WO2008082381A1 - Immune response modifier formulations containing oleic acid and methods - Google Patents

Immune response modifier formulations containing oleic acid and methods Download PDF

Info

Publication number
WO2008082381A1
WO2008082381A1 PCT/US2006/049517 US2006049517W WO2008082381A1 WO 2008082381 A1 WO2008082381 A1 WO 2008082381A1 US 2006049517 W US2006049517 W US 2006049517W WO 2008082381 A1 WO2008082381 A1 WO 2008082381A1
Authority
WO
WIPO (PCT)
Prior art keywords
amines
formulation
oleic acid
weight
substituted
Prior art date
Application number
PCT/US2006/049517
Other languages
French (fr)
Inventor
Alexis S. Statham
Robert J. Nelson
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Priority to BRPI0621407-0A priority Critical patent/BRPI0621407A2/en
Priority to MX2008010860A priority patent/MX2008010860A/en
Priority to CA2643679A priority patent/CA2643679C/en
Priority to PCT/US2006/049517 priority patent/WO2008082381A1/en
Publication of WO2008082381A1 publication Critical patent/WO2008082381A1/en
Priority to CR10209A priority patent/CR10209A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • the present invention relates to pharmaceutical formulations for the topical or transdermal delivery of immun ⁇ modifying drugs.
  • IRMs immune response modifiers
  • certain IRMs may be useftil for treating viral diseases (e.g., human papilloma virus, hepatitis, herpes), neoplasias (e.g., basal cell carcinoma, squamous cell carcinoma, actinic keratosis, melanoma), and TH2- mediated diseases (e.g., asthma, allergic rhinitis, atopic dermatitis), and are also useful as vaccine adjuvants.
  • viral diseases e.g., human papilloma virus, hepatitis, herpes
  • neoplasias e.g., basal cell carcinoma, squamous cell carcinoma, actinic keratosis, melanoma
  • TH2- mediated diseases e.g., asthma, allergic rhinitis, atopic dermatitis
  • IRM compounds are small organic molecule imidazoquinoli ⁇ e amine derivatives (see, e.g., U-S. Pat. No. 4,689,338), but a number of other compound classes are known as well (see, e.g., U.S. Pat. Nos. 5,446,153, 6,194,425, and 6,110,929) and more are still being discovered.
  • One of these IRM compounds, known as imiquimod has been commercialized in a topical formulation, ALDARA, forthe treatment of actinic keratosis, basal cell carcinoma, or anogenital warts associated with human papillomavirus.
  • IRM compounds are disclosed in U.S. Patent Nos.5,238,944; 5,939 ⁇ 090; and 6,425,776; European Patent 0 394 026; and U.S. Patent Publication 2003/0199538.
  • the ability to provide therapeutic benefit via topical application of an IRM compound for treatment of a particular condition at a particular location may be hindered by a variety of factors. These factors include: irritation of the skin to which the formulation is applied; formulation wash away; insolubility of the IRM compound in the formulation; chemical degradation of the IRM compound and/or other ingredients, physical instability of the formulation (e.g., separation of components, thickening, precipitation/agglomerization of active ingredient, and the like); poor permeation; and u ⁇ desired systemic delivery of topical IRM formulations if not intended to be transdermal.
  • factors include: irritation of the skin to which the formulation is applied; formulation wash away; insolubility of the IRM compound in the formulation; chemical degradation of the IRM compound and/or other ingredients, physical instability of the formulation (e.g., separation of components, thickening, precipitation/agglomerization of active ingredient, and the like); poor permeation; and u ⁇ desired systemic delivery of topical IRM formulations
  • the present invention provides a pharmaceutical formulation comprising a therapeutically effective amount of an immune response modifier (IRM) compound and a pharmaceutically acceptable vehicle including an oleic acid component, wherein the formulation is substantially free of polar impurities introduced by the oleic acid component
  • IRM immune response modifier
  • the present invention provides a pharmaceutical formulation comprising: a therapeutically effective amount of an IRM compound and a pharmaceutically acceptable vehicle including an oleic acid component wherein the oleic acid component has a peroxide value no greater than 5.
  • the present invention provides a pharmaceutical formulation comprising: a therapeutically effective amount of an IRM compound and a pharmaceutically acceptable vehicle including an oleic acid component, wherein the oleic acid component is at least 80% oleic acid.
  • the present invention also provides methods.
  • the present invention provides a method of stabilizing a pharmaceutical formulation comprising a therapeutically effective amount of an immune response modifier (IRM) compound and oleic acid by using an oleic acid component that is substantially free of polar impurities.
  • IRM immune response modifier
  • the present invention provides a method of stabilizing a pharmaceutical formulation comprising a therapeutically effective amount of an IRM compound and oleic acid by using an oleic acid component with a peroxide value no greater than 5.
  • the present invention provides a method of stabilizing a pharmaceutical formulation comprising a therapeutically effective amount of an IRM compound and oleic acid by using an oleic acid component that is at least 80% oleic acid.
  • the present invention provides methods for treating disease, including but not limited to the group comprising actinic keratosis, basal cell carcinoma, genital warts, peri-anal warts, malignant melanoma, and molloscum contag ⁇ osum.
  • the present invention provides methods to induce cytokine biosynthesis.
  • the present invention provides methods to induce interferon biosynthesis.
  • a pharmaceutical formulation comprising:
  • an immune response modifier (IRM) compound selected from the group consisting of imidazoqumoline amines, tetrahydroimidazoqu ⁇ noline amines, ⁇ midazopyridfaie amines, 6,7-fused cycloalkylimidazopyridine amines, 1,2- bridged imidazoquinoline amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazoloquinoline amines, thiazoloqu ⁇ noline amines, oxazolopyridine amines, thiazolopyridine amines, oxazolonaphthyridine amines, thiazolonaphthyridine amines, l ⁇ T-imidazo dimers fused to pyridine amines, qui ⁇ oline amines, tetrahydroqu ⁇ noline amines,
  • a pharmaceutical formulation comprising: a therapeutically effective amount of an IRM compound selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, 1,2- bridged imidazoquinoline amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazoloquinoline amines, thiazoloquinoline amines, oxazolopyridine amines, thiazolopyridine amines, oxazolonaphthyridine amines, thiazolonaphthyridine amines, lif-imidazo dimers fused to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridine amines, or
  • a pharmaceutical formulation comprising: a therapeutically effective amount of an IRM compound selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, 1,2- bridged imidazoquinoline amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazoloquinoline amines, thiazoloquinoline amines, oxazolopyridine amines, thiazolopyridine amines, oxazolonaphthyridine
  • an IRM compound selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, 1,2- bridge
  • amines thiazolonaphthyridine amines, liWmidazo dimers fused to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridine amines, or tetrahydronaphthyridine amines, and combinations thereof; and a pharmaceutically acceptable vehicle including an oleic acid component, wherein the oleic acid component is at least 80% oleic acid.
  • IJRM compound is selected from the group consisting of amide substituted imidazoquinol ⁇ ne amines, sulfonamide substituted imidazoquinoline amines, urea substituted imidazoquinoline amines, aryl ether substituted imidazoquinoline amines, heterocyclic ether substituted imidazoquinoline amines, amido ether substituted imidazoquinoline amines, sulfonamido ether substituted imidazoquinoline amines, urea substituted imidazoquinoline ethers, thioether substituted imidazoquinoline amines, 6-, 7-, 8-, or 9-aryl, heteroaryl, aryloxy or arylalkyleneoxy substituted imidazoquinoline amines, imidazoquinoline diamines, amide substituted tetrahydroimidazoquinoline amines, sulfonamide substituted tetrahydro
  • formulation as in any one of the preceding embodiments wherein the formulation further comprises an antioxidant.
  • a formulation as in any one of the preceding embodiments further comprising an antioxidant, wherein the antioxidant is butylated hydroxyl toluene or butylated hydroxyanisole.
  • a formulation of any one of the preceding embodiments further comprising water.
  • a formulation of any one of the preceding embodiments further comprising an emulsifier.
  • a method of stabilizing a pharmaceutical formulation comprising a therapeutically effective amount of an immune response modifier (IRM) compound selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkyltmidazopyridme amines, 1,2- bridged imidazoquinoline amines, ⁇ m ⁇ dazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazoloquinol ⁇ ne amines; th ⁇ azoloqu ⁇ noline amines, oxazolopyr ⁇ dine amines, thiazolopyrid ⁇ ne amines, oxazolonaphthyridine amines, thiazolonaphthyridine amines; lfWrnidazo dimers fused to pyridine amines, l
  • a method of stabilizing a pharmaceutical formulation comprising a therapeutically effective amount of an IRM compound selected from the group consisting of imidazoqu ⁇ noJine amines, tetrahydroimidazoquinoli ⁇ e amines, imidazopyridine amines, 6,7-fiised cycloalkylimidazopyridine amines, 1,2- bridged imidazoquinoline amines, imidazonaphthyridine amines, tefrahydroimidazonaphthyridi ⁇ e amines, oxazoloquinoline amines, thiazoloquinoline amines, oxazolopyridine amines, thiazolopyridine amines, oxazolonaphthyridine amines, thiazolonaphthyridine amines, l/f-imidazo dimers fused to pyridine amines, quinoline amines, tetrahydr
  • a method of stabilizing a pharmaceutical formulation comprising a therapeutically effective amount of an IRM compound selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyrid ⁇ ne amines, 1,2- bridged imidazoquinoline amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyrid ⁇ ne amines, oxazoloquinoline amines, thiazoloqu ⁇ noline amines, oxazolopyridine amines, thiazolopyridine amines, oxazolonaphthyridine amines, thiazolonaphthyridine amines, lJY-im ⁇ dazo dimers fused to pyridine amines, quinoline amines, tetrahydroimi
