • each the received and managed functional map comprises a member of a group consisting of: a positron emission tomography (PET), a PET - computerized tomography (CT), a single photon emission computed tomography (SPECT), an extracorporeal gamma scan, an extracorporeal beta scan, an intracorporeal gamma scan, and an intracorporeal beta scan.
  • PET positron emission tomography
  • CT PET - computerized tomography
  • SPECT single photon emission computed tomography
  • an extracorporeal gamma scan an extracorporeal beta scan
  • an intracorporeal gamma scan an intracorporeal beta scan.
  • each the first and second plurality of biological activity indications comprises an uptake level of radiation emitted from a plurality of tracers.
  • managing the plurality of functional maps comprises at least one prototype of a pathological biological activity.
  • at least one of the managed functional map is associated a pathological diagnosis, the diagnosis of the received functional map being determined according to the pathological diagnosis of members of the matching set.
  • the managing comprises managing more than 1,000,000 functional maps.
  • the matching comprises matching topological similarities between the received functional map and at least one of the plurality of managed functional maps.
  • the matching comprises matching common radiation emission pattern between the received functional map and at least one of the plurality of managed functional maps.
  • the received functional map and at least one of the plurality of managed functional maps are kinetic functional maps.
  • At least one of the plurality of managed functional maps is associated with a method of treatment and with a success evaluation thereof, the using comprises outputting a treatment recommendation according to respective the evaluation of at least one member of the matching set.
  • the method further identify a plurality of biological pathways in the received and managed functional maps respectively according to the first and second plurality of biological activity indications, the matching comprises matching the plurality of biological pathways.
  • the using comprises classifying the functional map.
  • a system for analyzing a functional map of at least one tissue of a current patient comprising an input unit configured for receiving the functional map being associated with a plurality of first biological activity indications and a database configured for storing a plurality of functional maps, each being associated with a plurality of second biological activity indications.
  • the system further comprises an analyzing unit for identifying a matching set of the stored functional maps by matching between the plurality of first and second biological activity indications.
  • the matching set is used for a member of a group consisting of: an image data acquisition and treatment.
  • the system further comprises an integration module configured for preprocessing the functional map, the preprocessing comprises a member of a group comprises: registering the functional map according to at least one of the stored plurality of functional maps and converting the functional map to a data format of at least one of the stored plurality of functional maps.
  • the system further comprises a display unit configured for displaying the matching set.
  • the analyzing unit is configured for weighing member of the matching set according to their potential relevance to the received functional map.
  • a distributed system for analyzing a functional map of at least one tissue of a current patient comprises a plurality of client terminals each configured for receiving the functional map being associated with a plurality of first biological activity indications, a database configured for storing a plurality of functional maps, each being associated with a plurality of second biological activity indications, and an analyzing unit for matching between the plurality of first and second biological activity indications.
  • the matching is used for a member of a group consisting of: an image data acquisition, a diagnosis of the received functional map, a classification of the received functional map.
  • the research tool comprises an input unit configured for receiving a set of characteristics defining a patient profile, a database configured for storing a plurality patient profiles, an analyzing unit for identifying a trial group by matching between the set of characteristics and the plurality patient profiles, and an output unit for outputting the trial group.
  • each the patient profile being associated with a functional image.
  • the trial group is a control group.
  • the set of characteristics comprises at least one first biological activity
  • at least one of the plurality patient profiles comprises at least one second biological activity analyzing unit for identifying a trial group by matching between the at least one first biological activity and the at least one second biological activity.
  • an imaging system for capturing a functional image of at least one tissue of a patient.
  • the imaging system comprises at least one detector for obtaining a source functional image being associated with at least one first biological activity indication, a database configured for storing a plurality of reference functional images each being associated with at least one second biological activity indication, and an analyzing unit for matching between the at least one first and second biological activity indications.
  • the analyzing unit is configured for controlling the at least one detector according to the matching.
  • the functional image depicts a segment of a requested area
  • the controlling comprises maneuvering the at least one detector to capture an additional segment of the requested area according to the matching.
  • the detector comprises a radiation transmitting unit for emitting radiation toward the segment; the controlling comprises adjusting the intensity of the emitted radiation according to the matching.
  • the detector is configured for obtaining the functional image, by a first modality, selected from the group consisting of a single photon emission computed tomography (SPECT) unit, a positron emission tomography (PET) unit, an extracorporeal, hand-held gamma scan unit, an extracorporeal unit, hand-held beta scan, an intracorporeal gamma scan, an intracorporeal beta scan, an intravascular gamma scan, and an intravascular beta scan.
  • SPECT single photon emission computed tomography
  • PET positron emission tomography
  • the source functional image is a preliminary image mapping a radiation emitted from a first tracer; the controlling comprises outputting a recommendation for the injection of a second tracer based on the matching.
  • a method for obtaining a functional image of at least one tissue of a patient comprises a) receiving a preliminary functional image associated with at least one first biological activity indication, b) matching between the at least one first biological activity and a plurality of respective biological activities each of a reference functional image, and c) outputting a instructions for obtaining an additional preliminary functional image according to the matching.
  • the method further comprises d) obtaining the additional preliminary functional image according to the instructions and e) combining the preliminary functional images producing a final functional image.
  • the method further comprises repeating b)-e), the at least one first biological activity are taken from the final functional image.
  • the instructions comprises a member of a group comprises: an identifier defining which tracer to use during the obtaining, an identifier defining in which concentration to use a tracer during the obtaining, a point of view of at least one detector which is used for the obtaining, a region of interest to be imaged during the obtaining, and refining the preliminary functional image.
  • a method for calculating a treatment recommendation comprises a) managing a plurality of patient profiles each being associated with a plurality of patient medical records, at least one treatment, and an outcome evaluation of the at least one treatment, b) receiving a current patient profile being associated with a plurality of related medical records, c) identifying a matching set of the managed patient profiles by matching between the plurality of patient and related medical records, and d) calculating a medical recommendation according to the at least one treatment of members of the matching set.
  • the plurality of patient profiles includes the at least 1,000,000 patient profiles.
  • each the patient profile having a functional map, each the functional map being associated with a plurality of biological activity indications, the identifying comprises identifying the matching set by matching between biological activity indications of the current patient profile and the plurality of patient profiles.
  • each the plurality of patient medical records comprises a member of a group consisting of: a laboratory result, a therapeutic procedure record, a clinical evaluation, an age, a gender, a medical condition, identification information, genetic information, a patient medical record, a metabolism data, blood pressure, a sensitivity, an allergy, a population relevance, an epidemiologic classification, a patient history, and a treatment method.
  • At least some of the plurality of patient medical records are associated with a time tag indicating a related occurrence or examination time.
  • each the at least one treatment is associated with a reliability score
  • the calculating comprises calculating the medical recommendation according to the reliability score of members of the matching set.
  • each the patient profile is associated with a current treatment record
  • the identifying comprises identifying the matching set by matching between current treatment records of the current patient profile and of the plurality of patient profiles
  • the medical recommendation comprises a continuation treatment for the current patient profile.
  • the current treatment record profile is associated with a respective outcome evaluation.
  • the method further comprises e) updating the current treatment record of the current patient profile with the medical recommendation and the respective outcome evaluation with an outcome of a respective treatment and f) repeating a)-d) the current treatment record is the updated current patient profile and the respective outcome evaluation is the outcome of a respective treatment.
  • the medical recommendation is a medical recommendation of a phase in an ongoing treatment and the outcome is a current outcome of the phase, the updating and repeating are performed during the ongoing treatment.
  • the medical recommendation comprises a request for an additional evolution.
  • the method further comprises e) updating at least one of the plurality of patient medical records with the additional evolution and f) repeating a)-d) the current patient profile being updated with the additional evolution.
  • Implementation of the method and/or system of embodiments of the invention can involve performing or completing selected tasks manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of embodiments of the method and/or system of the invention, several selected tasks could be implemented by hardware, by software or by firmware or by a combination thereof using an operating system.
  • a data processor such as a computing platform for executing a plurality of instructions.
  • the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile storage, for example, a magnetic hard disk and/or removable media, for storing instructions and/or data.
  • a network connection is provided as well.
  • a display and/or a user input device such as a keyboard or mouse are optionally provided as well.
  • FIG. 1 is a schematic illustration of a matching system for analyzing a functional map of one or more tissues of a patient, according to an exemplary embodiment of the present invention
  • Fig. 2 is a flowchart of a method for analyzing a pixelated functional map of one or more tissues of a current patient, according to an embodiment of the present invention
  • Fig. 3 is a schematic illustration of a distributed matching system for analyzing a medical map of one or more tissues, according to one embodiment of the present invention.
  • Fig. 4 is a flowchart for using the matching process that is depicted in Fig. 2 for refining the functional image, according to one embodiment of the present invention.
  • Exemplary embodiments of the present invention describe methods and systems for calculating a treatment recommendation. These embodiments are based on a plurality of reference patient profiles; each includes a plurality of patient medical records, at least one given treatment, and an outcome evaluation of the given treatment.
  • a current patient profile which is associated with a plurality of related medical records, is received and matched with the reference patient profiles.
  • the match allows the identification of a matching set that includes members with patient medical records that have a certain potential relevance to the patient medical records of the current patient profile.
  • Each record of the matching set specifies a certain given treatment and the outcome thereof.
  • the matching set allows the calculation of a medical recommendation according to given the treatments which are specified in the matching set.
  • the medical recommendation may be based on the identification of a treatment that has a positive outcome evaluation, the most prevalent positive outcome evaluation, or a combination of the level of success of the possible outcome evaluations and/or the prevalence of the possible outcome evaluations.
  • Exemplary embodiments of the present invention describe methods and systems for analyzing, optionally in real time, patient data, such as a functional map, functional image, such as PET and SPECT images, and/or patient profile, of a patient using a reference database that contain a plurality of reference functional images, functional maps, and/or patient profiles.
  • patient data such as a functional map, functional image, such as PET and SPECT images, and/or patient profile
  • a reference database that contain a plurality of reference functional images, functional maps, and/or patient profiles.
  • These embodiments allow, inter alia, identifying a matching set of functional images, maps, and/or patient profiles from the reference database by matching between the patient data and records of a reference database.
  • Such a matching set can be used for identifying, classifying, and/or diagnosing pathological indications, which are depicted in the functional image, and for alarming and/or notifying the physician about such pathological indications.
  • the matching set is used for refining the process of acquiring the functional image.
  • the reference database is used for managing a plurality of patient profiles.
  • Each patient profile comprises one or more functional images, each as defined above and medical information that is related to the patients which are imaged in the one or more of the functional images.
  • the system is used for locally refining the received functional image.
  • the received functional image may depict a segment of a certain requested area, a preliminary image that depicts partial emissions of one or more tracers, and/or an incomplete imaging of a certain area.
  • each matching set may be used for generating instructions to an imaging system, thereby allowing an active vision, optionally as described below.
  • this refinement allows reducing the number of detectors which are needed for capturing the functional image, reducing the computational complexity which is needed for reconstructing the received functional image and/or for reducing the amount and/or medicaments concentration which are injected to the patient.
  • exemplary embodiments of the present invention are a research tool generates trials groups, such as control groups, for experiments, using a using a reference database that comprises a plurality of functional images and/or patient profiles.
  • Some exemplary embodiments of the present invention describe a method that includes managing a plurality of pixelated functional maps, each map or a pixel element thereof is associated with a plurality of biological activity indications, such as values that represent the emission of one or more tracers, for example radionuclide sodium-24 tracers, from one or more tissues.
  • a pixelated functional map of a patient that is associated with a plurality of such biological activity indications is received
  • the managing allows the identification of a matching set that includes functional images that record respective biological activity indications.
  • the matching set is used for image data acquisition, diagnosing the received functional map, refining the received functional map, operating the imaging system that created the functional image, and/or for classifying the received functional map.
  • a hardware architecture that allows heavy processing may be used, optionally as described below. Such architecture can be used to reduce the processing time of the matching and/or analysis process.
  • Fig. 1 is a schematic illustration of a matching system 100 for analyzing a functional map or a functional image, of one or more tissues of a patient, according to an exemplary embodiment of the present invention.
  • the matching system 100 comprises an input unit 101 for obtaining one or more functional images 104 of one or more tissues of a patient.
  • a received functional image which is an output of an imaging system that depicts one or more tissues of a patient and/or a received functional map, which is a set of data that describes and/or defines biological and/or pathological indications in one or more tissues of a patient, are referred to as a source image 104.
  • the system further comprises a reference patient database 102 for managing a plurality of functional images 105.
  • managing a plurality of functional images means hosting, searching, manipulating, and/or accessing a plurality of functional images.
  • the hosted functional images and/or the functional maps are referred to in this application as reference images 105.
  • the matching system 100 further comprises an analysis unit 103 for matching between the source image 104 and the reference images 105.
  • the matching system 100 is used as a CAD system that assist physicians, such as radiologists, in diagnosing pathological, traumatic, or healthy indications in the source image 104.
  • the matching system 100 assists physicians by leveraging the reference images 105 and additional dimensions which are associated therewith, optionally as described below, to identify relevant medical cases and their courses/acquisition, methods, treatments, and the like.
  • the matching system 100 may assist physicians to identify cancerous, juxta cancerous, wounded, and normal tissues.
  • the matching system 100 is used for automatic diagnosis of the patient.
  • the matching system 100 is used for alerting a patient, a physician, and/or a central server that is used for monitoring patients about a certain biological activity and/or inactivity in the patient body.
  • the system may also be used as a research tool that allows a researcher to define a control group or a test group, as further described below.
  • FIG. 2 is a flowchart of a method for analyzing a pixelated functional map of one or more tissues of a current patient, according to some embodiments of the present invention.
  • the reference patient database 102 manages a plurality of reference images each associated with a plurality of biological activity indications. Then, as shown at 202, a source image that includes a pixelated functional map is received. The source image is associated with a plurality of biological activity indications, as further described below.
  • the input unit 101 which may be installed on a terminal, such as a personal computer or a server, is designed to receive the source image 104 either directly from a medical imaging system or indirectly via a content source.
  • a medical imaging system comprises imaging by a modality, such as a PET, a PET-CT, a single photon emission computed tomography (SPECT), an extracorporeal gamma scan, an extracorporeal beta scan, an intracorporeal gamma scan, an intracorporeal beta scan, and output of a camera, such as disclosed in U.S. Patent Application No. 11/607,075, filed December 1, 2006; U.S. Patent Application No. 11/034,007, filed January 13, 2005; U.S. Patent Application No. 09/641,973, filed August 21, 2000; PCT Patent Application No. PCT/IL2006/000562, filed May 11, 2006; PCT Patent Application No.
  • SPECT single photon emission computed tomography
  • a content source may be a PACS server, a PACS workstation, a computer network, or a portable memory device such as a DVD, a CD, a memory card, etc.
  • the content source hosts and optionally allows the access to various multidimensional patient profiles, or dimensions thereof.
  • the source image 104 comprises two or more functional images depicting the same tissues in the patient's body.
  • the reference patient database 102 comprises references images each comprises two or more functional images depicting respective tissues in a body of another patient.
  • the functional images 104, 105 are pixelated.
  • the functional images are optionally produced by radioactive emission.
  • a functional image may be based on radiation emitted from radioactive tracers, such as gamma-emitting radiopharmaceuticals, which are injected into the body of the patient.
  • the uptake of tracers is different between different tissues and between healthy, defective, and tumor tissues. Such an uptake, which is reflected by the radiation emitted from each tissue, is used for evaluating a biological activity, such as a metabolic activity of body tissue.
  • a functional image may image cardiac rhythm or respiratory rhythm, tissue metabolism, blood flow, evaluation of coronary artery disease, receptor binding, brain perfusion, and liver activity.
  • Other indications of biological activities or inactivities that may also be depicted in a functional image may be based on the uptake rate of tracers in the related one or more tissues of the patient. Since the uptake rate of tracers is different between a healthy tissue and a tumor and is furthermore different between malignant and benign portions of a tumor, functional images or maps are of importance in tumor localization and volume determination, and especially, localization and volume determination of malignant portions of tumors.
  • the functional image is a 3D medical image or a sequence of 3D medical images, such as a sequence of PET-CT, SPECT, and/or Gamma scan images that comprises a plurality of voxels.
  • the one or more functional images provide information about a plurality of biological activities in each voxel of the source image 104.
  • each voxel may be associated with the uptake rate of a number of different tracers, such as iron isotopes, In-I l l chloride, and Tc-99m labeled colloids (7-10).
  • the biological activity or inactivity is documented as a value representing the interception of rays, such as gamma rays, which are emitted indirectly from the respective area, optionally by a positron-emitting radioisotope, which is introduced into the body on a metabolically active molecule.
  • rays such as gamma rays
  • a positron-emitting radioisotope which is introduced into the body on a metabolically active molecule.
  • Each one of the source images is optionally associated with medical information that is related to the patient.
  • medical information means, inter alia, information which is related to the patient, such as laboratory results, therapeutic procedure records, clinical evaluations, age, gender, medical condition, ID, genetic information, patient medical record, data indicating of metabolism, blood pressure, patient history, sensitivities, allergies, different population records, treatment methods and the outcome thereof, epidemiologic classification, and patient history, such as treatment history.
  • each one of the source and reference images 104, 105 is optionally associated with previous and/or current structural and/or functional images of respective one or more tissues.
  • each one of the previous images is associated with information that indicates a diagnosis thereof, a list of pathological and/or biological indications, and selected treatments and/or medicaments.
  • Other important features, such as 3D affine transformation descriptors may also be associated with the source image.
  • the input unit 101 is optionally adapted to interface with more than one content source.
  • the input unit 101 preprocesses the source image 104 before it is forwarded to the analysis unit 103 and/or stored in the reference patient database 102.
  • the source image 104 comprises a pixelated functional image that is preprocessed according to the requirements of the analysis unit 103.
  • the pixelated functional image is denoised and/or enhanced using commonly known edge preserving filters before it is forwarded and optionally stored.
  • the source image 104 may be associated, or allowing the matching system 100 to associated it, with medical information of a related patient.
  • each one of the pixelated functional images, which are hosted in the reference patient database 102 is also associated with related medical information.
  • the reference patient database 102 may also store a number of prototypes of pathological biologic activities and/or indications, for example a pixelated medical map of one or more tissues that depicts an emission of an accumulation of radioactive glucose fluorodeoxyglucose (FDG) in an exemplary cancerous tissue.
  • FDG radioactive glucose fluorodeoxyglucose
  • each dimension of the multidimensional patient profile provides information about a biological activity and/or indication in one or more voxels of a functional image or optionally medical information that is related to the patient that one or more of her organs are depicted in the functional image.
  • a dimension may be a functional image that images an emission of a tracer from a biological activity of one or more tissues.
  • the multidimensional patient profile 104, 105 includes a pathologic classification, a clinical stage, and optionally a prognosis of such a pathologic classification.
  • one or more of the multidimensional patient profiles 104, 105 are associated with one or more therapies. Each therapy is associated with a related success rate value.
  • the pathologic classification or other diagnosis and/or classification that is associated with the multidimensional patient profile 104, 105 and/or included therein is tagged with a reliability score that reflects the skills of the agent that provided it, the reliability of the organization which is associated with the agent, and/or the reliability of the study from which the data is taken.
  • an agent means a physician, a measurement device, a measurement system, an imaging device, an imaging system, and an organization means a laboratory, a hospital, a medical service, an association of hospitals and/or laboratories, a geographic location of hospitals and/or laboratories, a manufacture of an agent and/or the training center that trained the agent.
  • the reference patient database 102 hosts a plurality of respective functional images.
  • each voxel of each reference image 105 is associated with a plurality of related biological activities.
  • the analysis unit 103 may match between each voxel of the source image 104 and voxels of one or more of the reference images 105, which are optionally respective thereto.
  • the reference patient database 102 hosts more than a 5,000 of functional images each, of an actual patient or a known and explicit profile.
  • each functional image is stored along with medical information, optionally as described above, and may be referred to as a multidimensional patient profile.
  • Each dimension in the multidimensional patient profile is the biological activity in one or more voxels of the functional image or a medical information datum.
  • the multidimensional patient profile includes a respective structural image, which is optionally registered with one or more of the related functional images.
  • the structural image is produced by reflections of penetrating rays from the internal tissues of the respective organs of the patient.
  • Such a structural image may be produced, for example, by x-ray, CT, ultrasound, and MRI scans, which provide structural map of the internal tissues of the patient.
  • the number of multidimensional patient profiles 105, which are stored in the reference patient database 102 is greater than 5,000, 50,000, 500,000, 1,000,000, 10,000,000, 100,000,000, 1,000,000,000, or intermediate values.
  • the size of the database may be affected by the standard deviation of the records and the variance of the records.
  • the number of different patients whose has a multidimensional patient profile in the reference patient database 102 may be of a similar magnitude.
  • 5, 10, 100, 1000 or more separately identifiable functional images are provided per multidimensional patient profile in the reference patient database 102.
  • the number of dimensions analyzed in each multidimensional patient profile may be, for example, 5, 10, 20, 40, 100, 1000, or greater or intermediate values.
  • the reference patient database 102 is optionally distributed in a number of servers or other hosting computing units, for example 10, 50, 100, 1000, or intermediate or greater numbers of hosting computing units.
  • the connections between these servers are optionally secured in order to maintain data safely and privacy.
  • the technical specification of the system varies according to the resolution of the functional images, the number of records in the reference patient database, and the number and/or distribution of the input units 101. For example, larger images and multidimensional patient profile with more dimensions may need more bandwidth, calculating power, and storage.
  • each record is stored more than once, optionally in a number of different servers which are optionally distributed in different geographical locations.
  • the source image may be received with respective medical information.
  • This combination may be referred to as a new multidimensional patient profile.
  • the new multidimensional patient profile is stored for future use.
  • the input system comprises an integration module for integrating different modalities, such as functional and structural images from different imaging systems, for example, MRI systems, CT systems, Ultrasound (US) systems, and X-ray based systems that contain multiple dimensions and/or markers.
  • the integration module is designed for converting data format in an automated and/or semi-automated manner. The conversation allows the analysis unit 103 to handle data from various data sources.
  • the integration module is designed for registering the source image according to predefined model that has been used for registering the respective reference images.
  • the analysis unit 103 is designed to match between the source image 104, or the new multidimensional patient profile 104, and a plurality of respective reference images 105, or a plurality of multidimensional patient profiles 105, which are stored in the reference patient database 102.
  • a matching set of the reference images is identified by matching between the plurality of the first and second biological activity indications.
  • the matching allows identifying a set of the hosted multidimensional patient profiles 105 that a plurality of common biological activities and/or pathogenic indications with the new multidimensional patient profile 104.
  • the analysis unit 103 gives each member of the matching set a potential relevance value that is determined according to the potential relevance thereof to the new functional image and/or to the new multidimensional patient profile 104.
  • the potential relevance value is determined according to the proximity of the parameters that represent common biological activity indications in the members of the matching set.
  • the matching between the source and the reference images may be based on topological similarities between the source image and the reference images.
  • Such a matching allows the agent to identify a matching set of multidimensional patient profiles that includes a number of common biological activities and/or indications with the patient that is depicted in the source image.
  • the aforementioned matching allows the detection of a matching set that have a common radiation emission pattern with the source image. For example, in functional imaging of one or more brain activities, it is possible to match between emission patterns that may account as normal or abnormal functional properties of one or more regions, normal or abnormal dependencies between the one or more regions, and pathologies associated with malfunctions of biological pathways in the one or more regions. Matching such an image emission pattern may be used for classifying the new multidimensional patient profile.
  • the source and the reference images are optionally registered and matched according to known registration and matching methods and process.
  • known registration and matching methods and process For example, see A. Venot, et al. Automated Correction of Patient Motion and Gray Values Prior to Subtraction in Digitized Angiography, IEEE Transactions on Medical Imaging, vol. MI-3, no. 4, 1984, pp 179-186; G. Malandain et al., Matching of 3D Medical Images with a Potential Based Method, IRIA, no. 1890, 1993, pp 1-37; L. R. Schad, et al., Three Dimensional Image Correlation of CT, MR, and PET Studies in Radiotherapy Treatment Planning of Brain Tumors, Journal of Computer Assisted Tomography, vol. 11, no.
  • the new multidimensional patient profile 104 and the plurality of multidimensional patient profiles 105 include an electrophysiological reading that measures an electrical activity of one or more tissues of the related patient along a period.
  • the electrophysiological reading includes one or more electrophysiological readings, such as electrocardiography reading, electroencephalography reading, electrocorticography reading, electromyography reading, electrooculography reading, electroretinography reading, and electroantennography reading.
  • the plurality of multidimensional patient profiles 105 may include an additional or an alternative phase of matching between electrophysiological readings. Such a matching allows the user to identify a matching set that includes multidimensional patient profiles that have electrophysiological readings, which are substantially similar to the electrophysiological readings of the probed patient.
  • an arrhythmia such as atrial fibrillation, one or more ectopic regions in the heart, an ischemia, changes in existence of biochemical channels which are part of the electrical conduction system, for example connexin-42, and/or changes in the activity and/or concentration of intracellular and intercellular calcium handling proteins, usually have a known electrocardiography reading pattern.
  • the aforementioned matching allows the detection of a matching set of multidimensional patient profiles that have a common electrophysiological reading with the new multidimensional patient profile.
  • a common electrophysiological reading may be used for classifying and/or diagnosing the new multidimensional patient profile and/or alarming the user of the matching system 100 about a possible detection of one or more pathologies which have been identified in members of the matching set.
  • the source and at least some of the reference images are four-dimensional (4D) medical images of an organ, such as the heart.
  • a 4D medical image is a data set composed of a time-series of 3D medical images that reflects the behavior of the depicted tissue during a certain period.
  • the reference and the source images which may also be known as kinetic images, may be correlated before they are matched by the analysis unit 103. Matching a 4D medical image may be important in organs such as the heart wherein the shape of the organ substantially change over time and can provide information about the pathological level thereof.
  • the matching that is performed by the analysis unit 103 may be performed with respect to the time domain.
  • Such systems, methods, and associated tools may be applied to cardiology, oncology and brain imaging with novel imaging systems, including for example with the nuclear imaging technology presented by Spectrum Dynamics in International Application No. WO2006/051531 published on 18/ May/2006 that is incorporated herein by reference.
  • 105 may comprise medical information, such as medical history, about a related patient.
  • medical information such as medical history, about a related patient.
  • Such information may comprise personal information about the patient, such as his or her age, gender, and physical condition at the time the scan has been held.
  • personal information about the patient, such as his or her age, gender, and physical condition at the time the scan has been held.
  • information may be important, in some embodiments, in order to output efficient recommendation, treatment guidelines, or matching set that can be used by the physician, optionally as described below.
  • an initial diagnosis which is performed by an agent or attached to the new patient profile, is also included.
  • Such medical information may also be used as another dimension in the multidimensional patient profile 104 for the analysis of the source image, as described below.
  • the matching that is performed by the analysis unit 103 is based on processing the data in the multidimensional patient profiles 104, 105.
  • the analysis unit 103 processes the data in order to detect interactions and/or complex biological processes that may last for a certain period.
  • the analysis unit 103 may correlate between a timeline that describes the variability of one or more biological and/or pathological indications in the new patient profile and a respective timeline in the multidimensional patient profile which are hosted in the reference patient database.
  • the measuring includes applying one or more of a variety of statistical and network analysis techniques to one or more dimensions of the multidimensional patient profile.
  • an analysis may include an analysis of gene expression, proteomics, transcriptomics, gene regulatory network, metabolic pathways, and/or cellular signaling.
  • the analysis unit 103 may measure an absolute concentration of proteins and/or messenger ribonucleic acid (RNA) of a specific type and a specific state, such as phosphorylated mRNA, glycated mRNA, and various protein conformations.
  • RNA messenger ribonucleic acid
  • the detected and/or measured data is matched with respective interaction and/or measurements in the multidimensional patient profiles 105 of the reference patient database 102.
  • a multidimensional patient profile includes sequential data of biological activities that is optionally based on dynamic and/or static properties of one or more tracers.
  • the biological activities may have time dependency among them.
  • an uptake of one tracer that is followed by an uptake of a subsequent uptake of another tracer may be indicative to the existence of a time-dependency between two biological activities and potentially to the understanding that one biological activity is the cause and/or a part of the cause of another biological activity and may be associated with a certain pathological indication of the patient.
  • the data in the reference patient database 102 is arranged in data tables, which support the aforementioned measurements and interactions.
  • the reference patient database 102 hosts at least 5,000 multidimensional patient profiles.
  • Each one of the multidimensional patient profiles comprises information about the patient from various evaluation and imaging systems and agents, such as one, two, three, four or more of epidemiologic, genetic, functional, chemical, and treatment related information.
  • Matching the new multidimensional patient profile 104 with the multidimensional patient profiles 105 may yield one or more matching sets.
  • Each member of a certain matching set has a combination of biological activities and/or indications that is common to all the members of the certain matching set. The relation between the biological activities and/or indications in this combination may not be obvious to the common physician or even known from the medical literature.
  • the matching system 100 that optionally automatically match between the new multidimensional patient profiles 104 and the multidimensional patient profiles 105 can detect combinations that include relations between various biological activities which are not obvious or known to the agent that diagnoses the patients with the new multidimensional patient profiles 104.
  • fuzzy logic methods may be used for identifying the matching set.
  • known fuzzy logic is derived from fuzzy set theory dealing with reasoning that is approximate rather than precisely deduced from classical predicate logic, see Klir, George J.; St Clair, Ute H.; Yuan, Bo (1997). Fuzzy set theory: foundations and applications. Englewood Cliffs, NJ: Prentice Hall. ISBN 0133410587 and Klir, George J.; Yuan, Bo (1995).
  • a matching set of the reference images is identified by matching between the plurality of the first and second biological activity indications.
  • the matching is performed between predefined ranges which are set around the values given at the multidimensional patient profile 104.
  • the multidimensional patient profile 104 comprises different values that represent medical information and biological indications which are related the patient.
  • the intersecting group may include profiles of patients which are not exactly as the profile of the current patient.
  • the matching of each one of the values and/or the ranges of the patient profile is weighted according to an estimation that reflects the importance. For example, a potential relevance between biological indications such as hemoglobin, hematocrit, and/or iron level measurements may receive a higher weight than the weight that is given to the height or the gender of the patient.
  • a weight is given to a ratio or any other function that is based on a number of values and/or the ranges of the patient profile. For example, the ratio of hemoglobin weight to hematocrit is given with a high weight. Such a ratio distinguishes the normally colored cells from paler cells to classify different anemias and aid in determining cause.
  • the weights are dynamic and depend on other values such as the treatment that is given to the patient, the age of the patient, his medical history, and/or his medical condition.
  • the matching set may comprise multidimensional patient profiles of patients with similar biological activities and/or indications that receive successful treatments and with multidimensional patient profiles of patients with similar biological activities and/or indications that receive unsuccessful treatments.
  • Such matching sets may be useful for allowing the physician to select one or more method of treatments, to optimize and/or to reduce the radiation doses to which the patient is exposed, and to optimize and/or to reduce a medicament dose that the patient receives.
  • a reference patient database 102 with more dimensions allows the matching of more combinations of different dimensions and/or interactions between different biological activities.
  • Such a matching may be used for detecting combinations and interactions, which are not intuitive or based on the known studies and/or tests.
  • Such a multidimensional data analysis may be performed using differential equations and/or control theory methods, as applicable to dynamic systems such as a biological entity, for example the human body.
  • the matching system 100 is designed to receive a source image and optionally medical information from an imaging system and/or a storage system and to match it with the reference images and/or other records of the reference patient database 102.
  • the functional image is optionally matched with large scale of multidimensional patient profiles and optionally processed and analyzed for the identification of complex biological processes that may last for a certain period, the quality of thereof may be relatively low, for example a functional image with high levels of noise.
  • the matching system 100 allows using imaging cameras with a relatively low number of detectors, such as a hand-held imaging camera that is designed for capturing images during a data-responsive scanning, to perform a real time reconstruction, and to determine in real time whether additional data is needed to achieve a match, as described above.
  • the analysis unit 103 uses information that is found in the matching set to complete, to denoise, to calibrate, and/or to change areas in the received source image. It should be noted that using such a matching system 100 may assist particularly in standardizing the analysis of functional images and generally in standardizing the analysis of multidimensional patient profiles. As commonly known, not all the physicians have a common set of guidelines for diagnosing a functional image or many other variants of a patient profile. For example, while a certain physician checks the hippocampus region for diagnosing early Alzheimer's dementia, another physician may check other regions of the brain, such as the medial temporal lobes and the anterior cingulate. In particular, such the matching system 100 may be used for assuring that certain biological activities and indications are probed whenever a functional image or any other variant of a patient profile is diagnosed and/or classified by a physician, such as a general radiologist.
  • the reference patient database 102 is used by the analysis unit 103 for classifying pathological indications that have more than one visible and/or measurable characteristics and not a clear surrogate marker.
  • the reference patient database 102 may be used for detecting and/or anticipating the occurrence of a heart failure. Such a detection and/or an anticipation may by based on various biological activities which are documented in the multidimensional patient profiles, including but not limited to echocardiography, blood tests, cardiac mapping, which is optionally isotope based, anatomical information, for example from CT and/or angiography procedures, quality of life questionnaires, electrophysiology parameters, etc.
  • the matching system 100 is used for solving an inherent problem of the SPECT image analysis.
  • a 3D imaging system such as SPECT system, assesses a relative decrease in the uptake of a tracer in a certain region by comparing the uptake thereof with the uptake of other regions. The uptake is determined according to the rate of reduction in the emission flow. Such a comparison may be used for detecting regions with stenosis that is relatively high in relation to other regions. It is more difficult, and sometimes impossible, to detect milder stenosis in other regions of the functional image.
  • the analysis unit 103 is designed for matching a SPECT image with other images. In such an embodiment, each region in the image is compared with respective regions in other SPECT images.
  • the uptake of one region is matched against the uptake in a respective region and not against the uptake of other regions in the same image.
  • Such a matching may provide pathological information that would have gone unnoticed in a commonly used diagnosis.
  • a comparison such as the aforementioned comparison, is between absolute values taken from respective regions and therefore provide a more accurate outcome than the commonly practiced comparison that is performed between relative values taken from different, unrelated regions.
  • Fig. 3 is a schematic illustration of a distributed matching system 100 for analyzing a medical image and/or a map of one or more tissues, according to one embodiment of the present invention.
  • the matching system 100 comprises the input unit 101, the reference patient database 102, and the analysis unit 103 which are depicted in Fig. 1.
  • the system is a distributed system that comprises a number of input units 101 and optionally a distributed reference patient database 102.
  • each input unit 101 may be installed or accessed via a different client terminal, such as a personal computer, a Smartphone, a personal digital assistant (PDA), and a laptop.
  • PDA personal digital assistant
  • the input units 101 are connected, via a computer network 200, such as the Internet, to the reference patient database 102.
  • the reference patient database 102 is optionally distributed among a plurality of different storage devices, such as a plurality of servers 102.
  • the input units 101 and the storage devices of the distributed reference patient database 102 are connected to the analysis unit 103 via the computer network 200.
  • each one of the client terminals 101 may be used for adding a new patient profile 104 to the reference patient database 102 and/or for forwarding it to the analysis unit 103 for analysis, for example as further described above.
  • the matching system 100 is connected to one or more user interfaces (UIs), which are optionally installed in one or more of the client terminals 101.
  • UIs user interfaces
  • Each UI allows one or more of the users to extract statistical information from the reference patient database 102.
  • Such a UI may be used for producing improved understanding of the biological processes.
  • the UI allows the user to identify and to analyze biological pathways, cell processes, and cellular circuits based on the match between the new multidimensional patient profiles 104 and the multidimensional patient profiles 105.
  • the UI is designed to display the output of the analysis unit 3.
  • the analysis unit 3 outputs a list of the matching multidimensional patient profiles.
  • the list is sorted according to the potential relevancepotential relevance values of the matching multidimensional patient profiles.
  • the new multidimensional patient profiles 104 may be matched with a matching set that comprises multidimensional patient profiles, which have been classified as having biological activities and/or indications of one or more pathological diagnosis.
  • the analysis unit 103 generates a complete tree of the one or more pathological diagnosis and/or one or more suggested treatments for each one of the pathological diagnosis and forward it for a display at the client terminal from which the new multidimensional patient profiles 104 have been received.
  • the tree is weighted according to the prevalence of a certain match and/or the prevalence of a certain diagnosis in the matched multidimensional patient profiles.
  • the physician receives a graphical display, such as a tree, optionally weighted, of possible diagnosis and suggested treatments.
  • the suggested treatments may also be weighted, shown the physician the statistic of the treatment success.
  • the matching system 100 comprises a plurality of distributed client terminals, which are optionally located in different locations, for example in different diagnostic imaging centers (DICs).
  • DIs diagnostic imaging centers
  • the system allows physicians and researchers from different locations to use the same analysis unit 103 and the same reference patient database 102 for diagnosing and/or classifying a new functional image and/or a new multidimensional patient profile.
  • the system assures that these functional images and/or new multidimensional patient profiles are matched against the same multidimensional patient profiles, regardless to their origin.
  • the matching system 100 is used as a research tool.
  • the UI allows a user to define search indicia with one or more and/or biological activities or expressions thereof.
  • the UI instructs the analysis unit 103 to search for a match between the search indicia and the plurality of multidimensional patient profiles.
  • Such a research tool 100 may be used for improving the understanding of the biological processes which are defined in the search indicia.
  • the research tool 100 allows the user to define a genetic population, an environment, an age, a gender, a medical condition, etc. In such a manner, the user may define a test group for an experiment.
  • the research tool 100 allows users to upload data of test groups, which have been used in a certain experiment and/or study. In such a manner, an outcome of a future experiment, such as a sequential experiment, can be easily compared with the uploaded data of any test group.
  • the analysis unit 103 may combine the results of several studies that address a set of related research hypotheses, generating a match, a classification, an alarm, or a diagnosis that is based on a meta-study, in which as many patients as possible participates.
  • the reference patient database 102 is greater than 500,000, 1,000,000, 10,000,000, 100,000,000, 1,000,000,00O 5 or intermediate values, numerous control and/or test groups may be defined for supporting specific combination of biological activities and/or medical information.
  • A, B, and C denote different tracers
  • the matching system 100 may support a combination of an analysis with two tracers A+B, a combination with two tracers A+C, and a combination with two tracers B+C.
  • A, B, and C denote different tracers
  • the matching system 100 may support a combination of an analysis with two tracers A+B, a combination with two tracers A+C, and a combination with two tracers B+C.
  • the analysis may allow a physician to diagnose a biological activity based on a match with multidimensional patient profiles that has the same combination of tracers as the new multidimensional patient profile, and not based on the injection and the imaging of one or more additional tracers.
  • the matched matching set is used by the physician to determine which additional examination is needed.
  • the matching set includes patient profiles that have one or more characteristics, such as biological indications and/or medical information, in common with the profile of the patient.
  • a segmentation of the matching set's members according to characteristics thereof, which are not in common with the characteristics of the new patient profile, can indicate which additional data is needed in order to evaluate more accurately which treatment should be given to the new patient. For example, if one segment of the matching set includes patent profiles of members with an indication of normal hemoglobin and non-pathologic diagnosis and another segment of the matching set includes patent profiles of members with an indication of low hemoglobin and a pathologic diagnosis the physician receive an indication that an hemoglobin level test is needed in order to diagnose the new patient more accurately.
  • the matching system 100 is used as an adaptive system for instructing an agent during a medical operation.
  • the agent constantly updates and/or reenters the new patient profile that is matched by the matching system 100.
  • the matching system 100 reanalyzes the updated new patient profile and provides the physician with a new, optionally more accurate, matching set and/or treatment recommendation.
  • a physician may use the matching system 100 to predict the outcome of possible outcomes of different operational actions during a medical operation.
  • matching the new multidimensional patient profile 104 with records of a database that hosts thousands of multidimensional patient profiles can substantially reduce the standard deviation of the matching set.
  • the reference patient database 102 comprises data that describes and/or depicts pathological biological activities and/or indications optionally in association with medical information. These records allow identifying a matching set that has members having one or more common characteristics with the new multidimensional patient profile 104. Such one or more common characteristics may not be clear or known from the known studies and/or tests.
  • the matching is done between absolute values and based on real data that is taken from real patients and not based on processed models that usually cannot accurately reflect dynamic statistical data that is optionally constantly changed and updated with new records.
  • the reference patient database 102 is uploaded with data collected from trials that has been performed by imaging simultaneously or sequentially a large variety of tracers, which may be referred to as a cocktail, trials that has been performed on different populations, and trials that has been performed on patients with medical information. Such data may be collected either from various studies or during the ordinary course of practicing medicine. In such a manner, the accuracy of the matching substantially increases. If, for example, an uptake of a tracer is an indication of a certain biological activity has a specificity of ⁇ 10%, the matching of the uptake of more tracers can provide a higher specificity of —1%.
  • the reference patient database 102 is connected to other medical databases and can match between the multidimensional patient profiles and records from the other medical databases.
  • a multidimensional patient profile may be based on data from other medical databases.
  • a system is provided to store and analyze all such data. It should be noted that such an uploaded data may be used for analysis, classification, alarming, and/or diagnosing, optionally as described above, and not only for research.
  • the multidimensional patient profiles comprise a status record that describes the health of the related patient. If the patient has been diagnosed by the matching system 100 and/or by a physician as unhealthy patient, the status record may define an impairment of health or a condition of abnormal functioning of the patient or of one or more of the patient tissues.
  • the multidimensional patient profiles comprise a record that describes and/or defines the treatment the patient received and a value, such as a weigh value, that defines the effectiveness of that treatment.
  • the analysis unit 103 is designed to suggest a therapy to the patient with is documented in the new multidimensional patient profile. In such an embodiment, the analysis unit 103 identifies a matching set of members having one or more dimensions in common with the new multidimensional patient profile.
  • the dimensions may be medical information and/or a topological potential relevance between related functional images, optionally as described above.
  • the analysis unit 103 identifies which therapy has been used most successfully for recovering the members matching set, optionally using the aforementioned weight, and output a therapy suggestion or a list of weighted therapy suggestions based thereupon.
  • the analysis unit 103 outputs the list of weighted therapy suggestions and/or the members of the intersecting list to a display at the client terminal from which the functional image and/or the new multidimensional patient profile has been received.
  • the multidimensional patient profiles 104, 105 may comprise information about the diagnosis that defines the impairment of health or the condition of abnormal functioning of the patient, the analysis unit 3 may ignore that information, hi such a manner, the analysis unit 103 may output a therapy suggestion or a list of weighted therapy suggestions based on medical measurements only, without combining any opinions and/or conclusions of physicians or the like.
  • a dimension of the multidimensional patient profiles 104, 105 is weighted.
  • common parameters may effect the suggestion according to a weight that is associated therewith.
  • the system allows the matching of multidimensional profiles. Such a matching may require high computational complexity.
  • the aforementioned matching is performed using a processing unit that has improved processing abilities in relation to the local processors of each one of the client terminals.
  • the central processing unit includes multiple processing units that combines a tightly coupled parallel architecture and/or in a loosely coupled distributed architecture.
  • the response time of the central processing unit allows the matching of between the source image and the reference images and/or the new multidimensional patient profile 104 and the records of the reference patient database 102 in real time.
  • the multiple processing units may be processors with high processing capacity.
  • the multiple processing units are adapted to access large amounts of data.
  • each one of the multiple processing units has a multiple data bus, preferably 64-bit or 128-bit processing power, an arithmetic logic unit (ALU), and wide range of fast I/O channels.
  • ALU arithmetic logic unit
  • the system comprises a maintenance module that includes a control mechanism for data quality and data management in order to assure the reliability and availability of the reference patient database 102.
  • the maintenance module assures that the records of the reference patient database 102 are kept confidential, inter alia, in order to assure the privacy of the documented patient.
  • the maintenance module scores the quality of each record or batch of records that are uploaded to the reference patient database 102.
  • the input unit 101 optionally receives a source image that comprises a functional image, as shown at 104, and forwards it for processing by the analysis unit 103 in real time.
  • the matching system 100 is used for allowing an imaging system to have active vision.
  • an imaging system with active vision means an imaging system that is able to interact with the imaged scene by altering its viewpoint rather than passively observing it, and by operating on sequences of images rather than on a single frame.
  • Fig. 4 is a flowchart for using the aforementioned matching process for refining the functional image, for example using an active vision method, according to one embodiment of the present invention.
  • blocks 201-204 are similar to the blocks described in Fig. 2.
  • Fig. 4 further depicts blocks 401-404 and the received source image comprises 401 is a preliminary functional image and not a final functional image.
  • a matching set is identified, optionally as described above.
  • a recommendation and/or is calculated and used for refining the image and/or a diagnosis that is based on the recommendation, as shown at 402.
  • the depicted process is repeated as long as the refined image and/or the patient profile diagnosis are not final or for a predefined number of iterations.
  • an image is classified as final according to user instructions, the identification of a matching set having a predefined size, and the like.
  • such a process is used for repositioning the radiation detectors of the imaging system or determining the scanning pattern thereof, thereby improving the acquisition of parameters such as energy resolution, field of view, and/or scan pattern.
  • the matching set which is produced by the analysis unit 103, comprises a number of images that depicts respective tissues and optionally neighboring tissues. These images depict areas in which there may be irregular biological indications and/or pathological indications.
  • the analysis system identifies these irregularities by matching the members of the matching set with a model of a normal image and directs the radiation detectors of the imaging system toward these areas.
  • such a process may be used for generating a continuous motion or step-wise motion for a set of detectors.
  • the preliminary functional image is matched with a plurality of reference images.
  • a matching may reduce the amount of radiation to which a patient is exposed, optionally by reducing the size of the area that is imaged.
  • the analysis unit 103 outputs a refinement recommendation that directs the detectors toward another area that allows the analysis unit 103 to determine how to diagnose the pathological indication.
  • a certain area is imaged using a limited number of detectors that sequentially scan sub-areas thereof.
  • the preliminary functional image which is received at 202, is an image of one of the sub-areas.
  • the matching set is used as shown at 203 and the next sub-area to be scanned is defined for the next time point.
  • Such a closed loop imaging may be performed in a magnitude of scale of minutes, seconds, and fractions of seconds, such as 1/100th or 1/1000th of a second.
  • Such an embodiment allows the detection of an onset of a biological activity, such as an arrhythmia or a brain activity, and may be used for adapting the scanning pattern according to the propagation and development of the onset.
  • the reference images may include preliminary functional images, which are partially reconstructed images that have been taken during the acquisition thereof and/or of one or more segments of a certain area which is respective to the probed area.
  • preliminary functional images which are partially reconstructed images that have been taken during the acquisition thereof and/or of one or more segments of a certain area which is respective to the probed area.
  • the process that is depicted in Fig. 4 allows refining the final functional image, according to one or more preliminary functional images.
  • a refinement may be understood reconstructing certain regions of interest (ROIs) of the final functional image to higher resolution and other ROIs to lower resolution, thereby reducing the scanning time and/or the radiation dosages.
  • ROI regions of interest
  • resolution may be understood as a spatial resolution, a temporal resolution or both.
  • the functional image reconstruction may require an analysis of intensities or other parameters which are associated with intensities in a high numbers of variables.
  • the reconstruction is performed in a voxel-by-voxel approach.
  • the reconstructed variables are analyzed, fixed, and then further analyzed in a set of repeated steps, for example as depicted in Fig. 4.
  • a sub-group of voxels is selected, the voxels' values are refined, and the process is reiterated with other sub-group.
  • this approach is implemented using a parallel processing architecture, for example, reconstructing different voxels in parallel.
  • the refinement recommendation includes instructions that define which ROI to scan next.
  • the refinement recommendation is based on an analysis that is provided from a matching set that suggests progression in patients with similar patient profile.
  • the analysis unit 103 may comprise a processing unit that includes multiple high speed CPUs and/or data processing systems (DPSs) that implement multiple data buses and/or 64bit, 128bit, and/or stronger CPU architectures.
  • DPSs data processing systems
  • the refinement recommendation may be a selection of a new viewpoint and/or view parameters for one or more of the aforementioned detectors.
  • the reference patient database 102 hosts a probability matrix, such as probability vector that define the probability that a photon emitted from points in space would be detected by the detector for each viewpoint. Such probability matrixes are used as part of the algorithms for estimating the detected photon counts from estimated intensities, and for other algorithmic steps.
  • the reconstruction includes reconstruction of parameters associated with time- varying biological processes. In such an embodiment, some of the processes may require non-linear modeling of the process.
  • the matching system 100 allows the reconstruction of these parameters in real time, allowing a medical team to diagnose a patient or the progress of a therapeutic procedure immediately.
  • the matching system 100 is designed to optimize the number of views which are necessary to obtain enough information for imaging by identifying when and/or where to acquire a certain preliminary image.
  • a certain biological activity may be an outcome of another biological activity.
  • the biological activities that provide pathological indications may appear in a sequential manner and therefore the ROI should be defined in different locations at different time slots.
  • the reconstructed parameters are kinetics parameters, such as order of reaction, kinetic rate constant, apparent, intrinsic and diffusional activation energies and activation energy (Ea)
  • the scanning pattern is planned according to an anticipated time curve.
  • the anticipated time curve is adjusted in real time.
  • the amount and/or complexity of the data that is acquired is reduced to enable easier image processing, image reconstruction, and/or categorization of the disease process.
  • Information maximization and need to reduce complexity of procedure may be addressed in this approach. It may further allow reducing the volume of the relevant and essential data that is needed for making efficient use of resources, such as computational and/or storage resources.

Abstract

A method for analyzing a functional map of at least one tissue of a patient. The method comprises managing a plurality of functional maps each being associated with a plurality of first biological activity indications, receiving a functional map which is associated with a plurality of second biological activity indications, identifying a matching set of the managed functional maps by matching between the plurality of first and second biological activity indications, and using the matching set for a member of a group consisting of: an image data acquisition, a diagnosis of the received functional map, a classification of the received functional map.

Description

A METHOD, A SYSTEM, AND AN APPARATUS FOR USING AND
PROCESSING MULTIDIMENSIONAL DATA
FIELD AND BACKGROUND OF THE INVENTION The present invention, in some embodiments thereof, relates to a system and a method for analyzing a multidimensional patient profile and, more particularly, but not exclusively, to a system and a method for analyzing a multidimensional patient profile that includes a medical image. Systems and devices for visualizing the inside of living organisms are among the most important medical developments in the last thirty years. Systems like computerized tomography (CT), magnetic resonance imaging (MRI), a positron emission tomography (PET), and a single photon emission computed tomography (SPECT) scanners allow physicians to examine internal tissues or areas of the body that require a thorough examination, hi use, the visualizing scanner outputs a 3D medical image, such as a sequence of computerized cross-sectional images of one or more tissues, which is then interpreted by specialized radiologists. It should be noted that other imaging devices and methods are also known, for example as disclosed in International patent application Pub. No. WO2006/051531, which has been published on May 18, 2006 and incorporated herein by reference. This patent application describes an apparatus for radiation based imaging of a non- homogenous target area having distinguishable regions therein. The apparatus comprises an imaging unit designed to obtain radiation intensity data from the target region in the spatial dimensions and one or more other dimensions. The apparatus further comprises an image four-dimension analysis unit associated with the imaging unit for analyzing said obtained intensity data in the spatial dimension, and the one or more other dimensions, in order to map the distinguishable regions.
Commonly, a patient is referred for a visual scan by a general practitioner or an expert practitioner. The 3D medical image is forwarded to and diagnosed by a general radiologist who is responsible for the analysis and diagnosis of the medical image. The medical images and the diagnosis thereof are sent back to the referring practitioner.
In most hospitals and radiology centers, the 3D medical images are transferred to a picture archiving communication system (PACS) before being accessed by the radiologists. The PACS is installed on one or more of computers, which are dedicated for storing, retrieving, distributing and presenting the stored 3D medical images. The 3D medical images are stored in an independent format. The most common format for image storage is digital imaging and communications in medicine (DICOM). Typically, a PACS network consists of a central server that stores a database containing the images connected to one or more clients via a local area network (LAN) or a wide area network (WAN) which provide or utilize the images. Web- based PACS is becoming more and more common: these systems utilize the Internet as their means of communication, usually via a virtual private network (VPN) or a secure sockets layer (SSL). The software in thin or smart client is loaded via ActiveX, Java, or .NET Framework. Definitions vary, but most claim that for a system to be truly web based, each individual image should have its own URL. Client workstations can use local peripherals for scanning image films into the system, printing image films from the system and interactive display of digital images. Modern radiology equipment, modalities, feed patient images directly to the PACS in digital form. For backwards compatibility, most hospital imaging departments and radiology practices employ a film digitizer.
Computer aided detection (CAD) systems that assist physicians in diagnosing pathological, traumatic, or healthy indications are known. However, these CAD system are usually based on fixed expert rules and a closed list of treatments. For example, US patent No. 6,188,988 and US patent No. 6,081,786, which have been granted on Feb. 13, 2001, disclose systems, methods and computer program products for guiding selection of a therapeutic treatment regimen for a known disease such as HIV infection, are disclosed. The method comprises providing patient information to a computing device (the computer device comprising: a first knowledge base comprising a plurality of different therapeutic treatment regimens for the disease; a second knowledge base comprising a plurality of expert rules for selecting a therapeutic treatment regimen for the disease; and a third knowledge base comprising advisory information useful for the treatment of a patient with different constituents of the different therapeutic treatment regimens; and generating in the computing device a listing (preferably a ranked listing) of therapeutic treatment regimens for the patient; and generating in the computing device advisory information for one or more treatment regimens in the listing based on the patient information and the expert rules. SUMMARY OF THE INVENTION
According to one aspect of the present invention there is provided a method for analyzing a functional map of at least one tissue of a patient. The method comprises managing a plurality of functional maps each being associated with a plurality of first biological activity indications, receiving a functional map being associated with a plurality of second biological activity indications, identifying a matching set of the managed functional maps by matching between the plurality of first and second biological activity indications, and using the matching set for a member of a group consisting of: an image data acquisition, a diagnosis of the received functional map, a classification of the received functional map.
Optionally, the received functional map is associated with first medical information related to the current patient, each the managed functional map being associated with second medical information, the matching comprises matching between the first and second medical information.
Optionally, the received and managed functional maps are pixelated. More optionally, at least some pixel elements of the received pixelated functional map is associated with the plurality of first biological activity indications, at least some pixel elements of each the pixelated functional map is associated with the plurality of second biological activity indications, the matching being between respective pixel elements of the received and managed pixelated functional map.
Optionally, the method comprises preprocessing the received functional map before the matching; the preprocessing comprises a member of a group consisting of: registering the received functional map according to at least one of the functional maps and denoising the received functional map.
More optionally, each the first and second medical information comprises a member of a group consisting of: a laboratory result, a therapeutic procedure record, a clinical evaluation, an age, a gender, a medical condition, identification information, genetic information, a patient medical record, a metabolism data, blood pressure, a sensitivity, an allergy, a population relevance, an epidemiologic classification, a patient history, and a treatment method. Optionally, each the received and managed functional map comprises a member of a group consisting of: a positron emission tomography (PET), a PET - computerized tomography (CT), a single photon emission computed tomography (SPECT), an extracorporeal gamma scan, an extracorporeal beta scan, an intracorporeal gamma scan, and an intracorporeal beta scan.
Optionally, each the first and second plurality of biological activity indications comprises an uptake level of radiation emitted from a plurality of tracers.
Optionally, managing the plurality of functional maps comprises at least one prototype of a pathological biological activity. Optionally, at least one of the managed functional map is associated a pathological diagnosis, the diagnosis of the received functional map being determined according to the pathological diagnosis of members of the matching set.
Optionally, the managing comprises managing more than 1,000,000 functional maps. Optionally, the matching comprises matching topological similarities between the received functional map and at least one of the plurality of managed functional maps.
Optionally, the matching comprises matching common radiation emission pattern between the received functional map and at least one of the plurality of managed functional maps.
Optionally, the received functional map and at least one of the plurality of managed functional maps are kinetic functional maps.
Optionally, at least one of the plurality of managed functional maps is associated with a method of treatment and with a success evaluation thereof, the using comprises outputting a treatment recommendation according to respective the evaluation of at least one member of the matching set.
Optionally, the method further identify a plurality of biological pathways in the received and managed functional maps respectively according to the first and second plurality of biological activity indications, the matching comprises matching the plurality of biological pathways.
Optionally, the using comprises classifying the functional map.
Optionally, the using is performed in real time. According to one aspect of the present invention there is provided a system for analyzing a functional map of at least one tissue of a current patient. The system comprises an input unit configured for receiving the functional map being associated with a plurality of first biological activity indications and a database configured for storing a plurality of functional maps, each being associated with a plurality of second biological activity indications. The system further comprises an analyzing unit for identifying a matching set of the stored functional maps by matching between the plurality of first and second biological activity indications. The matching set is used for a member of a group consisting of: an image data acquisition and treatment. Optionally, the system further comprises an integration module configured for preprocessing the functional map, the preprocessing comprises a member of a group comprises: registering the functional map according to at least one of the stored plurality of functional maps and converting the functional map to a data format of at least one of the stored plurality of functional maps. Optionally, the system further comprises a display unit configured for displaying the matching set.
Optionally, the analyzing unit is configured for weighing member of the matching set according to their potential relevance to the received functional map. According to one aspect of the present invention there is provided a distributed system for analyzing a functional map of at least one tissue of a current patient. The system comprises a plurality of client terminals each configured for receiving the functional map being associated with a plurality of first biological activity indications, a database configured for storing a plurality of functional maps, each being associated with a plurality of second biological activity indications, and an analyzing unit for matching between the plurality of first and second biological activity indications. The matching is used for a member of a group consisting of: an image data acquisition, a diagnosis of the received functional map, a classification of the received functional map. According to one aspect of the present invention there is provided a research tool for identifying a trial group. The research tool comprises an input unit configured for receiving a set of characteristics defining a patient profile, a database configured for storing a plurality patient profiles, an analyzing unit for identifying a trial group by matching between the set of characteristics and the plurality patient profiles, and an output unit for outputting the trial group.
Optionally, each the patient profile being associated with a functional image.
Optionally, the trial group is a control group. Optionally, the set of characteristics comprises at least one first biological activity, at least one of the plurality patient profiles comprises at least one second biological activity analyzing unit for identifying a trial group by matching between the at least one first biological activity and the at least one second biological activity.
According to one aspect of the present invention there is provided an imaging system for capturing a functional image of at least one tissue of a patient. The imaging system comprises at least one detector for obtaining a source functional image being associated with at least one first biological activity indication, a database configured for storing a plurality of reference functional images each being associated with at least one second biological activity indication, and an analyzing unit for matching between the at least one first and second biological activity indications. The analyzing unit is configured for controlling the at least one detector according to the matching.
Optionally, the functional image depicts a segment of a requested area, the controlling comprises maneuvering the at least one detector to capture an additional segment of the requested area according to the matching. Optionally, the detector comprises a radiation transmitting unit for emitting radiation toward the segment; the controlling comprises adjusting the intensity of the emitted radiation according to the matching.
Optionally, the detector is configured for obtaining the functional image, by a first modality, selected from the group consisting of a single photon emission computed tomography (SPECT) unit, a positron emission tomography (PET) unit, an extracorporeal, hand-held gamma scan unit, an extracorporeal unit, hand-held beta scan, an intracorporeal gamma scan, an intracorporeal beta scan, an intravascular gamma scan, and an intravascular beta scan.
Optionally, the source functional image is a preliminary image mapping a radiation emitted from a first tracer; the controlling comprises outputting a recommendation for the injection of a second tracer based on the matching.
According to one aspect of the present invention there is provided a method for obtaining a functional image of at least one tissue of a patient. The method comprises a) receiving a preliminary functional image associated with at least one first biological activity indication, b) matching between the at least one first biological activity and a plurality of respective biological activities each of a reference functional image, and c) outputting a instructions for obtaining an additional preliminary functional image according to the matching.
Optionally, the method further comprises d) obtaining the additional preliminary functional image according to the instructions and e) combining the preliminary functional images producing a final functional image.
Optionally, the method further comprises repeating b)-e), the at least one first biological activity are taken from the final functional image.
Optionally, the instructions comprises a member of a group comprises: an identifier defining which tracer to use during the obtaining, an identifier defining in which concentration to use a tracer during the obtaining, a point of view of at least one detector which is used for the obtaining, a region of interest to be imaged during the obtaining, and refining the preliminary functional image.
According to one aspect of the present invention there is provided a method for calculating a treatment recommendation. The method comprises a) managing a plurality of patient profiles each being associated with a plurality of patient medical records, at least one treatment, and an outcome evaluation of the at least one treatment, b) receiving a current patient profile being associated with a plurality of related medical records, c) identifying a matching set of the managed patient profiles by matching between the plurality of patient and related medical records, and d) calculating a medical recommendation according to the at least one treatment of members of the matching set. Optionally, the plurality of patient profiles includes the at least 1,000,000 patient profiles.
Optionally, each the patient profile having a functional map, each the functional map being associated with a plurality of biological activity indications, the identifying comprises identifying the matching set by matching between biological activity indications of the current patient profile and the plurality of patient profiles.
Optionally, each the plurality of patient medical records comprises a member of a group consisting of: a laboratory result, a therapeutic procedure record, a clinical evaluation, an age, a gender, a medical condition, identification information, genetic information, a patient medical record, a metabolism data, blood pressure, a sensitivity, an allergy, a population relevance, an epidemiologic classification, a patient history, and a treatment method.
Optionally, at least some of the plurality of patient medical records are associated with a time tag indicating a related occurrence or examination time.
Optionally, each the at least one treatment is associated with a reliability score, the calculating comprises calculating the medical recommendation according to the reliability score of members of the matching set.
Optionally, each the patient profile is associated with a current treatment record, the identifying comprises identifying the matching set by matching between current treatment records of the current patient profile and of the plurality of patient profiles, and the medical recommendation comprises a continuation treatment for the current patient profile. More optionally, the current treatment record profile is associated with a respective outcome evaluation.
Optionally, the method further comprises e) updating the current treatment record of the current patient profile with the medical recommendation and the respective outcome evaluation with an outcome of a respective treatment and f) repeating a)-d) the current treatment record is the updated current patient profile and the respective outcome evaluation is the outcome of a respective treatment.
Optionally, the medical recommendation is a medical recommendation of a phase in an ongoing treatment and the outcome is a current outcome of the phase, the updating and repeating are performed during the ongoing treatment.
Optionally, the medical recommendation comprises a request for an additional evolution. The method further comprises e) updating at least one of the plurality of patient medical records with the additional evolution and f) repeating a)-d) the current patient profile being updated with the additional evolution.
Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.
Implementation of the method and/or system of embodiments of the invention can involve performing or completing selected tasks manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of embodiments of the method and/or system of the invention, several selected tasks could be implemented by hardware, by software or by firmware or by a combination thereof using an operating system.
For example, hardware for performing selected tasks according to embodiments of the invention could be implemented as a chip or a circuit. As software, selected tasks according to embodiments of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In an exemplary embodiment of the invention, one or more tasks according to exemplary embodiments of method and/or system as described herein are performed by a data processor, such as a computing platform for executing a plurality of instructions. Optionally, the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile storage, for example, a magnetic hard disk and/or removable media, for storing instructions and/or data. Optionally, a network connection is provided as well. A display and/or a user input device such as a keyboard or mouse are optionally provided as well.
BRIEF DESCRIPTION OF THE DRAWINGS
Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced. In the drawings:
Fig. 1 is a schematic illustration of a matching system for analyzing a functional map of one or more tissues of a patient, according to an exemplary embodiment of the present invention; Fig. 2 is a flowchart of a method for analyzing a pixelated functional map of one or more tissues of a current patient, according to an embodiment of the present invention;
Fig. 3 is a schematic illustration of a distributed matching system for analyzing a medical map of one or more tissues, according to one embodiment of the present invention; and
Fig. 4 is a flowchart for using the matching process that is depicted in Fig. 2 for refining the functional image, according to one embodiment of the present invention.
DESCRIPTION OF EMBODIMENTS OF THE INVENTION
Exemplary embodiments of the present invention describe methods and systems for calculating a treatment recommendation. These embodiments are based on a plurality of reference patient profiles; each includes a plurality of patient medical records, at least one given treatment, and an outcome evaluation of the given treatment. A current patient profile, which is associated with a plurality of related medical records, is received and matched with the reference patient profiles. The match allows the identification of a matching set that includes members with patient medical records that have a certain potential relevance to the patient medical records of the current patient profile. Each record of the matching set specifies a certain given treatment and the outcome thereof. The matching set allows the calculation of a medical recommendation according to given the treatments which are specified in the matching set. For example, the medical recommendation may be based on the identification of a treatment that has a positive outcome evaluation, the most prevalent positive outcome evaluation, or a combination of the level of success of the possible outcome evaluations and/or the prevalence of the possible outcome evaluations.
Exemplary embodiments of the present invention describe methods and systems for analyzing, optionally in real time, patient data, such as a functional map, functional image, such as PET and SPECT images, and/or patient profile, of a patient using a reference database that contain a plurality of reference functional images, functional maps, and/or patient profiles. These embodiments allow, inter alia, identifying a matching set of functional images, maps, and/or patient profiles from the reference database by matching between the patient data and records of a reference database. Such a matching set can be used for identifying, classifying, and/or diagnosing pathological indications, which are depicted in the functional image, and for alarming and/or notifying the physician about such pathological indications. Optionally, the matching set is used for refining the process of acquiring the functional image.
Optionally, the reference database is used for managing a plurality of patient profiles. Each patient profile comprises one or more functional images, each as defined above and medical information that is related to the patients which are imaged in the one or more of the functional images. Optionally, the system is used for locally refining the received functional image. The received functional image may depict a segment of a certain requested area, a preliminary image that depicts partial emissions of one or more tracers, and/or an incomplete imaging of a certain area. In such an embodiment, each matching set may be used for generating instructions to an imaging system, thereby allowing an active vision, optionally as described below.
Optionally, this refinement allows reducing the number of detectors which are needed for capturing the functional image, reducing the computational complexity which is needed for reconstructing the received functional image and/or for reducing the amount and/or medicaments concentration which are injected to the patient. Exemplary embodiments of the present invention are a research tool generates trials groups, such as control groups, for experiments, using a using a reference database that comprises a plurality of functional images and/or patient profiles.
Some exemplary embodiments of the present invention describe a method that includes managing a plurality of pixelated functional maps, each map or a pixel element thereof is associated with a plurality of biological activity indications, such as values that represent the emission of one or more tracers, for example radionuclide sodium-24 tracers, from one or more tissues. When a pixelated functional map of a patient that is associated with a plurality of such biological activity indications is received, the managing allows the identification of a matching set that includes functional images that record respective biological activity indications. The matching set is used for image data acquisition, diagnosing the received functional map, refining the received functional map, operating the imaging system that created the functional image, and/or for classifying the received functional map. Optionally, as a high computational complexity may be needed in order to match between the new functional map and the stored functional maps, a hardware architecture that allows heavy processing may be used, optionally as described below. Such architecture can be used to reduce the processing time of the matching and/or analysis process.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details of construction and the arrangement of the components and/or methods set forth in the following description and/or illustrated in the drawings and/or the examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.
Reference is now made to Fig. 1, which is a schematic illustration of a matching system 100 for analyzing a functional map or a functional image, of one or more tissues of a patient, according to an exemplary embodiment of the present invention. The matching system 100 comprises an input unit 101 for obtaining one or more functional images 104 of one or more tissues of a patient. For brevity, a received functional image, which is an output of an imaging system that depicts one or more tissues of a patient and/or a received functional map, which is a set of data that describes and/or defines biological and/or pathological indications in one or more tissues of a patient, are referred to as a source image 104. The system further comprises a reference patient database 102 for managing a plurality of functional images 105. As used herein, managing a plurality of functional images means hosting, searching, manipulating, and/or accessing a plurality of functional images. For brevity, the hosted functional images and/or the functional maps are referred to in this application as reference images 105. The matching system 100 further comprises an analysis unit 103 for matching between the source image 104 and the reference images 105.
In some embedment of the present invention, the matching system 100 is used as a CAD system that assist physicians, such as radiologists, in diagnosing pathological, traumatic, or healthy indications in the source image 104. The matching system 100 assists physicians by leveraging the reference images 105 and additional dimensions which are associated therewith, optionally as described below, to identify relevant medical cases and their courses/acquisition, methods, treatments, and the like. In such an embodiment, the matching system 100 may assist physicians to identify cancerous, juxta cancerous, wounded, and normal tissues.
Optionally, the matching system 100 is used for automatic diagnosis of the patient. Optionally, the matching system 100 is used for alerting a patient, a physician, and/or a central server that is used for monitoring patients about a certain biological activity and/or inactivity in the patient body. The system may also be used as a research tool that allows a researcher to define a control group or a test group, as further described below.
Reference is now also made to Fig. 2, which is a flowchart of a method for analyzing a pixelated functional map of one or more tissues of a current patient, according to some embodiments of the present invention.
As described above and shown at 201, the reference patient database 102 manages a plurality of reference images each associated with a plurality of biological activity indications. Then, as shown at 202, a source image that includes a pixelated functional map is received. The source image is associated with a plurality of biological activity indications, as further described below. The input unit 101, which may be installed on a terminal, such as a personal computer or a server, is designed to receive the source image 104 either directly from a medical imaging system or indirectly via a content source. A medical imaging system comprises imaging by a modality, such as a PET, a PET-CT, a single photon emission computed tomography (SPECT), an extracorporeal gamma scan, an extracorporeal beta scan, an intracorporeal gamma scan, an intracorporeal beta scan, and output of a camera, such as disclosed in U.S. Patent Application No. 11/607,075, filed December 1, 2006; U.S. Patent Application No. 11/034,007, filed January 13, 2005; U.S. Patent Application No. 09/641,973, filed August 21, 2000; PCT Patent Application No. PCT/IL2006/000562, filed May 11, 2006; PCT Patent Application No. PCT/IL2006/001291, filed on November 9, 2006; PCT Patent Application No. PCT/IL2006/000840, filed July 19, 2006; PCT Patent Application No. PCT/IL2006/000834, filed July 19, 2006; PCT Patent Application No. PCT/IL2006/000059, filed January 15, 2006; PCT Patent Application No. PCT/IL2005/001215, filed November 16, 2005; PCT Patent Application No. PCT/IL2005/001173, filed November 9, 2005; PCT Patent Application No. PCT/IL2005/000575, filed June 1, 2005; PCT Patent Application No. PCT/IL2005/000572, filed June 1, 2005; PCT Patent Application No. PCT/IL2005/000048, filed January 13, 2005; and PCT Patent Application No.
PCT/IL03/00917, filed November 4, 2003; Israel Patent Application No. 172349, filed November 27, 2005; and Israel Patent Application No. 171346, filed October 10, 2005. The contents of all of the above documents are incorporated by reference as if fully set forth herein. A content source may be a PACS server, a PACS workstation, a computer network, or a portable memory device such as a DVD, a CD, a memory card, etc. The content source hosts and optionally allows the access to various multidimensional patient profiles, or dimensions thereof.
Optionally, the source image 104 comprises two or more functional images depicting the same tissues in the patient's body. The reference patient database 102 comprises references images each comprises two or more functional images depicting respective tissues in a body of another patient. Optionally, the functional images 104, 105 are pixelated. The functional images are optionally produced by radioactive emission. A functional image may be based on radiation emitted from radioactive tracers, such as gamma-emitting radiopharmaceuticals, which are injected into the body of the patient. The uptake of tracers is different between different tissues and between healthy, defective, and tumor tissues. Such an uptake, which is reflected by the radiation emitted from each tissue, is used for evaluating a biological activity, such as a metabolic activity of body tissue. For example, a functional image may image cardiac rhythm or respiratory rhythm, tissue metabolism, blood flow, evaluation of coronary artery disease, receptor binding, brain perfusion, and liver activity. Other indications of biological activities or inactivities that may also be depicted in a functional image may be based on the uptake rate of tracers in the related one or more tissues of the patient. Since the uptake rate of tracers is different between a healthy tissue and a tumor and is furthermore different between malignant and benign portions of a tumor, functional images or maps are of importance in tumor localization and volume determination, and especially, localization and volume determination of malignant portions of tumors. Optionally, the functional image is a 3D medical image or a sequence of 3D medical images, such as a sequence of PET-CT, SPECT, and/or Gamma scan images that comprises a plurality of voxels. In such an embodiment, the one or more functional images provide information about a plurality of biological activities in each voxel of the source image 104. For example, each voxel may be associated with the uptake rate of a number of different tracers, such as iron isotopes, In-I l l chloride, and Tc-99m labeled colloids (7-10). This use of multi-dimensional data, covering domains such as spatial/organs, variety of tracers, and time variation, allows obtaining properties of the underlying biological processes and conclusions related to the clinical condition. Furthermore, even if a radiation, which is emitted from a certain isotope, has an imperfect specificity, the combination of its radiation with radiations of other isotopes may have a specificity that allows the agent that receives the outputs of the matching system to diagnose the pathology of the imaged tissues in the received source image.
Optionally, the biological activity or inactivity is documented as a value representing the interception of rays, such as gamma rays, which are emitted indirectly from the respective area, optionally by a positron-emitting radioisotope, which is introduced into the body on a metabolically active molecule.
Each one of the source images is optionally associated with medical information that is related to the patient. In such an embodiment, for each of some or all of the reference images 105 is associated with related medical information of a patient that her organs are depicted in the related reference image 105. As used herein, medical information means, inter alia, information which is related to the patient, such as laboratory results, therapeutic procedure records, clinical evaluations, age, gender, medical condition, ID, genetic information, patient medical record, data indicating of metabolism, blood pressure, patient history, sensitivities, allergies, different population records, treatment methods and the outcome thereof, epidemiologic classification, and patient history, such as treatment history. Optionally, each one of the source and reference images 104, 105 is optionally associated with previous and/or current structural and/or functional images of respective one or more tissues. Optionally each one of the previous images is associated with information that indicates a diagnosis thereof, a list of pathological and/or biological indications, and selected treatments and/or medicaments. Other important features, such as 3D affine transformation descriptors may also be associated with the source image. The input unit 101 is optionally adapted to interface with more than one content source. Optionally, the input unit 101 preprocesses the source image 104 before it is forwarded to the analysis unit 103 and/or stored in the reference patient database 102. Preferably, the source image 104 comprises a pixelated functional image that is preprocessed according to the requirements of the analysis unit 103. In one embodiment of the present invention, the pixelated functional image is denoised and/or enhanced using commonly known edge preserving filters before it is forwarded and optionally stored.
As described above, the source image 104 may be associated, or allowing the matching system 100 to associated it, with medical information of a related patient. In such an embodiment, each one of the pixelated functional images, which are hosted in the reference patient database 102, is also associated with related medical information. The reference patient database 102 may also store a number of prototypes of pathological biologic activities and/or indications, for example a pixelated medical map of one or more tissues that depicts an emission of an accumulation of radioactive glucose fluorodeoxyglucose (FDG) in an exemplary cancerous tissue.
For brevity, one or more of the reference images 105 and/or medical information, which are related to a certain patient and/or a certain patient prototype are referred to as a multidimensional patient profile. In such an embodiment, each dimension of the multidimensional patient profile provides information about a biological activity and/or indication in one or more voxels of a functional image or optionally medical information that is related to the patient that one or more of her organs are depicted in the functional image. For example, a dimension may be a functional image that images an emission of a tracer from a biological activity of one or more tissues.
Optionally, the multidimensional patient profile 104, 105 includes a pathologic classification, a clinical stage, and optionally a prognosis of such a pathologic classification. Optionally, one or more of the multidimensional patient profiles 104, 105 are associated with one or more therapies. Each therapy is associated with a related success rate value.
Optionally, the pathologic classification or other diagnosis and/or classification that is associated with the multidimensional patient profile 104, 105 and/or included therein is tagged with a reliability score that reflects the skills of the agent that provided it, the reliability of the organization which is associated with the agent, and/or the reliability of the study from which the data is taken. As used herein an agent means a physician, a measurement device, a measurement system, an imaging device, an imaging system, and an organization means a laboratory, a hospital, a medical service, an association of hospitals and/or laboratories, a geographic location of hospitals and/or laboratories, a manufacture of an agent and/or the training center that trained the agent.
Optionally, the reference patient database 102 hosts a plurality of respective functional images. In such an embodiment, each voxel of each reference image 105 is associated with a plurality of related biological activities. In such a manner, the analysis unit 103 may match between each voxel of the source image 104 and voxels of one or more of the reference images 105, which are optionally respective thereto. In an exemplary embodiment of the invention, the reference patient database 102 hosts more than a 5,000 of functional images each, of an actual patient or a known and explicit profile. Optionally, each functional image is stored along with medical information, optionally as described above, and may be referred to as a multidimensional patient profile. Each dimension in the multidimensional patient profile is the biological activity in one or more voxels of the functional image or a medical information datum. Optionally, the multidimensional patient profile includes a respective structural image, which is optionally registered with one or more of the related functional images. The structural image is produced by reflections of penetrating rays from the internal tissues of the respective organs of the patient. Such a structural image may be produced, for example, by x-ray, CT, ultrasound, and MRI scans, which provide structural map of the internal tissues of the patient.
Optionally, the number of multidimensional patient profiles 105, which are stored in the reference patient database 102, is greater than 5,000, 50,000, 500,000, 1,000,000, 10,000,000, 100,000,000, 1,000,000,000, or intermediate values. The size of the database may be affected by the standard deviation of the records and the variance of the records. Optionally, the number of different patients whose has a multidimensional patient profile in the reference patient database 102 may be of a similar magnitude. Optionally, 5, 10, 100, 1000 or more separately identifiable functional images are provided per multidimensional patient profile in the reference patient database 102. The number of dimensions analyzed in each multidimensional patient profile may be, for example, 5, 10, 20, 40, 100, 1000, or greater or intermediate values.
The reference patient database 102 is optionally distributed in a number of servers or other hosting computing units, for example 10, 50, 100, 1000, or intermediate or greater numbers of hosting computing units. The connections between these servers are optionally secured in order to maintain data safely and privacy. Optionally, the technical specification of the system varies according to the resolution of the functional images, the number of records in the reference patient database, and the number and/or distribution of the input units 101. For example, larger images and multidimensional patient profile with more dimensions may need more bandwidth, calculating power, and storage. Optionally, in order to increase the robustness if the reference patient database, each record is stored more than once, optionally in a number of different servers which are optionally distributed in different geographical locations. Clearly, by maintaining a number of copies, the degree of data security increases and the latency of storing and retrieving the data decreases. As described above, the source image may be received with respective medical information. This combination may be referred to as a new multidimensional patient profile. Optionally, the new multidimensional patient profile is stored for future use. Optionally, the input system comprises an integration module for integrating different modalities, such as functional and structural images from different imaging systems, for example, MRI systems, CT systems, Ultrasound (US) systems, and X-ray based systems that contain multiple dimensions and/or markers. Optionally, the integration module is designed for converting data format in an automated and/or semi-automated manner. The conversation allows the analysis unit 103 to handle data from various data sources. Optionally, the integration module is designed for registering the source image according to predefined model that has been used for registering the respective reference images. Such a registration can substantially reduce the computational complexity of the matching process. The analysis unit 103 is designed to match between the source image 104, or the new multidimensional patient profile 104, and a plurality of respective reference images 105, or a plurality of multidimensional patient profiles 105, which are stored in the reference patient database 102. As shown at 203, after the source image is received at the analysis unit 103, a matching set of the reference images is identified by matching between the plurality of the first and second biological activity indications. The matching allows identifying a set of the hosted multidimensional patient profiles 105 that a plurality of common biological activities and/or pathogenic indications with the new multidimensional patient profile 104. Optionally, the analysis unit 103 gives each member of the matching set a potential relevance value that is determined according to the potential relevance thereof to the new functional image and/or to the new multidimensional patient profile 104. Optionally, the potential relevance value is determined according to the proximity of the parameters that represent common biological activity indications in the members of the matching set.