  • the IRM compound is selected from the group consisting of: amide substituted imidazoquinoline amines, sulfonamide substituted ⁇ midazoqurnol ⁇ ne amines, urea substituted imidazoquinoline amines, aryl ether substituted imidazoquinoline amines, heterocyclic ether substituted imidazoquinoline amines, amido ether substituted imidazoquinoline amines, sulfonamido ether substituted imidazoquinoline amines, urea substituted imidazoquinoline ethers, thioether
  • a method of treating actinic keratosis comprising applying a formulation of any one of embodiments 1 through 21 to the skin of a subject.
  • a method of treating basal cell carcinoma comprising applying a formulation of any one of embodiments 1 through 21 to the skin of a subject,-
  • a method of treating genital warts comprising applying a ' formulation of any one of embodiments 1 through 21 to the skin or mucosal surface of a subject.
  • a method of treating peri-anal warts comprising applying a formulation of any one of embodiments 1 through 21 to the skin or mucosal surface of a subject.
  • a method of treating molloscum contagiosum comprising applying a formulation of any one of embodiments 1 through 21 to the skin of a subject.
  • a method of inducing cytokine biosynthesis comprising applying a formulation of any one of embodiments 1 through 21 to the skin or mucosal surface of a subject.
  • a method of inducing interferon biosynthesis comprising applying a formulation of any one of embodiments 1 through 21 to the skin or mucosal surface of a subject.
  • a method of treating malignant melanoma comprising applying a formulation of any one of the preceding embodiments 1 through 21 to the skin of a subject.
  • substantially free is used to indicate that the amount present in the composition or formulation is below the level that causes degradation of the active pharmaceutical agent, such that the formulation is unsuitable for pharmaceutical usage, after storage for 4 months at 40 0 C at 75% relative humidity.
  • the term can also be used to describe a composition containing less than 10%, less than 5%, less than 1%, or less than 0.1% by weight of agiven substance.
  • polar impurities includes, but is not limited to peroxides, aldehydes, ketones, alcohols, metal ions, and/or substances that cause degradation of the active pharmaceutical agent.
  • oleic acid component is used to describe a preformulation source or composition of matter containing oleic acid, and may include other fatty acids in
  • oleic acid including but not limited to: myristic acid, palmitic acid, palmitoleic acid, margaric acid, isostearic acid, stearic acid, linoleic acid, l ⁇ nolenic acid, and other fatty acids, or combinations thereof.
  • the peroxide value is-the number that expresses in milliequivalents of active oxygen the quantity of peroxide contained in 1000 g of the substance as determined • by the methods described in the 5th edition of the European Pharmacopoeia, Section 2.5.5.
  • the present invention provides pharmaceutical formulations that include a therapeutically effective amount of an immune response modifier (IRM) compound selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkyl ⁇ midazopyridine amines, 1 ,2- bridged imidazoquinoline amines, imidazonaphthyridine amines.'-tetrahydroirnidazonaphthyridine amines, oxazoloquinoline amines, thiazoloquinoline amines, oxazolopyridine amines, thiazolopyridine amines, oxazolonaphthyridi ⁇ e amines, tbiazolonaphthyridine amines, and l ⁇ f-imidazo dimers fused to pyridine amines, quinoline amines,
  • IRM immune response modifier
  • the stability of such formulations is substantially greater than that of similar formulations containing an IRM compound and oleic acid containing conventional oleic acid with higher 5 amounts of polar impurities such as peroxides, even when the oleic acid component is of compendial grade. Furthermore, the instability problem of these formulations is not eliminated by additional antioxidants.
  • the formulation comprises an IRM compound and a pharmaceutically acceptable vehicle including an oleic acid component, wherein the formulation is substantially free of polar impurities introduced by the oleic acid component.
  • the formulation comprises an IRM compound and a pharmaceutically acceptable vehicle including an oleic acid component,0 wherein the oleic acid component has a peroxide value no greater than 5.
  • the formulation comprises an IRM compound and a pharmaceutically acceptable vehicle including an oleic acid component, wherein the oleic acid component is at least 80% oleic acid.
  • formulations described herein can be in the form of an oil-in-water emulsion such as a cream or a lotion.
  • the oil component of the formulation includes an IRM compound and one or more fatty acids, including oleic acid in an amount sufficient to solub ⁇ lize the IRM compound.
  • a cream or lotion of the invention can contain emollients, antioxidants, emulsifiers, viscosity enhancing agents, and/or preservatives.
  • Such components, as well as all others of ⁇ the formulations described herein,- are preferably pharmaceutically acceptable.
  • Formulations of the invention include an IRM compound.
  • Such compounds include, for example, imidazoquinoline amines including, but not limited to, substituted imidazoquinoline amines such as, for example, amide substituted
  • the IRM compound is an imidazonaphthyridine amine.
  • the IRM compound is 2-methyl-l-(2-methyI ⁇ ropyl)- liMmidazo[4,5-c][l,5]naphthyridin-4-amine.
  • the IRM compound is an imidazoqui ⁇ oline amine.
  • the IRM compound is l-(2-methylpropyt)-l ⁇ f- imidazo[4,5-c]quinoIin-4-am ⁇ ne (imiquimod).
  • the IRM may have low solubility in water, for example less than about 1 ug/mL (e.g., 0.79 ug/mL in the case of imiquimod), making them difficult to solubilize in aqueous formulations, and potentially using relatively large amounts of oleic acid in the formulation.
  • the amount of IRM compound that will be therapeutically effective in a specific situation will depend on such things as the activity of the particular compound, the dosing regimen, the application site, the particular formulation and the condition being treated. As such, it is generally not practical to identify specific administration amounts herein; however, those skilled in the art will be able to determine appropriate therapeutically effective amounts based on the guidance provided herein, information available in the aft pertaining to ERM compounds, and routine testing.
  • a therapeutically effective amount means an amount of the IRM compound sufficient to induce a therapeutic or prophylactic effect, such as cytokine induction, inhibition of TH2 immune response, antiviral or antitumor activity, reduction or elimination of postsurgical scarring, reduction or resolution of actinic keratosis or pre-actinic keratosis lesions, reduction in the recurrence of actinic keratosis, treatment of basal cell carcinoma, genital warts, peri-anal warts, molloscum contagiosum, or protection against uv-induced epidermal neoplasia.
  • the amount of IRM compound present in a topical formulation of the invention will be an amount effective to treat a targeted condition, to prevent recurrence of the condition, or to promote immunity against the condition.
  • the amount or concentration of IRM compound is at least 3% by weight, such as, for example, at least 5%, and at least 10%, by weight based on the total weight of the formulation.
  • the amount of IRM compound is at most 10% by weight, such as, for example, at most 5%, at most 3%,
  • the amount or concentration of IRM compound is at least 0.02% by weight, such as, for example, at least 0.03%, at least 0.10%, and at least 0.30% by weight based on the total weight of the formulation.
  • the topical formulations of the invention include fatty acids.
  • the topical formulations of the invention contain an oleic acid component.
  • fatty acid means a carboxylic acid, either saturated or unsaturated having 6 to 28 carbon atoms, such as, for example, from 10 to 22 carbon atoms.
  • the fatty acids, including the oleic acid component may be present in the formulation in an amount sufficient to solubilize the IRM compound-
  • the amount of oleic acid component is at least 0.05% by weight, at least 1.0% by weight, at least 3.0% by weight, at least 5.0%, at least 10%, at least 15%, or at least 25%, based on the total weight of the formulation.
  • the amount of oleic acid component is at most 40% by weight, at most 30% by weight, at most 15% by weight, or at most 10%, based on the total weight of the formulation.
  • Compendial grade oleic acid typically contains from 65 to 88 percent (Z)- octadec-9-enoic acid (oleic acid) together with varying amounts of saturated and other unsaturated fatty acids.
  • the composition of fatty acids is determined by gas chromatography using the method described in European Pharmacopeia monograph 01/2005:0799.
  • the oleic acid component contains at least 50%, at least 60%, at least 70% or at least 80% oleic acid.
  • the oleic acid component contains at least 80% oleic acid.
  • the oleic acid component is substantially free of polar impurities, such as peroxides.
  • the oleic acid component contains less than 10%, less than 5%, less than 1%, or less than 0.1% by weight of polar impurities.
  • the oleic acid component has a peroxide value less than 10.
  • the oleic acid component has a peroxide value less than 5.
  • the oleic acid component comprises SUPER REFINED Oleic Acid NF, available from Crodalnc, Edison, New Jersey, USA.
  • the topical formulations of the invention can include fatty acids in addition to tf j ose included in the oleic acid component.
  • fatty acids in addition to tf j ose included in the oleic acid component.
  • certain embodiments can-inclt ⁇ e isostearic acid.
  • the total amount of fatty acids, including those in the oleic acid component is at least 0.05% by weight, at least 1.0% by weighs at least 3.0% by weight, at least 5.0%, at least 10%, at least 15%, or at least 25%, based on the total weight of the formulation.
  • the total amount of fatty acids, including those in the oleic acid component is at most 40% by weight, at most 30% by weight, at most 15% by weight, or at most 10%, based on the total weight of the formulation.
  • topical formulations of the invention can include an antioxidant.
  • Suitable antioxidants are those that are pharmaceutically acceptable and described in the International Cosmetic Ingredient Dictionary and Handbook, Ninth Edition, Volume 4, 2002, and in the USP NF 2004: The United States Pharmacopeia, 27 th Revision and The National Formulary, 22 nd Edition.
  • antioxidants examples include ascorbic acid (D and/or L e ⁇ antiomers), ascorbyl palmitate (D and/or L enantiomers), bufylated hydroxyan ⁇ sole (BHA), butylated hydroxytoluene (BHT), cysteine (D and/or L enantiomers), propyl gallate, sodium formaldehyde sulfoxylate, sodium thiosulfate, and tocopherol.
  • ascorbic acid D and/or L e ⁇ antiomers
  • ascorbyl palmitate D and/or L enantiomers
  • BHA bufylated hydroxyan ⁇ sole
  • BHT butylated hydroxytoluene
  • cysteine D and/or L enantiomers
  • the antioxidant is selected from the group comprising aromatic hydroxy groups capable of hydrogen atom donation.
  • antioxidants include BHA, BHT, propyl gallate, and tocopherol.
  • the antioxidant is selected from the group consisting of BHA, BHT, and combinations thereof.
  • the antioxidant is BHA.
  • the formulation often will include a preservative system.
  • the preservative system includes one or more compounds that inhibit microbial growth. (e.g., fungal and bacterial growth) within the formulation (for example, during manufacturing and use).
  • the preservative system will generally include at least one preservative compound, such as, for example, methylparaben, ethylparaben, propylparaben,
  • the preservative system includes methylparaben, propylparaben and benzyl alcohol.
  • the preservative compound is present in an amount of atleast 0.01% by weight, such as for example, at least 0.02%, at least 0.03%, at least 0.04%, and at least 0.05%, by weight based on the total weight of the formulation.
  • the preservative compound is present in an amount of at most 3 %, such as for example, at most 2.5%, at most 2.0%, at most 1.0%, at most 0.5%, at most 0.4%, at most 0.3%, and at most 0.2%, by weight based on the total weight of the formulation.
  • Emollients such as for example, at most 2.5%, at most 2.0%, at most 1.0%, at most 0.5%, at most 0.4%, at most 0.3%, and at most 0.2%, by weight based on the total weight of the formulation.
  • the topical formulations of the invention may also include at least one emollient.
  • emollients include but are not limited to long chain alcohols, for example, cetyl alcohol, stearyl alcohol, cetearyl alcohol; fatty acid esters, for example, isopropyl mysristate, isopropyl palmitate, diisopropyl dimer dilmoleate; medium-chain (e.g., 8 to 14 carbon atoms) triglycerides, for example, caprylic/capric triglyceride; cetyl esters; hydrocarbons of 8 or more carbon atoms, for example, light mineral oil, white petrolatum; and waxes, for example, beeswax.
  • Various combinations of such emollients can be used if desired.
  • the amount of the emollient is at least 1.0% by weight, at least 3.0% by weight, at least 5.0% by weight, or at least 10% by weight, based on the total weight of the formulation. In certain embodiments, the amount of emollient is at most 30% by weight, at most 15% by weight, or at most 10% by weight, based'on the total weight of the formulation.
  • Formulations intended for dermal or topical use typically have amounts of an oil phase and an emollient sufficient to provide desirable qualities such as spreadabilhy and feel.
  • Viscosity Enhancing Agent The formulations of the present invention can also comprise a viscosity- enhancing agent
  • suitable viscosity enhancing agents include long chain alcohols, for example, cetyl alcohol, stearyl alcohol, cetearyl alcohol; cellulose ethers such as hydroxypropylmethyl cellulose, hydroxyethylcellulose, hydroxypropylcellulose, and carboxymethylcellulose; polysaccharide gums such as
  • xanthan gum and homopolymers and copolymers of acrylic acid crossli ⁇ ked with allyl sucrose ⁇ allyl pe ⁇ taerythrioJ such as those polymers designated as carbomers in the United States Pharmacopoeia.
  • Suitable carbomers include, for example, those available as CARBOPOL 934P, CARBOPOL 971P, CARBOPOL 940, CARBOPOL.974P, CARBOPOL 980, and PEMULEN TR-I (USP/NF Monograph; Carbomer 1342), all available from Noveon, Cleveland, Ohio.
  • the amount of the viscosity enhancing agent s when used is at least 0.1% by weight, at least 0.2% by weight, at least 0.5% by weight, at least 0.6% by weight, at least 0.7% by weight, at least 0.9% by weight, or at least 1.0% by weight, based on the total weight of the formulation. In certain embodiments, the amount of the viscosity-enhancing agent, when used, is at most 10% by weight, at most 5.0% by weight, at most 3.0% by weight, at most 2.0% by weight, or at most 1.5% by weight, based on the total weight of the.formulation.
  • Emulsif ⁇ er The formulations of the invention can additionally comprise an emulsifier.
  • Suitable er ⁇ ulsif ⁇ ers include non-ionic surfactants such as, for example, polysorbate 60, sorbitan monostearate, polyglyceryl-4 oleate, polyoxyethyle ⁇ e(4) Iauryl ether, etc.
  • the emulsifier is chosen from poloxamers (e.g., PLURONIC F68, also known as POLOXAMER 188, a poly(ethylene glycol)-block- poly(propylene glycol)-bloclc-poly(ethylene glycol), available from BASF,
  • sorbitan trioleate e.g., SPAN 85 available from Un ⁇ qema, New Castle, DE.
  • the emulsifier is generally present in an amount of 0.1% to 10% by Weight of total formulation weight, for example, from 0.5% to 5.0% by weight, and from 0.75% to 4.0% by weight. In certain embodiments, the amount of the emulsifier, if used, is present in an amount of at least 0.1% by weight, at least 0.5% by weight, at least 0.75% by weight, at least 1.0% by weight, at least 2.5% by weight, at least 3.5% by weight, at least 4.0% by weight, or at least 5.0% by weight, based on the total weight of the formulation. In certain embodiments, the amount of the emulsifier, if used; is present in an amount of at most 10% by weighty at most 5.0% by weight, or at most 3.5% by weight, based on the total weight of the formulation.
  • Some formulations of the invention are oil-in-water emulsions.
  • the water used in these formulations is typically purified water
  • a formulation of the invention can contain additional pharmaceutically acceptable excipients such as humectants, such as for example, • glycerin; chelating agents, such as for example, ethylenediaminetetraacetic acid] and pH adjusting agents, ' such as for example, potassium hydroxide or sodium hydroxide.
  • humectants such as for example, • glycerin
  • chelating agents such as for example, ethylenediaminetetraacetic acid]
  • pH adjusting agents such as for example, potassium hydroxide or sodium hydroxide.
  • a single ingredient can perform more than one function in a formulation.
  • cetyl alcohol can serve as both an emollient and a viscosity enhancer.
  • Illustrative Formulation in one embodiment of the present invention, includes:
  • Formulations according to the present invention can be applied to any suitable location, for example topically to dermal and/or mucosal surfaces.
  • the therapeutic effect of the IRM compound may extend only to the superficial layers of the dermal surface or to tissues below the dermal surface.
  • another aspect of the present invention is directed to a method for the treatment of a dermal and/or mucosal associated
  • a "dermal and/or mucosal associated condition” means an inflammatory, infectious, neoplastic or other condition that involves a dermal and/or mucosal surface or that is in sufficient proximity to a dermal and/or mucosal surface to be affected by a therapeutic agent topically applied to the surface.
  • Examples of a dermal and/or mucosal associated condition include warts, atopic dermatitis, postsurgical scars, lesions caused by a herpes virus, and epidermal neoplasias, such as for example actinic keratosis, pre-actinic keratosis lesions, malignant melanomas, basal cell carcinoma, and squamous cell carcinoma.
  • the formulations can be applied to the surface of skin for treatment of actinic keratosis (AK).
  • Actinic keratosis are premal ⁇ gnant lesions considered biologically to be either carcinoma in-s ⁇ tu or squamous intraepi dermal neoplasia.
  • AK is the most frequent epidermal tumor and is induced by ultraviolet (UV) radiation, typically from sunlight. Because of its precancerous nature, AK may be considered the most important manifestation of sun-induced skin damage.
  • the above-described formulations are particularly advantageous for dermal and/or mucosal application for a period of time sufficient to obtain a desired therapeutic effect without undesired systemic absorption of the IRM compound.
  • HPLC reversed phase high performance liquid chromatography
  • HPLC parameters Analytical column: ZORBAX RX C8, 5 micron particle, 15.0 x 0.46 cm, (available from Agilent Technologies, Wilmington, Delaware, USA); Detector: UV at 308 run; Mobile phase: gradient mixture of aqueous
  • Sample solution A portion (about 300 mg) of the cream formulation was accurately weighed into a volumetric flask (100 mL). Diluent (50 to 60 mL, prepared by combining 250 parts of acetonitrile, 740 parts of water and 10 parts of hydrochloric acid, all parts by volume) was added to the flask. The flask was vortexed until the cream was completely dispersed and then sonicated for a minimum of 5 minutes. The solution was allowed to cool to ambient temperature and then diluted to volume with diluent and mixed. A portion of the solution was filtered using a syringe equipped with a 0.45 micron polypropylene or polytetralfluoroethylene filter to provide the sample solution.
  • the cream formulations in Table 1 below were prepared using the following method.
  • Water phase preparation A paraben premix was prepared by combining methyl hydroxybenzoate (methylparaben), propyl hydroxybenzoate (propylparaben), and water; heating the mixture with stirring until the parabens were dissolved; and then allowing the resulting solution to cool to ambient temperature.
  • Glycerin was added to the premix and the mixture was heated to 55 ⁇ S 0 C.
  • Xanthan gum was slowly added with mixing. Mixing with heating was continued until the xanthan gum was dispersed.
  • Oil phase preparation An imiquimod/oleic acid premix was prepared by combining imiquimod and the oleic acid and then stirring at ambient temperature overnight Petrolatum, cetyl alcohol, stearyl alcohol, polysorbate 60, sorbitan monostearate; and butylated hydroxyanisole (BHA),- if included; were added to the premix. The oil phase was then heated with stirring to 55 ⁇ 5 0 C. Benzyl-alcohol was added to the oil phase just prior to phase combination.
  • BHA butylated hydroxyanisole
  • Phase combination 1 Both phases were removed from their heat source. The aqueous phase was added to the oil phase and the emulsion was homogenized at •
  • the cream was placed in an ice/water bath while homogenizing and homogenization was continued until the temperature of the cream was 35 0 C.
  • the homogenizer speed was reduced and homogenization was continued until the temperature of the cream was 25°C.
  • Table 1 summarizes creams A-D in percentage weight-by-weight basis. The formulations were packaged in glass containers.