The matching between the source and the reference images may be based on topological similarities between the source image and the reference images. Such a matching allows the agent to identify a matching set of multidimensional patient profiles that includes a number of common biological activities and/or indications with the patient that is depicted in the source image. The aforementioned matching allows the detection of a matching set that have a common radiation emission pattern with the source image. For example, in functional imaging of one or more brain activities, it is possible to match between emission patterns that may account as normal or abnormal functional properties of one or more regions, normal or abnormal dependencies between the one or more regions, and pathologies associated with malfunctions of biological pathways in the one or more regions. Matching such an image emission pattern may be used for classifying the new multidimensional patient profile. In some embodiments of the present invention, the source and the reference images are optionally registered and matched according to known registration and matching methods and process. For example, see A. Venot, et al. Automated Correction of Patient Motion and Gray Values Prior to Subtraction in Digitized Angiography, IEEE Transactions on Medical Imaging, vol. MI-3, no. 4, 1984, pp 179-186; G. Malandain et al., Matching of 3D Medical Images with a Potential Based Method, IRIA, no. 1890, 1993, pp 1-37; L. R. Schad, et al., Three Dimensional Image Correlation of CT, MR, and PET Studies in Radiotherapy Treatment Planning of Brain Tumors, Journal of Computer Assisted Tomography, vol. 11, no. 6, 1987, pp 948-954; B. L. Holman, R. E. Zimmerman, et al., Computer- Assisted Superimposition of Magnetic Resonance and High-Resolution Technetium- 99m-HMPAO and Thallium-201 SPECT Images of the Brain, The Journal of Nuclear Medicine, vol. 32, no. 8, 1991, pp 1478-1484; B. A. Birnbaum et al. Diagnosis with Fusion of MR, CT, and Tc-99m-labeled Red Blood Cell SPECT Images, Radiology, vol. 181, no. 2, 1991, pp 469-474, which are incorporated herein by reference.
Optionally, the new multidimensional patient profile 104 and the plurality of multidimensional patient profiles 105 include an electrophysiological reading that measures an electrical activity of one or more tissues of the related patient along a period. Optionally, the electrophysiological reading includes one or more electrophysiological readings, such as electrocardiography reading, electroencephalography reading, electrocorticography reading, electromyography reading, electrooculography reading, electroretinography reading, and electroantennography reading. Optionally, the matching between the new multidimensional patient profile
104 and the plurality of multidimensional patient profiles 105 may include an additional or an alternative phase of matching between electrophysiological readings. Such a matching allows the user to identify a matching set that includes multidimensional patient profiles that have electrophysiological readings, which are substantially similar to the electrophysiological readings of the probed patient.
It should be noted that an arrhythmia, such as atrial fibrillation, one or more ectopic regions in the heart, an ischemia, changes in existence of biochemical channels which are part of the electrical conduction system, for example connexin-42, and/or changes in the activity and/or concentration of intracellular and intercellular calcium handling proteins, usually have a known electrocardiography reading pattern.
The aforementioned matching allows the detection of a matching set of multidimensional patient profiles that have a common electrophysiological reading with the new multidimensional patient profile. Such a common electrophysiological reading may be used for classifying and/or diagnosing the new multidimensional patient profile and/or alarming the user of the matching system 100 about a possible detection of one or more pathologies which have been identified in members of the matching set.
In one embodiment of the present invention, the source and at least some of the reference images are four-dimensional (4D) medical images of an organ, such as the heart. A 4D medical image is a data set composed of a time-series of 3D medical images that reflects the behavior of the depicted tissue during a certain period. In such an embodiment, the reference and the source images, which may also be known as kinetic images, may be correlated before they are matched by the analysis unit 103. Matching a 4D medical image may be important in organs such as the heart wherein the shape of the organ substantially change over time and can provide information about the pathological level thereof.
In such an embodiment, the matching that is performed by the analysis unit 103 may be performed with respect to the time domain. Such systems, methods, and associated tools may be applied to cardiology, oncology and brain imaging with novel imaging systems, including for example with the nuclear imaging technology presented by Spectrum Dynamics in International Application No. WO2006/051531 published on 18/May/2006 that is incorporated herein by reference. As described above, each one of the multidimensional patient profiles 104,
105 may comprise medical information, such as medical history, about a related patient. Such information, as described above, may comprise personal information about the patient, such as his or her age, gender, and physical condition at the time the scan has been held. As the differences between biological indications of patients with different medical condition and/or history are substantial, such information may be important, in some embodiments, in order to output efficient recommendation, treatment guidelines, or matching set that can be used by the physician, optionally as described below. For example, it is clear that low red and/or white blood cell count has different meaning if the patient is treated with chemotherapy for cancer or not. Optionally, an initial diagnosis, which is performed by an agent or attached to the new patient profile, is also included. Such medical information may also be used as another dimension in the multidimensional patient profile 104 for the analysis of the source image, as described below.
Optionally, the matching that is performed by the analysis unit 103 is based on processing the data in the multidimensional patient profiles 104, 105. Optionally, the analysis unit 103 processes the data in order to detect interactions and/or complex biological processes that may last for a certain period. For example, the analysis unit 103 may correlate between a timeline that describes the variability of one or more biological and/or pathological indications in the new patient profile and a respective timeline in the multidimensional patient profile which are hosted in the reference patient database.
Optionally, the measuring includes applying one or more of a variety of statistical and network analysis techniques to one or more dimensions of the multidimensional patient profile. Such an analysis may include an analysis of gene expression, proteomics, transcriptomics, gene regulatory network, metabolic pathways, and/or cellular signaling. For example, the analysis unit 103 may measure an absolute concentration of proteins and/or messenger ribonucleic acid (RNA) of a specific type and a specific state, such as phosphorylated mRNA, glycated mRNA, and various protein conformations. The detected and/or measured data is matched with respective interaction and/or measurements in the multidimensional patient profiles 105 of the reference patient database 102. In such an embodiment, a multidimensional patient profile includes sequential data of biological activities that is optionally based on dynamic and/or static properties of one or more tracers. The biological activities may have time dependency among them. For example, an uptake of one tracer that is followed by an uptake of a subsequent uptake of another tracer may be indicative to the existence of a time-dependency between two biological activities and potentially to the understanding that one biological activity is the cause and/or a part of the cause of another biological activity and may be associated with a certain pathological indication of the patient. Optionally, the data in the reference patient database 102 is arranged in data tables, which support the aforementioned measurements and interactions. Optionally, the reference patient database 102 hosts at least 5,000 multidimensional patient profiles. Each one of the multidimensional patient profiles comprises information about the patient from various evaluation and imaging systems and agents, such as one, two, three, four or more of epidemiologic, genetic, functional, chemical, and treatment related information. Matching the new multidimensional patient profile 104 with the multidimensional patient profiles 105 may yield one or more matching sets. Each member of a certain matching set has a combination of biological activities and/or indications that is common to all the members of the certain matching set. The relation between the biological activities and/or indications in this combination may not be obvious to the common physician or even known from the medical literature. Thus, the matching system 100 that optionally automatically match between the new multidimensional patient profiles 104 and the multidimensional patient profiles 105 can detect combinations that include relations between various biological activities which are not obvious or known to the agent that diagnoses the patients with the new multidimensional patient profiles 104. As the matching is performed with a large scale of multidimensional patient profiles, fuzzy logic methods may be used for identifying the matching set. As commonly, known fuzzy logic is derived from fuzzy set theory dealing with reasoning that is approximate rather than precisely deduced from classical predicate logic, see Klir, George J.; St Clair, Ute H.; Yuan, Bo (1997). Fuzzy set theory: foundations and applications. Englewood Cliffs, NJ: Prentice Hall. ISBN 0133410587 and Klir, George J.; Yuan, Bo (1995). Fuzzy sets and fuzzy logic: theory and applications. Upper Saddle River, NJ: Prentice Hall PTR. ISBN 0-13-101171-5, which are incorporated herein by reference. As described above and shown at 204, after the source image is received at the analysis unit 103, a matching set of the reference images is identified by matching between the plurality of the first and second biological activity indications. Optionally, the matching is performed between predefined ranges which are set around the values given at the multidimensional patient profile 104. As described above, the multidimensional patient profile 104 comprises different values that represent medical information and biological indications which are related the patient. In such an embodiment, as the matching is between predefined ranges and not according to discrete values the intersecting group may include profiles of patients which are not exactly as the profile of the current patient. Optionally, the matching of each one of the values and/or the ranges of the patient profile is weighted according to an estimation that reflects the importance. For example, a potential relevance between biological indications such as hemoglobin, hematocrit, and/or iron level measurements may receive a higher weight than the weight that is given to the height or the gender of the patient. Optionally, a weight is given to a ratio or any other function that is based on a number of values and/or the ranges of the patient profile. For example, the ratio of hemoglobin weight to hematocrit is given with a high weight. Such a ratio distinguishes the normally colored cells from paler cells to classify different anemias and aid in determining cause. Optionally, the weights are dynamic and depend on other values such as the treatment that is given to the patient, the age of the patient, his medical history, and/or his medical condition. As shown at 204, after the matching set has been identified it is used for image data acquisition, diagnosis of the source image, calculation of treatment guidelines, and/or classification of the source image. The matching set may comprise multidimensional patient profiles of patients with similar biological activities and/or indications that receive successful treatments and with multidimensional patient profiles of patients with similar biological activities and/or indications that receive unsuccessful treatments. Such matching sets may be useful for allowing the physician to select one or more method of treatments, to optimize and/or to reduce the radiation doses to which the patient is exposed, and to optimize and/or to reduce a medicament dose that the patient receives.
Optionally, a reference patient database 102 with more dimensions allows the matching of more combinations of different dimensions and/or interactions between different biological activities. Such a matching may be used for detecting combinations and interactions, which are not intuitive or based on the known studies and/or tests. Such a multidimensional data analysis may be performed using differential equations and/or control theory methods, as applicable to dynamic systems such as a biological entity, for example the human body.
As described above, the matching system 100 is designed to receive a source image and optionally medical information from an imaging system and/or a storage system and to match it with the reference images and/or other records of the reference patient database 102. As the functional image is optionally matched with large scale of multidimensional patient profiles and optionally processed and analyzed for the identification of complex biological processes that may last for a certain period, the quality of thereof may be relatively low, for example a functional image with high levels of noise. Optionally, the matching system 100 allows using imaging cameras with a relatively low number of detectors, such as a hand-held imaging camera that is designed for capturing images during a data-responsive scanning, to perform a real time reconstruction, and to determine in real time whether additional data is needed to achieve a match, as described above. Optionally, the analysis unit 103 uses information that is found in the matching set to complete, to denoise, to calibrate, and/or to change areas in the received source image. It should be noted that using such a matching system 100 may assist particularly in standardizing the analysis of functional images and generally in standardizing the analysis of multidimensional patient profiles. As commonly known, not all the physicians have a common set of guidelines for diagnosing a functional image or many other variants of a patient profile. For example, while a certain physician checks the hippocampus region for diagnosing early Alzheimer's dementia, another physician may check other regions of the brain, such as the medial temporal lobes and the anterior cingulate. In particular, such the matching system 100 may be used for assuring that certain biological activities and indications are probed whenever a functional image or any other variant of a patient profile is diagnosed and/or classified by a physician, such as a general radiologist.
Optionally, the reference patient database 102 is used by the analysis unit 103 for classifying pathological indications that have more than one visible and/or measurable characteristics and not a clear surrogate marker. Optionally, the reference patient database 102 may be used for detecting and/or anticipating the occurrence of a heart failure. Such a detection and/or an anticipation may by based on various biological activities which are documented in the multidimensional patient profiles, including but not limited to echocardiography, blood tests, cardiac mapping, which is optionally isotope based, anatomical information, for example from CT and/or angiography procedures, quality of life questionnaires, electrophysiology parameters, etc.
In one embodiment of the present invention, the matching system 100 is used for solving an inherent problem of the SPECT image analysis. A 3D imaging system, such as SPECT system, assesses a relative decrease in the uptake of a tracer in a certain region by comparing the uptake thereof with the uptake of other regions. The uptake is determined according to the rate of reduction in the emission flow. Such a comparison may be used for detecting regions with stenosis that is relatively high in relation to other regions. It is more difficult, and sometimes impossible, to detect milder stenosis in other regions of the functional image. As described above, the analysis unit 103 is designed for matching a SPECT image with other images. In such an embodiment, each region in the image is compared with respective regions in other SPECT images. In such a manner, the uptake of one region is matched against the uptake in a respective region and not against the uptake of other regions in the same image. Such a matching may provide pathological information that would have gone unnoticed in a commonly used diagnosis. It should be noted that a comparison, such as the aforementioned comparison, is between absolute values taken from respective regions and therefore provide a more accurate outcome than the commonly practiced comparison that is performed between relative values taken from different, unrelated regions.
Reference is now also made to Fig. 3, which is a schematic illustration of a distributed matching system 100 for analyzing a medical image and/or a map of one or more tissues, according to one embodiment of the present invention. The matching system 100 comprises the input unit 101, the reference patient database 102, and the analysis unit 103 which are depicted in Fig. 1. However, in Fig. 3, the system is a distributed system that comprises a number of input units 101 and optionally a distributed reference patient database 102. In such an embodiment, each input unit 101 may be installed or accessed via a different client terminal, such as a personal computer, a Smartphone, a personal digital assistant (PDA), and a laptop. The input units 101 are connected, via a computer network 200, such as the Internet, to the reference patient database 102. The reference patient database 102 is optionally distributed among a plurality of different storage devices, such as a plurality of servers 102. The input units 101 and the storage devices of the distributed reference patient database 102 are connected to the analysis unit 103 via the computer network 200.
In such an embodiment, each one of the client terminals 101 may be used for adding a new patient profile 104 to the reference patient database 102 and/or for forwarding it to the analysis unit 103 for analysis, for example as further described above.
Optionally, the matching system 100 is connected to one or more user interfaces (UIs), which are optionally installed in one or more of the client terminals 101. Each UI allows one or more of the users to extract statistical information from the reference patient database 102. Such a UI may be used for producing improved understanding of the biological processes. Optionally, the UI allows the user to identify and to analyze biological pathways, cell processes, and cellular circuits based on the match between the new multidimensional patient profiles 104 and the multidimensional patient profiles 105. Optionally, the UI is designed to display the output of the analysis unit 3.
Optionally, the analysis unit 3 outputs a list of the matching multidimensional patient profiles. Optionally, the list is sorted according to the potential relevancepotential relevance values of the matching multidimensional patient profiles. As described above, the new multidimensional patient profiles 104 may be matched with a matching set that comprises multidimensional patient profiles, which have been classified as having biological activities and/or indications of one or more pathological diagnosis. Optionally, the analysis unit 103 generates a complete tree of the one or more pathological diagnosis and/or one or more suggested treatments for each one of the pathological diagnosis and forward it for a display at the client terminal from which the new multidimensional patient profiles 104 have been received. Optionally, the tree is weighted according to the prevalence of a certain match and/or the prevalence of a certain diagnosis in the matched multidimensional patient profiles. In such a manner, the physician receives a graphical display, such as a tree, optionally weighted, of possible diagnosis and suggested treatments. As described below, the suggested treatments may also be weighted, shown the physician the statistic of the treatment success.
As depicted in Fig. 3, the matching system 100 comprises a plurality of distributed client terminals, which are optionally located in different locations, for example in different diagnostic imaging centers (DICs). In such a manner, the system allows physicians and researchers from different locations to use the same analysis unit 103 and the same reference patient database 102 for diagnosing and/or classifying a new functional image and/or a new multidimensional patient profile. The system assures that these functional images and/or new multidimensional patient profiles are matched against the same multidimensional patient profiles, regardless to their origin.
Optionally, as described above, the matching system 100 is used as a research tool. Optionally, the UI allows a user to define search indicia with one or more and/or biological activities or expressions thereof. The UI instructs the analysis unit 103 to search for a match between the search indicia and the plurality of multidimensional patient profiles. Such a research tool 100 may be used for improving the understanding of the biological processes which are defined in the search indicia. Optionally, the research tool 100 allows the user to define a genetic population, an environment, an age, a gender, a medical condition, etc. In such a manner, the user may define a test group for an experiment. Optionally, the research tool 100 allows users to upload data of test groups, which have been used in a certain experiment and/or study. In such a manner, an outcome of a future experiment, such as a sequential experiment, can be easily compared with the uploaded data of any test group. As the uploaded data is related to a number of different trials and studies, the analysis unit 103 may combine the results of several studies that address a set of related research hypotheses, generating a match, a classification, an alarm, or a diagnosis that is based on a meta-study, in which as many patients as possible participates.
As, in some embodiments of the invention, the reference patient database 102 is greater than 500,000, 1,000,000, 10,000,000, 100,000,000, 1,000,000,00O5 or intermediate values, numerous control and/or test groups may be defined for supporting specific combination of biological activities and/or medical information. For example, where A, B, and C denote different tracers, the matching system 100 may support a combination of an analysis with two tracers A+B, a combination with two tracers A+C, and a combination with two tracers B+C. As the number of potential tracers expands, more combinations may be possible and the number of documented pathologies increases. It should be noted that such an embodiment may be used for reducing the radiation to which a patient is exposed during a diagnosis process. The analysis may allow a physician to diagnose a biological activity based on a match with multidimensional patient profiles that has the same combination of tracers as the new multidimensional patient profile, and not based on the injection and the imaging of one or more additional tracers.
Optionally, the matched matching set is used by the physician to determine which additional examination is needed. As described above, the matching set includes patient profiles that have one or more characteristics, such as biological indications and/or medical information, in common with the profile of the patient. A segmentation of the matching set's members according to characteristics thereof, which are not in common with the characteristics of the new patient profile, can indicate which additional data is needed in order to evaluate more accurately which treatment should be given to the new patient. For example, if one segment of the matching set includes patent profiles of members with an indication of normal hemoglobin and non-pathologic diagnosis and another segment of the matching set includes patent profiles of members with an indication of low hemoglobin and a pathologic diagnosis the physician receive an indication that an hemoglobin level test is needed in order to diagnose the new patient more accurately.
Optionally, the matching system 100 is used as an adaptive system for instructing an agent during a medical operation. In such an embodiment, the agent constantly updates and/or reenters the new patient profile that is matched by the matching system 100. The matching system 100 reanalyzes the updated new patient profile and provides the physician with a new, optionally more accurate, matching set and/or treatment recommendation. In such a manner, a physician may use the matching system 100 to predict the outcome of possible outcomes of different operational actions during a medical operation.
It should be noted that matching the new multidimensional patient profile 104 with records of a database that hosts thousands of multidimensional patient profiles can substantially reduce the standard deviation of the matching set. The more multidimensional patient profiles are stored in the database the more the members of the matching set have in common with the new multidimensional patient profile 104. The reference patient database 102 comprises data that describes and/or depicts pathological biological activities and/or indications optionally in association with medical information. These records allow identifying a matching set that has members having one or more common characteristics with the new multidimensional patient profile 104. Such one or more common characteristics may not be clear or known from the known studies and/or tests. The matching is done between absolute values and based on real data that is taken from real patients and not based on processed models that usually cannot accurately reflect dynamic statistical data that is optionally constantly changed and updated with new records.
For example, the reference patient database 102 is uploaded with data collected from trials that has been performed by imaging simultaneously or sequentially a large variety of tracers, which may be referred to as a cocktail, trials that has been performed on different populations, and trials that has been performed on patients with medical information. Such data may be collected either from various studies or during the ordinary course of practicing medicine. In such a manner, the accuracy of the matching substantially increases. If, for example, an uptake of a tracer is an indication of a certain biological activity has a specificity of ~10%, the matching of the uptake of more tracers can provide a higher specificity of —1%. Optionally, the reference patient database 102 is connected to other medical databases and can match between the multidimensional patient profiles and records from the other medical databases. Optionally, a multidimensional patient profile may be based on data from other medical databases.
In an exemplary embodiment of the invention, a system is provided to store and analyze all such data. It should be noted that such an uploaded data may be used for analysis, classification, alarming, and/or diagnosing, optionally as described above, and not only for research.
Optionally, the multidimensional patient profiles comprise a status record that describes the health of the related patient. If the patient has been diagnosed by the matching system 100 and/or by a physician as unhealthy patient, the status record may define an impairment of health or a condition of abnormal functioning of the patient or of one or more of the patient tissues. The multidimensional patient profiles comprise a record that describes and/or defines the treatment the patient received and a value, such as a weigh value, that defines the effectiveness of that treatment. Optionally, the analysis unit 103 is designed to suggest a therapy to the patient with is documented in the new multidimensional patient profile. In such an embodiment, the analysis unit 103 identifies a matching set of members having one or more dimensions in common with the new multidimensional patient profile. The dimensions may be medical information and/or a topological potential relevance between related functional images, optionally as described above. Optionally, the analysis unit 103 identifies which therapy has been used most successfully for recovering the members matching set, optionally using the aforementioned weight, and output a therapy suggestion or a list of weighted therapy suggestions based thereupon. Optionally, the analysis unit 103 outputs the list of weighted therapy suggestions and/or the members of the intersecting list to a display at the client terminal from which the functional image and/or the new multidimensional patient profile has been received. It should be noted that though the multidimensional patient profiles 104, 105 may comprise information about the diagnosis that defines the impairment of health or the condition of abnormal functioning of the patient, the analysis unit 3 may ignore that information, hi such a manner, the analysis unit 103 may output a therapy suggestion or a list of weighted therapy suggestions based on medical measurements only, without combining any opinions and/or conclusions of physicians or the like.
Optionally, a dimension of the multidimensional patient profiles 104, 105 is weighted. In such a manner, common parameters may effect the suggestion according to a weight that is associated therewith. As described above, the system allows the matching of multidimensional profiles. Such a matching may require high computational complexity. In order to provide a short response time for analyzing, classifying, and/or diagnosing requests, the aforementioned matching is performed using a processing unit that has improved processing abilities in relation to the local processors of each one of the client terminals. Optionally, the central processing unit includes multiple processing units that combines a tightly coupled parallel architecture and/or in a loosely coupled distributed architecture.
Optionally, the response time of the central processing unit allows the matching of between the source image and the reference images and/or the new multidimensional patient profile 104 and the records of the reference patient database 102 in real time. In order to provide such a response rate, the multiple processing units may be processors with high processing capacity. Optionally, the multiple processing units are adapted to access large amounts of data. Optionally, each one of the multiple processing units has a multiple data bus, preferably 64-bit or 128-bit processing power, an arithmetic logic unit (ALU), and wide range of fast I/O channels.
Optionally, the system comprises a maintenance module that includes a control mechanism for data quality and data management in order to assure the reliability and availability of the reference patient database 102. Optionally, the maintenance module assures that the records of the reference patient database 102 are kept confidential, inter alia, in order to assure the privacy of the documented patient. Optionally, the maintenance module scores the quality of each record or batch of records that are uploaded to the reference patient database 102. As described above, the input unit 101 optionally receives a source image that comprises a functional image, as shown at 104, and forwards it for processing by the analysis unit 103 in real time. In one embodiment of the present invention, the matching system 100 is used for allowing an imaging system to have active vision. As used herein, an imaging system with active vision means an imaging system that is able to interact with the imaged scene by altering its viewpoint rather than passively observing it, and by operating on sequences of images rather than on a single frame.
Reference is now made to Fig. 4, which is a flowchart for using the aforementioned matching process for refining the functional image, for example using an active vision method, according to one embodiment of the present invention. Optionally, blocks 201-204 are similar to the blocks described in Fig. 2. However, Fig. 4 further depicts blocks 401-404 and the received source image comprises 401 is a preliminary functional image and not a final functional image. As depicted, after the received preliminary image is received, a matching set is identified, optionally as described above. Then, as shown at 204, a recommendation and/or is calculated and used for refining the image and/or a diagnosis that is based on the recommendation, as shown at 402. As shown at 403, the depicted process is repeated as long as the refined image and/or the patient profile diagnosis are not final or for a predefined number of iterations. Optionally, an image is classified as final according to user instructions, the identification of a matching set having a predefined size, and the like.
Optionally, such a process is used for repositioning the radiation detectors of the imaging system or determining the scanning pattern thereof, thereby improving the acquisition of parameters such as energy resolution, field of view, and/or scan pattern. The matching set, which is produced by the analysis unit 103, comprises a number of images that depicts respective tissues and optionally neighboring tissues. These images depict areas in which there may be irregular biological indications and/or pathological indications. Optionally, the analysis system identifies these irregularities by matching the members of the matching set with a model of a normal image and directs the radiation detectors of the imaging system toward these areas. Optionally, such a process may be used for generating a continuous motion or step-wise motion for a set of detectors. As described above, the preliminary functional image is matched with a plurality of reference images. Such a matching may reduce the amount of radiation to which a patient is exposed, optionally by reducing the size of the area that is imaged. For example, if the matching set comprises one or more reference images with a certain pathological indication in a certain area, the analysis unit 103 outputs a refinement recommendation that directs the detectors toward another area that allows the analysis unit 103 to determine how to diagnose the pathological indication.
Optionally, a certain area is imaged using a limited number of detectors that sequentially scan sub-areas thereof. In such an embodiment, the preliminary functional image, which is received at 202, is an image of one of the sub-areas. By analyzing the acquire data at a certain given time point, the matching set is used as shown at 203 and the next sub-area to be scanned is defined for the next time point. Such a closed loop imaging may be performed in a magnitude of scale of minutes, seconds, and fractions of seconds, such as 1/100th or 1/1000th of a second. Such an embodiment allows the detection of an onset of a biological activity, such as an arrhythmia or a brain activity, and may be used for adapting the scanning pattern according to the propagation and development of the onset.
In order to facilitate such an active vision, the reference images may include preliminary functional images, which are partially reconstructed images that have been taken during the acquisition thereof and/or of one or more segments of a certain area which is respective to the probed area. Such an embodiment allows the imaging of a complex static scene in nonuniform resolution, thereby reduces the computational complexity of the imaging.
As described above, the process that is depicted in Fig. 4 allows refining the final functional image, according to one or more preliminary functional images. Such a refinement may be understood reconstructing certain regions of interest (ROIs) of the final functional image to higher resolution and other ROIs to lower resolution, thereby reducing the scanning time and/or the radiation dosages. It should be noted that resolution may be understood as a spatial resolution, a temporal resolution or both. The functional image reconstruction may require an analysis of intensities or other parameters which are associated with intensities in a high numbers of variables. Optionally, the reconstruction is performed in a voxel-by-voxel approach. The reconstructed variables are analyzed, fixed, and then further analyzed in a set of repeated steps, for example as depicted in Fig. 4. A sub-group of voxels is selected, the voxels' values are refined, and the process is reiterated with other sub-group. In an exemplary embodiment of the invention, this approach is implemented using a parallel processing architecture, for example, reconstructing different voxels in parallel.
In an exemplary embodiment of the invention, the refinement recommendation includes instructions that define which ROI to scan next. Optionally, the refinement recommendation is based on an analysis that is provided from a matching set that suggests progression in patients with similar patient profile.
Possibly, the computation power that is used to analyze such a progression in real-time is high and may require a specialized computational system architecture. As described above, the analysis unit 103 may comprise a processing unit that includes multiple high speed CPUs and/or data processing systems (DPSs) that implement multiple data buses and/or 64bit, 128bit, and/or stronger CPU architectures.
Optionally, the refinement recommendation may be a selection of a new viewpoint and/or view parameters for one or more of the aforementioned detectors. Optionally, the reference patient database 102 hosts a probability matrix, such as probability vector that define the probability that a photon emitted from points in space would be detected by the detector for each viewpoint. Such probability matrixes are used as part of the algorithms for estimating the detected photon counts from estimated intensities, and for other algorithmic steps. Optionally, the reconstruction includes reconstruction of parameters associated with time- varying biological processes. In such an embodiment, some of the processes may require non-linear modeling of the process. In one embodiment, the matching system 100 allows the reconstruction of these parameters in real time, allowing a medical team to diagnose a patient or the progress of a therapeutic procedure immediately.
Optionally, the matching system 100 is designed to optimize the number of views which are necessary to obtain enough information for imaging by identifying when and/or where to acquire a certain preliminary image. As mentioned above, a certain biological activity may be an outcome of another biological activity. In such an embodiment, the biological activities that provide pathological indications may appear in a sequential manner and therefore the ROI should be defined in different locations at different time slots. Furthermore, if the reconstructed parameters are kinetics parameters, such as order of reaction, kinetic rate constant, apparent, intrinsic and diffusional activation energies and activation energy (Ea), the scanning pattern is planned according to an anticipated time curve. Optionally, the anticipated time curve is adjusted in real time. In an exemplary embodiment of the present invention, the amount and/or complexity of the data that is acquired is reduced to enable easier image processing, image reconstruction, and/or categorization of the disease process. Information maximization and need to reduce complexity of procedure may be addressed in this approach. It may further allow reducing the volume of the relevant and essential data that is needed for making efficient use of resources, such as computational and/or storage resources.
It is expected that during the life of a patent maturing from this application many relevant systems and devices will be developed and the scope of the term a voxel, a pixel element, a patient profile, an imaging device, CT, MRI, and SPECT are intended to include all such new technologies a priori. The terms "comprises", "comprising", "includes", "including", "having" and their conjugates mean "including but not limited to". This term encompasses the terms "consisting of and "consisting essentially of.
As used herein, the singular form "a", "an" and "the" include plural references unless the context clearly dictates otherwise. It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.