Abstract

Pharmaceutical formulations and methods including an immune response modifier (IRM) compound and an oleic acid component are provided where stability is improved by using oleic acid have low polar impurities such as peroxides.

Description

IMMUNE RESPONSE MODIFIER FORMULATIONS CONTAINING OLEIC ACID AND METHODS
CROSS-REFERENCE TO RELATED APPLICATIONS This application claims benefit of US provisional application 60/636916, filed December 17, 2004, and 11/303659 filed December 16, 2005, the contents of which are hereby incorporated by reference.
FIELD OF THE INVENTION
The present invention relates to pharmaceutical formulations for the topical or transdermal delivery of immunαmodifying drugs.
BACKGROUND There has been a major effort in recent years, with significant success, to discover new drug compounds that act by stimulating certain key aspects of the immune system, as well as by suppressing certain other aspects. These compounds, referred to herein as immune response modifiers (IRMs), appear to act through immune system mechanisms known as toll-like receptors to induce selected cytokine biosynthesis. They may be useful for treating a wide variety of diseases and conditions. For example, certain IRMs may be useftil for treating viral diseases (e.g., human papilloma virus, hepatitis, herpes), neoplasias (e.g., basal cell carcinoma, squamous cell carcinoma, actinic keratosis, melanoma), and TH2- mediated diseases (e.g., asthma, allergic rhinitis, atopic dermatitis), and are also useful as vaccine adjuvants.
Many of the IRM compounds are small organic molecule imidazoquinoliπe amine derivatives (see, e.g., U-S. Pat. No. 4,689,338), but a number of other compound classes are known as well (see, e.g., U.S. Pat. Nos. 5,446,153, 6,194,425, and 6,110,929) and more are still being discovered. One of these IRM compounds, known as imiquimod, has been commercialized in a topical formulation, ALDARA, forthe treatment of actinic keratosis, basal cell carcinoma, or anogenital warts associated with human papillomavirus.
Pharmaceutical formulations containing IRM compounds are disclosed in U.S. Patent Nos.5,238,944; 5,939^090; and 6,425,776; European Patent 0 394 026; and U.S. Patent Publication 2003/0199538.
Although some of the beneficial effects of ERMs are known, the ability to provide therapeutic benefit via topical application of an IRM compound for treatment of a particular condition at a particular location may be hindered by a variety of factors. These factors include: irritation of the skin to which the formulation is applied; formulation wash away; insolubility of the IRM compound in the formulation; chemical degradation of the IRM compound and/or other ingredients, physical instability of the formulation (e.g., separation of components, thickening, precipitation/agglomerization of active ingredient, and the like); poor permeation; and uπdesired systemic delivery of topical IRM formulations if not intended to be transdermal.
Accordingly, there is a continuing need for new and/or improved IRM formulations.
SUMMARY
It has now been found that, while oleic acid can be used to solublize IRMs, even difficult to formulate, highly insoluble IRMs, formulations comprising an IRM compound in combination with oleic acid can suffer from impaired stability. Somewhat surprisingly, addition of greater amounts of antioxidants to the formulation does not solve the problem. However, it has been found that utilizing an oleic acid component having reduced amounts of polar impurities, such as peroxides, aldehydes, alcohols, and ketones in a formulation containing an IRM can reduce the formation of impurities and thereby provide improved formulation stability. Instability is an important issue for pharmaceutical formulations and can reduce the shelf life of a product or jeopardize regulatory approvabilϊty.
It has been discovered that the stability of a formulation containing an IRM compound and oleic acid can be improved by utilizing an oleic acid component that is free of or contains low amounts of polar impurities, such as peroxides, aldehydes, alcohols, and ketones . Although not intending to be bound to any particular theory or mechanism, it is hypothesized that the higher amounts of polar impurities present in the oleic acid component can react with the IRM compound, thereby destabilizing the formulation and increasing the rate of formation of impurities derived from the IRM compound.
In one aspect, the present invention provides a pharmaceutical formulation comprising a therapeutically effective amount of an immune response modifier (IRM) compound and a pharmaceutically acceptable vehicle including an oleic acid component, wherein the formulation is substantially free of polar impurities introduced by the oleic acid component
In another aspect, the present invention provides a pharmaceutical formulation comprising: a therapeutically effective amount of an IRM compound and a pharmaceutically acceptable vehicle including an oleic acid component wherein the oleic acid component has a peroxide value no greater than 5. In another aspect, the present invention provides a pharmaceutical formulation comprising: a therapeutically effective amount of an IRM compound and a pharmaceutically acceptable vehicle including an oleic acid component, wherein the oleic acid component is at least 80% oleic acid.
The present invention also provides methods. In one aspect, the present invention provides a method of stabilizing a pharmaceutical formulation comprising a therapeutically effective amount of an immune response modifier (IRM) compound and oleic acid by using an oleic acid component that is substantially free of polar impurities.
In one aspect, the present invention provides a method of stabilizing a pharmaceutical formulation comprising a therapeutically effective amount of an IRM compound and oleic acid by using an oleic acid component with a peroxide value no greater than 5.
In one aspect, the present invention provides a method of stabilizing a pharmaceutical formulation comprising a therapeutically effective amount of an IRM compound and oleic acid by using an oleic acid component that is at least 80% oleic acid.
In another aspect, the present invention provides methods for treating disease, including but not limited to the group comprising actinic keratosis, basal cell carcinoma, genital warts, peri-anal warts, malignant melanoma, and molloscum contagϊosum. In another aspect, the present invention provides methods to induce cytokine biosynthesis. In another aspect, the present invention provides methods to induce interferon biosynthesis.
A number of additional embodiments can be described as follows: 1. A pharmaceutical formulation comprising:
a therapeutically effective amount of an immune response modifier (IRM) compound selected from the group consisting of imidazoqumoline amines, tetrahydroimidazoquϊnoline amines, ϊmidazopyridfaie amines, 6,7-fused cycloalkylimidazopyridine amines, 1,2- bridged imidazoquinoline amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazoloquinoline amines, thiazoloquϊnoline amines, oxazolopyridine amines, thiazolopyridine amines, oxazolonaphthyridine amines, thiazolonaphthyridine amines, l^T-imidazo dimers fused to pyridine amines, quiπoline amines, tetrahydroquϊnoline amines, naphthyridϊne amines, ortetrahydroπaphthyridine amines, and combinations thereof; and a pharmaceutically acceptable vehicle including an oleic acid component, wherein the formulation is substantially free of polar impurities introduced by the oleic acid component.
2. A pharmaceutical formulation comprising: a therapeutically effective amount of an IRM compound selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, 1,2- bridged imidazoquinoline amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazoloquinoline amines, thiazoloquinoline amines, oxazolopyridine amines, thiazolopyridine amines, oxazolonaphthyridine amines, thiazolonaphthyridine amines, lif-imidazo dimers fused to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridine amines, or tetrahydronaphthyridine amines, and combinations thereof; and a pharmaceutically acceptable vehicle including an oleic acid component, wherein the oleic acid component has a peroxide value no greater than 5.
3* A pharmaceutical formulation comprising: a therapeutically effective amount of an IRM compound selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, 1,2- bridged imidazoquinoline amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazoloquinoline amines, thiazoloquinoline amines, oxazolopyridine amines, thiazolopyridine amines, oxazolonaphthyridine
amines, thiazolonaphthyridine amines, liWmidazo dimers fused to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridine amines, or tetrahydronaphthyridine amines, and combinations thereof; and a pharmaceutically acceptable vehicle including an oleic acid component, wherein the oleic acid component is at least 80% oleic acid.
4. A formulation as in any one of the preceding embodiments wherein the IJRM compound is selected from the group consisting of amide substituted imidazoquinolϊne amines, sulfonamide substituted imidazoquinoline amines, urea substituted imidazoquinoline amines, aryl ether substituted imidazoquinoline amines, heterocyclic ether substituted imidazoquinoline amines, amido ether substituted imidazoquinoline amines, sulfonamido ether substituted imidazoquinoline amines, urea substituted imidazoquinoline ethers, thioether substituted imidazoquinoline amines, 6-, 7-, 8-, or 9-aryl, heteroaryl, aryloxy or arylalkyleneoxy substituted imidazoquinoline amines, imidazoquinoline diamines, amide substituted tetrahydroimidazoquinoline amines, sulfonamide substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline amines, aryl ether substituted tetrahydroϊmϊdazoquinolin.e amines, heterocyclic ether substituted tetrahydroimidazoquinoline amines, amfdo ether substituted tetrahydroimidazoquinoline amines, sulfonamido ether substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline ethers, thioether substituted tetrahydroimidazoquinoline amines, tetrahydroimidazoquinoline diamines, amide substituted imidazopyridine amines, sulfonamide substituted imidazopyridine amines, urea substituted imidazopyridine amines, aryl ether substituted imidazopyridine amines, heterocyclic ether substituted imidazopyridine amines, amido ether substituted imidazopyridine amines, sulfonamido ether substituted imidazopyridine amines, urea substituted imidazopyridine ethers, thioether substituted imidazopyridine amines, and combinations thereof.
5. A formulation as in any one of embodiments 1 through 3 wherein the IRM compound is an imidazonaphthyridine amine.
6. A formulation as in any one of embodiments 1 through 3 and 5 wherein the IRM compound is 2-methyl-l-(2-methylpropy])- l-Y-imidazo^S-c^l^jnaphthyridin-^ amine.
7. A formulation as in any one of embodiments 1 through 3 wherein the IRM compound is l-(2-memyIpropyl>liy-imidazo[4,5-c]quinolϊn-4-ainine.
8. A formulation as in any one of the preceding embodiments wherein the IRM compound is present in an amount of at least 3% by weight, based on the total weight of the formulation.
9. A formulation as in any one of the preceding embodiments wherein the IRM compound is present in an amount of at least 5% by weight, based on the total weight of the formulation.
10. A formulation as in any one of the preceding embodiments wherein the oleic acid component is present in an amount of at least 15% by weight based on the total weight of the formulation.
11. A formulation as in any one of the preceding embodiments wherein the oleic acid component is present in an amount of at least 20% by weight based on the total weight of the formulation.
12. A formulation as in any one of the preceding embodiments wherein the oleic acid component is present in an amount of at least 25% by weight based on the total weight of the formulation.
13. A formulation as in any one of the preceding embodiments wherein the oleic acid component has been purified by chromatography prior to use in the formulation.
14. A formulation as in any one of the preceding embodiments wherein the oleic acid component is plant-derived.
" 15: A formulation as in anyone of the preceding embodiments wherein the formulation'includes at least one fatty acid other than oleic acid or isostearic acid.
16. A formulation as in any one of the preceding embodiments wherein the formulation includes" less than 3% isostearic acid by weight based on the total weight of the formulation.
17. A formulation as in any one of the preceding embodiments wherein the formulation further comprises an antioxidant.
18. A formulation as in any one of the preceding embodiments further comprising an antioxidant, wherein the antioxidant is butylated hydroxyl toluene or butylated hydroxyanisole.
19. A formulation of any one of the preceding embodiments further comprising water.
20. A formulation of any one of the preceding embodiments further comprising a preservative system.
21. A formulation of any one of the preceding embodiments further comprising an emulsifier.
22. A method of stabilizing a pharmaceutical formulation comprising a therapeutically effective amount of an immune response modifier (IRM) compound selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkyltmidazopyridme amines, 1,2- bridged imidazoquinoline amines, ϊmϊdazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazoloquinolϊne amines; thϊazoloquϊnoline amines, oxazolopyrϊdine amines, thiazolopyridϊne amines, oxazolonaphthyridine amines, thiazolonaphthyridine amines; lfWrnidazo dimers fused to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridine amines, or tetrahydronaphthyridine
amines, and combinations "thereof; and oleic acid by using an oleic acid component that is substantially free of polar impurities.
23. A method of stabilizing a pharmaceutical formulation comprising a therapeutically effective amount of an IRM compound selected from the group consisting of imidazoquϊnoJine amines, tetrahydroimidazoquinoliπe amines, imidazopyridine amines, 6,7-fiised cycloalkylimidazopyridine amines, 1,2- bridged imidazoquinoline amines, imidazonaphthyridine amines, tefrahydroimidazonaphthyridiπe amines, oxazoloquinoline amines, thiazoloquinoline amines, oxazolopyridine amines, thiazolopyridine amines, oxazolonaphthyridine amines, thiazolonaphthyridine amines, l/f-imidazo dimers fused to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridine amines, or tetrahydronaphthyridine amines, and combinations thereof; and oleic acid by using an oleic acid component with a peroxide value no greater than 5.
24. A method of stabilizing a pharmaceutical formulation comprising a therapeutically effective amount of an IRM compound selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridϊne amines, 1,2- bridged imidazoquinoline amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridϊne amines, oxazoloquinoline amines, thiazoloquϊnoline amines, oxazolopyridine amines, thiazolopyridine amines, oxazolonaphthyridine amines, thiazolonaphthyridine amines, lJY-imϊdazo dimers fused to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridine amines, or tetrahydronaphthyridine amines, and combinations thereof; and oleic acid by using an oleic acid component that is at least 80% oleic acid.
25. The method as in any one of embodiments 22 through 24 wherein the IRM compound is selected from the group consisting of: amide substituted imidazoquinoline amines, sulfonamide substituted ϊmidazoqurnolϊne amines, urea substituted imidazoquinoline amines, aryl ether substituted imidazoquinoline amines, heterocyclic ether substituted imidazoquinoline amines, amido ether substituted imidazoquinoline amines, sulfonamido ether substituted imidazoquinoline amines, urea substituted imidazoquinoline ethers, thioether
substituted imidazoquiήόline amines, 6-, 7-, 8-, or 9-aiyI, heteroaryl, aryloxy, or arylaLkyleneoxy substituted imidazoquinoline amines, imidazoquinoline diamines, amide substituted tetrahydroimidazoquinoline amines, sulfonamide substituted tetrahydroϊmidazoquinoline amines, urea substituted tetrahydroiτnidazoquiτioline amines, aryl ether substituted tetrahydroimidazoquinoline amines, heterocyclic ether substituted tetrahydroimidazoquinoline amines, amido ether substituted tetrahydroirnidazoquinoline amines, sulfonamido ether substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline ethers, thioether substituted tetrahydroimidazoquinoline amines, tetrahydroimidazoquinoline diamines, amide substituted imidazopyridine amines, sulfonamide substituted imidazopyridine amines, urea substituted imidazopyridine amines, aryl ether substituted imidazopyridine amines, heterocyclic ether substituted imidazopyridine amines, amido ether substituted imidazopyridine amines, sulfonamido ether substituted imidazopyridine amines, urea substituted imidazopyridine ethers, thioether substituted imidazopyridine amines, and combinations thereof.
26. The method as in any one of embodiments 22 through 24 wherein the IRM compound is an imidazoπaphthyridine amine.
27. The method as in any one of embodiments 22 through 24 and 26 wherein the IRM compound is 2-methyl-l-(2-methylpropyl)-li/'-imidazo[4,5- c][l,5]naphthyridin-4- amine.
28. The method as in any one of embodiments 22 through 24 wherein the IRM compound is l-(2-methylpropyl)-Ii/:-imidazo[4,5-c]quinolin-4-amine.
29. A method of treating actinic keratosis, the method comprising applying a formulation of any one of embodiments 1 through 21 to the skin of a subject.
30. A method of treating basal cell carcinoma, the method comprising applying a formulation of any one of embodiments 1 through 21 to the skin of a subject,-
31. A method of treating genital warts, the method comprising applying a ' formulation of any one of embodiments 1 through 21 to the skin or mucosal surface of a subject.
32. A method of treating peri-anal warts, the method comprising applying a formulation of any one of embodiments 1 through 21 to the skin or mucosal surface of a subject.
33. A method of treating molloscum contagiosum, the method comprising applying a formulation of any one of embodiments 1 through 21 to the skin of a subject.
34. A method of inducing cytokine biosynthesis, the method comprising applying a formulation of any one of embodiments 1 through 21 to the skin or mucosal surface of a subject.
35. A method of inducing interferon biosynthesis, the method comprising applying a formulation of any one of embodiments 1 through 21 to the skin or mucosal surface of a subject.
36. A method of treating malignant melanoma, the method comprising applying a formulation of any one of the preceding embodiments 1 through 21 to the skin of a subject.
The term "substantially free" is used to indicate that the amount present in the composition or formulation is below the level that causes degradation of the active pharmaceutical agent, such that the formulation is unsuitable for pharmaceutical usage, after storage for 4 months at 40 0C at 75% relative humidity. The term can also be used to describe a composition containing less than 10%, less than 5%, less than 1%, or less than 0.1% by weight of agiven substance. The term "polar impurities" includes, but is not limited to peroxides, aldehydes, ketones, alcohols, metal ions, and/or substances that cause degradation of the active pharmaceutical agent.
The term "oleic acid component" is used to describe a preformulation source or composition of matter containing oleic acid, and may include other fatty acids in
addition to oleic acid, including but not limited to: myristic acid, palmitic acid, palmitoleic acid, margaric acid, isostearic acid, stearic acid, linoleic acid, lϊnolenic acid, and other fatty acids, or combinations thereof.
The peroxide value is-the number that expresses in milliequivalents of active oxygen the quantity of peroxide contained in 1000 g of the substance as determined • by the methods described in the 5th edition of the European Pharmacopoeia, Section 2.5.5.
Unless otherwise indicated, all numbers expressing quantities, ratios, and numerical properties of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term "about".
All parts, percentages, ratios, etc. herein are by weight unless indicated otherwise.
As used herein, "a" or "an" or "the" are used interchangeably with "at least one" to mean "one or more" of the listed element.
The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The description that follows more particularly exemplifies illustrative embodiments. In several places throughout the application, guidance Ls provided through lists of examples, which examples can be used in various combinations. In each instance, the recited list serves only as a representative group and should not be interpreted as an exclusive list.
DETAILED DESCRIPTION The present invention provides pharmaceutical formulations that include a therapeutically effective amount of an immune response modifier (IRM) compound selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylϊmidazopyridine amines, 1 ,2- bridged imidazoquinoline amines, imidazonaphthyridine amines.'-tetrahydroirnidazonaphthyridine amines, oxazoloquinoline amines, thiazoloquinoline amines, oxazolopyridine amines, thiazolopyridine amines, oxazolonaphthyridiπe amines, tbiazolonaphthyridine amines, and lϋf-imidazo dimers fused to pyridine amines, quinoline amines,etrahydroquinolϊne amines, naphthyridine amines, or tetrahydronaphthyridine
amines, and-ojeic acid, wherein the oleic acid component contains a low amount of polar impurities, especially peroxides. Surprisingly, the stability of such formulations is substantially greater than that of similar formulations containing an IRM compound and oleic acid containing conventional oleic acid with higher 5 amounts of polar impurities such as peroxides, even when the oleic acid component is of compendial grade. Furthermore, the instability problem of these formulations is not eliminated by additional antioxidants.
Through utilization of an oleic acid component containing a very low amount of polar impurities, the subsequent formation of impurities in IRM formulations is 10 significantly reduced as compared to other IRM formulations comprising compendial grades of oleic acid after both the initial measurement (i.e., its measurement when initially formulated) and under accelerated conditions (when stored for at least 4 months at 40'C and 75% relative humidity), resulting in an increased formulation shelf Jife. 5 For certain embodiments, the formulation comprises an IRM compound and a pharmaceutically acceptable vehicle including an oleic acid component, wherein the formulation is substantially free of polar impurities introduced by the oleic acid component. For certain embodiments, the formulation comprises an IRM compound and a pharmaceutically acceptable vehicle including an oleic acid component,0 wherein the oleic acid component has a peroxide value no greater than 5. For certain embodiments, the formulation comprises an IRM compound and a pharmaceutically acceptable vehicle including an oleic acid component, wherein the oleic acid component is at least 80% oleic acid.