Claims

WHAT IS CLAIMED IS:
1. A method for analyzing a functional map of at least one tissue of a patient, comprising: managing a plurality of functional maps each being associated with a plurality of first biological activity indications; receiving a functional map being associated with a plurality of second biological activity indications; identifying a matching set of said managed functional maps by matching between said plurality of first and second biological activity indications; and using said matching set for a member of a group consisting of: an image data acquisition, a diagnosis of said received functional map, a classification of said received functional map.
2. The method of claim 1, wherein said received functional map is associated with first medical information related to the current patient, each said managed functional map being associated with second medical information, said matching comprising matching between said first and second medical information.
3. The method of claim 1, wherein said received and managed functional maps are pixelated.
4. The method of claim 3, at least some pixel elements of said received pixelated functional map is associated with said plurality of first biological activity indications, at least some pixel elements of each said pixelated functional map is associated with said plurality of second biological activity indications, said matching being between respective pixel elements of said received and managed pixelated functional map.
5. The method of claim 1, further comprising preprocessing said received functional map before said matching, said preprocessing comprising a member of a group consisting of: registering said received functional map according to at least one of said functional maps and denoising said received functional map.
6. The method of claim 5, wherein each said first and second medical information comprises a member of a group consisting of: a laboratory result, a therapeutic procedure record, a clinical evaluation, an age, a gender, a medical condition, identification information, genetic information, a patient medical record, a metabolism data, blood pressure, a sensitivity, an allergy, a population relevance, an epidemiologic classification, a patient history, and a treatment method.
7. The method of claim 1, wherein each said received and managed functional map comprises a member of a group consisting of: a positron emission tomography (PET), a PET - computerized tomography (CT), a single photon emission computed tomography (SPECT), an extracorporeal gamma scan, an extracorporeal beta scan, an intracorporeal gamma scan, and an intracorporeal beta scan.
8. The method of claim 1, wherein each said first and second plurality of biological activity indications comprises an uptake level of radiation emitted from a plurality of tracers.
9. The method of claim 1, wherein managing said plurality of functional maps comprises at least one prototype of a pathological biological activity.
10. The method of claim 1, wherein at least one of said managed functional map is associated a pathological diagnosis, said diagnosis of said received functional map being determined according to said pathological diagnosis of members of said matching set.
11. The method of claim 1, wherein said managing comprises managing more than 1,000,000 functional maps.
12. The method of claim 1, wherein said matching comprises matching topological similarities between said received functional map and at least one of said plurality of managed functional maps.
13. The method of claim 1, wherein said matching comprises matching common radiation emission pattern between said received functional map and at least one of said plurality of managed functional maps.
14. The method of claim 1, wherein said received functional map and at least one of said plurality of managed functional maps are kinetic functional maps.
15. The method of claim 1, wherein at least one of said plurality of managed functional maps is associated with a method of treatment and with a success evaluation thereof, said using comprising outputting a treatment recommendation according to respective said evaluation of at least one member of said matching set.
16. The method of claim 1, further identify a plurality of biological pathways in said received and managed functional maps respectively according to said first and second plurality of biological activity indications, said matching comprising matching said plurality of biological pathways.
17. The method of claim 1, wherein said using comprises classifying said functional map.
18. The method of claim 1, wherein said using is performed in real time.
19. A system for analyzing a functional map of at least one tissue of a current patient, comprising: an input unit configured for receiving the functional map being associated with a plurality of first biological activity indications; a database configured for storing a plurality of functional maps, each being associated with a plurality of second biological activity indications; and an analyzing unit for identifying a matching set of said stored functional maps by matching between said plurality of first and second biological activity indications; wherein said matching set is used for a member of a group consisting of: an image data acquisition and treatment.
20. The system if claim 19, further comprising an integration module configured for preprocessing said functional map, said preprocessing comprising a member of a group comprising: registering said functional map according to at least one of said stored plurality of functional maps and converting said functional map to a data format of at least one of said stored plurality of functional maps.
21. The system if claim 19, further comprising a display unit configured for displaying said matching set.
22. The system if claim 19, wherein said analyzing unit is configured for weighing member of said matching set according to their potential relevance to said received functional map.
23. A distributed system for analyzing a functional map of at least one tissue of a current patient, comprising: a plurality of client terminals each configured for receiving the functional map being associated with a plurality of first biological activity indications; a database configured for storing a plurality of functional maps, each being associated with a plurality of second biological activity indications; and an analyzing unit for matching between said plurality of first and second biological activity indications; wherein said matching is used for a member of a group consisting of: an image data acquisition, a diagnosis of said received functional map, a classification of said received functional map.
24. A research tool for identifying a trial group, comprising: an input unit configured for receiving a set of characteristics defining a patient profile; a database configured for storing a plurality patient profiles; an analyzing unit for identifying a trial group by matching between said set of characteristics and said plurality patient profiles; and an output unit for outputting said trial group.
25. The research tool of claim 24, wherein each said patient profile being associated with a functional image.
26. The research tool of claim 24, wherein said trial group is a control group.
27. The research tool of claim 24, wherein said set of characteristics comprises at least one first biological activity, at least one of said plurality patient profiles comprising at least one second biological activity analyzing unit for identifying a trial group by matching between said at least one first biological activity and said at least one second biological activity.
28. An imaging system for capturing a functional image of at least one tissue of a patient, comprising: at least one detector for obtaining a source functional image being associated with at least one first biological activity indication; a database configured for storing a plurality of reference functional images each being associated with at least one second biological activity indication; and L2007/001588
42 an analyzing unit for matching between said at least one first and second biological activity indications; wherein said analyzing unit is configured for controlling said at least one detector according to said matching.
29. The system of claim 28, wherein said functional image depicts a segment of a requested area, said controlling comprises maneuvering said at least one detector to capture an additional segment of said requested area according to said matching.
30. The system of claim 28, wherein said detector comprises a radiation transmitting unit for emitting radiation toward said segment, said controlling comprises adjusting the intensity of said emitted radiation according to said matching.
31. The system of claim 28, wherein said detector is configured for obtaining said functional image, by a first modality, selected from the group consisting of a single photon emission computed tomography (SPECT) unit, a positron emission tomography (PET) unit, an extracorporeal, hand-held gamma scan unit, an extracorporeal unit, hand-held beta scan, an intracorporeal gamma scan, an intracorporeal beta scan, an intravascular gamma scan, and an intravascular beta scan.
32. The system of claim 28, wherein said source functional image is a preliminary image mapping a radiation emitted from a first tracer, said controlling comprising outputting a recommendation for the injection of a second tracer based on said matching.
33. A method for obtaining a functional image of at least one tissue of a patient, comprising: a) receiving a preliminary functional image associated with at least one first biological activity indication; b) matching between said at least one first biological activity and a plurality of respective biological activities each of a reference functional image; and c) outputting instructions for obtaining an additional preliminary functional image according to said matching.
34. The method of claim 33, further comprises: d) obtaining said additional preliminary functional image according to said instructions; and e) combining said preliminary functional images producing a final functional image.
35. The method of claim 34, further comprises repeating b)-e), wherein said at least one first biological activity are taken from said final functional image.
36. The method of claim 33, wherein said instructions comprises a member of a group comprising: an identifier defining which tracer to use during said obtaining, an identifier defining in which concentration to use a tracer during said obtaining, a point of view of at least one detector which is used for said obtaining, a region of interest to be imaged during said obtaining, and refining said preliminary functional image.
37. A method for calculating a treatment recommendation, comprising: a) managing a plurality of patient profiles each being associated with a plurality of patient medical records, at least one treatment, and an outcome evaluation of said at least one treatment; b) receiving a current patient profile being associated with a plurality of related medical records; c) identifying a matching set of said managed patient profiles by matching between said plurality of patient and related medical records; and d) calculating a medical recommendation according to said at least one treatment of members of said matching set.
38. The method of claim 37, wherein plurality of patient profiles includes said at least 1,000,000 patient profiles.
39. The method of claim 37, wherein each said patient profile having a functional map, each said functional map being associated with a plurality of biological activity indications, said identifying comprising identifying said matching set by matching between biological activity indications of said current patient profile and said plurality of patient profiles.
40. The method of claim 37, wherein each said plurality of patient medical records comprises a member of a group consisting of: a laboratory result, a therapeutic procedure record, a clinical evaluation, an age, a gender, a medical condition, identification information, genetic information, a patient medical record, a metabolism data, blood pressure, a sensitivity, an allergy, a population relevance, an epidemiologic classification, a patient history, and a treatment method.
41. The method of claim 37, wherein at least some of said plurality of patient medical records are associated with a time tag indicating a related occurrence or examination time.
42. The method of claim 37, wherein each said at least one treatment is associated with a reliability score, said calculating comprising calculating said medical recommendation according to said reliability score of members of said matching set.
43. The method of claim 37, wherein each said patient profile is associated with a current treatment record, said identifying comprising identifying said matching set by matching between current treatment records of said current patient profile and of said plurality of patient profiles, said medical recommendation comprising a continuation treatment for said current patient profile.
44. The method of claim 43, wherein said current treatment record profile is associated with a respective outcome evaluation.
45. The method of claim 43, further comprising: e) updating said current treatment record of said current patient profile with said medical recommendation and said respective outcome evaluation with an outcome of a respective treatment; and f) repeating a)-d) wherein said current treatment record is said updated current patient profile and said respective outcome evaluation is said outcome of a respective treatment
46. The method of claim 45, wherein said medical recommendation is a medical recommendation of a phase in an ongoing treatment and said outcome is a current outcome of said phase, said updating and repeating are performed during said ongoing treatment.
47. The method of claim 37, wherein said medical recommendation comprises a request for an additional evolution, further comprising: e) updating at least one of said plurality of patient medical records with said additional evolution; and f) repeating a)-d) wherein said current patient profile being updated with said additional evolution.
PCT/IL2007/001588 2006-12-20 2007-12-20 A method, a system, and an apparatus for using and processing multidimensional data WO2008075362A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/448,473 US9275451B2 (en) 2006-12-20 2007-12-20 Method, a system, and an apparatus for using and processing multidimensional data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US87583306P 2006-12-20 2006-12-20
US60/875,833 2006-12-20

Publications (2)

Publication Number Publication Date
WO2008075362A2 true WO2008075362A2 (en) 2008-06-26
WO2008075362A3 WO2008075362A3 (en) 2008-09-12

Family

ID=39272491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2007/001588 WO2008075362A2 (en) 2006-12-20 2007-12-20 A method, a system, and an apparatus for using and processing multidimensional data

Country Status (2)

Country Link
US (1) US9275451B2 (en)
WO (1) WO2008075362A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010115885A1 (en) * 2009-04-03 2010-10-14 Oslo Universitetssykehus Hf Predictive classifier score for cancer patient outcome
EP2293108A2 (en) 2009-07-29 2011-03-09 Spectrum Dynamics LLC Method and system of optimized volumetric imaging
US8837793B2 (en) 2005-07-19 2014-09-16 Biosensors International Group, Ltd. Reconstruction stabilizer and active vision
US8894974B2 (en) 2006-05-11 2014-11-25 Spectrum Dynamics Llc Radiopharmaceuticals for diagnosis and therapy
US8909325B2 (en) 2000-08-21 2014-12-09 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US9040016B2 (en) 2004-01-13 2015-05-26 Biosensors International Group, Ltd. Diagnostic kit and methods for radioimaging myocardial perfusion
US9275451B2 (en) 2006-12-20 2016-03-01 Biosensors International Group, Ltd. Method, a system, and an apparatus for using and processing multidimensional data
US9316743B2 (en) 2004-11-09 2016-04-19 Biosensors International Group, Ltd. System and method for radioactive emission measurement
US9370333B2 (en) 2000-08-21 2016-06-21 Biosensors International Group, Ltd. Radioactive-emission-measurement optimization to specific body structures
US9470801B2 (en) 2004-01-13 2016-10-18 Spectrum Dynamics Llc Gating with anatomically varying durations
US10136865B2 (en) 2004-11-09 2018-11-27 Spectrum Dynamics Medical Limited Radioimaging using low dose isotope
US10964075B2 (en) 2004-01-13 2021-03-30 Spectrum Dynamics Llc Gating with anatomically varying durations

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9474500B2 (en) * 2009-02-05 2016-10-25 The Research Foundation Of State University Of New York Method and system for transfer of cardiac medical image data files
WO2010109343A1 (en) * 2009-03-24 2010-09-30 Koninklijke Philips Electronics N.V. Heart segmentation in cardiac rest and stress imaging
US9020216B2 (en) 2010-07-28 2015-04-28 Varian Medical Systems, Inc. Knowledge-based automatic image segmentation
US9454823B2 (en) * 2010-07-28 2016-09-27 arian Medical Systems, Inc. Knowledge-based automatic image segmentation
US10734115B1 (en) 2012-08-09 2020-08-04 Cerner Innovation, Inc Clinical decision support for sepsis
US11398310B1 (en) 2010-10-01 2022-07-26 Cerner Innovation, Inc. Clinical decision support for sepsis
US10431336B1 (en) 2010-10-01 2019-10-01 Cerner Innovation, Inc. Computerized systems and methods for facilitating clinical decision making
US20120089421A1 (en) 2010-10-08 2012-04-12 Cerner Innovation, Inc. Multi-site clinical decision support for sepsis
US10628553B1 (en) 2010-12-30 2020-04-21 Cerner Innovation, Inc. Health information transformation system
US8856156B1 (en) 2011-10-07 2014-10-07 Cerner Innovation, Inc. Ontology mapper
US10249385B1 (en) 2012-05-01 2019-04-02 Cerner Innovation, Inc. System and method for record linkage
US10987069B2 (en) 2012-05-08 2021-04-27 Spectrum Dynamics Medical Limited Nuclear medicine tomography systems, detectors and methods
US9095315B2 (en) * 2012-11-21 2015-08-04 Mckesson Financial Holdings Method and apparatus integrating clinical data with the review of medical images
US10946311B1 (en) 2013-02-07 2021-03-16 Cerner Innovation, Inc. Discovering context-specific serial health trajectories
US11894117B1 (en) 2013-02-07 2024-02-06 Cerner Innovation, Inc. Discovering context-specific complexity and utilization sequences
US10769241B1 (en) * 2013-02-07 2020-09-08 Cerner Innovation, Inc. Discovering context-specific complexity and utilization sequences
KR20150000261A (en) * 2013-06-24 2015-01-02 삼성메디슨 주식회사 Ultrasound system and method for providing reference images corresponding to ultrasound image
US10483003B1 (en) 2013-08-12 2019-11-19 Cerner Innovation, Inc. Dynamically determining risk of clinical condition
US10446273B1 (en) 2013-08-12 2019-10-15 Cerner Innovation, Inc. Decision support with clinical nomenclatures
US20150073831A1 (en) * 2013-09-11 2015-03-12 Medtronic, Inc. Evaluating population indicated for medical therapies
CA2929014A1 (en) * 2013-10-28 2015-05-07 London Health Sciences Centre Research Inc. Method and apparatus for analyzing three-dimensional image data of a target region of a subject
US10249041B2 (en) * 2015-02-26 2019-04-02 Brainlab Ag Adaptation of image data sets to an updated atlas-based reference system
US10252081B2 (en) * 2015-09-25 2019-04-09 Varian Medical Systems International Ag Apparatus and method using automatic generation of a base dose
EP3179450B1 (en) * 2016-04-12 2020-09-09 Siemens Healthcare GmbH Method and system for multi sensory representation of an object
JP6670509B2 (en) * 2017-01-20 2020-03-25 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Imaging method of computed tomography system
WO2019060298A1 (en) 2017-09-19 2019-03-28 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
WO2019133997A1 (en) 2017-12-31 2019-07-04 Neuroenhancement Lab, LLC System and method for neuroenhancement to enhance emotional response
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
EP3849410A4 (en) 2018-09-14 2022-11-02 Neuroenhancement Lab, LLC System and method of improving sleep
US11796618B2 (en) * 2019-07-12 2023-10-24 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for magnetic resonance imaging
US11730420B2 (en) 2019-12-17 2023-08-22 Cerner Innovation, Inc. Maternal-fetal sepsis indicator
US11300695B2 (en) 2020-04-24 2022-04-12 Ronald Nutt Time-resolved positron emission tomography encoder system for producing event-by-event, real-time, high resolution, three-dimensional positron emission tomographic image without the necessity of performing image reconstruction
US11054534B1 (en) 2020-04-24 2021-07-06 Ronald Nutt Time-resolved positron emission tomography encoder system for producing real-time, high resolution, three dimensional positron emission tomographic image without the necessity of performing image reconstruction
WO2023023170A1 (en) * 2021-08-17 2023-02-23 University Of Virginia Patent Foundation Systems, methods, and computer readable media for parametric fdg pet quantification, segmentation and classification of abnormalities

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040003001A1 (en) * 2002-04-03 2004-01-01 Fuji Photo Film Co., Ltd. Similar image search system
WO2006042077A2 (en) * 2004-10-09 2006-04-20 Viatronix Incorporated Sampling medical images for virtual histology

Family Cites Families (666)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US630611A (en) 1899-03-02 1899-08-08 Charles H Knapp Warping and beaming machine.
US2776377A (en) 1954-04-22 1957-01-01 Hal O Anger In vivo radiation scanner
DE1220966B (en) 1958-12-31 1966-07-14 Hans Guenter Noeller Dr Endoradiosonde
DE1516429A1 (en) 1966-02-18 1969-12-04 Wolf Gmbh Richard Diagnostic device
US3446965A (en) 1966-08-10 1969-05-27 Mallinckrodt Chemical Works Generation and containerization of radioisotopes
US3535085A (en) 1967-08-07 1970-10-20 Mallinckrodt Chemical Works Closed system generation and containerization of radioisotopes
US3719183A (en) 1970-03-05 1973-03-06 H Schwartz Method for detecting blockage or insufficiency of pancreatic exocrine function
US3684887A (en) 1970-03-26 1972-08-15 Schlumberger Technology Corp Apparatus for inspecting tubular goods having an automatic shutter
US3690309A (en) 1970-08-05 1972-09-12 Viktor Mikhailovich Pluzhnikov Radiocapsule for registering ionizing radiation in the cavities of human bodies
US3739279A (en) 1971-06-30 1973-06-12 Corning Glass Works Radio capsule oscillator circuit
US3971362A (en) 1972-10-27 1976-07-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Miniature ingestible telemeter devices to measure deep-body temperature
US4000502A (en) 1973-11-05 1976-12-28 General Dynamics Corporation Solid state radiation detector and process
US3988585A (en) 1974-06-11 1976-10-26 Medical Data Systems Corporation Three-dimensional rectilinear scanner
US4015592A (en) 1974-12-24 1977-04-05 Bradley Moore Patrick Ralph Nuclear medicine system for imaging radiation
US3978337A (en) 1975-01-29 1976-08-31 Wisconsin Alumni Research Foundation Three-dimensional time-of-flight gamma camera system
US4061919A (en) 1976-07-06 1977-12-06 The Ohio State University Gamma camera system
US4055765A (en) 1976-04-27 1977-10-25 The Ohio State University Gamma camera system with composite solid state detector
US4095107A (en) 1976-04-15 1978-06-13 Sebastian Genna Transaxial radionuclide emission camera apparatus and method
GB1564385A (en) 1977-03-24 1980-04-10 Emi Ltd Arrangements for detecting ionising radiation
US4165462A (en) 1977-05-05 1979-08-21 Albert Macovski Variable code gamma ray imaging system
IL53286A (en) 1977-11-02 1980-01-31 Yeda Res & Dev Apparatus and method for detection of tumors in tissue
US4289969A (en) 1978-07-10 1981-09-15 Butler Greenwich Inc. Radiation imaging apparatus
JPS5519124A (en) 1978-07-27 1980-02-09 Olympus Optical Co Camera system for medical treatment
GB2031142B (en) 1978-09-23 1983-01-12 Shaw R Apparatus and methodfor examining a blood vessel of interest using radiation detected outside the body
US4364377A (en) 1979-02-02 1982-12-21 Walker Scientific, Inc. Magnetic field hemostasis
US4296785A (en) 1979-07-09 1981-10-27 Mallinckrodt, Inc. System for generating and containerizing radioisotopes
US4302675A (en) 1980-01-21 1981-11-24 Technicare Corporation Method of multiplanar emission tomography and apparatus therefor
US5993378A (en) 1980-10-28 1999-11-30 Lemelson; Jerome H. Electro-optical instruments and methods for treating disease
US4383327A (en) 1980-12-01 1983-05-10 University Of Utah Radiographic systems employing multi-linear arrays of electronic radiation detectors
US4476381A (en) 1982-02-24 1984-10-09 Rubin Martin I Patient treatment method
US5493595A (en) 1982-02-24 1996-02-20 Schoolman Scientific Corp. Stereoscopically displayed three dimensional medical imaging
US4503331A (en) 1982-04-21 1985-03-05 Technicare Corporation Non-circular emission computed tomography
US4521688A (en) 1983-01-21 1985-06-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Three-dimensional and tomographic imaging device for x-ray and gamma-ray emitting objects
USH12H (en) 1983-03-11 1986-01-07 The United States Of America As Represented By The United States Department Of Energy Nuclear medicine imaging system
JPS59141084U (en) 1983-03-14 1984-09-20 関東ガラスサ−ビス株式会社 Support jig for plate glass
US4595014A (en) 1983-10-18 1986-06-17 University Patents, Inc. Imaging probe and method
US4689041A (en) 1984-01-20 1987-08-25 Eliot Corday Retrograde delivery of pharmacologic and diagnostic agents via venous circulation
US5033998A (en) 1984-01-20 1991-07-23 Eliot Corday Retrograde delivery of pharmacologic and diagnostic agents via venous circulation
US4854324A (en) 1984-01-31 1989-08-08 Medrad, Inc. Processor-controlled angiographic injector device
US4782840A (en) 1984-03-02 1988-11-08 Neoprobe Corporation Method for locating, differentiating, and removing neoplasms
US4580054A (en) 1984-03-26 1986-04-01 Elscint, Inc. Method and apparatus for locating a point in a three-dimensional body using images of the body from a plurality of angular positions
US4710624A (en) 1984-05-10 1987-12-01 Digirad Corporation Apparatus and method for measuring light transmittance or reflectance
US4679142A (en) 1984-07-02 1987-07-07 E.I. Du Pont De Nemours And Company Radioactive material billing system and method
US4828841A (en) 1984-07-24 1989-05-09 Colorcon, Inc. Maltodextrin coating
JPS6126879Y2 (en) 1984-10-01 1986-08-11
US4709382A (en) 1984-11-21 1987-11-24 Picker International, Inc. Imaging with focused curved radiation detectors
IL74007A (en) 1985-01-06 1988-11-30 Yissum Res Dev Co Method and apparatus for the localization of bleeding in the gastrointestinal tract
DE3505527A1 (en) 1985-02-18 1986-08-21 Herfurth Gmbh, 2000 Hamburg DEVICE FOR CONTAMINATION MONITORING AGAINST RADIATION EMISSIONS OF PERSONS
US4674107A (en) 1985-07-31 1987-06-16 Picker International, Inc. Display for radiation imaging
US5042056A (en) 1985-11-15 1991-08-20 Medrad, Inc. Film changer
US4893322A (en) 1985-11-15 1990-01-09 Medrad, Inc. Film changer
US4924486A (en) 1985-11-23 1990-05-08 Medrad, Inc. Film-receiving cassette having spiral guide plate
JPH0759763B2 (en) 1986-03-24 1995-06-28 株式会社バイオマテリアル・ユニバース High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
US4689621A (en) 1986-03-31 1987-08-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Temperature responsive transmitter
US4928250A (en) 1986-07-02 1990-05-22 Hewlett-Packard Company System for deriving radiation images
US4854330A (en) 1986-07-10 1989-08-08 Medrad, Inc. Formed core catheter guide wire assembly
US4791934A (en) 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
US4853546A (en) 1986-09-16 1989-08-01 Ube Industries, Ltd. Automatic radioisotope filling apparatus
US4820924A (en) 1986-12-19 1989-04-11 Siemens Gammasonics, Inc. Scintillation camera and three dimensional multifocal collimator used therewith
US4970391A (en) 1987-01-27 1990-11-13 Medrad, Inc. Radiation detector with an ionizable gas atop an integrated circuit
JPS6485660A (en) 1987-02-19 1989-03-30 Nippon Medical Supply Suture coated with sugar fatty acid ester
US4938230A (en) 1987-02-26 1990-07-03 Medrad, Inc. Device for selectively producing incremental joint movement in a patient in opposite directions
US4834112A (en) 1987-02-26 1989-05-30 Medrad, Inc. Device for producing incremental joint movement in a patient
US4893013A (en) 1987-03-17 1990-01-09 Neoprobe Corporation Detector and localizer for low energy radiation emissions
US4801803A (en) 1987-03-17 1989-01-31 Neoprobe Corporation Detector and localizer for low energy radiation emissions
US5070878A (en) 1988-11-14 1991-12-10 Neoprobe Corporation Detector and localizer for low energy radiation emissions
US5151598A (en) 1987-03-17 1992-09-29 Neoprobe Corporation Detector and localizer for low energy radiation emissions
US5170789A (en) 1987-06-17 1992-12-15 Perinchery Narayan Insertable NMR coil probe
US5088492A (en) 1987-09-16 1992-02-18 Olympus Optical Co., Ltd. Radioactive ray detecting endoscope
US4867962A (en) 1988-02-26 1989-09-19 Neorx Corporation Functionally specific antibodies
US4951653A (en) 1988-03-02 1990-08-28 Laboratory Equipment, Corp. Ultrasound brain lesioning system
US4929832A (en) 1988-03-11 1990-05-29 Ledley Robert S Methods and apparatus for determining distributions of radioactive materials
US5070877A (en) 1988-08-11 1991-12-10 Medco Research, Inc. Novel method of myocardial imaging
US4844076A (en) 1988-08-26 1989-07-04 The Johns Hopkins University Ingestible size continuously transmitting temperature monitoring pill
JPH0616760B2 (en) 1988-09-09 1994-03-09 ザ・トラステイズ・オブ・ザ・ユーニバァスィティ・オブ・ペンシルバニア Coil assembly for use in nuclear magnetic resonance imaging
JP2656955B2 (en) 1988-09-14 1997-09-24 オリンパス光学工業株式会社 Radiation detection and treatment device
US4919146A (en) 1988-10-25 1990-04-24 Medrad, Inc. Biopsy device
US5039863A (en) 1988-11-15 1991-08-13 Ube Industries, Ltd. Automatic radioisotope filling apparatus
US5263077A (en) 1988-11-15 1993-11-16 Medrad, Inc. Film changer having film-receiving, nondriven cassette with spiral-shaped guide plate
US5018182A (en) 1988-11-15 1991-05-21 Medrad, Inc. Film changer having film-receiving, nondriven cassette with spiral-shaped guide plate
US4995396A (en) 1988-12-08 1991-02-26 Olympus Optical Co., Ltd. Radioactive ray detecting endoscope
US5153827A (en) 1989-01-30 1992-10-06 Omni-Flow, Inc. An infusion management and pumping system having an alarm handling system
SE8900612D0 (en) 1989-02-22 1989-02-22 Jonas Johansson TISSUE CHARACTERIZATION USING A BLOOD-FREE FLUORESCENCE CRITERIA
US5348010A (en) 1989-02-24 1994-09-20 Medrea, Inc., Pennsylvania Corp., Pa. Intracavity probe and interface device for MRI imaging and spectroscopy
ATE129395T1 (en) 1989-02-27 1995-11-15 Medrad Inc PROBE FOR BODY CAVIES AND INTERFACE DEVICE FOR MAGNETIC RESONANCE IMAGING AND SPECTROSCOPY.
US5284147A (en) 1989-05-22 1994-02-08 Hitachi Medical Corporation Ultrasonic probe to be installed on fingertip
US4959547A (en) 1989-06-08 1990-09-25 Care Wise Medical Products Corporation Apparatus and methods for detecting, localizing, and imaging of radiation in biological systems
US5032729A (en) 1989-10-18 1991-07-16 Georges Charpak Process and device for determining the spatial distribution of electrons emerging from the surface of a radioactive body
US5377681A (en) 1989-11-13 1995-01-03 University Of Florida Method of diagnosing impaired blood flow
US5145163A (en) 1989-11-24 1992-09-08 Medrad, Inc. Film sheet load magazine
US5922304A (en) 1989-12-22 1999-07-13 Imarx Pharmaceutical Corp. Gaseous precursor filled microspheres as magnetic resonance imaging contrast agents
CA2034042C (en) 1990-01-18 1999-08-17 Adrian D. Nunn Boronic acid adducts of rhenium dioxime and technetium-99m dioxime complexes containing a biochemically active group
JPH03121549U (en) 1990-03-26 1991-12-12
US5104565A (en) 1990-06-25 1992-04-14 Allied-Signal Inc. Azeotrope-like compositions of dichloropentafluoropropane, 2-propanol and a hydrocarbon containing six carbon atoms
US5119818A (en) 1990-07-25 1992-06-09 Care Wise Medical Products Corporation Radiation detecting biopsy probe
US5170055A (en) 1990-07-25 1992-12-08 Care Wise Medical Products Corporation Radiation detecting biopsy probe
JPH04151120A (en) 1990-10-15 1992-05-25 Sharp Corp Optical deflecting element of liquid crystal projector
US5142557A (en) 1990-12-21 1992-08-25 Photometrics Ltd. CCD and phosphor screen digital radiology apparatus and method for high resolution mammography
US6405072B1 (en) 1991-01-28 2002-06-11 Sherwood Services Ag Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus
US5484384A (en) 1991-01-29 1996-01-16 Med Institute, Inc. Minimally invasive medical device for providing a radiation treatment
US5132542A (en) 1991-02-11 1992-07-21 Bernd Bassalleck Digital gamma ray imaging device
FR2673728B1 (en) 1991-03-08 1997-01-31 Assist Publique HIGH SENSITIVITY GAMMA CAMERA SYSTEM
US5243988A (en) 1991-03-13 1993-09-14 Scimed Life Systems, Inc. Intravascular imaging apparatus and methods for use and manufacture
US5249124A (en) 1991-04-16 1993-09-28 Siemens Gammasonics, Inc. Multi-isotope imaging using energy-weighted acquisition for, e.g., myocardial perfusion studies
ES2106186T3 (en) 1991-05-01 1997-11-01 Mallinckrodt Medical Inc PROCEDURE FOR THE TRANSPORT OF LIQUID MATERIALS AND A DEVICE FOR THE AUTOMATIC ELUTION OF A RADIONUCLIDE GENERATOR.
US6184530B1 (en) 1991-05-23 2001-02-06 Adac Laboratories Adjustable dual-detector image data acquisition system
US5395366A (en) 1991-05-30 1995-03-07 The State University Of New York Sampling capsule and process
US5279607A (en) 1991-05-30 1994-01-18 The State University Of New York Telemetry capsule and process
US5210421A (en) 1991-06-10 1993-05-11 Picker International, Inc. Simultaneous transmission and emission converging tomography
US5481115A (en) 1991-06-10 1996-01-02 University Of Utah, The Electronic calibration of single photon emission computed tomography cameras
US5170439A (en) 1991-06-11 1992-12-08 Picker International, Inc. Cone beam reconstruction using combined circle and line orbits
US5404293A (en) 1991-06-11 1995-04-04 The University Of Utah Cone beam reconstruction using helical data collection paths
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5799111A (en) 1991-06-14 1998-08-25 D.V.P. Technologies, Ltd. Apparatus and methods for smoothing images
US5246005A (en) 1991-07-02 1993-09-21 Care Wise Medical Products Corporation Apparatus and method for producing statistically valid discriminable signals
US5196796A (en) 1991-08-06 1993-03-23 Medrad, Inc. Anatomically conformal quadrature mri surface coil
US5258717A (en) 1991-08-09 1993-11-02 Medrad, Inc. Geometrically isolated multiple port volume MRI receiving coil comprising multiple quadrature coils
US5301671A (en) 1991-09-17 1994-04-12 The United States Of America As Represented By The Department Of Health And Human Services Two- and three-dimensional autoradiographic imaging utilizing charge coupled devices
US5307814A (en) 1991-09-17 1994-05-03 Medrad, Inc. Externally moveable intracavity probe for MRI imaging and spectroscopy
US5381791A (en) * 1992-03-10 1995-01-17 Siemens Medical Systems, Inc. Automatic indentification of anatomical features of interest from data acquired in nuclear medicine studies and automatic positioning of scintillation cameras to carry out such studies at optimal positions
US5367552A (en) 1991-10-03 1994-11-22 In Vision Technologies, Inc. Automatic concealed object detection system having a pre-scan stage
NL9201724A (en) 1991-10-07 1993-05-03 Medrad Inc En The Trustees Of PROBE FOR MRI IMAGING AND SPECTROSCOPY, ESPECIALLY IN THE CERVICAL AREA.
US5361291A (en) 1991-11-20 1994-11-01 General Electric Company Deconvolution filter for CT system
US5349190A (en) 1991-12-02 1994-09-20 Adac Laboratories Adjustable triple-detector image data acquisition system
US5329976A (en) 1991-12-09 1994-07-19 Habley Medical Technology Corporation Syringe-filling and medication mixing dispenser
US5304165A (en) 1991-12-09 1994-04-19 Habley Medical Technology Corporation Syringe-filling medication dispenser
US5323006A (en) 1992-01-22 1994-06-21 Frederick M. Mako Dedicated apparatus and method for emission mammography
US5252830A (en) 1992-01-22 1993-10-12 Irving Weinberg Dedicated apparatus and method for emission mammography
US5519221A (en) 1992-01-22 1996-05-21 Ansel M. Schwartz Dedicated apparatus and method for emission mammography
US6229145B1 (en) 1992-01-22 2001-05-08 Pem Technologies, Inc. Dedicated apparatus and method emission mammography
GB9205458D0 (en) 1992-03-12 1992-04-22 De Beers Ind Diamond Radiation probe
US5307808A (en) 1992-04-01 1994-05-03 General Electric Company Tracking system and pulse sequences to monitor the position of a device using magnetic resonance
US5299253A (en) 1992-04-10 1994-03-29 Akzo N.V. Alignment system to overlay abdominal computer aided tomography and magnetic resonance anatomy with single photon emission tomography
ATE194916T1 (en) 1992-05-06 2000-08-15 Immunomedics Inc INTRAOPERATIVE, INTRAVASCULAR AND ENDOSCOPIC DETERMINATION AND TREATMENT OF INJURIES AND TUMORS
US5334141A (en) 1992-06-26 1994-08-02 Medrad, Inc. Extravasation detection system and apparatus
US5437279A (en) 1992-07-02 1995-08-01 Board Of Regents, The University Of Texas System Method of predicting carcinomic metastases
US5386446A (en) 1992-07-06 1995-01-31 Kabushiki Kaisha Toshiba Positional adjustment of resolution in radiation CT scanner
FR2693803B1 (en) 1992-07-17 1994-09-30 Popescu Gheorghe Apparatus for detecting and locating radioactive biological markers.
US6402718B1 (en) 1992-08-17 2002-06-11 Medrad, Inc. Front-loading medical injector and syringe for use therewith
US5383858B1 (en) 1992-08-17 1996-10-29 Medrad Inc Front-loading medical injector and syringe for use therewith
GB9217616D0 (en) 1992-08-19 1992-09-30 British Nuclear Fuels Plc Dispensing apparatus
US5479969A (en) 1992-08-19 1996-01-02 British Nuclear Fuels Plc Apparatus for dispensing substances which are biologically hazardous
JPH06109848A (en) 1992-09-28 1994-04-22 Toshiba Corp Measurement of radiation intensity distribution
DE69329774T2 (en) 1992-10-15 2001-06-21 Gen Hospital Corp INFUSION PUMP WITH ELECTRONICALLY LOADABLE MEDICINE LIBRARY
US5396531A (en) 1992-11-05 1995-03-07 General Electric Company Method of achieving reduced dose X-ray fluoroscopy by employing statistical estimation of poisson noise
US5365928A (en) 1992-11-25 1994-11-22 Medrad, Inc. Endorectal probe with planar moveable MRI coil
US5254101A (en) 1992-11-27 1993-10-19 Medrad, Inc. Fluid presence indicator for rotatable syringe
US5441050A (en) 1992-12-18 1995-08-15 Neoprobe Corporation Radiation responsive surgical instrument
US5429133A (en) 1992-12-18 1995-07-04 Neoprobe Corporation Radiation responsive laparoscopic instrument
US5475232A (en) 1992-12-22 1995-12-12 Syncor International Corp. Method for elution of a radioisotope according to an elution run schedule
US5493805A (en) 1993-01-25 1996-02-27 Precision Dynamics Corporation Memory chip holder and method of using same
US6203775B1 (en) 1993-03-19 2001-03-20 The General Hospital Corporation Chelating polymers for labeling of proteins
US5591143A (en) 1993-04-02 1997-01-07 Medrad Inc. Luer connector with torque indicator
US5431161A (en) 1993-04-15 1995-07-11 Adac Laboratories Method and apparatus for information acquistion, processing, and display within a medical camera system
US5882338A (en) 1993-05-04 1999-03-16 Zeneca Limited Syringes and syringe pumps
GB9309151D0 (en) 1993-05-04 1993-06-16 Zeneca Ltd Syringes and syringe pumps
US5472403A (en) 1993-05-11 1995-12-05 The Regents Of The University Of California Device for automatic injection of radionuclide
US5657759A (en) 1993-05-13 1997-08-19 Synectics Medical, Incorporated Measurement of gastric emptying and gastrointestinal output
IL105881A (en) 1993-06-02 1995-10-31 Israel State Light weight gamma-camera head and gamma-camera assemblies containing it
US5939724A (en) 1993-06-02 1999-08-17 State Of Israel, The, Atomic Energy Commission, Soreo Nuclear Research Center Light weight-camera head and-camera assemblies containing it
US5587585A (en) 1993-06-02 1996-12-24 Eisen; Yosef Light weight gamma-camera head and gamma-camera assemblies containing it
DE69434119T3 (en) 1993-07-30 2011-05-05 Imcor Pharmaceutical Co., San Diego STABILIZED MICROGAS BLOWER COMPOSITIONS FOR ECHOGRAPHY
DE1258262T1 (en) 1993-10-28 2003-04-10 Medrad Inc Contrast delivery system
US5569181A (en) 1993-10-28 1996-10-29 Medrad, Inc. Sterility assurance for contrast delivery system
US5827219A (en) 1993-10-28 1998-10-27 Medrad, Inc. Injection system and pumping system for use therein
DE69432582T2 (en) 1993-10-28 2003-11-27 Medrad Inc System for the administration of liquids in several patients
US5521506A (en) 1993-11-19 1996-05-28 Medrad, Inc. Orthogonal adjustment of magnetic resonance surface coils
JPH07141523A (en) 1993-11-19 1995-06-02 Toshiba Medical Eng Co Ltd Three-dimensional image display device
US5517120A (en) 1993-11-24 1996-05-14 Medrad, Inc. Quadrature coil for neurovascular imaging and spectroscopy of the human anatomy
US5494036A (en) 1993-11-26 1996-02-27 Medrad, Inc. Patient infusion system for use with MRI
CA2177476A1 (en) 1993-11-30 1995-06-08 Maryellen L. Giger Automated method and system for the alignment and correlation of images from two different modalities
US5415181A (en) 1993-12-01 1995-05-16 The Johns Hopkins University AM/FM multi-channel implantable/ingestible biomedical monitoring telemetry system
US5436458A (en) 1993-12-06 1995-07-25 Minnesota Mining And Manufacturing Company Solid state radiation detection panel having tiled photosensitive detectors arranged to minimize edge effects between tiles
IL108352A (en) 1994-01-17 2000-02-29 Given Imaging Ltd In vivo video camera system
US5391877A (en) 1994-01-26 1995-02-21 Marks; Michael A. Combined imaging scanner
US5519222A (en) 1994-02-07 1996-05-21 Picker International, Inc. 90 degree parallel path collimators for three head spect cameras
EP0667594A3 (en) 1994-02-14 1995-08-23 International Business Machines Corporation Image quality analysis method and apparatus
US5610520A (en) 1994-02-24 1997-03-11 Medrad Inc. Automatic orthogonality adjustment device for a quadrature surface coil for magnetic resonance imaging or spectroscopy
US6212423B1 (en) 1994-03-02 2001-04-03 Mark Krakovitz Diagnostic hybrid probes
US5501674A (en) 1994-03-07 1996-03-26 Medrad, Inc. Intravenous catheter with needle cover and blood collection tube
JP3494692B2 (en) * 1994-03-07 2004-02-09 富士写真フイルム株式会社 Radiation image alignment method
US5519931A (en) 1994-03-16 1996-05-28 Syncor International Corporation Container and method for transporting a syringe containing radioactive material
US5489782A (en) 1994-03-24 1996-02-06 Imaging Laboratory, Inc. Method and apparatus for quantum-limited data acquisition
JP3483929B2 (en) 1994-04-05 2004-01-06 株式会社日立製作所 3D image generation method
US5600144A (en) 1994-05-10 1997-02-04 Trustees Of Boston University Three dimensional imaging detector employing wavelength-shifting optical fibers
DE69526613T2 (en) 1994-07-12 2002-08-29 Medrad Inc Information path control loop for a system that delivers medical fluids
US5569924A (en) 1994-08-18 1996-10-29 Picker International, Inc. Transformable dual head spect camera system
NO300407B1 (en) 1994-08-30 1997-05-26 Vingmed Sound As Apparatus for endoscope or gastroscope examination of patients
US5840026A (en) 1994-09-21 1998-11-24 Medrad, Inc. Patient specific dosing contrast delivery systems and methods
US6397098B1 (en) 1994-09-21 2002-05-28 Medrad, Inc. Data communication and control for medical imaging systems
US5810742A (en) 1994-10-24 1998-09-22 Transcan Research & Development Co., Ltd. Tissue characterization based on impedance images and on impedance measurements
US5475219A (en) 1994-10-26 1995-12-12 Neoprobe Corporation Validation of photon emission based signals using an energy window network in conjunction with a fundamental mode discriminator circuit
DE69534284T2 (en) 1994-12-23 2006-03-23 Digirad Corp., San Diego SEMICONDUCTOR GAMMA RADIATION CAMERA AND MEDICAL IMAGING SYSTEM
US6194726B1 (en) 1994-12-23 2001-02-27 Digirad Corporation Semiconductor radiation detector with downconversion element
US5742060A (en) 1994-12-23 1998-04-21 Digirad Corporation Medical system for obtaining multiple images of a body from different perspectives
US6055450A (en) 1994-12-23 2000-04-25 Digirad Corporation Bifurcated gamma camera system
US5559335A (en) 1994-12-28 1996-09-24 The University Of Utah Rotating and warping projector/backprojector for converging-beam geometries
US5600145A (en) 1995-01-19 1997-02-04 Picker International, Inc. Emission/transmission device for use with a dual head nuclear medicine gamma camera with the transmission source located behind the emission collimator
US5629524A (en) 1995-02-21 1997-05-13 Advanced Scientific Concepts, Inc. High speed crystallography detector
US6258576B1 (en) 1996-06-19 2001-07-10 Board Of Regents, The University Of Texas System Diagnostic method and apparatus for cervical squamous intraepithelial lesions in vitro and in vivo using fluorescence spectroscopy
JPH08292268A (en) 1995-04-20 1996-11-05 Shimadzu Corp Positron emission ct equipment
US5694933A (en) 1995-04-28 1997-12-09 Care Wise Medical Products Corporation Apparatus and methods for determining spatial coordinates of radiolabelled tissue using gamma-rays and associated characteristic X-rays
US6671563B1 (en) 1995-05-15 2003-12-30 Alaris Medical Systems, Inc. System and method for collecting data and managing patient care
US5781442A (en) 1995-05-15 1998-07-14 Alaris Medical Systems, Inc. System and method for collecting data and managing patient care
US7110587B1 (en) 1995-05-31 2006-09-19 Ge Medical Systems Israel Ltd. Registration of nuclear medicine images
US5871013A (en) 1995-05-31 1999-02-16 Elscint Ltd. Registration of nuclear medicine images
US6107102A (en) 1995-06-07 2000-08-22 Regents Of The University Of California Therapeutic microdevices and methods of making and using same
US5729129A (en) 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
US5585637A (en) 1995-06-09 1996-12-17 Adac Laboratories Multi-head nuclear medicine camera for dual SPECT and PET imaging
FR2735874B1 (en) 1995-06-20 1997-08-22 Centre Nat Rech Scient NON-INVASIVE RADIO-IMAGING ANALYSIS DEVICE, PARTICULARLY FOR IN VITO EXAMINATION OF SMALL ANIMALS, AND IMPLEMENTATION METHOD
US5565684A (en) 1995-06-30 1996-10-15 The University Of Utah Three-dimensional SPECT reconstruction of combined cone-beam and fan-beam data
IT1278142B1 (en) 1995-07-13 1997-11-17 Consiglio Nazionale Ricerche SURGICAL PROBE FOR LOCATION OF TUMORS FOR LAPAROSCOPIC OR INTRACAVITARY USE.
US5842977A (en) 1995-07-24 1998-12-01 The Johns Hopkins University Multi-channel pill with integrated optical interface
US5813985A (en) 1995-07-31 1998-09-29 Care Wise Medical Products Corporation Apparatus and methods for providing attenuation guidance and tumor targeting for external beam radiation therapy administration
US5900533A (en) 1995-08-03 1999-05-04 Trw Inc. System and method for isotope ratio analysis and gas detection by photoacoustics
US5805454A (en) 1995-08-10 1998-09-08 Valerino, Sr.; Fred M. Parenteral products automation system (PPAS)
US5572132A (en) 1995-08-15 1996-11-05 Pulyer; Yuly M. MRI probe for external imaging
US5687542A (en) 1995-08-22 1997-11-18 Medrad, Inc. Isolation module for molding and packaging articles substantially free from contaminants
US6189195B1 (en) 1995-08-22 2001-02-20 Medrad, Inc. Manufacture of prefilled syringes
US5779675A (en) 1995-08-25 1998-07-14 Medrad, Inc. Front load pressure jacket system with syringe holder
US5520653A (en) 1995-09-01 1996-05-28 Medrad, Inc. Syringe adapter for front-loading medical injector
DE19532676C1 (en) 1995-09-05 1997-05-07 Inst Physikalische Hochtech Ev Arrangement for determining the position of a marker in a cavity within the organism of a living being
FR2738474B1 (en) 1995-09-08 1998-01-23 Sopha Medical GAMMA CAMERA WITH A PERFECTED PATIENT CARRIER BED
JP3604467B2 (en) * 1995-09-27 2004-12-22 株式会社東芝 Myocardial twist correction method
US6037595A (en) 1995-10-13 2000-03-14 Digirad Corporation Radiation detector with shielding electrode