In certain embodiments, formulations described herein can be in the form of an oil-in-water emulsion such as a cream or a lotion. The oil component of the formulation includes an IRM compound and one or more fatty acids, including oleic acid in an amount sufficient to solubϊlize the IRM compound. Optionally, a cream or lotion of the invention can contain emollients, antioxidants, emulsifiers, viscosity enhancing agents, and/or preservatives. Such components, as well as all others of the formulations described herein,- are preferably pharmaceutically acceptable. Immune Response Modifying Compounds
Formulations of the invention include an IRM compound. Such compounds include, for example, imidazoquinoline amines including, but not limited to, substituted imidazoquinoline amines such as, for example, amide substituted
imidazoquinoline amines, sulfonamide substituted imidazoquinoline amines, urea substituted imidazoquinoline amines, aryl ether substituted imidazoquinoline amines, heterocyclic ether substituted imidazoquinoline amines, atnido ether substituted imidazoquinoline amines, sulfonamide ether substituted imidazoquinoline amines, urea substituted imidazoquinoline ethers, thioether substituted imidazoquinoline amines, 6-, 7-, 8-, or 9-aryl, heteroaryl, aryloxy or arylalkyleneoxy substituted imidazoquinoline amines, and imidazoquinoline diamines; tetrahydroimidazoquinoline amines including, but not limited to, amide substituted tetrahydroimidazoquinoline amines, sulfonamide substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline amines, aryl ether substituted tetrahydroimidazoquinoline amines, heterocyclic ether substituted tetrahydroimidazoquinoline amines, amϊdo ether substituted tetrahydroimidazoquinoline amines, sulfonamide ether substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline ethers, thioether substituted tetrahydroimidazoquinoline amines, and tetrahydroquiπoline diamines; imidazopyridine amines including, but not limited to, amide substituted imidazopyridine amines, sulfonamide substituted imidazopyπdine amines, urea substituted imidazopyridine amines, aryl ether substituted imidazopyridine amines, heterocyclic ether substituted imidazopyridine amines, amido ether substituted imidazopyridine amines, sulfonamide ether substituted imidazopyridine amines, urea substituted imidazopyridine ethers, and thioether substituted imidazopyridine amines; 1,2-bridged imidazoquinoline amines; 6,7-fused cycloalkylimidazopyridine amines; imidazonaphthyridine amines; tetrahydroimidazonaphthyridine amines; oxazoloquinoline amines; thiazoloquinoline amines; oxazolopyridine amines; thiazolopyridine amines; oxazolonaphfhyridine amines; thiazolonaphthyridine amines; and lff-imidazo dimers fused to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridϊne amines, or tetrahydronaphthyridine amines.
These immune response modifier compounds are disclosed in, e.g., U.S. Patent Nos 4,689,338; 4,929,624; 5,266,575; 5,268,376; 5;346,905;- 5,352,784; 5,389,640; 5,446,153; 5,482,936; 5,756,747; 6,110,929; 6,194,425; 6,331,539; 6,376,669; 6,451,810; 6,525,064; 6,541,485; 6,545,016; 6,545,017; 6,573,273; ,656,938; 6,660,735; 6,660,747; 6,664,260; 6,664,264; 6,664,265; 6,667,312; ,670,372; 6,677,347; 6,677,348; 6,677,349; 6,683,088; 6,756,382; U.S. Patent
Publication Nos. 2004/0091491; 2004/0132766; 2004/0147543; and 2004/0176367; and International Patent Application No. PCT/US04/2S021 filed on August 27, 2004.
For certain of these embodiments, the IRM compound is an imidazonaphthyridine amine. For certain of these embodiments, the IRM compound is 2-methyl-l-(2-methyIρropyl)- liMmidazo[4,5-c][l,5]naphthyridin-4-amine. For certain of these embodiments, the IRM compound is an imidazoquiπoline amine. For certain of these embodiments, the IRM compound is l-(2-methylpropyt)-lϋf- imidazo[4,5-c]quinoIin-4-amϊne (imiquimod). For some embodiments, the IRM may have low solubility in water, for example less than about 1 ug/mL (e.g., 0.79 ug/mL in the case of imiquimod), making them difficult to solubilize in aqueous formulations, and potentially using relatively large amounts of oleic acid in the formulation.
The amount of IRM compound that will be therapeutically effective in a specific situation will depend on such things as the activity of the particular compound, the dosing regimen, the application site, the particular formulation and the condition being treated. As such, it is generally not practical to identify specific administration amounts herein; however, those skilled in the art will be able to determine appropriate therapeutically effective amounts based on the guidance provided herein, information available in the aft pertaining to ERM compounds, and routine testing. The term "a therapeutically effective amount" means an amount of the IRM compound sufficient to induce a therapeutic or prophylactic effect, such as cytokine induction, inhibition of TH2 immune response, antiviral or antitumor activity, reduction or elimination of postsurgical scarring, reduction or resolution of actinic keratosis or pre-actinic keratosis lesions, reduction in the recurrence of actinic keratosis, treatment of basal cell carcinoma, genital warts, peri-anal warts, molloscum contagiosum, or protection against uv-induced epidermal neoplasia.
In general, the amount of IRM compound present in a topical formulation of the invention will be an amount effective to treat a targeted condition, to prevent recurrence of the condition, or to promote immunity against the condition. In certain embodiments, the amount or concentration of IRM compound is at least 3% by weight, such as, for example, at least 5%, and at least 10%, by weight based on the total weight of the formulation. Ia other embodiments, the amount of IRM compound is at most 10% by weight, such as, for example, at most 5%, at most 3%,
by weight based on the total weight of the formulation. In certain embodiments, the amount or concentration of IRM compound is at least 0.02% by weight, such as, for example, at least 0.03%, at least 0.10%, and at least 0.30% by weight based on the total weight of the formulation. Fatty Acids
The topical formulations of the invention include fatty acids. In particular, the topical formulations of the invention contain an oleic acid component. As used herein, the term "fatty acid" means a carboxylic acid, either saturated or unsaturated having 6 to 28 carbon atoms, such as, for example, from 10 to 22 carbon atoms. The fatty acids, including the oleic acid component, may be present in the formulation in an amount sufficient to solubilize the IRM compound- In certain embodiments, the amount of oleic acid component is at least 0.05% by weight, at least 1.0% by weight, at least 3.0% by weight, at least 5.0%, at least 10%, at least 15%, or at least 25%, based on the total weight of the formulation. In certain embodiments, the amount of oleic acid component is at most 40% by weight, at most 30% by weight, at most 15% by weight, or at most 10%, based on the total weight of the formulation.
Compendial grade oleic acid typically contains from 65 to 88 percent (Z)- octadec-9-enoic acid (oleic acid) together with varying amounts of saturated and other unsaturated fatty acids. The composition of fatty acids is determined by gas chromatography using the method described in European Pharmacopeia monograph 01/2005:0799.
For certain embodiments, the oleic acid component contains at least 50%, at least 60%, at least 70% or at least 80% oleic acid. For certain embodiments, the oleic acid component contains at least 80% oleic acid.
For certain embodiments, the oleic acid component is substantially free of polar impurities, such as peroxides. For certain embodiments, the oleic acid component contains less than 10%, less than 5%, less than 1%, or less than 0.1% by weight of polar impurities. For certain embodiments, the oleic acid component has a peroxide value less than 10. For certain embodiments, the oleic acid component has a peroxide value less than 5.
For certain embodiments, the oleic acid component comprises SUPER REFINED Oleic Acid NF, available from Crodalnc, Edison, New Jersey, USA.
For certain embodiments,, the topical formulations of the invention, can include fatty acids in addition to tfjose included in the oleic acid component. For example, certain embodiments can-incltκ}e isostearic acid. In some embodiments, the total amount of fatty acids, including those in the oleic acid component, is at least 0.05% by weight, at least 1.0% by weighs at least 3.0% by weight, at least 5.0%, at least 10%, at least 15%, or at least 25%, based on the total weight of the formulation. In certain embodiments, the total amount of fatty acids, including those in the oleic acid component, is at most 40% by weight, at most 30% by weight, at most 15% by weight, or at most 10%, based on the total weight of the formulation.
Antioxidants
For certain embodiments, the topical formulations of the invention can include an antioxidant.
Suitable antioxidants are those that are pharmaceutically acceptable and described in the International Cosmetic Ingredient Dictionary and Handbook, Ninth Edition, Volume 4, 2002, and in the USP NF 2004: The United States Pharmacopeia, 27th Revision and The National Formulary, 22nd Edition.
Examples of suitable antioxidants include ascorbic acid (D and/or L eπantiomers), ascorbyl palmitate (D and/or L enantiomers), bufylated hydroxyanϊsole (BHA), butylated hydroxytoluene (BHT), cysteine (D and/or L enantiomers), propyl gallate, sodium formaldehyde sulfoxylate, sodium thiosulfate, and tocopherol.
For certain embodiments, the antioxidant is selected from the group comprising aromatic hydroxy groups capable of hydrogen atom donation. Examples of such antioxidants include BHA, BHT, propyl gallate, and tocopherol.
For certain embodiments, the antioxidant is selected from the group consisting of BHA, BHT, and combinations thereof. For certain embodiments, the antioxidant is BHA. Preservative System The formulation often will include a preservative system. The preservative system includes one or more compounds that inhibit microbial growth. (e.g., fungal and bacterial growth) within the formulation (for example, during manufacturing and use). The preservative system will generally include at least one preservative compound, such as, for example, methylparaben, ethylparaben, propylparaben,
butyϊparaben, benzyl alcohol, phenoxyethanol, and sorbic acid or derivatives of sorbic acϊd such as esters and salts. Various combinations of these compounds can be included in the preservative system. In some embodiments of the invention, the . preservative system includes methylparaben, propylparaben and benzyl alcohol. Tn some embodiments of the invention, the preservative compound is present in an amount of atleast 0.01% by weight, such as for example, at least 0.02%, at least 0.03%, at least 0.04%, and at least 0.05%, by weight based on the total weight of the formulation. In other embodiments of the invention the preservative compound is present in an amount of at most 3 %, such as for example, at most 2.5%, at most 2.0%, at most 1.0%, at most 0.5%, at most 0.4%, at most 0.3%, and at most 0.2%, by weight based on the total weight of the formulation. Emollients
The topical formulations of the invention may also include at least one emollient. Examples of useful emollients include but are not limited to long chain alcohols, for example, cetyl alcohol, stearyl alcohol, cetearyl alcohol; fatty acid esters, for example, isopropyl mysristate, isopropyl palmitate, diisopropyl dimer dilmoleate; medium-chain (e.g., 8 to 14 carbon atoms) triglycerides, for example, caprylic/capric triglyceride; cetyl esters; hydrocarbons of 8 or more carbon atoms, for example, light mineral oil, white petrolatum; and waxes, for example, beeswax. Various combinations of such emollients can be used if desired.