US6046454A (en) 1995-10-13 2000-04-04 Digirad Corporation Semiconductor radiation detector with enhanced charge collection
US5732704A (en) 1995-10-13 1998-03-31 Neoprobe Corporation Radiation based method locating and differentiating sentinel nodes
US5677539A (en) 1995-10-13 1997-10-14 Digirad Semiconductor radiation detector with enhanced charge collection
US5857463A (en) 1995-10-13 1999-01-12 Neoprobe Corporation Remotely controlled apparatus and system for tracking and locating a source of photoemissions
US5967983A (en) 1995-10-31 1999-10-19 Digirad Corporation Apparatus for securing a medical imaging device to a body
US5692640A (en) 1995-12-05 1997-12-02 Caulfield; Patricia E. Syringe content identification system
US5893397A (en) 1996-01-12 1999-04-13 Bioject Inc. Medication vial/syringe liquid-transfer apparatus
US5724401A (en) 1996-01-24 1998-03-03 The Penn State Research Foundation Large angle solid state position sensitive x-ray detector system
US5821541A (en) 1996-02-02 1998-10-13 Tuemer; Tuemay O. Method and apparatus for radiation detection
US6236050B1 (en) 1996-02-02 2001-05-22 TüMER TüMAY O. Method and apparatus for radiation detection
US6448560B1 (en) 1996-02-02 2002-09-10 Tumay O. Tumer Method and apparatus for gamma ray detection
US5811814A (en) 1996-02-12 1998-09-22 Cordis Corporation Radiation measuring catheter apparatus and method
US5833603A (en) 1996-03-13 1998-11-10 Lipomatrix, Inc. Implantable biosensing transponder
US5672877A (en) 1996-03-27 1997-09-30 Adac Laboratories Coregistration of multi-modality data in a medical imaging system
EP0956085A4 (en) 1996-03-29 2002-11-06 Medrad Inc Front-loading syringe adapter for front-loading medical injector
UA48221C2 (en) 1996-04-01 2002-08-15 Валєрій Івановіч Кобозєв Electrical gastro-intestinal tract stimulator
US8349602B1 (en) 1996-04-19 2013-01-08 Xenogen Corporation Biodetectors targeted to specific ligands
US6263229B1 (en) 1998-11-13 2001-07-17 Johns Hopkins University School Of Medicine Miniature magnetic resonance catheter coils and related methods
US5961457A (en) 1996-05-03 1999-10-05 The Regents Of The University Of Michigan Method and apparatus for radiopharmaceutical-guided biopsy
US5744805A (en) 1996-05-07 1998-04-28 University Of Michigan Solid state beta-sensitive surgical probe
US6076009A (en) 1997-05-05 2000-06-13 The University Of Michigan Solid state beta-sensitive surgical probe
US5932879A (en) 1996-05-07 1999-08-03 Regents Of The University Of Michigan Solid state beta-sensitive surgical probe
US5690691A (en) 1996-05-08 1997-11-25 The Center For Innovative Technology Gastro-intestinal pacemaker having phased multi-point stimulation
US6162198A (en) 1996-06-11 2000-12-19 Syncor International Corporation Injection shield and method for discharging a syringe containing radioactive material
US5682888A (en) 1996-06-13 1997-11-04 Neoprobe Corporation Apparatus and system for detecting and locating photon emissions with remote switch control
US5954668A (en) 1996-06-14 1999-09-21 Medrad, Inc. Extravasation detector using microwave radiometry
US7819807B2 (en) 1996-06-28 2010-10-26 Sonosite, Inc. Balance body ultrasound system
CA2265537A1 (en) 1996-09-06 1998-03-12 Adrian Neil Bargh Customer specific packaging line
US5727554A (en) 1996-09-19 1998-03-17 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus responsive to movement of a patient during treatment/diagnosis
US5825031A (en) 1996-10-11 1998-10-20 Board Of Regents The University Of Texas System Tomographic pet camera with adjustable diameter detector ring
FR2754606B1 (en) 1996-10-14 1998-10-30 Commissariat Energie Atomique DEVICE AND METHOD FOR COLLECTING AND ENCODING SIGNALS FROM PHOTODETECTORS
US6459925B1 (en) 1998-11-25 2002-10-01 Fischer Imaging Corporation User interface system for mammographic imager
WO1998016852A1 (en) 1996-10-17 1998-04-23 Siemens Medical Systems, Inc. Rotating small camera for tomography
US6042565A (en) 1996-10-18 2000-03-28 Medrad, Inc. Syringe, injector and injector system
US5910112A (en) 1996-11-08 1999-06-08 Northwestern University 23 NA and 39 K imaging of the heart
US5873861A (en) 1996-11-12 1999-02-23 Medrad, Inc. Plunger systems
US5947935A (en) 1996-11-12 1999-09-07 Medrad, Inc. Syringes, syringe plungers and injector systems
US5944694A (en) 1996-11-12 1999-08-31 Medrad, Inc. Prefillable syringes and injectors for use therewith
EP0951306B1 (en) 1996-11-12 2005-07-20 Medrad Inc. Prefillable syringes and injectors for use therewith
JP2001518177A (en) 1996-11-24 2001-10-09 ジーイー メディカル システムズ イスラエル リミテッド Solid gamma camera
US6388258B1 (en) 1996-11-24 2002-05-14 Ge. Medical Systems Israel Ltd. Solid state gamma camera
US5838009A (en) 1996-11-27 1998-11-17 Picker International, Inc. Variable angle multiple detector nuclear medicine gantry
US6346886B1 (en) 1996-12-20 2002-02-12 Carlos De La Huerga Electronic identification apparatus
JPH10186034A (en) 1996-12-27 1998-07-14 Mitsubishi Electric Corp Radiation detector using scintillation fiber
US5841140A (en) 1997-01-08 1998-11-24 Smv America, Inc. Gamma camera for pet and spect studies
US5891030A (en) 1997-01-24 1999-04-06 Mayo Foundation For Medical Education And Research System for two dimensional and three dimensional imaging of tubular structures in the human body
US5757006A (en) 1997-01-30 1998-05-26 Siemens Medical Systems, Inc. Articulating detector array for a gamma camera
US5884457A (en) 1997-02-05 1999-03-23 Smithkline Beecham Corporation Method and apparatus for automatically producing a plurality of sterile liquid filled delivery devices
US5916197A (en) 1997-02-14 1999-06-29 Medrad, Inc. Injection system, pump system for use therein and method of use of pumping system
US6261562B1 (en) 1997-02-25 2001-07-17 Corixa Corporation Compounds for immunotherapy of prostate cancer and methods for their use
JPH10260258A (en) 1997-03-17 1998-09-29 Toshiba Corp Nuclear medical diagnostic apparatus
US5818050A (en) 1997-04-07 1998-10-06 Brookhaven Science Associates Llc Collimator-free photon tomography
US6180648B1 (en) 1997-04-07 2001-01-30 Biostream Therapeutics, Inc. Analogs of cocaine
IT1291888B1 (en) 1997-04-23 1999-01-21 Consiglio Nazionale Ricerche MINIATURIZED RANGE WITH HIGH SPACE RESOLUTION
US6050267A (en) 1997-04-28 2000-04-18 American Cardiac Ablation Co. Inc. Catheter positioning system
US5911252A (en) 1997-04-29 1999-06-15 Cassel; Douglas Automated syringe filling system for radiographic contrast agents and other injectable substances
IT1290602B1 (en) 1997-05-02 1998-12-10 Consiglio Nazionale Ricerche RANGE FLAT SCINTILLATION CAMERA, WITH VERY HIGH SPATIAL RESOLUTION, MODULAR STRUCTURE
US5808203A (en) 1997-05-12 1998-09-15 Medrad, Inc. Fluid pressure measurement devices
US5944190A (en) 1997-05-30 1999-08-31 Mallinckrodt Inc. Radiopharmaceutical capsule safe
US5828073A (en) 1997-05-30 1998-10-27 Syncor International Corporation Dual purpose shielded container for a syringe containing radioactive material
US5927351A (en) 1997-05-30 1999-07-27 Syncor International Corp. Drawing station system for radioactive material
US6137109A (en) 1997-05-30 2000-10-24 Picker International, Inc. Autonomous tangential motion control in a multi-detector gamma camera
US6147353A (en) 1997-05-30 2000-11-14 Picker International, Inc. Image shift for gamma camera
US5923038A (en) 1997-05-30 1999-07-13 Picker International, Inc. Partial angle tomography scanning and reconstruction
US6426917B1 (en) 1997-06-02 2002-07-30 Schlumberger Technology Corporation Reservoir monitoring through modified casing joint
US6002480A (en) 1997-06-02 1999-12-14 Izatt; Joseph A. Depth-resolved spectroscopic optical coherence tomography
US5841141A (en) 1997-06-03 1998-11-24 The University Of Utah Image reconstruction from V-projections acquired by Compton camera
US5903008A (en) 1997-07-02 1999-05-11 General Electric Company Scatter correction methods and systems in single photon emission computed tomography
US5846513B1 (en) 1997-07-08 2000-11-28 Carewise Medical Products Corp Tumor localization and removal system using penetratable detection probe and removal instrument
SE9702678D0 (en) 1997-07-11 1997-07-11 Siemens Elema Ab Device for mapping electrical activity in the heart
US6324418B1 (en) 1997-09-29 2001-11-27 Boston Scientific Corporation Portable tissue spectroscopy apparatus and method
DE69826874T2 (en) 1997-08-19 2006-02-09 Dulmen, Adrianus A. van, Dr. PICTURE GENERATION SYSTEM FOR SPECT
JPH1172564A (en) 1997-08-29 1999-03-16 Toshiba Corp Gamma camera system
US6135968A (en) 1997-09-10 2000-10-24 Scantek Medical, Inc. Differential temperature measuring device and method
BR9811636A (en) 1997-09-11 2000-08-08 Precision Dynamics Corp Radio frequency identification label on flexible substrate
US5928150A (en) 1997-10-04 1999-07-27 Neoprobe Corporation System for locating and detecting a source of photon emissions
US5916167A (en) 1997-10-10 1999-06-29 Neoprobe Corporation Surgical probe apparatus and system
US5987350A (en) 1997-10-10 1999-11-16 Neoprobe Corporation Surgical probe apparatus and system
US6240312B1 (en) 1997-10-23 2001-05-29 Robert R. Alfano Remote-controllable, micro-scale device for use in in vivo medical diagnosis and/or treatment
JP3636579B2 (en) 1997-11-04 2005-04-06 キヤノン株式会社 Photoelectric conversion device, method for driving photoelectric conversion device, and system having the photoelectric conversion device
US6381349B1 (en) 1997-11-12 2002-04-30 The University Of Utah Projector/backprojector with slice-to-slice blurring for efficient 3D scatter modeling
US6129670A (en) 1997-11-24 2000-10-10 Burdette Medical Systems Real time brachytherapy spatial registration and visualization system
US6040697A (en) 1997-11-26 2000-03-21 Medrad, Inc. Magnetic resonance imaging receiver/transmitter coils
US20010045832A1 (en) 1997-11-26 2001-11-29 Kenneth W. Belt Peripheral vascular array
IL122602A0 (en) 1997-12-15 1998-08-16 Tally Eitan Zeev Pearl And Co Energy management of a video capsule
US6104955A (en) 1997-12-15 2000-08-15 Medtronic, Inc. Method and apparatus for electrical stimulation of the gastrointestinal tract
US6431175B1 (en) 1997-12-30 2002-08-13 Remon Medical Technologies Ltd. System and method for directing and monitoring radiation
US6697660B1 (en) 1998-01-23 2004-02-24 Ctf Systems, Inc. Method for functional brain imaging from magnetoencephalographic data by estimation of source signal-to-noise ratio
US6096011A (en) 1998-01-29 2000-08-01 Medrad, Inc. Aseptic connector and fluid delivery system using such an aseptic connector
US6026317A (en) 1998-02-06 2000-02-15 Baylor College Of Medicine Myocardial perfusion imaging during coronary vasodilation with selective adenosine A2 receptor agonists
US6147352A (en) 1998-02-23 2000-11-14 Digirad Corporation Low profile open ring single photon emission computed tomographic imager
US6205347B1 (en) 1998-02-27 2001-03-20 Picker International, Inc. Separate and combined multi-modality diagnostic imaging system
US6224577B1 (en) 1998-03-02 2001-05-01 Medrad, Inc. Syringes and plungers for use therein
DE19814199A1 (en) 1998-03-25 1999-10-07 Las Laser Analytical Systems G Method and device for tunable frequency conversion
US5984860A (en) 1998-03-25 1999-11-16 Shan; Yansong Pass-through duodenal enteroscopic device
DE19815362A1 (en) 1998-03-30 1999-10-14 Las Laser Analytical Systems G Parasitic charge carrier grating modification in optically nonlinear materials especially during frequency doubling of laser radiation
US6161034A (en) 1999-02-02 2000-12-12 Senorx, Inc. Methods and chemical preparations for time-limited marking of biopsy sites
US6223065B1 (en) 1998-04-15 2001-04-24 Medrad, Inc. Automatic coil element selection in large MRI coil arrays
US6236878B1 (en) 1998-05-22 2001-05-22 Charles A. Taylor Method for predictive modeling for planning medical interventions and simulating physiological conditions
IL140028A0 (en) 1998-06-04 2002-02-10 Coulter Pharm Inc Patient specific dosimetry
US6743202B2 (en) 1998-06-15 2004-06-01 Medrad, Inc. Encoding of syringe information
WO2000004480A1 (en) 1998-07-20 2000-01-27 Noven Pharmaceuticals, Inc. A method of individually tracking and identifying a drug delivery device
US6488661B1 (en) 1998-07-31 2002-12-03 Medrad, Inc. Pressure control systems for medical injectors and syringes used therewith
US6194725B1 (en) 1998-07-31 2001-02-27 General Electric Company Spect system with reduced radius detectors
US6271524B1 (en) 1998-08-05 2001-08-07 Elgems, Ltd. Gamma ray collimator
US6242743B1 (en) 1998-08-11 2001-06-05 Mosaic Imaging Technology, Inc. Non-orbiting tomographic imaging system
EP1105750B1 (en) 1998-08-14 2004-10-13 Frank S. Prato Application of scatter and attenuation correction to emission tomography images using inferred anatomy from atlas
US6271525B1 (en) 1998-09-23 2001-08-07 Southeastern University Research Assn. Mini gamma camera, camera system and method of use
EP1116047B1 (en) 1998-09-24 2006-07-12 Elgems Ltd. Pixelated photon detector
WO2000018294A1 (en) 1998-09-30 2000-04-06 Sicel Medical Group Methods, systems, and associated implantable devices for dynamic monitoring of tumors
US6402689B1 (en) 1998-09-30 2002-06-11 Sicel Technologies, Inc. Methods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors
IL126727A (en) 1998-10-22 2006-12-31 Given Imaging Ltd Method for delivering a device to a target location
US6259095B1 (en) 1998-10-23 2001-07-10 Neoprobe Corporation System and apparatus for detecting and locating sources of radiation
IL126761A0 (en) 1998-10-26 1999-08-17 Romidot Ltd Computerized tomography for non-destructive testing
US7103204B1 (en) 1998-11-06 2006-09-05 The University Of British Columbia Method and apparatus for producing a representation of a measurable property which varies in time and space, for producing an image representing changes in radioactivity in an object and for analyzing tomography scan images
US6155485A (en) 1998-11-09 2000-12-05 Scriptpro Llc Medicament dispensing station
US6239438B1 (en) 1998-11-19 2001-05-29 General Electric Company Dual acquisition imaging method and apparatus
US6614873B1 (en) 1998-11-20 2003-09-02 Direct Radiography Corp. Interactive ditigal radiographic system
US6620134B1 (en) 1998-11-23 2003-09-16 Medrad, Inc. Syringes and injector systems with collapsible cartridges
US6310968B1 (en) 1998-11-24 2001-10-30 Picker International, Inc. Source-assisted attenuation correction for emission computed tomography
US6356081B1 (en) 1998-11-25 2002-03-12 Medrad, Inc. Multimode operation of quadrature phased array MR coil systems
US6233304B1 (en) 1998-11-25 2001-05-15 General Electric Company Methods and apparatus for calcification scoring
US6344745B1 (en) 1998-11-25 2002-02-05 Medrad, Inc. Tapered birdcage resonator for improved homogeneity in MRI
US6798206B2 (en) 1998-11-25 2004-09-28 Medrad, Inc. Neurovascular coil system and interface and system therefor and method of operating same in a multitude of modes
US6148229A (en) 1998-12-07 2000-11-14 Medrad, Inc. System and method for compensating for motion artifacts in a strong magnetic field
US6353227B1 (en) 1998-12-18 2002-03-05 Izzie Boxen Dynamic collimators
CA2356271A1 (en) 1998-12-23 2000-07-06 Image Guided Technologies, Inc. A hybrid 3-d probe tracked by multiple sensors
US6226350B1 (en) 1998-12-31 2001-05-01 General Electric Company Methods and apparatus for cardiac scoring with a multi-beam scanner
US6560354B1 (en) 1999-02-16 2003-05-06 University Of Rochester Apparatus and method for registration of images to physical space using a weighted combination of points and surfaces
US6368331B1 (en) 1999-02-22 2002-04-09 Vtarget Ltd. Method and system for guiding a diagnostic or therapeutic instrument towards a target region inside the patient's body
US6173201B1 (en) 1999-02-22 2001-01-09 V-Target Ltd. Stereotactic diagnosis and treatment with reference to a combined image
US6392235B1 (en) 1999-02-22 2002-05-21 The Arizona Board Of Regents On Behalf Of The University Of Arizona Coded-aperture system for planar imaging of volumetric sources
US6317623B1 (en) 1999-03-12 2001-11-13 Medrad, Inc. Apparatus and method for controlling contrast enhanced imaging procedures
US6575930B1 (en) 1999-03-12 2003-06-10 Medrad, Inc. Agitation devices and dispensing systems incorporating such agitation devices
US6591127B1 (en) 1999-03-15 2003-07-08 General Electric Company Integrated multi-modality imaging system and method
US6409987B1 (en) 1999-04-07 2002-06-25 Intimax Corporation Targeted agents useful for diagnostic and therapeutic applications
US6630735B1 (en) 1999-04-09 2003-10-07 Digirad Corporation Insulator/metal bonding island for active-area silver epoxy bonding
US7015476B2 (en) 1999-04-14 2006-03-21 Juni Jack E Single photon emission computed tomography system
US6525320B1 (en) 1999-04-14 2003-02-25 Jack E. Juni Single photon emission computed tomography system
US7105825B2 (en) 1999-04-14 2006-09-12 Juni Jack E Single photon emission computed tomography system
US6512374B1 (en) 1999-04-26 2003-01-28 Medrad, Inc. MR local imaging coil operable as a receive only or a transmit/receive coil
US6167297A (en) 1999-05-05 2000-12-26 Benaron; David A. Detecting, localizing, and targeting internal sites in vivo using optical contrast agents
US6236880B1 (en) 1999-05-21 2001-05-22 Raymond R. Raylman Radiation-sensitive surgical probe with interchangeable tips
US6377838B1 (en) 1999-06-04 2002-04-23 Photon Imaging, Inc. Integral gamma-ray camera and compression member
IL130317A0 (en) 1999-06-06 2000-06-01 Elgems Ltd Hand-held gamma camera
EP1208390A4 (en) 1999-06-06 2003-10-08 Elgems Ltd Gamma camera and ct system
US7397038B2 (en) 1999-06-17 2008-07-08 Siemens Medical Solutions Usa, Inc. Nuclear imaging using three-dimensional gamma particle interaction detection
US6346706B1 (en) 1999-06-24 2002-02-12 The Regents Of The University Of Michigan High resolution photon detector
USD426891S (en) 1999-06-29 2000-06-20 Medrad, Inc. Injector head for a medical injector
USD428491S (en) 1999-06-29 2000-07-18 Medrad, Inc. Combined handle and display for a medical injector
JP4421016B2 (en) 1999-07-01 2010-02-24 東芝医用システムエンジニアリング株式会社 Medical image processing device
US6160398A (en) 1999-07-02 2000-12-12 Vista Clara, Inc. Adaptive reconstruction of phased array NMR imagery
JP2003504856A (en) 1999-07-02 2003-02-04 ディジラッド・コーポレーション Indirect back contact for semiconductor devices
US6468261B1 (en) 1999-07-14 2002-10-22 Mallinckrodt Inc. Medical fluid delivery system
US6408204B1 (en) 1999-07-28 2002-06-18 Medrad, Inc. Apparatuses and methods for extravasation detection
JP4838468B2 (en) 1999-07-30 2011-12-14 メドラッド インコーポレーテッド Injector system and syringe adapter used in the injector system
US6339718B1 (en) 1999-07-30 2002-01-15 Medrad, Inc. Programmable injector control
IL131242A0 (en) 1999-08-04 2001-01-28 Given Imaging Ltd A method for temperature sensing
US6238374B1 (en) 1999-08-06 2001-05-29 Proxima Therapeutics, Inc. Hazardous fluid infuser
US6202923B1 (en) 1999-08-23 2001-03-20 Innovation Associates, Inc. Automated pharmacy
GB9920401D0 (en) 1999-08-27 1999-11-03 Isis Innovation Non-rigid motion image analysis
US6516213B1 (en) 1999-09-03 2003-02-04 Robin Medical, Inc. Method and apparatus to estimate location and orientation of objects during magnetic resonance imaging
US6429431B1 (en) 1999-09-24 2002-08-06 Peter J. Wilk Medical diagnostic method and apparatus utilizing radioactivity detection
US6252924B1 (en) 1999-09-30 2001-06-26 General Electric Company Method and apparatus for motion-free cardiac CT imaging
US6415046B1 (en) 1999-10-07 2002-07-02 Edmund Kenneth Kerut, Sr. Method and apparatus for the early detection of tissue pathology using wavelet transformation
USD452737S1 (en) 1999-10-13 2002-01-01 Medrad, Inc. Medical injector
US6490476B1 (en) 1999-10-14 2002-12-03 Cti Pet Systems, Inc. Combined PET and X-ray CT tomograph and method for using same
FR2800189B1 (en) 1999-10-26 2002-01-11 Ge Medical Syst Sa METHOD FOR MULTI-RESOLUTION RECONSTRUCTION OF A THREE-DIMENSIONAL IMAGE OF AN OBJECT, IN PARTICULAR A THREE-DIMENSIONAL ANGIOGRAPHIC IMAGE
US6270463B1 (en) 1999-11-23 2001-08-07 Medrad, Inc. System and method for measuring temperature in a strong electromagnetic field
US6958053B1 (en) 1999-11-24 2005-10-25 Medrad, Inc. Injector providing drive member advancement and engagement with syringe plunger, and method of connecting a syringe to an injector
US6520930B2 (en) 1999-11-24 2003-02-18 Medrad, Inc. Injectors, injector systems and injector control
US6673033B1 (en) 1999-11-24 2004-01-06 Medrad, Inc. Injectors, injector systems and injector control
AU1547101A (en) 1999-11-26 2001-06-04 Applied Spectral Imaging Ltd. System and method for functional brain mapping and an oxygen saturation difference map algorithm for effecting same
US6519569B1 (en) 1999-12-01 2003-02-11 B. Braun Medical, Inc. Security infusion pump with bar code reader
JP2003516192A (en) 1999-12-07 2003-05-13 メドラッド インコーポレーテッド Syringe, syringe tube and fluid transfer system
GB9930000D0 (en) 1999-12-21 2000-02-09 Phaeton Research Ltd An ingestible device
US7747312B2 (en) 2000-01-04 2010-06-29 George Mason Intellectual Properties, Inc. System and method for automatic shape registration and instrument tracking
US20010049608A1 (en) 2000-01-25 2001-12-06 Hochman Mark N. Injection tracking and management system
US6399951B1 (en) 2000-02-02 2002-06-04 Ut-Battelle, Llc Simultaneous CT and SPECT tomography using CZT detectors
US6652489B2 (en) 2000-02-07 2003-11-25 Medrad, Inc. Front-loading medical injector and syringes, syringe interfaces, syringe adapters and syringe plungers for use therewith
US6549646B1 (en) 2000-02-15 2003-04-15 Deus Technologies, Llc Divide-and-conquer method and system for the detection of lung nodule in radiological images
US6510336B1 (en) 2000-03-03 2003-01-21 Intra Medical Imaging, Llc Methods and devices to expand applications of intraoperative radiation probes
US6602488B1 (en) 2000-03-03 2003-08-05 Intramedical Imaging, Llc Use of radiopharmaceuticals and intraoperative radiation probe for delivery of medicinal treatments
US7373197B2 (en) 2000-03-03 2008-05-13 Intramedical Imaging, Llc Methods and devices to expand applications of intraoperative radiation probes
JP4551524B2 (en) 2000-03-06 2010-09-29 株式会社東芝 Ultrasonic probe and ultrasonic diagnostic apparatus
KR100800040B1 (en) 2000-03-08 2008-01-31 기븐 이미징 리미티드 A capsule for in vivo imaging
US6633658B1 (en) 2000-03-17 2003-10-14 Senorx, Inc. System and method for managing intermittent interference on imaging systems
US6388244B1 (en) 2000-03-20 2002-05-14 Philips Medical Systems (Cleveland), Inc. Virtual contouring for transmission scanning in spect and pet studies
EP1265659A4 (en) 2000-03-22 2006-12-13 Docusys Inc A drug delivery and monitoring system
US6674834B1 (en) 2000-03-31 2004-01-06 Ge Medical Systems Global Technology Company, Llc Phantom and method for evaluating calcium scoring
US6628984B2 (en) 2000-04-12 2003-09-30 Pem Technologies, Inc. Hand held camera with tomographic capability
US6771802B1 (en) 2000-04-13 2004-08-03 Photon Imaging, Inc. Method and apparatus for imaging and localizing radiation
JP4180827B2 (en) 2000-04-20 2008-11-12 ディジラッド・コーポレーション Method for suppressing edge current of semiconductor device
EP1284021A4 (en) 2000-04-20 2008-08-13 Digirad Corp Fabrication of low leakage-current backside illuminated photodiodes
US6471674B1 (en) 2000-04-21 2002-10-29 Medrad, Inc. Fluid delivery systems, injector systems and methods of fluid delivery
US6438401B1 (en) 2000-04-28 2002-08-20 Alpha Intervention Technology, Inc. Indentification and quantification of needle displacement departures from treatment plan
US6614453B1 (en) 2000-05-05 2003-09-02 Koninklijke Philips Electronics, N.V. Method and apparatus for medical image display for surgical tool planning and navigation in clinical environments
US20040195512A1 (en) 2000-05-16 2004-10-07 Crosetto Dario B. Method and apparatus for anatomical and functional medical imaging
US6512943B1 (en) 2000-05-22 2003-01-28 Wisconsin Alumni Research Foundation Combined ultrasound-radionuclide device for percutaneous ultrasound-guided biopsy and method of use
IL163684A0 (en) 2000-05-31 2005-12-18 Given Imaging Ltd Measurement of electrical characteristics of tissue
US6704592B1 (en) 2000-06-02 2004-03-09 Medrad, Inc. Communication systems for use with magnetic resonance imaging systems
US6583420B1 (en) 2000-06-07 2003-06-24 Robert S. Nelson Device and system for improved imaging in nuclear medicine and mammography
US6748259B1 (en) 2000-06-15 2004-06-08 Spectros Corporation Optical imaging of induced signals in vivo under ambient light conditions
US6432089B1 (en) 2000-06-21 2002-08-13 Medrad, Inc. Medical syringe
MXPA02012859A (en) 2000-07-15 2003-05-14 Glaxo Group Ltd Medicament dispenser.
DE10035751C1 (en) 2000-07-22 2001-11-15 Forschungszentrum Juelich Gmbh Test body for diagnostic nuclear medical device has radiation-emitting body provided with 2-dimensional or 3-dimensional structure
IL137580A (en) 2000-07-30 2005-11-20 Integrated Detector & Electron Readout system for solid state detector arrays
US6576918B1 (en) 2000-08-09 2003-06-10 Syncor International Corp. Container and method for transporting a syringe containing radioactive material
WO2002011787A2 (en) 2000-08-10 2002-02-14 Baxa Corporation Method, system, and apparatus for handling, labeling, filling, and capping syringes
IL137821A (en) 2000-08-10 2009-07-20 Ultraspect Ltd Spect gamma camera
WO2004042546A1 (en) 2002-11-04 2004-05-21 V-Target Technologies Ltd. Apparatus and methods for imaging and attenuation correction
US20020099310A1 (en) 2001-01-22 2002-07-25 V-Target Ltd. Gastrointestinal-tract sensor
US7826889B2 (en) 2000-08-21 2010-11-02 Spectrum Dynamics Llc Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
EP1326531A4 (en) 2000-08-21 2008-12-10 Target Technologies Ltd V Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US8565860B2 (en) 2000-08-21 2013-10-22 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system
US8909325B2 (en) 2000-08-21 2014-12-09 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US8036731B2 (en) 2001-01-22 2011-10-11 Spectrum Dynamics Llc Ingestible pill for diagnosing a gastrointestinal tract
US7062092B2 (en) * 2000-08-22 2006-06-13 Affymetrix, Inc. System, method, and computer software product for gain adjustment in biological microarray scanner
JP4377536B2 (en) 2000-08-30 2009-12-02 浜松ホトニクス株式会社 PET equipment
US6504899B2 (en) 2000-09-25 2003-01-07 The Board Of Trustees Of The Leland Stanford Junior University Method for selecting beam orientations in intensity modulated radiation therapy
WO2002056055A2 (en) 2000-09-29 2002-07-18 Massachusetts Inst Technology Systems and methods for coded aperture imaging of radiation- emitting sources
JP4975208B2 (en) 2000-10-03 2012-07-11 株式会社根本杏林堂 Automatic injection equipment
US6585700B1 (en) 2000-10-05 2003-07-01 Medrad, Inc. Syringe, syringe plunger and attachment mechanism for front loading medical injector