In certain embodiments, the amount of the emollient is at least 1.0% by weight, at least 3.0% by weight, at least 5.0% by weight, or at least 10% by weight, based on the total weight of the formulation. In certain embodiments, the amount of emollient is at most 30% by weight, at most 15% by weight, or at most 10% by weight, based'on the total weight of the formulation.
Formulations intended for dermal or topical use typically have amounts of an oil phase and an emollient sufficient to provide desirable qualities such as spreadabilhy and feel. Viscosity Enhancing Agent The formulations of the present invention can also comprise a viscosity- enhancing agent Examples of suitable viscosity enhancing agents include long chain alcohols, for example, cetyl alcohol, stearyl alcohol, cetearyl alcohol; cellulose ethers such as hydroxypropylmethyl cellulose, hydroxyethylcellulose, hydroxypropylcellulose, and carboxymethylcellulose; polysaccharide gums such as
. xanthan gum; and homopolymers and copolymers of acrylic acid crossliπked with allyl sucrose ΌΓ allyl peπtaerythrioJ such as those polymers designated as carbomers in the United States Pharmacopoeia. Suitable carbomers include, for example, those available as CARBOPOL 934P, CARBOPOL 971P, CARBOPOL 940, CARBOPOL.974P, CARBOPOL 980, and PEMULEN TR-I (USP/NF Monograph; Carbomer 1342), all available from Noveon, Cleveland, Ohio.
In certain embodiments, the amount of the viscosity enhancing agents when used, is at least 0.1% by weight, at least 0.2% by weight, at least 0.5% by weight, at least 0.6% by weight, at least 0.7% by weight, at least 0.9% by weight, or at least 1.0% by weight, based on the total weight of the formulation. In certain embodiments, the amount of the viscosity-enhancing agent, when used, is at most 10% by weight, at most 5.0% by weight, at most 3.0% by weight, at most 2.0% by weight, or at most 1.5% by weight, based on the total weight of the.formulation. Emulsifϊer The formulations of the invention can additionally comprise an emulsifier.
Suitable erαulsifϊers include non-ionic surfactants such as, for example, polysorbate 60, sorbitan monostearate, polyglyceryl-4 oleate, polyoxyethyleπe(4) Iauryl ether, etc. In certain embodiments, the emulsifier is chosen from poloxamers (e.g., PLURONIC F68, also known as POLOXAMER 188, a poly(ethylene glycol)-block- poly(propylene glycol)-bloclc-poly(ethylene glycol), available from BASF,
Ludwigshafen, Germany) and sorbitan trioleate (e.g., SPAN 85 available from Unϊqema, New Castle, DE).
If included, the emulsifier is generally present in an amount of 0.1% to 10% by Weight of total formulation weight, for example, from 0.5% to 5.0% by weight, and from 0.75% to 4.0% by weight. In certain embodiments, the amount of the emulsifier, if used, is present in an amount of at least 0.1% by weight, at least 0.5% by weight, at least 0.75% by weight, at least 1.0% by weight, at least 2.5% by weight, at least 3.5% by weight, at least 4.0% by weight, or at least 5.0% by weight, based on the total weight of the formulation. In certain embodiments, the amount of the emulsifier, if used; is present in an amount of at most 10% by weighty at most 5.0% by weight, or at most 3.5% by weight, based on the total weight of the formulation.
Some formulations of the invention are oil-in-water emulsions. The water used in these formulations is typically purified water
Optionally, a formulation of the invention can contain additional pharmaceutically acceptable excipients Such as humectants, such as for example, • glycerin; chelating agents, such as for example, ethylenediaminetetraacetic acid] and pH adjusting agents,' such as for example, potassium hydroxide or sodium hydroxide.
In some instances, a single ingredient can perform more than one function in a formulation. For example, cetyl alcohol can serve as both an emollient and a viscosity enhancer. Illustrative Formulation In one embodiment of the present invention, a pharmaceutical formulation includes:
5% by weight of l-(2-methylpropyl) -l/7-imidazo[4,5-c]quinolin-4-amine; 28% by weight SUPER REFINED oleic acid; 2.2% by weight cetyl alcohol; 3.1 % by weight stearyl alcohol;
3% by weight petrolatum; 3.4% by weight polysorbate 60; 0.6% by weight sorbitan monostearate; 2% by weight glycerin; 0.2% by weight methyl hydroxybenzoate;
0.02% by weight propyl hydroxybenzoate; 0.5% by weight xanthaπ gum; 2% by weight of benzyl alcohol; and 49.98% by weight water; wherein the weight percentages are based on the total weight of the formulation. Methods of Application
Formulations according to the present invention can be applied to any suitable location, for example topically to dermal and/or mucosal surfaces. In the case of dermal application, for example, depending on the IBM compound concentration, formulation composition, and dermal surface, the therapeutic effect of the IRM compound may extend only to the superficial layers of the dermal surface or to tissues below the dermal surface. Thus, another aspect of the present invention is directed to a method for the treatment of a dermal and/or mucosal associated
condition comprising applying to skin one of the foregoing formulations. As used herein, a "dermal and/or mucosal associated condition" means an inflammatory, infectious, neoplastic or other condition that involves a dermal and/or mucosal surface or that is in sufficient proximity to a dermal and/or mucosal surface to be affected by a therapeutic agent topically applied to the surface. Examples of a dermal and/or mucosal associated condition include warts, atopic dermatitis, postsurgical scars, lesions caused by a herpes virus, and epidermal neoplasias, such as for example actinic keratosis, pre-actinic keratosis lesions, malignant melanomas, basal cell carcinoma, and squamous cell carcinoma. In one embodiment, the formulations can be applied to the surface of skin for treatment of actinic keratosis (AK). Actinic keratosis are premalϊgnant lesions considered biologically to be either carcinoma in-sϊtu or squamous intraepi dermal neoplasia. AK is the most frequent epidermal tumor and is induced by ultraviolet (UV) radiation, typically from sunlight. Because of its precancerous nature, AK may be considered the most important manifestation of sun-induced skin damage.
In some embodiments, the above-described formulations are particularly advantageous for dermal and/or mucosal application for a period of time sufficient to obtain a desired therapeutic effect without undesired systemic absorption of the IRM compound.
EXAMPLES
The following Examples are provided to further describe various formulations and methods according to the invention. The examples, however, are not intended to limit the formulations and methods within the spirit and scope of the invention.
Test Method
A reversed phase high performance liquid chromatography (HPLC) method was used to determine the amount of impurities in cream formulations containing oleic acid.
HPLC parameters: Analytical column: ZORBAX RX C8, 5 micron particle, 15.0 x 0.46 cm, (available from Agilent Technologies, Wilmington, Delaware, USA); Detector: UV at 308 run; Mobile phase: gradient mixture of aqueous
ammonium phosphate buffer (prepared by combining 5.1 mL of ortho-phosphoήc acid with 985 mL of water and then adjusting to pH 2.5 with concentrated •ammonium hydroxide) and acetonitrile; Gradient: start ran at 10% acetonitrile, zero . initial hold time, then linear gradient to 70% acetonitrile over 15 minutes, zero final hold time; Flow rate: 2.0 mL/mϊnute; Injection volume: 200 μL; Run time: 15 minutes.
Sample solution: A portion (about 300 mg) of the cream formulation was accurately weighed into a volumetric flask (100 mL). Diluent (50 to 60 mL, prepared by combining 250 parts of acetonitrile, 740 parts of water and 10 parts of hydrochloric acid, all parts by volume) was added to the flask. The flask was vortexed until the cream was completely dispersed and then sonicated for a minimum of 5 minutes. The solution was allowed to cool to ambient temperature and then diluted to volume with diluent and mixed. A portion of the solution was filtered using a syringe equipped with a 0.45 micron polypropylene or polytetralfluoroethylene filter to provide the sample solution.
Preparation of Cream Formulations
The cream formulations in Table 1 below were prepared using the following method. Water phase preparation: A paraben premix was prepared by combining methyl hydroxybenzoate (methylparaben), propyl hydroxybenzoate (propylparaben), and water; heating the mixture with stirring until the parabens were dissolved; and then allowing the resulting solution to cool to ambient temperature. Glycerin was added to the premix and the mixture was heated to 55 ± S0C. Xanthan gum was slowly added with mixing. Mixing with heating was continued until the xanthan gum was dispersed.
Oil phase preparation: An imiquimod/oleic acid premix was prepared by combining imiquimod and the oleic acid and then stirring at ambient temperature overnight Petrolatum, cetyl alcohol, stearyl alcohol, polysorbate 60, sorbitan monostearate; and butylated hydroxyanisole (BHA),- if included; were added to the premix. The oil phase was then heated with stirring to 55 ± 50C. Benzyl-alcohol was added to the oil phase just prior to phase combination.
Phase combination1: Both phases were removed from their heat source. The aqueous phase was added to the oil phase and the emulsion was homogenized at
high speed for at least 5 minutes. The cream was placed in an ice/water bath while homogenizing and homogenization was continued until the temperature of the cream was 350C. The homogenizer speed was reduced and homogenization was continued until the temperature of the cream was 25°C.
Table 1 summarizes creams A-D in percentage weight-by-weight basis. The formulations were packaged in glass containers.
Figure imgf000023_0001
l-(2-methyIpropy])-liϊ-imidazo[4,5-c]quinolin-4-amine 2J. T. Baker, a division of Mallinckrodt Baker, Inc. Phillipsburg, NJ, USA 3Croda, Inc, Edison, NJ, USA
One set of containers was stored at ambient conditions; the samples used to determine initial values came from these containers. The remaining containers were stored in a constant temperature and humidity chamber at 40°C at 75% relative humidity. At selected time points, containers were removed from the chamber and then stored at ambient conditions until analyzed. Samples were analyzed using the test method described above for impurities. At the 2, 4, and 6 month time points samples were taken from both the top and the bottom of the containers. The results are shown in Table 2 below where each value is the result of a single determination. Values are not normalized for weight loss that may have occurred during storage.
Figure imgf000024_0001
days respectively after they were prepared.
2AH samples were analyzed 10 days after the containers were removed from the constant temperature and humidity chamber.
3AIl samples were analyzed 12 days after the containers were removed from the constant temperature and humidity chamber.
4AU samples were analyzed 7 days after the containers were removed from the constant temperature and humidity chamber.
The complete disclosures of the patents, patent documents and publications cited herein are incorporated by reference in their entirety as if each were individually incorporated. In case of conflict, the present specification, including definitions, shall control. Various modifications and alterations to this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention. Illustrative embodiments and examples are provided as examples only and are not intended to limit the scope of the present invention. The scope of the invention is limited only by the claims set forth as follows.