EP1339312B1 (en) 2000-10-10 2006-01-04 Microchips, Inc. Microchip reservoir devices using wireless transmission of power and data
DE10050232A1 (en) 2000-10-11 2002-05-02 Karlsruhe Forschzent High-resolution ultrasound tomograph
US6439444B1 (en) 2000-10-12 2002-08-27 Shields, Ii Levi E. Cantilever carrying apparatus
US7094216B2 (en) 2000-10-18 2006-08-22 Medrad, Inc. Injection system having a pressure isolation mechanism and/or a handheld controller
ATE445418T1 (en) 2000-10-19 2009-10-15 Bracco Imaging Spa RADIOPHARMACEUTICAL FORMULATIONS
US6643538B1 (en) 2000-10-20 2003-11-04 Southeastern Universities Research Assn. Directional intraoperative probe
US6628983B1 (en) 2000-10-25 2003-09-30 Koninklijke Philips Electronics N.V. Nuclear imaging systems and methods with feature-enhanced transmission imaging
EP1204073B1 (en) 2000-10-27 2007-01-31 Canon Kabushiki Kaisha Image generation method and apparatus
US6936030B1 (en) 2000-11-08 2005-08-30 Medrad, Inc. Injector systems incorporating a base unit attached to a surface
US6787777B1 (en) 2000-11-09 2004-09-07 Koninklijke Philips Electronics, N.V. Nuclear imaging system and method using segmented field of view
US6754519B1 (en) 2000-11-24 2004-06-22 Elgems Ltd. Multimodality imaging system
EP1337291B8 (en) 2000-11-29 2009-10-07 Docusys, Inc. Drug delivery device incorporating a tracking code
US6597940B2 (en) 2000-12-01 2003-07-22 Neomed Technologies Methods of detecting occlusion of the coronary artery system and imaging the heart
US6671541B2 (en) 2000-12-01 2003-12-30 Neomed Technologies, Inc. Cardiovascular imaging and functional analysis system
US6723037B2 (en) 2000-12-15 2004-04-20 Kawasumi Laboratories, Inc. Protective tool for therapeutic material delivery device, cartridge for therapeutic material delivery device, and a therapeutic material delivery device
US6506155B2 (en) 2000-12-15 2003-01-14 Atl Ultrasound, Inc. Data entry and setup system and method for ultrasound imaging
US6776977B2 (en) 2001-01-09 2004-08-17 Bristol-Myers Squibb Pharma Company Polypodal chelants for metallopharmaceuticals
NO20010234D0 (en) 2001-01-12 2001-01-12 Nycomed Imaging As Perfusion image
CA2434479A1 (en) 2001-01-16 2002-10-10 Board Of Regents, The University Of Texas System A pet camera with individually rotatable detector modules and/or individually movable shielding sections
US6788758B2 (en) 2001-01-17 2004-09-07 African Medical Imaging (Proprietary) Limited Method of reconstructing tomographic images
US7018363B2 (en) 2001-01-18 2006-03-28 Medrad, Inc. Encoding and sensing of syringe information
IL157007A0 (en) 2001-01-22 2004-02-08 Target Technologies Ltd V Ingestible device
IL141137A0 (en) 2001-01-28 2002-02-10 Caesaria Med Electronics Ltd Liquid pump
US6678546B2 (en) 2001-01-30 2004-01-13 Fischer Imaging Corporation Medical instrument guidance using stereo radiolocation
US20020103429A1 (en) 2001-01-30 2002-08-01 Decharms R. Christopher Methods for physiological monitoring, training, exercise and regulation
US7025757B2 (en) 2001-02-08 2006-04-11 Medrad, Inc. Syringe loading devices for use with syringes and medical injectors
JP3860979B2 (en) 2001-02-28 2006-12-20 安西メディカル株式会社 Gamma camera device
US6627893B1 (en) 2001-03-15 2003-09-30 Koninklijke Philips Electronics, N.V. Focused rotating slat-hole for gamma cameras
US7409243B2 (en) 2001-04-04 2008-08-05 Mirabel Medical Ltd. Breast cancer detection
WO2002083210A1 (en) 2001-04-13 2002-10-24 Jean-Luc Morelle Process and device for preparing radiopharmaceutical products for injection
US7011814B2 (en) 2001-04-23 2006-03-14 Sicel Technologies, Inc. Systems, methods and devices for in vivo monitoring of a localized response via a radiolabeled analyte in a subject
US20030001098A1 (en) 2001-05-09 2003-01-02 Stoddart Hugh A. High resolution photon emission computed tomographic imaging tool
US7105824B2 (en) 2002-05-09 2006-09-12 Neurologica, Corp. High resolution photon emission computed tomographic imaging tool
US6484051B1 (en) 2001-05-15 2002-11-19 James Daniel Coincident multiple compton scatter nuclear medical imager
GB2377870B (en) 2001-05-18 2005-06-29 Canon Kk Method and apparatus for generating confidence data
US6735329B2 (en) * 2001-05-18 2004-05-11 Leonard S. Schultz Methods and apparatus for image recognition and dictation
ITRM20010279A1 (en) 2001-05-23 2002-11-25 C N R Consiglio Naz Delle Ri C SCINTIGRAPHIC DEVICE WITH INTEGRATED CRYSTAL COLLIMATOR WITH HIGH SPACE RESOLUTION.
US6674083B2 (en) 2001-06-05 2004-01-06 Hamamatsu Photonics K.K. Positron emission tomography apparatus
US6965661B2 (en) 2001-06-19 2005-11-15 Hitachi, Ltd. Radiological imaging apparatus and radiological imaging method
US6694172B1 (en) 2001-06-23 2004-02-17 Koninklijke Philips Electronics, N.V. Fault-tolerant detector for gamma ray imaging
US6728583B2 (en) 2001-06-27 2004-04-27 Koninklijke Philips Electronics N.V. User interface for a gamma camera which acquires multiple simultaneous data sets
US20030013950A1 (en) 2001-06-27 2003-01-16 David Rollo Dual isotope studies in nuclear medicine imaging
US6713766B2 (en) 2001-06-28 2004-03-30 Koninklijke Philips Electronics N.V. Gamma camera with capability of modifying study during exam
US6767319B2 (en) 2001-06-29 2004-07-27 Medrad, Inc. Delivery methods, systems and components for use with hazardous pharmaceutical substances
US7142703B2 (en) 2001-07-17 2006-11-28 Cedara Software (Usa) Limited Methods and software for self-gating a set of images
US6592520B1 (en) 2001-07-31 2003-07-15 Koninklijke Philips Electronics N.V. Intravascular ultrasound imaging apparatus and method
US6915619B2 (en) 2001-08-10 2005-07-12 Baxa Corporation Method for handling syringe bodies
WO2003024385A1 (en) 2001-09-12 2003-03-27 Terumo Kabushiki Kaisha Medicine container and medicine injector comprising the same
US20030055685A1 (en) 2001-09-19 2003-03-20 Safety Syringes, Inc. Systems and methods for monitoring administration of medical products
JP2003121549A (en) 2001-10-15 2003-04-23 Toshiba Corp Nuclear medicine diagnostic equipment
US6940070B2 (en) 2001-10-25 2005-09-06 Tumay O Tumer Imaging probe
WO2003039462A2 (en) 2001-11-02 2003-05-15 Tanox, Inc. B-cell lymphoma specific antigen for use in diagnosis and treatment of b-cell malignancies
US20030222228A1 (en) 2001-12-05 2003-12-04 Chen Fu Monty Mong Apparatus and method for transporting radiopharmaceuticals
US6838672B2 (en) 2001-12-17 2005-01-04 Siemens Medical Solutions Usa High resolution, multiple detector tomographic radionuclide imaging based upon separated radiation detection elements
US6821013B2 (en) 2001-12-20 2004-11-23 Medrad, Inc. Adapters, adapter systems and method for use in connection with powered injectors for agitation of multi-component fluids
US6664542B2 (en) 2001-12-20 2003-12-16 Koninklijke Philips Electronics N.V. Gamma camera error correction using multiple point sources
US6985870B2 (en) 2002-01-11 2006-01-10 Baxter International Inc. Medication delivery system
US6935560B2 (en) 2002-02-26 2005-08-30 Safety Syringes, Inc. Systems and methods for tracking pharmaceuticals within a facility
US7412022B2 (en) 2002-02-28 2008-08-12 Jupiter Clyde P Non-invasive stationary system for three-dimensional imaging of density fields using periodic flux modulation of compton-scattered gammas
US6565502B1 (en) 2002-03-04 2003-05-20 Capintec, Inc. Needle holder assembly
US6721386B2 (en) 2002-03-15 2004-04-13 Ge Medical Systems Global Technology Co., Llc Method and apparatus of cardiac CT imaging using ECG and mechanical motion signals
EP1347309A3 (en) 2002-03-20 2012-04-18 Hitachi, Ltd. Radiological imaging apparatus and method
US6774358B2 (en) 2002-03-21 2004-08-10 Cti Pet Systems, Inc. Normalization apparatus for PET and SPECT scanners and method for using same
JP4070493B2 (en) * 2002-04-03 2008-04-02 株式会社東芝 X-ray diagnostic apparatus and medical image analysis apparatus
JP2005521502A (en) 2002-04-03 2005-07-21 セガミ エス.エー.アール.エル. Overlay of chest and abdominal image modalities
JP4271040B2 (en) 2002-04-06 2009-06-03 バーボア、ランダル・エル Modification of the normalized difference method for real-time optical tomography
WO2003086170A2 (en) 2002-04-08 2003-10-23 Pem Technologies, Inc. Flexible geometries for hand-held pet and spect cameras
US7797033B2 (en) 2002-04-08 2010-09-14 Smart Pill Corporation Method of using, and determining location of, an ingestible capsule
US6741671B2 (en) 2002-04-30 2004-05-25 Ge Medical Systems Global Technology Company Llc Computed tomography system with integrated analogic computer
US6996262B2 (en) 2002-05-20 2006-02-07 General Electric Company Method and apparatus of scoring an arterial obstruction
US7146030B2 (en) * 2002-05-22 2006-12-05 Agilent Technologies, Inc. System and methods for extracting semantics from images
WO2004004787A2 (en) 2002-07-05 2004-01-15 Universite Libre De Bruxelles - Hopital Erasme Method and device for dispensing individual doses of a radiopharmaceutical solution
EP1521982A1 (en) 2002-07-17 2005-04-13 European Organization for Nuclear Research Gamma ray detector for positron emission tomography (pet) and single photon emmission computed tomography (spect)
US6999847B2 (en) 2002-07-26 2006-02-14 Unelab Llc Specimen carrier transfer apparatus for a conveyor track
US20050020915A1 (en) 2002-07-29 2005-01-27 Cv Therapeutics, Inc. Myocardial perfusion imaging methods and compositions
US6809321B2 (en) 2002-07-30 2004-10-26 Siemens Medical Solutions Usa, Inc. Dynamically optimized coincidence septa
US6765981B2 (en) 2002-07-31 2004-07-20 Agilent Technologies, Inc. Computed tomography
US20040044282A1 (en) 2002-08-28 2004-03-04 Mixon Lonnie Mark Medical imaging systems and methods
US6574304B1 (en) 2002-09-13 2003-06-03 Ge Medical Systems Global Technology Company, Llc Computer aided acquisition of medical images
US20040051368A1 (en) 2002-09-17 2004-03-18 Jimmy Caputo Systems and methods for programming pumps
KR20050070030A (en) 2002-10-02 2005-07-05 말린크로트, 인코포레이티드 Pharmaceutical pig and method of use
US7620444B2 (en) 2002-10-05 2009-11-17 General Electric Company Systems and methods for improving usability of images for medical applications
US20040116807A1 (en) 2002-10-17 2004-06-17 Roni Amrami Blood vessels wall imaging catheter
US6928142B2 (en) 2002-10-18 2005-08-09 Koninklijke Philips Electronics N.V. Non-invasive plaque detection using combined nuclear medicine and x-ray system
US6906330B2 (en) 2002-10-22 2005-06-14 Elgems Ltd. Gamma camera
US7577228B2 (en) 2002-10-28 2009-08-18 General Electric Company Transportable manufacturing facility for radioactive materials
US7418119B2 (en) 2002-10-31 2008-08-26 Siemens Computer Aided Diagnosis Ltd. Display for computer-aided evaluation of medical images and for establishing clinical recommendation therefrom
US20040204646A1 (en) 2002-11-04 2004-10-14 V-Target Technologies Ltd. Intracorporeal-imaging head
US7194119B2 (en) * 2002-11-21 2007-03-20 Siemens Aktiengesellschaft Method and system for retrieving a medical picture
US7283652B2 (en) 2002-11-27 2007-10-16 General Electric Company Method and system for measuring disease relevant tissue changes
US6915823B2 (en) 2002-12-03 2005-07-12 Forhealth Technologies, Inc. Automated apparatus and process for reconstitution and delivery of medication to an automated syringe preparation apparatus
US7017622B2 (en) 2002-12-03 2006-03-28 Forhealth Technologies, Inc. Automated means for removing, parking and replacing a syringe tip cap from a syringe
GB0228960D0 (en) 2002-12-11 2003-01-15 Mirada Solutions Ltd Improvements in or relating to processing systems
US7490085B2 (en) 2002-12-18 2009-02-10 Ge Medical Systems Global Technology Company, Llc Computer-assisted data processing system and method incorporating automated learning
US7187790B2 (en) * 2002-12-18 2007-03-06 Ge Medical Systems Global Technology Company, Llc Data processing and feedback method and system
JP3884377B2 (en) 2002-12-27 2007-02-21 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X-ray equipment
US7835927B2 (en) 2002-12-27 2010-11-16 Carefusion 303, Inc. Medication management system
US7142634B2 (en) 2003-01-29 2006-11-28 New England Medical Center Hospitals, Inc. Radiation field detection
US7542791B2 (en) 2003-01-30 2009-06-02 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
EP1593087A4 (en) 2003-01-30 2006-10-04 Chase Medical Lp A method and system for image processing and contour assessment
EP1595163A2 (en) 2003-02-18 2005-11-16 Digirad Corporation Signal enhancement module
JP2004248721A (en) * 2003-02-18 2004-09-09 Pentax Corp Device for diagnostic aid
EP2284743A3 (en) 2003-03-28 2013-08-14 CareFusion 303, Inc. Infusion data communication system
EP1469408B1 (en) 2003-04-14 2013-03-27 PatientSafe Solutions, Inc. Pharmaceutical tracking system
WO2004093650A2 (en) 2003-04-17 2004-11-04 The General Hospital Corporation Method for monitoring blood flow and metabolic uptake in tissue with radiolabeled alkanoic acid
USD507832S1 (en) 2003-04-28 2005-07-26 Medrad, Inc. User interface for a medical device
FR2855655B1 (en) 2003-05-26 2005-08-19 Commissariat Energie Atomique INFRARED PHOTOVOLTAIC INFRARED DETECTOR WITH INDEPENDENT AND THREE-DIMENSIONAL CONDUCTIVE GRID
US6994249B2 (en) 2003-05-27 2006-02-07 Cardinal Health Technologies, Llc System and method for drug management utilizing transferable labels
US7291841B2 (en) 2003-06-16 2007-11-06 Robert Sigurd Nelson Device and system for enhanced SPECT, PET, and Compton scatter imaging in nuclear medicine
US7394925B2 (en) 2003-06-18 2008-07-01 Canon Kabushiki Kaisha Radiography apparatus and radiography method
US7359535B2 (en) 2003-06-20 2008-04-15 Ge Medical Systems Global Technology Company, Llc Systems and methods for retrospective internal gating
IL156569A (en) 2003-06-22 2009-11-18 Ultraspect Ltd Method of enhancing planar single photon emission imaging
US7238946B2 (en) 2003-06-27 2007-07-03 Siemens Medical Solutions Usa, Inc. Nuclear imaging system using scintillation bar detectors and method for event position calculation using the same
US7470896B2 (en) 2003-06-27 2008-12-30 Siemens Medical Solutions Usa, Inc. Non-circular-orbit detection method and apparatus
AU2003903404A0 (en) 2003-07-02 2003-07-17 Iphase Technologies Pty. Limited Automated radioactive dose dispenser
US20050020898A1 (en) 2003-07-10 2005-01-27 Vosniak Kenneth J. System and method for configuring a scanning procedure
US20050033157A1 (en) 2003-07-25 2005-02-10 Klein Dean A. Multi-modality marking material and method
US20050049487A1 (en) 2003-08-26 2005-03-03 Johnson Bruce Fletcher Compounds and kits for preparing imaging agents and methods of imaging
US7537560B2 (en) 2003-09-30 2009-05-26 Don Powers Containment, shielding, information display, distribution and administration of radioactive pharmaceuticals
US7019783B2 (en) 2003-10-02 2006-03-28 Digirad Corporation Charge pump power supply with noise control
JP2005131007A (en) 2003-10-29 2005-05-26 Nemoto Kyorindo:Kk Medical fluid injection system
US8543411B2 (en) 2003-11-05 2013-09-24 United Parcel Service Of America, Inc. Systems and methods for detecting counterfeit pharmaceutical drugs at the point of retail sale
US7447341B2 (en) 2003-11-26 2008-11-04 Ge Medical Systems Global Technology Company, Llc Methods and systems for computer aided targeting
US7755669B2 (en) 2003-11-28 2010-07-13 Canon Kabushiki Kaisha Image capture apparatus and image capture method in which an image is processed by a plurality of image processing devices
US7152785B2 (en) 2003-12-09 2006-12-26 Ge Medical Systems Global Technology Company, Llc Patient-centric data acquisition protocol selection and identification tags therefor
US7444010B2 (en) 2003-12-09 2008-10-28 General Electric Company Method and apparatus for the reduction of artifacts in computed tomography images
US20050131270A1 (en) 2003-12-12 2005-06-16 Siemens Medical Solutions Usa, Inc. Radiation treatment system utilizing therapeutic agent and associated identifier
EP1700137B1 (en) 2003-12-16 2008-09-10 Philips Intellectual Property & Standards GmbH Correction of artifacts caused by the heel effect
JP4617318B2 (en) 2003-12-16 2011-01-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Imaging method using filtered backprojection
US20050149350A1 (en) 2003-12-24 2005-07-07 Kerr Roger S. Patient information management system and method
JP4467987B2 (en) 2004-01-05 2010-05-26 株式会社東芝 Nuclear medicine diagnostic equipment
US7026623B2 (en) 2004-01-07 2006-04-11 Jacob Oaknin Efficient single photon emission imaging
WO2005118659A2 (en) 2004-06-01 2005-12-15 Spectrum Dynamics Llc Methods of view selection for radioactive emission measurements
US9040016B2 (en) 2004-01-13 2015-05-26 Biosensors International Group, Ltd. Diagnostic kit and methods for radioimaging myocardial perfusion
WO2007074467A2 (en) 2005-12-28 2007-07-05 Spectrum Dynamics Llc Gating with anatomically varying durations
WO2007010534A2 (en) 2005-07-19 2007-01-25 Spectrum Dynamics Llc Imaging protocols
US8586932B2 (en) 2004-11-09 2013-11-19 Spectrum Dynamics Llc System and method for radioactive emission measurement
US9470801B2 (en) 2004-01-13 2016-10-18 Spectrum Dynamics Llc Gating with anatomically varying durations
US7176466B2 (en) 2004-01-13 2007-02-13 Spectrum Dynamics Llc Multi-dimensional image reconstruction
US7968851B2 (en) 2004-01-13 2011-06-28 Spectrum Dynamics Llc Dynamic spect camera
US20070166227A1 (en) 2004-02-10 2007-07-19 Shuang Liu Crowned dithiocarbamate metal complexes and methods for their use
US7394923B2 (en) 2004-02-10 2008-07-01 The University Of Chicago Imaging system for generating a substantially exact reconstruction of a region of interest
ES2524448T3 (en) 2004-02-11 2014-12-09 Acist Medical Systems, Inc. System for operating a medical injector and imaging device for diagnosis
US9627097B2 (en) 2004-03-02 2017-04-18 General Electric Company Systems, methods and apparatus for infusion of radiopharmaceuticals
US7170972B2 (en) 2004-03-16 2007-01-30 General Electric Company Methods and systems for multi-modality imaging
JP4679570B2 (en) 2004-03-19 2011-04-27 アドヴァンスド アプライド フィジックス ソリューションズ,インコーポレイテッド Gamma ray detector and method for detecting the location of energetic particle interactions within the detector
US7672491B2 (en) * 2004-03-23 2010-03-02 Siemens Medical Solutions Usa, Inc. Systems and methods providing automated decision support and medical imaging
US7262417B2 (en) 2004-03-26 2007-08-28 Board Of Regents, The University Of Texas System Method and system for improved image reconstruction and data collection for compton cameras
US20050215889A1 (en) 2004-03-29 2005-09-29 The Board of Supervisory of Louisiana State University Methods for using pet measured metabolism to determine cognitive impairment
US7145986B2 (en) 2004-05-04 2006-12-05 General Electric Company Solid state X-ray detector with improved spatial resolution
JP2007538320A (en) 2004-05-18 2007-12-27 シルバーブルック リサーチ ピーティワイ リミテッド Method and computer system for tracking product items
US7970455B2 (en) 2004-05-20 2011-06-28 Spectrum Dynamics Llc Ingestible device platform for the colon
US8518021B2 (en) 2004-05-27 2013-08-27 Baxter International Inc. Apparatus and method for therapeutic delivery of medication
EP1755704B1 (en) 2004-05-27 2008-02-27 E-Z-EM, Inc. System, method, and computer program product for handling, mixing, dispensing, and injecting radiopharmaceutical agents
EP1778957A4 (en) 2004-06-01 2015-12-23 Biosensors Int Group Ltd Radioactive-emission-measurement optimization to specific body structures
US7163031B2 (en) 2004-06-15 2007-01-16 Mallinckrodt Inc. Automated dispensing system and associated method of use
US7505550B2 (en) 2004-06-16 2009-03-17 Hitachi Medical Corporation Radiotomography apparatus
US7468513B2 (en) 2004-06-18 2008-12-23 The Children's Hospital Of Philadelphia Fast dynamic imaging protocol using a multi-head single photon emission computed tomography system
US7283654B2 (en) 2004-08-26 2007-10-16 Lumeniq, Inc. Dynamic contrast visualization (DCV)
US7345282B2 (en) 2004-09-27 2008-03-18 Siemens Medical Solutions Usa, Inc. Collimator with variable focusing and direction of view for nuclear medicine imaging
US9471978B2 (en) 2004-10-04 2016-10-18 Banner Health Methodologies linking patterns from multi-modality datasets
US7502499B2 (en) * 2004-11-02 2009-03-10 Siemens Medical Solutions Usa, Inc. System and method for filtering noise from a medical image
US20060104519A1 (en) * 2004-11-03 2006-05-18 Jonathan Stoeckel System and method for a contiguous support vector machine
US8000773B2 (en) 2004-11-09 2011-08-16 Spectrum Dynamics Llc Radioimaging
US9316743B2 (en) 2004-11-09 2016-04-19 Biosensors International Group, Ltd. System and method for radioactive emission measurement
EP1827505A4 (en) 2004-11-09 2017-07-12 Biosensors International Group, Ltd. Radioimaging
US9943274B2 (en) 2004-11-09 2018-04-17 Spectrum Dynamics Medical Limited Radioimaging using low dose isotope
WO2008059489A2 (en) 2006-11-13 2008-05-22 Spectrum Dynamics Llc Radioimaging applications of and novel formulations of teboroxime
US20080260637A1 (en) 2004-11-17 2008-10-23 Dalia Dickman Methods of Detecting Prostate Cancer
US7382853B2 (en) 2004-11-24 2008-06-03 General Electric Company Method and system of CT data correction
US7495225B2 (en) 2004-12-08 2009-02-24 General Electric Company Methods and apparatus for pixilated detector masking
EP1844351A4 (en) 2005-01-13 2017-07-05 Biosensors International Group, Ltd. Multi-dimensional image reconstruction and analysis for expert-system diagnosis
EP1846015A4 (en) 2005-01-19 2009-08-12 Mathew Mark Zuckerman Method, compositions and classification for tumor diagnostics and treatment
US7024026B1 (en) * 2005-01-20 2006-04-04 Radiological Imaging Technology, Inc. Relative calibration for dosimetric devices
US7307252B2 (en) 2005-03-28 2007-12-11 Siemens Medical Solutions Usa, Inc. Detector head position correction for hybrid SPECT/CT imaging apparatus
CA2610256A1 (en) 2005-06-01 2006-12-07 Spectrum Dynamics Unified management of radiopharmaceutical dispensing, administration, and imaging
EP1908011B1 (en) 2005-07-19 2013-09-04 Spectrum Dynamics LLC Reconstruction stabilizer and active vision
US20140193336A1 (en) 2005-07-19 2014-07-10 Biosensors International Group, Ltd. Imaging protocols
US8837793B2 (en) 2005-07-19 2014-09-16 Biosensors International Group, Ltd. Reconstruction stabilizer and active vision
US7327822B2 (en) 2005-07-20 2008-02-05 Purdue Research Foundation Methods, apparatus, and software for reconstructing an image
US20070081700A1 (en) * 2005-09-29 2007-04-12 General Electric Company Systems, methods and apparatus for creation of a database of images from categorical indices
EP2532375A1 (en) 2005-10-31 2012-12-12 Medi-Physics Inc. Cradle to be used with a technetium kit preparation
EP1952180B1 (en) 2005-11-09 2017-01-04 Biosensors International Group, Ltd. Dynamic spect camera
US7570732B2 (en) 2005-11-09 2009-08-04 Dexela Limited Methods and apparatus for obtaining low-dose imaging
US7894650B2 (en) * 2005-11-10 2011-02-22 Microsoft Corporation Discover biological features using composite images
US8014576B2 (en) * 2005-11-23 2011-09-06 The Medipattern Corporation Method and system of computer-aided quantitative and qualitative analysis of medical images
WO2007074466A2 (en) 2005-12-28 2007-07-05 Starhome Gmbh Late forwarding to local voicemail system of calls to roaming users
DE102006037254B4 (en) 2006-02-01 2017-08-03 Paul Scherer Institut Focus-detector arrangement for producing projective or tomographic phase-contrast images with X-ray optical grids, as well as X-ray system, X-ray C-arm system and X-ray computer tomography system
US7831024B2 (en) 2006-03-17 2010-11-09 The Trustees Of The University Of Pennsylvania Slit-slat collimation
US8894974B2 (en) 2006-05-11 2014-11-25 Spectrum Dynamics Llc Radiopharmaceuticals for diagnosis and therapy
US7601966B2 (en) 2006-06-28 2009-10-13 Spectrum Dynamics Llc Imaging techniques for reducing blind spots
US7671331B2 (en) 2006-07-17 2010-03-02 General Electric Company Apparatus and methods for processing imaging data from multiple detectors
US8164063B2 (en) 2006-07-28 2012-04-24 Koninklijke Philips Electronics N.V. Time of flight measurements in positron emission tomography
US7592597B2 (en) 2006-08-03 2009-09-22 Ge Healthcare Israel Method and apparatus for imaging with imaging detectors having small fields of view
US9072441B2 (en) 2006-08-08 2015-07-07 Ge Medical Systems Israel, Ltd. Method and apparatus for imaging using multiple imaging detectors
JP4974608B2 (en) 2006-08-11 2012-07-11 オリンパスイメージング株式会社 Image shooting device
WO2008046971A1 (en) 2006-10-20 2008-04-24 Commissariat A L'energie Atomique Gamma-camera using the depth of interaction in a detector
US7769219B2 (en) * 2006-12-11 2010-08-03 Cytyc Corporation Method for assessing image focus quality
US9275451B2 (en) 2006-12-20 2016-03-01 Biosensors International Group, Ltd. Method, a system, and an apparatus for using and processing multidimensional data
US7663111B2 (en) 2007-03-28 2010-02-16 Orbotech Ltd. Variable collimation in radiation detection
US7627084B2 (en) 2007-03-30 2009-12-01 General Electric Compnay Image acquisition and processing chain for dual-energy radiography using a portable flat panel detector
US7680240B2 (en) 2007-03-30 2010-03-16 General Electric Company Iterative reconstruction of tomographic image data method and system
US20080277591A1 (en) 2007-05-08 2008-11-13 Orbotech Medical Solutions Ltd. Directional radiation detector
US7521681B2 (en) 2007-06-29 2009-04-21 Siemens Medical Solutions Usa, Inc. Non-rotating transaxial radionuclide imaging
DE102007032541A1 (en) 2007-07-12 2009-01-15 Siemens Ag Medical device with a device that is designed for the examination and / or treatment of at least one patient, and associated method
US7671340B2 (en) 2007-07-16 2010-03-02 General Electric Company Adjustable-focal-length collimators method and system
US8351671B2 (en) 2007-07-26 2013-01-08 Koninklijke Philips Electronics N.V. Motion correction in nuclear imaging
US8521253B2 (en) 2007-10-29 2013-08-27 Spectrum Dynamics Llc Prostate imaging
JP5601839B2 (en) 2007-12-10 2014-10-08 オリンパス株式会社 Luminescence measurement method and luminescence measurement system
CN102159253A (en) 2008-03-24 2011-08-17 得克萨斯大学体系董事会 Image-guided therapy of myocardial disease: composition, manufacturing and applications
US7940894B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US7956332B2 (en) 2008-10-29 2011-06-07 General Electric Company Multi-layer radiation detector assembly
US8158951B2 (en) 2009-02-03 2012-04-17 General Electric Company Apparatus and methods for evaluating operation of pixelated detectors
US8338788B2 (en) 2009-07-29 2012-12-25 Spectrum Dynamics Llc Method and system of optimized volumetric imaging
US8575555B2 (en) 2011-03-31 2013-11-05 General Electric Company Nuclear medicine imaging system and method using multiple types of imaging detectors
US8421021B2 (en) 2011-06-21 2013-04-16 General Electric Company Motion correction of SPECT images
US8811707B2 (en) 2011-08-25 2014-08-19 General Electric Company System and method for distributed processing of tomographic images

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040003001A1 (en) * 2002-04-03 2004-01-01 Fuji Photo Film Co., Ltd. Similar image search system
WO2006042077A2 (en) * 2004-10-09 2006-04-20 Viatronix Incorporated Sampling medical images for virtual histology

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8909325B2 (en) 2000-08-21 2014-12-09 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US9370333B2 (en) 2000-08-21 2016-06-21 Biosensors International Group, Ltd. Radioactive-emission-measurement optimization to specific body structures
US9470801B2 (en) 2004-01-13 2016-10-18 Spectrum Dynamics Llc Gating with anatomically varying durations
US10964075B2 (en) 2004-01-13 2021-03-30 Spectrum Dynamics Llc Gating with anatomically varying durations
US9040016B2 (en) 2004-01-13 2015-05-26 Biosensors International Group, Ltd. Diagnostic kit and methods for radioimaging myocardial perfusion
US9943278B2 (en) 2004-06-01 2018-04-17 Spectrum Dynamics Medical Limited Radioactive-emission-measurement optimization to specific body structures
US10136865B2 (en) 2004-11-09 2018-11-27 Spectrum Dynamics Medical Limited Radioimaging using low dose isotope
US9316743B2 (en) 2004-11-09 2016-04-19 Biosensors International Group, Ltd. System and method for radioactive emission measurement
US8837793B2 (en) 2005-07-19 2014-09-16 Biosensors International Group, Ltd. Reconstruction stabilizer and active vision
US8894974B2 (en) 2006-05-11 2014-11-25 Spectrum Dynamics Llc Radiopharmaceuticals for diagnosis and therapy
US9275451B2 (en) 2006-12-20 2016-03-01 Biosensors International Group, Ltd. Method, a system, and an apparatus for using and processing multidimensional data
WO2010115885A1 (en) * 2009-04-03 2010-10-14 Oslo Universitetssykehus Hf Predictive classifier score for cancer patient outcome
EP2293108A2 (en) 2009-07-29 2011-03-09 Spectrum Dynamics LLC Method and system of optimized volumetric imaging

Also Published As

Publication number Publication date
WO2008075362A3 (en) 2008-09-12
US9275451B2 (en) 2016-03-01
US20100142774A1 (en) 2010-06-10

Similar Documents

Publication Publication Date Title
US9275451B2 (en) Method, a system, and an apparatus for using and processing multidimensional data
US7606405B2 (en) Dynamic tumor diagnostic and treatment system
JP5744834B2 (en) PET / CT treatment monitoring system supported by medical guidelines
JP5667567B2 (en) Imaging enhanced by the model
US8170347B2 (en) ROI-based assessment of abnormality using transformation invariant features
US8929624B2 (en) Systems and methods for comparing different medical images to analyze a structure-of-interest
CN107492090A (en) Analyzed according to generated data using the tumor phenotypes based on image of machine learning
US20100317967A1 (en) Computer assisted therapy monitoring
JP5744877B2 (en) System and method for supporting clinical judgment
BRPI0806785A2 (en) tools to assist in the diagnosis of neurodegenerative diseases
EP3573531B1 (en) Systems for computation of functional index parameter values for blood vessels
EP2577604B1 (en) Processing system for medical scan images
US20100054559A1 (en) Image generation based on limited data set
Dias et al. Normal values for 18F-FDG uptake in organs and tissues measured by dynamic whole body multiparametric FDG PET in 126 patients
WO2006119340A2 (en) Dynamic tumor diagnostic and treatment system
Saeed et al. MGMT promoter methylation status prediction using MRI scans? An extensive experimental evaluation of deep learning models
Mayorga-Ruiz et al. The role of AI in clinical trials
Baeza et al. A novel intelligent radiomic analysis of perfusion SPECT/CT images to optimize pulmonary embolism diagnosis in COVID-19 patients
Joshi et al. OncoNet: Weakly Supervised Siamese Network to automate cancer treatment response assessment between longitudinal FDG PET/CT examinations
Bilal Emerging Trends in Radiology: From X-rays to Advanced Imaging
US20200303059A1 (en) Quality management of imaging workflows
Chang et al. Data Curation Challenges for Artificial Intelligence
Chang et al. 14 Data Curation Challenges
Henrysson Evaluation of Quantitative PET/CT Usage for Cancer Treatment
EP4146060A1 (en) Apparatus for monitoring treatment side effects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07849614

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12448473

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07849614

Country of ref document: EP

Kind code of ref document: A2