Claims

What is claimed is:
1. A pharmaceutical formulation comprising: a therapeutically effective amount of an immune response modifier (IRM) compound selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoquinoHne amines, imidazopyridine amines, 6,7-fused cycloaikylimϊdazopyridine amines, 1,2- bridged imidazoquinoline amines, imϊdazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazoloquinoline amines, thiazoloquinoline amines, oxazolopyridine amines, thiazolopyridine amines, oxazolonaphthyridine amines, thiazolonaphthyridine amines, liT-imidazo dimers fused to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridine amines, or tetrahydronaphthyridine amines, and combinations thereof; and a pharmaceutically acceptable vehicle including an oleic acid component,- wherein the formulation is substantially free of polar impurities introduced by the oleic acid component
2. A pharmaceutical formulation comprising: a therapeutically effective amount of an IRM compound selected from the group consisting of imidazoquinoline amines, tetr'ahydrobnidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, 1,2- bridged imidazoquinoline amines, imidazonaphthyridine amines, tetrahydroimidazonaphthyridine amines, oxazoloquinoline amines, thiazoloquinoline amines, oxazolopyridine amines, thiazolopyridine amines, oxazoloήaphthyridine amines, thiazolonaphthyridine amines, liϊ-imidazo dimers fused to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridine amines, or tetrahydronaphthyridine amines, and combinations thereof; and a pharmaceutically acceptable vehicle including an oleic acid component, wherein the oleic acid component has a peroxide value no greater than 5.
3. A pharmaceutical formulation comprising: a therapeutically effective amount of an DRM compound selected from the group consisting of imidazoquinoline amines, tetrahydroimidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, 1,2- bridged imidazoquinoline amines, imidazonaphthyridine amines,
tetrahydroimidazonaphthyridine amines, oxazoloquinolϊne amines, thiazoloquinolme amines, oxazolopyridine amines, thiazolopyridiπe amines, oxazolonaphthyridine amines, thiazolonaphthyridine amines, lif-imidazo dimers fused to pyridine amines, quinoline amines, tetrahydroquinoline amines, naphthyridine amines, or tetrahydronaphthyridine amines, and combinations thereof; and a pharmaceutically acceptable vehicle including an oleic acid component, wherein the oleic acid component is at least 80% oleic acid.
4. A formulation as in claim 1 wherein the IRM compound is selected from the group consisting of amide substituted imidazoquinoline amines, sulfonamide substituted imidazoquinoline amines, urea substituted imidazoquinoline amines, aryl ether substituted imidazoquinoline amines, heterocyclic ether substituted imidazoquinoline amines, amido ether substituted imidazoquinoline amines, sulfbnamido ether substituted imidazoquinoline amines, urea substituted imidazoquinoline ethers, thioether substituted imidazoquinoline amines, 6-, 7-, 8-, or 9-aryl, heteroaryl, aryloxy or arylalkyleneoxy substituted imidazoquinoline amines, imidazoquinoline diamines, amide substituted tetrahydroimidazoquinoline amines, sulfonamide substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline amines, aryl ether substituted tetrahydroimidazoquinoline amines, heterocyclic ether substituted tetrahydroimidazoquinoline amines, amido ether substituted tetrahydrounidazoquϊnoline amines, sulfonamido ether substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline ethers, thioether substituted tetrahydroimidazoquinoline amines, tetrahydroimidazoquinoline diamines, amide substituted imidazopyridine amines, sulfonamide substituted imidazopyridine amines, urea substituted imidazopyridine amines, aryl ether substituted imidazopyridine amines, heterocyclic ether substituted imidazopyridine amines, amido ether substituted imidazopyridine amines, sulfonamido ether substituted imidazopyridine amines, urea substituted imidazopyridine ethers, thioether substituted imidazopyridine amines, and combinations thereof.
5. A formulation as in claim I wherein the IRM compound is an imidazonaphthyridine amine.
6. A formulation as in claim I wherein the IRM compound is 2-methyI-l-(2- methylpropyl> liϊ'-imida2θ[4J5-c][l>5]naphthyridin-4-amine.
7. A" formulation as in claim 1 wherein the IRM compound is l-(2-methylpropyl)- liϊ"-iπiidazo[435-c]qυino]in-4-amine.
8. A formulation as in claim 1 wherein the IRM compound is present in an amount of at least 5% by weight, based on the total weight of the formulation.
9. The formulation of Claim 7, wherein the l-(2-methylpropyl)-l/7--irnϊdazo[4,5- c]quiπolin-4-amine is present in an amount of 5% by weight of the formulation.
10. A formulation as in claim 1 wherein the oleic acid component is present in an amount of at least 15% by weight based on the total weight of the formulation.
11. A formulation as in claim 1 wherein the oleic acid component is present in an amount of at least 20% by weight based on the total weight of the formulation.
12. A formulation as in claim 1 wherein the oleic acid component is present in an amount of at least 25% by weight based on the total weight of the formulation.
13. A formulation as in claim I wherein the oleic acid component has been purified by chromatography prior to use in the formulation.
14. A formulation as in claim 1 wherein the oleic acid component is plant-derived.
15. A formulation as in claim 1 wherein the formulation includes at least one fatty acid other than oleic acid or isostearic acid.
16. A formulation as in claim 1 wherein the formulation includes less than 3% isostearic acid by weight based on the total weight of the formulation.
17. A formulation as in claim 1 wherein the formulation further comprises an antioxidant.
18. A formulation as in claim 1 further comprising an antioxidant, wherein the antioxidant is butylated hydroxy, toluene or butylated hydroxyanisole.
19. A formulation of claim 1 further comprising water.
20. A formulation of claim 1 further comprising a preservative system.
21. A formulation of claim 1 further comprising an emulsifier.
22. A method of stabilizing a pharmaceutical formulation comprising at least 5% by weight l-(2-methyIpropyl)-liMmϊdazo[4,5-c]quinottn-4-amine; and at least 15% by weight oleic acid by using an oleic acid component that is substantially free of polar impurities.
23. A method of stabilizing a pharmaceutical formulation comprising at least 5% by weight I-(2-methylpropyl>l/f-imidazo[4,5-c]quinolin-4-amine; and at least 15% by weight oleic acid by using an oleic acid component with a peroxide value no greater than 5.
24. A method of stabilizing a pharmaceutical formulation comprising at least 5% by weight l-(2-methylpropyl)-lJ7-imidazo[4,5-c3quiπolin-4-amine; and at least 15% by weight oleic acid by using an oleic acid component that is at least 80% oleic acid.
25. A method of treating actinic keratosis, the method comprising applying a formulation of claim I, to the skin of a subject.
26. A method of treating basal cell carcinoma, the method comprising applying a formulation of claim 1, to the sMn of a subject.
27. A method of treating genital warts, the method comprising applying a formulation of claim 1, to the skm or mucosal surface of a subject.
28. A method of inducing interferon Biosynthesis; the method comprising applying a formulation of claim I5 to the skin or mucosal surface of a subject.
PCT/US2006/049517 2006-12-29 2006-12-29 Immune response modifier formulations containing oleic acid and methods WO2008082381A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0621407-0A BRPI0621407A2 (en) 2006-12-29 2006-12-29 oleic acid-containing immune response modifying pharmaceutical formulations, stabilization processes thereof and use of a sister immune response modifying compound
MX2008010860A MX2008010860A (en) 2006-12-29 2006-12-29 Immune response modifier formulations containing oleic acid and methods.
CA2643679A CA2643679C (en) 2006-12-29 2006-12-29 Immune response modifier formulations containing oleic acid and methods
PCT/US2006/049517 WO2008082381A1 (en) 2006-12-29 2006-12-29 Immune response modifier formulations containing oleic acid and methods
CR10209A CR10209A (en) 2006-12-29 2008-08-14 FORMULATIONS OF THE IMMUNORESPUEST MODIFIER CONTAINING OLEIC ACID AND METHODS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2006/049517 WO2008082381A1 (en) 2006-12-29 2006-12-29 Immune response modifier formulations containing oleic acid and methods

Publications (1)

Publication Number Publication Date
WO2008082381A1 true WO2008082381A1 (en) 2008-07-10

Family

ID=39588893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/049517 WO2008082381A1 (en) 2006-12-29 2006-12-29 Immune response modifier formulations containing oleic acid and methods

Country Status (5)

Country Link
BR (1) BRPI0621407A2 (en)
CA (1) CA2643679C (en)
CR (1) CR10209A (en)
MX (1) MX2008010860A (en)
WO (1) WO2008082381A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011008324A1 (en) 2009-07-13 2011-01-20 Graceway Pharmaceuticals, Llc Lower dosage strength imiquimod formulations and short dosing regimens for treating genital and perianal warts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030199538A1 (en) * 2001-11-29 2003-10-23 3M Innovative Properties Company Pharmaceutical formulation comprising an immune response modifier
US20040089855A1 (en) * 1996-06-18 2004-05-13 Abb Technology Ag High oleic acid oil compositions and methods of making and electrical insulation fluids and devices comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040089855A1 (en) * 1996-06-18 2004-05-13 Abb Technology Ag High oleic acid oil compositions and methods of making and electrical insulation fluids and devices comprising the same
US20030199538A1 (en) * 2001-11-29 2003-10-23 3M Innovative Properties Company Pharmaceutical formulation comprising an immune response modifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011008324A1 (en) 2009-07-13 2011-01-20 Graceway Pharmaceuticals, Llc Lower dosage strength imiquimod formulations and short dosing regimens for treating genital and perianal warts

Also Published As

Publication number Publication date
BRPI0621407A2 (en) 2011-12-06
CA2643679A1 (en) 2008-07-10
CA2643679C (en) 2017-09-12
MX2008010860A (en) 2009-02-25
CR10209A (en) 2008-11-26

Similar Documents

Publication Publication Date Title
US8557838B2 (en) Immune response modifier formulations containing oleic acid and methods
WO2008082381A1 (en) Immune response modifier formulations containing oleic acid and methods

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: CR2008-010209

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2008/010860

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2643679

Country of ref document: CA

Ref document number: 08088449

Country of ref document: CO

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06848297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06848297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0621407

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080822